1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2002
4  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5  */
6 
7 #include <common.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 
11 /* Memory test
12  *
13  * General observations:
14  * o The recommended test sequence is to test the data lines: if they are
15  *   broken, nothing else will work properly.  Then test the address
16  *   lines.  Finally, test the cells in the memory now that the test
17  *   program knows that the address and data lines work properly.
18  *   This sequence also helps isolate and identify what is faulty.
19  *
20  * o For the address line test, it is a good idea to use the base
21  *   address of the lowest memory location, which causes a '1' bit to
22  *   walk through a field of zeros on the address lines and the highest
23  *   memory location, which causes a '0' bit to walk through a field of
24  *   '1's on the address line.
25  *
26  * o Floating buses can fool memory tests if the test routine writes
27  *   a value and then reads it back immediately.  The problem is, the
28  *   write will charge the residual capacitance on the data bus so the
29  *   bus retains its state briefely.  When the test program reads the
30  *   value back immediately, the capacitance of the bus can allow it
31  *   to read back what was written, even though the memory circuitry
32  *   is broken.  To avoid this, the test program should write a test
33  *   pattern to the target location, write a different pattern elsewhere
34  *   to charge the residual capacitance in a differnt manner, then read
35  *   the target location back.
36  *
37  * o Always read the target location EXACTLY ONCE and save it in a local
38  *   variable.  The problem with reading the target location more than
39  *   once is that the second and subsequent reads may work properly,
40  *   resulting in a failed test that tells the poor technician that
41  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
42  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
43  *   done that.
44  *
45  * Data line test:
46  * ---------------
47  * This tests data lines for shorts and opens by forcing adjacent data
48  * to opposite states. Because the data lines could be routed in an
49  * arbitrary manner the must ensure test patterns ensure that every case
50  * is tested. By using the following series of binary patterns every
51  * combination of adjacent bits is test regardless of routing.
52  *
53  *     ...101010101010101010101010
54  *     ...110011001100110011001100
55  *     ...111100001111000011110000
56  *     ...111111110000000011111111
57  *
58  * Carrying this out, gives us six hex patterns as follows:
59  *
60  *     0xaaaaaaaaaaaaaaaa
61  *     0xcccccccccccccccc
62  *     0xf0f0f0f0f0f0f0f0
63  *     0xff00ff00ff00ff00
64  *     0xffff0000ffff0000
65  *     0xffffffff00000000
66  *
67  * To test for short and opens to other signals on our boards, we
68  * simply test with the 1's complemnt of the paterns as well, resulting
69  * in twelve patterns total.
70  *
71  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
72  * written to a different address in case the data lines are floating.
73  * Thus, if a byte lane fails, you will see part of the special
74  * pattern in that byte lane when the test runs.  For example, if the
75  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
76  * (for the 'a' test pattern).
77  *
78  * Address line test:
79  * ------------------
80  *  This function performs a test to verify that all the address lines
81  *  hooked up to the RAM work properly.  If there is an address line
82  *  fault, it usually shows up as two different locations in the address
83  *  map (related by the faulty address line) mapping to one physical
84  *  memory storage location.  The artifact that shows up is writing to
85  *  the first location "changes" the second location.
86  *
87  * To test all address lines, we start with the given base address and
88  * xor the address with a '1' bit to flip one address line.  For each
89  * test, we shift the '1' bit left to test the next address line.
90  *
91  * In the actual code, we start with address sizeof(ulong) since our
92  * test pattern we use is a ulong and thus, if we tried to test lower
93  * order address bits, it wouldn't work because our pattern would
94  * overwrite itself.
95  *
96  * Example for a 4 bit address space with the base at 0000:
97  *   0000 <- base
98  *   0001 <- test 1
99  *   0010 <- test 2
100  *   0100 <- test 3
101  *   1000 <- test 4
102  * Example for a 4 bit address space with the base at 0010:
103  *   0010 <- base
104  *   0011 <- test 1
105  *   0000 <- (below the base address, skipped)
106  *   0110 <- test 2
107  *   1010 <- test 3
108  *
109  * The test locations are successively tested to make sure that they are
110  * not "mirrored" onto the base address due to a faulty address line.
111  * Note that the base and each test location are related by one address
112  * line flipped.  Note that the base address need not be all zeros.
113  *
114  * Memory tests 1-4:
115  * -----------------
116  * These tests verify RAM using sequential writes and reads
117  * to/from RAM. There are several test cases that use different patterns to
118  * verify RAM. Each test case fills a region of RAM with one pattern and
119  * then reads the region back and compares its contents with the pattern.
