1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29 
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32 
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42 
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
57 
58 // -----------------------------------------------------------------------------
59 // FixedArray
60 // -----------------------------------------------------------------------------
61 //
62 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
63 // inline for efficiency.
64 //
65 // Most users should not specify an `inline_elements` argument and let
66 // `FixedArray` automatically determine the number of elements
67 // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
68 // `FixedArray` implementation will use inline storage for arrays with a
69 // length <= `inline_elements`.
70 //
71 // Note that a `FixedArray` constructed with a `size_type` argument will
72 // default-initialize its values by leaving trivially constructible types
73 // uninitialized (e.g. int, int[4], double), and others default-constructed.
74 // This matches the behavior of c-style arrays and `std::array`, but not
75 // `std::vector`.
76 //
77 // Note that `FixedArray` does not provide a public allocator; if it requires a
78 // heap allocation, it will do so with global `::operator new[]()` and
79 // `::operator delete[]()`, even if T provides class-scope overrides for these
80 // operators.
81 template <typename T, size_t N = kFixedArrayUseDefault,
82           typename A = std::allocator<T>>
83 class FixedArray {
84   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
85                 "Arrays with unknown bounds cannot be used with FixedArray.");
86 
87   static constexpr size_t kInlineBytesDefault = 256;
88 
89   using AllocatorTraits = std::allocator_traits<A>;
90   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
91   // but this seems to be mostly pedantic.
92   template <typename Iterator>
93   using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
94       typename std::iterator_traits<Iterator>::iterator_category,
95       std::forward_iterator_tag>::value>;
NoexceptCopyable()96   static constexpr bool NoexceptCopyable() {
97     return std::is_nothrow_copy_constructible<StorageElement>::value &&
98            absl::allocator_is_nothrow<allocator_type>::value;
99   }
NoexceptMovable()100   static constexpr bool NoexceptMovable() {
101     return std::is_nothrow_move_constructible<StorageElement>::value &&
102            absl::allocator_is_nothrow<allocator_type>::value;
103   }
DefaultConstructorIsNonTrivial()104   static constexpr bool DefaultConstructorIsNonTrivial() {
105     return !absl::is_trivially_default_constructible<StorageElement>::value;
106   }
107 
108  public:
109   using allocator_type = typename AllocatorTraits::allocator_type;
110   using value_type = typename AllocatorTraits::value_type;
111   using pointer = typename AllocatorTraits::pointer;
112   using const_pointer = typename AllocatorTraits::const_pointer;
113   using reference = value_type&;
114   using const_reference = const value_type&;
115   using size_type = typename AllocatorTraits::size_type;
116   using difference_type = typename AllocatorTraits::difference_type;
117   using iterator = pointer;
118   using const_iterator = const_pointer;
119   using reverse_iterator = std::reverse_iterator<iterator>;
120   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
121 
122   static constexpr size_type inline_elements =
123       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
124                                   : static_cast<size_type>(N));
125 
126   FixedArray(
127       const FixedArray& other,
noexcept(NoexceptCopyable ())128       const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
129       : FixedArray(other.begin(), other.end(), a) {}
130 
131   FixedArray(
132       FixedArray&& other,
noexcept(NoexceptMovable ())133       const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
134       : FixedArray(std::make_move_iterator(other.begin()),
135                    std::make_move_iterator(other.end()), a) {}
136 
137   // Creates an array object that can store `n` elements.
138   // Note that trivially constructible elements will be uninitialized.
139   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)140       : storage_(n, a) {
141     if (DefaultConstructorIsNonTrivial()) {
142       memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
143                                       storage_.end());
144     }
145   }
146 
147   // Creates an array initialized with `n` copies of `val`.
148   FixedArray(size_type n, const value_type& val,
149              const allocator_type& a = allocator_type())
storage_(n,a)150       : storage_(n, a) {
151     memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
152                                     storage_.end(), val);
153   }
154 
155   // Creates an array initialized with the size and contents of `init_list`.
