1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 static cl::opt<bool> UseExpensiveRangeSharpening(
230     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
231     cl::init(false),
232     cl::desc("Use more powerful methods of sharpening expression ranges. May "
233              "be costly in terms of compile time"));
234 
235 //===----------------------------------------------------------------------===//
236 //                           SCEV class definitions
237 //===----------------------------------------------------------------------===//
238 
239 //===----------------------------------------------------------------------===//
240 // Implementation of the SCEV class.
241 //
242 
243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const244 LLVM_DUMP_METHOD void SCEV::dump() const {
245   print(dbgs());
246   dbgs() << '\n';
247 }
248 #endif
249 
print(raw_ostream & OS) const250 void SCEV::print(raw_ostream &OS) const {
251   switch (getSCEVType()) {
252   case scConstant:
253     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
254     return;
255   case scPtrToInt: {
256     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
257     const SCEV *Op = PtrToInt->getOperand();
258     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
259        << *PtrToInt->getType() << ")";
260     return;
261   }
262   case scTruncate: {
263     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
264     const SCEV *Op = Trunc->getOperand();
265     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
266        << *Trunc->getType() << ")";
267     return;
268   }
269   case scZeroExtend: {
270     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
271     const SCEV *Op = ZExt->getOperand();
272     OS << "(zext " << *Op->getType() << " " << *Op << " to "
273        << *ZExt->getType() << ")";
274     return;
275   }
276   case scSignExtend: {
277     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
278     const SCEV *Op = SExt->getOperand();
279     OS << "(sext " << *Op->getType() << " " << *Op << " to "
280        << *SExt->getType() << ")";
281     return;
282   }
283   case scAddRecExpr: {
284     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
285     OS << "{" << *AR->getOperand(0);
286     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
287       OS << ",+," << *AR->getOperand(i);
288     OS << "}<";
289     if (AR->hasNoUnsignedWrap())
290       OS << "nuw><";
291     if (AR->hasNoSignedWrap())
292       OS << "nsw><";
293     if (AR->hasNoSelfWrap() &&
294         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
295       OS << "nw><";
296     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
297     OS << ">";
298     return;
299   }
300   case scAddExpr:
301   case scMulExpr:
302   case scUMaxExpr:
303   case scSMaxExpr:
304   case scUMinExpr:
305   case scSMinExpr: {
306     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
307     const char *OpStr = nullptr;
308     switch (NAry->getSCEVType()) {
309     case scAddExpr: OpStr = " + "; break;
310     case scMulExpr: OpStr = " * "; break;
311     case scUMaxExpr: OpStr = " umax "; break;
312     case scSMaxExpr: OpStr = " smax "; break;
313     case scUMinExpr:
314       OpStr = " umin ";
315       break;
316     case scSMinExpr:
317       OpStr = " smin ";
318       break;
319     default:
320       llvm_unreachable("There are no other nary expression types.");
321     }
322     OS << "(";
323     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
324          I != E; ++I) {
325       OS << **I;
326       if (std::next(I) != E)
327         OS << OpStr;
328     }
329     OS << ")";
330     switch (NAry->getSCEVType()) {
331     case scAddExpr:
332     case scMulExpr:
333       if (NAry->hasNoUnsignedWrap())
334         OS << "<nuw>";
335       if (NAry->hasNoSignedWrap())
336         OS << "<nsw>";
337       break;
338     default:
339       // Nothing to print for other nary expressions.
340       break;
341     }
342     return;
343   }
344   case scUDivExpr: {
345     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
346     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
347     return;
348   }
349   case scUnknown: {
350     const SCEVUnknown *U = cast<SCEVUnknown>(this);
351     Type *AllocTy;
352     if (U->isSizeOf(AllocTy)) {
353       OS << "sizeof(" << *AllocTy << ")";
354       return;
355     }
356     if (U->isAlignOf(AllocTy)) {
357       OS << "alignof(" << *AllocTy << ")";
358       return;
359     }
360 
361     Type *CTy;
362     Constant *FieldNo;
363     if (U->isOffsetOf(CTy, FieldNo)) {
364       OS << "offsetof(" << *CTy << ", ";
365       FieldNo->printAsOperand(OS, false);
366       OS << ")";
367       return;
368     }
369 
370     // Otherwise just print it normally.
