1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 
57 using namespace llvm;
58 
59 /// Allow disabling BasicAA from the AA results. This is particularly useful
60 /// when testing to isolate a single AA implementation.
61 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
62 
AAResults(AAResults && Arg)63 AAResults::AAResults(AAResults &&Arg)
64     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
65   for (auto &AA : AAs)
66     AA->setAAResults(this);
67 }
68 
~AAResults()69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
74 #if 0
75   for (auto &AA : AAs)
76     AA->setAAResults(nullptr);
77 #endif
78 }
79 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
81                            FunctionAnalysisManager::Invalidator &Inv) {
82   // AAResults preserves the AAManager by default, due to the stateless nature
83   // of AliasAnalysis. There is no need to check whether it has been preserved
84   // explicitly. Check if any module dependency was invalidated and caused the
85   // AAManager to be invalidated. Invalidate ourselves in that case.
86   auto PAC = PA.getChecker<AAManager>();
87   if (!PAC.preservedWhenStateless())
88     return true;
89 
90   // Check if any of the function dependencies were invalidated, and invalidate
91   // ourselves in that case.
92   for (AnalysisKey *ID : AADeps)
93     if (Inv.invalidate(ID, F, PA))
94       return true;
95 
96   // Everything we depend on is still fine, so are we. Nothing to invalidate.
97   return false;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // Default chaining methods
102 //===----------------------------------------------------------------------===//
103 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)104 AliasResult AAResults::alias(const MemoryLocation &LocA,
105                              const MemoryLocation &LocB) {
106   AAQueryInfo AAQIP;
107   return alias(LocA, LocB, AAQIP);
108 }
109 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)110 AliasResult AAResults::alias(const MemoryLocation &LocA,
111                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
112   for (const auto &AA : AAs) {
113     auto Result = AA->alias(LocA, LocB, AAQI);
114     if (Result != MayAlias)
115       return Result;
116   }
117   return MayAlias;
118 }
119 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)120 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
121                                        bool OrLocal) {
122   AAQueryInfo AAQIP;
123   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
124 }
125 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)126 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
127                                        AAQueryInfo &AAQI, bool OrLocal) {
128   for (const auto &AA : AAs)
129     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
130       return true;
131 
132   return false;
133 }
134 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)135 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
136   ModRefInfo Result = ModRefInfo::ModRef;
137 
138   for (const auto &AA : AAs) {
139     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
140 
141     // Early-exit the moment we reach the bottom of the lattice.
142     if (isNoModRef(Result))
143       return ModRefInfo::NoModRef;
144   }
145 
146   return Result;
147 }
148 
getModRefInfo(Instruction * I,const CallBase * Call2)149 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
150   AAQueryInfo AAQIP;
151   return getModRefInfo(I, Call2, AAQIP);
152 }
153 
getModRefInfo(Instruction * I,const CallBase * Call2,AAQueryInfo & AAQI)154 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
155                                     AAQueryInfo &AAQI) {
156   // We may have two calls.
157   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
158     // Check if the two calls modify the same memory.
159     return getModRefInfo(Call1, Call2, AAQI);
160   } else if (I->isFenceLike()) {
161     // If this is a fence, just return ModRef.
162     return ModRefInfo::ModRef;
163   } else {
164     // Otherwise, check if the call modifies or references the
165     // location this memory access defines.  The best we can say
166     // is that if the call references what this instruction
167     // defines, it must be clobbered by this location.
168     const MemoryLocation DefLoc = MemoryLocation::get(I);
169     ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
170     if (isModOrRefSet(MR))
171       return setModAndRef(MR);
172   }
173   return ModRefInfo::NoModRef;
174 }
175 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)176 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
177                                     const MemoryLocation &Loc) {
178   AAQueryInfo AAQIP;
179   return getModRefInfo(Call, Loc, AAQIP);
180 }
181 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)182 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
183                                     const MemoryLocation &Loc,
184                                     AAQueryInfo &AAQI) {
185   ModRefInfo Result = ModRefInfo::ModRef;
186 
187   for (const auto &AA : AAs) {
188     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
189 
190     // Early-exit the moment we reach the bottom of the lattice.
