1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include "llvm/TableGen/StringMatcher.h"
31 #include "llvm/TableGen/TableGenBackend.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cctype>
35 #include <cstddef>
36 #include <cstdint>
37 #include <map>
38 #include <memory>
39 #include <set>
40 #include <sstream>
41 #include <string>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 namespace {
48 
49 class FlattenedSpelling {
50   std::string V, N, NS;
51   bool K = false;
52 
53 public:
FlattenedSpelling(const std::string & Variety,const std::string & Name,const std::string & Namespace,bool KnownToGCC)54   FlattenedSpelling(const std::string &Variety, const std::string &Name,
55                     const std::string &Namespace, bool KnownToGCC) :
56     V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
FlattenedSpelling(const Record & Spelling)57   explicit FlattenedSpelling(const Record &Spelling)
58       : V(std::string(Spelling.getValueAsString("Variety"))),
59         N(std::string(Spelling.getValueAsString("Name"))) {
60     assert(V != "GCC" && V != "Clang" &&
61            "Given a GCC spelling, which means this hasn't been flattened!");
62     if (V == "CXX11" || V == "C2x" || V == "Pragma")
63       NS = std::string(Spelling.getValueAsString("Namespace"));
64   }
65 
variety() const66   const std::string &variety() const { return V; }
name() const67   const std::string &name() const { return N; }
nameSpace() const68   const std::string &nameSpace() const { return NS; }
knownToGCC() const69   bool knownToGCC() const { return K; }
70 };
71 
72 } // end anonymous namespace
73 
74 static std::vector<FlattenedSpelling>
GetFlattenedSpellings(const Record & Attr)75 GetFlattenedSpellings(const Record &Attr) {
76   std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
77   std::vector<FlattenedSpelling> Ret;
78 
79   for (const auto &Spelling : Spellings) {
80     StringRef Variety = Spelling->getValueAsString("Variety");
81     StringRef Name = Spelling->getValueAsString("Name");
82     if (Variety == "GCC") {
83       Ret.emplace_back("GNU", std::string(Name), "", true);
84       Ret.emplace_back("CXX11", std::string(Name), "gnu", true);
85       if (Spelling->getValueAsBit("AllowInC"))
86         Ret.emplace_back("C2x", std::string(Name), "gnu", true);
87     } else if (Variety == "Clang") {
88       Ret.emplace_back("GNU", std::string(Name), "", false);
89       Ret.emplace_back("CXX11", std::string(Name), "clang", false);
90       if (Spelling->getValueAsBit("AllowInC"))
91         Ret.emplace_back("C2x", std::string(Name), "clang", false);
92     } else
93       Ret.push_back(FlattenedSpelling(*Spelling));
94   }
95 
96   return Ret;
97 }
98 
ReadPCHRecord(StringRef type)99 static std::string ReadPCHRecord(StringRef type) {
100   return StringSwitch<std::string>(type)
101       .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
102                               std::string(type.data(), 0, type.size() - 1) +
103                               ">(Record.readInt())")
104       .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
105       .Case("Expr *", "Record.readExpr()")
106       .Case("IdentifierInfo *", "Record.readIdentifier()")
107       .Case("StringRef", "Record.readString()")
108       .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
109       .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
110       .Default("Record.readInt()");
111 }
112 
113 // Get a type that is suitable for storing an object of the specified type.
getStorageType(StringRef type)114 static StringRef getStorageType(StringRef type) {
115   return StringSwitch<StringRef>(type)
116     .Case("StringRef", "std::string")
117     .Default(type);
118 }
119 
120 // Assumes that the way to get the value is SA->getname()
WritePCHRecord(StringRef type,StringRef name)121 static std::string WritePCHRecord(StringRef type, StringRef name) {
122   return "Record." +
123          StringSwitch<std::string>(type)
124              .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
125              .Case("TypeSourceInfo *",
126                    "AddTypeSourceInfo(" + std::string(name) + ");\n")
127              .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
128              .Case("IdentifierInfo *",
129                    "AddIdentifierRef(" + std::string(name) + ");\n")
130              .Case("StringRef", "AddString(" + std::string(name) + ");\n")
131              .Case("ParamIdx",
132                    "push_back(" + std::string(name) + ".serialize());\n")
133              .Case("OMPTraitInfo *",
134                    "writeOMPTraitInfo(" + std::string(name) + ");\n")
135              .Default("push_back(" + std::string(name) + ");\n");
136 }
137 
138 // Normalize attribute name by removing leading and trailing
139 // underscores. For example, __foo, foo__, __foo__ would
140 // become foo.
NormalizeAttrName(StringRef AttrName)141 static StringRef NormalizeAttrName(StringRef AttrName) {
142   AttrName.consume_front("__");
143   AttrName.consume_back("__");
144   return AttrName;
145 }
146 
147 // Normalize the name by removing any and all leading and trailing underscores.
148 // This is different from NormalizeAttrName in that it also handles names like
149 // _pascal and __pascal.
NormalizeNameForSpellingComparison(StringRef Name)150 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
151   return Name.trim("_");
152 }
153 
154 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
155 // removing "__" if it appears at the beginning and end of the attribute's name.
NormalizeGNUAttrSpelling(StringRef AttrSpelling)156 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
157   if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
158     AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
159   }
160 
161   return AttrSpelling;
162 }
163 
164 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
165 
getParsedAttrList(const RecordKeeper & Records,ParsedAttrMap * Dupes=nullptr)166 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
167                                        ParsedAttrMap *Dupes = nullptr) {
168   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
169   std::set<std::string> Seen;
170   ParsedAttrMap R;
171   for (const auto *Attr : Attrs) {
172     if (Attr->getValueAsBit("SemaHandler")) {
173       std::string AN;
174       if (Attr->isSubClassOf("TargetSpecificAttr") &&
175           !Attr->isValueUnset("ParseKind")) {
176         AN = std::string(Attr->getValueAsString("ParseKind"));
177 
178         // If this attribute has already been handled, it does not need to be
179         // handled again.
180         if (Seen.find(AN) != Seen.end()) {
181           if (Dupes)
182             Dupes->push_back(std::make_pair(AN, Attr));
183           continue;
184         }
185         Seen.insert(AN);
186       } else
187         AN = NormalizeAttrName(Attr->getName()).str();
188 
189       R.push_back(std::make_pair(AN, Attr));
190     }
191   }
192   return R;
193 }
194 
195 namespace {
196 
197   class Argument {
198     std::string lowerName, upperName;
199     StringRef attrName;
200     bool isOpt;
201     bool Fake;
202 
203   public:
Argument(const Record & Arg,StringRef Attr)204     Argument(const Record &Arg, StringRef Attr)
205         : lowerName(std::string(Arg.getValueAsString("Name"))),
206           upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) {
207       if (!lowerName.empty()) {
208         lowerName[0] = std::tolower(lowerName[0]);
209         upperName[0] = std::toupper(upperName[0]);
210       }
211       // Work around MinGW's macro definition of 'interface' to 'struct'. We
212       // have an attribute argument called 'Interface', so only the lower case
213       // name conflicts with the macro definition.
214       if (lowerName == "interface")
215         lowerName = "interface_";
216     }
217     virtual ~Argument() = default;
218 
getLowerName() const219     StringRef getLowerName() const { return lowerName; }
getUpperName() const220     StringRef getUpperName() const { return upperName; }
getAttrName() const221     StringRef getAttrName() const { return attrName; }
222 
isOptional() const223     bool isOptional() const { return isOpt; }
setOptional(bool set)224     void setOptional(bool set) { isOpt = set; }
225 
isFake() const226     bool isFake() const { return Fake; }
setFake(bool fake)227     void setFake(bool fake) { Fake = fake; }
228 
229     // These functions print the argument contents formatted in different ways.
230     virtual void writeAccessors(raw_ostream &OS) const = 0;
writeAccessorDefinitions(raw_ostream & OS) const231     virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
writeASTVisitorTraversal(raw_ostream & OS) const232     virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
233     virtual void writeCloneArgs(raw_ostream &OS) const = 0;
234     virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
writeTemplateInstantiation(raw_ostream & OS) const235     virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
writeCtorBody(raw_ostream & OS) const236     virtual void writeCtorBody(raw_ostream &OS) const {}
237     virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
238     virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
239     virtual void writeCtorParameters(raw_ostream &OS) const = 0;
240     virtual void writeDeclarations(raw_ostream &OS) const = 0;
241     virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
242     virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
243     virtual void writePCHWrite(raw_ostream &OS) const = 0;
getIsOmitted() const244     virtual std::string getIsOmitted() const { return "false"; }
245     virtual void writeValue(raw_ostream &OS) const = 0;
246     virtual void writeDump(raw_ostream &OS) const = 0;
writeDumpChildren(raw_ostream & OS) const247     virtual void writeDumpChildren(raw_ostream &OS) const {}
writeHasChildren(raw_ostream & OS) const248     virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
249 
isEnumArg() const250     virtual bool isEnumArg() const { return false; }
isVariadicEnumArg() const251     virtual bool isVariadicEnumArg() const { return false; }
isVariadic() const252     virtual bool isVariadic() const { return false; }
253 
writeImplicitCtorArgs(raw_ostream & OS) const254     virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
255       OS << getUpperName();
256     }
257   };
258 
259   class SimpleArgument : public Argument {
260     std::string type;
261 
262   public:
SimpleArgument(const Record & Arg,StringRef Attr,std::string T)263     SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
264         : Argument(Arg, Attr), type(std::move(T)) {}
265 
getType() const266     std::string getType() const { return type; }
267 
writeAccessors(raw_ostream & OS) const268     void writeAccessors(raw_ostream &OS) const override {
269       OS << "  " << type << " get" << getUpperName() << "() const {\n";
270       OS << "    return " << getLowerName() << ";\n";
271       OS << "  }";
272     }
273 
writeCloneArgs(raw_ostream & OS) const274     void writeCloneArgs(raw_ostream &OS) const override {
275       OS << getLowerName();
276     }
277 
writeTemplateInstantiationArgs(raw_ostream & OS) const278     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
279       OS << "A->get" << getUpperName() << "()";
280     }
281 
writeCtorInitializers(raw_ostream & OS) const282     void writeCtorInitializers(raw_ostream &OS) const override {
283       OS << getLowerName() << "(" << getUpperName() << ")";
284     }
285 
writeCtorDefaultInitializers(raw_ostream & OS) const286     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
287       OS << getLowerName() << "()";
288     }
289 
writeCtorParameters(raw_ostream & OS) const290     void writeCtorParameters(raw_ostream &OS) const override {
291       OS << type << " " << getUpperName();
292     }
293 
writeDeclarations(raw_ostream & OS) const294     void writeDeclarations(raw_ostream &OS) const override {
295       OS << type << " " << getLowerName() << ";";
296     }
297 
writePCHReadDecls(raw_ostream & OS) const298     void writePCHReadDecls(raw_ostream &OS) const override {
299       std::string read = ReadPCHRecord(type);
300       OS << "    " << type << " " << getLowerName() << " = " << read << ";\n";
301     }
302 
writePCHReadArgs(raw_ostream & OS) const303     void writePCHReadArgs(raw_ostream &OS) const override {
304       OS << getLowerName();
305     }
306 
writePCHWrite(raw_ostream & OS) const307     void writePCHWrite(raw_ostream &OS) const override {
308       OS << "    "
309          << WritePCHRecord(type,
310                            "SA->get" + std::string(getUpperName()) + "()");
311     }
312 
getIsOmitted() const313     std::string getIsOmitted() const override {
314       if (type == "IdentifierInfo *")
315         return "!get" + getUpperName().str() + "()";
316       if (type == "TypeSourceInfo *")
317         return "!get" + getUpperName().str() + "Loc()";
318       if (type == "ParamIdx")
319         return "!get" + getUpperName().str() + "().isValid()";
320       return "false";
321     }
322 
writeValue(raw_ostream & OS) const323     void writeValue(raw_ostream &OS) const override {
324       if (type == "FunctionDecl *")
325         OS << "\" << get" << getUpperName()
326            << "()->getNameInfo().getAsString() << \"";
327       else if (type == "IdentifierInfo *")
328         // Some non-optional (comma required) identifier arguments can be the
329         // empty string but are then recorded as a nullptr.
330         OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
331            << "()->getName() : \"\") << \"";
332       else if (type == "VarDecl *")
333         OS << "\" << get" << getUpperName() << "()->getName() << \"";
334       else if (type == "TypeSourceInfo *")
335         OS << "\" << get" << getUpperName() << "().getAsString() << \"";
336       else if (type == "ParamIdx")
337         OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
338       else
339         OS << "\" << get" << getUpperName() << "() << \"";
340     }
341 
writeDump(raw_ostream & OS) const342     void writeDump(raw_ostream &OS) const override {
343       if (StringRef(type).endswith("Decl *")) {
344         OS << "    OS << \" \";\n";
345         OS << "    dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
346       } else if (type == "IdentifierInfo *") {
347         // Some non-optional (comma required) identifier arguments can be the
348         // empty string but are then recorded as a nullptr.
349         OS << "    if (SA->get" << getUpperName() << "())\n"
350            << "      OS << \" \" << SA->get" << getUpperName()
351            << "()->getName();\n";
352       } else if (type == "TypeSourceInfo *") {
353         if (isOptional())
354           OS << "    if (SA->get" << getUpperName() << "Loc())";
355         OS << "    OS << \" \" << SA->get" << getUpperName()
356            << "().getAsString();\n";
357       } else if (type == "bool") {
358         OS << "    if (SA->get" << getUpperName() << "()) OS << \" "
359            << getUpperName() << "\";\n";
360       } else if (type == "int" || type == "unsigned") {
361         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
362       } else if (type == "ParamIdx") {
363         if (isOptional())
364           OS << "    if (SA->get" << getUpperName() << "().isValid())\n  ";
365         OS << "    OS << \" \" << SA->get" << getUpperName()
366            << "().getSourceIndex();\n";
367       } else if (type == "OMPTraitInfo *") {
368         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
369       } else {
370         llvm_unreachable("Unknown SimpleArgument type!");
371       }
372     }
373   };
374 
375   class DefaultSimpleArgument : public SimpleArgument {
376     int64_t Default;
377 
378   public:
DefaultSimpleArgument(const Record & Arg,StringRef Attr,std::string T,int64_t Default)379     DefaultSimpleArgument(const Record &Arg, StringRef Attr,
380                           std::string T, int64_t Default)
381       : SimpleArgument(Arg, Attr, T), Default(Default) {}
382 
writeAccessors(raw_ostream & OS) const383     void writeAccessors(raw_ostream &OS) const override {
384       SimpleArgument::writeAccessors(OS);
385 
386       OS << "\n\n  static const " << getType() << " Default" << getUpperName()
387          << " = ";
388       if (getType() == "bool")
389         OS << (Default != 0 ? "true" : "false");
390       else
391         OS << Default;
392       OS << ";";
393     }
394   };
395 
396   class StringArgument : public Argument {
397   public:
StringArgument(const Record & Arg,StringRef Attr)398     StringArgument(const Record &Arg, StringRef Attr)
399       : Argument(Arg, Attr)
400     {}
401 
writeAccessors(raw_ostream & OS) const402     void writeAccessors(raw_ostream &OS) const override {
403       OS << "  llvm::StringRef get" << getUpperName() << "() const {\n";
404       OS << "    return llvm::StringRef(" << getLowerName() << ", "
405          << getLowerName() << "Length);\n";
406       OS << "  }\n";
407       OS << "  unsigned get" << getUpperName() << "Length() const {\n";
408       OS << "    return " << getLowerName() << "Length;\n";
409       OS << "  }\n";
410       OS << "  void set" << getUpperName()
411          << "(ASTContext &C, llvm::StringRef S) {\n";
412       OS << "    " << getLowerName() << "Length = S.size();\n";
413       OS << "    this->" << getLowerName() << " = new (C, 1) char ["
414          << getLowerName() << "Length];\n";
415       OS << "    if (!S.empty())\n";
416       OS << "      std::memcpy(this->" << getLowerName() << ", S.data(), "
417          << getLowerName() << "Length);\n";
418       OS << "  }";
419     }
420 
writeCloneArgs(raw_ostream & OS) const421     void writeCloneArgs(raw_ostream &OS) const override {
422       OS << "get" << getUpperName() << "()";
423     }
424 
writeTemplateInstantiationArgs(raw_ostream & OS) const425     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
426       OS << "A->get" << getUpperName() << "()";
427     }
428 
writeCtorBody(raw_ostream & OS) const429     void writeCtorBody(raw_ostream &OS) const override {
430       OS << "    if (!" << getUpperName() << ".empty())\n";
431       OS << "      std::memcpy(" << getLowerName() << ", " << getUpperName()
432          << ".data(), " << getLowerName() << "Length);\n";
433     }
434 
writeCtorInitializers(raw_ostream & OS) const435     void writeCtorInitializers(raw_ostream &OS) const override {
436       OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
437          << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
438          << "Length])";
439     }
440 
writeCtorDefaultInitializers(raw_ostream & OS) const441     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
442       OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
443     }
444 
writeCtorParameters(raw_ostream & OS) const445     void writeCtorParameters(raw_ostream &OS) const override {
446       OS << "llvm::StringRef " << getUpperName();
447     }
448 
writeDeclarations(raw_ostream & OS) const449     void writeDeclarations(raw_ostream &OS) const override {
450       OS << "unsigned " << getLowerName() << "Length;\n";
451       OS << "char *" << getLowerName() << ";";
452     }
453 
writePCHReadDecls(raw_ostream & OS) const454     void writePCHReadDecls(raw_ostream &OS) const override {
455       OS << "    std::string " << getLowerName()
456          << "= Record.readString();\n";
457     }
458 
writePCHReadArgs(raw_ostream & OS) const459     void writePCHReadArgs(raw_ostream &OS) const override {
460       OS << getLowerName();
461     }
462 
writePCHWrite(raw_ostream & OS) const463     void writePCHWrite(raw_ostream &OS) const override {
464       OS << "    Record.AddString(SA->get" << getUpperName() << "());\n";
465     }
466 
writeValue(raw_ostream & OS) const467     void writeValue(raw_ostream &OS) const override {
468       OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
469     }
470 
writeDump(raw_ostream & OS) const471     void writeDump(raw_ostream &OS) const override {
472       OS << "    OS << \" \\\"\" << SA->get" << getUpperName()
473          << "() << \"\\\"\";\n";
474     }
475   };
476 
477   class AlignedArgument : public Argument {
478   public:
AlignedArgument(const Record & Arg,StringRef Attr)479     AlignedArgument(const Record &Arg, StringRef Attr)
480       : Argument(Arg, Attr)
481     {}
482 
writeAccessors(raw_ostream & OS) const483     void writeAccessors(raw_ostream &OS) const override {
484       OS << "  bool is" << getUpperName() << "Dependent() const;\n";
485       OS << "  bool is" << getUpperName() << "ErrorDependent() const;\n";
486 
487       OS << "  unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
488 
489       OS << "  bool is" << getUpperName() << "Expr() const {\n";
490       OS << "    return is" << getLowerName() << "Expr;\n";
491       OS << "  }\n";
492 
493       OS << "  Expr *get" << getUpperName() << "Expr() const {\n";
494       OS << "    assert(is" << getLowerName() << "Expr);\n";
495       OS << "    return " << getLowerName() << "Expr;\n";
496       OS << "  }\n";
497 
498       OS << "  TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
499       OS << "    assert(!is" << getLowerName() << "Expr);\n";
500       OS << "    return " << getLowerName() << "Type;\n";
501       OS << "  }";
502     }
503 
writeAccessorDefinitions(raw_ostream & OS) const504     void writeAccessorDefinitions(raw_ostream &OS) const override {
505       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
506          << "Dependent() const {\n";
507       OS << "  if (is" << getLowerName() << "Expr)\n";
508       OS << "    return " << getLowerName() << "Expr && (" << getLowerName()
509          << "Expr->isValueDependent() || " << getLowerName()
510          << "Expr->isTypeDependent());\n";
511       OS << "  else\n";
512       OS << "    return " << getLowerName()
513          << "Type->getType()->isDependentType();\n";
514       OS << "}\n";
515 
516       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
517          << "ErrorDependent() const {\n";
518       OS << "  if (is" << getLowerName() << "Expr)\n";
519       OS << "    return " << getLowerName() << "Expr && " << getLowerName()
520          << "Expr->containsErrors();\n";
521       OS << "  return " << getLowerName()
522          << "Type->getType()->containsErrors();\n";
523       OS << "}\n";
524 
525       // FIXME: Do not do the calculation here
526       // FIXME: Handle types correctly
527       // A null pointer means maximum alignment
528       OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
529          << "(ASTContext &Ctx) const {\n";
530       OS << "  assert(!is" << getUpperName() << "Dependent());\n";
531       OS << "  if (is" << getLowerName() << "Expr)\n";
532       OS << "    return " << getLowerName() << "Expr ? " << getLowerName()
533          << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
534          << " * Ctx.getCharWidth() : "
535          << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
536       OS << "  else\n";
537       OS << "    return 0; // FIXME\n";
538       OS << "}\n";
539     }
540 
writeASTVisitorTraversal(raw_ostream & OS) const541     void writeASTVisitorTraversal(raw_ostream &OS) const override {
542       StringRef Name = getUpperName();
543       OS << "  if (A->is" << Name << "Expr()) {\n"
544          << "    if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
545          << "      return false;\n"
546          << "  } else if (auto *TSI = A->get" << Name << "Type()) {\n"
547          << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
548          << "      return false;\n"
549          << "  }\n";
550     }
551 
writeCloneArgs(raw_ostream & OS) const552     void writeCloneArgs(raw_ostream &OS) const override {
553       OS << "is" << getLowerName() << "Expr, is" << getLowerName()
554          << "Expr ? static_cast<void*>(" << getLowerName()
555          << "Expr) : " << getLowerName()
556          << "Type";
557     }
558 
writeTemplateInstantiationArgs(raw_ostream & OS) const559     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
560       // FIXME: move the definition in Sema::InstantiateAttrs to here.