371     U->getValue()->printAsOperand(OS, false);
372     return;
373   }
374   case scCouldNotCompute:
375     OS << "***COULDNOTCOMPUTE***";
376     return;
377   }
378   llvm_unreachable("Unknown SCEV kind!");
379 }
380 
getType() const381 Type *SCEV::getType() const {
382   switch (getSCEVType()) {
383   case scConstant:
384     return cast<SCEVConstant>(this)->getType();
385   case scPtrToInt:
386   case scTruncate:
387   case scZeroExtend:
388   case scSignExtend:
389     return cast<SCEVCastExpr>(this)->getType();
390   case scAddRecExpr:
391   case scMulExpr:
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVNAryExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
isZero() const409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
isOne() const415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
isAllOnesValue() const421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
isNonConstantNegative() const427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
SCEVCouldNotCompute()439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
classof(const SCEV * S)442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
getConstant(ConstantInt * V)446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
getConstant(const APInt & Val)457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
SCEVCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID,const SCEV * Op,Type * ITy)473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
deleted()506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
allUsesReplacedWith(Value * New)517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
isSizeOf(Type * & AllocTy) const527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
537                                  ->getElementType();
538               return true;
539             }
540 
541   return false;
542 }
543 
isAlignOf(Type * & AllocTy) const544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
545   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
546     if (VCE->getOpcode() == Instruction::PtrToInt)
547       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
548         if (CE->getOpcode() == Instruction::GetElementPtr &&
549             CE->getOperand(0)->isNullValue()) {
550           Type *Ty =
551             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
552           if (StructType *STy = dyn_cast<StructType>(Ty))
553             if (!STy->isPacked() &&
554                 CE->getNumOperands() == 3 &&
555                 CE->getOperand(1)->isNullValue()) {
556               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
557                 if (CI->isOne() &&
558                     STy->getNumElements() == 2 &&
559                     STy->getElementType(0)->isIntegerTy(1)) {
560                   AllocTy = STy->getElementType(1);
561                   return true;
562                 }
563             }
564         }
565 
566   return false;
567 }
568 
isOffsetOf(Type * & CTy,Constant * & FieldNo) const569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
570   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
571     if (VCE->getOpcode() == Instruction::PtrToInt)
572       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
573         if (CE->getOpcode() == Instruction::GetElementPtr &&
574             CE->getNumOperands() == 3 &&
575             CE->getOperand(0)->isNullValue() &&
576             CE->getOperand(1)->isNullValue()) {
577           Type *Ty =
578             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
579           // Ignore vector types here so that ScalarEvolutionExpander doesn't
580           // emit getelementptrs that index into vectors.
581           if (Ty->isStructTy() || Ty->isArrayTy()) {
582             CTy = Ty;
583             FieldNo = CE->getOperand(2);
584             return true;
585           }
586         }
587 
588   return false;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                               SCEV Utilities
593 //===----------------------------------------------------------------------===//
594 
595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
597 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
598 /// have been previously deemed to be "equally complex" by this routine.  It is
599 /// intended to avoid exponential time complexity in cases like:
600 ///
601 ///   %a = f(%x, %y)
602 ///   %b = f(%a, %a)
603 ///   %c = f(%b, %b)
604 ///
605 ///   %d = f(%x, %y)
606 ///   %e = f(%d, %d)
607 ///   %f = f(%e, %e)
608 ///
609 ///   CompareValueComplexity(%f, %c)
610 ///
611 /// Since we do not continue running this routine on expression trees once we
612 /// have seen unequal values, there is no need to track them in the cache.
613 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
615                        const LoopInfo *const LI, Value *LV, Value *RV,
616                        unsigned Depth) {
617   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
618     return 0;
619 
620   // Order pointer values after integer values. This helps SCEVExpander form
621   // GEPs.
622   bool LIsPointer = LV->getType()->isPointerTy(),
623        RIsPointer = RV->getType()->isPointerTy();
624   if (LIsPointer != RIsPointer)
625     return (int)LIsPointer - (int)RIsPointer;
626 
627   // Compare getValueID values.
628   unsigned LID = LV->getValueID(), RID = RV->getValueID();
629   if (LID != RID)
630     return (int)LID - (int)RID;
631 
632   // Sort arguments by their position.
633   if (const auto *LA = dyn_cast<Argument>(LV)) {
634     const auto *RA = cast<Argument>(RV);
635     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
636     return (int)LArgNo - (int)RArgNo;
637   }
638 
639   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
640     const auto *RGV = cast<GlobalValue>(RV);
641 
642     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
643       auto LT = GV->getLinkage();
644       return !(GlobalValue::isPrivateLinkage(LT) ||
645                GlobalValue::isInternalLinkage(LT));
646     };
647 
648     // Use the names to distinguish the two values, but only if the
649     // names are semantically important.