191     if (isNoModRef(Result))
192       return ModRefInfo::NoModRef;
193   }
194 
195   // Try to refine the mod-ref info further using other API entry points to the
196   // aggregate set of AA results.
197   auto MRB = getModRefBehavior(Call);
198   if (onlyAccessesInaccessibleMem(MRB))
199     return ModRefInfo::NoModRef;
200 
201   if (onlyReadsMemory(MRB))
202     Result = clearMod(Result);
203   else if (doesNotReadMemory(MRB))
204     Result = clearRef(Result);
205 
206   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
207     bool IsMustAlias = true;
208     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
209     if (doesAccessArgPointees(MRB)) {
210       for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
211         const Value *Arg = *AI;
212         if (!Arg->getType()->isPointerTy())
213           continue;
214         unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
215         MemoryLocation ArgLoc =
216             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
217         AliasResult ArgAlias = alias(ArgLoc, Loc);
218         if (ArgAlias != NoAlias) {
219           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
220           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
221         }
222         // Conservatively clear IsMustAlias unless only MustAlias is found.
223         IsMustAlias &= (ArgAlias == MustAlias);
224       }
225     }
226     // Return NoModRef if no alias found with any argument.
227     if (isNoModRef(AllArgsMask))
228       return ModRefInfo::NoModRef;
229     // Logical & between other AA analyses and argument analysis.
230     Result = intersectModRef(Result, AllArgsMask);
231     // If only MustAlias found above, set Must bit.
232     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
233   }
234 
235   // If Loc is a constant memory location, the call definitely could not
236   // modify the memory location.
237   if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
238     Result = clearMod(Result);
239 
240   return Result;
241 }
242 
getModRefInfo(const CallBase * Call1,const CallBase * Call2)243 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
244                                     const CallBase *Call2) {
245   AAQueryInfo AAQIP;
246   return getModRefInfo(Call1, Call2, AAQIP);
247 }
248 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)249 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
250                                     const CallBase *Call2, AAQueryInfo &AAQI) {
251   ModRefInfo Result = ModRefInfo::ModRef;
252 
253   for (const auto &AA : AAs) {
254     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
255 
256     // Early-exit the moment we reach the bottom of the lattice.
257     if (isNoModRef(Result))
258       return ModRefInfo::NoModRef;
259   }
260 
261   // Try to refine the mod-ref info further using other API entry points to the
262   // aggregate set of AA results.
263 
264   // If Call1 or Call2 are readnone, they don't interact.
265   auto Call1B = getModRefBehavior(Call1);
266   if (Call1B == FMRB_DoesNotAccessMemory)
267     return ModRefInfo::NoModRef;
268 
269   auto Call2B = getModRefBehavior(Call2);
270   if (Call2B == FMRB_DoesNotAccessMemory)
271     return ModRefInfo::NoModRef;
272 
273   // If they both only read from memory, there is no dependence.
274   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
275     return ModRefInfo::NoModRef;
276 
277   // If Call1 only reads memory, the only dependence on Call2 can be
278   // from Call1 reading memory written by Call2.
279   if (onlyReadsMemory(Call1B))
280     Result = clearMod(Result);
281   else if (doesNotReadMemory(Call1B))
282     Result = clearRef(Result);
283 
284   // If Call2 only access memory through arguments, accumulate the mod/ref
285   // information from Call1's references to the memory referenced by
286   // Call2's arguments.
287   if (onlyAccessesArgPointees(Call2B)) {
288     if (!doesAccessArgPointees(Call2B))
289       return ModRefInfo::NoModRef;
290     ModRefInfo R = ModRefInfo::NoModRef;
291     bool IsMustAlias = true;
292     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
293       const Value *Arg = *I;
294       if (!Arg->getType()->isPointerTy())
295         continue;
296       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
297       auto Call2ArgLoc =
298           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
299 
300       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
301       // dependence of Call1 on that location is the inverse:
302       // - If Call2 modifies location, dependence exists if Call1 reads or
303       //   writes.
304       // - If Call2 only reads location, dependence exists if Call1 writes.