561       // In the meantime, aligned attributes are cloned.
562     }
563 
writeCtorBody(raw_ostream & OS) const564     void writeCtorBody(raw_ostream &OS) const override {
565       OS << "    if (is" << getLowerName() << "Expr)\n";
566       OS << "       " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
567          << getUpperName() << ");\n";
568       OS << "    else\n";
569       OS << "       " << getLowerName()
570          << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
571          << ");\n";
572     }
573 
writeCtorInitializers(raw_ostream & OS) const574     void writeCtorInitializers(raw_ostream &OS) const override {
575       OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
576     }
577 
writeCtorDefaultInitializers(raw_ostream & OS) const578     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
579       OS << "is" << getLowerName() << "Expr(false)";
580     }
581 
writeCtorParameters(raw_ostream & OS) const582     void writeCtorParameters(raw_ostream &OS) const override {
583       OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
584     }
585 
writeImplicitCtorArgs(raw_ostream & OS) const586     void writeImplicitCtorArgs(raw_ostream &OS) const override {
587       OS << "Is" << getUpperName() << "Expr, " << getUpperName();
588     }
589 
writeDeclarations(raw_ostream & OS) const590     void writeDeclarations(raw_ostream &OS) const override {
591       OS << "bool is" << getLowerName() << "Expr;\n";
592       OS << "union {\n";
593       OS << "Expr *" << getLowerName() << "Expr;\n";
594       OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
595       OS << "};";
596     }
597 
writePCHReadArgs(raw_ostream & OS) const598     void writePCHReadArgs(raw_ostream &OS) const override {
599       OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
600     }
601 
writePCHReadDecls(raw_ostream & OS) const602     void writePCHReadDecls(raw_ostream &OS) const override {
603       OS << "    bool is" << getLowerName() << "Expr = Record.readInt();\n";
604       OS << "    void *" << getLowerName() << "Ptr;\n";
605       OS << "    if (is" << getLowerName() << "Expr)\n";
606       OS << "      " << getLowerName() << "Ptr = Record.readExpr();\n";
607       OS << "    else\n";
608       OS << "      " << getLowerName()
609          << "Ptr = Record.readTypeSourceInfo();\n";
610     }
611 
writePCHWrite(raw_ostream & OS) const612     void writePCHWrite(raw_ostream &OS) const override {
613       OS << "    Record.push_back(SA->is" << getUpperName() << "Expr());\n";
614       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
615       OS << "      Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
616       OS << "    else\n";
617       OS << "      Record.AddTypeSourceInfo(SA->get" << getUpperName()
618          << "Type());\n";
619     }
620 
getIsOmitted() const621     std::string getIsOmitted() const override {
622       return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
623              + "Expr";
624     }
625 
writeValue(raw_ostream & OS) const626     void writeValue(raw_ostream &OS) const override {
627       OS << "\";\n";
628       OS << "    " << getLowerName()
629          << "Expr->printPretty(OS, nullptr, Policy);\n";
630       OS << "    OS << \"";
631     }
632 
writeDump(raw_ostream & OS) const633     void writeDump(raw_ostream &OS) const override {
634       OS << "    if (!SA->is" << getUpperName() << "Expr())\n";
635       OS << "      dumpType(SA->get" << getUpperName()
636          << "Type()->getType());\n";
637     }
638 
writeDumpChildren(raw_ostream & OS) const639     void writeDumpChildren(raw_ostream &OS) const override {
640       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
641       OS << "      Visit(SA->get" << getUpperName() << "Expr());\n";
642     }
643 
writeHasChildren(raw_ostream & OS) const644     void writeHasChildren(raw_ostream &OS) const override {
645       OS << "SA->is" << getUpperName() << "Expr()";
646     }
647   };
648 
649   class VariadicArgument : public Argument {
650     std::string Type, ArgName, ArgSizeName, RangeName;
651 
652   protected:
653     // Assumed to receive a parameter: raw_ostream OS.
writeValueImpl(raw_ostream & OS) const654     virtual void writeValueImpl(raw_ostream &OS) const {
655       OS << "    OS << Val;\n";
656     }
657     // Assumed to receive a parameter: raw_ostream OS.
writeDumpImpl(raw_ostream & OS) const658     virtual void writeDumpImpl(raw_ostream &OS) const {
659       OS << "      OS << \" \" << Val;\n";
660     }
661 
662   public:
VariadicArgument(const Record & Arg,StringRef Attr,std::string T)663     VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
664         : Argument(Arg, Attr), Type(std::move(T)),
665           ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
666           RangeName(std::string(getLowerName())) {}
667 
getType() const668     const std::string &getType() const { return Type; }
getArgName() const669     const std::string &getArgName() const { return ArgName; }
getArgSizeName() const670     const std::string &getArgSizeName() const { return ArgSizeName; }
isVariadic() const671     bool isVariadic() const override { return true; }
672 
writeAccessors(raw_ostream & OS) const673     void writeAccessors(raw_ostream &OS) const override {
674       std::string IteratorType = getLowerName().str() + "_iterator";
675       std::string BeginFn = getLowerName().str() + "_begin()";
676       std::string EndFn = getLowerName().str() + "_end()";
677 
678       OS << "  typedef " << Type << "* " << IteratorType << ";\n";
679       OS << "  " << IteratorType << " " << BeginFn << " const {"
680          << " return " << ArgName << "; }\n";
681       OS << "  " << IteratorType << " " << EndFn << " const {"
682          << " return " << ArgName << " + " << ArgSizeName << "; }\n";
683       OS << "  unsigned " << getLowerName() << "_size() const {"
684          << " return " << ArgSizeName << "; }\n";
685       OS << "  llvm::iterator_range<" << IteratorType << "> " << RangeName
686          << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
687          << "); }\n";
688     }
689 
writeCloneArgs(raw_ostream & OS) const690     void writeCloneArgs(raw_ostream &OS) const override {
691       OS << ArgName << ", " << ArgSizeName;
692     }
693 
writeTemplateInstantiationArgs(raw_ostream & OS) const694     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
695       // This isn't elegant, but we have to go through public methods...
696       OS << "A->" << getLowerName() << "_begin(), "
697          << "A->" << getLowerName() << "_size()";
698     }
699 
writeASTVisitorTraversal(raw_ostream & OS) const700     void writeASTVisitorTraversal(raw_ostream &OS) const override {
701       // FIXME: Traverse the elements.
702     }
703 
writeCtorBody(raw_ostream & OS) const704     void writeCtorBody(raw_ostream &OS) const override {
705       OS << "  std::copy(" << getUpperName() << ", " << getUpperName() << " + "
706          << ArgSizeName << ", " << ArgName << ");\n";
707     }
708 
writeCtorInitializers(raw_ostream & OS) const709     void writeCtorInitializers(raw_ostream &OS) const override {
710       OS << ArgSizeName << "(" << getUpperName() << "Size), "
711          << ArgName << "(new (Ctx, 16) " << getType() << "["
712          << ArgSizeName << "])";
713     }
714 
writeCtorDefaultInitializers(raw_ostream & OS) const715     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
716       OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
717     }
718 
writeCtorParameters(raw_ostream & OS) const719     void writeCtorParameters(raw_ostream &OS) const override {
720       OS << getType() << " *" << getUpperName() << ", unsigned "
721          << getUpperName() << "Size";
722     }
723 
writeImplicitCtorArgs(raw_ostream & OS) const724     void writeImplicitCtorArgs(raw_ostream &OS) const override {
725       OS << getUpperName() << ", " << getUpperName() << "Size";
726     }
727 
writeDeclarations(raw_ostream & OS) const728     void writeDeclarations(raw_ostream &OS) const override {
729       OS << "  unsigned " << ArgSizeName << ";\n";
730       OS << "  " << getType() << " *" << ArgName << ";";
731     }
732 
writePCHReadDecls(raw_ostream & OS) const733     void writePCHReadDecls(raw_ostream &OS) const override {
734       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
735       OS << "    SmallVector<" << getType() << ", 4> "
736          << getLowerName() << ";\n";
737       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
738          << "Size);\n";
739 
740       // If we can't store the values in the current type (if it's something
741       // like StringRef), store them in a different type and convert the
742       // container afterwards.
743       std::string StorageType = std::string(getStorageType(getType()));
744       std::string StorageName = std::string(getLowerName());
745       if (StorageType != getType()) {
746         StorageName += "Storage";
747         OS << "    SmallVector<" << StorageType << ", 4> "
748            << StorageName << ";\n";
749         OS << "    " << StorageName << ".reserve(" << getLowerName()
750            << "Size);\n";
751       }
752 
753       OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
754       std::string read = ReadPCHRecord(Type);
755       OS << "      " << StorageName << ".push_back(" << read << ");\n";
756 
757       if (StorageType != getType()) {
758         OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
759         OS << "      " << getLowerName() << ".push_back("
760            << StorageName << "[i]);\n";
761       }
762     }
763 
writePCHReadArgs(raw_ostream & OS) const764     void writePCHReadArgs(raw_ostream &OS) const override {
765       OS << getLowerName() << ".data(), " << getLowerName() << "Size";
766     }
767 
writePCHWrite(raw_ostream & OS) const768     void writePCHWrite(raw_ostream &OS) const override {
769       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
770       OS << "    for (auto &Val : SA->" << RangeName << "())\n";
771       OS << "      " << WritePCHRecord(Type, "Val");
772     }
773 
writeValue(raw_ostream & OS) const774     void writeValue(raw_ostream &OS) const override {
775       OS << "\";\n";
776       OS << "  bool isFirst = true;\n"
777          << "  for (const auto &Val : " << RangeName << "()) {\n"
778          << "    if (isFirst) isFirst = false;\n"
779          << "    else OS << \", \";\n";
780       writeValueImpl(OS);
781       OS << "  }\n";
782       OS << "  OS << \"";
783     }
784 
writeDump(raw_ostream & OS) const785     void writeDump(raw_ostream &OS) const override {
786       OS << "    for (const auto &Val : SA->" << RangeName << "())\n";
787       writeDumpImpl(OS);
788     }
789   };
790 
791   class VariadicParamIdxArgument : public VariadicArgument {
792   public:
VariadicParamIdxArgument(const Record & Arg,StringRef Attr)793     VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
794         : VariadicArgument(Arg, Attr, "ParamIdx") {}
795 
796   public:
writeValueImpl(raw_ostream & OS) const797     void writeValueImpl(raw_ostream &OS) const override {
798       OS << "    OS << Val.getSourceIndex();\n";
799     }
800 
writeDumpImpl(raw_ostream & OS) const801     void writeDumpImpl(raw_ostream &OS) const override {
802       OS << "      OS << \" \" << Val.getSourceIndex();\n";
803     }
804   };
805 
806   struct VariadicParamOrParamIdxArgument : public VariadicArgument {
VariadicParamOrParamIdxArgument__anoncbb22e180211::VariadicParamOrParamIdxArgument807     VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
808         : VariadicArgument(Arg, Attr, "int") {}
809   };
810 
811   // Unique the enums, but maintain the original declaration ordering.
812   std::vector<StringRef>
uniqueEnumsInOrder(const std::vector<StringRef> & enums)813   uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
814     std::vector<StringRef> uniques;
815     SmallDenseSet<StringRef, 8> unique_set;
816     for (const auto &i : enums) {
817       if (unique_set.insert(i).second)
818         uniques.push_back(i);
819     }
820     return uniques;
821   }
822 
823   class EnumArgument : public Argument {
824     std::string type;
825     std::vector<StringRef> values, enums, uniques;
826 
827   public:
EnumArgument(const Record & Arg,StringRef Attr)828     EnumArgument(const Record &Arg, StringRef Attr)
829         : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
830           values(Arg.getValueAsListOfStrings("Values")),
831           enums(Arg.getValueAsListOfStrings("Enums")),
832           uniques(uniqueEnumsInOrder(enums)) {
833       // FIXME: Emit a proper error
834       assert(!uniques.empty());
835     }
836 
isEnumArg() const837     bool isEnumArg() const override { return true; }
838 
writeAccessors(raw_ostream & OS) const839     void writeAccessors(raw_ostream &OS) const override {
840       OS << "  " << type << " get" << getUpperName() << "() const {\n";
841       OS << "    return " << getLowerName() << ";\n";
842       OS << "  }";
843     }
844 
writeCloneArgs(raw_ostream & OS) const845     void writeCloneArgs(raw_ostream &OS) const override {
846       OS << getLowerName();
847     }
848 
writeTemplateInstantiationArgs(raw_ostream & OS) const849     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
850       OS << "A->get" << getUpperName() << "()";
851     }
writeCtorInitializers(raw_ostream & OS) const852     void writeCtorInitializers(raw_ostream &OS) const override {
853       OS << getLowerName() << "(" << getUpperName() << ")";
854     }
writeCtorDefaultInitializers(raw_ostream & OS) const855     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
856       OS << getLowerName() << "(" << type << "(0))";
857     }
writeCtorParameters(raw_ostream & OS) const858     void writeCtorParameters(raw_ostream &OS) const override {
859       OS << type << " " << getUpperName();
860     }
writeDeclarations(raw_ostream & OS) const861     void writeDeclarations(raw_ostream &OS) const override {
862       auto i = uniques.cbegin(), e = uniques.cend();
863       // The last one needs to not have a comma.
864       --e;
865 
866       OS << "public:\n";
867       OS << "  enum " << type << " {\n";
868       for (; i != e; ++i)
869         OS << "    " << *i << ",\n";
870       OS << "    " << *e << "\n";
871       OS << "  };\n";
872       OS << "private:\n";
873       OS << "  " << type << " " << getLowerName() << ";";
874     }
875 
writePCHReadDecls(raw_ostream & OS) const876     void writePCHReadDecls(raw_ostream &OS) const override {
877       OS << "    " << getAttrName() << "Attr::" << type << " " << getLowerName()
878          << "(static_cast<" << getAttrName() << "Attr::" << type
879          << ">(Record.readInt()));\n";
880     }
881 
writePCHReadArgs(raw_ostream & OS) const882     void writePCHReadArgs(raw_ostream &OS) const override {
883       OS << getLowerName();
884     }
885 
writePCHWrite(raw_ostream & OS) const886     void writePCHWrite(raw_ostream &OS) const override {
887       OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
888     }
889 
writeValue(raw_ostream & OS) const890     void writeValue(raw_ostream &OS) const override {
891       // FIXME: this isn't 100% correct -- some enum arguments require printing
892       // as a string literal, while others require printing as an identifier.
893       // Tablegen currently does not distinguish between the two forms.
894       OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
895          << getUpperName() << "()) << \"\\\"";
896     }
897 
writeDump(raw_ostream & OS) const898     void writeDump(raw_ostream &OS) const override {
899       OS << "    switch(SA->get" << getUpperName() << "()) {\n";
900       for (const auto &I : uniques) {
901         OS << "    case " << getAttrName() << "Attr::" << I << ":\n";
902         OS << "      OS << \" " << I << "\";\n";
903         OS << "      break;\n";
904       }
905       OS << "    }\n";
906     }
907 
writeConversion(raw_ostream & OS,bool Header) const908     void writeConversion(raw_ostream &OS, bool Header) const {
909       if (Header) {
910         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
911            << " &Out);\n";
912         OS << "  static const char *Convert" << type << "ToStr(" << type
913            << " Val);\n";
914         return;
915       }
916 
917       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
918          << "(StringRef Val, " << type << " &Out) {\n";
919       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
920       OS << type << ">>(Val)\n";
921       for (size_t I = 0; I < enums.size(); ++I) {
922         OS << "    .Case(\"" << values[I] << "\", ";
923         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
924       }
925       OS << "    .Default(Optional<" << type << ">());\n";
926       OS << "  if (R) {\n";
927       OS << "    Out = *R;\n      return true;\n    }\n";
928       OS << "  return false;\n";
929       OS << "}\n\n";
930 
931       // Mapping from enumeration values back to enumeration strings isn't
932       // trivial because some enumeration values have multiple named
933       // enumerators, such as type_visibility(internal) and
934       // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
935       OS << "const char *" << getAttrName() << "Attr::Convert" << type
936          << "ToStr(" << type << " Val) {\n"
937          << "  switch(Val) {\n";
938       SmallDenseSet<StringRef, 8> Uniques;
939       for (size_t I = 0; I < enums.size(); ++I) {
940         if (Uniques.insert(enums[I]).second)
941           OS << "  case " << getAttrName() << "Attr::" << enums[I]
942              << ": return \"" << values[I] << "\";\n";
943       }
944       OS << "  }\n"
945          << "  llvm_unreachable(\"No enumerator with that value\");\n"
946          << "}\n";
947     }
948   };
949 
950   class VariadicEnumArgument: public VariadicArgument {
951     std::string type, QualifiedTypeName;
952     std::vector<StringRef> values, enums, uniques;
953 
954   protected:
writeValueImpl(raw_ostream & OS) const955     void writeValueImpl(raw_ostream &OS) const override {
956       // FIXME: this isn't 100% correct -- some enum arguments require printing
957       // as a string literal, while others require printing as an identifier.
958       // Tablegen currently does not distinguish between the two forms.
959       OS << "    OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
960          << "ToStr(Val)" << "<< \"\\\"\";\n";
961     }
962 
963   public:
VariadicEnumArgument(const Record & Arg,StringRef Attr)964     VariadicEnumArgument(const Record &Arg, StringRef Attr)
965         : VariadicArgument(Arg, Attr,
966                            std::string(Arg.getValueAsString("Type"))),
967           type(std::string(Arg.getValueAsString("Type"))),
968           values(Arg.getValueAsListOfStrings("Values")),
969           enums(Arg.getValueAsListOfStrings("Enums")),
970           uniques(uniqueEnumsInOrder(enums)) {
971       QualifiedTypeName = getAttrName().str() + "Attr::" + type;
972 
973       // FIXME: Emit a proper error
974       assert(!uniques.empty());
975     }
976 
isVariadicEnumArg() const977     bool isVariadicEnumArg() const override { return true; }
978 
writeDeclarations(raw_ostream & OS) const979     void writeDeclarations(raw_ostream &OS) const override {
980       auto i = uniques.cbegin(), e = uniques.cend();
981       // The last one needs to not have a comma.
