1 /*
2  * (C) Copyright 2009
3  * Sergey Kubushyn, himself, ksi@koi8.net
4  *
5  * Changes for unified multibus/multiadapter I2C support.
6  *
7  * (C) Copyright 2001
8  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9  *
10  * SPDX-License-Identifier:	GPL-2.0+
11  */
12 
13 /*
14  * I2C Functions similar to the standard memory functions.
15  *
16  * There are several parameters in many of the commands that bear further
17  * explanations:
18  *
19  * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20  *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
21  *   the address is the upper seven bits and the LSB is the "read/write"
22  *   bit.  Note that the {i2c_chip} address specified on the command
23  *   line is not shifted up: e.g. a typical EEPROM memory chip may have
24  *   an I2C address of 0x50, but the data put on the bus will be 0xA0
25  *   for write and 0xA1 for read.  This "non shifted" address notation
26  *   matches at least half of the data sheets :-/.
27  *
28  * {addr} is the address (or offset) within the chip.  Small memory
29  *   chips have 8 bit addresses.  Large memory chips have 16 bit
30  *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
31  *   Many non-memory chips have multiple registers and {addr} is used
32  *   as the register index.  Some non-memory chips have only one register
33  *   and therefore don't need any {addr} parameter.
34  *
35  *   The default {addr} parameter is one byte (.1) which works well for
36  *   memories and registers with 8 bits of address space.
37  *
38  *   You can specify the length of the {addr} field with the optional .0,
39  *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
40  *   manipulating a single register device which doesn't use an address
41  *   field, use "0.0" for the address and the ".0" length field will
42  *   suppress the address in the I2C data stream.  This also works for
43  *   successive reads using the I2C auto-incrementing memory pointer.
44  *
45  *   If you are manipulating a large memory with 2-byte addresses, use
46  *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47  *
48  *   Then there are the unfortunate memory chips that spill the most
49  *   significant 1, 2, or 3 bits of address into the chip address byte.
50  *   This effectively makes one chip (logically) look like 2, 4, or
51  *   8 chips.  This is handled (awkwardly) by #defining
52  *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53  *   {addr} field (since .1 is the default, it doesn't actually have to
54  *   be specified).  Examples: given a memory chip at I2C chip address
55  *   0x50, the following would happen...
56  *     i2c md 50 0 10   display 16 bytes starting at 0x000
57  *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58  *     i2c md 50 100 10 display 16 bytes starting at 0x100
59  *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60  *     i2c md 50 210 10 display 16 bytes starting at 0x210
61  *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62  *   This is awfully ugly.  It would be nice if someone would think up
63  *   a better way of handling this.
64  *
65  * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66  */
67 
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <dm.h>
73 #include <edid.h>
74 #include <environment.h>
75 #include <errno.h>
76 #include <i2c.h>
77 #include <malloc.h>
78 #include <asm/byteorder.h>
79 #include <linux/compiler.h>
80 
81 DECLARE_GLOBAL_DATA_PTR;
82 
83 /* Display values from last command.
84  * Memory modify remembered values are different from display memory.
85  */
86 static uint	i2c_dp_last_chip;
87 static uint	i2c_dp_last_addr;
88 static uint	i2c_dp_last_alen;
89 static uint	i2c_dp_last_length = 0x10;
90 
91 static uint	i2c_mm_last_chip;
92 static uint	i2c_mm_last_addr;
93 static uint	i2c_mm_last_alen;
94 
95 /* If only one I2C bus is present, the list of devices to ignore when
96  * the probe command is issued is represented by a 1D array of addresses.
97  * When multiple buses are present, the list is an array of bus-address
98  * pairs.  The following macros take care of this */
99 
100 #if defined(CONFIG_SYS_I2C_NOPROBES)
101 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
102 static struct
103 {
104 	uchar	bus;
105 	uchar	addr;
106 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
107 #define GET_BUS_NUM	i2c_get_bus_num()
108 #define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
109 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
110 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
111 #else		/* single bus */
112 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
113 #define GET_BUS_NUM	0
114 #define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
115 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
116 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
117 #endif	/* defined(CONFIG_SYS_I2C) */
118 #endif
119 
120 #define DISP_LINE_LEN	16
121 
122 /*
123  * Default for driver model is to use the chip's existing address length.
124  * For legacy code, this is not stored, so we need to use a suitable
125  * default.
126  */
127 #ifdef CONFIG_DM_I2C
128 #define DEFAULT_ADDR_LEN	(-1)
129 #else
130 #define DEFAULT_ADDR_LEN	1
131 #endif
132 
133 #ifdef CONFIG_DM_I2C
134 static struct udevice *i2c_cur_bus;
135 
cmd_i2c_set_bus_num(unsigned int busnum)136 static int cmd_i2c_set_bus_num(unsigned int busnum)
137 {
138 	struct udevice *bus;
139 	int ret;
140 
141 	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
142 	if (ret) {
143 		debug("%s: No bus %d\n", __func__, busnum);
144 		return ret;
145 	}
146 	i2c_cur_bus = bus;
147 
148 	return 0;
149 }
150 
i2c_get_cur_bus(struct udevice ** busp)151 static int i2c_get_cur_bus(struct udevice **busp)
152 {
153 	if (!i2c_cur_bus) {
154 		puts("No I2C bus selected\n");
155 		return -ENODEV;
156 	}
157 	*busp = i2c_cur_bus;
158 
159 	return 0;
160 }
161 
i2c_get_cur_bus_chip(uint chip_addr,struct udevice ** devp)162 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
163 {
164 	struct udevice *bus;
165 	int ret;
166 
167 	ret = i2c_get_cur_bus(&bus);
168 	if (ret)
169 		return ret;
170 
171 	return i2c_get_chip(bus, chip_addr, 1, devp);
172 }
173 
174 #endif
175 
176 /**
177  * i2c_init_board() - Board-specific I2C bus init
178  *
179  * This function is the default no-op implementation of I2C bus
180  * initialization. This function can be overriden by board-specific
181  * implementation if needed.
182  */
183 __weak
i2c_init_board(void)184 void i2c_init_board(void)
185 {
186 }
187 
188 /* TODO: Implement architecture-specific get/set functions */
189 
190 /**
191  * i2c_get_bus_speed() - Return I2C bus speed
192  *
193  * This function is the default implementation of function for retrieveing
194  * the current I2C bus speed in Hz.
195  *
196  * A driver implementing runtime switching of I2C bus speed must override
197  * this function to report the speed correctly. Simple or legacy drivers
198  * can use this fallback.
199  *
200  * Returns I2C bus speed in Hz.
201  */
202 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
203 /*
204  * TODO: Implement architecture-specific get/set functions
205  * Should go away, if we switched completely to new multibus support
206  */
207 __weak
i2c_get_bus_speed(void)208 unsigned int i2c_get_bus_speed(void)
209 {
210 	return CONFIG_SYS_I2C_SPEED;
211 }
212 
213 /**
214  * i2c_set_bus_speed() - Configure I2C bus speed
215  * @speed:	Newly set speed of the I2C bus in Hz
216  *
217  * This function is the default implementation of function for setting
218  * the I2C bus speed in Hz.
219  *
220  * A driver implementing runtime switching of I2C bus speed must override
221  * this function to report the speed correctly. Simple or legacy drivers
222  * can use this fallback.
223  *
224  * Returns zero on success, negative value on error.
225  */
226 __weak
i2c_set_bus_speed(unsigned int speed)227 int i2c_set_bus_speed(unsigned int speed)
228 {
229 	if (speed != CONFIG_SYS_I2C_SPEED)
230 		return -1;
231 
232 	return 0;
233 }
234 #endif
235 
236 /**
237  * get_alen() - Small parser helper function to get address length
238  *
239  * Returns the address length.