650     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
651       return LGV->getName().compare(RGV->getName());
652   }
653 
654   // For instructions, compare their loop depth, and their operand count.  This
655   // is pretty loose.
656   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
657     const auto *RInst = cast<Instruction>(RV);
658 
659     // Compare loop depths.
660     const BasicBlock *LParent = LInst->getParent(),
661                      *RParent = RInst->getParent();
662     if (LParent != RParent) {
663       unsigned LDepth = LI->getLoopDepth(LParent),
664                RDepth = LI->getLoopDepth(RParent);
665       if (LDepth != RDepth)
666         return (int)LDepth - (int)RDepth;
667     }
668 
669     // Compare the number of operands.
670     unsigned LNumOps = LInst->getNumOperands(),
671              RNumOps = RInst->getNumOperands();
672     if (LNumOps != RNumOps)
673       return (int)LNumOps - (int)RNumOps;
674 
675     for (unsigned Idx : seq(0u, LNumOps)) {
676       int Result =
677           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
678                                  RInst->getOperand(Idx), Depth + 1);
679       if (Result != 0)
680         return Result;
681     }
682   }
683 
684   EqCacheValue.unionSets(LV, RV);
685   return 0;
686 }
687 
688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
689 // than RHS, respectively. A three-way result allows recursive comparisons to be
690 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)691 static int CompareSCEVComplexity(
692     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693     EquivalenceClasses<const Value *> &EqCacheValue,
694     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
695     DominatorTree &DT, unsigned Depth = 0) {
696   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697   if (LHS == RHS)
698     return 0;
699 
700   // Primarily, sort the SCEVs by their getSCEVType().
701   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702   if (LType != RType)
703     return (int)LType - (int)RType;
704 
705   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
706     return 0;
707   // Aside from the getSCEVType() ordering, the particular ordering
708   // isn't very important except that it's beneficial to be consistent,
709   // so that (a + b) and (b + a) don't end up as different expressions.
710   switch (LType) {
711   case scUnknown: {
712     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
713     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
714 
715     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
716                                    RU->getValue(), Depth + 1);
717     if (X == 0)
718       EqCacheSCEV.unionSets(LHS, RHS);
719     return X;
720   }
721 
722   case scConstant: {
723     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
724     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
725 
726     // Compare constant values.
727     const APInt &LA = LC->getAPInt();
728     const APInt &RA = RC->getAPInt();
729     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
730     if (LBitWidth != RBitWidth)
731       return (int)LBitWidth - (int)RBitWidth;
732     return LA.ult(RA) ? -1 : 1;
733   }
734 
735   case scAddRecExpr: {
736     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
737     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
738 
739     // There is always a dominance between two recs that are used by one SCEV,
740     // so we can safely sort recs by loop header dominance. We require such
741     // order in getAddExpr.
742     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
743     if (LLoop != RLoop) {
744       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
745       assert(LHead != RHead && "Two loops share the same header?");
746       if (DT.dominates(LHead, RHead))
747         return 1;
748       else
749         assert(DT.dominates(RHead, LHead) &&
750                "No dominance between recurrences used by one SCEV?");
751       return -1;
752     }
753 
754     // Addrec complexity grows with operand count.
755     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
756     if (LNumOps != RNumOps)
757       return (int)LNumOps - (int)RNumOps;
758 
759     // Lexicographically compare.
760     for (unsigned i = 0; i != LNumOps; ++i) {
761       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
762                                     LA->getOperand(i), RA->getOperand(i), DT,
763                                     Depth + 1);
764       if (X != 0)
765         return X;
766     }
767     EqCacheSCEV.unionSets(LHS, RHS);
768     return 0;
769   }
770 
771   case scAddExpr:
772   case scMulExpr:
773   case scSMaxExpr:
774   case scUMaxExpr:
775   case scSMinExpr:
776   case scUMinExpr: {
777     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
778     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
779 
780     // Lexicographically compare n-ary expressions.
781     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
782     if (LNumOps != RNumOps)
783       return (int)LNumOps - (int)RNumOps;
784 
785     for (unsigned i = 0; i != LNumOps; ++i) {
786       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                     LC->getOperand(i), RC->getOperand(i), DT,
788                                     Depth + 1);
789       if (X != 0)
790         return X;
791     }
792     EqCacheSCEV.unionSets(LHS, RHS);
793     return 0;
794   }
795 
796   case scUDivExpr: {
797     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
798     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
799 
800     // Lexicographically compare udiv expressions.
