1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 The Khronos Group Inc.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Copyright (c) 2016 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Vulkan ShaderRenderCase
24  *//*--------------------------------------------------------------------*/
25 
26 #include "vktShaderRender.hpp"
27 
28 #include "tcuImageCompare.hpp"
29 #include "tcuImageIO.hpp"
30 #include "tcuTestLog.hpp"
31 #include "tcuTextureUtil.hpp"
32 #include "tcuSurface.hpp"
33 #include "tcuVector.hpp"
34 
35 #include "deFilePath.hpp"
36 #include "deMath.h"
37 #include "deUniquePtr.hpp"
38 
39 #include "vkDeviceUtil.hpp"
40 #include "vkImageUtil.hpp"
41 #include "vkPlatform.hpp"
42 #include "vkQueryUtil.hpp"
43 #include "vkRef.hpp"
44 #include "vkRefUtil.hpp"
45 #include "vkStrUtil.hpp"
46 #include "vkTypeUtil.hpp"
47 #include "vkCmdUtil.hpp"
48 #include "vkObjUtil.hpp"
49 
50 #include <vector>
51 #include <string>
52 
53 namespace vkt
54 {
55 namespace sr
56 {
57 
58 using namespace vk;
59 
textureTypeToImageViewType(TextureBinding::Type type)60 VkImageViewType textureTypeToImageViewType (TextureBinding::Type type)
61 {
62 	switch (type)
63 	{
64 		case TextureBinding::TYPE_1D:			return VK_IMAGE_VIEW_TYPE_1D;
65 		case TextureBinding::TYPE_2D:			return VK_IMAGE_VIEW_TYPE_2D;
66 		case TextureBinding::TYPE_3D:			return VK_IMAGE_VIEW_TYPE_3D;
67 		case TextureBinding::TYPE_CUBE_MAP:		return VK_IMAGE_VIEW_TYPE_CUBE;
68 		case TextureBinding::TYPE_1D_ARRAY:		return VK_IMAGE_VIEW_TYPE_1D_ARRAY;
69 		case TextureBinding::TYPE_2D_ARRAY:		return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
70 		case TextureBinding::TYPE_CUBE_ARRAY:	return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
71 
72 		default:
73 			DE_FATAL("Impossible");
74 			return (VkImageViewType)0;
75 	}
76 }
77 
viewTypeToImageType(VkImageViewType type)78 VkImageType viewTypeToImageType (VkImageViewType type)
79 {
80 	switch (type)
81 	{
82 		case VK_IMAGE_VIEW_TYPE_1D:
83 		case VK_IMAGE_VIEW_TYPE_1D_ARRAY:		return VK_IMAGE_TYPE_1D;
84 		case VK_IMAGE_VIEW_TYPE_2D:
85 		case VK_IMAGE_VIEW_TYPE_2D_ARRAY:		return VK_IMAGE_TYPE_2D;
86 		case VK_IMAGE_VIEW_TYPE_3D:				return VK_IMAGE_TYPE_3D;
87 		case VK_IMAGE_VIEW_TYPE_CUBE:
88 		case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:		return VK_IMAGE_TYPE_2D;
89 
90 		default:
91 			DE_FATAL("Impossible");
92 			return (VkImageType)0;
93 	}
94 }
95 
textureUsageFlags(void)96 vk::VkImageUsageFlags textureUsageFlags (void)
97 {
98 	return (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
99 }
100 
textureCreateFlags(vk::VkImageViewType viewType,ShaderRenderCaseInstance::ImageBackingMode backingMode)101 vk::VkImageCreateFlags textureCreateFlags (vk::VkImageViewType viewType, ShaderRenderCaseInstance::ImageBackingMode backingMode)
102 {
103 	const bool			isCube				= (viewType == VK_IMAGE_VIEW_TYPE_CUBE || viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY);
104 	VkImageCreateFlags	imageCreateFlags	= (isCube ? static_cast<VkImageCreateFlags>(VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) : 0u);
105 
106 	if (backingMode == ShaderRenderCaseInstance::IMAGE_BACKING_MODE_SPARSE)
107 		imageCreateFlags |= (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT);
108 
109 	return imageCreateFlags;
110 }
111 
112 namespace
113 {
114 
115 static const deUint32	MAX_RENDER_WIDTH	= 128;
116 static const deUint32	MAX_RENDER_HEIGHT	= 128;
117 static const tcu::Vec4	DEFAULT_CLEAR_COLOR	= tcu::Vec4(0.125f, 0.25f, 0.5f, 1.0f);
118 
119 /*! Gets the next multiple of a given divisor */
getNextMultiple(deUint32 divisor,deUint32 value)120 static deUint32 getNextMultiple (deUint32 divisor, deUint32 value)
121 {
122 	if (value % divisor == 0)
123 	{
124 		return value;
125 	}
126 	return value + divisor - (value % divisor);
127 }
128 
129 /*! Gets the next value that is multiple of all given divisors */
getNextMultiple(const std::vector<deUint32> & divisors,deUint32 value)130 static deUint32 getNextMultiple (const std::vector<deUint32>& divisors, deUint32 value)
131 {
132 	deUint32	nextMultiple		= value;
133 	bool		nextMultipleFound	= false;
134 
135 	while (true)
136 	{
137 		nextMultipleFound = true;
138 
139 		for (size_t divNdx = 0; divNdx < divisors.size(); divNdx++)
140 			nextMultipleFound = nextMultipleFound && (nextMultiple % divisors[divNdx] == 0);
141 
142 		if (nextMultipleFound)
143 			break;
144 
145 		DE_ASSERT(nextMultiple < ~((deUint32)0u));
146 		nextMultiple = getNextMultiple(divisors[0], nextMultiple + 1);
147 	}
148 
149 	return nextMultiple;
150 }
151 
152 } // anonymous
153 
154 // QuadGrid.
155 
156 class QuadGrid
157 {
158 public:
159 											QuadGrid				(int									gridSize,
160 																	 int									screenWidth,
161 																	 int									screenHeight,
162 																	 const tcu::Vec4&						constCoords,
163 																	 const std::vector<tcu::Mat4>&			userAttribTransforms,
164 																	 const std::vector<TextureBindingSp>&	textures);
165 											~QuadGrid				(void);
166 
getGridSize(void) const167 	int										getGridSize				(void) const { return m_gridSize; }
getNumVertices(void) const168 	int										getNumVertices			(void) const { return m_numVertices; }
getNumTriangles(void) const169 	int										getNumTriangles			(void) const { return m_numTriangles; }
getConstCoords(void) const170 	const tcu::Vec4&						getConstCoords			(void) const { return m_constCoords; }
getUserAttribTransforms(void) const171 	const std::vector<tcu::Mat4>			getUserAttribTransforms	(void) const { return m_userAttribTransforms; }
getTextures(void) const172 	const std::vector<TextureBindingSp>&	getTextures				(void) const { return m_textures; }
173 
getPositions(void) const174 	const tcu::Vec4*						getPositions			(void) const { return &m_positions[0]; }
getAttribOne(void) const175 	const float*							getAttribOne			(void) const { return &m_attribOne[0]; }
getCoords(void) const176 	const tcu::Vec4*						getCoords				(void) const { return &m_coords[0]; }
getUnitCoords(void) const177 	const tcu::Vec4*						getUnitCoords			(void) const { return &m_unitCoords[0]; }
178 
getUserAttrib(int attribNdx) const179 	const tcu::Vec4*						getUserAttrib			(int attribNdx) const { return &m_userAttribs[attribNdx][0]; }
getIndices(void) const180 	const deUint16*							getIndices				(void) const { return &m_indices[0]; }
181 
182 	tcu::Vec4								getCoords				(float sx, float sy) const;
183 	tcu::Vec4								getUnitCoords			(float sx, float sy) const;
184 
getNumUserAttribs(void) const185 	int										getNumUserAttribs		(void) const { return (int)m_userAttribTransforms.size(); }
186 	tcu::Vec4								getUserAttrib			(int attribNdx, float sx, float sy) const;
187 
188 private:
189 	const int								m_gridSize;
190 	const int								m_numVertices;
191 	const int								m_numTriangles;
192 	const tcu::Vec4							m_constCoords;
193 	const std::vector<tcu::Mat4>			m_userAttribTransforms;
194 
195 	const std::vector<TextureBindingSp>&	m_textures;
196 
197 	std::vector<tcu::Vec4>					m_screenPos;
198 	std::vector<tcu::Vec4>					m_positions;
199 	std::vector<tcu::Vec4>					m_coords;		//!< Near-unit coordinates, roughly [-2.0 .. 2.0].
200 	std::vector<tcu::Vec4>					m_unitCoords;	//!< Positive-only coordinates [0.0 .. 1.5].
201 	std::vector<float>						m_attribOne;
202 	std::vector<tcu::Vec4>					m_userAttribs[ShaderEvalContext::MAX_TEXTURES];
203 	std::vector<deUint16>					m_indices;
204 };
205 
QuadGrid(int gridSize,int width,int height,const tcu::Vec4 & constCoords,const std::vector<tcu::Mat4> & userAttribTransforms,const std::vector<TextureBindingSp> & textures)206 QuadGrid::QuadGrid (int										gridSize,
207 					int										width,
208 					int										height,
209 					const tcu::Vec4&						constCoords,
210 					const std::vector<tcu::Mat4>&			userAttribTransforms,
211 					const std::vector<TextureBindingSp>&	textures)
212 	: m_gridSize				(gridSize)
213 	, m_numVertices				((gridSize + 1) * (gridSize + 1))
214 	, m_numTriangles			(gridSize * gridSize * 2)
215 	, m_constCoords				(constCoords)
216 	, m_userAttribTransforms	(userAttribTransforms)
217 	, m_textures				(textures)
218 {
219 	const tcu::Vec4 viewportScale	((float)width, (float)height, 0.0f, 0.0f);
220 
221 	// Compute vertices.
222 	m_screenPos.resize(m_numVertices);
223 	m_positions.resize(m_numVertices);
224 	m_coords.resize(m_numVertices);
225 	m_unitCoords.resize(m_numVertices);
226 	m_attribOne.resize(m_numVertices);
227 
228 	// User attributes.
229 	for (int attrNdx = 0; attrNdx < DE_LENGTH_OF_ARRAY(m_userAttribs); attrNdx++)
230 		m_userAttribs[attrNdx].resize(m_numVertices);
231 
232 	for (int y = 0; y < gridSize+1; y++)
233 	for (int x = 0; x < gridSize+1; x++)
234 	{
235 		float		sx			= (float)x / (float)gridSize;
236 		float		sy			= (float)y / (float)gridSize;
237 		float		fx			= 2.0f * sx - 1.0f;
238 		float		fy			= 2.0f * sy - 1.0f;
239 		int			vtxNdx		= ((y * (gridSize+1)) + x);
240 
241 		m_positions[vtxNdx]		= tcu::Vec4(fx, fy, 0.0f, 1.0f);
242 		m_coords[vtxNdx]		= getCoords(sx, sy);
243 		m_unitCoords[vtxNdx]	= getUnitCoords(sx, sy);
244 		m_attribOne[vtxNdx]		= 1.0f;
245 
246 		m_screenPos[vtxNdx]		= tcu::Vec4(sx, sy, 0.0f, 1.0f) * viewportScale;
247 
248 		for (int attribNdx = 0; attribNdx < getNumUserAttribs(); attribNdx++)
249 			m_userAttribs[attribNdx][vtxNdx] = getUserAttrib(attribNdx, sx, sy);
250 	}
251 
252 	// Compute indices.
253 	m_indices.resize(3 * m_numTriangles);
254 	for (int y = 0; y < gridSize; y++)
255 	for (int x = 0; x < gridSize; x++)
256 	{
257 		int stride				= gridSize + 1;
258 		int v00					= (y * stride) + x;
259 		int v01					= (y * stride) + x + 1;
260 		int v10					= ((y+1) * stride) + x;
261 		int v11					= ((y+1) * stride) + x + 1;
262 
263 		int baseNdx				= ((y * gridSize) + x) * 6;
264 		m_indices[baseNdx + 0]	= (deUint16)v10;
265 		m_indices[baseNdx + 1]	= (deUint16)v00;
266 		m_indices[baseNdx + 2]	= (deUint16)v01;
267 
268 		m_indices[baseNdx + 3]	= (deUint16)v10;
269 		m_indices[baseNdx + 4]	= (deUint16)v01;
270 		m_indices[baseNdx + 5]	= (deUint16)v11;
271 	}
272 }
273 
~QuadGrid(void)274 QuadGrid::~QuadGrid (void)
275 {
276 }
277 
getCoords(float sx,float sy) const278 inline tcu::Vec4 QuadGrid::getCoords (float sx, float sy) const
279 {
280 	const float fx = 2.0f * sx - 1.0f;
281 	const float fy = 2.0f * sy - 1.0f;
282 	return tcu::Vec4(fx, fy, -fx + 0.33f*fy, -0.275f*fx - fy);
283 }
284 
getUnitCoords(float sx,float sy) const285 inline tcu::Vec4 QuadGrid::getUnitCoords (float sx, float sy) const
286 {
287 	return tcu::Vec4(sx, sy, 0.33f*sx + 0.5f*sy, 0.5f*sx + 0.25f*sy);
288 }
289 
getUserAttrib(int attribNdx,float sx,float sy) const290 inline tcu::Vec4 QuadGrid::getUserAttrib (int attribNdx, float sx, float sy) const
291 {
292 	// homogeneous normalized screen-space coordinates
293 	return m_userAttribTransforms[attribNdx] * tcu::Vec4(sx, sy, 0.0f, 1.0f);
294 }
295 
296 // TextureBinding
297 
TextureBinding(const tcu::Archive & archive,const char * filename,const Type type,const tcu::Sampler & sampler)298 TextureBinding::TextureBinding (const tcu::Archive&	archive,
299 								const char*			filename,
300 								const Type			type,
301 								const tcu::Sampler&	sampler)
302 	: m_type	(type)
303 	, m_sampler	(sampler)
304 {
305 	switch(m_type)
306 	{
307 		case TYPE_2D: m_binding.tex2D = loadTexture2D(archive, filename).release(); break;
308 		default:
309 			DE_FATAL("Unsupported texture type");
310 	}
311 }
312 
TextureBinding(const tcu::Texture1D * tex1D,const tcu::Sampler & sampler)313 TextureBinding::TextureBinding (const tcu::Texture1D* tex1D, const tcu::Sampler& sampler)
314 	: m_type	(TYPE_1D)
315 	, m_sampler	(sampler)
316 {
317 	m_binding.tex1D = tex1D;
318 }
319 
TextureBinding(const tcu::Texture2D * tex2D,const tcu::Sampler & sampler)320 TextureBinding::TextureBinding (const tcu::Texture2D* tex2D, const tcu::Sampler& sampler)
321 	: m_type	(TYPE_2D)
322 	, m_sampler	(sampler)
323 {
324 	m_binding.tex2D = tex2D;
325 }
326 
TextureBinding(const tcu::Texture3D * tex3D,const tcu::Sampler & sampler)327 TextureBinding::TextureBinding (const tcu::Texture3D* tex3D, const tcu::Sampler& sampler)
328 	: m_type	(TYPE_3D)
329 	, m_sampler	(sampler)
330 {
331 	m_binding.tex3D = tex3D;
332 }
333 
TextureBinding(const tcu::TextureCube * texCube,const tcu::Sampler & sampler)334 TextureBinding::TextureBinding (const tcu::TextureCube* texCube, const tcu::Sampler& sampler)
335 	: m_type	(TYPE_CUBE_MAP)
336 	, m_sampler	(sampler)
337 {
338 	m_binding.texCube = texCube;
339 }
340 
TextureBinding(const tcu::Texture1DArray * tex1DArray,const tcu::Sampler & sampler)341 TextureBinding::TextureBinding (const tcu::Texture1DArray* tex1DArray, const tcu::Sampler& sampler)
342 	: m_type	(TYPE_1D_ARRAY)
343 	, m_sampler	(sampler)
344 {
345 	m_binding.tex1DArray = tex1DArray;
346 }
347 
TextureBinding(const tcu::Texture2DArray * tex2DArray,const tcu::Sampler & sampler)348 TextureBinding::TextureBinding (const tcu::Texture2DArray* tex2DArray, const tcu::Sampler& sampler)
349 	: m_type	(TYPE_2D_ARRAY)
350 	, m_sampler	(sampler)
351 {
352 	m_binding.tex2DArray = tex2DArray;
353 }
354 
TextureBinding(const tcu::TextureCubeArray * texCubeArray,const tcu::Sampler & sampler)355 TextureBinding::TextureBinding (const tcu::TextureCubeArray* texCubeArray, const tcu::Sampler& sampler)
356 	: m_type	(TYPE_CUBE_ARRAY)
357 	, m_sampler	(sampler)
358 {
359 	m_binding.texCubeArray = texCubeArray;
360 }
361 
~TextureBinding(void)362 TextureBinding::~TextureBinding (void)
363 {
364 	switch(m_type)
365 	{
366 		case TYPE_1D:			delete m_binding.tex1D;			break;
367 		case TYPE_2D:			delete m_binding.tex2D;			break;
368 		case TYPE_3D:			delete m_binding.tex3D;			break;
369 		case TYPE_CUBE_MAP:		delete m_binding.texCube;		break;
370 		case TYPE_1D_ARRAY:		delete m_binding.tex1DArray;	break;
371 		case TYPE_2D_ARRAY:		delete m_binding.tex2DArray;	break;
372 		case TYPE_CUBE_ARRAY:	delete m_binding.texCubeArray;	break;
373 		default:												break;
374 	}
375 }
376 
loadTexture2D(const tcu::Archive & archive,const char * filename)377 de::MovePtr<tcu::Texture2D> TextureBinding::loadTexture2D (const tcu::Archive& archive, const char* filename)
378 {
379 	tcu::TextureLevel level;
380 	tcu::ImageIO::loadImage(level, archive, filename);
381 
382 	TCU_CHECK_INTERNAL(level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8) ||
383 					   level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_INT8));
384 
385 	// \todo [2015-10-08 elecro] for some reason we get better when using RGBA texture even in RGB case, this needs to be investigated
386 	de::MovePtr<tcu::Texture2D> texture(new tcu::Texture2D(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), level.getWidth(), level.getHeight()));
387 
388 	// Fill level 0.