240  */
get_alen(char * arg,int default_len)241 static uint get_alen(char *arg, int default_len)
242 {
243 	int	j;
244 	int	alen;
245 
246 	alen = default_len;
247 	for (j = 0; j < 8; j++) {
248 		if (arg[j] == '.') {
249 			alen = arg[j+1] - '0';
250 			break;
251 		} else if (arg[j] == '\0')
252 			break;
253 	}
254 	return alen;
255 }
256 
257 enum i2c_err_op {
258 	I2C_ERR_READ,
259 	I2C_ERR_WRITE,
260 };
261 
i2c_report_err(int ret,enum i2c_err_op op)262 static int i2c_report_err(int ret, enum i2c_err_op op)
263 {
264 	printf("Error %s the chip: %d\n",
265 	       op == I2C_ERR_READ ? "reading" : "writing", ret);
266 
267 	return CMD_RET_FAILURE;
268 }
269 
270 /**
271  * do_i2c_read() - Handle the "i2c read" command-line command
272  * @cmdtp:	Command data struct pointer
273  * @flag:	Command flag
274  * @argc:	Command-line argument count
275  * @argv:	Array of command-line arguments
276  *
277  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
278  * on error.
279  *
280  * Syntax:
281  *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
282  */
do_i2c_read(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])283 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
284 {
285 	uint	chip;
286 	uint	devaddr, length;
287 	int alen;
288 	u_char  *memaddr;
289 	int ret;
290 #ifdef CONFIG_DM_I2C
291 	struct udevice *dev;
292 #endif
293 
294 	if (argc != 5)
295 		return CMD_RET_USAGE;
296 
297 	/*
298 	 * I2C chip address
299 	 */
300 	chip = simple_strtoul(argv[1], NULL, 16);
301 
302 	/*
303 	 * I2C data address within the chip.  This can be 1 or
304 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
305 	 */
306 	devaddr = simple_strtoul(argv[2], NULL, 16);
307 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
308 	if (alen > 3)
309 		return CMD_RET_USAGE;
310 
311 	/*
312 	 * Length is the number of objects, not number of bytes.
313 	 */
314 	length = simple_strtoul(argv[3], NULL, 16);
315 
316 	/*
317 	 * memaddr is the address where to store things in memory
318 	 */
319 	memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
320 
321 #ifdef CONFIG_DM_I2C
322 	ret = i2c_get_cur_bus_chip(chip, &dev);
323 	if (!ret && alen != -1)
324 		ret = i2c_set_chip_offset_len(dev, alen);
325 	if (!ret)
326 		ret = dm_i2c_read(dev, devaddr, memaddr, length);
327 #else
328 	ret = i2c_read(chip, devaddr, alen, memaddr, length);
329 #endif
330 	if (ret)
331 		return i2c_report_err(ret, I2C_ERR_READ);
332 
333 	return 0;
334 }
335 
do_i2c_write(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])336 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
337 {
338 	uint	chip;
339 	uint	devaddr, length;
340 	int alen;
341 	u_char  *memaddr;
342 	int ret;
343 #ifdef CONFIG_DM_I2C
344 	struct udevice *dev;
345 	struct dm_i2c_chip *i2c_chip;
346 #endif
347 
348 	if ((argc < 5) || (argc > 6))
349 		return cmd_usage(cmdtp);
350 
351 	/*
352 	 * memaddr is the address where to store things in memory
353 	 */
354 	memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
355 
356 	/*
357 	 * I2C chip address
358 	 */
359 	chip = simple_strtoul(argv[2], NULL, 16);
360 
361 	/*
362 	 * I2C data address within the chip.  This can be 1 or
363 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
364 	 */
365 	devaddr = simple_strtoul(argv[3], NULL, 16);
366 	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
367 	if (alen > 3)
368 		return cmd_usage(cmdtp);
369 
370 	/*
371 	 * Length is the number of bytes.
372 	 */
373 	length = simple_strtoul(argv[4], NULL, 16);
374 
375 #ifdef CONFIG_DM_I2C
376 	ret = i2c_get_cur_bus_chip(chip, &dev);
377 	if (!ret && alen != -1)
378 		ret = i2c_set_chip_offset_len(dev, alen);
379 	if (ret)
380 		return i2c_report_err(ret, I2C_ERR_WRITE);
381 	i2c_chip = dev_get_parent_platdata(dev);
382 	if (!i2c_chip)
383 		return i2c_report_err(ret, I2C_ERR_WRITE);
384 #endif
385 
386 	if (argc == 6 && !strcmp(argv[5], "-s")) {
387 		/*
388 		 * Write all bytes in a single I2C transaction. If the target
389 		 * device is an EEPROM, it is your responsibility to not cross
390 		 * a page boundary. No write delay upon completion, take this
391 		 * into account if linking commands.
392 		 */
393 #ifdef CONFIG_DM_I2C
394 		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
395 		ret = dm_i2c_write(dev, devaddr, memaddr, length);
396 #else
397 		ret = i2c_write(chip, devaddr, alen, memaddr, length);
398 #endif
399 		if (ret)
400 			return i2c_report_err(ret, I2C_ERR_WRITE);
401 	} else {
402 		/*
403 		 * Repeated addressing - perform <length> separate
404 		 * write transactions of one byte each
405 		 */
406 		while (length-- > 0) {
407 #ifdef CONFIG_DM_I2C
408 			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
409 			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
410 #else
411 			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
412 #endif
413 			if (ret)
414 				return i2c_report_err(ret, I2C_ERR_WRITE);
415 /*
416  * No write delay with FRAM devices.
417  */
418 #if !defined(CONFIG_SYS_I2C_FRAM)
419 			udelay(11000);
420 #endif
421 		}
422 	}
423 	return 0;
424 }
425 
426 #ifdef CONFIG_DM_I2C
do_i2c_flags(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])427 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
428 			char *const argv[])
429 {
430 	struct udevice *dev;
431 	uint flags;
432 	int chip;
433 	int ret;
434 
435 	if (argc < 2)
436 		return CMD_RET_USAGE;
437 
438 	chip = simple_strtoul(argv[1], NULL, 16);
439 	ret = i2c_get_cur_bus_chip(chip, &dev);
440 	if (ret)
441 		return i2c_report_err(ret, I2C_ERR_READ);
442 
443 	if (argc > 2) {
444 		flags = simple_strtoul(argv[2], NULL, 16);
445 		ret = i2c_set_chip_flags(dev, flags);
446 	} else  {
447 		ret = i2c_get_chip_flags(dev, &flags);
448 		if (!ret)
449 			printf("%x\n", flags);
450 	}
451 	if (ret)
452 		return i2c_report_err(ret, I2C_ERR_READ);
453 
454 	return 0;
455 }
456 #endif
457 
458 /**
459  * do_i2c_md() - Handle the "i2c md" command-line command
460  * @cmdtp:	Command data struct pointer
461  * @flag:	Command flag
462  * @argc:	Command-line argument count
463  * @argv:	Array of command-line arguments
464  *
465  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
466  * on error.
467  *
468  * Syntax:
469  *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
470  */
do_i2c_md(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])471 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
472 {
473 	uint	chip;
474 	uint	addr, length;
475 	int alen;
476 	int	j, nbytes, linebytes;
477 	int ret;
478 #ifdef CONFIG_DM_I2C
479 	struct udevice *dev;
480 #endif
481 
482 	/* We use the last specified parameters, unless new ones are
483 	 * entered.