982       --e;
983 
984       OS << "public:\n";
985       OS << "  enum " << type << " {\n";
986       for (; i != e; ++i)
987         OS << "    " << *i << ",\n";
988       OS << "    " << *e << "\n";
989       OS << "  };\n";
990       OS << "private:\n";
991 
992       VariadicArgument::writeDeclarations(OS);
993     }
994 
writeDump(raw_ostream & OS) const995     void writeDump(raw_ostream &OS) const override {
996       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
997          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
998          << getLowerName() << "_end(); I != E; ++I) {\n";
999       OS << "      switch(*I) {\n";
1000       for (const auto &UI : uniques) {
1001         OS << "    case " << getAttrName() << "Attr::" << UI << ":\n";
1002         OS << "      OS << \" " << UI << "\";\n";
1003         OS << "      break;\n";
1004       }
1005       OS << "      }\n";
1006       OS << "    }\n";
1007     }
1008 
writePCHReadDecls(raw_ostream & OS) const1009     void writePCHReadDecls(raw_ostream &OS) const override {
1010       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
1011       OS << "    SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1012          << ";\n";
1013       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
1014          << "Size);\n";
1015       OS << "    for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1016       OS << "      " << getLowerName() << ".push_back(" << "static_cast<"
1017          << QualifiedTypeName << ">(Record.readInt()));\n";
1018     }
1019 
writePCHWrite(raw_ostream & OS) const1020     void writePCHWrite(raw_ostream &OS) const override {
1021       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
1022       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1023          << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1024          << getLowerName() << "_end(); i != e; ++i)\n";
1025       OS << "      " << WritePCHRecord(QualifiedTypeName, "(*i)");
1026     }
1027 
writeConversion(raw_ostream & OS,bool Header) const1028     void writeConversion(raw_ostream &OS, bool Header) const {
1029       if (Header) {
1030         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
1031            << " &Out);\n";
1032         OS << "  static const char *Convert" << type << "ToStr(" << type
1033            << " Val);\n";
1034         return;
1035       }
1036 
1037       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1038          << "(StringRef Val, ";
1039       OS << type << " &Out) {\n";
1040       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
1041       OS << type << ">>(Val)\n";
1042       for (size_t I = 0; I < enums.size(); ++I) {
1043         OS << "    .Case(\"" << values[I] << "\", ";
1044         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1045       }
1046       OS << "    .Default(Optional<" << type << ">());\n";
1047       OS << "  if (R) {\n";
1048       OS << "    Out = *R;\n      return true;\n    }\n";
1049       OS << "  return false;\n";
1050       OS << "}\n\n";
1051 
1052       OS << "const char *" << getAttrName() << "Attr::Convert" << type
1053          << "ToStr(" << type << " Val) {\n"
1054          << "  switch(Val) {\n";
1055       SmallDenseSet<StringRef, 8> Uniques;
1056       for (size_t I = 0; I < enums.size(); ++I) {
1057         if (Uniques.insert(enums[I]).second)
1058           OS << "  case " << getAttrName() << "Attr::" << enums[I]
1059              << ": return \"" << values[I] << "\";\n";
1060       }
1061       OS << "  }\n"
1062          << "  llvm_unreachable(\"No enumerator with that value\");\n"
1063          << "}\n";
1064     }
1065   };
1066 
1067   class VersionArgument : public Argument {
1068   public:
VersionArgument(const Record & Arg,StringRef Attr)1069     VersionArgument(const Record &Arg, StringRef Attr)
1070       : Argument(Arg, Attr)
1071     {}
1072 
writeAccessors(raw_ostream & OS) const1073     void writeAccessors(raw_ostream &OS) const override {
1074       OS << "  VersionTuple get" << getUpperName() << "() const {\n";
1075       OS << "    return " << getLowerName() << ";\n";
1076       OS << "  }\n";
1077       OS << "  void set" << getUpperName()
1078          << "(ASTContext &C, VersionTuple V) {\n";
1079       OS << "    " << getLowerName() << " = V;\n";
1080       OS << "  }";
1081     }
1082 
writeCloneArgs(raw_ostream & OS) const1083     void writeCloneArgs(raw_ostream &OS) const override {
1084       OS << "get" << getUpperName() << "()";
1085     }
1086 
writeTemplateInstantiationArgs(raw_ostream & OS) const1087     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1088       OS << "A->get" << getUpperName() << "()";
1089     }
1090 
writeCtorInitializers(raw_ostream & OS) const1091     void writeCtorInitializers(raw_ostream &OS) const override {
1092       OS << getLowerName() << "(" << getUpperName() << ")";
1093     }
1094 
writeCtorDefaultInitializers(raw_ostream & OS) const1095     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1096       OS << getLowerName() << "()";
1097     }
1098 
writeCtorParameters(raw_ostream & OS) const1099     void writeCtorParameters(raw_ostream &OS) const override {
1100       OS << "VersionTuple " << getUpperName();
1101     }
1102 
writeDeclarations(raw_ostream & OS) const1103     void writeDeclarations(raw_ostream &OS) const override {
1104       OS << "VersionTuple " << getLowerName() << ";\n";
1105     }
1106 
writePCHReadDecls(raw_ostream & OS) const1107     void writePCHReadDecls(raw_ostream &OS) const override {
1108       OS << "    VersionTuple " << getLowerName()
1109          << "= Record.readVersionTuple();\n";
1110     }
1111 
writePCHReadArgs(raw_ostream & OS) const1112     void writePCHReadArgs(raw_ostream &OS) const override {
1113       OS << getLowerName();
1114     }
1115 
writePCHWrite(raw_ostream & OS) const1116     void writePCHWrite(raw_ostream &OS) const override {
1117       OS << "    Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1118     }
1119 
writeValue(raw_ostream & OS) const1120     void writeValue(raw_ostream &OS) const override {
1121       OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1122     }
1123 
writeDump(raw_ostream & OS) const1124     void writeDump(raw_ostream &OS) const override {
1125       OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
1126     }
1127   };
1128 
1129   class ExprArgument : public SimpleArgument {
1130   public:
ExprArgument(const Record & Arg,StringRef Attr)1131     ExprArgument(const Record &Arg, StringRef Attr)
1132       : SimpleArgument(Arg, Attr, "Expr *")
1133     {}
1134 
writeASTVisitorTraversal(raw_ostream & OS) const1135     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1136       OS << "  if (!"
1137          << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1138       OS << "    return false;\n";
1139     }
1140 
writeTemplateInstantiationArgs(raw_ostream & OS) const1141     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1142       OS << "tempInst" << getUpperName();
1143     }
1144 
writeTemplateInstantiation(raw_ostream & OS) const1145     void writeTemplateInstantiation(raw_ostream &OS) const override {
1146       OS << "      " << getType() << " tempInst" << getUpperName() << ";\n";
1147       OS << "      {\n";
1148       OS << "        EnterExpressionEvaluationContext "
1149          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1150       OS << "        ExprResult " << "Result = S.SubstExpr("
1151          << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1152       OS << "        tempInst" << getUpperName() << " = "
1153          << "Result.getAs<Expr>();\n";
1154       OS << "      }\n";
1155     }
1156 
writeDump(raw_ostream & OS) const1157     void writeDump(raw_ostream &OS) const override {}
1158 
writeDumpChildren(raw_ostream & OS) const1159     void writeDumpChildren(raw_ostream &OS) const override {
1160       OS << "    Visit(SA->get" << getUpperName() << "());\n";
1161     }
1162 
writeHasChildren(raw_ostream & OS) const1163     void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1164   };
1165 
1166   class VariadicExprArgument : public VariadicArgument {
1167   public:
VariadicExprArgument(const Record & Arg,StringRef Attr)1168     VariadicExprArgument(const Record &Arg, StringRef Attr)
1169       : VariadicArgument(Arg, Attr, "Expr *")
1170     {}
1171 
writeASTVisitorTraversal(raw_ostream & OS) const1172     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1173       OS << "  {\n";
1174       OS << "    " << getType() << " *I = A->" << getLowerName()
1175          << "_begin();\n";
1176       OS << "    " << getType() << " *E = A->" << getLowerName()
1177          << "_end();\n";
1178       OS << "    for (; I != E; ++I) {\n";
1179       OS << "      if (!getDerived().TraverseStmt(*I))\n";
1180       OS << "        return false;\n";
1181       OS << "    }\n";
1182       OS << "  }\n";
1183     }
1184 
writeTemplateInstantiationArgs(raw_ostream & OS) const1185     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1186       OS << "tempInst" << getUpperName() << ", "
1187          << "A->" << getLowerName() << "_size()";
1188     }
1189 
writeTemplateInstantiation(raw_ostream & OS) const1190     void writeTemplateInstantiation(raw_ostream &OS) const override {
1191       OS << "      auto *tempInst" << getUpperName()
1192          << " = new (C, 16) " << getType()
1193          << "[A->" << getLowerName() << "_size()];\n";
1194       OS << "      {\n";
1195       OS << "        EnterExpressionEvaluationContext "
1196          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1197       OS << "        " << getType() << " *TI = tempInst" << getUpperName()
1198          << ";\n";
1199       OS << "        " << getType() << " *I = A->" << getLowerName()
1200          << "_begin();\n";
1201       OS << "        " << getType() << " *E = A->" << getLowerName()
1202          << "_end();\n";
1203       OS << "        for (; I != E; ++I, ++TI) {\n";
1204       OS << "          ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1205       OS << "          *TI = Result.getAs<Expr>();\n";
1206       OS << "        }\n";
1207       OS << "      }\n";
1208     }
1209 
writeDump(raw_ostream & OS) const1210     void writeDump(raw_ostream &OS) const override {}
1211 
writeDumpChildren(raw_ostream & OS) const1212     void writeDumpChildren(raw_ostream &OS) const override {
1213       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1214          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1215          << getLowerName() << "_end(); I != E; ++I)\n";
1216       OS << "      Visit(*I);\n";
1217     }
1218 
writeHasChildren(raw_ostream & OS) const1219     void writeHasChildren(raw_ostream &OS) const override {
1220       OS << "SA->" << getLowerName() << "_begin() != "
1221          << "SA->" << getLowerName() << "_end()";
1222     }
1223   };
1224 
1225   class VariadicIdentifierArgument : public VariadicArgument {
1226   public:
VariadicIdentifierArgument(const Record & Arg,StringRef Attr)1227     VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1228       : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1229     {}
1230   };
1231 
1232   class VariadicStringArgument : public VariadicArgument {
1233   public:
VariadicStringArgument(const Record & Arg,StringRef Attr)1234     VariadicStringArgument(const Record &Arg, StringRef Attr)
1235       : VariadicArgument(Arg, Attr, "StringRef")
1236     {}
1237 
writeCtorBody(raw_ostream & OS) const1238     void writeCtorBody(raw_ostream &OS) const override {
1239       OS << "  for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1240             "       ++I) {\n"
1241             "    StringRef Ref = " << getUpperName() << "[I];\n"
1242             "    if (!Ref.empty()) {\n"
1243             "      char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1244             "      std::memcpy(Mem, Ref.data(), Ref.size());\n"
1245             "      " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1246             "    }\n"
1247             "  }\n";
1248     }
1249 
writeValueImpl(raw_ostream & OS) const1250     void writeValueImpl(raw_ostream &OS) const override {
1251       OS << "    OS << \"\\\"\" << Val << \"\\\"\";\n";
1252     }
1253   };
1254 
1255   class TypeArgument : public SimpleArgument {
1256   public:
TypeArgument(const Record & Arg,StringRef Attr)1257     TypeArgument(const Record &Arg, StringRef Attr)
1258       : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1259     {}
1260 
writeAccessors(raw_ostream & OS) const1261     void writeAccessors(raw_ostream &OS) const override {
1262       OS << "  QualType get" << getUpperName() << "() const {\n";
1263       OS << "    return " << getLowerName() << "->getType();\n";
1264       OS << "  }";
1265       OS << "  " << getType() << " get" << getUpperName() << "Loc() const {\n";
1266       OS << "    return " << getLowerName() << ";\n";
1267       OS << "  }";
1268     }
1269 
writeASTVisitorTraversal(raw_ostream & OS) const1270     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1271       OS << "  if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1272       OS << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1273       OS << "      return false;\n";
1274     }
1275 
writeTemplateInstantiationArgs(raw_ostream & OS) const1276     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1277       OS << "A->get" << getUpperName() << "Loc()";
1278     }
1279 
writePCHWrite(raw_ostream & OS) const1280     void writePCHWrite(raw_ostream &OS) const override {
1281       OS << "    "
1282          << WritePCHRecord(getType(),
1283                            "SA->get" + std::string(getUpperName()) + "Loc()");
1284     }
1285   };
1286 
1287 } // end anonymous namespace
1288 
1289 static std::unique_ptr<Argument>
createArgument(const Record & Arg,StringRef Attr,const Record * Search=nullptr)1290 createArgument(const Record &Arg, StringRef Attr,
1291                const Record *Search = nullptr) {
1292   if (!Search)
1293     Search = &Arg;
1294 
1295   std::unique_ptr<Argument> Ptr;
1296   llvm::StringRef ArgName = Search->getName();
1297 
1298   if (ArgName == "AlignedArgument")
1299     Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1300   else if (ArgName == "EnumArgument")
1301     Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1302   else if (ArgName == "ExprArgument")
1303     Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1304   else if (ArgName == "DeclArgument")
1305     Ptr = std::make_unique<SimpleArgument>(
1306         Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1307   else if (ArgName == "IdentifierArgument")
1308     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1309   else if (ArgName == "DefaultBoolArgument")
1310     Ptr = std::make_unique<DefaultSimpleArgument>(
1311         Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1312   else if (ArgName == "BoolArgument")
1313     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1314   else if (ArgName == "DefaultIntArgument")
1315     Ptr = std::make_unique<DefaultSimpleArgument>(
1316         Arg, Attr, "int", Arg.getValueAsInt("Default"));
1317   else if (ArgName == "IntArgument")
1318     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1319   else if (ArgName == "StringArgument")
1320     Ptr = std::make_unique<StringArgument>(Arg, Attr);
1321   else if (ArgName == "TypeArgument")
1322     Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1323   else if (ArgName == "UnsignedArgument")
1324     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1325   else if (ArgName == "VariadicUnsignedArgument")
1326     Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1327   else if (ArgName == "VariadicStringArgument")
1328     Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1329   else if (ArgName == "VariadicEnumArgument")
1330     Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1331   else if (ArgName == "VariadicExprArgument")
1332     Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1333   else if (ArgName == "VariadicParamIdxArgument")
1334     Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1335   else if (ArgName == "VariadicParamOrParamIdxArgument")
1336     Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1337   else if (ArgName == "ParamIdxArgument")
1338     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1339   else if (ArgName == "VariadicIdentifierArgument")
1340     Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1341   else if (ArgName == "VersionArgument")
1342     Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1343   else if (ArgName == "OMPTraitInfoArgument")
1344     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1345 
1346   if (!Ptr) {
1347     // Search in reverse order so that the most-derived type is handled first.
1348     ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1349     for (const auto &Base : llvm::reverse(Bases)) {
1350       if ((Ptr = createArgument(Arg, Attr, Base.first)))
1351         break;
1352     }
1353   }
1354 
1355   if (Ptr && Arg.getValueAsBit("Optional"))
1356     Ptr->setOptional(true);
1357 
1358   if (Ptr && Arg.getValueAsBit("Fake"))
1359     Ptr->setFake(true);
1360 
1361   return Ptr;
1362 }
1363 
writeAvailabilityValue(raw_ostream & OS)1364 static void writeAvailabilityValue(raw_ostream &OS) {
1365   OS << "\" << getPlatform()->getName();\n"
1366      << "  if (getStrict()) OS << \", strict\";\n"
1367      << "  if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1368      << "  if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1369      << "  if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1370      << "  if (getUnavailable()) OS << \", unavailable\";\n"
1371      << "  OS << \"";
1372 }
1373 
writeDeprecatedAttrValue(raw_ostream & OS,std::string & Variety)1374 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1375   OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1376   // Only GNU deprecated has an optional fixit argument at the second position.
1377   if (Variety == "GNU")
1378      OS << "    if (!getReplacement().empty()) OS << \", \\\"\""
1379            " << getReplacement() << \"\\\"\";\n";
1380   OS << "    OS << \"";
1381 }
1382 
writeGetSpellingFunction(const Record & R,raw_ostream & OS)1383 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1384   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1385 
1386   OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1387   if (Spellings.empty()) {
1388     OS << "  return \"(No spelling)\";\n}\n\n";
1389     return;
1390   }
1391 
1392   OS << "  switch (getAttributeSpellingListIndex()) {\n"
1393         "  default:\n"
1394         "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1395         "    return \"(No spelling)\";\n";
1396 
1397   for (unsigned I = 0; I < Spellings.size(); ++I)
1398     OS << "  case " << I << ":\n"
1399           "    return \"" << Spellings[I].name() << "\";\n";
1400   // End of the switch statement.
1401   OS << "  }\n";
1402   // End of the getSpelling function.
1403   OS << "}\n\n";
1404 }
1405 
1406 static void
writePrettyPrintFunction(const Record & R,const std::vector<std::unique_ptr<Argument>> & Args,raw_ostream & OS)1407 writePrettyPrintFunction(const Record &R,
1408                          const std::vector<std::unique_ptr<Argument>> &Args,
1409                          raw_ostream &OS) {
1410   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1411 
1412   OS << "void " << R.getName() << "Attr::printPretty("
1413     << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1414 
1415   if (Spellings.empty()) {
1416     OS << "}\n\n";
1417     return;
1418   }
1419 
1420   OS << "  switch (getAttributeSpellingListIndex()) {\n"
1421         "  default:\n"
1422         "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1423         "    break;\n";
1424 
1425   for (unsigned I = 0; I < Spellings.size(); ++ I) {
1426     llvm::SmallString<16> Prefix;
1427     llvm::SmallString<8> Suffix;
1428     // The actual spelling of the name and namespace (if applicable)
1429     // of an attribute without considering prefix and suffix.
1430     llvm::SmallString<64> Spelling;
1431     std::string Name = Spellings[I].name();
1432     std::string Variety = Spellings[I].variety();
1433 
1434     if (Variety == "GNU") {
1435       Prefix = " __attribute__((";
1436       Suffix = "))";
1437     } else if (Variety == "CXX11" || Variety == "C2x") {
1438       Prefix = " [[";
1439       Suffix = "]]";
1440       std::string Namespace = Spellings[I].nameSpace();
1441       if (!Namespace.empty()) {
1442         Spelling += Namespace;
1443         Spelling += "::";
1444       }
1445     } else if (Variety == "Declspec") {
1446       Prefix = " __declspec(";
1447       Suffix = ")";
1448     } else if (Variety == "Microsoft") {
1449       Prefix = "[";
1450       Suffix = "]";
1451     } else if (Variety == "Keyword") {
1452       Prefix = " ";
1453       Suffix = "";
1454     } else if (Variety == "Pragma") {
1455       Prefix = "#pragma ";
1456       Suffix = "\n";
1457       std::string Namespace = Spellings[I].nameSpace();
1458       if (!Namespace.empty()) {
1459         Spelling += Namespace;
1460         Spelling += " ";
1461       }
1462     } else {
1463       llvm_unreachable("Unknown attribute syntax variety!");
1464     }
1465 
1466     Spelling += Name;
1467 
1468     OS <<
1469       "  case " << I << " : {\n"
1470       "    OS << \"" << Prefix << Spelling;
1471 
1472     if (Variety == "Pragma") {
1473       OS << "\";\n";
1474       OS << "    printPrettyPragma(OS, Policy);\n";
1475       OS << "    OS << \"\\n\";";
1476       OS << "    break;\n";
1477       OS << "  }\n";
1478       continue;
1479     }
1480 
1481     if (Spelling == "availability") {
1482       OS << "(";
1483       writeAvailabilityValue(OS);
1484       OS << ")";
1485     } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1486       OS << "(";
1487       writeDeprecatedAttrValue(OS, Variety);
1488       OS << ")";
1489     } else {
1490       // To avoid printing parentheses around an empty argument list or
1491       // printing spurious commas at the end of an argument list, we need to
1492       // determine where the last provided non-fake argument is.
1493       unsigned NonFakeArgs = 0;
1494       unsigned TrailingOptArgs = 0;
1495       bool FoundNonOptArg = false;
1496       for (const auto &arg : llvm::reverse(Args)) {
1497         if (arg->isFake())
1498           continue;
1499         ++NonFakeArgs;
1500         if (FoundNonOptArg)
1501           continue;
1502         // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1503         // any way to detect whether the argument was omitted.