389 	texture->allocLevel(0);
390 	tcu::copy(texture->getLevel(0), level.getAccess());
391 
392 	return texture;
393 }
394 
395 // ShaderEvalContext.
396 
ShaderEvalContext(const QuadGrid & quadGrid)397 ShaderEvalContext::ShaderEvalContext (const QuadGrid& quadGrid)
398 	: constCoords	(quadGrid.getConstCoords())
399 	, isDiscarded	(false)
400 	, m_quadGrid	(quadGrid)
401 {
402 	const std::vector<TextureBindingSp>& bindings = m_quadGrid.getTextures();
403 	DE_ASSERT((int)bindings.size() <= MAX_TEXTURES);
404 
405 	// Fill in texture array.
406 	for (int ndx = 0; ndx < (int)bindings.size(); ndx++)
407 	{
408 		const TextureBinding& binding = *bindings[ndx];
409 
410 		if (binding.getType() == TextureBinding::TYPE_NONE)
411 			continue;
412 
413 		textures[ndx].sampler = binding.getSampler();
414 
415 		switch (binding.getType())
416 		{
417 			case TextureBinding::TYPE_1D:			textures[ndx].tex1D			= &binding.get1D();			break;
418 			case TextureBinding::TYPE_2D:			textures[ndx].tex2D			= &binding.get2D();			break;
419 			case TextureBinding::TYPE_3D:			textures[ndx].tex3D			= &binding.get3D();			break;
420 			case TextureBinding::TYPE_CUBE_MAP:		textures[ndx].texCube		= &binding.getCube();		break;
421 			case TextureBinding::TYPE_1D_ARRAY:		textures[ndx].tex1DArray	= &binding.get1DArray();	break;
422 			case TextureBinding::TYPE_2D_ARRAY:		textures[ndx].tex2DArray	= &binding.get2DArray();	break;
423 			case TextureBinding::TYPE_CUBE_ARRAY:	textures[ndx].texCubeArray	= &binding.getCubeArray();	break;
424 			default:
425 				TCU_THROW(InternalError, "Handling of texture binding type not implemented");
426 		}
427 	}
428 }
429 
~ShaderEvalContext(void)430 ShaderEvalContext::~ShaderEvalContext (void)
431 {
432 }
433 
reset(float sx,float sy)434 void ShaderEvalContext::reset (float sx, float sy)
435 {
436 	// Clear old values
437 	color		= tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
438 	isDiscarded	= false;
439 
440 	// Compute coords
441 	coords		= m_quadGrid.getCoords(sx, sy);
442 	unitCoords	= m_quadGrid.getUnitCoords(sx, sy);
443 
444 	// Compute user attributes.
445 	const int numAttribs = m_quadGrid.getNumUserAttribs();
446 	DE_ASSERT(numAttribs <= MAX_USER_ATTRIBS);
447 	for (int attribNdx = 0; attribNdx < numAttribs; attribNdx++)
448 		in[attribNdx] = m_quadGrid.getUserAttrib(attribNdx, sx, sy);
449 }
450 
texture2D(int unitNdx,const tcu::Vec2 & texCoords)451 tcu::Vec4 ShaderEvalContext::texture2D (int unitNdx, const tcu::Vec2& texCoords)
452 {
453 	if (textures[unitNdx].tex2D)
454 		return textures[unitNdx].tex2D->sample(textures[unitNdx].sampler, texCoords.x(), texCoords.y(), 0.0f);
455 	else
456 		return tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
457 }
458 
459 // ShaderEvaluator.
460 
ShaderEvaluator(void)461 ShaderEvaluator::ShaderEvaluator (void)
462 	: m_evalFunc(DE_NULL)
463 {
464 }
465 
ShaderEvaluator(ShaderEvalFunc evalFunc)466 ShaderEvaluator::ShaderEvaluator (ShaderEvalFunc evalFunc)
467 	: m_evalFunc(evalFunc)
468 {
469 }
470 
~ShaderEvaluator(void)471 ShaderEvaluator::~ShaderEvaluator (void)
472 {
473 }
474 
evaluate(ShaderEvalContext & ctx) const475 void ShaderEvaluator::evaluate (ShaderEvalContext& ctx) const
476 {
477 	DE_ASSERT(m_evalFunc);
478 	m_evalFunc(ctx);
479 }
480 
481 // UniformSetup.
482 
UniformSetup(void)483 UniformSetup::UniformSetup (void)
484 	: m_setupFunc(DE_NULL)
485 {
486 }
487 
UniformSetup(UniformSetupFunc setupFunc)488 UniformSetup::UniformSetup (UniformSetupFunc setupFunc)
489 	: m_setupFunc(setupFunc)
490 {
491 }
492 
~UniformSetup(void)493 UniformSetup::~UniformSetup (void)
494 {
495 }
496 
setup(ShaderRenderCaseInstance & instance,const tcu::Vec4 & constCoords) const497 void UniformSetup::setup (ShaderRenderCaseInstance& instance, const tcu::Vec4& constCoords) const
498 {
499 	if (m_setupFunc)
500 		m_setupFunc(instance, constCoords);
501 }
502 
503 // ShaderRenderCase.
504 
ShaderRenderCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const bool isVertexCase,const ShaderEvalFunc evalFunc,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc)505 ShaderRenderCase::ShaderRenderCase (tcu::TestContext&			testCtx,
506 									const std::string&			name,
507 									const std::string&			description,
508 									const bool					isVertexCase,
509 									const ShaderEvalFunc		evalFunc,
510 									const UniformSetup*			uniformSetup,
511 									const AttributeSetupFunc	attribFunc)
512 	: vkt::TestCase		(testCtx, name, description)
513 	, m_isVertexCase	(isVertexCase)
514 	, m_evaluator		(new ShaderEvaluator(evalFunc))
515 	, m_uniformSetup	(uniformSetup ? uniformSetup : new UniformSetup())
516 	, m_attribFunc		(attribFunc)
517 {}
518 
ShaderRenderCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const bool isVertexCase,const ShaderEvaluator * evaluator,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc)519 ShaderRenderCase::ShaderRenderCase (tcu::TestContext&			testCtx,
520 									const std::string&			name,
521 									const std::string&			description,
522 									const bool					isVertexCase,
523 									const ShaderEvaluator*		evaluator,
524 									const UniformSetup*			uniformSetup,
525 									const AttributeSetupFunc	attribFunc)
526 	: vkt::TestCase		(testCtx, name, description)
527 	, m_isVertexCase	(isVertexCase)
528 	, m_evaluator		(evaluator)
529 	, m_uniformSetup	(uniformSetup ? uniformSetup : new UniformSetup())
530 	, m_attribFunc		(attribFunc)
531 {}
532 
~ShaderRenderCase(void)533 ShaderRenderCase::~ShaderRenderCase (void)
534 {
535 }
536 
initPrograms(vk::SourceCollections & programCollection) const537 void ShaderRenderCase::initPrograms (vk::SourceCollections& programCollection) const
538 {
539 	programCollection.glslSources.add("vert") << glu::VertexSource(m_vertShaderSource);
540 	programCollection.glslSources.add("frag") << glu::FragmentSource(m_fragShaderSource);
541 }
542 
createInstance(Context & context) const543 TestInstance* ShaderRenderCase::createInstance (Context& context) const
544 {
545 	DE_ASSERT(m_evaluator != DE_NULL);
546 	DE_ASSERT(m_uniformSetup != DE_NULL);
547 	return new ShaderRenderCaseInstance(context, m_isVertexCase, *m_evaluator, *m_uniformSetup, m_attribFunc);
548 }
549 
550 // ShaderRenderCaseInstance.
551 
ShaderRenderCaseInstance(Context & context)552 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context& context)
553 	: vkt::TestInstance		(context)
554 	, m_imageBackingMode	(IMAGE_BACKING_MODE_REGULAR)
555 	, m_quadGridSize		(static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
556 	, m_memAlloc			(getAllocator())
557 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
558 	, m_isVertexCase		(false)
559 	, m_vertexShaderName	("vert")
560 	, m_fragmentShaderName	("frag")
561 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
562 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
563 	, m_evaluator			(DE_NULL)
564 	, m_uniformSetup		(DE_NULL)
565 	, m_attribFunc			(DE_NULL)
566 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
567 	, m_fuzzyCompare		(true)
568 {
569 }
570 
571 
ShaderRenderCaseInstance(Context & context,const bool isVertexCase,const ShaderEvaluator & evaluator,const UniformSetup & uniformSetup,const AttributeSetupFunc attribFunc,const ImageBackingMode imageBackingMode,const deUint32 gridSize,const bool fuzzyCompare)572 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context&					context,
573 													const bool					isVertexCase,
574 													const ShaderEvaluator&		evaluator,
575 													const UniformSetup&			uniformSetup,
576 													const AttributeSetupFunc	attribFunc,
577 													const ImageBackingMode		imageBackingMode,
578 													const deUint32				gridSize,
579 													const bool					fuzzyCompare)
580 	: vkt::TestInstance		(context)
581 	, m_imageBackingMode	(imageBackingMode)
582 	, m_quadGridSize		(gridSize == static_cast<deUint32>(GRID_SIZE_DEFAULTS)
583 							 ? (isVertexCase
584 								? static_cast<deUint32>(GRID_SIZE_DEFAULT_VERTEX)
585 								: static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
586 							 : gridSize)
587 	, m_memAlloc			(getAllocator())
588 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
589 	, m_isVertexCase		(isVertexCase)
590 	, m_vertexShaderName	("vert")
591 	, m_fragmentShaderName	("frag")
592 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
593 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
594 	, m_evaluator			(&evaluator)
595 	, m_uniformSetup		(&uniformSetup)
596 	, m_attribFunc			(attribFunc)
597 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
598 	, m_fuzzyCompare		(fuzzyCompare)
599 {
600 }
601 
ShaderRenderCaseInstance(Context & context,const bool isVertexCase,const ShaderEvaluator * evaluator,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc,const ImageBackingMode imageBackingMode,const deUint32 gridSize)602 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context&					context,
603 													const bool					isVertexCase,
604 													const ShaderEvaluator*		evaluator,
605 													const UniformSetup*			uniformSetup,
606 													const AttributeSetupFunc	attribFunc,
607 													const ImageBackingMode		imageBackingMode,
608 													const deUint32				gridSize)
609 	: vkt::TestInstance		(context)
610 	, m_imageBackingMode	(imageBackingMode)
611 	, m_quadGridSize		(gridSize == static_cast<deUint32>(GRID_SIZE_DEFAULTS)
612 							 ? (isVertexCase
613 								? static_cast<deUint32>(GRID_SIZE_DEFAULT_VERTEX)
614 								: static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
615 							 : gridSize)
616 	, m_memAlloc			(getAllocator())
617 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
618 	, m_isVertexCase		(isVertexCase)
619 	, m_vertexShaderName	("vert")
620 	, m_fragmentShaderName	("frag")
621 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
622 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
623 	, m_evaluator			(evaluator)
624 	, m_uniformSetup		(uniformSetup)
625 	, m_attribFunc			(attribFunc)
626 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
627 {
628 }
629 
getAllocator(void) const630 vk::Allocator& ShaderRenderCaseInstance::getAllocator (void) const
631 {
632 	return m_context.getDefaultAllocator();
633 }
634 
~ShaderRenderCaseInstance(void)635 ShaderRenderCaseInstance::~ShaderRenderCaseInstance (void)
636 {
637 }
638 
getDevice(void) const639 VkDevice ShaderRenderCaseInstance::getDevice (void) const
640 {
641 	return m_context.getDevice();
642 }
643 
getUniversalQueueFamilyIndex(void) const644 deUint32 ShaderRenderCaseInstance::getUniversalQueueFamilyIndex	(void) const
645 {
646 	return m_context.getUniversalQueueFamilyIndex();
647 }
648 
getSparseQueueFamilyIndex(void) const649 deUint32 ShaderRenderCaseInstance::getSparseQueueFamilyIndex (void) const
650 {
651 	return m_context.getSparseQueueFamilyIndex();
652 }
653 
getDeviceInterface(void) const654 const DeviceInterface& ShaderRenderCaseInstance::getDeviceInterface (void) const
655 {
656 	return m_context.getDeviceInterface();
657 }
658 
getUniversalQueue(void) const659 VkQueue ShaderRenderCaseInstance::getUniversalQueue (void) const
660 {
661 	return m_context.getUniversalQueue();
662 }
663 
getSparseQueue(void) const664 VkQueue ShaderRenderCaseInstance::getSparseQueue (void) const
665 {
666 	return m_context.getSparseQueue();
667 }
668 
getPhysicalDevice(void) const669 VkPhysicalDevice ShaderRenderCaseInstance::getPhysicalDevice (void) const
670 {
671 	return m_context.getPhysicalDevice();
672 }
673 
getInstanceInterface(void) const674 const InstanceInterface& ShaderRenderCaseInstance::getInstanceInterface (void) const
675 {
676 	return m_context.getInstanceInterface();
677 }
678 
iterate(void)679 tcu::TestStatus ShaderRenderCaseInstance::iterate (void)
680 {
681 	setup();
682 
683 	// Create quad grid.