484 	 */
485 	chip   = i2c_dp_last_chip;
486 	addr   = i2c_dp_last_addr;
487 	alen   = i2c_dp_last_alen;
488 	length = i2c_dp_last_length;
489 
490 	if (argc < 3)
491 		return CMD_RET_USAGE;
492 
493 	if ((flag & CMD_FLAG_REPEAT) == 0) {
494 		/*
495 		 * New command specified.
496 		 */
497 
498 		/*
499 		 * I2C chip address
500 		 */
501 		chip = simple_strtoul(argv[1], NULL, 16);
502 
503 		/*
504 		 * I2C data address within the chip.  This can be 1 or
505 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
506 		 */
507 		addr = simple_strtoul(argv[2], NULL, 16);
508 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
509 		if (alen > 3)
510 			return CMD_RET_USAGE;
511 
512 		/*
513 		 * If another parameter, it is the length to display.
514 		 * Length is the number of objects, not number of bytes.
515 		 */
516 		if (argc > 3)
517 			length = simple_strtoul(argv[3], NULL, 16);
518 	}
519 
520 #ifdef CONFIG_DM_I2C
521 	ret = i2c_get_cur_bus_chip(chip, &dev);
522 	if (!ret && alen != -1)
523 		ret = i2c_set_chip_offset_len(dev, alen);
524 	if (ret)
525 		return i2c_report_err(ret, I2C_ERR_READ);
526 #endif
527 
528 	/*
529 	 * Print the lines.
530 	 *
531 	 * We buffer all read data, so we can make sure data is read only
532 	 * once.
533 	 */
534 	nbytes = length;
535 	do {
536 		unsigned char	linebuf[DISP_LINE_LEN];
537 		unsigned char	*cp;
538 
539 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
540 
541 #ifdef CONFIG_DM_I2C
542 		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
543 #else
544 		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
545 #endif
546 		if (ret)
547 			return i2c_report_err(ret, I2C_ERR_READ);
548 		else {
549 			printf("%04x:", addr);
550 			cp = linebuf;
551 			for (j=0; j<linebytes; j++) {
552 				printf(" %02x", *cp++);
553 				addr++;
554 			}
555 			puts ("    ");
556 			cp = linebuf;
557 			for (j=0; j<linebytes; j++) {
558 				if ((*cp < 0x20) || (*cp > 0x7e))
559 					puts (".");
560 				else
561 					printf("%c", *cp);
562 				cp++;
563 			}
564 			putc ('\n');
565 		}
566 		nbytes -= linebytes;
567 	} while (nbytes > 0);
568 
569 	i2c_dp_last_chip   = chip;
570 	i2c_dp_last_addr   = addr;
571 	i2c_dp_last_alen   = alen;
572 	i2c_dp_last_length = length;
573 
574 	return 0;
575 }
576 
577 /**
578  * do_i2c_mw() - Handle the "i2c mw" command-line command
579  * @cmdtp:	Command data struct pointer
580  * @flag:	Command flag
581  * @argc:	Command-line argument count
582  * @argv:	Array of command-line arguments
583  *
584  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
585  * on error.
586  *
587  * Syntax:
588  *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
589  */
do_i2c_mw(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])590 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
591 {
592 	uint	chip;
593 	ulong	addr;
594 	int	alen;
595 	uchar	byte;
596 	int	count;
597 	int ret;
598 #ifdef CONFIG_DM_I2C
599 	struct udevice *dev;
600 #endif
601 
602 	if ((argc < 4) || (argc > 5))
603 		return CMD_RET_USAGE;
604 
605 	/*
606 	 * Chip is always specified.
607 	 */
608 	chip = simple_strtoul(argv[1], NULL, 16);
609 
610 	/*
611 	 * Address is always specified.
612 	 */
613 	addr = simple_strtoul(argv[2], NULL, 16);
614 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
615 	if (alen > 3)
616 		return CMD_RET_USAGE;
617 
618 #ifdef CONFIG_DM_I2C
619 	ret = i2c_get_cur_bus_chip(chip, &dev);
620 	if (!ret && alen != -1)
621 		ret = i2c_set_chip_offset_len(dev, alen);
622 	if (ret)
623 		return i2c_report_err(ret, I2C_ERR_WRITE);
624 #endif
625 	/*
626 	 * Value to write is always specified.
627 	 */
628 	byte = simple_strtoul(argv[3], NULL, 16);
629 
630 	/*
631 	 * Optional count
632 	 */
633 	if (argc == 5)
634 		count = simple_strtoul(argv[4], NULL, 16);
635 	else
636 		count = 1;
637 
638 	while (count-- > 0) {
639 #ifdef CONFIG_DM_I2C
640 		ret = dm_i2c_write(dev, addr++, &byte, 1);
641 #else
642 		ret = i2c_write(chip, addr++, alen, &byte, 1);
643 #endif
644 		if (ret)
645 			return i2c_report_err(ret, I2C_ERR_WRITE);
646 		/*
647 		 * Wait for the write to complete.  The write can take
648 		 * up to 10mSec (we allow a little more time).
649 		 */
650 /*
651  * No write delay with FRAM devices.
652  */
653 #if !defined(CONFIG_SYS_I2C_FRAM)
654 		udelay(11000);
655 #endif
656 	}
657 
658 	return 0;
659 }
660 
661 /**
662  * do_i2c_crc() - Handle the "i2c crc32" command-line command
663  * @cmdtp:	Command data struct pointer
664  * @flag:	Command flag
665  * @argc:	Command-line argument count
666  * @argv:	Array of command-line arguments
667  *
668  * Calculate a CRC on memory
669  *
670  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
671  * on error.
672  *
673  * Syntax:
674  *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
675  */
do_i2c_crc(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])676 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
677 {
678 	uint	chip;
679 	ulong	addr;
680 	int	alen;
681 	int	count;
682 	uchar	byte;
683 	ulong	crc;
684 	ulong	err;
685 	int ret = 0;
686 #ifdef CONFIG_DM_I2C
687 	struct udevice *dev;
688 #endif
689 
690 	if (argc < 4)
691 		return CMD_RET_USAGE;
692 
693 	/*
694 	 * Chip is always specified.
695 	 */
696 	chip = simple_strtoul(argv[1], NULL, 16);
697 
698 	/*
699 	 * Address is always specified.
700 	 */
701 	addr = simple_strtoul(argv[2], NULL, 16);
702 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
703 	if (alen > 3)
704 		return CMD_RET_USAGE;
705 
706 #ifdef CONFIG_DM_I2C
707 	ret = i2c_get_cur_bus_chip(chip, &dev);
708 	if (!ret && alen != -1)
709 		ret = i2c_set_chip_offset_len(dev, alen);
710 	if (ret)
711 		return i2c_report_err(ret, I2C_ERR_READ);
712 #endif
713 	/*
714 	 * Count is always specified
715 	 */
716 	count = simple_strtoul(argv[3], NULL, 16);
717 
718 	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
719 	/*
720 	 * CRC a byte at a time.  This is going to be slooow, but hey, the
721 	 * memories are small and slow too so hopefully nobody notices.
722 	 */
723 	crc = 0;
724 	err = 0;
725 	while (count-- > 0) {
726 #ifdef CONFIG_DM_I2C
727 		ret = dm_i2c_read(dev, addr, &byte, 1);
728 #else
729 		ret = i2c_read(chip, addr, alen, &byte, 1);
730 #endif
731 		if (ret)
732 			err++;
733 		crc = crc32 (crc, &byte, 1);
734 		addr++;
735 	}
736 	if (err > 0)
737 		i2c_report_err(ret, I2C_ERR_READ);
738 	else
739 		printf ("%08lx\n", crc);
740 
741 	return 0;
742 }
743 
744 /**
745  * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
746  * @cmdtp:	Command data struct pointer
747  * @flag:	Command flag
748  * @argc:	Command-line argument count
749  * @argv:	Array of command-line arguments
750  *
751  * Modify memory.