1504         if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1505           FoundNonOptArg = true;
1506           continue;
1507         }
1508         if (!TrailingOptArgs++)
1509           OS << "\";\n"
1510              << "    unsigned TrailingOmittedArgs = 0;\n";
1511         OS << "    if (" << arg->getIsOmitted() << ")\n"
1512            << "      ++TrailingOmittedArgs;\n";
1513       }
1514       if (TrailingOptArgs)
1515         OS << "    OS << \"";
1516       if (TrailingOptArgs < NonFakeArgs)
1517         OS << "(";
1518       else if (TrailingOptArgs)
1519         OS << "\";\n"
1520            << "    if (TrailingOmittedArgs < " << NonFakeArgs << ")\n"
1521            << "       OS << \"(\";\n"
1522            << "    OS << \"";
1523       unsigned ArgIndex = 0;
1524       for (const auto &arg : Args) {
1525         if (arg->isFake())
1526           continue;
1527         if (ArgIndex) {
1528           if (ArgIndex >= NonFakeArgs - TrailingOptArgs)
1529             OS << "\";\n"
1530                << "    if (" << ArgIndex << " < " << NonFakeArgs
1531                << " - TrailingOmittedArgs)\n"
1532                << "      OS << \", \";\n"
1533                << "    OS << \"";
1534           else
1535             OS << ", ";
1536         }
1537         std::string IsOmitted = arg->getIsOmitted();
1538         if (arg->isOptional() && IsOmitted != "false")
1539           OS << "\";\n"
1540              << "    if (!(" << IsOmitted << ")) {\n"
1541              << "      OS << \"";
1542         arg->writeValue(OS);
1543         if (arg->isOptional() && IsOmitted != "false")
1544           OS << "\";\n"
1545              << "    }\n"
1546              << "    OS << \"";
1547         ++ArgIndex;
1548       }
1549       if (TrailingOptArgs < NonFakeArgs)
1550         OS << ")";
1551       else if (TrailingOptArgs)
1552         OS << "\";\n"
1553            << "    if (TrailingOmittedArgs < " << NonFakeArgs << ")\n"
1554            << "       OS << \")\";\n"
1555            << "    OS << \"";
1556     }
1557 
1558     OS << Suffix + "\";\n";
1559 
1560     OS <<
1561       "    break;\n"
1562       "  }\n";
1563   }
1564 
1565   // End of the switch statement.
1566   OS << "}\n";
1567   // End of the print function.
1568   OS << "}\n\n";
1569 }
1570 
1571 /// Return the index of a spelling in a spelling list.
1572 static unsigned
getSpellingListIndex(const std::vector<FlattenedSpelling> & SpellingList,const FlattenedSpelling & Spelling)1573 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1574                      const FlattenedSpelling &Spelling) {
1575   assert(!SpellingList.empty() && "Spelling list is empty!");
1576 
1577   for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1578     const FlattenedSpelling &S = SpellingList[Index];
1579     if (S.variety() != Spelling.variety())
1580       continue;
1581     if (S.nameSpace() != Spelling.nameSpace())
1582       continue;
1583     if (S.name() != Spelling.name())
1584       continue;
1585 
1586     return Index;
1587   }
1588 
1589   llvm_unreachable("Unknown spelling!");
1590 }
1591 
writeAttrAccessorDefinition(const Record & R,raw_ostream & OS)1592 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1593   std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1594   if (Accessors.empty())
1595     return;
1596 
1597   const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1598   assert(!SpellingList.empty() &&
1599          "Attribute with empty spelling list can't have accessors!");
1600   for (const auto *Accessor : Accessors) {
1601     const StringRef Name = Accessor->getValueAsString("Name");
1602     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1603 
1604     OS << "  bool " << Name
1605        << "() const { return getAttributeSpellingListIndex() == ";
1606     for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1607       OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1608       if (Index != Spellings.size() - 1)
1609         OS << " ||\n    getAttributeSpellingListIndex() == ";
1610       else
1611         OS << "; }\n";
1612     }
1613   }
1614 }
1615 
1616 static bool
SpellingNamesAreCommon(const std::vector<FlattenedSpelling> & Spellings)1617 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1618   assert(!Spellings.empty() && "An empty list of spellings was provided");
1619   std::string FirstName =
1620       std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1621   for (const auto &Spelling :
1622        llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1623     std::string Name =
1624         std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1625     if (Name != FirstName)
1626       return false;
1627   }
1628   return true;
1629 }
1630 
1631 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1632 static std::string
CreateSemanticSpellings(const std::vector<FlattenedSpelling> & Spellings,SemanticSpellingMap & Map)1633 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1634                         SemanticSpellingMap &Map) {
1635   // The enumerants are automatically generated based on the variety,
1636   // namespace (if present) and name for each attribute spelling. However,
1637   // care is taken to avoid trampling on the reserved namespace due to
1638   // underscores.
1639   std::string Ret("  enum Spelling {\n");
1640   std::set<std::string> Uniques;
1641   unsigned Idx = 0;
1642 
1643   // If we have a need to have this many spellings we likely need to add an
1644   // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1645   // value of SpellingNotCalculated there and here.
1646   assert(Spellings.size() < 15 &&
1647          "Too many spellings, would step on SpellingNotCalculated in "
1648          "AttributeCommonInfo");
1649   for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1650     const FlattenedSpelling &S = *I;
1651     const std::string &Variety = S.variety();
1652     const std::string &Spelling = S.name();
1653     const std::string &Namespace = S.nameSpace();
1654     std::string EnumName;
1655 
1656     EnumName += (Variety + "_");
1657     if (!Namespace.empty())
1658       EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1659       "_");
1660     EnumName += NormalizeNameForSpellingComparison(Spelling);
1661 
1662     // Even if the name is not unique, this spelling index corresponds to a
1663     // particular enumerant name that we've calculated.
1664     Map[Idx] = EnumName;
1665 
1666     // Since we have been stripping underscores to avoid trampling on the
1667     // reserved namespace, we may have inadvertently created duplicate
1668     // enumerant names. These duplicates are not considered part of the
1669     // semantic spelling, and can be elided.
1670     if (Uniques.find(EnumName) != Uniques.end())
1671       continue;
1672 
1673     Uniques.insert(EnumName);
1674     if (I != Spellings.begin())
1675       Ret += ",\n";
1676     // Duplicate spellings are not considered part of the semantic spelling
1677     // enumeration, but the spelling index and semantic spelling values are
1678     // meant to be equivalent, so we must specify a concrete value for each
1679     // enumerator.
1680     Ret += "    " + EnumName + " = " + llvm::utostr(Idx);
1681   }
1682   Ret += ",\n  SpellingNotCalculated = 15\n";
1683   Ret += "\n  };\n\n";
1684   return Ret;
1685 }
1686 
WriteSemanticSpellingSwitch(const std::string & VarName,const SemanticSpellingMap & Map,raw_ostream & OS)1687 void WriteSemanticSpellingSwitch(const std::string &VarName,
1688                                  const SemanticSpellingMap &Map,
1689                                  raw_ostream &OS) {
1690   OS << "  switch (" << VarName << ") {\n    default: "
1691     << "llvm_unreachable(\"Unknown spelling list index\");\n";
1692   for (const auto &I : Map)
1693     OS << "    case " << I.first << ": return " << I.second << ";\n";
1694   OS << "  }\n";
1695 }
1696 
1697 // Emits the LateParsed property for attributes.
emitClangAttrLateParsedList(RecordKeeper & Records,raw_ostream & OS)1698 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1699   OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1700   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1701 
1702   for (const auto *Attr : Attrs) {
1703     bool LateParsed = Attr->getValueAsBit("LateParsed");
1704 
1705     if (LateParsed) {
1706       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1707 
1708       // FIXME: Handle non-GNU attributes
1709       for (const auto &I : Spellings) {
1710         if (I.variety() != "GNU")
1711           continue;
1712         OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1713       }
1714     }
1715   }
1716   OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1717 }
1718 
hasGNUorCXX11Spelling(const Record & Attribute)1719 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1720   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1721   for (const auto &I : Spellings) {
1722     if (I.variety() == "GNU" || I.variety() == "CXX11")
1723       return true;
1724   }
1725   return false;
1726 }
1727 
1728 namespace {
1729 
1730 struct AttributeSubjectMatchRule {
1731   const Record *MetaSubject;
1732   const Record *Constraint;
1733 
AttributeSubjectMatchRule__anoncbb22e180311::AttributeSubjectMatchRule1734   AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1735       : MetaSubject(MetaSubject), Constraint(Constraint) {
1736     assert(MetaSubject && "Missing subject");
1737   }
1738 
isSubRule__anoncbb22e180311::AttributeSubjectMatchRule1739   bool isSubRule() const { return Constraint != nullptr; }
1740 
getSubjects__anoncbb22e180311::AttributeSubjectMatchRule1741   std::vector<Record *> getSubjects() const {
1742     return (Constraint ? Constraint : MetaSubject)
1743         ->getValueAsListOfDefs("Subjects");
1744   }
1745 
getLangOpts__anoncbb22e180311::AttributeSubjectMatchRule1746   std::vector<Record *> getLangOpts() const {
1747     if (Constraint) {
1748       // Lookup the options in the sub-rule first, in case the sub-rule
1749       // overrides the rules options.
1750       std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1751       if (!Opts.empty())
1752         return Opts;
1753     }
1754     return MetaSubject->getValueAsListOfDefs("LangOpts");
1755   }
1756 
1757   // Abstract rules are used only for sub-rules
isAbstractRule__anoncbb22e180311::AttributeSubjectMatchRule1758   bool isAbstractRule() const { return getSubjects().empty(); }
1759 
getName__anoncbb22e180311::AttributeSubjectMatchRule1760   StringRef getName() const {
1761     return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1762   }
1763 
isNegatedSubRule__anoncbb22e180311::AttributeSubjectMatchRule1764   bool isNegatedSubRule() const {
1765     assert(isSubRule() && "Not a sub-rule");
1766     return Constraint->getValueAsBit("Negated");
1767   }
1768 
getSpelling__anoncbb22e180311::AttributeSubjectMatchRule1769   std::string getSpelling() const {
1770     std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1771     if (isSubRule()) {
1772       Result += '(';
1773       if (isNegatedSubRule())
1774         Result += "unless(";
1775       Result += getName();
1776       if (isNegatedSubRule())
1777         Result += ')';
1778       Result += ')';
1779     }
1780     return Result;
1781   }
1782 
getEnumValueName__anoncbb22e180311::AttributeSubjectMatchRule1783   std::string getEnumValueName() const {
1784     SmallString<128> Result;
1785     Result += "SubjectMatchRule_";
1786     Result += MetaSubject->getValueAsString("Name");
1787     if (isSubRule()) {
1788       Result += "_";
1789       if (isNegatedSubRule())
1790         Result += "not_";
1791       Result += Constraint->getValueAsString("Name");
1792     }
1793     if (isAbstractRule())
1794       Result += "_abstract";
1795     return std::string(Result.str());
1796   }
1797 
getEnumValue__anoncbb22e180311::AttributeSubjectMatchRule1798   std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1799 
1800   static const char *EnumName;
1801 };
1802 
1803 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1804 
1805 struct PragmaClangAttributeSupport {
1806   std::vector<AttributeSubjectMatchRule> Rules;
1807 
1808   class RuleOrAggregateRuleSet {
1809     std::vector<AttributeSubjectMatchRule> Rules;
1810     bool IsRule;
RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,bool IsRule)1811     RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1812                            bool IsRule)
1813         : Rules(Rules), IsRule(IsRule) {}
1814 
1815   public:
isRule() const1816     bool isRule() const { return IsRule; }
1817 
getRule() const1818     const AttributeSubjectMatchRule &getRule() const {
1819       assert(IsRule && "not a rule!");
1820       return Rules[0];
1821     }
1822 
getAggregateRuleSet() const1823     ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1824       return Rules;
1825     }
1826 
1827     static RuleOrAggregateRuleSet
getRule(const AttributeSubjectMatchRule & Rule)1828     getRule(const AttributeSubjectMatchRule &Rule) {
1829       return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1830     }
1831     static RuleOrAggregateRuleSet
getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules)1832     getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1833       return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1834     }
1835   };
1836   llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1837 
1838   PragmaClangAttributeSupport(RecordKeeper &Records);
1839 
1840   bool isAttributedSupported(const Record &Attribute);
1841 
1842   void emitMatchRuleList(raw_ostream &OS);
1843 
1844   void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1845 
1846   void generateParsingHelpers(raw_ostream &OS);
1847 };
1848 
1849 } // end anonymous namespace
1850 
doesDeclDeriveFrom(const Record * D,const Record * Base)1851 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1852   const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1853   if (!CurrentBase)
1854     return false;
1855   if (CurrentBase == Base)
1856     return true;
1857   return doesDeclDeriveFrom(CurrentBase, Base);
1858 }
1859 
PragmaClangAttributeSupport(RecordKeeper & Records)1860 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1861     RecordKeeper &Records) {
1862   std::vector<Record *> MetaSubjects =
1863       Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1864   auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1865                                        const Record *MetaSubject,
1866                                        const Record *Constraint) {
1867     Rules.emplace_back(MetaSubject, Constraint);
1868     std::vector<Record *> ApplicableSubjects =
1869         SubjectContainer->getValueAsListOfDefs("Subjects");
1870     for (const auto *Subject : ApplicableSubjects) {
1871       bool Inserted =
1872           SubjectsToRules
1873               .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1874                                         AttributeSubjectMatchRule(MetaSubject,
1875                                                                   Constraint)))
1876               .second;
1877       if (!Inserted) {
1878         PrintFatalError("Attribute subject match rules should not represent"
1879                         "same attribute subjects.");
1880       }
1881     }
1882   };
1883   for (const auto *MetaSubject : MetaSubjects) {
1884     MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1885     std::vector<Record *> Constraints =
1886         MetaSubject->getValueAsListOfDefs("Constraints");
1887     for (const auto *Constraint : Constraints)
1888       MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1889   }
1890 
1891   std::vector<Record *> Aggregates =
1892       Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1893   std::vector<Record *> DeclNodes =
1894     Records.getAllDerivedDefinitions(DeclNodeClassName);
1895   for (const auto *Aggregate : Aggregates) {
1896     Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1897 
1898     // Gather sub-classes of the aggregate subject that act as attribute
1899     // subject rules.
1900     std::vector<AttributeSubjectMatchRule> Rules;
1901     for (const auto *D : DeclNodes) {
1902       if (doesDeclDeriveFrom(D, SubjectDecl)) {
1903         auto It = SubjectsToRules.find(D);
1904         if (It == SubjectsToRules.end())
1905           continue;
1906         if (!It->second.isRule() || It->second.getRule().isSubRule())
1907           continue; // Assume that the rule will be included as well.
1908         Rules.push_back(It->second.getRule());
1909       }
1910     }
1911 
1912     bool Inserted =
1913         SubjectsToRules
1914             .try_emplace(SubjectDecl,
1915                          RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
1916             .second;
1917     if (!Inserted) {
1918       PrintFatalError("Attribute subject match rules should not represent"
1919                       "same attribute subjects.");
1920     }
1921   }
1922 }
1923 
1924 static PragmaClangAttributeSupport &
getPragmaAttributeSupport(RecordKeeper & Records)1925 getPragmaAttributeSupport(RecordKeeper &Records) {
1926   static PragmaClangAttributeSupport Instance(Records);
1927   return Instance;
1928 }
1929 
emitMatchRuleList(raw_ostream & OS)1930 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
1931   OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
1932   OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
1933         "IsNegated) "
1934      << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
1935   OS << "#endif\n";
1936   for (const auto &Rule : Rules) {
1937     OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
1938     OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
1939        << Rule.isAbstractRule();
1940     if (Rule.isSubRule())
1941       OS << ", "
1942          << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
1943          << ", " << Rule.isNegatedSubRule();
1944     OS << ")\n";
1945   }
1946   OS << "#undef ATTR_MATCH_SUB_RULE\n";
1947 }
1948 
isAttributedSupported(const Record & Attribute)1949 bool PragmaClangAttributeSupport::isAttributedSupported(
1950     const Record &Attribute) {
1951   // If the attribute explicitly specified whether to support #pragma clang
1952   // attribute, use that setting.
1953   bool Unset;
1954   bool SpecifiedResult =
1955     Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
1956   if (!Unset)
1957     return SpecifiedResult;
1958 
1959   // Opt-out rules:
1960   // An attribute requires delayed parsing (LateParsed is on)
1961   if (Attribute.getValueAsBit("LateParsed"))
1962     return false;
1963   // An attribute has no GNU/CXX11 spelling
1964   if (!hasGNUorCXX11Spelling(Attribute))
1965     return false;
1966   // An attribute subject list has a subject that isn't covered by one of the
1967   // subject match rules or has no subjects at all.
1968   if (Attribute.isValueUnset("Subjects"))
1969     return false;
1970   const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
1971   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
1972   if (Subjects.empty())
1973     return false;
1974   for (const auto *Subject : Subjects) {
1975     if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
1976       return false;
1977   }
1978   return true;
1979 }
1980 
GenerateTestExpression(ArrayRef<Record * > LangOpts)1981 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
1982   std::string Test;
1983 
1984   for (auto *E : LangOpts) {
1985     if (!Test.empty())
1986       Test += " || ";
1987 
1988     const StringRef Code = E->getValueAsString("CustomCode");
1989     if (!Code.empty()) {
1990       Test += "(";
1991       Test += Code;
1992       Test += ")";
1993       if (!E->getValueAsString("Name").empty()) {
1994         PrintWarning(
1995             E->getLoc(),
1996             "non-empty 'Name' field ignored because 'CustomCode' was supplied");
1997       }
1998     } else {
1999       Test += "LangOpts.";
2000       Test += E->getValueAsString("Name");
2001     }
2002   }
2003 
2004   if (Test.empty())
2005     return "true";
2006 
2007   return Test;
2008 }
2009 
2010 void
generateStrictConformsTo(const Record & Attr,raw_ostream & OS)2011 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2012                                                       raw_ostream &OS) {
2013   if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2014     return;
2015   // Generate a function that constructs a set of matching rules that describe
2016   // to which declarations the attribute should apply to.
2017   OS << "void getPragmaAttributeMatchRules("
2018      << "llvm::SmallVectorImpl<std::pair<"
2019      << AttributeSubjectMatchRule::EnumName
2020      << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2021   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2022   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2023   for (const auto *Subject : Subjects) {
2024     auto It = SubjectsToRules.find(Subject);
2025     assert(It != SubjectsToRules.end() &&
2026            "This attribute is unsupported by #pragma clang attribute");
2027     for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2028       // The rule might be language specific, so only subtract it from the given
2029       // rules if the specific language options are specified.
2030       std::vector<Record *> LangOpts = Rule.getLangOpts();
2031       OS << "  MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2032          << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2033          << "));\n";
2034     }
2035   }
2036   OS << "}\n\n";
2037 }
2038 
generateParsingHelpers(raw_ostream & OS)2039 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2040   // Generate routines that check the names of sub-rules.
2041   OS << "Optional<attr::SubjectMatchRule> "
2042         "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2043   OS << "  return None;\n";
2044   OS << "}\n\n";
2045 
2046   std::map<const Record *, std::vector<AttributeSubjectMatchRule>>
2047       SubMatchRules;
2048   for (const auto &Rule : Rules) {
2049     if (!Rule.isSubRule())
2050       continue;
2051     SubMatchRules[Rule.MetaSubject].push_back(Rule);
2052   }
2053 
2054   for (const auto &SubMatchRule : SubMatchRules) {
2055     OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
2056        << SubMatchRule.first->getValueAsString("Name")
2057        << "(StringRef Name, bool IsUnless) {\n";
2058     OS << "  if (IsUnless)\n";
2059     OS << "    return "
2060           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2061     for (const auto &Rule : SubMatchRule.second) {
2062       if (Rule.isNegatedSubRule())
2063         OS << "    Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2064            << ").\n";
2065     }
2066     OS << "    Default(None);\n";
2067     OS << "  return "
2068           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2069     for (const auto &Rule : SubMatchRule.second) {
2070       if (!Rule.isNegatedSubRule())
2071         OS << "  Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2072            << ").\n";
2073     }
2074     OS << "  Default(None);\n";
2075     OS << "}\n\n";
2076   }
2077 
2078   // Generate the function that checks for the top-level rules.
