1 // Copyright 2018 Developers of the Rand project.
2 //
3 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6 // option. This file may not be copied, modified, or distributed
7 // except according to those terms.
8 
9 //! The Bernoulli distribution.
10 
11 use Rng;
12 use distributions::Distribution;
13 
14 /// The Bernoulli distribution.
15 ///
16 /// This is a special case of the Binomial distribution where `n = 1`.
17 ///
18 /// # Example
19 ///
20 /// ```rust
21 /// use rand::distributions::{Bernoulli, Distribution};
22 ///
23 /// let d = Bernoulli::new(0.3);
24 /// let v = d.sample(&mut rand::thread_rng());
25 /// println!("{} is from a Bernoulli distribution", v);
26 /// ```
27 ///
28 /// # Precision
29 ///
30 /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
31 /// so only probabilities that are multiples of 2<sup>-64</sup> can be
32 /// represented.
33 #[derive(Clone, Copy, Debug)]
34 pub struct Bernoulli {
35     /// Probability of success, relative to the maximal integer.
36     p_int: u64,
37 }
38 
39 // To sample from the Bernoulli distribution we use a method that compares a
40 // random `u64` value `v < (p * 2^64)`.
41 //
42 // If `p == 1.0`, the integer `v` to compare against can not represented as a
43 // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
44 // Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
45 // `f64` only has 53 bits of precision, and the next largest value of `p` will
46 // result in `2^64 - 2048`.
47 //
48 // Also there is a 100% theoretical concern: if someone consistenly wants to
49 // generate `true` using the Bernoulli distribution (i.e. by using a probability
50 // of `1.0`), just using `u64::MAX` is not enough. On average it would return
51 // false once every 2^64 iterations. Some people apparently care about this
52 // case.
53 //
54 // That is why we special-case `u64::MAX` to always return `true`, without using
55 // the RNG, and pay the performance price for all uses that *are* reasonable.
56 // Luckily, if `new()` and `sample` are close, the compiler can optimize out the
57 // extra check.
58 const ALWAYS_TRUE: u64 = ::core::u64::MAX;
59 
60 // This is just `2.0.powi(64)`, but written this way because it is not available
61 // in `no_std` mode.
62 const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
63 
64 impl Bernoulli {
65     /// Construct a new `Bernoulli` with the given probability of success `p`.
66     ///
67     /// # Panics
68     ///
69     /// If `p < 0` or `p > 1`.
70     ///
71     /// # Precision
72     ///
73     /// For `p = 1.0`, the resulting distribution will always generate true.
74     /// For `p = 0.0`, the resulting distribution will always generate false.
75     ///
76     /// This method is accurate for any input `p` in the range `[0, 1]` which is
77     /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
78     /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
79     #[inline]
new(p: f64) -> Bernoulli80     pub fn new(p: f64) -> Bernoulli {
81         if p < 0.0 || p >= 1.0 {
82             if p == 1.0 { return Bernoulli { p_int: ALWAYS_TRUE } }
83             panic!("Bernoulli::new not called with 0.0 <= p <= 1.0");
84         }
85         Bernoulli { p_int: (p * SCALE) as u64 }
86     }
87 
88     /// Construct a new `Bernoulli` with the probability of success of
89     /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
90     /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
91     ///
92     /// If `numerator == denominator` then the returned `Bernoulli` will always
93     /// return `true`. If `numerator == 0` it will always return `false`.
94     ///
95     /// # Panics
96     ///
97     /// If `denominator == 0` or `numerator > denominator`.
98     ///
99     #[inline]
from_ratio(numerator: u32, denominator: u32) -> Bernoulli100     pub fn from_ratio(numerator: u32, denominator: u32) -> Bernoulli {
101         assert!(numerator <= denominator);
102         if numerator == denominator {
103             return Bernoulli { p_int: ::core::u64::MAX }
104         }
105         let p_int = ((numerator as f64 / denominator as f64) * SCALE) as u64;
106         Bernoulli { p_int }
107     }
108 }
109 
110 impl Distribution<bool> for Bernoulli {
111     #[inline]
sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool112     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
113         // Make sure to always return true for p = 1.0.
114         if self.p_int == ALWAYS_TRUE { return true; }
115         let v: u64 = rng.gen();
116         v < self.p_int
117     }
118 }
119 
120 #[cfg(test)]
121 mod test {
122     use Rng;
123     use distributions::Distribution;
124     use super::Bernoulli;
125 
126     #[test]
test_trivial()127     fn test_trivial() {
128         let mut r = ::test::rng(1);
129         let always_false = Bernoulli::new(0.0);
130         let always_true = Bernoulli::new(1.0);
131         for _ in 0..5 {
132             assert_eq!(r.sample::<bool, _>(&always_false), false);
133             assert_eq!(r.sample::<bool, _>(&always_true), true);
134             assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
135             assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
136         }
137     }
138 
139     #[test]
test_average()140     fn test_average() {
141         const P: f64 = 0.3;
142         const NUM: u32 = 3;
143         const DENOM: u32 = 10;
144         let d1 = Bernoulli::new(P);
145         let d2 = Bernoulli::from_ratio(NUM, DENOM);
146         const N: u32 = 100_000;
147 
148         let mut sum1: u32 = 0;
149         let mut sum2: u32 = 0;
150         let mut rng = ::test::rng(2);
151         for _ in 0..N {
152             if d1.sample(&mut rng) {
153                 sum1 += 1;
154             }
155             if d2.sample(&mut rng) {
156                 sum2 += 1;
157             }
158         }
159         let avg1 = (sum1 as f64) / (N as f64);
160         assert!((avg1 - P).abs() < 5e-3);
161 
162         let avg2 = (sum2 as f64) / (N as f64);
163         assert!((avg2 - (NUM as f64)/(DENOM as f64)).abs() < 5e-3);
164     }
165 }
166