156   FixedArray(std::initializer_list<value_type> init_list,
157              const allocator_type& a = allocator_type())
158       : FixedArray(init_list.begin(), init_list.end(), a) {}
159 
160   // Creates an array initialized with the elements from the input
161   // range. The array's size will always be `std::distance(first, last)`.
162   // REQUIRES: Iterator must be a forward_iterator or better.
163   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
164   FixedArray(Iterator first, Iterator last,
165              const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)166       : storage_(std::distance(first, last), a) {
167     memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
168   }
169 
~FixedArray()170   ~FixedArray() noexcept {
171     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
172       AllocatorTraits::destroy(storage_.alloc(), cur);
173     }
174   }
175 
176   // Assignments are deleted because they break the invariant that the size of a
177   // `FixedArray` never changes.
178   void operator=(FixedArray&&) = delete;
179   void operator=(const FixedArray&) = delete;
180 
181   // FixedArray::size()
182   //
183   // Returns the length of the fixed array.
size()184   size_type size() const { return storage_.size(); }
185 
186   // FixedArray::max_size()
187   //
188   // Returns the largest possible value of `std::distance(begin(), end())` for a
189   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
190   // over the number of bytes taken by T.
max_size()191   constexpr size_type max_size() const {
192     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
193   }
194 
195   // FixedArray::empty()
196   //
197   // Returns whether or not the fixed array is empty.
empty()198   bool empty() const { return size() == 0; }
199 
200   // FixedArray::memsize()
201   //
202   // Returns the memory size of the fixed array in bytes.
memsize()203   size_t memsize() const { return size() * sizeof(value_type); }
204 
205   // FixedArray::data()
206   //
207   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
208   // can be used to access (but not modify) the contained elements.
data()209   const_pointer data() const { return AsValueType(storage_.begin()); }
210 
211   // Overload of FixedArray::data() to return a T* pointer to elements of the
212   // fixed array. This pointer can be used to access and modify the contained
213   // elements.
data()214   pointer data() { return AsValueType(storage_.begin()); }
215 
216   // FixedArray::operator[]
217   //
218   // Returns a reference the ith element of the fixed array.
219   // REQUIRES: 0 <= i < size()
220   reference operator[](size_type i) {
221     ABSL_HARDENING_ASSERT(i < size());
222     return data()[i];
223   }
224 
225   // Overload of FixedArray::operator()[] to return a const reference to the
226   // ith element of the fixed array.
227   // REQUIRES: 0 <= i < size()
228   const_reference operator[](size_type i) const {
229     ABSL_HARDENING_ASSERT(i < size());
230     return data()[i];
231   }
232 
233   // FixedArray::at
234   //
235   // Bounds-checked access.  Returns a reference to the ith element of the fixed
236   // array, or throws std::out_of_range
at(size_type i)237   reference at(size_type i) {
238     if (ABSL_PREDICT_FALSE(i >= size())) {
239       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
240     }
241     return data()[i];
242   }
243 
244   // Overload of FixedArray::at() to return a const reference to the ith element
245   // of the fixed array.
at(size_type i)246   const_reference at(size_type i) const {
247     if (ABSL_PREDICT_FALSE(i >= size())) {
248       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
249     }
250     return data()[i];
251   }
252 
253   // FixedArray::front()
254   //
255   // Returns a reference to the first element of the fixed array.
front()256   reference front() {
257     ABSL_HARDENING_ASSERT(!empty());
258     return data()[0];
259   }
260 
261   // Overload of FixedArray::front() to return a reference to the first element
262   // of a fixed array of const values.
front()263   const_reference front() const {
264     ABSL_HARDENING_ASSERT(!empty());
265     return data()[0];
266   }
267 
268   // FixedArray::back()
269   //
270   // Returns a reference to the last element of the fixed array.