305       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
306       ModRefInfo ArgMask = ModRefInfo::NoModRef;
307       if (isModSet(ArgModRefC2))
308         ArgMask = ModRefInfo::ModRef;
309       else if (isRefSet(ArgModRefC2))
310         ArgMask = ModRefInfo::Mod;
311 
312       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
313       // above ArgMask to update dependence info.
314       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
315       ArgMask = intersectModRef(ArgMask, ModRefC1);
316 
317       // Conservatively clear IsMustAlias unless only MustAlias is found.
318       IsMustAlias &= isMustSet(ModRefC1);
319 
320       R = intersectModRef(unionModRef(R, ArgMask), Result);
321       if (R == Result) {
322         // On early exit, not all args were checked, cannot set Must.
323         if (I + 1 != E)
324           IsMustAlias = false;
325         break;
326       }
327     }
328 
329     if (isNoModRef(R))
330       return ModRefInfo::NoModRef;
331 
332     // If MustAlias found above, set Must bit.
333     return IsMustAlias ? setMust(R) : clearMust(R);
334   }
335 
336   // If Call1 only accesses memory through arguments, check if Call2 references
337   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
338   if (onlyAccessesArgPointees(Call1B)) {
339     if (!doesAccessArgPointees(Call1B))
340       return ModRefInfo::NoModRef;
341     ModRefInfo R = ModRefInfo::NoModRef;
342     bool IsMustAlias = true;
343     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
344       const Value *Arg = *I;
345       if (!Arg->getType()->isPointerTy())
346         continue;
347       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
348       auto Call1ArgLoc =
349           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
350 
351       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
352       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
353       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
354       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
355       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
356       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
357           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
358         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
359 
360       // Conservatively clear IsMustAlias unless only MustAlias is found.
361       IsMustAlias &= isMustSet(ModRefC2);
362 
363       if (R == Result) {
364         // On early exit, not all args were checked, cannot set Must.
365         if (I + 1 != E)
366           IsMustAlias = false;
367         break;
368       }
369     }
370 
371     if (isNoModRef(R))
372       return ModRefInfo::NoModRef;
373 
374     // If MustAlias found above, set Must bit.
375     return IsMustAlias ? setMust(R) : clearMust(R);
376   }
377 
378   return Result;
379 }
380 
getModRefBehavior(const CallBase * Call)381 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
382   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
383 
384   for (const auto &AA : AAs) {
385     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
386 
387     // Early-exit the moment we reach the bottom of the lattice.
388     if (Result == FMRB_DoesNotAccessMemory)
389       return Result;
390   }
391 
392   return Result;
393 }
394 
getModRefBehavior(const Function * F)395 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
396   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
397 
398   for (const auto &AA : AAs) {
399     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
400 
401     // Early-exit the moment we reach the bottom of the lattice.
402     if (Result == FMRB_DoesNotAccessMemory)
403       return Result;
404   }
405 
406   return Result;
407 }
408 
operator <<(raw_ostream & OS,AliasResult AR)409 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
410   switch (AR) {
411   case NoAlias:
412     OS << "NoAlias";
413     break;
414   case MustAlias:
415     OS << "MustAlias";
416     break;
417   case MayAlias:
418     OS << "MayAlias";
419     break;
420   case PartialAlias:
421     OS << "PartialAlias";
422     break;
423   }
424   return OS;
425 }
426 
427 //===----------------------------------------------------------------------===//
428 // Helper method implementation
429 //===----------------------------------------------------------------------===//
430 
getModRefInfo(const LoadInst * L,const MemoryLocation & Loc)431 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
432                                     const MemoryLocation &Loc) {
433   AAQueryInfo AAQIP;
434   return getModRefInfo(L, Loc, AAQIP);
435 }
getModRefInfo(const LoadInst * L,const MemoryLocation & Loc,AAQueryInfo & AAQI)436 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
437                                     const MemoryLocation &Loc,
438                                     AAQueryInfo &AAQI) {
439   // Be conservative in the face of atomic.
440   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
441     return ModRefInfo::ModRef;
442 
443   // If the load address doesn't alias the given address, it doesn't read
444   // or write the specified memory.
445   if (Loc.Ptr) {
446     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
447     if (AR == NoAlias)
448       return ModRefInfo::NoModRef;
449     if (AR == MustAlias)
450       return ModRefInfo::MustRef;
451   }
452   // Otherwise, a load just reads.