752  *
753  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
754  * on error.
755  *
756  * Syntax:
757  *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
758  *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
759  */
760 static int
mod_i2c_mem(cmd_tbl_t * cmdtp,int incrflag,int flag,int argc,char * const argv[])761 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
762 {
763 	uint	chip;
764 	ulong	addr;
765 	int	alen;
766 	ulong	data;
767 	int	size = 1;
768 	int	nbytes;
769 	int ret;
770 #ifdef CONFIG_DM_I2C
771 	struct udevice *dev;
772 #endif
773 
774 	if (argc != 3)
775 		return CMD_RET_USAGE;
776 
777 	bootretry_reset_cmd_timeout();	/* got a good command to get here */
778 	/*
779 	 * We use the last specified parameters, unless new ones are
780 	 * entered.
781 	 */
782 	chip = i2c_mm_last_chip;
783 	addr = i2c_mm_last_addr;
784 	alen = i2c_mm_last_alen;
785 
786 	if ((flag & CMD_FLAG_REPEAT) == 0) {
787 		/*
788 		 * New command specified.  Check for a size specification.
789 		 * Defaults to byte if no or incorrect specification.
790 		 */
791 		size = cmd_get_data_size(argv[0], 1);
792 
793 		/*
794 		 * Chip is always specified.
795 		 */
796 		chip = simple_strtoul(argv[1], NULL, 16);
797 
798 		/*
799 		 * Address is always specified.
800 		 */
801 		addr = simple_strtoul(argv[2], NULL, 16);
802 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
803 		if (alen > 3)
804 			return CMD_RET_USAGE;
805 	}
806 
807 #ifdef CONFIG_DM_I2C
808 	ret = i2c_get_cur_bus_chip(chip, &dev);
809 	if (!ret && alen != -1)
810 		ret = i2c_set_chip_offset_len(dev, alen);
811 	if (ret)
812 		return i2c_report_err(ret, I2C_ERR_WRITE);
813 #endif
814 
815 	/*
816 	 * Print the address, followed by value.  Then accept input for
817 	 * the next value.  A non-converted value exits.
818 	 */
819 	do {
820 		printf("%08lx:", addr);
821 #ifdef CONFIG_DM_I2C
822 		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
823 #else
824 		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
825 #endif
826 		if (ret)
827 			return i2c_report_err(ret, I2C_ERR_READ);
828 
829 		data = cpu_to_be32(data);
830 		if (size == 1)
831 			printf(" %02lx", (data >> 24) & 0x000000FF);
832 		else if (size == 2)
833 			printf(" %04lx", (data >> 16) & 0x0000FFFF);
834 		else
835 			printf(" %08lx", data);
836 
837 		nbytes = cli_readline(" ? ");
838 		if (nbytes == 0) {
839 			/*
840 			 * <CR> pressed as only input, don't modify current
841 			 * location and move to next.
842 			 */
843 			if (incrflag)
844 				addr += size;
845 			nbytes = size;
846 			/* good enough to not time out */
847 			bootretry_reset_cmd_timeout();
848 		}
849 #ifdef CONFIG_BOOT_RETRY_TIME
850 		else if (nbytes == -2)
851 			break;	/* timed out, exit the command	*/
852 #endif
853 		else {
854 			char *endp;
855 
856 			data = simple_strtoul(console_buffer, &endp, 16);
857 			if (size == 1)
858 				data = data << 24;
859 			else if (size == 2)
860 				data = data << 16;
861 			data = be32_to_cpu(data);
862 			nbytes = endp - console_buffer;
863 			if (nbytes) {
864 				/*
865 				 * good enough to not time out
866 				 */
867 				bootretry_reset_cmd_timeout();
868 #ifdef CONFIG_DM_I2C
869 				ret = dm_i2c_write(dev, addr, (uchar *)&data,
870 						   size);
871 #else
872 				ret = i2c_write(chip, addr, alen,
873 						(uchar *)&data, size);
874 #endif
875 				if (ret)
876 					return i2c_report_err(ret,
877 							      I2C_ERR_WRITE);
878 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
879 				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
880 #endif
881 				if (incrflag)
882 					addr += size;
883 			}
884 		}
885 	} while (nbytes);
886 
887 	i2c_mm_last_chip = chip;
888 	i2c_mm_last_addr = addr;
889 	i2c_mm_last_alen = alen;
890 
891 	return 0;
892 }
893 
894 /**
895  * do_i2c_probe() - Handle the "i2c probe" command-line command
896  * @cmdtp:	Command data struct pointer
897  * @flag:	Command flag
898  * @argc:	Command-line argument count
899  * @argv:	Array of command-line arguments
900  *
901  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
902  * on error.
903  *
904  * Syntax:
905  *	i2c probe {addr}
906  *
907  * Returns zero (success) if one or more I2C devices was found
908  */
do_i2c_probe(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])909 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
910 {
911 	int j;
912 	int addr = -1;
913 	int found = 0;
914 #if defined(CONFIG_SYS_I2C_NOPROBES)
915 	int k, skip;
916 	unsigned int bus = GET_BUS_NUM;
917 #endif	/* NOPROBES */
918 	int ret;
919 #ifdef CONFIG_DM_I2C
920 	struct udevice *bus, *dev;
921 
922 	if (i2c_get_cur_bus(&bus))
923 		return CMD_RET_FAILURE;
924 #endif
925 
926 	if (argc == 2)
927 		addr = simple_strtol(argv[1], 0, 16);
928 
929 	puts ("Valid chip addresses:");
930 	for (j = 0; j < 128; j++) {
931 		if ((0 <= addr) && (j != addr))
932 			continue;
933 
934 #if defined(CONFIG_SYS_I2C_NOPROBES)
935 		skip = 0;
936 		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
937 			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
938 				skip = 1;
939 				break;
940 			}
941 		}
942 		if (skip)
943 			continue;
944 #endif
945 #ifdef CONFIG_DM_I2C
946 		ret = dm_i2c_probe(bus, j, 0, &dev);
947 #else
948 		ret = i2c_probe(j);
949 #endif
950 		if (ret == 0) {
951 			printf(" %02X", j);
952 			found++;
953 		}
954 	}
955 	putc ('\n');
956 
957 #if defined(CONFIG_SYS_I2C_NOPROBES)
958 	puts ("Excluded chip addresses:");
959 	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
960 		if (COMPARE_BUS(bus,k))
961 			printf(" %02X", NO_PROBE_ADDR(k));
962 	}
963 	putc ('\n');
964 #endif
965 
966 	return (0 == found);
967 }
968 
969 /**
970  * do_i2c_loop() - Handle the "i2c loop" command-line command
971  * @cmdtp:	Command data struct pointer
972  * @flag:	Command flag
973  * @argc:	Command-line argument count
974  * @argv:	Array of command-line arguments
975  *
976  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
977  * on error.
978  *
979  * Syntax:
980  *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
981  *	{length} - Number of bytes to read
982  *	{delay}  - A DECIMAL number and defaults to 1000 uSec
983  */
do_i2c_loop(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])984 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
985 {
986 	uint	chip;
987 	int alen;
988 	uint	addr;
989 	uint	length;
990 	u_char	bytes[16];
991 	int	delay;
992 	int ret;
993 #ifdef CONFIG_DM_I2C
994 	struct udevice *dev;
995 #endif
996 
997 	if (argc < 3)
998 		return CMD_RET_USAGE;
999 
1000 	/*
1001 	 * Chip is always specified.