120  * The following patterns are used:
121  *
122  *  1a) zero pattern (0x00000000)
123  *  1b) negative pattern (0xffffffff)
124  *  1c) checkerboard pattern (0x55555555)
125  *  1d) checkerboard pattern (0xaaaaaaaa)
126  *  2)  bit-flip pattern ((1 << (offset % 32))
127  *  3)  address pattern (offset)
128  *  4)  address pattern (~offset)
129  *
130  * Being run in normal mode, the test verifies only small 4Kb
131  * regions of RAM around each 1Mb boundary. For example, for 64Mb
132  * RAM the following areas are verified: 0x00000000-0x00000800,
133  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
134  * 0x04000000. If the test is run in slow-test mode, it verifies
135  * the whole RAM.
136  */
137 
138 #include <post.h>
139 #include <watchdog.h>
140 
141 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
142 
143 DECLARE_GLOBAL_DATA_PTR;
144 
145 /*
146  * Define INJECT_*_ERRORS for testing error detection in the presence of
147  * _good_ hardware.
148  */
149 #undef  INJECT_DATA_ERRORS
150 #undef  INJECT_ADDRESS_ERRORS
151 
152 #ifdef INJECT_DATA_ERRORS
153 #warning "Injecting data line errors for testing purposes"
154 #endif
155 
156 #ifdef INJECT_ADDRESS_ERRORS
157 #warning "Injecting address line errors for testing purposes"
158 #endif
159 
160 
161 /*
162  * This function performs a double word move from the data at
163  * the source pointer to the location at the destination pointer.
164  * This is helpful for testing memory on processors which have a 64 bit
165  * wide data bus.
166  *
167  * On those PowerPC with FPU, use assembly and a floating point move:
168  * this does a 64 bit move.
169  *
170  * For other processors, let the compiler generate the best code it can.
171  */
move64(const unsigned long long * src,unsigned long long * dest)172 static void move64(const unsigned long long *src, unsigned long long *dest)
173 {
174 	*dest = *src;
175 }
176 
177 /*
178  * This is 64 bit wide test patterns.  Note that they reside in ROM
179  * (which presumably works) and the tests write them to RAM which may
180  * not work.
181  *
182  * The "otherpattern" is written to drive the data bus to values other
183  * than the test pattern.  This is for detecting floating bus lines.
184  *
185  */
186 const static unsigned long long pattern[] = {
187 	0xaaaaaaaaaaaaaaaaULL,
188 	0xccccccccccccccccULL,
189 	0xf0f0f0f0f0f0f0f0ULL,
190 	0xff00ff00ff00ff00ULL,
191 	0xffff0000ffff0000ULL,
192 	0xffffffff00000000ULL,
193 	0x00000000ffffffffULL,
194 	0x0000ffff0000ffffULL,
195 	0x00ff00ff00ff00ffULL,
196 	0x0f0f0f0f0f0f0f0fULL,
197 	0x3333333333333333ULL,
198 	0x5555555555555555ULL
199 };
200 const unsigned long long otherpattern = 0x0123456789abcdefULL;
201 
202 
memory_post_dataline(unsigned long long * pmem)203 static int memory_post_dataline(unsigned long long * pmem)
204 {
205 	unsigned long long temp64 = 0;
206 	int num_patterns = ARRAY_SIZE(pattern);
207 	int i;
208 	unsigned int hi, lo, pathi, patlo;
209 	int ret = 0;
210 
211 	for ( i = 0; i < num_patterns; i++) {
212 		move64(&(pattern[i]), pmem++);
213 		/*
214 		 * Put a different pattern on the data lines: otherwise they
215 		 * may float long enough to read back what we wrote.