2079   OS << "std::pair<Optional<attr::SubjectMatchRule>, "
2080         "Optional<attr::SubjectMatchRule> (*)(StringRef, "
2081         "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2082   OS << "  return "
2083         "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
2084         "Optional<attr::SubjectMatchRule> (*) (StringRef, "
2085         "bool)>>(Name).\n";
2086   for (const auto &Rule : Rules) {
2087     if (Rule.isSubRule())
2088       continue;
2089     std::string SubRuleFunction;
2090     if (SubMatchRules.count(Rule.MetaSubject))
2091       SubRuleFunction =
2092           ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2093     else
2094       SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2095     OS << "  Case(\"" << Rule.getName() << "\", std::make_pair("
2096        << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2097   }
2098   OS << "  Default(std::make_pair(None, "
2099         "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2100   OS << "}\n\n";
2101 
2102   // Generate the function that checks for the submatch rules.
2103   OS << "const char *validAttributeSubjectMatchSubRules("
2104      << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2105   OS << "  switch (Rule) {\n";
2106   for (const auto &SubMatchRule : SubMatchRules) {
2107     OS << "  case "
2108        << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2109        << ":\n";
2110     OS << "  return \"'";
2111     bool IsFirst = true;
2112     for (const auto &Rule : SubMatchRule.second) {
2113       if (!IsFirst)
2114         OS << ", '";
2115       IsFirst = false;
2116       if (Rule.isNegatedSubRule())
2117         OS << "unless(";
2118       OS << Rule.getName();
2119       if (Rule.isNegatedSubRule())
2120         OS << ')';
2121       OS << "'";
2122     }
2123     OS << "\";\n";
2124   }
2125   OS << "  default: return nullptr;\n";
2126   OS << "  }\n";
2127   OS << "}\n\n";
2128 }
2129 
2130 template <typename Fn>
forEachUniqueSpelling(const Record & Attr,Fn && F)2131 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2132   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2133   SmallDenseSet<StringRef, 8> Seen;
2134   for (const FlattenedSpelling &S : Spellings) {
2135     if (Seen.insert(S.name()).second)
2136       F(S);
2137   }
2138 }
2139 
2140 /// Emits the first-argument-is-type property for attributes.
emitClangAttrTypeArgList(RecordKeeper & Records,raw_ostream & OS)2141 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2142   OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2143   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2144 
2145   for (const auto *Attr : Attrs) {
2146     // Determine whether the first argument is a type.
2147     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2148     if (Args.empty())
2149       continue;
2150 
2151     if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
2152       continue;
2153 
2154     // All these spellings take a single type argument.
2155     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2156       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2157     });
2158   }
2159   OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2160 }
2161 
2162 /// Emits the parse-arguments-in-unevaluated-context property for
2163 /// attributes.
emitClangAttrArgContextList(RecordKeeper & Records,raw_ostream & OS)2164 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2165   OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2166   ParsedAttrMap Attrs = getParsedAttrList(Records);
2167   for (const auto &I : Attrs) {
2168     const Record &Attr = *I.second;
2169 
2170     if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2171       continue;
2172 
2173     // All these spellings take are parsed unevaluated.
2174     forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2175       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2176     });
2177   }
2178   OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2179 }
2180 
isIdentifierArgument(Record * Arg)2181 static bool isIdentifierArgument(Record *Arg) {
2182   return !Arg->getSuperClasses().empty() &&
2183     llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2184     .Case("IdentifierArgument", true)
2185     .Case("EnumArgument", true)
2186     .Case("VariadicEnumArgument", true)
2187     .Default(false);
2188 }
2189 
isVariadicIdentifierArgument(Record * Arg)2190 static bool isVariadicIdentifierArgument(Record *Arg) {
2191   return !Arg->getSuperClasses().empty() &&
2192          llvm::StringSwitch<bool>(
2193              Arg->getSuperClasses().back().first->getName())
2194              .Case("VariadicIdentifierArgument", true)
2195              .Case("VariadicParamOrParamIdxArgument", true)
2196              .Default(false);
2197 }
2198 
emitClangAttrVariadicIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2199 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2200                                                    raw_ostream &OS) {
2201   OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2202   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2203   for (const auto *A : Attrs) {
2204     // Determine whether the first argument is a variadic identifier.
2205     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2206     if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2207       continue;
2208 
2209     // All these spellings take an identifier argument.
2210     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2211       OS << ".Case(\"" << S.name() << "\", "
2212          << "true"
2213          << ")\n";
2214     });
2215   }
2216   OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2217 }
2218 
2219 // Emits the first-argument-is-identifier property for attributes.
emitClangAttrIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2220 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2221   OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2222   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2223 
2224   for (const auto *Attr : Attrs) {
2225     // Determine whether the first argument is an identifier.
2226     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2227     if (Args.empty() || !isIdentifierArgument(Args[0]))
2228       continue;
2229 
2230     // All these spellings take an identifier argument.
2231     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2232       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2233     });
2234   }
2235   OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2236 }
2237 
keywordThisIsaIdentifierInArgument(const Record * Arg)2238 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2239   return !Arg->getSuperClasses().empty() &&
2240          llvm::StringSwitch<bool>(
2241              Arg->getSuperClasses().back().first->getName())
2242              .Case("VariadicParamOrParamIdxArgument", true)
2243              .Default(false);
2244 }
2245 
emitClangAttrThisIsaIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2246 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2247                                                   raw_ostream &OS) {
2248   OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2249   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2250   for (const auto *A : Attrs) {
2251     // Determine whether the first argument is a variadic identifier.
2252     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2253     if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2254       continue;
2255 
2256     // All these spellings take an identifier argument.
2257     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2258       OS << ".Case(\"" << S.name() << "\", "
2259          << "true"
2260          << ")\n";
2261     });
2262   }
2263   OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2264 }
2265 
emitAttributes(RecordKeeper & Records,raw_ostream & OS,bool Header)2266 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2267                            bool Header) {
2268   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2269   ParsedAttrMap AttrMap = getParsedAttrList(Records);
2270 
2271   for (const auto *Attr : Attrs) {
2272     const Record &R = *Attr;
2273 
2274     // FIXME: Currently, documentation is generated as-needed due to the fact
2275     // that there is no way to allow a generated project "reach into" the docs
2276     // directory (for instance, it may be an out-of-tree build). However, we want
2277     // to ensure that every attribute has a Documentation field, and produce an
2278     // error if it has been neglected. Otherwise, the on-demand generation which
2279     // happens server-side will fail. This code is ensuring that functionality,
2280     // even though this Emitter doesn't technically need the documentation.
2281     // When attribute documentation can be generated as part of the build
2282     // itself, this code can be removed.
2283     (void)R.getValueAsListOfDefs("Documentation");
2284 
2285     if (!R.getValueAsBit("ASTNode"))
2286       continue;
2287 
2288     ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2289     assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2290     std::string SuperName;
2291     bool Inheritable = false;
2292     for (const auto &Super : llvm::reverse(Supers)) {
2293       const Record *R = Super.first;
2294       if (R->getName() != "TargetSpecificAttr" &&
2295           R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2296         SuperName = std::string(R->getName());
2297       if (R->getName() == "InheritableAttr")
2298         Inheritable = true;
2299     }
2300 
2301     if (Header)
2302       OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2303     else
2304       OS << "\n// " << R.getName() << "Attr implementation\n\n";
2305 
2306     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2307     std::vector<std::unique_ptr<Argument>> Args;
2308     Args.reserve(ArgRecords.size());
2309 
2310     bool HasOptArg = false;
2311     bool HasFakeArg = false;
2312     for (const auto *ArgRecord : ArgRecords) {
2313       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2314       if (Header) {
2315         Args.back()->writeDeclarations(OS);
2316         OS << "\n\n";
2317       }
2318 
2319       // For these purposes, fake takes priority over optional.
2320       if (Args.back()->isFake()) {
2321         HasFakeArg = true;
2322       } else if (Args.back()->isOptional()) {
2323         HasOptArg = true;
2324       }
2325     }
2326 
2327     if (Header)
2328       OS << "public:\n";
2329 
2330     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2331 
2332     // If there are zero or one spellings, all spelling-related functionality
2333     // can be elided. If all of the spellings share the same name, the spelling
2334     // functionality can also be elided.
2335     bool ElideSpelling = (Spellings.size() <= 1) ||
2336                          SpellingNamesAreCommon(Spellings);
2337 
2338     // This maps spelling index values to semantic Spelling enumerants.
2339     SemanticSpellingMap SemanticToSyntacticMap;
2340 
2341     std::string SpellingEnum;
2342     if (Spellings.size() > 1)
2343       SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2344     if (Header)
2345       OS << SpellingEnum;
2346 
2347     const auto &ParsedAttrSpellingItr = llvm::find_if(
2348         AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2349           return &R == P.second;
2350         });
2351 
2352     // Emit CreateImplicit factory methods.
2353     auto emitCreate = [&](bool Implicit, bool emitFake) {
2354       if (Header)
2355         OS << "  static ";
2356       OS << R.getName() << "Attr *";
2357       if (!Header)
2358         OS << R.getName() << "Attr::";
2359       OS << "Create";
2360       if (Implicit)
2361         OS << "Implicit";
2362       OS << "(";
2363       OS << "ASTContext &Ctx";
2364       for (auto const &ai : Args) {
2365         if (ai->isFake() && !emitFake) continue;
2366         OS << ", ";
2367         ai->writeCtorParameters(OS);
2368       }
2369       OS << ", const AttributeCommonInfo &CommonInfo";
2370       if (Header)
2371         OS << " = {SourceRange{}}";
2372       OS << ")";
2373       if (Header) {
2374         OS << ";\n";
2375         return;
2376       }
2377 
2378       OS << " {\n";
2379       OS << "  auto *A = new (Ctx) " << R.getName();
2380       OS << "Attr(Ctx, CommonInfo";
2381       for (auto const &ai : Args) {
2382         if (ai->isFake() && !emitFake) continue;
2383         OS << ", ";
2384         ai->writeImplicitCtorArgs(OS);
2385       }
2386       OS << ");\n";
2387       if (Implicit) {
2388         OS << "  A->setImplicit(true);\n";
2389       }
2390       if (Implicit || ElideSpelling) {
2391         OS << "  if (!A->isAttributeSpellingListCalculated() && "
2392               "!A->getAttrName())\n";
2393         OS << "    A->setAttributeSpellingListIndex(0);\n";
2394       }
2395       OS << "  return A;\n}\n\n";
2396     };
2397 
2398     auto emitCreateNoCI = [&](bool Implicit, bool emitFake) {
2399       if (Header)
2400         OS << "  static ";
2401       OS << R.getName() << "Attr *";
2402       if (!Header)
2403         OS << R.getName() << "Attr::";
2404       OS << "Create";
2405       if (Implicit)
2406         OS << "Implicit";
2407       OS << "(";
2408       OS << "ASTContext &Ctx";
2409       for (auto const &ai : Args) {
2410         if (ai->isFake() && !emitFake) continue;
2411         OS << ", ";
2412         ai->writeCtorParameters(OS);
2413       }
2414       OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax";
2415       if (!ElideSpelling) {
2416         OS << ", " << R.getName() << "Attr::Spelling S";
2417         if (Header)
2418           OS << " = static_cast<Spelling>(SpellingNotCalculated)";
2419       }
2420       OS << ")";
2421       if (Header) {
2422         OS << ";\n";
2423         return;
2424       }
2425 
2426       OS << " {\n";
2427       OS << "  AttributeCommonInfo I(Range, ";
2428 
2429       if (ParsedAttrSpellingItr != std::end(AttrMap))
2430         OS << "AT_" << ParsedAttrSpellingItr->first;
2431       else
2432         OS << "NoSemaHandlerAttribute";
2433 
2434       OS << ", Syntax";
2435       if (!ElideSpelling)
2436         OS << ", S";
2437       OS << ");\n";
2438       OS << "  return Create";
2439       if (Implicit)
2440         OS << "Implicit";
2441       OS << "(Ctx";
2442       for (auto const &ai : Args) {
2443         if (ai->isFake() && !emitFake) continue;
2444         OS << ", ";
2445         ai->writeImplicitCtorArgs(OS);
2446       }
2447       OS << ", I);\n";
2448       OS << "}\n\n";
2449     };
2450 
2451     auto emitCreates = [&](bool emitFake) {
2452       emitCreate(true, emitFake);
2453       emitCreate(false, emitFake);
2454       emitCreateNoCI(true, emitFake);
2455       emitCreateNoCI(false, emitFake);
2456     };
2457 
2458     if (Header)
2459       OS << "  // Factory methods\n";
2460 
2461     // Emit a CreateImplicit that takes all the arguments.
2462     emitCreates(true);
2463 
2464     // Emit a CreateImplicit that takes all the non-fake arguments.
2465     if (HasFakeArg)
2466       emitCreates(false);
2467 
2468     // Emit constructors.
2469     auto emitCtor = [&](bool emitOpt, bool emitFake) {
2470       auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2471         if (arg->isFake()) return emitFake;
2472         if (arg->isOptional()) return emitOpt;
2473         return true;
2474       };
2475       if (Header)
2476         OS << "  ";
2477       else
2478         OS << R.getName() << "Attr::";
2479       OS << R.getName()
2480          << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2481       OS << '\n';
2482       for (auto const &ai : Args) {
2483         if (!shouldEmitArg(ai)) continue;
2484         OS << "              , ";
2485         ai->writeCtorParameters(OS);
2486         OS << "\n";
2487       }
2488 
2489       OS << "             )";
2490       if (Header) {
2491         OS << ";\n";
2492         return;
2493       }
2494       OS << "\n  : " << SuperName << "(Ctx, CommonInfo, ";
2495       OS << "attr::" << R.getName() << ", "
2496          << (R.getValueAsBit("LateParsed") ? "true" : "false");
2497       if (Inheritable) {
2498         OS << ", "
2499            << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2500                                                               : "false");
2501       }
2502       OS << ")\n";
2503 
2504       for (auto const &ai : Args) {
2505         OS << "              , ";
2506         if (!shouldEmitArg(ai)) {
2507           ai->writeCtorDefaultInitializers(OS);
2508         } else {
2509           ai->writeCtorInitializers(OS);
2510         }
2511         OS << "\n";
2512       }
2513 
2514       OS << "  {\n";
2515 
2516       for (auto const &ai : Args) {
2517         if (!shouldEmitArg(ai)) continue;
2518         ai->writeCtorBody(OS);
2519       }
2520       OS << "}\n\n";
2521     };
2522 
2523     if (Header)
2524       OS << "\n  // Constructors\n";
2525 
2526     // Emit a constructor that includes all the arguments.
2527     // This is necessary for cloning.
2528     emitCtor(true, true);
2529 
2530     // Emit a constructor that takes all the non-fake arguments.
2531     if (HasFakeArg)
2532       emitCtor(true, false);
2533 
2534     // Emit a constructor that takes all the non-fake, non-optional arguments.
2535     if (HasOptArg)
2536       emitCtor(false, false);
2537 
2538     if (Header) {
2539       OS << '\n';
2540       OS << "  " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2541       OS << "  void printPretty(raw_ostream &OS,\n"
2542          << "                   const PrintingPolicy &Policy) const;\n";
2543       OS << "  const char *getSpelling() const;\n";
2544     }
2545 
2546     if (!ElideSpelling) {
2547       assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2548       if (Header)
2549         OS << "  Spelling getSemanticSpelling() const;\n";
2550       else {
2551         OS << R.getName() << "Attr::Spelling " << R.getName()
2552            << "Attr::getSemanticSpelling() const {\n";
2553         WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2554                                     SemanticToSyntacticMap, OS);
2555         OS << "}\n";
2556       }
2557     }
2558 
2559     if (Header)
2560       writeAttrAccessorDefinition(R, OS);
2561 
2562     for (auto const &ai : Args) {
2563       if (Header) {
2564         ai->writeAccessors(OS);
2565       } else {
2566         ai->writeAccessorDefinitions(OS);
2567       }
2568       OS << "\n\n";
2569 
2570       // Don't write conversion routines for fake arguments.
2571       if (ai->isFake()) continue;
2572 
2573       if (ai->isEnumArg())
2574         static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2575                                                                      Header);
2576       else if (ai->isVariadicEnumArg())
2577         static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2578             OS, Header);
2579     }
2580 
2581     if (Header) {
2582       OS << R.getValueAsString("AdditionalMembers");
2583       OS << "\n\n";
2584 
2585       OS << "  static bool classof(const Attr *A) { return A->getKind() == "
2586          << "attr::" << R.getName() << "; }\n";
2587 
2588       OS << "};\n\n";
2589     } else {
2590       OS << R.getName() << "Attr *" << R.getName()
2591          << "Attr::clone(ASTContext &C) const {\n";
2592       OS << "  auto *A = new (C) " << R.getName() << "Attr(C, *this";
2593       for (auto const &ai : Args) {
2594         OS << ", ";
2595         ai->writeCloneArgs(OS);
2596       }
2597       OS << ");\n";
2598       OS << "  A->Inherited = Inherited;\n";
2599       OS << "  A->IsPackExpansion = IsPackExpansion;\n";
2600       OS << "  A->setImplicit(Implicit);\n";
2601       OS << "  return A;\n}\n\n";
2602 
2603       writePrettyPrintFunction(R, Args, OS);
2604       writeGetSpellingFunction(R, OS);
2605     }
2606   }
2607 }
2608 // Emits the class definitions for attributes.
EmitClangAttrClass(RecordKeeper & Records,raw_ostream & OS)2609 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2610   emitSourceFileHeader("Attribute classes' definitions", OS);
2611 
2612   OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2613   OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2614 
2615   emitAttributes(Records, OS, true);
2616 
2617   OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2618 }
2619 
2620 // Emits the class method definitions for attributes.
EmitClangAttrImpl(RecordKeeper & Records,raw_ostream & OS)2621 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2622   emitSourceFileHeader("Attribute classes' member function definitions", OS);
2623 
2624   emitAttributes(Records, OS, false);
2625 
2626   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2627 
2628   // Instead of relying on virtual dispatch we just create a huge dispatch
2629   // switch. This is both smaller and faster than virtual functions.
2630   auto EmitFunc = [&](const char *Method) {
2631     OS << "  switch (getKind()) {\n";
2632     for (const auto *Attr : Attrs) {
2633       const Record &R = *Attr;
2634       if (!R.getValueAsBit("ASTNode"))
2635         continue;
2636 
2637       OS << "  case attr::" << R.getName() << ":\n";
2638       OS << "    return cast<" << R.getName() << "Attr>(this)->" << Method
2639          << ";\n";
2640     }
2641     OS << "  }\n";
2642     OS << "  llvm_unreachable(\"Unexpected attribute kind!\");\n";
2643     OS << "}\n\n";
2644   };
2645 
2646   OS << "const char *Attr::getSpelling() const {\n";
2647   EmitFunc("getSpelling()");
2648 
2649   OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2650   EmitFunc("clone(C)");
2651 
2652   OS << "void Attr::printPretty(raw_ostream &OS, "
2653         "const PrintingPolicy &Policy) const {\n";
2654   EmitFunc("printPretty(OS, Policy)");
2655 }
2656 
emitAttrList(raw_ostream & OS,StringRef Class,const std::vector<Record * > & AttrList)2657 static void emitAttrList(raw_ostream &OS, StringRef Class,
2658                          const std::vector<Record*> &AttrList) {
2659   for (auto Cur : AttrList) {
2660     OS << Class << "(" << Cur->getName() << ")\n";
2661   }
2662 }
2663 
2664 // Determines if an attribute has a Pragma spelling.