453   return ModRefInfo::Ref;
454 }
455 
getModRefInfo(const StoreInst * S,const MemoryLocation & Loc)456 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
457                                     const MemoryLocation &Loc) {
458   AAQueryInfo AAQIP;
459   return getModRefInfo(S, Loc, AAQIP);
460 }
getModRefInfo(const StoreInst * S,const MemoryLocation & Loc,AAQueryInfo & AAQI)461 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
462                                     const MemoryLocation &Loc,
463                                     AAQueryInfo &AAQI) {
464   // Be conservative in the face of atomic.
465   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
466     return ModRefInfo::ModRef;
467 
468   if (Loc.Ptr) {
469     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
470     // If the store address cannot alias the pointer in question, then the
471     // specified memory cannot be modified by the store.
472     if (AR == NoAlias)
473       return ModRefInfo::NoModRef;
474 
475     // If the pointer is a pointer to constant memory, then it could not have
476     // been modified by this store.
477     if (pointsToConstantMemory(Loc, AAQI))
478       return ModRefInfo::NoModRef;
479 
480     // If the store address aliases the pointer as must alias, set Must.
481     if (AR == MustAlias)
482       return ModRefInfo::MustMod;
483   }
484 
485   // Otherwise, a store just writes.
486   return ModRefInfo::Mod;
487 }
488 
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc)489 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
490   AAQueryInfo AAQIP;
491   return getModRefInfo(S, Loc, AAQIP);
492 }
493 
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc,AAQueryInfo & AAQI)494 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
495                                     const MemoryLocation &Loc,
496                                     AAQueryInfo &AAQI) {
497   // If we know that the location is a constant memory location, the fence
498   // cannot modify this location.
499   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
500     return ModRefInfo::Ref;
501   return ModRefInfo::ModRef;
502 }
503 
getModRefInfo(const VAArgInst * V,const MemoryLocation & Loc)504 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
505                                     const MemoryLocation &Loc) {
506   AAQueryInfo AAQIP;
507   return getModRefInfo(V, Loc, AAQIP);
508 }
509 
getModRefInfo(const VAArgInst * V,const MemoryLocation & Loc,AAQueryInfo & AAQI)510 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
511                                     const MemoryLocation &Loc,
512                                     AAQueryInfo &AAQI) {
513   if (Loc.Ptr) {
514     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
515     // If the va_arg address cannot alias the pointer in question, then the
516     // specified memory cannot be accessed by the va_arg.
517     if (AR == NoAlias)
518       return ModRefInfo::NoModRef;
519 
520     // If the pointer is a pointer to constant memory, then it could not have
521     // been modified by this va_arg.
522     if (pointsToConstantMemory(Loc, AAQI))
523       return ModRefInfo::NoModRef;
524 
525     // If the va_arg aliases the pointer as must alias, set Must.
526     if (AR == MustAlias)
527       return ModRefInfo::MustModRef;
528   }
529 
530   // Otherwise, a va_arg reads and writes.
531   return ModRefInfo::ModRef;
532 }
533 
getModRefInfo(const CatchPadInst * CatchPad,const MemoryLocation & Loc)534 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
535                                     const MemoryLocation &Loc) {
536   AAQueryInfo AAQIP;
537   return getModRefInfo(CatchPad, Loc, AAQIP);
538 }
539 
getModRefInfo(const CatchPadInst * CatchPad,const MemoryLocation & Loc,AAQueryInfo & AAQI)540 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
541                                     const MemoryLocation &Loc,
542                                     AAQueryInfo &AAQI) {
543   if (Loc.Ptr) {
544     // If the pointer is a pointer to constant memory,
545     // then it could not have been modified by this catchpad.
546     if (pointsToConstantMemory(Loc, AAQI))
547       return ModRefInfo::NoModRef;
548   }
549 
550   // Otherwise, a catchpad reads and writes.