back()271   reference back() {
272     ABSL_HARDENING_ASSERT(!empty());
273     return data()[size() - 1];
274   }
275 
276   // Overload of FixedArray::back() to return a reference to the last element
277   // of a fixed array of const values.
back()278   const_reference back() const {
279     ABSL_HARDENING_ASSERT(!empty());
280     return data()[size() - 1];
281   }
282 
283   // FixedArray::begin()
284   //
285   // Returns an iterator to the beginning of the fixed array.
begin()286   iterator begin() { return data(); }
287 
288   // Overload of FixedArray::begin() to return a const iterator to the
289   // beginning of the fixed array.
begin()290   const_iterator begin() const { return data(); }
291 
292   // FixedArray::cbegin()
293   //
294   // Returns a const iterator to the beginning of the fixed array.
cbegin()295   const_iterator cbegin() const { return begin(); }
296 
297   // FixedArray::end()
298   //
299   // Returns an iterator to the end of the fixed array.
end()300   iterator end() { return data() + size(); }
301 
302   // Overload of FixedArray::end() to return a const iterator to the end of the
303   // fixed array.
end()304   const_iterator end() const { return data() + size(); }
305 
306   // FixedArray::cend()
307   //
308   // Returns a const iterator to the end of the fixed array.
cend()309   const_iterator cend() const { return end(); }
310 
311   // FixedArray::rbegin()
312   //
313   // Returns a reverse iterator from the end of the fixed array.
rbegin()314   reverse_iterator rbegin() { return reverse_iterator(end()); }
315 
316   // Overload of FixedArray::rbegin() to return a const reverse iterator from
317   // the end of the fixed array.
rbegin()318   const_reverse_iterator rbegin() const {
319     return const_reverse_iterator(end());
320   }
321 
322   // FixedArray::crbegin()
323   //
324   // Returns a const reverse iterator from the end of the fixed array.
crbegin()325   const_reverse_iterator crbegin() const { return rbegin(); }
326 
327   // FixedArray::rend()
328   //
329   // Returns a reverse iterator from the beginning of the fixed array.
rend()330   reverse_iterator rend() { return reverse_iterator(begin()); }
331 
332   // Overload of FixedArray::rend() for returning a const reverse iterator
333   // from the beginning of the fixed array.
rend()334   const_reverse_iterator rend() const {
335     return const_reverse_iterator(begin());
336   }
337 
338   // FixedArray::crend()
339   //
340   // Returns a reverse iterator from the beginning of the fixed array.
crend()341   const_reverse_iterator crend() const { return rend(); }
342 
343   // FixedArray::fill()
344   //
345   // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)346   void fill(const value_type& val) { std::fill(begin(), end(), val); }
347 
348   // Relational operators. Equality operators are elementwise using
349   // `operator==`, while order operators order FixedArrays lexicographically.
350   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
351     return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
352   }
353 
354   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
355     return !(lhs == rhs);
356   }
357 
358   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
359     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
360                                         rhs.end());
361   }
362 
363   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
364     return rhs < lhs;
365   }
366 
367   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
368     return !(rhs < lhs);
369   }
370 
371   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
372     return !(lhs < rhs);
373   }
374 
375   template <typename H>
AbslHashValue(H h,const FixedArray & v)376   friend H AbslHashValue(H h, const FixedArray& v) {
377     return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
378                       v.size());
379   }
380 
381  private:
382   // StorageElement
383   //
384   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
385   // wrapper struct called StorageElementWrapper that holds the value_type
386   // instance inside. This is needed for construction and destruction of the
387   // entire array regardless of how many dimensions it has. For all other cases,
388   // StorageElement is just an alias of value_type.
389   //
390   // Maintainer's Note: The simpler solution would be to simply wrap value_type
391   // in a struct whether it's an array or not. That causes some paranoid
392   // diagnostics to misfire, believing that 'data()' returns a pointer to a
393   // single element, rather than the packed array that it really is.