1002 	 */
1003 	chip = simple_strtoul(argv[1], NULL, 16);
1004 
1005 	/*
1006 	 * Address is always specified.
1007 	 */
1008 	addr = simple_strtoul(argv[2], NULL, 16);
1009 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1010 	if (alen > 3)
1011 		return CMD_RET_USAGE;
1012 #ifdef CONFIG_DM_I2C
1013 	ret = i2c_get_cur_bus_chip(chip, &dev);
1014 	if (!ret && alen != -1)
1015 		ret = i2c_set_chip_offset_len(dev, alen);
1016 	if (ret)
1017 		return i2c_report_err(ret, I2C_ERR_WRITE);
1018 #endif
1019 
1020 	/*
1021 	 * Length is the number of objects, not number of bytes.
1022 	 */
1023 	length = 1;
1024 	length = simple_strtoul(argv[3], NULL, 16);
1025 	if (length > sizeof(bytes))
1026 		length = sizeof(bytes);
1027 
1028 	/*
1029 	 * The delay time (uSec) is optional.
1030 	 */
1031 	delay = 1000;
1032 	if (argc > 3)
1033 		delay = simple_strtoul(argv[4], NULL, 10);
1034 	/*
1035 	 * Run the loop...
1036 	 */
1037 	while (1) {
1038 #ifdef CONFIG_DM_I2C
1039 		ret = dm_i2c_read(dev, addr, bytes, length);
1040 #else
1041 		ret = i2c_read(chip, addr, alen, bytes, length);
1042 #endif
1043 		if (ret)
1044 			i2c_report_err(ret, I2C_ERR_READ);
1045 		udelay(delay);
1046 	}
1047 
1048 	/* NOTREACHED */
1049 	return 0;
1050 }
1051 
1052 /*
1053  * The SDRAM command is separately configured because many
1054  * (most?) embedded boards don't use SDRAM DIMMs.
1055  *
1056  * FIXME: Document and probably move elsewhere!
1057  */
1058 #if defined(CONFIG_CMD_SDRAM)
print_ddr2_tcyc(u_char const b)1059 static void print_ddr2_tcyc (u_char const b)
1060 {
1061 	printf ("%d.", (b >> 4) & 0x0F);
1062 	switch (b & 0x0F) {
1063 	case 0x0:
1064 	case 0x1:
1065 	case 0x2:
1066 	case 0x3:
1067 	case 0x4:
1068 	case 0x5:
1069 	case 0x6:
1070 	case 0x7:
1071 	case 0x8:
1072 	case 0x9:
1073 		printf ("%d ns\n", b & 0x0F);
1074 		break;
1075 	case 0xA:
1076 		puts ("25 ns\n");
1077 		break;
1078 	case 0xB:
1079 		puts ("33 ns\n");
1080 		break;
1081 	case 0xC:
1082 		puts ("66 ns\n");
1083 		break;
1084 	case 0xD:
1085 		puts ("75 ns\n");
1086 		break;
1087 	default:
1088 		puts ("?? ns\n");
1089 		break;
1090 	}
1091 }
1092 
decode_bits(u_char const b,char const * str[],int const do_once)1093 static void decode_bits (u_char const b, char const *str[], int const do_once)
1094 {
1095 	u_char mask;
1096 
1097 	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1098 		if (b & mask) {
1099 			puts (*str);
1100 			if (do_once)
1101 				return;
1102 		}
1103 	}
1104 }
1105 
1106 /*
1107  * Syntax:
1108  *	i2c sdram {i2c_chip}
1109  */
do_sdram(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1110 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1111 {
1112 	enum { unknown, EDO, SDRAM, DDR2 } type;
1113 
1114 	uint	chip;
1115 	u_char	data[128];
1116 	u_char	cksum;
1117 	int	j;
1118 
1119 	static const char *decode_CAS_DDR2[] = {
1120 		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1121 	};
1122 
1123 	static const char *decode_CAS_default[] = {
1124 		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1125 	};
1126 
1127 	static const char *decode_CS_WE_default[] = {
1128 		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1129 	};
1130 
1131 	static const char *decode_byte21_default[] = {
1132 		"  TBD (bit 7)\n",
1133 		"  Redundant row address\n",
1134 		"  Differential clock input\n",
1135 		"  Registerd DQMB inputs\n",
1136 		"  Buffered DQMB inputs\n",
1137 		"  On-card PLL\n",
1138 		"  Registered address/control lines\n",
1139 		"  Buffered address/control lines\n"
1140 	};
1141 
1142 	static const char *decode_byte22_DDR2[] = {
1143 		"  TBD (bit 7)\n",
1144 		"  TBD (bit 6)\n",
1145 		"  TBD (bit 5)\n",
1146 		"  TBD (bit 4)\n",
1147 		"  TBD (bit 3)\n",
1148 		"  Supports partial array self refresh\n",
1149 		"  Supports 50 ohm ODT\n",
1150 		"  Supports weak driver\n"
1151 	};
1152 
1153 	static const char *decode_row_density_DDR2[] = {
1154 		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1155 		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1156 	};
1157 
1158 	static const char *decode_row_density_default[] = {
1159 		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1160 		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1161 	};
1162 
1163 	if (argc < 2)
1164 		return CMD_RET_USAGE;
1165 
1166 	/*
1167 	 * Chip is always specified.
1168 	 */
1169 	chip = simple_strtoul (argv[1], NULL, 16);
1170 
1171 	if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
1172 		puts ("No SDRAM Serial Presence Detect found.\n");
1173 		return 1;
1174 	}
1175 
1176 	cksum = 0;
1177 	for (j = 0; j < 63; j++) {
1178 		cksum += data[j];
1179 	}
1180 	if (cksum != data[63]) {
1181 		printf ("WARNING: Configuration data checksum failure:\n"
1182 			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1183 	}
1184 	printf ("SPD data revision            %d.%d\n",
1185 		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1186 	printf ("Bytes used                   0x%02X\n", data[0]);
1187 	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1188 
1189 	puts ("Memory type                  ");
1190 	switch (data[2]) {
1191 	case 2:
1192 		type = EDO;
1193 		puts ("EDO\n");
1194 		break;
1195 	case 4:
1196 		type = SDRAM;
1197 		puts ("SDRAM\n");
1198 		break;
1199 	case 8:
1200 		type = DDR2;
1201 		puts ("DDR2\n");
1202 		break;
1203 	default:
1204 		type = unknown;
1205 		puts ("unknown\n");
1206 		break;
1207 	}
1208 
1209 	puts ("Row address bits             ");
1210 	if ((data[3] & 0x00F0) == 0)
1211 		printf ("%d\n", data[3] & 0x0F);
1212 	else
1213 		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1214 
1215 	puts ("Column address bits          ");
1216 	if ((data[4] & 0x00F0) == 0)
1217 		printf ("%d\n", data[4] & 0x0F);
1218 	else
1219 		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1220 
1221 	switch (type) {
1222 	case DDR2:
1223 		printf ("Number of ranks              %d\n",
1224 			(data[5] & 0x07) + 1);
1225 		break;
1226 	default:
1227 		printf ("Module rows                  %d\n", data[5]);
1228 		break;
1229 	}
1230 
1231 	switch (type) {
1232 	case DDR2:
1233 		printf ("Module data width            %d bits\n", data[6]);
1234 		break;
1235 	default:
1236 		printf ("Module data width            %d bits\n",
1237 			(data[7] << 8) | data[6]);
1238 		break;
1239 	}
1240 
1241 	puts ("Interface signal levels      ");
1242 	switch(data[8]) {
1243 		case 0:  puts ("TTL 5.0 V\n");	break;
1244 		case 1:  puts ("LVTTL\n");	break;
1245 		case 2:  puts ("HSTL 1.5 V\n");	break;
1246 		case 3:  puts ("SSTL 3.3 V\n");	break;
1247 		case 4:  puts ("SSTL 2.5 V\n");	break;
1248 		case 5:  puts ("SSTL 1.8 V\n");	break;
1249 		default: puts ("unknown\n");	break;
1250 	}
1251 
1252 	switch (type) {
1253 	case DDR2:
1254 		printf ("SDRAM cycle time             ");
1255 		print_ddr2_tcyc (data[9]);
1256 		break;
1257 	default:
1258 		printf ("SDRAM cycle time             %d.%d ns\n",
1259 			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1260 		break;
1261 	}
1262 
1263 	switch (type) {