801     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
802                                   RC->getLHS(), DT, Depth + 1);
803     if (X != 0)
804       return X;
805     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
806                               RC->getRHS(), DT, Depth + 1);
807     if (X == 0)
808       EqCacheSCEV.unionSets(LHS, RHS);
809     return X;
810   }
811 
812   case scPtrToInt:
813   case scTruncate:
814   case scZeroExtend:
815   case scSignExtend: {
816     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
817     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
818 
819     // Compare cast expressions by operand.
820     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
821                                   LC->getOperand(), RC->getOperand(), DT,
822                                   Depth + 1);
823     if (X == 0)
824       EqCacheSCEV.unionSets(LHS, RHS);
825     return X;
826   }
827 
828   case scCouldNotCompute:
829     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
830   }
831   llvm_unreachable("Unknown SCEV kind!");
832 }
833 
834 /// Given a list of SCEV objects, order them by their complexity, and group
835 /// objects of the same complexity together by value.  When this routine is
836 /// finished, we know that any duplicates in the vector are consecutive and that
837 /// complexity is monotonically increasing.
838 ///
839 /// Note that we go take special precautions to ensure that we get deterministic
840 /// results from this routine.  In other words, we don't want the results of
841 /// this to depend on where the addresses of various SCEV objects happened to
842 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
844                               LoopInfo *LI, DominatorTree &DT) {
845   if (Ops.size() < 2) return;  // Noop
846 
847   EquivalenceClasses<const SCEV *> EqCacheSCEV;
848   EquivalenceClasses<const Value *> EqCacheValue;
849   if (Ops.size() == 2) {
850     // This is the common case, which also happens to be trivially simple.
851     // Special case it.
852     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
853     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
854       std::swap(LHS, RHS);
855     return;
856   }
857 
858   // Do the rough sort by complexity.
859   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
860     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
861            0;
862   });
863 
864   // Now that we are sorted by complexity, group elements of the same
865   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
866   // be extremely short in practice.  Note that we take this approach because we
867   // do not want to depend on the addresses of the objects we are grouping.
868   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
869     const SCEV *S = Ops[i];
870     unsigned Complexity = S->getSCEVType();
871 
872     // If there are any objects of the same complexity and same value as this
873     // one, group them.
874     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
875       if (Ops[j] == S) { // Found a duplicate.
876         // Move it to immediately after i'th element.
877         std::swap(Ops[i+1], Ops[j]);
878         ++i;   // no need to rescan it.
879         if (i == e-2) return;  // Done!
880       }
881     }
882   }
883 }
884 
885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
886 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
888   return any_of(Ops, [](const SCEV *S) {
889     return S->getExpressionSize() >= HugeExprThreshold;
890   });
891 }
892 
893 //===----------------------------------------------------------------------===//
894 //                      Simple SCEV method implementations
895 //===----------------------------------------------------------------------===//
896 
897 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
899                                        ScalarEvolution &SE,
900                                        Type *ResultTy) {
901   // Handle the simplest case efficiently.
902   if (K == 1)
903     return SE.getTruncateOrZeroExtend(It, ResultTy);
904 
905   // We are using the following formula for BC(It, K):
906   //
907   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
908   //
909   // Suppose, W is the bitwidth of the return value.  We must be prepared for
910   // overflow.  Hence, we must assure that the result of our computation is
911   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
912   // safe in modular arithmetic.
913   //
914   // However, this code doesn't use exactly that formula; the formula it uses
915   // is something like the following, where T is the number of factors of 2 in
916   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
917   // exponentiation:
918   //
919   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
920   //
921   // This formula is trivially equivalent to the previous formula.  However,
922   // this formula can be implemented much more efficiently.  The trick is that
923   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
924   // arithmetic.  To do exact division in modular arithmetic, all we have
925   // to do is multiply by the inverse.  Therefore, this step can be done at
926   // width W.
927   //
928   // The next issue is how to safely do the division by 2^T.  The way this
929   // is done is by doing the multiplication step at a width of at least W + T
930   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
931   // when we perform the division by 2^T (which is equivalent to a right shift
932   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
933   // truncated out after the division by 2^T.
934   //
935   // In comparison to just directly using the first formula, this technique
936   // is much more efficient; using the first formula requires W * K bits,
937   // but this formula less than W + K bits. Also, the first formula requires
938   // a division step, whereas this formula only requires multiplies and shifts.
939   //
940   // It doesn't matter whether the subtraction step is done in the calculation
941   // width or the input iteration count's width; if the subtraction overflows,
942   // the result must be zero anyway.  We prefer here to do it in the width of
943   // the induction variable because it helps a lot for certain cases; CodeGen
944   // isn't smart enough to ignore the overflow, which leads to much less
945   // efficient code if the width of the subtraction is wider than the native
946   // register width.