551   return ModRefInfo::ModRef;
552 }
553 
getModRefInfo(const CatchReturnInst * CatchRet,const MemoryLocation & Loc)554 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
555                                     const MemoryLocation &Loc) {
556   AAQueryInfo AAQIP;
557   return getModRefInfo(CatchRet, Loc, AAQIP);
558 }
559 
getModRefInfo(const CatchReturnInst * CatchRet,const MemoryLocation & Loc,AAQueryInfo & AAQI)560 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
561                                     const MemoryLocation &Loc,
562                                     AAQueryInfo &AAQI) {
563   if (Loc.Ptr) {
564     // If the pointer is a pointer to constant memory,
565     // then it could not have been modified by this catchpad.
566     if (pointsToConstantMemory(Loc, AAQI))
567       return ModRefInfo::NoModRef;
568   }
569 
570   // Otherwise, a catchret reads and writes.
571   return ModRefInfo::ModRef;
572 }
573 
getModRefInfo(const AtomicCmpXchgInst * CX,const MemoryLocation & Loc)574 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
575                                     const MemoryLocation &Loc) {
576   AAQueryInfo AAQIP;
577   return getModRefInfo(CX, Loc, AAQIP);
578 }
579 
getModRefInfo(const AtomicCmpXchgInst * CX,const MemoryLocation & Loc,AAQueryInfo & AAQI)580 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
581                                     const MemoryLocation &Loc,
582                                     AAQueryInfo &AAQI) {
583   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
584   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
585     return ModRefInfo::ModRef;
586 
587   if (Loc.Ptr) {
588     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
589     // If the cmpxchg address does not alias the location, it does not access
590     // it.
591     if (AR == NoAlias)
592       return ModRefInfo::NoModRef;
593 
594     // If the cmpxchg address aliases the pointer as must alias, set Must.
595     if (AR == MustAlias)
596       return ModRefInfo::MustModRef;
597   }
598 
599   return ModRefInfo::ModRef;
600 }
601 
getModRefInfo(const AtomicRMWInst * RMW,const MemoryLocation & Loc)602 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
603                                     const MemoryLocation &Loc) {
604   AAQueryInfo AAQIP;
605   return getModRefInfo(RMW, Loc, AAQIP);
606 }
607 
getModRefInfo(const AtomicRMWInst * RMW,const MemoryLocation & Loc,AAQueryInfo & AAQI)608 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
609                                     const MemoryLocation &Loc,
610                                     AAQueryInfo &AAQI) {
611   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
612   if (isStrongerThanMonotonic(RMW->getOrdering()))
613     return ModRefInfo::ModRef;
614 
615   if (Loc.Ptr) {
616     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
617     // If the atomicrmw address does not alias the location, it does not access
618     // it.
619     if (AR == NoAlias)
620       return ModRefInfo::NoModRef;
621 
622     // If the atomicrmw address aliases the pointer as must alias, set Must.
623     if (AR == MustAlias)
624       return ModRefInfo::MustModRef;
625   }
626 
627   return ModRefInfo::ModRef;
628 }
629 
630 /// Return information about whether a particular call site modifies
631 /// or reads the specified memory location \p MemLoc before instruction \p I
632 /// in a BasicBlock.
633 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
634 /// BasicAA isn't willing to spend linear time determining whether an alloca
635 /// was captured before or after this particular call, while we are. However,
636 /// with a smarter AA in place, this test is just wasting compile time.
callCapturesBefore(const Instruction * I,const MemoryLocation & MemLoc,DominatorTree * DT)637 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
638                                          const MemoryLocation &MemLoc,
639                                          DominatorTree *DT) {
640   if (!DT)
641     return ModRefInfo::ModRef;
642 
643   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
644   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
645       isa<Constant>(Object))
646     return ModRefInfo::ModRef;
647 
648   const auto *Call = dyn_cast<CallBase>(I);
649   if (!Call || Call == Object)
650     return ModRefInfo::ModRef;
651 
652   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
653                                  /* StoreCaptures */ true, I, DT,
654                                  /* include Object */ true))
655     return ModRefInfo::ModRef;
656 
657   unsigned ArgNo = 0;
658   ModRefInfo R = ModRefInfo::NoModRef;
659   bool IsMustAlias = true;
660   // Set flag only if no May found and all operands processed.