1264 	case DDR2:
1265 		printf ("SDRAM access time            0.%d%d ns\n",
1266 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1267 		break;
1268 	default:
1269 		printf ("SDRAM access time            %d.%d ns\n",
1270 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1271 		break;
1272 	}
1273 
1274 	puts ("EDC configuration            ");
1275 	switch (data[11]) {
1276 		case 0:  puts ("None\n");	break;
1277 		case 1:  puts ("Parity\n");	break;
1278 		case 2:  puts ("ECC\n");	break;
1279 		default: puts ("unknown\n");	break;
1280 	}
1281 
1282 	if ((data[12] & 0x80) == 0)
1283 		puts ("No self refresh, rate        ");
1284 	else
1285 		puts ("Self refresh, rate           ");
1286 
1287 	switch(data[12] & 0x7F) {
1288 		case 0:  puts ("15.625 us\n");	break;
1289 		case 1:  puts ("3.9 us\n");	break;
1290 		case 2:  puts ("7.8 us\n");	break;
1291 		case 3:  puts ("31.3 us\n");	break;
1292 		case 4:  puts ("62.5 us\n");	break;
1293 		case 5:  puts ("125 us\n");	break;
1294 		default: puts ("unknown\n");	break;
1295 	}
1296 
1297 	switch (type) {
1298 	case DDR2:
1299 		printf ("SDRAM width (primary)        %d\n", data[13]);
1300 		break;
1301 	default:
1302 		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1303 		if ((data[13] & 0x80) != 0) {
1304 			printf ("  (second bank)              %d\n",
1305 				2 * (data[13] & 0x7F));
1306 		}
1307 		break;
1308 	}
1309 
1310 	switch (type) {
1311 	case DDR2:
1312 		if (data[14] != 0)
1313 			printf ("EDC width                    %d\n", data[14]);
1314 		break;
1315 	default:
1316 		if (data[14] != 0) {
1317 			printf ("EDC width                    %d\n",
1318 				data[14] & 0x7F);
1319 
1320 			if ((data[14] & 0x80) != 0) {
1321 				printf ("  (second bank)              %d\n",
1322 					2 * (data[14] & 0x7F));
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	if (DDR2 != type) {
1329 		printf ("Min clock delay, back-to-back random column addresses "
1330 			"%d\n", data[15]);
1331 	}
1332 
1333 	puts ("Burst length(s)             ");
1334 	if (data[16] & 0x80) puts (" Page");
1335 	if (data[16] & 0x08) puts (" 8");
1336 	if (data[16] & 0x04) puts (" 4");
1337 	if (data[16] & 0x02) puts (" 2");
1338 	if (data[16] & 0x01) puts (" 1");
1339 	putc ('\n');
1340 	printf ("Number of banks              %d\n", data[17]);
1341 
1342 	switch (type) {
1343 	case DDR2:
1344 		puts ("CAS latency(s)              ");
1345 		decode_bits (data[18], decode_CAS_DDR2, 0);
1346 		putc ('\n');
1347 		break;
1348 	default:
1349 		puts ("CAS latency(s)              ");
1350 		decode_bits (data[18], decode_CAS_default, 0);
1351 		putc ('\n');
1352 		break;
1353 	}
1354 
1355 	if (DDR2 != type) {
1356 		puts ("CS latency(s)               ");
1357 		decode_bits (data[19], decode_CS_WE_default, 0);
1358 		putc ('\n');
1359 	}
1360 
1361 	if (DDR2 != type) {
1362 		puts ("WE latency(s)               ");
1363 		decode_bits (data[20], decode_CS_WE_default, 0);
1364 		putc ('\n');
1365 	}
1366 
1367 	switch (type) {
1368 	case DDR2:
1369 		puts ("Module attributes:\n");
1370 		if (data[21] & 0x80)
1371 			puts ("  TBD (bit 7)\n");
1372 		if (data[21] & 0x40)
1373 			puts ("  Analysis probe installed\n");
1374 		if (data[21] & 0x20)
1375 			puts ("  TBD (bit 5)\n");
1376 		if (data[21] & 0x10)
1377 			puts ("  FET switch external enable\n");
1378 		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1379 		if (data[20] & 0x11) {
1380 			printf ("  %d active registers on DIMM\n",
1381 				(data[21] & 0x03) + 1);
1382 		}
1383 		break;
1384 	default:
1385 		puts ("Module attributes:\n");
1386 		if (!data[21])
1387 			puts ("  (none)\n");
1388 		else
1389 			decode_bits (data[21], decode_byte21_default, 0);
1390 		break;
1391 	}
1392 
1393 	switch (type) {
1394 	case DDR2:
1395 		decode_bits (data[22], decode_byte22_DDR2, 0);
1396 		break;
1397 	default:
1398 		puts ("Device attributes:\n");
1399 		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1400 		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1401 		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1402 		else                 puts ("  Upper Vcc tolerance 10%\n");
1403 		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1404 		else                 puts ("  Lower Vcc tolerance 10%\n");
1405 		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1406 		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1407 		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1408 		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1409 		break;
1410 	}
1411 
1412 	switch (type) {
1413 	case DDR2:
1414 		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1415 		print_ddr2_tcyc (data[23]);
1416 		break;
1417 	default:
1418 		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1419 			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1420 		break;
1421 	}
1422 
1423 	switch (type) {
1424 	case DDR2:
1425 		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1426 			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1427 		break;
1428 	default:
1429 		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1430 			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1431 		break;
1432 	}
1433 
1434 	switch (type) {
1435 	case DDR2:
1436 		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1437 		print_ddr2_tcyc (data[25]);
1438 		break;
1439 	default:
1440 		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1441 			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1442 		break;
1443 	}
1444 
1445 	switch (type) {
1446 	case DDR2:
1447 		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1448 			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1449 		break;
1450 	default:
1451 		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1452 			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1453 		break;
1454 	}
1455 
1456 	switch (type) {
1457 	case DDR2:
1458 		printf ("Minimum row precharge        %d.%02d ns\n",
1459 			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1460 		break;
1461 	default:
1462 		printf ("Minimum row precharge        %d ns\n", data[27]);
1463 		break;
1464 	}
1465 
1466 	switch (type) {
1467 	case DDR2:
1468 		printf ("Row active to row active min %d.%02d ns\n",
1469 			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1470 		break;
1471 	default:
1472 		printf ("Row active to row active min %d ns\n", data[28]);
1473 		break;
1474 	}
1475 
1476 	switch (type) {
1477 	case DDR2:
1478 		printf ("RAS to CAS delay min         %d.%02d ns\n",
1479 			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1480 		break;
1481 	default:
1482 		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1483 		break;
1484 	}
1485 
1486 	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1487 
1488 	switch (type) {
1489 	case DDR2:
1490 		puts ("Density of each row          ");
1491 		decode_bits (data[31], decode_row_density_DDR2, 1);
1492 		putc ('\n');
1493 		break;
1494 	default:
1495 		puts ("Density of each row          ");
1496 		decode_bits (data[31], decode_row_density_default, 1);
1497 		putc ('\n');