947   //
948   // (It's possible to not widen at all by pulling out factors of 2 before
949   // the multiplication; for example, K=2 can be calculated as
950   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
951   // extra arithmetic, so it's not an obvious win, and it gets
952   // much more complicated for K > 3.)
953 
954   // Protection from insane SCEVs; this bound is conservative,
955   // but it probably doesn't matter.
956   if (K > 1000)
957     return SE.getCouldNotCompute();
958 
959   unsigned W = SE.getTypeSizeInBits(ResultTy);
960 
961   // Calculate K! / 2^T and T; we divide out the factors of two before
962   // multiplying for calculating K! / 2^T to avoid overflow.
963   // Other overflow doesn't matter because we only care about the bottom
964   // W bits of the result.
965   APInt OddFactorial(W, 1);
966   unsigned T = 1;
967   for (unsigned i = 3; i <= K; ++i) {
968     APInt Mult(W, i);
969     unsigned TwoFactors = Mult.countTrailingZeros();
970     T += TwoFactors;
971     Mult.lshrInPlace(TwoFactors);
972     OddFactorial *= Mult;
973   }
974 
975   // We need at least W + T bits for the multiplication step
976   unsigned CalculationBits = W + T;
977 
978   // Calculate 2^T, at width T+W.
979   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
980 
981   // Calculate the multiplicative inverse of K! / 2^T;
982   // this multiplication factor will perform the exact division by
983   // K! / 2^T.
984   APInt Mod = APInt::getSignedMinValue(W+1);
985   APInt MultiplyFactor = OddFactorial.zext(W+1);
986   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
987   MultiplyFactor = MultiplyFactor.trunc(W);
988 
989   // Calculate the product, at width T+W
990   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
991                                                       CalculationBits);
992   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
993   for (unsigned i = 1; i != K; ++i) {
994     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
995     Dividend = SE.getMulExpr(Dividend,
996                              SE.getTruncateOrZeroExtend(S, CalculationTy));
997   }
998 
999   // Divide by 2^T
1000   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1001 
1002   // Truncate the result, and divide by K! / 2^T.
1003 
1004   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1005                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1006 }
1007 
1008 /// Return the value of this chain of recurrences at the specified iteration
1009 /// number.  We can evaluate this recurrence by multiplying each element in the
1010 /// chain by the binomial coefficient corresponding to it.  In other words, we
1011 /// can evaluate {A,+,B,+,C,+,D} as:
1012 ///
1013 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1014 ///
1015 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1017                                                 ScalarEvolution &SE) const {
1018   const SCEV *Result = getStart();
1019   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1020     // The computation is correct in the face of overflow provided that the
1021     // multiplication is performed _after_ the evaluation of the binomial
1022     // coefficient.
1023     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1024     if (isa<SCEVCouldNotCompute>(Coeff))
1025       return Coeff;
1026 
1027     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1028   }
1029   return Result;
1030 }
1031 
1032 //===----------------------------------------------------------------------===//
1033 //                    SCEV Expression folder implementations
1034 //===----------------------------------------------------------------------===//
1035 
getPtrToIntExpr(const SCEV * Op,Type * Ty,unsigned Depth)1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1037                                              unsigned Depth) {
1038   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1039   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1040 
1041   // We could be called with an integer-typed operands during SCEV rewrites.
1042   // Since the operand is an integer already, just perform zext/trunc/self cast.
1043   if (!Op->getType()->isPointerTy())
1044     return getTruncateOrZeroExtend(Op, Ty);
1045 
1046   // What would be an ID for such a SCEV cast expression?
1047   FoldingSetNodeID ID;
1048   ID.AddInteger(scPtrToInt);
1049   ID.AddPointer(Op);
1050 
1051   void *IP = nullptr;
1052 
1053   // Is there already an expression for such a cast?
1054   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1055     return getTruncateOrZeroExtend(S, Ty);
1056 
1057   // If not, is this expression something we can't reduce any further?
1058   if (isa<SCEVUnknown>(Op)) {
1059     // Create an explicit cast node.
1060     // We can reuse the existing insert position since if we get here,
1061     // we won't have made any changes which would invalidate it.