216 		 */
217 		move64(&otherpattern, pmem--);
218 		move64(pmem, &temp64);
219 
220 #ifdef INJECT_DATA_ERRORS
221 		temp64 ^= 0x00008000;
222 #endif
223 
224 		if (temp64 != pattern[i]){
225 			pathi = (pattern[i]>>32) & 0xffffffff;
226 			patlo = pattern[i] & 0xffffffff;
227 
228 			hi = (temp64>>32) & 0xffffffff;
229 			lo = temp64 & 0xffffffff;
230 
231 			post_log("Memory (data line) error at %08x, "
232 				  "wrote %08x%08x, read %08x%08x !\n",
233 					  pmem, pathi, patlo, hi, lo);
234 			ret = -1;
235 		}
236 	}
237 	return ret;
238 }
239 
memory_post_addrline(ulong * testaddr,ulong * base,ulong size)240 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
241 {
242 	ulong *target;
243 	ulong *end;
244 	ulong readback;
245 	ulong xor;
246 	int   ret = 0;
247 
248 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
249 	xor = 0;
250 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
251 		target = (ulong *)((ulong)testaddr ^ xor);
252 		if((target >= base) && (target < end)) {
253 			*testaddr = ~*target;
254 			readback  = *target;
255 
256 #ifdef INJECT_ADDRESS_ERRORS
257 			if(xor == 0x00008000) {
258 				readback = *testaddr;
259 			}
260 #endif
261 			if(readback == *testaddr) {
262 				post_log("Memory (address line) error at %08x<->%08x, "
263 					"XOR value %08x !\n",
264 					testaddr, target, xor);
265 				ret = -1;
266 			}
267 		}
268 	}
269 	return ret;
270 }
271 
memory_post_test1(unsigned long start,unsigned long size,unsigned long val)272 static int memory_post_test1(unsigned long start,
273 			      unsigned long size,
274 			      unsigned long val)
275 {
276 	unsigned long i;
277 	ulong *mem = (ulong *) start;
278 	ulong readback;
279 	int ret = 0;
280 
281 	for (i = 0; i < size / sizeof (ulong); i++) {
282 		mem[i] = val;
283 		if (i % 1024 == 0)
284 			WATCHDOG_RESET();
285 	}
286 
287 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
288 		readback = mem[i];
289 		if (readback != val) {
290 			post_log("Memory error at %08x, "
291 				  "wrote %08x, read %08x !\n",
292 					  mem + i, val, readback);
293 
294 			ret = -1;
295 			break;
296 		}
297 		if (i % 1024 == 0)
298 			WATCHDOG_RESET();
299 	}
300 
301 	return ret;
302 }
303 
memory_post_test2(unsigned long start,unsigned long size)304 static int memory_post_test2(unsigned long start, unsigned long size)
305 {
306 	unsigned long i;
307 	ulong *mem = (ulong *) start;
308 	ulong readback;
309 	int ret = 0;
310 
311 	for (i = 0; i < size / sizeof (ulong); i++) {
312 		mem[i] = 1 << (i % 32);
313 		if (i % 1024 == 0)
314 			WATCHDOG_RESET();
315 	}
316 
317 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
318 		readback = mem[i];
319 		if (readback != (1 << (i % 32))) {
320 			post_log("Memory error at %08x, "
321 				  "wrote %08x, read %08x !\n",
322 					  mem + i, 1 << (i % 32), readback);
323 
324 			ret = -1;
325 			break;
326 		}
327 		if (i % 1024 == 0)
328 			WATCHDOG_RESET();
329 	}
330 
331 	return ret;
332 }
333 
memory_post_test3(unsigned long start,unsigned long size)334 static int memory_post_test3(unsigned long start, unsigned long size)
335 {
336 	unsigned long i;
337 	ulong *mem = (ulong *) start;
338 	ulong readback;
339 	int ret = 0;
340 
341 	for (i = 0; i < size / sizeof (ulong); i++) {
342 		mem[i] = i;
343 		if (i % 1024 == 0)
344 			WATCHDOG_RESET();
345 	}
346 
347 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
348 		readback = mem[i];
349 		if (readback != i) {
350 			post_log("Memory error at %08x, "
351 				  "wrote %08x, read %08x !\n",
352 					  mem + i, i, readback);
353 
354 			ret = -1;
355 			break;
356 		}
357 		if (i % 1024 == 0)
358 			WATCHDOG_RESET();
359 	}
360 
361 	return ret;
362 }
363 
memory_post_test4(unsigned long start,unsigned long size)364 static int memory_post_test4(unsigned long start, unsigned long size)
365 {
366 	unsigned long i;
367 	ulong *mem = (ulong *) start;
368 	ulong readback;
369 	int ret = 0;
370 
371 	for (i = 0; i < size / sizeof (ulong); i++) {
372 		mem[i] = ~i;
373 		if (i % 1024 == 0)
374 			WATCHDOG_RESET();
375 	}
376 
377 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
378 		readback = mem[i];
379 		if (readback != ~i) {
380 			post_log("Memory error at %08x, "
381 				  "wrote %08x, read %08x !\n",
382 					  mem + i, ~i, readback);
383 
384 			ret = -1;
385 			break;
386 		}
387 		if (i % 1024 == 0)