1498 		break;
1499 	}
1500 
1501 	switch (type) {
1502 	case DDR2:
1503 		puts ("Command and Address setup    ");
1504 		if (data[32] >= 0xA0) {
1505 			printf ("1.%d%d ns\n",
1506 				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1507 		} else {
1508 			printf ("0.%d%d ns\n",
1509 				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1510 		}
1511 		break;
1512 	default:
1513 		printf ("Command and Address setup    %c%d.%d ns\n",
1514 			(data[32] & 0x80) ? '-' : '+',
1515 			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1516 		break;
1517 	}
1518 
1519 	switch (type) {
1520 	case DDR2:
1521 		puts ("Command and Address hold     ");
1522 		if (data[33] >= 0xA0) {
1523 			printf ("1.%d%d ns\n",
1524 				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1525 		} else {
1526 			printf ("0.%d%d ns\n",
1527 				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1528 		}
1529 		break;
1530 	default:
1531 		printf ("Command and Address hold     %c%d.%d ns\n",
1532 			(data[33] & 0x80) ? '-' : '+',
1533 			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1534 		break;
1535 	}
1536 
1537 	switch (type) {
1538 	case DDR2:
1539 		printf ("Data signal input setup      0.%d%d ns\n",
1540 			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1541 		break;
1542 	default:
1543 		printf ("Data signal input setup      %c%d.%d ns\n",
1544 			(data[34] & 0x80) ? '-' : '+',
1545 			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1546 		break;
1547 	}
1548 
1549 	switch (type) {
1550 	case DDR2:
1551 		printf ("Data signal input hold       0.%d%d ns\n",
1552 			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1553 		break;
1554 	default:
1555 		printf ("Data signal input hold       %c%d.%d ns\n",
1556 			(data[35] & 0x80) ? '-' : '+',
1557 			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1558 		break;
1559 	}
1560 
1561 	puts ("Manufacturer's JEDEC ID      ");
1562 	for (j = 64; j <= 71; j++)
1563 		printf ("%02X ", data[j]);
1564 	putc ('\n');
1565 	printf ("Manufacturing Location       %02X\n", data[72]);
1566 	puts ("Manufacturer's Part Number   ");
1567 	for (j = 73; j <= 90; j++)
1568 		printf ("%02X ", data[j]);
1569 	putc ('\n');
1570 	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1571 	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1572 	puts ("Assembly Serial Number       ");
1573 	for (j = 95; j <= 98; j++)
1574 		printf ("%02X ", data[j]);
1575 	putc ('\n');
1576 
1577 	if (DDR2 != type) {
1578 		printf ("Speed rating                 PC%d\n",
1579 			data[126] == 0x66 ? 66 : data[126]);
1580 	}
1581 	return 0;
1582 }
1583 #endif
1584 
1585 /*
1586  * Syntax:
1587  *	i2c edid {i2c_chip}
1588  */
1589 #if defined(CONFIG_I2C_EDID)
do_edid(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1590 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1591 {
1592 	uint chip;
1593 	struct edid1_info edid;
1594 	int ret;
1595 #ifdef CONFIG_DM_I2C
1596 	struct udevice *dev;
1597 #endif
1598 
1599 	if (argc < 2) {
1600 		cmd_usage(cmdtp);
1601 		return 1;
1602 	}
1603 
1604 	chip = simple_strtoul(argv[1], NULL, 16);
1605 #ifdef CONFIG_DM_I2C
1606 	ret = i2c_get_cur_bus_chip(chip, &dev);
1607 	if (!ret)
1608 		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1609 #else
1610 	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1611 #endif
1612 	if (ret)
1613 		return i2c_report_err(ret, I2C_ERR_READ);
1614 
1615 	if (edid_check_info(&edid)) {
1616 		puts("Content isn't valid EDID.\n");
1617 		return 1;
1618 	}
1619 
1620 	edid_print_info(&edid);
1621 	return 0;
1622 
1623 }
1624 #endif /* CONFIG_I2C_EDID */
1625 
1626 #ifdef CONFIG_DM_I2C
show_bus(struct udevice * bus)1627 static void show_bus(struct udevice *bus)
1628 {
1629 	struct udevice *dev;
1630 
1631 	printf("Bus %d:\t%s", bus->req_seq, bus->name);
1632 	if (device_active(bus))
1633 		printf("  (active %d)", bus->seq);
1634 	printf("\n");
1635 	for (device_find_first_child(bus, &dev);
1636 	     dev;
1637 	     device_find_next_child(&dev)) {
1638 		struct dm_i2c_chip *chip = dev_get_parent_platdata(dev);
1639 
1640 		printf("   %02x: %s, offset len %x, flags %x\n",
1641 		       chip->chip_addr, dev->name, chip->offset_len,
1642 		       chip->flags);
1643 	}
1644 }
1645 #endif
1646 
1647 /**
1648  * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1649  * @cmdtp:	Command data struct pointer
1650  * @flag:	Command flag
1651  * @argc:	Command-line argument count
1652  * @argv:	Array of command-line arguments
1653  *
1654  * Returns zero always.
1655  */
1656 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
do_i2c_show_bus(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1657 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1658 				char * const argv[])
1659 {
1660 	if (argc == 1) {
1661 		/* show all busses */
1662 #ifdef CONFIG_DM_I2C
1663 		struct udevice *bus;
1664 		struct uclass *uc;
1665 		int ret;
1666 
1667 		ret = uclass_get(UCLASS_I2C, &uc);
1668 		if (ret)
1669 			return CMD_RET_FAILURE;
1670 		uclass_foreach_dev(bus, uc)
1671 			show_bus(bus);
1672 #else
1673 		int i;
1674 
1675 		for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1676 			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1677 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1678 			int j;
1679 
1680 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1681 				if (i2c_bus[i].next_hop[j].chip == 0)
1682 					break;
1683 				printf("->%s@0x%2x:%d",
1684 				       i2c_bus[i].next_hop[j].mux.name,
1685 				       i2c_bus[i].next_hop[j].chip,
1686 				       i2c_bus[i].next_hop[j].channel);
1687 			}
1688 #endif
1689 			printf("\n");
1690 		}
1691 #endif
1692 	} else {
1693 		int i;
1694 
1695 		/* show specific bus */
1696 		i = simple_strtoul(argv[1], NULL, 10);
1697 #ifdef CONFIG_DM_I2C
1698 		struct udevice *bus;
1699 		int ret;
1700 
1701 		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1702 		if (ret) {
1703 			printf("Invalid bus %d: err=%d\n", i, ret);
1704 			return CMD_RET_FAILURE;
1705 		}
1706 		show_bus(bus);
1707 #else
1708 		if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1709 			printf("Invalid bus %d\n", i);
1710 			return -1;
1711 		}
1712 		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1713 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1714 			int j;
1715 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1716 				if (i2c_bus[i].next_hop[j].chip == 0)
1717 					break;
1718 				printf("->%s@0x%2x:%d",
1719 				       i2c_bus[i].next_hop[j].mux.name,
1720 				       i2c_bus[i].next_hop[j].chip,
1721 				       i2c_bus[i].next_hop[j].channel);
1722 			}
1723 #endif
1724 		printf("\n");
1725 #endif
1726 	}
1727 
1728 	return 0;
1729 }
1730 #endif
1731 
1732 /**
1733  * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1734  * @cmdtp:	Command data struct pointer
1735  * @flag:	Command flag
1736  * @argc:	Command-line argument count
1737  * @argv:	Array of command-line arguments
1738  *
1739  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1740  * on error.