AttrHasPragmaSpelling(const Record * R)2665 static bool AttrHasPragmaSpelling(const Record *R) {
2666   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2667   return llvm::find_if(Spellings, [](const FlattenedSpelling &S) {
2668            return S.variety() == "Pragma";
2669          }) != Spellings.end();
2670 }
2671 
2672 namespace {
2673 
2674   struct AttrClassDescriptor {
2675     const char * const MacroName;
2676     const char * const TableGenName;
2677   };
2678 
2679 } // end anonymous namespace
2680 
2681 static const AttrClassDescriptor AttrClassDescriptors[] = {
2682   { "ATTR", "Attr" },
2683   { "TYPE_ATTR", "TypeAttr" },
2684   { "STMT_ATTR", "StmtAttr" },
2685   { "INHERITABLE_ATTR", "InheritableAttr" },
2686   { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
2687   { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
2688   { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
2689 };
2690 
emitDefaultDefine(raw_ostream & OS,StringRef name,const char * superName)2691 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
2692                               const char *superName) {
2693   OS << "#ifndef " << name << "\n";
2694   OS << "#define " << name << "(NAME) ";
2695   if (superName) OS << superName << "(NAME)";
2696   OS << "\n#endif\n\n";
2697 }
2698 
2699 namespace {
2700 
2701   /// A class of attributes.
2702   struct AttrClass {
2703     const AttrClassDescriptor &Descriptor;
2704     Record *TheRecord;
2705     AttrClass *SuperClass = nullptr;
2706     std::vector<AttrClass*> SubClasses;
2707     std::vector<Record*> Attrs;
2708 
AttrClass__anoncbb22e181311::AttrClass2709     AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
2710       : Descriptor(Descriptor), TheRecord(R) {}
2711 
emitDefaultDefines__anoncbb22e181311::AttrClass2712     void emitDefaultDefines(raw_ostream &OS) const {
2713       // Default the macro unless this is a root class (i.e. Attr).
2714       if (SuperClass) {
2715         emitDefaultDefine(OS, Descriptor.MacroName,
2716                           SuperClass->Descriptor.MacroName);
2717       }
2718     }
2719 
emitUndefs__anoncbb22e181311::AttrClass2720     void emitUndefs(raw_ostream &OS) const {
2721       OS << "#undef " << Descriptor.MacroName << "\n";
2722     }
2723 
emitAttrList__anoncbb22e181311::AttrClass2724     void emitAttrList(raw_ostream &OS) const {
2725       for (auto SubClass : SubClasses) {
2726         SubClass->emitAttrList(OS);
2727       }
2728 
2729       ::emitAttrList(OS, Descriptor.MacroName, Attrs);
2730     }
2731 
classifyAttrOnRoot__anoncbb22e181311::AttrClass2732     void classifyAttrOnRoot(Record *Attr) {
2733       bool result = classifyAttr(Attr);
2734       assert(result && "failed to classify on root"); (void) result;
2735     }
2736 
emitAttrRange__anoncbb22e181311::AttrClass2737     void emitAttrRange(raw_ostream &OS) const {
2738       OS << "ATTR_RANGE(" << Descriptor.TableGenName
2739          << ", " << getFirstAttr()->getName()
2740          << ", " << getLastAttr()->getName() << ")\n";
2741     }
2742 
2743   private:
classifyAttr__anoncbb22e181311::AttrClass2744     bool classifyAttr(Record *Attr) {
2745       // Check all the subclasses.
2746       for (auto SubClass : SubClasses) {
2747         if (SubClass->classifyAttr(Attr))
2748           return true;
2749       }
2750 
2751       // It's not more specific than this class, but it might still belong here.
2752       if (Attr->isSubClassOf(TheRecord)) {
2753         Attrs.push_back(Attr);
2754         return true;
2755       }
2756 
2757       return false;
2758     }
2759 
getFirstAttr__anoncbb22e181311::AttrClass2760     Record *getFirstAttr() const {
2761       if (!SubClasses.empty())
2762         return SubClasses.front()->getFirstAttr();
2763       return Attrs.front();
2764     }
2765 
getLastAttr__anoncbb22e181311::AttrClass2766     Record *getLastAttr() const {
2767       if (!Attrs.empty())
2768         return Attrs.back();
2769       return SubClasses.back()->getLastAttr();
2770     }
2771   };
2772 
2773   /// The entire hierarchy of attribute classes.
2774   class AttrClassHierarchy {
2775     std::vector<std::unique_ptr<AttrClass>> Classes;
2776 
2777   public:
AttrClassHierarchy(RecordKeeper & Records)2778     AttrClassHierarchy(RecordKeeper &Records) {
2779       // Find records for all the classes.
2780       for (auto &Descriptor : AttrClassDescriptors) {
2781         Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
2782         AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
2783         Classes.emplace_back(Class);
2784       }
2785 
2786       // Link up the hierarchy.
2787       for (auto &Class : Classes) {
2788         if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
2789           Class->SuperClass = SuperClass;
2790           SuperClass->SubClasses.push_back(Class.get());
2791         }
2792       }
2793 
2794 #ifndef NDEBUG
2795       for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
2796         assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
2797                "only the first class should be a root class!");
2798       }
2799 #endif
2800     }
2801 
emitDefaultDefines(raw_ostream & OS) const2802     void emitDefaultDefines(raw_ostream &OS) const {
2803       for (auto &Class : Classes) {
2804         Class->emitDefaultDefines(OS);
2805       }
2806     }
2807 
emitUndefs(raw_ostream & OS) const2808     void emitUndefs(raw_ostream &OS) const {
2809       for (auto &Class : Classes) {
2810         Class->emitUndefs(OS);
2811       }
2812     }
2813 
emitAttrLists(raw_ostream & OS) const2814     void emitAttrLists(raw_ostream &OS) const {
2815       // Just start from the root class.
2816       Classes[0]->emitAttrList(OS);
2817     }
2818 
emitAttrRanges(raw_ostream & OS) const2819     void emitAttrRanges(raw_ostream &OS) const {
2820       for (auto &Class : Classes)
2821         Class->emitAttrRange(OS);
2822     }
2823 
classifyAttr(Record * Attr)2824     void classifyAttr(Record *Attr) {
2825       // Add the attribute to the root class.
2826       Classes[0]->classifyAttrOnRoot(Attr);
2827     }
2828 
2829   private:
findClassByRecord(Record * R) const2830     AttrClass *findClassByRecord(Record *R) const {
2831       for (auto &Class : Classes) {
2832         if (Class->TheRecord == R)
2833           return Class.get();
2834       }
2835       return nullptr;
2836     }
2837 
findSuperClass(Record * R) const2838     AttrClass *findSuperClass(Record *R) const {
2839       // TableGen flattens the superclass list, so we just need to walk it
2840       // in reverse.
2841       auto SuperClasses = R->getSuperClasses();
2842       for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
2843         auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
2844         if (SuperClass) return SuperClass;
2845       }
2846       return nullptr;
2847     }
2848   };
2849 
2850 } // end anonymous namespace
2851 
2852 namespace clang {
2853 
2854 // Emits the enumeration list for attributes.
EmitClangAttrList(RecordKeeper & Records,raw_ostream & OS)2855 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
2856   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
2857 
2858   AttrClassHierarchy Hierarchy(Records);
2859 
2860   // Add defaulting macro definitions.
2861   Hierarchy.emitDefaultDefines(OS);
2862   emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
2863 
2864   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2865   std::vector<Record *> PragmaAttrs;
2866   for (auto *Attr : Attrs) {
2867     if (!Attr->getValueAsBit("ASTNode"))
2868       continue;
2869 
2870     // Add the attribute to the ad-hoc groups.
2871     if (AttrHasPragmaSpelling(Attr))
2872       PragmaAttrs.push_back(Attr);
2873 
2874     // Place it in the hierarchy.
2875     Hierarchy.classifyAttr(Attr);
2876   }
2877 
2878   // Emit the main attribute list.
2879   Hierarchy.emitAttrLists(OS);
2880 
2881   // Emit the ad hoc groups.
2882   emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
2883 
2884   // Emit the attribute ranges.
2885   OS << "#ifdef ATTR_RANGE\n";
2886   Hierarchy.emitAttrRanges(OS);
2887   OS << "#undef ATTR_RANGE\n";
2888   OS << "#endif\n";
2889 
2890   Hierarchy.emitUndefs(OS);
2891   OS << "#undef PRAGMA_SPELLING_ATTR\n";
2892 }
2893 
2894 // Emits the enumeration list for attributes.
EmitClangAttrSubjectMatchRuleList(RecordKeeper & Records,raw_ostream & OS)2895 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
2896   emitSourceFileHeader(
2897       "List of all attribute subject matching rules that Clang recognizes", OS);
2898   PragmaClangAttributeSupport &PragmaAttributeSupport =
2899       getPragmaAttributeSupport(Records);
2900   emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
2901   PragmaAttributeSupport.emitMatchRuleList(OS);
2902   OS << "#undef ATTR_MATCH_RULE\n";
2903 }
2904 
2905 // Emits the code to read an attribute from a precompiled header.
EmitClangAttrPCHRead(RecordKeeper & Records,raw_ostream & OS)2906 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
2907   emitSourceFileHeader("Attribute deserialization code", OS);
2908 
2909   Record *InhClass = Records.getClass("InheritableAttr");
2910   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
2911                        ArgRecords;
2912   std::vector<std::unique_ptr<Argument>> Args;
2913 
2914   OS << "  switch (Kind) {\n";
2915   for (const auto *Attr : Attrs) {
2916     const Record &R = *Attr;
2917     if (!R.getValueAsBit("ASTNode"))
2918       continue;
2919 
2920     OS << "  case attr::" << R.getName() << ": {\n";
2921     if (R.isSubClassOf(InhClass))
2922       OS << "    bool isInherited = Record.readInt();\n";
2923     OS << "    bool isImplicit = Record.readInt();\n";
2924     OS << "    bool isPackExpansion = Record.readInt();\n";
2925     ArgRecords = R.getValueAsListOfDefs("Args");
2926     Args.clear();
2927     for (const auto *Arg : ArgRecords) {
2928       Args.emplace_back(createArgument(*Arg, R.getName()));
2929       Args.back()->writePCHReadDecls(OS);
2930     }
2931     OS << "    New = new (Context) " << R.getName() << "Attr(Context, Info";
2932     for (auto const &ri : Args) {
2933       OS << ", ";
2934       ri->writePCHReadArgs(OS);
2935     }
2936     OS << ");\n";
2937     if (R.isSubClassOf(InhClass))
2938       OS << "    cast<InheritableAttr>(New)->setInherited(isInherited);\n";
2939     OS << "    New->setImplicit(isImplicit);\n";
2940     OS << "    New->setPackExpansion(isPackExpansion);\n";
2941     OS << "    break;\n";
2942     OS << "  }\n";
2943   }
2944   OS << "  }\n";
2945 }
2946 
2947 // Emits the code to write an attribute to a precompiled header.
EmitClangAttrPCHWrite(RecordKeeper & Records,raw_ostream & OS)2948 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
2949   emitSourceFileHeader("Attribute serialization code", OS);
2950 
2951   Record *InhClass = Records.getClass("InheritableAttr");
2952   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
2953 
2954   OS << "  switch (A->getKind()) {\n";
2955   for (const auto *Attr : Attrs) {
2956     const Record &R = *Attr;
2957     if (!R.getValueAsBit("ASTNode"))
2958       continue;
2959     OS << "  case attr::" << R.getName() << ": {\n";
2960     Args = R.getValueAsListOfDefs("Args");
2961     if (R.isSubClassOf(InhClass) || !Args.empty())
2962       OS << "    const auto *SA = cast<" << R.getName()
2963          << "Attr>(A);\n";
2964     if (R.isSubClassOf(InhClass))
2965       OS << "    Record.push_back(SA->isInherited());\n";
2966     OS << "    Record.push_back(A->isImplicit());\n";
2967     OS << "    Record.push_back(A->isPackExpansion());\n";
2968 
2969     for (const auto *Arg : Args)
2970       createArgument(*Arg, R.getName())->writePCHWrite(OS);
2971     OS << "    break;\n";
2972     OS << "  }\n";
2973   }
2974   OS << "  }\n";
2975 }
2976 
2977 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
2978 // parameter with only a single check type, if applicable.
GenerateTargetSpecificAttrCheck(const Record * R,std::string & Test,std::string * FnName,StringRef ListName,StringRef CheckAgainst,StringRef Scope)2979 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
2980                                             std::string *FnName,
2981                                             StringRef ListName,
2982                                             StringRef CheckAgainst,
2983                                             StringRef Scope) {
2984   if (!R->isValueUnset(ListName)) {
2985     Test += " && (";
2986     std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
2987     for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
2988       StringRef Part = *I;
2989       Test += CheckAgainst;
2990       Test += " == ";
2991       Test += Scope;
2992       Test += Part;
2993       if (I + 1 != E)
2994         Test += " || ";
2995       if (FnName)
2996         *FnName += Part;
2997     }
2998     Test += ")";
2999     return true;
3000   }
3001   return false;
3002 }
3003 
3004 // Generate a conditional expression to check if the current target satisfies
3005 // the conditions for a TargetSpecificAttr record, and append the code for
3006 // those checks to the Test string. If the FnName string pointer is non-null,
3007 // append a unique suffix to distinguish this set of target checks from other
3008 // TargetSpecificAttr records.
GenerateTargetSpecificAttrChecks(const Record * R,std::vector<StringRef> & Arches,std::string & Test,std::string * FnName)3009 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3010                                              std::vector<StringRef> &Arches,
3011                                              std::string &Test,
3012                                              std::string *FnName) {
3013   bool AnyTargetChecks = false;
3014 
3015   // It is assumed that there will be an llvm::Triple object
3016   // named "T" and a TargetInfo object named "Target" within
3017   // scope that can be used to determine whether the attribute exists in
3018   // a given target.
3019   Test += "true";
3020   // If one or more architectures is specified, check those.  Arches are handled
3021   // differently because GenerateTargetRequirements needs to combine the list
3022   // with ParseKind.
3023   if (!Arches.empty()) {
3024     AnyTargetChecks = true;
3025     Test += " && (";
3026     for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3027       StringRef Part = *I;
3028       Test += "T.getArch() == llvm::Triple::";
3029       Test += Part;
3030       if (I + 1 != E)
3031         Test += " || ";
3032       if (FnName)
3033         *FnName += Part;
3034     }
3035     Test += ")";
3036   }
3037 
3038   // If the attribute is specific to particular OSes, check those.
3039   AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3040       R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3041 
3042   // If one or more object formats is specified, check those.
3043   AnyTargetChecks |=
3044       GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3045                                       "T.getObjectFormat()", "llvm::Triple::");
3046 
3047   // If custom code is specified, emit it.
3048   StringRef Code = R->getValueAsString("CustomCode");
3049   if (!Code.empty()) {
3050     AnyTargetChecks = true;
3051     Test += " && (";
3052     Test += Code;
3053     Test += ")";
3054   }
3055 
3056   return AnyTargetChecks;
3057 }
3058 
GenerateHasAttrSpellingStringSwitch(const std::vector<Record * > & Attrs,raw_ostream & OS,const std::string & Variety="",const std::string & Scope="")3059 static void GenerateHasAttrSpellingStringSwitch(
3060     const std::vector<Record *> &Attrs, raw_ostream &OS,
3061     const std::string &Variety = "", const std::string &Scope = "") {
3062   for (const auto *Attr : Attrs) {
3063     // C++11-style attributes have specific version information associated with
3064     // them. If the attribute has no scope, the version information must not
3065     // have the default value (1), as that's incorrect. Instead, the unscoped
3066     // attribute version information should be taken from the SD-6 standing
3067     // document, which can be found at:
3068     // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3069     //
3070     // C2x-style attributes have the same kind of version information
3071     // associated with them. The unscoped attribute version information should
3072     // be taken from the specification of the attribute in the C Standard.
3073     int Version = 1;
3074 
3075     if (Variety == "CXX11" || Variety == "C2x") {
3076       std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
3077       for (const auto &Spelling : Spellings) {
3078         if (Spelling->getValueAsString("Variety") == Variety) {
3079           Version = static_cast<int>(Spelling->getValueAsInt("Version"));
3080           if (Scope.empty() && Version == 1)
3081             PrintError(Spelling->getLoc(), "Standard attributes must have "
3082                                            "valid version information.");
3083           break;
3084         }
3085       }
3086     }
3087 
3088     std::string Test;
3089     if (Attr->isSubClassOf("TargetSpecificAttr")) {
3090       const Record *R = Attr->getValueAsDef("Target");
3091       std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3092       GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3093 
3094       // If this is the C++11 variety, also add in the LangOpts test.
3095       if (Variety == "CXX11")
3096         Test += " && LangOpts.CPlusPlus11";
3097       else if (Variety == "C2x")
3098         Test += " && LangOpts.DoubleSquareBracketAttributes";
3099     } else if (Variety == "CXX11")
3100       // C++11 mode should be checked against LangOpts, which is presumed to be
3101       // present in the caller.
3102       Test = "LangOpts.CPlusPlus11";
3103     else if (Variety == "C2x")
3104       Test = "LangOpts.DoubleSquareBracketAttributes";
3105 
3106     std::string TestStr =
3107         !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
3108     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
3109     for (const auto &S : Spellings)
3110       if (Variety.empty() || (Variety == S.variety() &&
3111                               (Scope.empty() || Scope == S.nameSpace())))
3112         OS << "    .Case(\"" << S.name() << "\", " << TestStr << ")\n";
3113   }
3114   OS << "    .Default(0);\n";
3115 }
3116 
3117 // Emits the list of spellings for attributes.
EmitClangAttrHasAttrImpl(RecordKeeper & Records,raw_ostream & OS)3118 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3119   emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
3120 
3121   // Separate all of the attributes out into four group: generic, C++11, GNU,
3122   // and declspecs. Then generate a big switch statement for each of them.
3123   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3124   std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
3125   std::map<std::string, std::vector<Record *>> CXX, C2x;
3126 
3127   // Walk over the list of all attributes, and split them out based on the
3128   // spelling variety.
3129   for (auto *R : Attrs) {
3130     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3131     for (const auto &SI : Spellings) {
3132       const std::string &Variety = SI.variety();
3133       if (Variety == "GNU")
3134         GNU.push_back(R);
3135       else if (Variety == "Declspec")
3136         Declspec.push_back(R);
3137       else if (Variety == "Microsoft")
3138         Microsoft.push_back(R);
3139       else if (Variety == "CXX11")
3140         CXX[SI.nameSpace()].push_back(R);
3141       else if (Variety == "C2x")
3142         C2x[SI.nameSpace()].push_back(R);
3143       else if (Variety == "Pragma")
3144         Pragma.push_back(R);
3145     }
3146   }
3147 
3148   OS << "const llvm::Triple &T = Target.getTriple();\n";
3149   OS << "switch (Syntax) {\n";
3150   OS << "case AttrSyntax::GNU:\n";
3151   OS << "  return llvm::StringSwitch<int>(Name)\n";
3152   GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3153   OS << "case AttrSyntax::Declspec:\n";
3154   OS << "  return llvm::StringSwitch<int>(Name)\n";
3155   GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3156   OS << "case AttrSyntax::Microsoft:\n";
3157   OS << "  return llvm::StringSwitch<int>(Name)\n";
3158   GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3159   OS << "case AttrSyntax::Pragma:\n";
3160   OS << "  return llvm::StringSwitch<int>(Name)\n";
3161   GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3162   auto fn = [&OS](const char *Spelling, const char *Variety,
3163                   const std::map<std::string, std::vector<Record *>> &List) {
3164     OS << "case AttrSyntax::" << Variety << ": {\n";
3165     // C++11-style attributes are further split out based on the Scope.