684 	const tcu::UVec2	viewportSize	= getViewportSize();
685 	const int			width			= viewportSize.x();
686 	const int			height			= viewportSize.y();
687 
688 	m_quadGrid							= de::MovePtr<QuadGrid>(new QuadGrid(m_quadGridSize, width, height, getDefaultConstCoords(), m_userAttribTransforms, m_textures));
689 
690 	// Render result.
691 	tcu::Surface		resImage		(width, height);
692 
693 	render(m_quadGrid->getNumVertices(), m_quadGrid->getNumTriangles(), m_quadGrid->getIndices(), m_quadGrid->getConstCoords());
694 	tcu::copy(resImage.getAccess(), m_resultImage.getAccess());
695 
696 	// Compute reference.
697 	tcu::Surface		refImage		(width, height);
698 	if (m_isVertexCase)
699 		computeVertexReference(refImage, *m_quadGrid);
700 	else
701 		computeFragmentReference(refImage, *m_quadGrid);
702 
703 	// Compare.
704 	const bool			compareOk		= compareImages(resImage, refImage, 0.2f);
705 
706 	if (compareOk)
707 		return tcu::TestStatus::pass("Result image matches reference");
708 	else
709 		return tcu::TestStatus::fail("Image mismatch");
710 }
711 
setup(void)712 void ShaderRenderCaseInstance::setup (void)
713 {
714 	m_resultImage					= tcu::TextureLevel();
715 	m_descriptorSetLayoutBuilder	= de::MovePtr<DescriptorSetLayoutBuilder>	(new DescriptorSetLayoutBuilder());
716 	m_descriptorPoolBuilder			= de::MovePtr<DescriptorPoolBuilder>		(new DescriptorPoolBuilder());
717 	m_descriptorSetUpdateBuilder	= de::MovePtr<DescriptorSetUpdateBuilder>	(new DescriptorSetUpdateBuilder());
718 
719 	m_uniformInfos.clear();
720 	m_vertexBindingDescription.clear();
721 	m_vertexAttributeDescription.clear();
722 	m_vertexBuffers.clear();
723 	m_vertexBufferAllocs.clear();
724 	m_pushConstantRanges.clear();
725 }
726 
setupUniformData(deUint32 bindingLocation,size_t size,const void * dataPtr)727 void ShaderRenderCaseInstance::setupUniformData (deUint32 bindingLocation, size_t size, const void* dataPtr)
728 {
729 	const VkDevice					vkDevice			= getDevice();
730 	const DeviceInterface&			vk					= getDeviceInterface();
731 	const deUint32					queueFamilyIndex	= getUniversalQueueFamilyIndex();
732 
733 	const VkBufferCreateInfo		uniformBufferParams	=
734 	{
735 		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
736 		DE_NULL,									// const void*			pNext;
737 		0u,											// VkBufferCreateFlags	flags;
738 		size,										// VkDeviceSize			size;
739 		VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,			// VkBufferUsageFlags	usage;
740 		VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
741 		1u,											// deUint32				queueFamilyCount;
742 		&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
743 	};
744 
745 	Move<VkBuffer>					buffer				= createBuffer(vk, vkDevice, &uniformBufferParams);
746 	de::MovePtr<Allocation>			alloc				= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
747 	VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, alloc->getMemory(), alloc->getOffset()));
748 
749 	deMemcpy(alloc->getHostPtr(), dataPtr, size);
750 	flushAlloc(vk, vkDevice, *alloc);
751 
752 	de::MovePtr<BufferUniform> uniformInfo(new BufferUniform());
753 	uniformInfo->type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
754 	uniformInfo->descriptor = makeDescriptorBufferInfo(*buffer, 0u, size);
755 	uniformInfo->location = bindingLocation;
756 	uniformInfo->buffer = VkBufferSp(new vk::Unique<VkBuffer>(buffer));
757 	uniformInfo->alloc = AllocationSp(alloc.release());
758 
759 	m_uniformInfos.push_back(UniformInfoSp(new de::UniquePtr<UniformInfo>(uniformInfo)));
760 }
761 
addUniform(deUint32 bindingLocation,vk::VkDescriptorType descriptorType,size_t dataSize,const void * data)762 void ShaderRenderCaseInstance::addUniform (deUint32 bindingLocation, vk::VkDescriptorType descriptorType, size_t dataSize, const void* data)
763 {
764 	m_descriptorSetLayoutBuilder->addSingleBinding(descriptorType, vk::VK_SHADER_STAGE_ALL);
765 	m_descriptorPoolBuilder->addType(descriptorType);
766 
767 	setupUniformData(bindingLocation, dataSize, data);
768 }
769 
addAttribute(deUint32 bindingLocation,vk::VkFormat format,deUint32 sizePerElement,deUint32 count,const void * dataPtr)770 void ShaderRenderCaseInstance::addAttribute (deUint32		bindingLocation,
771 											 vk::VkFormat	format,
772 											 deUint32		sizePerElement,
773 											 deUint32		count,
774 											 const void*	dataPtr)
775 {
776 	// Add binding specification
777 	const deUint32							binding					= (deUint32)m_vertexBindingDescription.size();
778 	const VkVertexInputBindingDescription	bindingDescription		=
779 	{
780 		binding,							// deUint32				binding;
781 		sizePerElement,						// deUint32				stride;
782 		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputRate	stepRate;
783 	};
784 
785 	m_vertexBindingDescription.push_back(bindingDescription);
786 
787 	// Add location and format specification
788 	const VkVertexInputAttributeDescription	attributeDescription	=
789 	{
790 		bindingLocation,			// deUint32	location;
791 		binding,					// deUint32	binding;
792 		format,						// VkFormat	format;
793 		0u,							// deUint32	offset;
794 	};
795 
796 	m_vertexAttributeDescription.push_back(attributeDescription);
797 
798 	// Upload data to buffer
799 	const VkDevice							vkDevice				= getDevice();
800 	const DeviceInterface&					vk						= getDeviceInterface();
801 	const deUint32							queueFamilyIndex		= getUniversalQueueFamilyIndex();
802 
803 	const VkDeviceSize						inputSize				= sizePerElement * count;
804 	const VkBufferCreateInfo				vertexBufferParams		=
805 	{
806 		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
807 		DE_NULL,									// const void*			pNext;
808 		0u,											// VkBufferCreateFlags	flags;
809 		inputSize,									// VkDeviceSize			size;
810 		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
811 		VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
812 		1u,											// deUint32				queueFamilyCount;
813 		&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
814 	};
815 
816 	Move<VkBuffer>							buffer					= createBuffer(vk, vkDevice, &vertexBufferParams);
817 	de::MovePtr<vk::Allocation>				alloc					= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
818 	VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, alloc->getMemory(), alloc->getOffset()));
819 
820 	deMemcpy(alloc->getHostPtr(), dataPtr, (size_t)inputSize);
821 	flushAlloc(vk, vkDevice, *alloc);
822 
823 	m_vertexBuffers.push_back(VkBufferSp(new vk::Unique<VkBuffer>(buffer)));
824 	m_vertexBufferAllocs.push_back(AllocationSp(alloc.release()));
825 }
826 
useAttribute(deUint32 bindingLocation,BaseAttributeType type)827 void ShaderRenderCaseInstance::useAttribute (deUint32 bindingLocation, BaseAttributeType type)
828 {
829 	const EnabledBaseAttribute attribute =
830 	{
831 		bindingLocation,	// deUint32				location;
832 		type				// BaseAttributeType	type;
833 	};
834 	m_enabledBaseAttributes.push_back(attribute);
835 }
836 
setupUniforms(const tcu::Vec4 & constCoords)837 void ShaderRenderCaseInstance::setupUniforms (const tcu::Vec4& constCoords)
838 {
839 	if (m_uniformSetup)
840 		m_uniformSetup->setup(*this, constCoords);
841 }
842 
useUniform(deUint32 bindingLocation,BaseUniformType type)843 void ShaderRenderCaseInstance::useUniform (deUint32 bindingLocation, BaseUniformType type)
844 {
845 	#define UNIFORM_CASE(type, value) case type: addUniform(bindingLocation, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, value); break
846 
847 	switch(type)
848 	{
849 		// Bool
850 		UNIFORM_CASE(UB_FALSE,	0);
851 		UNIFORM_CASE(UB_TRUE,	1);
852 
853 		// BVec4
854 		UNIFORM_CASE(UB4_FALSE,	tcu::Vec4(0));
855 		UNIFORM_CASE(UB4_TRUE,	tcu::Vec4(1));
856 
857 		// Integer
858 		UNIFORM_CASE(UI_ZERO,	0);
859 		UNIFORM_CASE(UI_ONE,	1);
860 		UNIFORM_CASE(UI_TWO,	2);
861 		UNIFORM_CASE(UI_THREE,	3);
862 		UNIFORM_CASE(UI_FOUR,	4);
863 		UNIFORM_CASE(UI_FIVE,	5);
864 		UNIFORM_CASE(UI_SIX,	6);
865 		UNIFORM_CASE(UI_SEVEN,	7);
866 		UNIFORM_CASE(UI_EIGHT,	8);
867 		UNIFORM_CASE(UI_ONEHUNDREDONE, 101);
868 
869 		// IVec2
870 		UNIFORM_CASE(UI2_MINUS_ONE,	tcu::IVec2(-1));
871 		UNIFORM_CASE(UI2_ZERO,		tcu::IVec2(0));
872 		UNIFORM_CASE(UI2_ONE,		tcu::IVec2(1));
873 		UNIFORM_CASE(UI2_TWO,		tcu::IVec2(2));
874 		UNIFORM_CASE(UI2_THREE,		tcu::IVec2(3));
875 		UNIFORM_CASE(UI2_FOUR,		tcu::IVec2(4));
876 		UNIFORM_CASE(UI2_FIVE,		tcu::IVec2(5));
877 
878 		// IVec3
879 		UNIFORM_CASE(UI3_MINUS_ONE,	tcu::IVec3(-1));
880 		UNIFORM_CASE(UI3_ZERO,		tcu::IVec3(0));
881 		UNIFORM_CASE(UI3_ONE,		tcu::IVec3(1));
882 		UNIFORM_CASE(UI3_TWO,		tcu::IVec3(2));
883 		UNIFORM_CASE(UI3_THREE,		tcu::IVec3(3));
884 		UNIFORM_CASE(UI3_FOUR,		tcu::IVec3(4));
885 		UNIFORM_CASE(UI3_FIVE,		tcu::IVec3(5));
886 
887 		// IVec4
888 		UNIFORM_CASE(UI4_MINUS_ONE, tcu::IVec4(-1));
889 		UNIFORM_CASE(UI4_ZERO,		tcu::IVec4(0));
890 		UNIFORM_CASE(UI4_ONE,		tcu::IVec4(1));
891 		UNIFORM_CASE(UI4_TWO,		tcu::IVec4(2));
892 		UNIFORM_CASE(UI4_THREE,		tcu::IVec4(3));
893 		UNIFORM_CASE(UI4_FOUR,		tcu::IVec4(4));
894 		UNIFORM_CASE(UI4_FIVE,		tcu::IVec4(5));
895 
896 		// Float
897 		UNIFORM_CASE(UF_ZERO,		0.0f);
898 		UNIFORM_CASE(UF_ONE,		1.0f);
899 		UNIFORM_CASE(UF_TWO,		2.0f);
900 		UNIFORM_CASE(UF_THREE,		3.0f);
901 		UNIFORM_CASE(UF_FOUR,		4.0f);
902 		UNIFORM_CASE(UF_FIVE,		5.0f);
903 		UNIFORM_CASE(UF_SIX,		6.0f);
904 		UNIFORM_CASE(UF_SEVEN,		7.0f);
905 		UNIFORM_CASE(UF_EIGHT,		8.0f);
906 
907 		UNIFORM_CASE(UF_HALF,		1.0f / 2.0f);
908 		UNIFORM_CASE(UF_THIRD,		1.0f / 3.0f);
909 		UNIFORM_CASE(UF_FOURTH,		1.0f / 4.0f);
910 		UNIFORM_CASE(UF_FIFTH,		1.0f / 5.0f);
911 		UNIFORM_CASE(UF_SIXTH,		1.0f / 6.0f);
912 		UNIFORM_CASE(UF_SEVENTH,	1.0f / 7.0f);
913 		UNIFORM_CASE(UF_EIGHTH,		1.0f / 8.0f);
914 
915 		// Vec2
916 		UNIFORM_CASE(UV2_MINUS_ONE,	tcu::Vec2(-1.0f));
917 		UNIFORM_CASE(UV2_ZERO,		tcu::Vec2(0.0f));
918 		UNIFORM_CASE(UV2_ONE,		tcu::Vec2(1.0f));
919 		UNIFORM_CASE(UV2_TWO,		tcu::Vec2(2.0f));
920 		UNIFORM_CASE(UV2_THREE,		tcu::Vec2(3.0f));
921 
922 		UNIFORM_CASE(UV2_HALF,		tcu::Vec2(1.0f / 2.0f));
923 
924 		// Vec3
925 		UNIFORM_CASE(UV3_MINUS_ONE,	tcu::Vec3(-1.0f));
926 		UNIFORM_CASE(UV3_ZERO,		tcu::Vec3(0.0f));
927 		UNIFORM_CASE(UV3_ONE,		tcu::Vec3(1.0f));
928 		UNIFORM_CASE(UV3_TWO,		tcu::Vec3(2.0f));
929 		UNIFORM_CASE(UV3_THREE,		tcu::Vec3(3.0f));
930 
931 		UNIFORM_CASE(UV3_HALF,		tcu::Vec3(1.0f / 2.0f));
932 
933 		// Vec4
934 		UNIFORM_CASE(UV4_MINUS_ONE,	tcu::Vec4(-1.0f));
935 		UNIFORM_CASE(UV4_ZERO,		tcu::Vec4(0.0f));
936 		UNIFORM_CASE(UV4_ONE,		tcu::Vec4(1.0f));
937 		UNIFORM_CASE(UV4_TWO,		tcu::Vec4(2.0f));
938 		UNIFORM_CASE(UV4_THREE,		tcu::Vec4(3.0f));
939 
940 		UNIFORM_CASE(UV4_HALF,		tcu::Vec4(1.0f / 2.0f));
941 
942 		UNIFORM_CASE(UV4_BLACK,		tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
943 		UNIFORM_CASE(UV4_GRAY,		tcu::Vec4(0.5f, 0.5f, 0.5f, 1.0f));
944 		UNIFORM_CASE(UV4_WHITE,		tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
945 
946 		default:
947 			m_context.getTestContext().getLog() << tcu::TestLog::Message << "Unknown Uniform type: " << type << tcu::TestLog::EndMessage;
948 			break;
949 	}
950 
951 	#undef UNIFORM_CASE
952 }
953 
getViewportSize(void) const954 const tcu::UVec2 ShaderRenderCaseInstance::getViewportSize (void) const
955 {
956 	return tcu::UVec2(de::min(m_renderSize.x(), MAX_RENDER_WIDTH),
957 					  de::min(m_renderSize.y(), MAX_RENDER_HEIGHT));
958 }
959 
setSampleCount(VkSampleCountFlagBits sampleCount)960 void ShaderRenderCaseInstance::setSampleCount (VkSampleCountFlagBits sampleCount)
961 {
962 	m_sampleCount	= sampleCount;
963 }
964 
isMultiSampling(void) const965 bool ShaderRenderCaseInstance::isMultiSampling (void) const
966 {
967 	return m_sampleCount != VK_SAMPLE_COUNT_1_BIT;
968 }
969 
uploadImage(const tcu::TextureFormat & texFormat,const TextureData & textureData,const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,VkImage destImage)970 void ShaderRenderCaseInstance::uploadImage (const tcu::TextureFormat&			texFormat,
971 											const TextureData&					textureData,
972 											const tcu::Sampler&					refSampler,
973 											deUint32							mipLevels,
974 											deUint32							arrayLayers,
975 											VkImage								destImage)
976 {
977 	const VkDevice					vkDevice				= getDevice();
978 	const DeviceInterface&			vk						= getDeviceInterface();
979 	const VkQueue					queue					= getUniversalQueue();
980 	const deUint32					queueFamilyIndex		= getUniversalQueueFamilyIndex();
981 
982 	const bool						isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
983 	const VkImageAspectFlags		aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
984 	deUint32						bufferSize				= 0u;
985 	Move<VkBuffer>					buffer;
986 	de::MovePtr<Allocation>			bufferAlloc;
987 	Move<VkCommandPool>				cmdPool;
988 	Move<VkCommandBuffer>			cmdBuffer;
989 	std::vector<VkBufferImageCopy>	copyRegions;
990 	std::vector<deUint32>			offsetMultiples;
991 
992 	offsetMultiples.push_back(4u);
993 	offsetMultiples.push_back(texFormat.getPixelSize());
994 
995 	// Calculate buffer size
996 	for (TextureData::const_iterator mit = textureData.begin(); mit != textureData.end(); ++mit)
997 	{
998 		for (TextureLayerData::const_iterator lit = mit->begin(); lit != mit->end(); ++lit)
999 		{
1000 			const tcu::ConstPixelBufferAccess&	access	= *lit;