1062     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1063     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1064                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1065            "We can only model ptrtoint if SCEV's effective (integer) type is "
1066            "sufficiently wide to represent all possible pointer values.");
1067     SCEV *S = new (SCEVAllocator)
1068         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1069     UniqueSCEVs.InsertNode(S, IP);
1070     addToLoopUseLists(S);
1071     return getTruncateOrZeroExtend(S, Ty);
1072   }
1073 
1074   assert(Depth == 0 &&
1075          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1076 
1077   // Otherwise, we've got some expression that is more complex than just a
1078   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1079   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1080   // only, and the expressions must otherwise be integer-typed.
1081   // So sink the cast down to the SCEVUnknown's.
1082 
1083   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1084   /// which computes a pointer-typed value, and rewrites the whole expression
1085   /// tree so that *all* the computations are done on integers, and the only
1086   /// pointer-typed operands in the expression are SCEVUnknown.
1087   class SCEVPtrToIntSinkingRewriter
1088       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1089     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1090 
1091   public:
1092     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1093 
1094     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1095       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1096       return Rewriter.visit(Scev);
1097     }
1098 
1099     const SCEV *visit(const SCEV *S) {
1100       Type *STy = S->getType();
1101       // If the expression is not pointer-typed, just keep it as-is.
1102       if (!STy->isPointerTy())
1103         return S;
1104       // Else, recursively sink the cast down into it.
1105       return Base::visit(S);
1106     }
1107 
1108     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1109       SmallVector<const SCEV *, 2> Operands;
1110       bool Changed = false;
1111       for (auto *Op : Expr->operands()) {
1112         Operands.push_back(visit(Op));
1113         Changed |= Op != Operands.back();
1114       }
1115       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1116     }
1117 
1118     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1119       SmallVector<const SCEV *, 2> Operands;
1120       bool Changed = false;
1121       for (auto *Op : Expr->operands()) {
1122         Operands.push_back(visit(Op));
1123         Changed |= Op != Operands.back();
1124       }
1125       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1126     }
1127 
1128     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1129       Type *ExprPtrTy = Expr->getType();
1130       assert(ExprPtrTy->isPointerTy() &&
1131              "Should only reach pointer-typed SCEVUnknown's.");
1132       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1133       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1134     }
1135   };
1136 
1137   // And actually perform the cast sinking.
1138   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1139   assert(IntOp->getType()->isIntegerTy() &&
1140          "We must have succeeded in sinking the cast, "
1141          "and ending up with an integer-typed expression!");
1142   return getTruncateOrZeroExtend(IntOp, Ty);
1143 }
1144 
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1146                                              unsigned Depth) {
1147   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1148          "This is not a truncating conversion!");
1149   assert(isSCEVable(Ty) &&
1150          "This is not a conversion to a SCEVable type!");
1151   Ty = getEffectiveSCEVType(Ty);
1152 
1153   FoldingSetNodeID ID;
1154   ID.AddInteger(scTruncate);
1155   ID.AddPointer(Op);
1156   ID.AddPointer(Ty);
1157   void *IP = nullptr;
1158   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1159 
1160   // Fold if the operand is constant.
1161   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1162     return getConstant(
1163       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1164 
1165   // trunc(trunc(x)) --> trunc(x)
1166   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1167     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1168 
1169   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1170   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1171     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1172 
1173   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1174   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1176 
1177   if (Depth > MaxCastDepth) {
1178     SCEV *S =
1179         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1180     UniqueSCEVs.InsertNode(S, IP);
1181     addToLoopUseLists(S);
1182     return S;
1183   }
1184 
1185   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1186   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1187   // if after transforming we have at most one truncate, not counting truncates
1188   // that replace other casts.
1189   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1190     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1191     SmallVector<const SCEV *, 4> Operands;
1192     unsigned numTruncs = 0;
1193     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1194          ++i) {
1195       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1196       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1197           isa<SCEVTruncateExpr>(S))
1198         numTruncs++;
1199       Operands.push_back(S);
1200     }
1201     if (numTruncs < 2) {
1202       if (isa<SCEVAddExpr>(Op))
1203         return getAddExpr(Operands);
1204       else if (isa<SCEVMulExpr>(Op))
1205         return getMulExpr(Operands);
1206       else
1207         llvm_unreachable("Unexpected SCEV type for Op.");
1208     }
1209     // Although we checked in the beginning that ID is not in the cache, it is
1210     // possible that during recursion and different modification ID was inserted
1211     // into the cache. So if we find it, just return it.
1212     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1213       return S;
1214   }
1215 
1216   // If the input value is a chrec scev, truncate the chrec's operands.