394   // e.g.:
395   //
396   //     FixedArray<char> buf(1);
397   //     sprintf(buf.data(), "foo");
398   //
399   //     error: call to int __builtin___sprintf_chk(etc...)
400   //     will always overflow destination buffer [-Werror]
401   //
402   template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
403             size_t InnerN = std::extent<OuterT>::value>
404   struct StorageElementWrapper {
405     InnerT array[InnerN];
406   };
407 
408   using StorageElement =
409       absl::conditional_t<std::is_array<value_type>::value,
410                           StorageElementWrapper<value_type>, value_type>;
411 
AsValueType(pointer ptr)412   static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)413   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
414     return std::addressof(ptr->array);
415   }
416 
417   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
418   static_assert(alignof(StorageElement) == alignof(value_type), "");
419 
420   class NonEmptyInlinedStorage {
421    public:
data()422     StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
423     void AnnotateConstruct(size_type n);
424     void AnnotateDestruct(size_type n);
425 
426 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()427     void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()428     void* RedzoneEnd() { return &redzone_end_ + 1; }
429 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
430 
431    private:
432     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
433     alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
434     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
435   };
436 
437   class EmptyInlinedStorage {
438    public:
data()439     StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)440     void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)441     void AnnotateDestruct(size_type) {}
442   };
443 
444   using InlinedStorage =
445       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
446                           NonEmptyInlinedStorage>;
447 
448   // Storage
449   //
450   // An instance of Storage manages the inline and out-of-line memory for
451   // instances of FixedArray. This guarantees that even when construction of
452   // individual elements fails in the FixedArray constructor body, the
453   // destructor for Storage will still be called and out-of-line memory will be
454   // properly deallocated.
455   //
456   class Storage : public InlinedStorage {
457    public:
Storage(size_type n,const allocator_type & a)458     Storage(size_type n, const allocator_type& a)
459         : size_alloc_(n, a), data_(InitializeData()) {}
460 
~Storage()461     ~Storage() noexcept {
462       if (UsingInlinedStorage(size())) {
463         InlinedStorage::AnnotateDestruct(size());
464       } else {
465         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
466       }
467     }
468 
size()469     size_type size() const { return size_alloc_.template get<0>(); }
begin()470     StorageElement* begin() const { return data_; }
end()471     StorageElement* end() const { return begin() + size(); }
alloc()472     allocator_type& alloc() { return size_alloc_.template get<1>(); }
473 
474    private:
UsingInlinedStorage(size_type n)475     static bool UsingInlinedStorage(size_type n) {
476       return n <= inline_elements;
477     }
478 
InitializeData()479     StorageElement* InitializeData() {
480       if (UsingInlinedStorage(size())) {
481         InlinedStorage::AnnotateConstruct(size());
482         return InlinedStorage::data();
483       } else {
484         return reinterpret_cast<StorageElement*>(
485             AllocatorTraits::allocate(alloc(), size()));
486       }
487     }
488 
489     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
490     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
491     StorageElement* data_;
492   };
493 
494   Storage storage_;
495 };
496 
497 template <typename T, size_t N, typename A>
498 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
499 
500 template <typename T, size_t N, typename A>
501 constexpr typename FixedArray<T, N, A>::size_type
502     FixedArray<T, N, A>::inline_elements;
503 
504 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)505 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
506     typename FixedArray<T, N, A>::size_type n) {
507 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
508   if (!n) return;
509   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
510                                      data() + n);
511   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
512                                      RedzoneBegin());
513 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
514   static_cast<void>(n);  // Mark used when not in asan mode
515 }
516 
517 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)518 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
519     typename FixedArray<T, N, A>::size_type n) {
520 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
521   if (!n) return;
522   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
523                                      RedzoneEnd());
524   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
525                                      data());
526 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
527   static_cast<void>(n);  // Mark used when not in asan mode
528 }
529 ABSL_NAMESPACE_END
530 }  // namespace absl
531 
532 #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
533