1001 
1002 			bufferSize = getNextMultiple(offsetMultiples, bufferSize);
1003 			bufferSize += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1004 		}
1005 	}
1006 
1007 	// Create source buffer
1008 	{
1009 		const VkBufferCreateInfo bufferParams =
1010 		{
1011 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
1012 			DE_NULL,									// const void*			pNext;
1013 			0u,											// VkBufferCreateFlags	flags;
1014 			bufferSize,									// VkDeviceSize			size;
1015 			VK_BUFFER_USAGE_TRANSFER_SRC_BIT,			// VkBufferUsageFlags	usage;
1016 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
1017 			0u,											// deUint32				queueFamilyIndexCount;
1018 			DE_NULL,									// const deUint32*		pQueueFamilyIndices;
1019 		};
1020 
1021 		buffer		= createBuffer(vk, vkDevice, &bufferParams);
1022 		bufferAlloc = m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
1023 		VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, bufferAlloc->getMemory(), bufferAlloc->getOffset()));
1024 	}
1025 
1026 	// Get copy regions and write buffer data
1027 	{
1028 		deUint32	layerDataOffset		= 0;
1029 		deUint8*	destPtr				= (deUint8*)bufferAlloc->getHostPtr();
1030 
1031 		for (size_t levelNdx = 0; levelNdx < textureData.size(); levelNdx++)
1032 		{
1033 			const TextureLayerData&		layerData	= textureData[levelNdx];
1034 
1035 			for (size_t layerNdx = 0; layerNdx < layerData.size(); layerNdx++)
1036 			{
1037 				layerDataOffset = getNextMultiple(offsetMultiples, layerDataOffset);
1038 
1039 				const tcu::ConstPixelBufferAccess&	access		= layerData[layerNdx];
1040 				const tcu::PixelBufferAccess		destAccess	(access.getFormat(), access.getSize(), destPtr + layerDataOffset);
1041 
1042 				const VkBufferImageCopy				layerRegion =
1043 				{
1044 					layerDataOffset,						// VkDeviceSize				bufferOffset;
1045 					(deUint32)access.getWidth(),			// deUint32					bufferRowLength;
1046 					(deUint32)access.getHeight(),			// deUint32					bufferImageHeight;
1047 					{										// VkImageSubresourceLayers	imageSubresource;
1048 						aspectMask,								// VkImageAspectFlags		aspectMask;
1049 						(deUint32)levelNdx,						// uint32_t					mipLevel;
1050 						(deUint32)layerNdx,						// uint32_t					baseArrayLayer;
1051 						1u										// uint32_t					layerCount;
1052 					},
1053 					{ 0u, 0u, 0u },							// VkOffset3D			imageOffset;
1054 					{										// VkExtent3D			imageExtent;
1055 						(deUint32)access.getWidth(),
1056 						(deUint32)access.getHeight(),
1057 						(deUint32)access.getDepth()
1058 					}
1059 				};
1060 
1061 				copyRegions.push_back(layerRegion);
1062 				tcu::copy(destAccess, access);
1063 
1064 				layerDataOffset += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1065 			}
1066 		}
1067 	}
1068 
1069 	flushAlloc(vk, vkDevice, *bufferAlloc);
1070 
1071 	copyBufferToImage(vk, vkDevice, queue, queueFamilyIndex, *buffer, bufferSize, copyRegions, DE_NULL, aspectMask, mipLevels, arrayLayers, destImage);
1072 }
1073 
clearImage(const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,VkImage destImage)1074 void ShaderRenderCaseInstance::clearImage (const tcu::Sampler&					refSampler,
1075 										   deUint32								mipLevels,
1076 										   deUint32								arrayLayers,
1077 										   VkImage								destImage)
1078 {
1079 	const VkDevice					vkDevice				= m_context.getDevice();
1080 	const DeviceInterface&			vk						= m_context.getDeviceInterface();
1081 	const VkQueue					queue					= m_context.getUniversalQueue();
1082 	const deUint32					queueFamilyIndex		= m_context.getUniversalQueueFamilyIndex();
1083 
1084 	const bool						isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1085 	const VkImageAspectFlags		aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1086 	Move<VkCommandPool>				cmdPool;
1087 	Move<VkCommandBuffer>			cmdBuffer;
1088 
1089 	VkClearValue					clearValue;
1090 	deMemset(&clearValue, 0, sizeof(clearValue));
1091 
1092 
1093 	// Create command pool and buffer
1094 	cmdPool		= createCommandPool(vk, vkDevice, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex);
1095 	cmdBuffer	= allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1096 
1097 	const VkImageMemoryBarrier preImageBarrier =
1098 	{
1099 		VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,			// VkStructureType			sType;
1100 		DE_NULL,										// const void*				pNext;
1101 		0u,												// VkAccessFlags			srcAccessMask;
1102 		VK_ACCESS_TRANSFER_WRITE_BIT,					// VkAccessFlags			dstAccessMask;
1103 		VK_IMAGE_LAYOUT_UNDEFINED,						// VkImageLayout			oldLayout;
1104 		VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,			// VkImageLayout			newLayout;
1105 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					srcQueueFamilyIndex;
1106 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					dstQueueFamilyIndex;
1107 		destImage,										// VkImage					image;
1108 		{												// VkImageSubresourceRange	subresourceRange;
1109 			aspectMask,								// VkImageAspect	aspect;
1110 			0u,										// deUint32			baseMipLevel;
1111 			mipLevels,								// deUint32			mipLevels;
1112 			0u,										// deUint32			baseArraySlice;
1113 			arrayLayers								// deUint32			arraySize;
1114 		}
1115 	};
1116 
1117 	const VkImageMemoryBarrier postImageBarrier =
1118 	{
1119 		VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,			// VkStructureType			sType;
1120 		DE_NULL,										// const void*				pNext;
1121 		VK_ACCESS_TRANSFER_WRITE_BIT,					// VkAccessFlags			srcAccessMask;
1122 		VK_ACCESS_SHADER_READ_BIT,						// VkAccessFlags			dstAccessMask;
1123 		VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,			// VkImageLayout			oldLayout;
1124 		VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,		// VkImageLayout			newLayout;
1125 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					srcQueueFamilyIndex;
1126 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					dstQueueFamilyIndex;
1127 		destImage,										// VkImage					image;
1128 		{												// VkImageSubresourceRange	subresourceRange;
1129 			aspectMask,								// VkImageAspect	aspect;
1130 			0u,										// deUint32			baseMipLevel;
1131 			mipLevels,								// deUint32			mipLevels;
1132 			0u,										// deUint32			baseArraySlice;
1133 			arrayLayers								// deUint32			arraySize;
1134 		}
1135 	};
1136 
1137 	const VkImageSubresourceRange clearRange		=
1138 	{
1139 		aspectMask,										// VkImageAspectFlags	aspectMask;
1140 		0u,												// deUint32				baseMipLevel;
1141 		mipLevels,										// deUint32				levelCount;
1142 		0u,												// deUint32				baseArrayLayer;
1143 		arrayLayers										// deUint32				layerCount;
1144 	};
1145 
1146 	// Copy buffer to image
1147 	beginCommandBuffer(vk, *cmdBuffer);
1148 	vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &preImageBarrier);
1149 	if (aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
1150 	{
1151 		vk.cmdClearColorImage(*cmdBuffer, destImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &clearRange);
1152 	}
1153 	else
1154 	{
1155 		vk.cmdClearDepthStencilImage(*cmdBuffer, destImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.depthStencil, 1, &clearRange);
1156 	}
1157 	vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &postImageBarrier);
1158 	endCommandBuffer(vk, *cmdBuffer);
1159 
1160 	submitCommandsAndWait(vk, vkDevice, queue, cmdBuffer.get());
1161 }
1162 
mipLevelExtents(const VkExtent3D & baseExtents,const deUint32 mipLevel)1163 VkExtent3D mipLevelExtents (const VkExtent3D& baseExtents, const deUint32 mipLevel)
1164 {
1165 	VkExtent3D result;
1166 
1167 	result.width	= std::max(baseExtents.width  >> mipLevel, 1u);
1168 	result.height	= std::max(baseExtents.height >> mipLevel, 1u);
1169 	result.depth	= std::max(baseExtents.depth  >> mipLevel, 1u);
1170 
1171 	return result;
1172 }
1173 
alignedDivide(const VkExtent3D & extent,const VkExtent3D & divisor)1174 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
1175 {
1176 	tcu::UVec3 result;
1177 
1178 	result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width != 0)  ? 1u : 0u);
1179 	result.y() = extent.height / divisor.height + ((extent.height % divisor.height != 0) ? 1u : 0u);
1180 	result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth != 0)  ? 1u : 0u);
1181 
1182 	return result;
1183 }
1184 
isImageSizeSupported(const VkImageType imageType,const tcu::UVec3 & imageSize,const vk::VkPhysicalDeviceLimits & limits)1185 bool isImageSizeSupported (const VkImageType imageType, const tcu::UVec3& imageSize, const vk::VkPhysicalDeviceLimits& limits)
1186 {
1187 	switch (imageType)
1188 	{
1189 		case VK_IMAGE_TYPE_1D:
1190 			return (imageSize.x() <= limits.maxImageDimension1D
1191 				 && imageSize.y() == 1
1192 				 && imageSize.z() == 1);
1193 		case VK_IMAGE_TYPE_2D:
1194 			return (imageSize.x() <= limits.maxImageDimension2D
1195 				 && imageSize.y() <= limits.maxImageDimension2D
1196 				 && imageSize.z() == 1);
1197 		case VK_IMAGE_TYPE_3D:
1198 			return (imageSize.x() <= limits.maxImageDimension3D
1199 				 && imageSize.y() <= limits.maxImageDimension3D
1200 				 && imageSize.z() <= limits.maxImageDimension3D);
1201 		default:
1202 			DE_FATAL("Unknown image type");
1203 			return false;
1204 	}
1205 }
1206 
checkSparseSupport(const VkImageCreateInfo & imageInfo) const1207 void ShaderRenderCaseInstance::checkSparseSupport (const VkImageCreateInfo& imageInfo) const
1208 {
1209 	const InstanceInterface&		instance		= getInstanceInterface();
1210 	const VkPhysicalDevice			physicalDevice	= getPhysicalDevice();
1211 	const VkPhysicalDeviceFeatures	deviceFeatures	= getPhysicalDeviceFeatures(instance, physicalDevice);
1212 
1213 	const std::vector<VkSparseImageFormatProperties> sparseImageFormatPropVec = getPhysicalDeviceSparseImageFormatProperties(
1214 		instance, physicalDevice, imageInfo.format, imageInfo.imageType, imageInfo.samples, imageInfo.usage, imageInfo.tiling);
1215 
1216 	if (!deviceFeatures.shaderResourceResidency)
1217 		TCU_THROW(NotSupportedError, "Required feature: shaderResourceResidency.");
1218 
1219 	if (!deviceFeatures.sparseBinding)
1220 		TCU_THROW(NotSupportedError, "Required feature: sparseBinding.");
1221 
1222 	if (imageInfo.imageType == VK_IMAGE_TYPE_2D && !deviceFeatures.sparseResidencyImage2D)
1223 		TCU_THROW(NotSupportedError, "Required feature: sparseResidencyImage2D.");
1224 
1225 	if (imageInfo.imageType == VK_IMAGE_TYPE_3D && !deviceFeatures.sparseResidencyImage3D)
1226 		TCU_THROW(NotSupportedError, "Required feature: sparseResidencyImage3D.");
1227 
1228 	if (sparseImageFormatPropVec.size() == 0)
1229 		TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
1230 }
1231 
uploadSparseImage(const tcu::TextureFormat & texFormat,const TextureData & textureData,const tcu::Sampler & refSampler,const deUint32 mipLevels,const deUint32 arrayLayers,const VkImage sparseImage,const VkImageCreateInfo & imageCreateInfo,const tcu::UVec3 texSize)1232 void ShaderRenderCaseInstance::uploadSparseImage (const tcu::TextureFormat&		texFormat,
1233 												  const TextureData&			textureData,
1234 												  const tcu::Sampler&			refSampler,
1235 												  const deUint32				mipLevels,
1236 												  const deUint32				arrayLayers,
1237 												  const VkImage					sparseImage,
1238 												  const VkImageCreateInfo&		imageCreateInfo,
1239 												  const tcu::UVec3				texSize)
1240 {
1241 	const VkDevice							vkDevice				= getDevice();
1242 	const DeviceInterface&					vk						= getDeviceInterface();
1243 	const VkPhysicalDevice					physicalDevice			= getPhysicalDevice();
1244 	const VkQueue							queue					= getUniversalQueue();
1245 	const VkQueue							sparseQueue				= getSparseQueue();
1246 	const deUint32							queueFamilyIndex		= getUniversalQueueFamilyIndex();
1247 	const InstanceInterface&				instance				= getInstanceInterface();
1248 	const VkPhysicalDeviceProperties		deviceProperties		= getPhysicalDeviceProperties(instance, physicalDevice);
1249 	const bool								isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1250 	const VkImageAspectFlags				aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1251 	const Unique<VkSemaphore>				imageMemoryBindSemaphore(createSemaphore(vk, vkDevice));
1252 	Move<VkBuffer>							buffer;
1253 	deUint32								bufferSize				= 0u;
1254 	de::MovePtr<Allocation>					bufferAlloc;
1255 	std::vector<VkBufferImageCopy>			copyRegions;
1256 	std::vector<deUint32>					offsetMultiples;
1257 
1258 	offsetMultiples.push_back(4u);
1259 	offsetMultiples.push_back(texFormat.getPixelSize());
1260 
1261 	if (isImageSizeSupported(imageCreateInfo.imageType, texSize, deviceProperties.limits) == false)
1262 		TCU_THROW(NotSupportedError, "Image size not supported for device.");
1263 
1264 	allocateAndBindSparseImage(vk, vkDevice, physicalDevice, instance, imageCreateInfo, *imageMemoryBindSemaphore, sparseQueue, m_memAlloc, m_allocations, texFormat, sparseImage);
1265 
1266 	// Calculate buffer size
1267 	for (TextureData::const_iterator mit = textureData.begin(); mit != textureData.end(); ++mit)
1268 	{
1269 		for (TextureLayerData::const_iterator lit = mit->begin(); lit != mit->end(); ++lit)
1270 		{
1271 			const tcu::ConstPixelBufferAccess&	access	= *lit;
1272 
1273 			bufferSize = getNextMultiple(offsetMultiples, bufferSize);