661   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
662        CI != CE; ++CI, ++ArgNo) {
663     // Only look at the no-capture or byval pointer arguments.  If this
664     // pointer were passed to arguments that were neither of these, then it
665     // couldn't be no-capture.
666     if (!(*CI)->getType()->isPointerTy() ||
667         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
668          !Call->isByValArgument(ArgNo)))
669       continue;
670 
671     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
672     // If this is a no-capture pointer argument, see if we can tell that it
673     // is impossible to alias the pointer we're checking.  If not, we have to
674     // assume that the call could touch the pointer, even though it doesn't
675     // escape.
676     if (AR != MustAlias)
677       IsMustAlias = false;
678     if (AR == NoAlias)
679       continue;
680     if (Call->doesNotAccessMemory(ArgNo))
681       continue;
682     if (Call->onlyReadsMemory(ArgNo)) {
683       R = ModRefInfo::Ref;
684       continue;
685     }
686     // Not returning MustModRef since we have not seen all the arguments.
687     return ModRefInfo::ModRef;
688   }
689   return IsMustAlias ? setMust(R) : clearMust(R);
690 }
691 
692 /// canBasicBlockModify - Return true if it is possible for execution of the
693 /// specified basic block to modify the location Loc.
694 ///
canBasicBlockModify(const BasicBlock & BB,const MemoryLocation & Loc)695 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
696                                     const MemoryLocation &Loc) {
697   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
698 }
699 
700 /// canInstructionRangeModRef - Return true if it is possible for the
701 /// execution of the specified instructions to mod\ref (according to the
702 /// mode) the location Loc. The instructions to consider are all
703 /// of the instructions in the range of [I1,I2] INCLUSIVE.
704 /// I1 and I2 must be in the same basic block.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const MemoryLocation & Loc,const ModRefInfo Mode)705 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
706                                           const Instruction &I2,
707                                           const MemoryLocation &Loc,
708                                           const ModRefInfo Mode) {
709   assert(I1.getParent() == I2.getParent() &&
710          "Instructions not in same basic block!");
711   BasicBlock::const_iterator I = I1.getIterator();
712   BasicBlock::const_iterator E = I2.getIterator();
713   ++E;  // Convert from inclusive to exclusive range.
714 
715   for (; I != E; ++I) // Check every instruction in range
716     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
717       return true;
718   return false;
719 }
720 
721 // Provide a definition for the root virtual destructor.
722 AAResults::Concept::~Concept() = default;
723 
724 // Provide a definition for the static object used to identify passes.
725 AnalysisKey AAManager::Key;
726 
727 namespace {
728 
729 
730 } // end anonymous namespace
731 
ExternalAAWrapperPass()732 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
733   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
734 }
735 
ExternalAAWrapperPass(CallbackT CB)736 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
737     : ImmutablePass(ID), CB(std::move(CB)) {
738   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
739 }
740 
741 char ExternalAAWrapperPass::ID = 0;
742 
743 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
744                 false, true)
745 
746 ImmutablePass *
createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback)747 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
748   return new ExternalAAWrapperPass(std::move(Callback));
749 }
750 
AAResultsWrapperPass()751 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
752   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
753 }
754 
755 char AAResultsWrapperPass::ID = 0;
756 
757 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
758                       "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)759 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
760 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
761 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
762 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
763 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
764 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
765 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
766 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
767 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
768 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
769                     "Function Alias Analysis Results", false, true)
770 
771 FunctionPass *llvm::createAAResultsWrapperPass() {
772   return new AAResultsWrapperPass();
773 }
774 
775 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
776 ///
777 /// This is the legacy pass manager's interface to the new-style AA results
778 /// aggregation object. Because this is somewhat shoe-horned into the legacy
779 /// pass manager, we hard code all the specific alias analyses available into
780 /// it. While the particular set enabled is configured via commandline flags,
781 /// adding a new alias analysis to LLVM will require adding support for it to
782 /// this list.
runOnFunction(Function & F)783 bool AAResultsWrapperPass::runOnFunction(Function &F) {
784   // NB! This *must* be reset before adding new AA results to the new
785   // AAResults object because in the legacy pass manager, each instance
786   // of these will refer to the *same* immutable analyses, registering and
787   // unregistering themselves with them. We need to carefully tear down the
788   // previous object first, in this case replacing it with an empty one, before
789   // registering new results.