1741  */
1742 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1743 		defined(CONFIG_DM_I2C)
do_i2c_bus_num(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1744 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1745 				char * const argv[])
1746 {
1747 	int		ret = 0;
1748 	int	bus_no;
1749 
1750 	if (argc == 1) {
1751 		/* querying current setting */
1752 #ifdef CONFIG_DM_I2C
1753 		struct udevice *bus;
1754 
1755 		if (!i2c_get_cur_bus(&bus))
1756 			bus_no = bus->seq;
1757 		else
1758 			bus_no = -1;
1759 #else
1760 		bus_no = i2c_get_bus_num();
1761 #endif
1762 		printf("Current bus is %d\n", bus_no);
1763 	} else {
1764 		bus_no = simple_strtoul(argv[1], NULL, 10);
1765 #if defined(CONFIG_SYS_I2C)
1766 		if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1767 			printf("Invalid bus %d\n", bus_no);
1768 			return -1;
1769 		}
1770 #endif
1771 		printf("Setting bus to %d\n", bus_no);
1772 #ifdef CONFIG_DM_I2C
1773 		ret = cmd_i2c_set_bus_num(bus_no);
1774 #else
1775 		ret = i2c_set_bus_num(bus_no);
1776 #endif
1777 		if (ret)
1778 			printf("Failure changing bus number (%d)\n", ret);
1779 	}
1780 	return ret;
1781 }
1782 #endif  /* defined(CONFIG_SYS_I2C) */
1783 
1784 /**
1785  * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1786  * @cmdtp:	Command data struct pointer
1787  * @flag:	Command flag
1788  * @argc:	Command-line argument count
1789  * @argv:	Array of command-line arguments
1790  *
1791  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1792  * on error.
1793  */
do_i2c_bus_speed(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1794 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1795 {
1796 	int speed, ret=0;
1797 
1798 #ifdef CONFIG_DM_I2C
1799 	struct udevice *bus;
1800 
1801 	if (i2c_get_cur_bus(&bus))
1802 		return 1;
1803 #endif
1804 	if (argc == 1) {
1805 #ifdef CONFIG_DM_I2C
1806 		speed = dm_i2c_get_bus_speed(bus);
1807 #else
1808 		speed = i2c_get_bus_speed();
1809 #endif
1810 		/* querying current speed */
1811 		printf("Current bus speed=%d\n", speed);
1812 	} else {
1813 		speed = simple_strtoul(argv[1], NULL, 10);
1814 		printf("Setting bus speed to %d Hz\n", speed);
1815 #ifdef CONFIG_DM_I2C
1816 		ret = dm_i2c_set_bus_speed(bus, speed);
1817 #else
1818 		ret = i2c_set_bus_speed(speed);
1819 #endif
1820 		if (ret)
1821 			printf("Failure changing bus speed (%d)\n", ret);
1822 	}
1823 	return ret;
1824 }
1825 
1826 /**
1827  * do_i2c_mm() - Handle the "i2c mm" command-line command
1828  * @cmdtp:	Command data struct pointer
1829  * @flag:	Command flag
1830  * @argc:	Command-line argument count
1831  * @argv:	Array of command-line arguments
1832  *
1833  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1834  * on error.
1835  */
do_i2c_mm(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1836 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1837 {
1838 	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1839 }
1840 
1841 /**
1842  * do_i2c_nm() - Handle the "i2c nm" command-line command
1843  * @cmdtp:	Command data struct pointer
1844  * @flag:	Command flag
1845  * @argc:	Command-line argument count
1846  * @argv:	Array of command-line arguments
1847  *
1848  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1849  * on error.
1850  */
do_i2c_nm(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1851 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1852 {
1853 	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1854 }
1855 
1856 /**
1857  * do_i2c_reset() - Handle the "i2c reset" command-line command
1858  * @cmdtp:	Command data struct pointer
1859  * @flag:	Command flag
1860  * @argc:	Command-line argument count
1861  * @argv:	Array of command-line arguments
1862  *
1863  * Returns zero always.
1864  */
do_i2c_reset(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1865 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1866 {
1867 #if defined(CONFIG_DM_I2C)
1868 	struct udevice *bus;
1869 
1870 	if (i2c_get_cur_bus(&bus))
1871 		return CMD_RET_FAILURE;
1872 	if (i2c_deblock(bus)) {
1873 		printf("Error: Not supported by the driver\n");
1874 		return CMD_RET_FAILURE;
1875 	}
1876 #elif defined(CONFIG_SYS_I2C)
1877 	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1878 #else
1879 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1880 #endif
1881 	return 0;
1882 }
1883 
1884 static cmd_tbl_t cmd_i2c_sub[] = {
1885 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1886 	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1887 #endif
1888 	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1889 #if defined(CONFIG_SYS_I2C) || \
1890 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1891 	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1892 #endif  /* CONFIG_I2C_MULTI_BUS */
1893 #if defined(CONFIG_I2C_EDID)
1894 	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1895 #endif  /* CONFIG_I2C_EDID */
1896 	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1897 	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1898 	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1899 	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1900 	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1901 	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1902 	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1903 	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1904 #ifdef CONFIG_DM_I2C
1905 	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1906 #endif
1907 	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1908 #if defined(CONFIG_CMD_SDRAM)
1909 	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1910 #endif
1911 	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1912 };
1913 
1914 #ifdef CONFIG_NEEDS_MANUAL_RELOC
i2c_reloc(void)1915 void i2c_reloc(void) {
1916 	fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1917 }
1918 #endif
1919 
1920 /**
1921  * do_i2c() - Handle the "i2c" command-line command
1922  * @cmdtp:	Command data struct pointer
1923  * @flag:	Command flag
1924  * @argc:	Command-line argument count
1925  * @argv:	Array of command-line arguments
1926  *
1927  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1928  * on error.
1929  */
do_i2c(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1930 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1931 {
1932 	cmd_tbl_t *c;
1933 
1934 	if (argc < 2)
1935 		return CMD_RET_USAGE;
1936 
1937 	/* Strip off leading 'i2c' command argument */
1938 	argc--;
1939 	argv++;
1940 
1941 	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1942 
1943 	if (c)
1944 		return c->cmd(cmdtp, flag, argc, argv);
1945 	else
1946 		return CMD_RET_USAGE;
1947 }
1948 
1949 /***************************************************/
1950 #ifdef CONFIG_SYS_LONGHELP
1951 static char i2c_help_text[] =
1952 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1953 	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1954 #endif
1955 	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1956 #if defined(CONFIG_SYS_I2C) || \
1957 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1958 	"i2c dev [dev] - show or set current I2C bus\n"
1959 #endif  /* CONFIG_I2C_MULTI_BUS */
1960 #if defined(CONFIG_I2C_EDID)
1961 	"i2c edid chip - print EDID configuration information\n"
1962 #endif  /* CONFIG_I2C_EDID */
1963 	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1964 	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1965 	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1966 	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1967 	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1968 	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
1969 	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
1970 	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
1971 	"          to I2C; the -s option selects bulk write in a single transaction\n"
1972 #ifdef CONFIG_DM_I2C
1973 	"i2c flags chip [flags] - set or get chip flags\n"
1974 #endif
1975 	"i2c reset - re-init the I2C Controller\n"
1976 #if defined(CONFIG_CMD_SDRAM)
1977 	"i2c sdram chip - print SDRAM configuration information\n"
1978 #endif
1979 	"i2c speed [speed] - show or set I2C bus speed";
1980 #endif
1981 
1982 U_BOOT_CMD(
1983 	i2c, 7, 1, do_i2c,
1984 	"I2C sub-system",
1985 	i2c_help_text
1986 );
1987