1274 			bufferSize += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1275 		}
1276 	}
1277 
1278 	{
1279 		// Create source buffer
1280 		const VkBufferCreateInfo bufferParams =
1281 		{
1282 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	// VkStructureType		sType;
1283 			DE_NULL,								// const void*			pNext;
1284 			0u,										// VkBufferCreateFlags	flags;
1285 			bufferSize,								// VkDeviceSize			size;
1286 			VK_BUFFER_USAGE_TRANSFER_SRC_BIT,		// VkBufferUsageFlags	usage;
1287 			VK_SHARING_MODE_EXCLUSIVE,				// VkSharingMode		sharingMode;
1288 			0u,										// deUint32				queueFamilyIndexCount;
1289 			DE_NULL,								// const deUint32*		pQueueFamilyIndices;
1290 		};
1291 
1292 		buffer		= createBuffer(vk, vkDevice, &bufferParams);
1293 		bufferAlloc = m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
1294 
1295 		VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, bufferAlloc->getMemory(), bufferAlloc->getOffset()));
1296 	}
1297 
1298 	// Get copy regions and write buffer data
1299 	{
1300 		deUint32	layerDataOffset		= 0;
1301 		deUint8*	destPtr				= (deUint8*)bufferAlloc->getHostPtr();
1302 
1303 		for (size_t levelNdx = 0; levelNdx < textureData.size(); levelNdx++)
1304 		{
1305 			const TextureLayerData&		layerData	= textureData[levelNdx];
1306 
1307 			for (size_t layerNdx = 0; layerNdx < layerData.size(); layerNdx++)
1308 			{
1309 				layerDataOffset = getNextMultiple(offsetMultiples, layerDataOffset);
1310 
1311 				const tcu::ConstPixelBufferAccess&	access		= layerData[layerNdx];
1312 				const tcu::PixelBufferAccess		destAccess	(access.getFormat(), access.getSize(), destPtr + layerDataOffset);
1313 
1314 				const VkBufferImageCopy				layerRegion =
1315 				{
1316 					layerDataOffset,						// VkDeviceSize				bufferOffset;
1317 					(deUint32)access.getWidth(),			// deUint32					bufferRowLength;
1318 					(deUint32)access.getHeight(),			// deUint32					bufferImageHeight;
1319 					{										// VkImageSubresourceLayers	imageSubresource;
1320 						aspectMask,								// VkImageAspectFlags		aspectMask;
1321 						(deUint32)levelNdx,						// uint32_t					mipLevel;
1322 						(deUint32)layerNdx,						// uint32_t					baseArrayLayer;
1323 						1u										// uint32_t					layerCount;
1324 					},
1325 					{ 0u, 0u, 0u },							// VkOffset3D			imageOffset;
1326 					{										// VkExtent3D			imageExtent;
1327 						(deUint32)access.getWidth(),
1328 						(deUint32)access.getHeight(),
1329 						(deUint32)access.getDepth()
1330 					}
1331 				};
1332 
1333 				copyRegions.push_back(layerRegion);
1334 				tcu::copy(destAccess, access);
1335 
1336 				layerDataOffset += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1337 			}
1338 		}
1339 	}
1340 	copyBufferToImage(vk, vkDevice, queue, queueFamilyIndex, *buffer, bufferSize, copyRegions, &(*imageMemoryBindSemaphore), aspectMask, mipLevels, arrayLayers, sparseImage);
1341 }
1342 
useSampler(deUint32 bindingLocation,deUint32 textureId)1343 void ShaderRenderCaseInstance::useSampler (deUint32 bindingLocation, deUint32 textureId)
1344 {
1345 	DE_ASSERT(textureId < m_textures.size());
1346 
1347 	const TextureBinding&				textureBinding		= *m_textures[textureId];
1348 	const TextureBinding::Type			textureType			= textureBinding.getType();
1349 	const tcu::Sampler&					refSampler			= textureBinding.getSampler();
1350 	const TextureBinding::Parameters&	textureParams		= textureBinding.getParameters();
1351 	const bool							isMSTexture			= textureParams.samples != vk::VK_SAMPLE_COUNT_1_BIT;
1352 	deUint32							mipLevels			= 1u;
1353 	deUint32							arrayLayers			= 1u;
1354 	tcu::TextureFormat					texFormat;
1355 	tcu::UVec3							texSize;
1356 	TextureData							textureData;
1357 
1358 	if (textureType == TextureBinding::TYPE_2D)
1359 	{
1360 		const tcu::Texture2D&			texture		= textureBinding.get2D();
1361 
1362 		texFormat									= texture.getFormat();
1363 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), 1u);
1364 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1365 		arrayLayers									= 1u;
1366 
1367 		textureData.resize(mipLevels);
1368 
1369 		for (deUint32 level = 0; level < mipLevels; ++level)
1370 		{
1371 			if (texture.isLevelEmpty(level))
1372 				continue;
1373 
1374 			textureData[level].push_back(texture.getLevel(level));
1375 		}
1376 	}
1377 	else if (textureType == TextureBinding::TYPE_CUBE_MAP)
1378 	{
1379 		const tcu::TextureCube&			texture		= textureBinding.getCube();
1380 
1381 		texFormat									= texture.getFormat();
1382 		texSize										= tcu::UVec3(texture.getSize(), texture.getSize(), 1u);
1383 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1384 		arrayLayers									= 6u;
1385 
1386 		static const tcu::CubeFace		cubeFaceMapping[tcu::CUBEFACE_LAST] =
1387 		{
1388 			tcu::CUBEFACE_POSITIVE_X,
1389 			tcu::CUBEFACE_NEGATIVE_X,
1390 			tcu::CUBEFACE_POSITIVE_Y,
1391 			tcu::CUBEFACE_NEGATIVE_Y,
1392 			tcu::CUBEFACE_POSITIVE_Z,
1393 			tcu::CUBEFACE_NEGATIVE_Z
1394 		};
1395 
1396 		textureData.resize(mipLevels);
1397 
1398 		for (deUint32 level = 0; level < mipLevels; ++level)
1399 		{
1400 			for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1401 			{
1402 				tcu::CubeFace face = cubeFaceMapping[faceNdx];
1403 
1404 				if (texture.isLevelEmpty(face, level))
1405 					continue;
1406 
1407 				textureData[level].push_back(texture.getLevelFace(level, face));
1408 			}
1409 		}
1410 	}
1411 	else if (textureType == TextureBinding::TYPE_2D_ARRAY)
1412 	{
1413 		const tcu::Texture2DArray&		texture		= textureBinding.get2DArray();
1414 
1415 		texFormat									= texture.getFormat();
1416 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), 1u);
1417 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1418 		arrayLayers									= (deUint32)texture.getNumLayers();
1419 
1420 		textureData.resize(mipLevels);
1421 
1422 		for (deUint32 level = 0; level < mipLevels; ++level)
1423 		{
1424 			if (texture.isLevelEmpty(level))
1425 				continue;
1426 
1427 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1428 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getHeight() * levelLayers.getFormat().getPixelSize();
1429 
1430 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1431 			{
1432 				const deUint32					layerOffset		= layerSize * layer;
1433 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), levelLayers.getHeight(), 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1434 				textureData[level].push_back(layerData);
1435 			}
1436 		}
1437 	}
1438 	else if (textureType == TextureBinding::TYPE_3D)
1439 	{
1440 		const tcu::Texture3D&			texture		= textureBinding.get3D();
1441 
1442 		texFormat									= texture.getFormat();
1443 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), texture.getDepth());
1444 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1445 		arrayLayers									= 1u;
1446 
1447 		textureData.resize(mipLevels);
1448 
1449 		for (deUint32 level = 0; level < mipLevels; ++level)
1450 		{
1451 			if (texture.isLevelEmpty(level))
1452 				continue;
1453 
1454 			textureData[level].push_back(texture.getLevel(level));
1455 		}
1456 	}
1457 	else if (textureType == TextureBinding::TYPE_1D)
1458 	{
1459 		const tcu::Texture1D&			texture		= textureBinding.get1D();
1460 
1461 		texFormat									= texture.getFormat();
1462 		texSize										= tcu::UVec3(texture.getWidth(), 1, 1);
1463 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1464 		arrayLayers									= 1u;
1465 
1466 		textureData.resize(mipLevels);
1467 
1468 		for (deUint32 level = 0; level < mipLevels; ++level)
1469 		{
1470 			if (texture.isLevelEmpty(level))
1471 				continue;
1472 
1473 			textureData[level].push_back(texture.getLevel(level));
1474 		}
1475 	}
1476 	else if (textureType == TextureBinding::TYPE_1D_ARRAY)
1477 	{
1478 		const tcu::Texture1DArray&		texture		= textureBinding.get1DArray();
1479 
1480 		texFormat									= texture.getFormat();
1481 		texSize										= tcu::UVec3(texture.getWidth(), 1, 1);
1482 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1483 		arrayLayers									= (deUint32)texture.getNumLayers();
1484 
1485 		textureData.resize(mipLevels);
1486 
1487 		for (deUint32 level = 0; level < mipLevels; ++level)
1488 		{
1489 			if (texture.isLevelEmpty(level))
1490 				continue;
1491 
1492 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1493 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getFormat().getPixelSize();
1494 
1495 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1496 			{
1497 				const deUint32					layerOffset		= layerSize * layer;
1498 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), 1, 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1499 				textureData[level].push_back(layerData);
1500 			}
1501 		}
1502 	}
1503 	else if (textureType == TextureBinding::TYPE_CUBE_ARRAY)
1504 	{
1505 		const tcu::TextureCubeArray&	texture		= textureBinding.getCubeArray();
1506 		texFormat									= texture.getFormat();
1507 		texSize										= tcu::UVec3(texture.getSize(), texture.getSize(), 1);
1508 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1509 		arrayLayers									= texture.getDepth();
1510 
1511 		textureData.resize(mipLevels);
1512 
1513 		for (deUint32 level = 0; level < mipLevels; ++level)
1514 		{
1515 			if (texture.isLevelEmpty(level))
1516 				continue;
1517 
1518 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1519 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getHeight() * levelLayers.getFormat().getPixelSize();
1520 
1521 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1522 			{
1523 				const deUint32					layerOffset		= layerSize * layer;
1524 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), levelLayers.getHeight(), 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1525 				textureData[level].push_back(layerData);
1526 			}
1527 		}
1528 	}
1529 	else
1530 	{
1531 		TCU_THROW(InternalError, "Invalid texture type");
1532 	}
1533 
1534 	createSamplerUniform(bindingLocation, textureType, textureBinding.getParameters().initialization, texFormat, texSize, textureData, refSampler, mipLevels, arrayLayers, textureParams);
1535 }
1536 
setPushConstantRanges(const deUint32 rangeCount,const vk::VkPushConstantRange * const pcRanges)1537 void ShaderRenderCaseInstance::setPushConstantRanges (const deUint32 rangeCount, const vk::VkPushConstantRange* const pcRanges)
1538 {
1539 	m_pushConstantRanges.clear();
1540 	for (deUint32 i = 0; i < rangeCount; ++i)
1541 	{
1542 		m_pushConstantRanges.push_back(pcRanges[i]);
1543 	}
1544 }
1545 
updatePushConstants(vk::VkCommandBuffer,vk::VkPipelineLayout)1546 void ShaderRenderCaseInstance::updatePushConstants (vk::VkCommandBuffer, vk::VkPipelineLayout)
1547 {
1548 }
1549 
createSamplerUniform(deUint32 bindingLocation,TextureBinding::Type textureType,TextureBinding::Init textureInit,const tcu::TextureFormat & texFormat,const tcu::UVec3 texSize,const TextureData & textureData,const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,TextureBinding::Parameters textureParams)1550 void ShaderRenderCaseInstance::createSamplerUniform (deUint32						bindingLocation,
1551 													 TextureBinding::Type			textureType,
1552 													 TextureBinding::Init			textureInit,
1553 													 const tcu::TextureFormat&		texFormat,
1554 													 const tcu::UVec3				texSize,
1555 													 const TextureData&				textureData,
1556 													 const tcu::Sampler&			refSampler,
1557 													 deUint32						mipLevels,
1558 													 deUint32						arrayLayers,
1559 													 TextureBinding::Parameters		textureParams)
1560 {
1561 	const VkDevice					vkDevice			= getDevice();
1562 	const DeviceInterface&			vk					= getDeviceInterface();
1563 	const deUint32					queueFamilyIndex	= getUniversalQueueFamilyIndex();
1564 	const deUint32					sparseFamilyIndex	= (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE) ? getSparseQueueFamilyIndex() : queueFamilyIndex;
1565 
1566 	const bool						isShadowSampler		= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1567 	const VkImageAspectFlags		aspectMask			= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1568 	const VkImageViewType			imageViewType		= textureTypeToImageViewType(textureType);
1569 	const VkImageType				imageType			= viewTypeToImageType(imageViewType);
1570 	const VkSharingMode				sharingMode			= (queueFamilyIndex != sparseFamilyIndex) ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE;
1571 	const VkFormat					format				= mapTextureFormat(texFormat);
1572 	const VkImageUsageFlags			imageUsageFlags		= textureUsageFlags();
1573 	const VkImageCreateFlags		imageCreateFlags	= textureCreateFlags(imageViewType, m_imageBackingMode);
1574 
1575 	const deUint32					queueIndexCount		= (queueFamilyIndex != sparseFamilyIndex) ? 2 : 1;
1576 	const deUint32					queueIndices[]		=
1577 	{
1578 		queueFamilyIndex,
1579 		sparseFamilyIndex
1580 	};
1581 
1582 	Move<VkImage>					vkTexture;
1583 	de::MovePtr<Allocation>			allocation;
1584 
1585 	// Create image
1586 	const VkImageCreateInfo			imageParams =
1587 	{
1588 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,							// VkStructureType			sType;
1589 		DE_NULL,														// const void*				pNext;
1590 		imageCreateFlags,												// VkImageCreateFlags		flags;