790   AAR.reset(
791       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
792 
793   // BasicAA is always available for function analyses. Also, we add it first
794   // so that it can trump TBAA results when it proves MustAlias.
795   // FIXME: TBAA should have an explicit mode to support this and then we
796   // should reconsider the ordering here.
797   if (!DisableBasicAA)
798     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
799 
800   // Populate the results with the currently available AAs.
801   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
802     AAR->addAAResult(WrapperPass->getResult());
803   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
804     AAR->addAAResult(WrapperPass->getResult());
805   if (auto *WrapperPass =
806           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
807     AAR->addAAResult(WrapperPass->getResult());
808   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
809     AAR->addAAResult(WrapperPass->getResult());
810   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
811     AAR->addAAResult(WrapperPass->getResult());
812   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
813     AAR->addAAResult(WrapperPass->getResult());
814   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
815     AAR->addAAResult(WrapperPass->getResult());
816 
817   // If available, run an external AA providing callback over the results as
818   // well.
819   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
820     if (WrapperPass->CB)
821       WrapperPass->CB(*this, F, *AAR);
822 
823   // Analyses don't mutate the IR, so return false.
824   return false;
825 }
826 
getAnalysisUsage(AnalysisUsage & AU) const827 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
828   AU.setPreservesAll();
829   AU.addRequired<BasicAAWrapperPass>();
830   AU.addRequired<TargetLibraryInfoWrapperPass>();
831 
832   // We also need to mark all the alias analysis passes we will potentially
833   // probe in runOnFunction as used here to ensure the legacy pass manager
834   // preserves them. This hard coding of lists of alias analyses is specific to
835   // the legacy pass manager.
836   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
837   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
838   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
839   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
840   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
841   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
842   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
843   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
844 }
845 
createLegacyPMAAResults(Pass & P,Function & F,BasicAAResult & BAR)846 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
847                                         BasicAAResult &BAR) {
848   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
849 
850   // Add in our explicitly constructed BasicAA results.
851   if (!DisableBasicAA)
852     AAR.addAAResult(BAR);
853 
854   // Populate the results with the other currently available AAs.
855   if (auto *WrapperPass =
856           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
857     AAR.addAAResult(WrapperPass->getResult());
858   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
859     AAR.addAAResult(WrapperPass->getResult());
860   if (auto *WrapperPass =
861           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
862     AAR.addAAResult(WrapperPass->getResult());
863   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
864     AAR.addAAResult(WrapperPass->getResult());
865   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
866     AAR.addAAResult(WrapperPass->getResult());
867   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
868     AAR.addAAResult(WrapperPass->getResult());
869   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
870     if (WrapperPass->CB)
871       WrapperPass->CB(P, F, AAR);
872 
873   return AAR;
874 }
875 
isNoAliasCall(const Value * V)876 bool llvm::isNoAliasCall(const Value *V) {
877   if (const auto *Call = dyn_cast<CallBase>(V))
878     return Call->hasRetAttr(Attribute::NoAlias);
879   return false;
880 }
881 
isNoAliasArgument(const Value * V)882 bool llvm::isNoAliasArgument(const Value *V) {
883   if (const Argument *A = dyn_cast<Argument>(V))
884     return A->hasNoAliasAttr();
885   return false;
886 }
887 
isIdentifiedObject(const Value * V)888 bool llvm::isIdentifiedObject(const Value *V) {
889   if (isa<AllocaInst>(V))
890     return true;
891   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
892     return true;
893   if (isNoAliasCall(V))
894     return true;
895   if (const Argument *A = dyn_cast<Argument>(V))
896     return A->hasNoAliasAttr() || A->hasByValAttr();
897   return false;
898 }
899 
isIdentifiedFunctionLocal(const Value * V)900 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
901   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
902 }
903 
getAAResultsAnalysisUsage(AnalysisUsage & AU)904 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
905   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
906   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
907   // to be added here also.
908   AU.addRequired<TargetLibraryInfoWrapperPass>();
909   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
910   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
911   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
912   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
913   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
914   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
915   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
916 }
917