388 			WATCHDOG_RESET();
389 	}
390 
391 	return ret;
392 }
393 
memory_post_test_lines(unsigned long start,unsigned long size)394 static int memory_post_test_lines(unsigned long start, unsigned long size)
395 {
396 	int ret = 0;
397 
398 	ret = memory_post_dataline((unsigned long long *)start);
399 	WATCHDOG_RESET();
400 	if (!ret)
401 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
402 				size);
403 	WATCHDOG_RESET();
404 	if (!ret)
405 		ret = memory_post_addrline((ulong *)(start+size-8),
406 				(ulong *)start, size);
407 	WATCHDOG_RESET();
408 
409 	return ret;
410 }
411 
memory_post_test_patterns(unsigned long start,unsigned long size)412 static int memory_post_test_patterns(unsigned long start, unsigned long size)
413 {
414 	int ret = 0;
415 
416 	ret = memory_post_test1(start, size, 0x00000000);
417 	WATCHDOG_RESET();
418 	if (!ret)
419 		ret = memory_post_test1(start, size, 0xffffffff);
420 	WATCHDOG_RESET();
421 	if (!ret)
422 		ret = memory_post_test1(start, size, 0x55555555);
423 	WATCHDOG_RESET();
424 	if (!ret)
425 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
426 	WATCHDOG_RESET();
427 	if (!ret)
428 		ret = memory_post_test2(start, size);
429 	WATCHDOG_RESET();
430 	if (!ret)
431 		ret = memory_post_test3(start, size);
432 	WATCHDOG_RESET();
433 	if (!ret)
434 		ret = memory_post_test4(start, size);
435 	WATCHDOG_RESET();
436 
437 	return ret;
438 }
439 
memory_post_test_regions(unsigned long start,unsigned long size)440 static int memory_post_test_regions(unsigned long start, unsigned long size)
441 {
442 	unsigned long i;
443 	int ret = 0;
444 
445 	for (i = 0; i < (size >> 20) && (!ret); i++) {
446 		if (!ret)
447 			ret = memory_post_test_patterns(start + (i << 20),
448 				0x800);
449 		if (!ret)
450 			ret = memory_post_test_patterns(start + (i << 20) +
451 				0xff800, 0x800);
452 	}
453 
454 	return ret;
455 }
456 
memory_post_tests(unsigned long start,unsigned long size)457 static int memory_post_tests(unsigned long start, unsigned long size)
458 {
459 	int ret = 0;
460 
461 	ret = memory_post_test_lines(start, size);
462 	if (!ret)
463 		ret = memory_post_test_patterns(start, size);
464 
465 	return ret;
466 }
467 
468 /*
469  * !! this is only valid, if you have contiguous memory banks !!
470  */
471 __attribute__((weak))
arch_memory_test_prepare(u32 * vstart,u32 * size,phys_addr_t * phys_offset)472 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
473 {
474 	struct bd_info *bd = gd->bd;
475 
476 	*vstart = CONFIG_SYS_SDRAM_BASE;
477 	*size = (gd->ram_size >= 256 << 20 ?
478 			256 << 20 : gd->ram_size) - (1 << 20);
479 
480 	/* Limit area to be tested with the board info struct */
481 	if ((*vstart) + (*size) > (ulong)bd)
482 		*size = (ulong)bd - *vstart;
483 
484 	return 0;
485 }
486 
487 __attribute__((weak))
arch_memory_test_advance(u32 * vstart,u32 * size,phys_addr_t * phys_offset)488 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
489 {
490 	return 1;
491 }
492 
493 __attribute__((weak))
arch_memory_test_cleanup(u32 * vstart,u32 * size,phys_addr_t * phys_offset)494 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
495 {
496 	return 0;
497 }
498 
499 __attribute__((weak))
arch_memory_failure_handle(void)500 void arch_memory_failure_handle(void)
501 {
502 	return;
503 }
504 
memory_regions_post_test(int flags)505 int memory_regions_post_test(int flags)
506 {
507 	int ret = 0;
508 	phys_addr_t phys_offset = 0;
509 	u32 memsize, vstart;
510 
511 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
512 
513 	ret = memory_post_test_lines(vstart, memsize);
514 	if (!ret)
515 		ret = memory_post_test_regions(vstart, memsize);
516 
517 	return ret;
518 }
519 
memory_post_test(int flags)520 int memory_post_test(int flags)
521 {
522 	int ret = 0;
523 	phys_addr_t phys_offset = 0;
524 	u32 memsize, vstart;
525 
526 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
527 
528 	do {
529 		if (flags & POST_SLOWTEST) {
530 			ret = memory_post_tests(vstart, memsize);
531 		} else {			/* POST_NORMAL */
532 			ret = memory_post_test_regions(vstart, memsize);
533 		}
534 	} while (!ret &&
535 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
536 
537 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
538 	if (ret)
539 		arch_memory_failure_handle();
540 
541 	return ret;
542 }
543 
544 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
545