1591 		imageType,														// VkImageType				imageType;
1592 		format,															// VkFormat					format;
1593 		{																// VkExtent3D				extent;
1594 			texSize.x(),
1595 			texSize.y(),
1596 			texSize.z()
1597 		},
1598 		mipLevels,														// deUint32					mipLevels;
1599 		arrayLayers,													// deUint32					arrayLayers;
1600 		textureParams.samples,											// VkSampleCountFlagBits	samples;
1601 		VK_IMAGE_TILING_OPTIMAL,										// VkImageTiling			tiling;
1602 		imageUsageFlags,												// VkImageUsageFlags		usage;
1603 		sharingMode,													// VkSharingMode			sharingMode;
1604 		queueIndexCount,												// deUint32					queueFamilyIndexCount;
1605 		queueIndices,													// const deUint32*			pQueueFamilyIndices;
1606 		VK_IMAGE_LAYOUT_UNDEFINED										// VkImageLayout			initialLayout;
1607 	};
1608 
1609 	if (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE)
1610 	{
1611 		checkSparseSupport(imageParams);
1612 	}
1613 
1614 	vkTexture		= createImage(vk, vkDevice, &imageParams);
1615 	allocation		= m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *vkTexture), MemoryRequirement::Any);
1616 
1617 	if (m_imageBackingMode != IMAGE_BACKING_MODE_SPARSE)
1618 	{
1619 		VK_CHECK(vk.bindImageMemory(vkDevice, *vkTexture, allocation->getMemory(), allocation->getOffset()));
1620 	}
1621 
1622 	switch (textureInit)
1623 	{
1624 		case TextureBinding::INIT_UPLOAD_DATA:
1625 		{
1626 			// upload*Image functions use cmdCopyBufferToImage, which is invalid for multisample images
1627 			DE_ASSERT(textureParams.samples == VK_SAMPLE_COUNT_1_BIT);
1628 
1629 			if (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE)
1630 			{
1631 				uploadSparseImage(texFormat, textureData, refSampler, mipLevels, arrayLayers, *vkTexture, imageParams, texSize);
1632 			}
1633 			else
1634 			{
1635 				// Upload texture data
1636 				uploadImage(texFormat, textureData, refSampler, mipLevels, arrayLayers, *vkTexture);
1637 			}
1638 			break;
1639 		}
1640 		case TextureBinding::INIT_CLEAR:
1641 			clearImage(refSampler, mipLevels, arrayLayers, *vkTexture);
1642 			break;
1643 		default:
1644 			DE_FATAL("Impossible");
1645 	}
1646 
1647 	// Create sampler
1648 	const auto&						minMaxLod		= textureParams.minMaxLod;
1649 	const VkSamplerCreateInfo		samplerParams	= (minMaxLod
1650 														? mapSampler(refSampler, texFormat, minMaxLod.get().minLod, minMaxLod.get().maxLod)
1651 														: mapSampler(refSampler, texFormat));
1652 	Move<VkSampler>					sampler			= createSampler(vk, vkDevice, &samplerParams);
1653 	const deUint32					baseMipLevel	= textureParams.baseMipLevel;
1654 	const vk::VkComponentMapping	components		= textureParams.componentMapping;
1655 	const VkImageViewCreateInfo		viewParams		=
1656 	{
1657 		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType			sType;
1658 		NULL,										// const voide*				pNext;
1659 		0u,											// VkImageViewCreateFlags	flags;
1660 		*vkTexture,									// VkImage					image;
1661 		imageViewType,								// VkImageViewType			viewType;
1662 		format,										// VkFormat					format;
1663 		components,									// VkChannelMapping			channels;
1664 		{
1665 			aspectMask,						// VkImageAspectFlags	aspectMask;
1666 			baseMipLevel,					// deUint32				baseMipLevel;
1667 			mipLevels - baseMipLevel,		// deUint32				mipLevels;
1668 			0,								// deUint32				baseArraySlice;
1669 			arrayLayers						// deUint32				arraySize;
1670 		},											// VkImageSubresourceRange	subresourceRange;
1671 	};
1672 
1673 	Move<VkImageView>				imageView		= createImageView(vk, vkDevice, &viewParams);
1674 
1675 	const vk::VkDescriptorImageInfo	descriptor		=
1676 	{
1677 		sampler.get(),								// VkSampler				sampler;
1678 		imageView.get(),							// VkImageView				imageView;
1679 		VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,	// VkImageLayout			imageLayout;
1680 	};
1681 
1682 	de::MovePtr<SamplerUniform> uniform(new SamplerUniform());
1683 	uniform->type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
1684 	uniform->descriptor = descriptor;
1685 	uniform->location = bindingLocation;
1686 	uniform->image = VkImageSp(new vk::Unique<VkImage>(vkTexture));
1687 	uniform->imageView = VkImageViewSp(new vk::Unique<VkImageView>(imageView));
1688 	uniform->sampler = VkSamplerSp(new vk::Unique<VkSampler>(sampler));
1689 	uniform->alloc = AllocationSp(allocation.release());
1690 
1691 	m_descriptorSetLayoutBuilder->addSingleSamplerBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, vk::VK_SHADER_STAGE_ALL, DE_NULL);
1692 	m_descriptorPoolBuilder->addType(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
1693 
1694 	m_uniformInfos.push_back(UniformInfoSp(new de::UniquePtr<UniformInfo>(uniform)));
1695 }
1696 
setupDefaultInputs(void)1697 void ShaderRenderCaseInstance::setupDefaultInputs (void)
1698 {
1699 	/* Configuration of the vertex input attributes:
1700 		a_position   is at location 0
1701 		a_coords     is at location 1
1702 		a_unitCoords is at location 2
1703 		a_one        is at location 3
1704 
1705 	  User attributes starts from at the location 4.
1706 	*/
1707 
1708 	DE_ASSERT(m_quadGrid);
1709 	const QuadGrid&		quadGrid	= *m_quadGrid;
1710 
1711 	addAttribute(0u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getPositions());
1712 	addAttribute(1u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getCoords());
1713 	addAttribute(2u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getUnitCoords());
1714 	addAttribute(3u, VK_FORMAT_R32_SFLOAT, sizeof(float), quadGrid.getNumVertices(), quadGrid.getAttribOne());
1715 
1716 	static const struct
1717 	{
1718 		BaseAttributeType	type;
1719 		int					userNdx;
1720 	} userAttributes[] =
1721 	{
1722 		{ A_IN0, 0 },
1723 		{ A_IN1, 1 },
1724 		{ A_IN2, 2 },
1725 		{ A_IN3, 3 }
1726 	};
1727 
1728 	static const struct
1729 	{
1730 		BaseAttributeType	matrixType;
1731 		int					numCols;
1732 		int					numRows;
1733 	} matrices[] =
1734 	{
1735 		{ MAT2,		2, 2 },
1736 		{ MAT2x3,	2, 3 },
1737 		{ MAT2x4,	2, 4 },
1738 		{ MAT3x2,	3, 2 },
1739 		{ MAT3,		3, 3 },
1740 		{ MAT3x4,	3, 4 },
1741 		{ MAT4x2,	4, 2 },
1742 		{ MAT4x3,	4, 3 },
1743 		{ MAT4,		4, 4 }
1744 	};
1745 
1746 	for (size_t attrNdx = 0; attrNdx < m_enabledBaseAttributes.size(); attrNdx++)
1747 	{
1748 		for (int userNdx = 0; userNdx < DE_LENGTH_OF_ARRAY(userAttributes); userNdx++)
1749 		{
1750 			if (userAttributes[userNdx].type != m_enabledBaseAttributes[attrNdx].type)
1751 				continue;
1752 
1753 			addAttribute(m_enabledBaseAttributes[attrNdx].location, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getUserAttrib(userNdx));
1754 		}
1755 
1756 		for (int matNdx = 0; matNdx < DE_LENGTH_OF_ARRAY(matrices); matNdx++)
1757 		{
1758 
1759 			if (matrices[matNdx].matrixType != m_enabledBaseAttributes[attrNdx].type)
1760 				continue;
1761 
1762 			const int numCols = matrices[matNdx].numCols;
1763 
1764 			for (int colNdx = 0; colNdx < numCols; colNdx++)
1765 			{
1766 				addAttribute(m_enabledBaseAttributes[attrNdx].location + colNdx, VK_FORMAT_R32G32B32A32_SFLOAT, (deUint32)(4 * sizeof(float)), quadGrid.getNumVertices(), quadGrid.getUserAttrib(colNdx));
1767 			}
1768 		}
1769 	}
1770 }
1771 
render(deUint32 numVertices,deUint32 numTriangles,const deUint16 * indices,const tcu::Vec4 & constCoords)1772 void ShaderRenderCaseInstance::render (deUint32				numVertices,
1773 									   deUint32				numTriangles,
1774 									   const deUint16*		indices,
1775 									   const tcu::Vec4&		constCoords)
1776 {
1777 	render(numVertices, numTriangles * 3, indices, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, constCoords);
1778 }
1779 
render(deUint32 numVertices,deUint32 numIndices,const deUint16 * indices,VkPrimitiveTopology topology,const tcu::Vec4 & constCoords)1780 void ShaderRenderCaseInstance::render (deUint32				numVertices,
1781 									   deUint32				numIndices,
1782 									   const deUint16*		indices,
1783 									   VkPrimitiveTopology	topology,
1784 									   const tcu::Vec4&		constCoords)
1785 {
1786 	const VkDevice										vkDevice					= getDevice();
1787 	const DeviceInterface&								vk							= getDeviceInterface();
1788 	const VkQueue										queue						= getUniversalQueue();
1789 	const deUint32										queueFamilyIndex			= getUniversalQueueFamilyIndex();
1790 
1791 	vk::Move<vk::VkImage>								colorImage;
1792 	de::MovePtr<vk::Allocation>							colorImageAlloc;
1793 	vk::Move<vk::VkImageView>							colorImageView;
1794 	vk::Move<vk::VkImage>								resolvedImage;
1795 	de::MovePtr<vk::Allocation>							resolvedImageAlloc;
1796 	vk::Move<vk::VkImageView>							resolvedImageView;
1797 	vk::Move<vk::VkRenderPass>							renderPass;
1798 	vk::Move<vk::VkFramebuffer>							framebuffer;
1799 	vk::Move<vk::VkPipelineLayout>						pipelineLayout;
1800 	vk::Move<vk::VkPipeline>							graphicsPipeline;
1801 	vk::Move<vk::VkShaderModule>						vertexShaderModule;
1802 	vk::Move<vk::VkShaderModule>						fragmentShaderModule;
1803 	vk::Move<vk::VkBuffer>								indexBuffer;
1804 	de::MovePtr<vk::Allocation>							indexBufferAlloc;
1805 	vk::Move<vk::VkDescriptorSetLayout>					descriptorSetLayout;
1806 	vk::Move<vk::VkDescriptorPool>						descriptorPool;
1807 	vk::Move<vk::VkDescriptorSet>						descriptorSet;
1808 	vk::Move<vk::VkCommandPool>							cmdPool;
1809 	vk::Move<vk::VkCommandBuffer>						cmdBuffer;
1810 
1811 	// Create color image
1812 	{
1813 		const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
1814 		VkImageFormatProperties	properties;
1815 
1816 		if ((getInstanceInterface().getPhysicalDeviceImageFormatProperties(getPhysicalDevice(),
1817 																		   m_colorFormat,
1818 																		   VK_IMAGE_TYPE_2D,
1819 																		   VK_IMAGE_TILING_OPTIMAL,
1820 																		   imageUsage,
1821 																		   0u,
1822 																		   &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
1823 		{
1824 			TCU_THROW(NotSupportedError, "Format not supported");
1825 		}
1826 
1827 		if ((properties.sampleCounts & m_sampleCount) != m_sampleCount)
1828 		{
1829 			TCU_THROW(NotSupportedError, "Format not supported");
1830 		}
1831 
1832 		const VkImageCreateInfo							colorImageParams			=
1833 		{
1834 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,										// VkStructureType		sType;
1835 			DE_NULL,																	// const void*			pNext;
1836 			0u,																			// VkImageCreateFlags	flags;
1837 			VK_IMAGE_TYPE_2D,															// VkImageType			imageType;
1838 			m_colorFormat,																// VkFormat				format;
1839 			{ m_renderSize.x(), m_renderSize.y(), 1u },									// VkExtent3D			extent;
1840 			1u,																			// deUint32				mipLevels;
1841 			1u,																			// deUint32				arraySize;
1842 			m_sampleCount,																// deUint32				samples;
1843 			VK_IMAGE_TILING_OPTIMAL,													// VkImageTiling		tiling;
1844 			imageUsage,																	// VkImageUsageFlags	usage;
1845 			VK_SHARING_MODE_EXCLUSIVE,													// VkSharingMode		sharingMode;
1846 			1u,																			// deUint32				queueFamilyCount;
1847 			&queueFamilyIndex,															// const deUint32*		pQueueFamilyIndices;
1848 			VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout		initialLayout;
1849 		};
1850 
1851 		colorImage = createImage(vk, vkDevice, &colorImageParams);
1852 
1853 		// Allocate and bind color image memory
1854 		colorImageAlloc = m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *colorImage), MemoryRequirement::Any);
1855 		VK_CHECK(vk.bindImageMemory(vkDevice, *colorImage, colorImageAlloc->getMemory(), colorImageAlloc->getOffset()));
1856 	}
1857 
1858 	// Create color attachment view
1859 	{
1860 		const VkImageViewCreateInfo						colorImageViewParams		=
1861 		{
1862 			VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,			// VkStructureType			sType;
1863 			DE_NULL,											// const void*				pNext;
1864 			0u,													// VkImageViewCreateFlags	flags;
1865 			*colorImage,										// VkImage					image;
1866 			VK_IMAGE_VIEW_TYPE_2D,								// VkImageViewType			viewType;
1867 			m_colorFormat,										// VkFormat					format;
1868 			{
1869 				VK_COMPONENT_SWIZZLE_R,			// VkChannelSwizzle		r;
1870 				VK_COMPONENT_SWIZZLE_G,			// VkChannelSwizzle		g;
1871 				VK_COMPONENT_SWIZZLE_B,			// VkChannelSwizzle		b;
1872 				VK_COMPONENT_SWIZZLE_A			// VkChannelSwizzle		a;
1873 			},													// VkChannelMapping			channels;
1874 			{
1875 				VK_IMAGE_ASPECT_COLOR_BIT,		// VkImageAspectFlags	aspectMask;
1876 				0,								// deUint32				baseMipLevel;
1877 				1,								// deUint32				mipLevels;
1878 				0,								// deUint32				baseArraySlice;
1879 				1								// deUint32				arraySize;
1880 			},													// VkImageSubresourceRange	subresourceRange;
1881 		};
1882 
1883 		colorImageView = createImageView(vk, vkDevice, &colorImageViewParams);
1884 	}
1885 
1886 	if (isMultiSampling())
1887 	{
1888 		// Resolved Image
1889 		{
1890 			const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1891 			VkImageFormatProperties	properties;
1892 
1893 			if ((getInstanceInterface().getPhysicalDeviceImageFormatProperties(getPhysicalDevice(),
1894 																			   m_colorFormat,
1895 																			   VK_IMAGE_TYPE_2D,