3166     for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3167       if (I != List.cbegin())
3168         OS << " else ";
3169       if (I->first.empty())
3170         OS << "if (ScopeName == \"\") {\n";
3171       else
3172         OS << "if (ScopeName == \"" << I->first << "\") {\n";
3173       OS << "  return llvm::StringSwitch<int>(Name)\n";
3174       GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3175       OS << "}";
3176     }
3177     OS << "\n} break;\n";
3178   };
3179   fn("CXX11", "CXX", CXX);
3180   fn("C2x", "C", C2x);
3181   OS << "}\n";
3182 }
3183 
EmitClangAttrSpellingListIndex(RecordKeeper & Records,raw_ostream & OS)3184 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3185   emitSourceFileHeader("Code to translate different attribute spellings "
3186                        "into internal identifiers", OS);
3187 
3188   OS << "  switch (getParsedKind()) {\n";
3189   OS << "    case IgnoredAttribute:\n";
3190   OS << "    case UnknownAttribute:\n";
3191   OS << "    case NoSemaHandlerAttribute:\n";
3192   OS << "      llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3193 
3194   ParsedAttrMap Attrs = getParsedAttrList(Records);
3195   for (const auto &I : Attrs) {
3196     const Record &R = *I.second;
3197     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3198     OS << "  case AT_" << I.first << ": {\n";
3199     for (unsigned I = 0; I < Spellings.size(); ++ I) {
3200       OS << "    if (Name == \"" << Spellings[I].name() << "\" && "
3201          << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3202          << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3203          << "        return " << I << ";\n";
3204     }
3205 
3206     OS << "    break;\n";
3207     OS << "  }\n";
3208   }
3209 
3210   OS << "  }\n";
3211   OS << "  return 0;\n";
3212 }
3213 
3214 // Emits code used by RecursiveASTVisitor to visit attributes
EmitClangAttrASTVisitor(RecordKeeper & Records,raw_ostream & OS)3215 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3216   emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
3217 
3218   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3219 
3220   // Write method declarations for Traverse* methods.
3221   // We emit this here because we only generate methods for attributes that
3222   // are declared as ASTNodes.
3223   OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3224   for (const auto *Attr : Attrs) {
3225     const Record &R = *Attr;
3226     if (!R.getValueAsBit("ASTNode"))
3227       continue;
3228     OS << "  bool Traverse"
3229        << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3230     OS << "  bool Visit"
3231        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3232        << "    return true; \n"
3233        << "  }\n";
3234   }
3235   OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3236 
3237   // Write individual Traverse* methods for each attribute class.
3238   for (const auto *Attr : Attrs) {
3239     const Record &R = *Attr;
3240     if (!R.getValueAsBit("ASTNode"))
3241       continue;
3242 
3243     OS << "template <typename Derived>\n"
3244        << "bool VISITORCLASS<Derived>::Traverse"
3245        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3246        << "  if (!getDerived().VisitAttr(A))\n"
3247        << "    return false;\n"
3248        << "  if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3249        << "    return false;\n";
3250 
3251     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3252     for (const auto *Arg : ArgRecords)
3253       createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3254 
3255     OS << "  return true;\n";
3256     OS << "}\n\n";
3257   }
3258 
3259   // Write generic Traverse routine
3260   OS << "template <typename Derived>\n"
3261      << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3262      << "  if (!A)\n"
3263      << "    return true;\n"
3264      << "\n"
3265      << "  switch (A->getKind()) {\n";
3266 
3267   for (const auto *Attr : Attrs) {
3268     const Record &R = *Attr;
3269     if (!R.getValueAsBit("ASTNode"))
3270       continue;
3271 
3272     OS << "    case attr::" << R.getName() << ":\n"
3273        << "      return getDerived().Traverse" << R.getName() << "Attr("
3274        << "cast<" << R.getName() << "Attr>(A));\n";
3275   }
3276   OS << "  }\n";  // end switch
3277   OS << "  llvm_unreachable(\"bad attribute kind\");\n";
3278   OS << "}\n";  // end function
3279   OS << "#endif  // ATTR_VISITOR_DECLS_ONLY\n";
3280 }
3281 
EmitClangAttrTemplateInstantiateHelper(const std::vector<Record * > & Attrs,raw_ostream & OS,bool AppliesToDecl)3282 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3283                                             raw_ostream &OS,
3284                                             bool AppliesToDecl) {
3285 
3286   OS << "  switch (At->getKind()) {\n";
3287   for (const auto *Attr : Attrs) {
3288     const Record &R = *Attr;
3289     if (!R.getValueAsBit("ASTNode"))
3290       continue;
3291     OS << "    case attr::" << R.getName() << ": {\n";
3292     bool ShouldClone = R.getValueAsBit("Clone") &&
3293                        (!AppliesToDecl ||
3294                         R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3295 
3296     if (!ShouldClone) {
3297       OS << "      return nullptr;\n";
3298       OS << "    }\n";
3299       continue;
3300     }
3301 
3302     OS << "      const auto *A = cast<"
3303        << R.getName() << "Attr>(At);\n";
3304     bool TDependent = R.getValueAsBit("TemplateDependent");
3305 
3306     if (!TDependent) {
3307       OS << "      return A->clone(C);\n";
3308       OS << "    }\n";
3309       continue;
3310     }
3311 
3312     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3313     std::vector<std::unique_ptr<Argument>> Args;
3314     Args.reserve(ArgRecords.size());
3315 
3316     for (const auto *ArgRecord : ArgRecords)
3317       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3318 
3319     for (auto const &ai : Args)
3320       ai->writeTemplateInstantiation(OS);
3321 
3322     OS << "        return new (C) " << R.getName() << "Attr(C, *A";
3323     for (auto const &ai : Args) {
3324       OS << ", ";
3325       ai->writeTemplateInstantiationArgs(OS);
3326     }
3327     OS << ");\n    }\n";
3328   }
3329   OS << "  } // end switch\n"
3330      << "  llvm_unreachable(\"Unknown attribute!\");\n"
3331      << "  return nullptr;\n";
3332 }
3333 
3334 // Emits code to instantiate dependent attributes on templates.
EmitClangAttrTemplateInstantiate(RecordKeeper & Records,raw_ostream & OS)3335 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3336   emitSourceFileHeader("Template instantiation code for attributes", OS);
3337 
3338   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3339 
3340   OS << "namespace clang {\n"
3341      << "namespace sema {\n\n"
3342      << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3343      << "Sema &S,\n"
3344      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3345   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3346   OS << "}\n\n"
3347      << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3348      << " ASTContext &C, Sema &S,\n"
3349      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3350   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3351   OS << "}\n\n"
3352      << "} // end namespace sema\n"
3353      << "} // end namespace clang\n";
3354 }
3355 
3356 // Emits the list of parsed attributes.
EmitClangAttrParsedAttrList(RecordKeeper & Records,raw_ostream & OS)3357 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3358   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3359 
3360   OS << "#ifndef PARSED_ATTR\n";
3361   OS << "#define PARSED_ATTR(NAME) NAME\n";
3362   OS << "#endif\n\n";
3363 
3364   ParsedAttrMap Names = getParsedAttrList(Records);
3365   for (const auto &I : Names) {
3366     OS << "PARSED_ATTR(" << I.first << ")\n";
3367   }
3368 }
3369 
isArgVariadic(const Record & R,StringRef AttrName)3370 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3371   return createArgument(R, AttrName)->isVariadic();
3372 }
3373 
emitArgInfo(const Record & R,raw_ostream & OS)3374 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3375   // This function will count the number of arguments specified for the
3376   // attribute and emit the number of required arguments followed by the
3377   // number of optional arguments.
3378   std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3379   unsigned ArgCount = 0, OptCount = 0;
3380   bool HasVariadic = false;
3381   for (const auto *Arg : Args) {
3382     // If the arg is fake, it's the user's job to supply it: general parsing
3383     // logic shouldn't need to know anything about it.
3384     if (Arg->getValueAsBit("Fake"))
3385       continue;
3386     Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3387     if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3388       HasVariadic = true;
3389   }
3390 
3391   // If there is a variadic argument, we will set the optional argument count
3392   // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3393   OS << "    NumArgs = " << ArgCount << ";\n";
3394   OS << "    OptArgs = " << (HasVariadic ? 15 : OptCount) << ";\n";
3395 }
3396 
GetDiagnosticSpelling(const Record & R)3397 static std::string GetDiagnosticSpelling(const Record &R) {
3398   std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3399   if (!Ret.empty())
3400     return Ret;
3401 
3402   // If we couldn't find the DiagSpelling in this object, we can check to see
3403   // if the object is one that has a base, and if it is, loop up to the Base
3404   // member recursively.
3405   if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3406     return GetDiagnosticSpelling(*Base);
3407 
3408   return "";
3409 }
3410 
CalculateDiagnostic(const Record & S)3411 static std::string CalculateDiagnostic(const Record &S) {
3412   // If the SubjectList object has a custom diagnostic associated with it,
3413   // return that directly.
3414   const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3415   if (!CustomDiag.empty())
3416     return ("\"" + Twine(CustomDiag) + "\"").str();
3417 
3418   std::vector<std::string> DiagList;
3419   std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3420   for (const auto *Subject : Subjects) {
3421     const Record &R = *Subject;
3422     // Get the diagnostic text from the Decl or Stmt node given.
3423     std::string V = GetDiagnosticSpelling(R);
3424     if (V.empty()) {
3425       PrintError(R.getLoc(),
3426                  "Could not determine diagnostic spelling for the node: " +
3427                      R.getName() + "; please add one to DeclNodes.td");
3428     } else {
3429       // The node may contain a list of elements itself, so split the elements
3430       // by a comma, and trim any whitespace.
3431       SmallVector<StringRef, 2> Frags;
3432       llvm::SplitString(V, Frags, ",");
3433       for (auto Str : Frags) {
3434         DiagList.push_back(std::string(Str.trim()));
3435       }
3436     }
3437   }
3438 
3439   if (DiagList.empty()) {
3440     PrintFatalError(S.getLoc(),
3441                     "Could not deduce diagnostic argument for Attr subjects");
3442     return "";
3443   }
3444 
3445   // FIXME: this is not particularly good for localization purposes and ideally
3446   // should be part of the diagnostics engine itself with some sort of list
3447   // specifier.
3448 
3449   // A single member of the list can be returned directly.
3450   if (DiagList.size() == 1)
3451     return '"' + DiagList.front() + '"';
3452 
3453   if (DiagList.size() == 2)
3454     return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3455 
3456   // If there are more than two in the list, we serialize the first N - 1
3457   // elements with a comma. This leaves the string in the state: foo, bar,
3458   // baz (but misses quux). We can then add ", and " for the last element
3459   // manually.
3460   std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3461   return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3462 }
3463 
GetSubjectWithSuffix(const Record * R)3464 static std::string GetSubjectWithSuffix(const Record *R) {
3465   const std::string &B = std::string(R->getName());
3466   if (B == "DeclBase")
3467     return "Decl";
3468   return B + "Decl";
3469 }
3470 
functionNameForCustomAppertainsTo(const Record & Subject)3471 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3472   return "is" + Subject.getName().str();
3473 }
3474 
GenerateCustomAppertainsTo(const Record & Subject,raw_ostream & OS)3475 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3476   std::string FnName = functionNameForCustomAppertainsTo(Subject);
3477 
3478   // If this code has already been generated, we don't need to do anything.
3479   static std::set<std::string> CustomSubjectSet;
3480   auto I = CustomSubjectSet.find(FnName);
3481   if (I != CustomSubjectSet.end())
3482     return;
3483 
3484   // This only works with non-root Decls.
3485   Record *Base = Subject.getValueAsDef(BaseFieldName);
3486 
3487   // Not currently support custom subjects within custom subjects.
3488   if (Base->isSubClassOf("SubsetSubject")) {
3489     PrintFatalError(Subject.getLoc(),
3490                     "SubsetSubjects within SubsetSubjects is not supported");
3491     return;
3492   }
3493 
3494   OS << "static bool " << FnName << "(const Decl *D) {\n";
3495   OS << "  if (const auto *S = dyn_cast<";
3496   OS << GetSubjectWithSuffix(Base);
3497   OS << ">(D))\n";
3498   OS << "    return " << Subject.getValueAsString("CheckCode") << ";\n";
3499   OS << "  return false;\n";
3500   OS << "}\n\n";
3501 
3502   CustomSubjectSet.insert(FnName);
3503 }
3504 
GenerateAppertainsTo(const Record & Attr,raw_ostream & OS)3505 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3506   // If the attribute does not contain a Subjects definition, then use the
3507   // default appertainsTo logic.
3508   if (Attr.isValueUnset("Subjects"))
3509     return;
3510 
3511   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3512   std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3513 
3514   // If the list of subjects is empty, it is assumed that the attribute
3515   // appertains to everything.
3516   if (Subjects.empty())
3517     return;
3518 
3519   bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3520 
3521   // Otherwise, generate an appertainsTo check specific to this attribute which
3522   // checks all of the given subjects against the Decl passed in.
3523   //
3524   // If D is null, that means the attribute was not applied to a declaration
3525   // at all (for instance because it was applied to a type), or that the caller
3526   // has determined that the check should fail (perhaps prior to the creation
3527   // of the declaration).
3528   OS << "bool diagAppertainsToDecl(Sema &S, ";
3529   OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
3530   OS << "  if (";
3531   for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3532     // If the subject has custom code associated with it, use the generated
3533     // function for it. The function cannot be inlined into this check (yet)
3534     // because it requires the subject to be of a specific type, and were that
3535     // information inlined here, it would not support an attribute with multiple
3536     // custom subjects.
3537     if ((*I)->isSubClassOf("SubsetSubject")) {
3538       OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
3539     } else {
3540       OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3541     }
3542 
3543     if (I + 1 != E)
3544       OS << " && ";
3545   }
3546   OS << ") {\n";
3547   OS << "    S.Diag(Attr.getLoc(), diag::";
3548   OS << (Warn ? "warn_attribute_wrong_decl_type_str" :
3549                "err_attribute_wrong_decl_type_str");
3550   OS << ")\n";
3551   OS << "      << Attr << ";
3552   OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3553   OS << "    return false;\n";
3554   OS << "  }\n";
3555   OS << "  return true;\n";
3556   OS << "}\n\n";
3557 }
3558 
3559 static void
emitAttributeMatchRules(PragmaClangAttributeSupport & PragmaAttributeSupport,raw_ostream & OS)3560 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
3561                         raw_ostream &OS) {
3562   OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
3563      << AttributeSubjectMatchRule::EnumName << " rule) {\n";
3564   OS << "  switch (rule) {\n";
3565   for (const auto &Rule : PragmaAttributeSupport.Rules) {
3566     if (Rule.isAbstractRule()) {
3567       OS << "  case " << Rule.getEnumValue() << ":\n";
3568       OS << "    assert(false && \"Abstract matcher rule isn't allowed\");\n";
3569       OS << "    return false;\n";
3570       continue;
3571     }
3572     std::vector<Record *> Subjects = Rule.getSubjects();
3573     assert(!Subjects.empty() && "Missing subjects");
3574     OS << "  case " << Rule.getEnumValue() << ":\n";
3575     OS << "    return ";
3576     for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3577       // If the subject has custom code associated with it, use the function
3578       // that was generated for GenerateAppertainsTo to check if the declaration
3579       // is valid.
3580       if ((*I)->isSubClassOf("SubsetSubject"))
3581         OS << functionNameForCustomAppertainsTo(**I) << "(D)";
3582       else
3583         OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3584 
3585       if (I + 1 != E)
3586         OS << " || ";
3587     }
3588     OS << ";\n";
3589   }
3590   OS << "  }\n";
3591   OS << "  llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
3592   OS << "}\n\n";
3593 }
3594 
GenerateLangOptRequirements(const Record & R,raw_ostream & OS)3595 static void GenerateLangOptRequirements(const Record &R,
3596                                         raw_ostream &OS) {
3597   // If the attribute has an empty or unset list of language requirements,
3598   // use the default handler.
3599   std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
3600   if (LangOpts.empty())
3601     return;
3602 
3603   OS << "bool diagLangOpts(Sema &S, const ParsedAttr &Attr) ";
3604   OS << "const override {\n";
3605   OS << "  auto &LangOpts = S.LangOpts;\n";
3606   OS << "  if (" << GenerateTestExpression(LangOpts) << ")\n";
3607   OS << "    return true;\n\n";
3608   OS << "  S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
3609   OS << "<< Attr;\n";
3610   OS << "  return false;\n";
3611   OS << "}\n\n";
3612 }
3613 
GenerateTargetRequirements(const Record & Attr,const ParsedAttrMap & Dupes,raw_ostream & OS)3614 static void GenerateTargetRequirements(const Record &Attr,
3615                                        const ParsedAttrMap &Dupes,
3616                                        raw_ostream &OS) {
3617   // If the attribute is not a target specific attribute, use the default
3618   // target handler.
3619   if (!Attr.isSubClassOf("TargetSpecificAttr"))
3620     return;
3621 
3622   // Get the list of architectures to be tested for.
3623   const Record *R = Attr.getValueAsDef("Target");
3624   std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3625 
3626   // If there are other attributes which share the same parsed attribute kind,
3627   // such as target-specific attributes with a shared spelling, collapse the
3628   // duplicate architectures. This is required because a shared target-specific
3629   // attribute has only one ParsedAttr::Kind enumeration value, but it
3630   // applies to multiple target architectures. In order for the attribute to be
3631   // considered valid, all of its architectures need to be included.
3632   if (!Attr.isValueUnset("ParseKind")) {
3633     const StringRef APK = Attr.getValueAsString("ParseKind");
3634     for (const auto &I : Dupes) {
3635       if (I.first == APK) {
3636         std::vector<StringRef> DA =
3637             I.second->getValueAsDef("Target")->getValueAsListOfStrings(
3638                 "Arches");
3639         Arches.insert(Arches.end(), DA.begin(), DA.end());
3640       }
3641     }
3642   }
3643 
3644   std::string FnName = "isTarget";
3645   std::string Test;
3646   bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
3647 
3648   OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
3649   if (UsesT)
3650     OS << "  const llvm::Triple &T = Target.getTriple(); (void)T;\n";
3651   OS << "  return " << Test << ";\n";
3652   OS << "}\n\n";
3653 }
3654 
GenerateSpellingIndexToSemanticSpelling(const Record & Attr,raw_ostream & OS)3655 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
3656                                                     raw_ostream &OS) {
3657   // If the attribute does not have a semantic form, we can bail out early.
3658   if (!Attr.getValueAsBit("ASTNode"))
3659     return;
3660 
3661   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
3662 
3663   // If there are zero or one spellings, or all of the spellings share the same
3664   // name, we can also bail out early.
3665   if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
3666     return;
3667 
3668   // Generate the enumeration we will use for the mapping.
3669   SemanticSpellingMap SemanticToSyntacticMap;
3670   std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
3671   std::string Name = Attr.getName().str() + "AttrSpellingMap";
3672 
3673   OS << "unsigned spellingIndexToSemanticSpelling(";
3674   OS << "const ParsedAttr &Attr) const override {\n";
3675   OS << Enum;
3676   OS << "  unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
3677   WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
3678   OS << "}\n\n";
3679 }
3680 
GenerateHandleDeclAttribute(const Record & Attr,raw_ostream & OS)3681 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
3682   // Only generate if Attr can be handled simply.
3683   if (!Attr.getValueAsBit("SimpleHandler"))
3684     return;
3685 
3686   // Generate a function which just converts from ParsedAttr to the Attr type.
3687   OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
3688   OS << "const ParsedAttr &Attr) const override {\n";
3689   OS << "  D->addAttr(::new (S.Context) " << Attr.getName();
3690   OS << "Attr(S.Context, Attr));\n";
3691   OS << "  return AttributeApplied;\n";
3692   OS << "}\n\n";
3693 }
3694 
IsKnownToGCC(const Record & Attr)3695 static bool IsKnownToGCC(const Record &Attr) {
3696   // Look at the spellings for this subject; if there are any spellings which
3697   // claim to be known to GCC, the attribute is known to GCC.
3698   return llvm::any_of(
3699       GetFlattenedSpellings(Attr),
3700       [](const FlattenedSpelling &S) { return S.knownToGCC(); });
3701 }
3702 
3703 /// Emits the parsed attribute helpers
EmitClangAttrParsedAttrImpl(RecordKeeper & Records,raw_ostream & OS)3704 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3705   emitSourceFileHeader("Parsed attribute helpers", OS);
3706 
3707   PragmaClangAttributeSupport &PragmaAttributeSupport =
3708       getPragmaAttributeSupport(Records);
3709 
3710   // Get the list of parsed attributes, and accept the optional list of
3711   // duplicates due to the ParseKind.
3712   ParsedAttrMap Dupes;
3713   ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
3714 
3715   // Generate all of the custom appertainsTo functions that the attributes
3716   // will be using.