1217   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1218     SmallVector<const SCEV *, 4> Operands;
1219     for (const SCEV *Op : AddRec->operands())
1220       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1221     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1222   }
1223 
1224   // The cast wasn't folded; create an explicit cast node. We can reuse
1225   // the existing insert position since if we get here, we won't have
1226   // made any changes which would invalidate it.
1227   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1228                                                  Op, Ty);
1229   UniqueSCEVs.InsertNode(S, IP);
1230   addToLoopUseLists(S);
1231   return S;
1232 }
1233 
1234 // Get the limit of a recurrence such that incrementing by Step cannot cause
1235 // signed overflow as long as the value of the recurrence within the
1236 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1238                                                  ICmpInst::Predicate *Pred,
1239                                                  ScalarEvolution *SE) {
1240   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1241   if (SE->isKnownPositive(Step)) {
1242     *Pred = ICmpInst::ICMP_SLT;
1243     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1244                            SE->getSignedRangeMax(Step));
1245   }
1246   if (SE->isKnownNegative(Step)) {
1247     *Pred = ICmpInst::ICMP_SGT;
1248     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1249                            SE->getSignedRangeMin(Step));
1250   }
1251   return nullptr;
1252 }
1253 
1254 // Get the limit of a recurrence such that incrementing by Step cannot cause
1255 // unsigned overflow as long as the value of the recurrence within the loop does
1256 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1258                                                    ICmpInst::Predicate *Pred,
1259                                                    ScalarEvolution *SE) {
1260   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1261   *Pred = ICmpInst::ICMP_ULT;
1262 
1263   return SE->getConstant(APInt::getMinValue(BitWidth) -
1264                          SE->getUnsignedRangeMax(Step));
1265 }
1266 
1267 namespace {
1268 
1269 struct ExtendOpTraitsBase {
1270   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1271                                                           unsigned);
1272 };
1273 
1274 // Used to make code generic over signed and unsigned overflow.
1275 template <typename ExtendOp> struct ExtendOpTraits {
1276   // Members present:
1277   //
1278   // static const SCEV::NoWrapFlags WrapType;
1279   //
1280   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1281   //
1282   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1283   //                                           ICmpInst::Predicate *Pred,
1284   //                                           ScalarEvolution *SE);
1285 };
1286 
1287 template <>
1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1289   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1290 
1291   static const GetExtendExprTy GetExtendExpr;
1292 
getOverflowLimitForStep__anonb3a128370411::ExtendOpTraits1293   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1294                                              ICmpInst::Predicate *Pred,
1295                                              ScalarEvolution *SE) {
1296     return getSignedOverflowLimitForStep(Step, Pred, SE);
1297   }
1298 };
1299 
1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1301     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1302 
1303 template <>
1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1305   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1306 
1307   static const GetExtendExprTy GetExtendExpr;
1308 
getOverflowLimitForStep__anonb3a128370411::ExtendOpTraits1309   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1310                                              ICmpInst::Predicate *Pred,
1311                                              ScalarEvolution *SE) {
1312     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1313   }
1314 };
1315 
1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1317     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1318 
1319 } // end anonymous namespace
1320 
1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1326 // expression "Step + sext/zext(PreIncAR)" is congruent with
1327 // "sext/zext(PostIncAR)"
1328 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1330                                         ScalarEvolution *SE, unsigned Depth) {
1331   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1332   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1333 
1334   const Loop *L = AR->getLoop();
1335   const SCEV *Start = AR->getStart();
1336   const SCEV *Step = AR->getStepRecurrence(*SE);
1337 
1338   // Check for a simple looking step prior to loop entry.
1339   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1340   if (!SA)
1341     return nullptr;
1342 
1343   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1344   // subtraction is expensive. For this purpose, perform a quick and dirty
1345   // difference, by checking for Step in the operand list.
1346   SmallVector<const SCEV *, 4> DiffOps;
1347   for (const SCEV *Op : SA->operands())
1348     if (Op != Step)
1349       DiffOps.push_back(Op);
1350 
1351   if (DiffOps.size() == SA->getNumOperands())
1352     return nullptr;
1353 
1354   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1355   // `Step`:
1356 
1357   // 1. NSW/NUW flags on the step increment.
1358   auto PreStartFlags =
1359     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1360   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1361   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1362       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1363 
1364   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1365   // "S+X does not sign/unsign-overflow".
1366   //
1367 
1368   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1369   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1370       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1371     return PreStart;
1372 
1373   // 2. Direct overflow check on the step operation's expression.
1374   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1375   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1376   const SCEV *OperandExtendedStart =
1377       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1378                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1379   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1380     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1381       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1382       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1383       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1384       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1385     }
1386     return PreStart;
1387   }
1388 
1389   // 3. Loop precondition.