1896 																			   VK_IMAGE_TILING_OPTIMAL,
1897 																			   imageUsage,
1898 																			   0,
1899 																			   &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
1900 			{
1901 				TCU_THROW(NotSupportedError, "Format not supported");
1902 			}
1903 
1904 			const VkImageCreateInfo					imageCreateInfo			=
1905 			{
1906 				VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,		// VkStructureType			sType;
1907 				DE_NULL,									// const void*				pNext;
1908 				0u,											// VkImageCreateFlags		flags;
1909 				VK_IMAGE_TYPE_2D,							// VkImageType				imageType;
1910 				m_colorFormat,								// VkFormat					format;
1911 				{ m_renderSize.x(),	m_renderSize.y(), 1u },	// VkExtent3D				extent;
1912 				1u,											// deUint32					mipLevels;
1913 				1u,											// deUint32					arrayLayers;
1914 				VK_SAMPLE_COUNT_1_BIT,						// VkSampleCountFlagBits	samples;
1915 				VK_IMAGE_TILING_OPTIMAL,					// VkImageTiling			tiling;
1916 				imageUsage,									// VkImageUsageFlags		usage;
1917 				VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode			sharingMode;
1918 				1u,											// deUint32					queueFamilyIndexCount;
1919 				&queueFamilyIndex,							// const deUint32*			pQueueFamilyIndices;
1920 				VK_IMAGE_LAYOUT_UNDEFINED					// VkImageLayout			initialLayout;
1921 			};
1922 
1923 			resolvedImage		= vk::createImage(vk, vkDevice, &imageCreateInfo, DE_NULL);
1924 			resolvedImageAlloc	= m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *resolvedImage), MemoryRequirement::Any);
1925 			VK_CHECK(vk.bindImageMemory(vkDevice, *resolvedImage, resolvedImageAlloc->getMemory(), resolvedImageAlloc->getOffset()));
1926 		}
1927 
1928 		// Resolved Image View
1929 		{
1930 			const VkImageViewCreateInfo				imageViewCreateInfo		=
1931 			{
1932 				VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType				sType;
1933 				DE_NULL,									// const void*					pNext;
1934 				0u,											// VkImageViewCreateFlags		flags;
1935 				*resolvedImage,								// VkImage						image;
1936 				VK_IMAGE_VIEW_TYPE_2D,						// VkImageViewType				viewType;
1937 				m_colorFormat,								// VkFormat						format;
1938 				{
1939 					VK_COMPONENT_SWIZZLE_R,					// VkChannelSwizzle		r;
1940 					VK_COMPONENT_SWIZZLE_G,					// VkChannelSwizzle		g;
1941 					VK_COMPONENT_SWIZZLE_B,					// VkChannelSwizzle		b;
1942 					VK_COMPONENT_SWIZZLE_A					// VkChannelSwizzle		a;
1943 				},
1944 				{
1945 					VK_IMAGE_ASPECT_COLOR_BIT,					// VkImageAspectFlags			aspectMask;
1946 					0u,											// deUint32						baseMipLevel;
1947 					1u,											// deUint32						mipLevels;
1948 					0u,											// deUint32						baseArrayLayer;
1949 					1u,											// deUint32						arraySize;
1950 				},											// VkImageSubresourceRange		subresourceRange;
1951 			};
1952 
1953 			resolvedImageView = vk::createImageView(vk, vkDevice, &imageViewCreateInfo, DE_NULL);
1954 		}
1955 	}
1956 
1957 	// Create render pass
1958 	{
1959 		const VkAttachmentDescription					attachmentDescription[]		=
1960 		{
1961 			{
1962 				(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
1963 				m_colorFormat,										// VkFormat							format;
1964 				m_sampleCount,										// deUint32							samples;
1965 				VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
1966 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
1967 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
1968 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
1969 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
1970 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					finalLayout;
1971 			},
1972 			{
1973 				(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
1974 				m_colorFormat,										// VkFormat							format;
1975 				VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
1976 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				loadOp;
1977 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
1978 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
1979 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
1980 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
1981 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					finalLayout;
1982 			}
1983 		};
1984 
1985 		const VkAttachmentReference						attachmentReference			=
1986 		{
1987 			0u,													// deUint32			attachment;
1988 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
1989 		};
1990 
1991 		const VkAttachmentReference						resolveAttachmentRef		=
1992 		{
1993 			1u,													// deUint32			attachment;
1994 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
1995 		};
1996 
1997 		const VkSubpassDescription						subpassDescription			=
1998 		{
1999 			0u,													// VkSubpassDescriptionFlags	flags;
2000 			VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint			pipelineBindPoint;
2001 			0u,													// deUint32						inputCount;
2002 			DE_NULL,											// constVkAttachmentReference*	pInputAttachments;
2003 			1u,													// deUint32						colorCount;
2004 			&attachmentReference,								// constVkAttachmentReference*	pColorAttachments;
2005 			isMultiSampling() ? &resolveAttachmentRef : DE_NULL,// constVkAttachmentReference*	pResolveAttachments;
2006 			DE_NULL,											// VkAttachmentReference		depthStencilAttachment;
2007 			0u,													// deUint32						preserveCount;
2008 			DE_NULL												// constVkAttachmentReference*	pPreserveAttachments;
2009 		};
2010 
2011 		const VkRenderPassCreateInfo					renderPassParams			=
2012 		{
2013 			VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
2014 			DE_NULL,											// const void*						pNext;
2015 			0u,													// VkRenderPassCreateFlags			flags;
2016 			isMultiSampling() ? 2u : 1u,						// deUint32							attachmentCount;
2017 			attachmentDescription,								// const VkAttachmentDescription*	pAttachments;
2018 			1u,													// deUint32							subpassCount;
2019 			&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
2020 			0u,													// deUint32							dependencyCount;
2021 			DE_NULL												// const VkSubpassDependency*		pDependencies;
2022 		};
2023 
2024 		renderPass = createRenderPass(vk, vkDevice, &renderPassParams);
2025 	}
2026 
2027 	// Create framebuffer
2028 	{
2029 		const VkImageView								attachments[]				=
2030 		{
2031 			*colorImageView,
2032 			*resolvedImageView
2033 		};
2034 
2035 		const VkFramebufferCreateInfo					framebufferParams			=
2036 		{
2037 			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,			// VkStructureType				sType;
2038 			DE_NULL,											// const void*					pNext;
2039 			(VkFramebufferCreateFlags)0,
2040 			*renderPass,										// VkRenderPass					renderPass;
2041 			isMultiSampling() ? 2u : 1u,						// deUint32						attachmentCount;
2042 			attachments,										// const VkImageView*			pAttachments;
2043 			(deUint32)m_renderSize.x(),							// deUint32						width;
2044 			(deUint32)m_renderSize.y(),							// deUint32						height;
2045 			1u													// deUint32						layers;
2046 		};
2047 
2048 		framebuffer = createFramebuffer(vk, vkDevice, &framebufferParams);
2049 	}
2050 
2051 	// Create descriptors
2052 	{
2053 		setupUniforms(constCoords);
2054 
2055 		descriptorSetLayout = m_descriptorSetLayoutBuilder->build(vk, vkDevice);
2056 		if (!m_uniformInfos.empty())
2057 		{
2058 			descriptorPool									= m_descriptorPoolBuilder->build(vk, vkDevice, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
2059 			const VkDescriptorSetAllocateInfo	allocInfo	=
2060 			{
2061 				VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
2062 				DE_NULL,
2063 				*descriptorPool,
2064 				1u,
2065 				&descriptorSetLayout.get(),
2066 			};
2067 
2068 			descriptorSet = allocateDescriptorSet(vk, vkDevice, &allocInfo);
2069 		}
2070 
2071 		for (deUint32 i = 0; i < m_uniformInfos.size(); i++)
2072 		{
2073 			const UniformInfo* uniformInfo = m_uniformInfos[i].get()->get();
2074 			deUint32 location = uniformInfo->location;
2075 
2076 			if (uniformInfo->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
2077 			{
2078 				const BufferUniform*	bufferInfo	= dynamic_cast<const BufferUniform*>(uniformInfo);
2079 
2080 				m_descriptorSetUpdateBuilder->writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(location), uniformInfo->type, &bufferInfo->descriptor);
2081 			}
2082 			else if (uniformInfo->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2083 			{
2084 				const SamplerUniform*	samplerInfo	= dynamic_cast<const SamplerUniform*>(uniformInfo);
2085 
2086 				m_descriptorSetUpdateBuilder->writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(location), uniformInfo->type, &samplerInfo->descriptor);
2087 			}
2088 			else
2089 				DE_FATAL("Impossible");
2090 		}
2091 
2092 		m_descriptorSetUpdateBuilder->update(vk, vkDevice);
2093 	}
2094 
2095 	// Create pipeline layout
2096 	{
2097 		const VkPushConstantRange* const				pcRanges					= m_pushConstantRanges.empty() ? DE_NULL : &m_pushConstantRanges[0];
2098 		const VkPipelineLayoutCreateInfo				pipelineLayoutParams		=
2099 		{
2100 			VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType				sType;
2101 			DE_NULL,											// const void*					pNext;
2102 			(VkPipelineLayoutCreateFlags)0,
2103 			1u,													// deUint32						descriptorSetCount;
2104 			&*descriptorSetLayout,								// const VkDescriptorSetLayout*	pSetLayouts;
2105 			deUint32(m_pushConstantRanges.size()),				// deUint32						pushConstantRangeCount;
2106 			pcRanges											// const VkPushConstantRange*	pPushConstantRanges;
2107 		};
2108 
2109 		pipelineLayout = createPipelineLayout(vk, vkDevice, &pipelineLayoutParams);
2110 	}
2111 
2112 	// Create shaders
2113 	{
2114 		vertexShaderModule		= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get(m_vertexShaderName), 0);
2115 		fragmentShaderModule	= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get(m_fragmentShaderName), 0);
2116 	}
2117 
2118 	// Create pipeline
2119 	{
2120 		// Add test case specific attributes
2121 		if (m_attribFunc)
2122 			m_attribFunc(*this, numVertices);
2123 
2124 		// Add base attributes
2125 		setupDefaultInputs();
2126 
2127 		const VkPipelineVertexInputStateCreateInfo		vertexInputStateParams		=
2128 		{
2129 			VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType							sType;
2130 			DE_NULL,														// const void*								pNext;
2131 			(VkPipelineVertexInputStateCreateFlags)0,
2132 			(deUint32)m_vertexBindingDescription.size(),					// deUint32									bindingCount;
2133 			&m_vertexBindingDescription[0],									// const VkVertexInputBindingDescription*	pVertexBindingDescriptions;
2134 			(deUint32)m_vertexAttributeDescription.size(),					// deUint32									attributeCount;
2135 			&m_vertexAttributeDescription[0],								// const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
2136 		};
2137 
2138 		const std::vector<VkViewport>					viewports					(1, makeViewport(m_renderSize));
2139 		const std::vector<VkRect2D>						scissors					(1, makeRect2D(m_renderSize));
2140 
2141 		const VkPipelineMultisampleStateCreateInfo		multisampleStateParams =
2142 		{
2143 			VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,		// VkStructureType							sType;
2144 			DE_NULL,														// const void*								pNext;
2145 			0u,																// VkPipelineMultisampleStateCreateFlags	flags;
2146 			m_sampleCount,													// VkSampleCountFlagBits					rasterizationSamples;
2147 			VK_FALSE,														// VkBool32									sampleShadingEnable;
2148 			0.0f,															// float									minSampleShading;
2149 			DE_NULL,														// const VkSampleMask*						pSampleMask;
2150 			VK_FALSE,														// VkBool32									alphaToCoverageEnable;
2151 			VK_FALSE														// VkBool32									alphaToOneEnable;
2152 		};
2153 
2154 		graphicsPipeline = makeGraphicsPipeline(vk,							// const DeviceInterface&                        vk
2155 												vkDevice,					// const VkDevice                                device
2156 												*pipelineLayout,			// const VkPipelineLayout                        pipelineLayout
2157 												*vertexShaderModule,		// const VkShaderModule                          vertexShaderModule
2158 												DE_NULL,					// const VkShaderModule                          tessellationControlShaderModule
2159 												DE_NULL,					// const VkShaderModule                          tessellationEvalShaderModule
2160 												DE_NULL,					// const VkShaderModule                          geometryShaderModule
2161 												*fragmentShaderModule,		// const VkShaderModule                          fragmentShaderModule
2162 												*renderPass,				// const VkRenderPass                            renderPass
2163 												viewports,					// const std::vector<VkViewport>&                viewports
2164 												scissors,					// const std::vector<VkRect2D>&                  scissors
2165 												topology,					// const VkPrimitiveTopology                     topology
2166 												0u,							// const deUint32                                subpass
2167 												0u,							// const deUint32                                patchControlPoints
2168 												&vertexInputStateParams,	// const VkPipelineVertexInputStateCreateInfo*   vertexInputStateCreateInfo