3717   for (auto I : Attrs) {
3718     const Record &Attr = *I.second;
3719     if (Attr.isValueUnset("Subjects"))
3720       continue;
3721     const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3722     for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
3723       if (Subject->isSubClassOf("SubsetSubject"))
3724         GenerateCustomAppertainsTo(*Subject, OS);
3725   }
3726 
3727   // Generate a ParsedAttrInfo struct for each of the attributes.
3728   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
3729     // TODO: If the attribute's kind appears in the list of duplicates, that is
3730     // because it is a target-specific attribute that appears multiple times.
3731     // It would be beneficial to test whether the duplicates are "similar
3732     // enough" to each other to not cause problems. For instance, check that
3733     // the spellings are identical, and custom parsing rules match, etc.
3734 
3735     // We need to generate struct instances based off ParsedAttrInfo from
3736     // ParsedAttr.cpp.
3737     const std::string &AttrName = I->first;
3738     const Record &Attr = *I->second;
3739     auto Spellings = GetFlattenedSpellings(Attr);
3740     if (!Spellings.empty()) {
3741       OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
3742          << "Spellings[] = {\n";
3743       for (const auto &S : Spellings) {
3744         const std::string &RawSpelling = S.name();
3745         std::string Spelling;
3746         if (!S.nameSpace().empty())
3747           Spelling += S.nameSpace() + "::";
3748         if (S.variety() == "GNU")
3749           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
3750         else
3751           Spelling += RawSpelling;
3752         OS << "  {AttributeCommonInfo::AS_" << S.variety();
3753         OS << ", \"" << Spelling << "\"},\n";
3754       }
3755       OS << "};\n";
3756     }
3757     OS << "struct ParsedAttrInfo" << I->first
3758        << " final : public ParsedAttrInfo {\n";
3759     OS << "  ParsedAttrInfo" << I->first << "() {\n";
3760     OS << "    AttrKind = ParsedAttr::AT_" << AttrName << ";\n";
3761     emitArgInfo(Attr, OS);
3762     OS << "    HasCustomParsing = ";
3763     OS << Attr.getValueAsBit("HasCustomParsing") << ";\n";
3764     OS << "    IsTargetSpecific = ";
3765     OS << Attr.isSubClassOf("TargetSpecificAttr") << ";\n";
3766     OS << "    IsType = ";
3767     OS << (Attr.isSubClassOf("TypeAttr") ||
3768            Attr.isSubClassOf("DeclOrTypeAttr")) << ";\n";
3769     OS << "    IsStmt = ";
3770     OS << Attr.isSubClassOf("StmtAttr") << ";\n";
3771     OS << "    IsKnownToGCC = ";
3772     OS << IsKnownToGCC(Attr) << ";\n";
3773     OS << "    IsSupportedByPragmaAttribute = ";
3774     OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ";\n";
3775     if (!Spellings.empty())
3776       OS << "    Spellings = " << I->first << "Spellings;\n";
3777     OS << "  }\n";
3778     GenerateAppertainsTo(Attr, OS);
3779     GenerateLangOptRequirements(Attr, OS);
3780     GenerateTargetRequirements(Attr, Dupes, OS);
3781     GenerateSpellingIndexToSemanticSpelling(Attr, OS);
3782     PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
3783     GenerateHandleDeclAttribute(Attr, OS);
3784     OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
3785     OS << "};\n";
3786     OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
3787        << "::Instance;\n";
3788   }
3789 
3790   OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
3791   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
3792     OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
3793   }
3794   OS << "};\n\n";
3795 
3796   // Generate the attribute match rules.
3797   emitAttributeMatchRules(PragmaAttributeSupport, OS);
3798 }
3799 
3800 // Emits the kind list of parsed attributes
EmitClangAttrParsedAttrKinds(RecordKeeper & Records,raw_ostream & OS)3801 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
3802   emitSourceFileHeader("Attribute name matcher", OS);
3803 
3804   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3805   std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
3806       Keywords, Pragma, C2x;
3807   std::set<std::string> Seen;
3808   for (const auto *A : Attrs) {
3809     const Record &Attr = *A;
3810 
3811     bool SemaHandler = Attr.getValueAsBit("SemaHandler");
3812     bool Ignored = Attr.getValueAsBit("Ignored");
3813     if (SemaHandler || Ignored) {
3814       // Attribute spellings can be shared between target-specific attributes,
3815       // and can be shared between syntaxes for the same attribute. For
3816       // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
3817       // specific attribute, or MSP430-specific attribute. Additionally, an
3818       // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
3819       // for the same semantic attribute. Ultimately, we need to map each of
3820       // these to a single AttributeCommonInfo::Kind value, but the
3821       // StringMatcher class cannot handle duplicate match strings. So we
3822       // generate a list of string to match based on the syntax, and emit
3823       // multiple string matchers depending on the syntax used.
3824       std::string AttrName;
3825       if (Attr.isSubClassOf("TargetSpecificAttr") &&
3826           !Attr.isValueUnset("ParseKind")) {
3827         AttrName = std::string(Attr.getValueAsString("ParseKind"));
3828         if (Seen.find(AttrName) != Seen.end())
3829           continue;
3830         Seen.insert(AttrName);
3831       } else
3832         AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
3833 
3834       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
3835       for (const auto &S : Spellings) {
3836         const std::string &RawSpelling = S.name();
3837         std::vector<StringMatcher::StringPair> *Matches = nullptr;
3838         std::string Spelling;
3839         const std::string &Variety = S.variety();
3840         if (Variety == "CXX11") {
3841           Matches = &CXX11;
3842           if (!S.nameSpace().empty())
3843             Spelling += S.nameSpace() + "::";
3844         } else if (Variety == "C2x") {
3845           Matches = &C2x;
3846           if (!S.nameSpace().empty())
3847             Spelling += S.nameSpace() + "::";
3848         } else if (Variety == "GNU")
3849           Matches = &GNU;
3850         else if (Variety == "Declspec")
3851           Matches = &Declspec;
3852         else if (Variety == "Microsoft")
3853           Matches = &Microsoft;
3854         else if (Variety == "Keyword")
3855           Matches = &Keywords;
3856         else if (Variety == "Pragma")
3857           Matches = &Pragma;
3858 
3859         assert(Matches && "Unsupported spelling variety found");
3860 
3861         if (Variety == "GNU")
3862           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
3863         else
3864           Spelling += RawSpelling;
3865 
3866         if (SemaHandler)
3867           Matches->push_back(StringMatcher::StringPair(
3868               Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
3869         else
3870           Matches->push_back(StringMatcher::StringPair(
3871               Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
3872       }
3873     }
3874   }
3875 
3876   OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
3877   OS << "AttributeCommonInfo::Syntax Syntax) {\n";
3878   OS << "  if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
3879   StringMatcher("Name", GNU, OS).Emit();
3880   OS << "  } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
3881   StringMatcher("Name", Declspec, OS).Emit();
3882   OS << "  } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
3883   StringMatcher("Name", Microsoft, OS).Emit();
3884   OS << "  } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
3885   StringMatcher("Name", CXX11, OS).Emit();
3886   OS << "  } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n";
3887   StringMatcher("Name", C2x, OS).Emit();
3888   OS << "  } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
3889   OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
3890   StringMatcher("Name", Keywords, OS).Emit();
3891   OS << "  } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
3892   StringMatcher("Name", Pragma, OS).Emit();
3893   OS << "  }\n";
3894   OS << "  return AttributeCommonInfo::UnknownAttribute;\n"
3895      << "}\n";
3896 }
3897 
3898 // Emits the code to dump an attribute.
EmitClangAttrTextNodeDump(RecordKeeper & Records,raw_ostream & OS)3899 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
3900   emitSourceFileHeader("Attribute text node dumper", OS);
3901 
3902   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
3903   for (const auto *Attr : Attrs) {
3904     const Record &R = *Attr;
3905     if (!R.getValueAsBit("ASTNode"))
3906       continue;
3907 
3908     // If the attribute has a semantically-meaningful name (which is determined
3909     // by whether there is a Spelling enumeration for it), then write out the
3910     // spelling used for the attribute.
3911 
3912     std::string FunctionContent;
3913     llvm::raw_string_ostream SS(FunctionContent);
3914 
3915     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3916     if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
3917       SS << "    OS << \" \" << A->getSpelling();\n";
3918 
3919     Args = R.getValueAsListOfDefs("Args");
3920     for (const auto *Arg : Args)
3921       createArgument(*Arg, R.getName())->writeDump(SS);
3922 
3923     if (SS.tell()) {
3924       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
3925          << "Attr *A) {\n";
3926       if (!Args.empty())
3927         OS << "    const auto *SA = cast<" << R.getName()
3928            << "Attr>(A); (void)SA;\n";
3929       OS << SS.str();
3930       OS << "  }\n";
3931     }
3932   }
3933 }
3934 
EmitClangAttrNodeTraverse(RecordKeeper & Records,raw_ostream & OS)3935 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
3936   emitSourceFileHeader("Attribute text node traverser", OS);
3937 
3938   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
3939   for (const auto *Attr : Attrs) {
3940     const Record &R = *Attr;
3941     if (!R.getValueAsBit("ASTNode"))
3942       continue;
3943 
3944     std::string FunctionContent;
3945     llvm::raw_string_ostream SS(FunctionContent);
3946 
3947     Args = R.getValueAsListOfDefs("Args");
3948     for (const auto *Arg : Args)
3949       createArgument(*Arg, R.getName())->writeDumpChildren(SS);
3950     if (SS.tell()) {
3951       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
3952          << "Attr *A) {\n";
3953       if (!Args.empty())
3954         OS << "    const auto *SA = cast<" << R.getName()
3955            << "Attr>(A); (void)SA;\n";
3956       OS << SS.str();
3957       OS << "  }\n";
3958     }
3959   }
3960 }
3961 
EmitClangAttrParserStringSwitches(RecordKeeper & Records,raw_ostream & OS)3962 void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
3963                                        raw_ostream &OS) {
3964   emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
3965   emitClangAttrArgContextList(Records, OS);
3966   emitClangAttrIdentifierArgList(Records, OS);
3967   emitClangAttrVariadicIdentifierArgList(Records, OS);
3968   emitClangAttrThisIsaIdentifierArgList(Records, OS);
3969   emitClangAttrTypeArgList(Records, OS);
3970   emitClangAttrLateParsedList(Records, OS);
3971 }
3972 
EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper & Records,raw_ostream & OS)3973 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
3974                                                         raw_ostream &OS) {
3975   getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
3976 }
3977 
3978 enum class SpellingKind {
3979   GNU,
3980   CXX11,
3981   C2x,
3982   Declspec,
3983   Microsoft,
3984   Keyword,
3985   Pragma,
3986 };
3987 static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1;
3988 
3989 class SpellingList {
3990   std::vector<std::string> Spellings[NumSpellingKinds];
3991 
3992 public:
operator [](SpellingKind K) const3993   ArrayRef<std::string> operator[](SpellingKind K) const {
3994     return Spellings[(size_t)K];
3995   }
3996 
add(const Record & Attr,FlattenedSpelling Spelling)3997   void add(const Record &Attr, FlattenedSpelling Spelling) {
3998     SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
3999                             .Case("GNU", SpellingKind::GNU)
4000                             .Case("CXX11", SpellingKind::CXX11)
4001                             .Case("C2x", SpellingKind::C2x)
4002                             .Case("Declspec", SpellingKind::Declspec)
4003                             .Case("Microsoft", SpellingKind::Microsoft)
4004                             .Case("Keyword", SpellingKind::Keyword)
4005                             .Case("Pragma", SpellingKind::Pragma);
4006     std::string Name;
4007     if (!Spelling.nameSpace().empty()) {
4008       switch (Kind) {
4009       case SpellingKind::CXX11:
4010       case SpellingKind::C2x:
4011         Name = Spelling.nameSpace() + "::";
4012         break;
4013       case SpellingKind::Pragma:
4014         Name = Spelling.nameSpace() + " ";
4015         break;
4016       default:
4017         PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4018       }
4019     }
4020     Name += Spelling.name();
4021 
4022     Spellings[(size_t)Kind].push_back(Name);
4023   }
4024 };
4025 
4026 class DocumentationData {
4027 public:
4028   const Record *Documentation;
4029   const Record *Attribute;
4030   std::string Heading;
4031   SpellingList SupportedSpellings;
4032 
DocumentationData(const Record & Documentation,const Record & Attribute,std::pair<std::string,SpellingList> HeadingAndSpellings)4033   DocumentationData(const Record &Documentation, const Record &Attribute,
4034                     std::pair<std::string, SpellingList> HeadingAndSpellings)
4035       : Documentation(&Documentation), Attribute(&Attribute),
4036         Heading(std::move(HeadingAndSpellings.first)),
4037         SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4038 };
4039 
WriteCategoryHeader(const Record * DocCategory,raw_ostream & OS)4040 static void WriteCategoryHeader(const Record *DocCategory,
4041                                 raw_ostream &OS) {
4042   const StringRef Name = DocCategory->getValueAsString("Name");
4043   OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4044 
4045   // If there is content, print that as well.
4046   const StringRef ContentStr = DocCategory->getValueAsString("Content");
4047   // Trim leading and trailing newlines and spaces.
4048   OS << ContentStr.trim();
4049 
4050   OS << "\n\n";
4051 }
4052 
4053 static std::pair<std::string, SpellingList>
GetAttributeHeadingAndSpellings(const Record & Documentation,const Record & Attribute)4054 GetAttributeHeadingAndSpellings(const Record &Documentation,
4055                                 const Record &Attribute) {
4056   // FIXME: there is no way to have a per-spelling category for the attribute
4057   // documentation. This may not be a limiting factor since the spellings
4058   // should generally be consistently applied across the category.
4059 
4060   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4061   if (Spellings.empty())
4062     PrintFatalError(Attribute.getLoc(),
4063                     "Attribute has no supported spellings; cannot be "
4064                     "documented");
4065 
4066   // Determine the heading to be used for this attribute.
4067   std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4068   if (Heading.empty()) {
4069     // If there's only one spelling, we can simply use that.
4070     if (Spellings.size() == 1)
4071       Heading = Spellings.begin()->name();
4072     else {
4073       std::set<std::string> Uniques;
4074       for (auto I = Spellings.begin(), E = Spellings.end();
4075            I != E && Uniques.size() <= 1; ++I) {
4076         std::string Spelling =
4077             std::string(NormalizeNameForSpellingComparison(I->name()));
4078         Uniques.insert(Spelling);
4079       }
4080       // If the semantic map has only one spelling, that is sufficient for our
4081       // needs.
4082       if (Uniques.size() == 1)
4083         Heading = *Uniques.begin();
4084     }
4085   }
4086 
4087   // If the heading is still empty, it is an error.
4088   if (Heading.empty())
4089     PrintFatalError(Attribute.getLoc(),
4090                     "This attribute requires a heading to be specified");
4091 
4092   SpellingList SupportedSpellings;
4093   for (const auto &I : Spellings)
4094     SupportedSpellings.add(Attribute, I);
4095 
4096   return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4097 }
4098 
WriteDocumentation(RecordKeeper & Records,const DocumentationData & Doc,raw_ostream & OS)4099 static void WriteDocumentation(RecordKeeper &Records,
4100                                const DocumentationData &Doc, raw_ostream &OS) {
4101   OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4102 
4103   // List what spelling syntaxes the attribute supports.
4104   OS << ".. csv-table:: Supported Syntaxes\n";
4105   OS << "   :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
4106   OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n";
4107   OS << "   \"";
4108   for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4109     SpellingKind K = (SpellingKind)Kind;
4110     // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4111     // support them.
4112     if (K == SpellingKind::Microsoft)
4113       continue;
4114 
4115     bool PrintedAny = false;
4116     for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4117       if (PrintedAny)
4118         OS << " |br| ";
4119       OS << "``" << Spelling << "``";
4120       PrintedAny = true;
4121     }
4122 
4123     OS << "\",\"";
4124   }
4125 
4126   if (getPragmaAttributeSupport(Records).isAttributedSupported(
4127           *Doc.Attribute))
4128     OS << "Yes";
4129   OS << "\"\n\n";
4130 
4131   // If the attribute is deprecated, print a message about it, and possibly
4132   // provide a replacement attribute.
4133   if (!Doc.Documentation->isValueUnset("Deprecated")) {
4134     OS << "This attribute has been deprecated, and may be removed in a future "
4135        << "version of Clang.";
4136     const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4137     const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4138     if (!Replacement.empty())
4139       OS << "  This attribute has been superseded by ``" << Replacement
4140          << "``.";
4141     OS << "\n\n";
4142   }
4143 
4144   const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4145   // Trim leading and trailing newlines and spaces.
4146   OS << ContentStr.trim();
4147 
4148   OS << "\n\n\n";
4149 }
4150 
EmitClangAttrDocs(RecordKeeper & Records,raw_ostream & OS)4151 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4152   // Get the documentation introduction paragraph.
4153   const Record *Documentation = Records.getDef("GlobalDocumentation");
4154   if (!Documentation) {
4155     PrintFatalError("The Documentation top-level definition is missing, "
4156                     "no documentation will be generated.");
4157     return;
4158   }
4159 
4160   OS << Documentation->getValueAsString("Intro") << "\n";
4161 
4162   // Gather the Documentation lists from each of the attributes, based on the
4163   // category provided.
4164   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4165   std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
4166   for (const auto *A : Attrs) {
4167     const Record &Attr = *A;
4168     std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
4169     for (const auto *D : Docs) {
4170       const Record &Doc = *D;
4171       const Record *Category = Doc.getValueAsDef("Category");
4172       // If the category is "undocumented", then there cannot be any other
4173       // documentation categories (otherwise, the attribute would become
4174       // documented).
4175       const StringRef Cat = Category->getValueAsString("Name");
4176       bool Undocumented = Cat == "Undocumented";
4177       if (Undocumented && Docs.size() > 1)
4178         PrintFatalError(Doc.getLoc(),
4179                         "Attribute is \"Undocumented\", but has multiple "
4180                         "documentation categories");
4181 
4182       if (!Undocumented)
4183         SplitDocs[Category].push_back(DocumentationData(
4184             Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr)));
4185     }
4186   }
4187 
4188   // Having split the attributes out based on what documentation goes where,
4189   // we can begin to generate sections of documentation.
4190   for (auto &I : SplitDocs) {
4191     WriteCategoryHeader(I.first, OS);
4192 
4193     llvm::sort(I.second,
4194                [](const DocumentationData &D1, const DocumentationData &D2) {
4195                  return D1.Heading < D2.Heading;
4196                });
4197 
4198     // Walk over each of the attributes in the category and write out their
4199     // documentation.
4200     for (const auto &Doc : I.second)
4201       WriteDocumentation(Records, Doc, OS);
4202   }
4203 }
4204 
EmitTestPragmaAttributeSupportedAttributes(RecordKeeper & Records,raw_ostream & OS)4205 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
4206                                                 raw_ostream &OS) {
4207   PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
4208   ParsedAttrMap Attrs = getParsedAttrList(Records);
4209   OS << "#pragma clang attribute supports the following attributes:\n";
4210   for (const auto &I : Attrs) {
4211     if (!Support.isAttributedSupported(*I.second))
4212       continue;
4213     OS << I.first;
4214     if (I.second->isValueUnset("Subjects")) {
4215       OS << " ()\n";
4216       continue;
4217     }
4218     const Record *SubjectObj = I.second->getValueAsDef("Subjects");
4219     std::vector<Record *> Subjects =
4220         SubjectObj->getValueAsListOfDefs("Subjects");
4221     OS << " (";
4222     for (const auto &Subject : llvm::enumerate(Subjects)) {
4223       if (Subject.index())
4224         OS << ", ";
4225       PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
4226           Support.SubjectsToRules.find(Subject.value())->getSecond();
4227       if (RuleSet.isRule()) {
4228         OS << RuleSet.getRule().getEnumValueName();
4229         continue;
4230       }
4231       OS << "(";
4232       for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
4233         if (Rule.index())
4234           OS << ", ";
4235         OS << Rule.value().getEnumValueName();
4236       }
4237       OS << ")";
4238     }
4239     OS << ")\n";
4240   }
4241   OS << "End of supported attributes.\n";
4242 }
4243 
4244 } // end namespace clang
4245