2169 												DE_NULL,					// const VkPipelineRasterizationStateCreateInfo* rasterizationStateCreateInfo
2170 												&multisampleStateParams);	// const VkPipelineMultisampleStateCreateInfo*   multisampleStateCreateInfo
2171 	}
2172 
2173 	// Create vertex indices buffer
2174 	if (numIndices != 0)
2175 	{
2176 		const VkDeviceSize								indexBufferSize			= numIndices * sizeof(deUint16);
2177 		const VkBufferCreateInfo						indexBufferParams		=
2178 		{
2179 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
2180 			DE_NULL,									// const void*			pNext;
2181 			0u,											// VkBufferCreateFlags	flags;
2182 			indexBufferSize,							// VkDeviceSize			size;
2183 			VK_BUFFER_USAGE_INDEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
2184 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
2185 			1u,											// deUint32				queueFamilyCount;
2186 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
2187 		};
2188 
2189 		indexBuffer			= createBuffer(vk, vkDevice, &indexBufferParams);
2190 		indexBufferAlloc	= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *indexBuffer), MemoryRequirement::HostVisible);
2191 
2192 		VK_CHECK(vk.bindBufferMemory(vkDevice, *indexBuffer, indexBufferAlloc->getMemory(), indexBufferAlloc->getOffset()));
2193 
2194 		// Load vertice indices into buffer
2195 		deMemcpy(indexBufferAlloc->getHostPtr(), indices, (size_t)indexBufferSize);
2196 		flushAlloc(vk, vkDevice, *indexBufferAlloc);
2197 	}
2198 
2199 	// Create command pool
2200 	cmdPool = createCommandPool(vk, vkDevice, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex);
2201 
2202 	// Create command buffer
2203 	{
2204 		cmdBuffer = allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2205 
2206 		beginCommandBuffer(vk, *cmdBuffer);
2207 
2208 		{
2209 			const VkImageMemoryBarrier					imageBarrier				=
2210 			{
2211 				VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,										// VkStructureType			sType;
2212 				DE_NULL,																	// const void*				pNext;
2213 				0u,																			// VkAccessFlags			srcAccessMask;
2214 				VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,										// VkAccessFlags			dstAccessMask;
2215 				VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout			oldLayout;
2216 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,									// VkImageLayout			newLayout;
2217 				VK_QUEUE_FAMILY_IGNORED,													// deUint32					srcQueueFamilyIndex;
2218 				VK_QUEUE_FAMILY_IGNORED,													// deUint32					dstQueueFamilyIndex;
2219 				*colorImage,																// VkImage					image;
2220 				{																			// VkImageSubresourceRange	subresourceRange;
2221 					VK_IMAGE_ASPECT_COLOR_BIT,												// VkImageAspectFlags		aspectMask;
2222 					0u,																		// deUint32					baseMipLevel;
2223 					1u,																		// deUint32					mipLevels;
2224 					0u,																		// deUint32					baseArrayLayer;
2225 					1u,																		// deUint32					arraySize;
2226 				}
2227 			};
2228 
2229 			vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, DE_NULL, 1, &imageBarrier);
2230 
2231 			if (isMultiSampling()) {
2232 				// add multisample barrier
2233 				const VkImageMemoryBarrier				multiSampleImageBarrier		=
2234 				{
2235 					VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,										// VkStructureType			sType;
2236 					DE_NULL,																	// const void*				pNext;
2237 					0u,																			// VkAccessFlags			srcAccessMask;
2238 					VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,										// VkAccessFlags			dstAccessMask;
2239 					VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout			oldLayout;
2240 					VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,									// VkImageLayout			newLayout;
2241 					VK_QUEUE_FAMILY_IGNORED,													// deUint32					srcQueueFamilyIndex;
2242 					VK_QUEUE_FAMILY_IGNORED,													// deUint32					dstQueueFamilyIndex;
2243 					*resolvedImage,																// VkImage					image;
2244 					{																			// VkImageSubresourceRange	subresourceRange;
2245 						VK_IMAGE_ASPECT_COLOR_BIT,												// VkImageAspectFlags		aspectMask;
2246 						0u,																		// deUint32					baseMipLevel;
2247 						1u,																		// deUint32					mipLevels;
2248 						0u,																		// deUint32					baseArrayLayer;
2249 						1u,																		// deUint32					arraySize;
2250 					}
2251 				};
2252 
2253 				vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, DE_NULL, 1, &multiSampleImageBarrier);
2254 			}
2255 		}
2256 
2257 		beginRenderPass(vk, *cmdBuffer, *renderPass, *framebuffer, makeRect2D(0, 0, m_renderSize.x(), m_renderSize.y()), m_clearColor);
2258 
2259 		updatePushConstants(*cmdBuffer, *pipelineLayout);
2260 		vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *graphicsPipeline);
2261 		if (!m_uniformInfos.empty())
2262 			vk.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1, &*descriptorSet, 0u, DE_NULL);
2263 
2264 		const deUint32 numberOfVertexAttributes = (deUint32)m_vertexBuffers.size();
2265 		const std::vector<VkDeviceSize> offsets(numberOfVertexAttributes, 0);
2266 
2267 		std::vector<VkBuffer> buffers(numberOfVertexAttributes);
2268 		for (size_t i = 0; i < numberOfVertexAttributes; i++)
2269 		{
2270 			buffers[i] = m_vertexBuffers[i].get()->get();
2271 		}
2272 
2273 		vk.cmdBindVertexBuffers(*cmdBuffer, 0, numberOfVertexAttributes, &buffers[0], &offsets[0]);
2274 		if (numIndices != 0)
2275 		{
2276 			vk.cmdBindIndexBuffer(*cmdBuffer, *indexBuffer, 0, VK_INDEX_TYPE_UINT16);
2277 			vk.cmdDrawIndexed(*cmdBuffer, numIndices, 1, 0, 0, 0);
2278 		}
2279 		else
2280 			vk.cmdDraw(*cmdBuffer, numVertices,  1, 0, 0);
2281 
2282 		endRenderPass(vk, *cmdBuffer);
2283 		endCommandBuffer(vk, *cmdBuffer);
2284 	}
2285 
2286 	// Execute Draw
2287 	submitCommandsAndWait(vk, vkDevice, queue, cmdBuffer.get());
2288 
2289 	// Read back the result
2290 	{
2291 		const tcu::TextureFormat						resultFormat				= mapVkFormat(m_colorFormat);
2292 		const VkDeviceSize								imageSizeBytes				= (VkDeviceSize)(resultFormat.getPixelSize() * m_renderSize.x() * m_renderSize.y());
2293 		const VkBufferCreateInfo						readImageBufferParams		=
2294 		{
2295 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//  VkStructureType		sType;
2296 			DE_NULL,									//  const void*			pNext;
2297 			0u,											//  VkBufferCreateFlags	flags;
2298 			imageSizeBytes,								//  VkDeviceSize		size;
2299 			VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//  VkBufferUsageFlags	usage;
2300 			VK_SHARING_MODE_EXCLUSIVE,					//  VkSharingMode		sharingMode;
2301 			1u,											//  deUint32			queueFamilyCount;
2302 			&queueFamilyIndex,							//  const deUint32*		pQueueFamilyIndices;
2303 		};
2304 		const Unique<VkBuffer>							readImageBuffer				(createBuffer(vk, vkDevice, &readImageBufferParams));
2305 		const de::UniquePtr<Allocation>					readImageBufferMemory		(m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
2306 
2307 		VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
2308 
2309 		// Copy image to buffer
2310 		const Move<VkCommandBuffer>						resultCmdBuffer				= allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2311 
2312 		beginCommandBuffer(vk, *resultCmdBuffer);
2313 
2314 		copyImageToBuffer(vk, *resultCmdBuffer, isMultiSampling() ? *resolvedImage : *colorImage, *readImageBuffer, tcu::IVec2(m_renderSize.x(), m_renderSize.y()));
2315 
2316 		endCommandBuffer(vk, *resultCmdBuffer);
2317 
2318 		submitCommandsAndWait(vk, vkDevice, queue, resultCmdBuffer.get());
2319 
2320 		invalidateAlloc(vk, vkDevice, *readImageBufferMemory);
2321 
2322 		const tcu::ConstPixelBufferAccess				resultAccess				(resultFormat, m_renderSize.x(), m_renderSize.y(), 1, readImageBufferMemory->getHostPtr());
2323 
2324 		m_resultImage.setStorage(resultFormat, m_renderSize.x(), m_renderSize.y());
2325 		tcu::copy(m_resultImage.getAccess(), resultAccess);
2326 	}
2327 }
2328 
computeVertexReference(tcu::Surface & result,const QuadGrid & quadGrid)2329 void ShaderRenderCaseInstance::computeVertexReference (tcu::Surface& result, const QuadGrid& quadGrid)
2330 {
2331 	DE_ASSERT(m_evaluator);
2332 
2333 	// Buffer info.
2334 	const int				width		= result.getWidth();
2335 	const int				height		= result.getHeight();
2336 	const int				gridSize	= quadGrid.getGridSize();
2337 	const int				stride		= gridSize + 1;
2338 	const bool				hasAlpha	= true; // \todo [2015-09-07 elecro] add correct alpha check
2339 	ShaderEvalContext		evalCtx		(quadGrid);
2340 
2341 	// Evaluate color for each vertex.
2342 	std::vector<tcu::Vec4>	colors		((gridSize + 1) * (gridSize + 1));
2343 	for (int y = 0; y < gridSize+1; y++)
2344 	for (int x = 0; x < gridSize+1; x++)
2345 	{
2346 		const float	sx			= (float)x / (float)gridSize;
2347 		const float	sy			= (float)y / (float)gridSize;
2348 		const int	vtxNdx		= ((y * (gridSize+1)) + x);
2349 
2350 		evalCtx.reset(sx, sy);
2351 		m_evaluator->evaluate(evalCtx);
2352 		DE_ASSERT(!evalCtx.isDiscarded); // Discard is not available in vertex shader.
2353 		tcu::Vec4 color = evalCtx.color;
2354 
2355 		if (!hasAlpha)
2356 			color.w() = 1.0f;
2357 
2358 		colors[vtxNdx] = color;
2359 	}
2360 
2361 	// Render quads.
2362 	for (int y = 0; y < gridSize; y++)
2363 	for (int x = 0; x < gridSize; x++)
2364 	{
2365 		const float		x0		= (float)x       / (float)gridSize;
2366 		const float		x1		= (float)(x + 1) / (float)gridSize;
2367 		const float		y0		= (float)y       / (float)gridSize;
2368 		const float		y1		= (float)(y + 1) / (float)gridSize;
2369 
2370 		const float		sx0		= x0 * (float)width;
2371 		const float		sx1		= x1 * (float)width;
2372 		const float		sy0		= y0 * (float)height;
2373 		const float		sy1		= y1 * (float)height;
2374 		const float		oosx	= 1.0f / (sx1 - sx0);
2375 		const float		oosy	= 1.0f / (sy1 - sy0);
2376 
2377 		const int		ix0		= deCeilFloatToInt32(sx0 - 0.5f);
2378 		const int		ix1		= deCeilFloatToInt32(sx1 - 0.5f);
2379 		const int		iy0		= deCeilFloatToInt32(sy0 - 0.5f);
2380 		const int		iy1		= deCeilFloatToInt32(sy1 - 0.5f);
2381 
2382 		const int		v00		= (y * stride) + x;
2383 		const int		v01		= (y * stride) + x + 1;
2384 		const int		v10		= ((y + 1) * stride) + x;
2385 		const int		v11		= ((y + 1) * stride) + x + 1;
2386 		const tcu::Vec4	c00		= colors[v00];
2387 		const tcu::Vec4	c01		= colors[v01];
2388 		const tcu::Vec4	c10		= colors[v10];
2389 		const tcu::Vec4	c11		= colors[v11];
2390 
2391 		//printf("(%d,%d) -> (%f..%f, %f..%f) (%d..%d, %d..%d)\n", x, y, sx0, sx1, sy0, sy1, ix0, ix1, iy0, iy1);
2392 
2393 		for (int iy = iy0; iy < iy1; iy++)
2394 		for (int ix = ix0; ix < ix1; ix++)
2395 		{
2396 			DE_ASSERT(deInBounds32(ix, 0, width));
2397 			DE_ASSERT(deInBounds32(iy, 0, height));
2398 
2399 			const float			sfx		= (float)ix + 0.5f;
2400 			const float			sfy		= (float)iy + 0.5f;
2401 			const float			fx1		= deFloatClamp((sfx - sx0) * oosx, 0.0f, 1.0f);
2402 			const float			fy1		= deFloatClamp((sfy - sy0) * oosy, 0.0f, 1.0f);
2403 
2404 			// Triangle quad interpolation.
2405 			const bool			tri		= fx1 + fy1 <= 1.0f;
2406 			const float			tx		= tri ? fx1 : (1.0f-fx1);
2407 			const float			ty		= tri ? fy1 : (1.0f-fy1);
2408 			const tcu::Vec4&	t0		= tri ? c00 : c11;
2409 			const tcu::Vec4&	t1		= tri ? c01 : c10;
2410 			const tcu::Vec4&	t2		= tri ? c10 : c01;
2411 			const tcu::Vec4		color	= t0 + (t1-t0)*tx + (t2-t0)*ty;
2412 
2413 			result.setPixel(ix, iy, tcu::RGBA(color));
2414 		}
2415 	}
2416 }
2417 
computeFragmentReference(tcu::Surface & result,const QuadGrid & quadGrid)2418 void ShaderRenderCaseInstance::computeFragmentReference (tcu::Surface& result, const QuadGrid& quadGrid)
2419 {
2420 	DE_ASSERT(m_evaluator);
2421 
2422 	// Buffer info.
2423 	const int			width		= result.getWidth();
2424 	const int			height		= result.getHeight();
2425 	const bool			hasAlpha	= true;  // \todo [2015-09-07 elecro] add correct alpha check
2426 	ShaderEvalContext	evalCtx		(quadGrid);
2427 
2428 	// Render.
2429 	for (int y = 0; y < height; y++)
2430 	for (int x = 0; x < width; x++)
2431 	{
2432 		const float sx = ((float)x + 0.5f) / (float)width;
2433 		const float sy = ((float)y + 0.5f) / (float)height;
2434 
2435 		evalCtx.reset(sx, sy);
2436 		m_evaluator->evaluate(evalCtx);
2437 		// Select either clear color or computed color based on discarded bit.
2438 		tcu::Vec4 color = evalCtx.isDiscarded ? m_clearColor : evalCtx.color;
2439 
2440 		if (!hasAlpha)
2441 			color.w() = 1.0f;
2442 
2443 		result.setPixel(x, y, tcu::RGBA(color));
2444 	}
2445 }
2446 
compareImages(const tcu::Surface & resImage,const tcu::Surface & refImage,float errorThreshold)2447 bool ShaderRenderCaseInstance::compareImages (const tcu::Surface& resImage, const tcu::Surface& refImage, float errorThreshold)
2448 {
2449 	if (m_fuzzyCompare)
2450 		return tcu::fuzzyCompare(m_context.getTestContext().getLog(), "ComparisonResult", "Image comparison result", refImage, resImage, errorThreshold, tcu::COMPARE_LOG_EVERYTHING);
2451 	else
2452 		return tcu::pixelThresholdCompare(m_context.getTestContext().getLog(), "ComparisonResult", "Image comparison result", refImage, resImage, tcu::RGBA(1, 1, 1, 1), tcu::COMPARE_LOG_EVERYTHING);
2453 }
2454 
2455 } // sr
2456 } // vkt
2457