1390   ICmpInst::Predicate Pred;
1391   const SCEV *OverflowLimit =
1392       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1393 
1394   if (OverflowLimit &&
1395       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1396     return PreStart;
1397 
1398   return nullptr;
1399 }
1400 
1401 // Get the normalized zero or sign extended expression for this AddRec's Start.
1402 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1404                                         ScalarEvolution *SE,
1405                                         unsigned Depth) {
1406   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1407 
1408   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1409   if (!PreStart)
1410     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1411 
1412   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1413                                              Depth),
1414                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1415 }
1416 
1417 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1420 //
1421 // Formally:
1422 //
1423 //     {S,+,X} == {S-T,+,X} + T
1424 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1425 //
1426 // If ({S-T,+,X} + T) does not overflow  ... (1)
1427 //
1428 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1429 //
1430 // If {S-T,+,X} does not overflow  ... (2)
1431 //
1432 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1433 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1434 //
1435 // If (S-T)+T does not overflow  ... (3)
1436 //
1437 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1438 //      == {Ext(S),+,Ext(X)} == LHS
1439 //
1440 // Thus, if (1), (2) and (3) are true for some T, then
1441 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1442 //
1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1444 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1445 // to check for (1) and (2).
1446 //
1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1448 // is `Delta` (defined below).
1449 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1451                                                 const SCEV *Step,
1452                                                 const Loop *L) {
1453   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1454 
1455   // We restrict `Start` to a constant to prevent SCEV from spending too much
1456   // time here.  It is correct (but more expensive) to continue with a
1457   // non-constant `Start` and do a general SCEV subtraction to compute
1458   // `PreStart` below.
1459   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1460   if (!StartC)
1461     return false;
1462 
1463   APInt StartAI = StartC->getAPInt();
1464 
1465   for (unsigned Delta : {-2, -1, 1, 2}) {
1466     const SCEV *PreStart = getConstant(StartAI - Delta);
1467 
1468     FoldingSetNodeID ID;
1469     ID.AddInteger(scAddRecExpr);
1470     ID.AddPointer(PreStart);
1471     ID.AddPointer(Step);
1472     ID.AddPointer(L);
1473     void *IP = nullptr;
1474     const auto *PreAR =
1475       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1476 
1477     // Give up if we don't already have the add recurrence we need because
1478     // actually constructing an add recurrence is relatively expensive.
1479     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1480       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1481       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1482       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1483           DeltaS, &Pred, this);
1484       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1485         return true;
1486     }
1487   }
1488 
1489   return false;
1490 }
1491 
1492 // Finds an integer D for an expression (C + x + y + ...) such that the top
1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1496 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1498                                             const SCEVConstant *ConstantTerm,
1499                                             const SCEVAddExpr *WholeAddExpr) {
1500   const APInt &C = ConstantTerm->getAPInt();
1501   const unsigned BitWidth = C.getBitWidth();
1502   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1503   uint32_t TZ = BitWidth;
1504   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1505     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1506   if (TZ) {
1507     // Set D to be as many least significant bits of C as possible while still
1508     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1509     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1510   }
1511   return APInt(BitWidth, 0);
1512 }
1513 
1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1519                                             const APInt &ConstantStart,
1520                                             const SCEV *Step) {
1521   const unsigned BitWidth = ConstantStart.getBitWidth();
1522   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1523   if (TZ)
1524     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1525                          : ConstantStart;
1526   return APInt(BitWidth, 0);
1527 }
1528 
1529 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1531   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1532          "This is not an extending conversion!");
1533   assert(isSCEVable(Ty) &&
1534          "This is not a conversion to a SCEVable type!");
1535   Ty = getEffectiveSCEVType(Ty);
1536 
1537   // Fold if the operand is constant.
1538   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1539     return getConstant(
1540       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1541 
1542   // zext(zext(x)) --> zext(x)
1543   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1544     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1545 
1546   // Before doing any expensive analysis, check to see if we've already
1547   // computed a SCEV for this Op and Ty.
1548   FoldingSetNodeID ID;
1549   ID.AddInteger(scZeroExtend);
1550   ID.AddPointer(Op);
1551   ID.AddPointer(Ty);
1552   void *IP = nullptr;
1553   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1554   if (Depth > MaxCastDepth) {
1555     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1556                                                      Op, Ty);
1557     UniqueSCEVs.InsertNode(S, IP);
1558     addToLoopUseLists(S);
1559     return S;
1560   }
1561 
1562   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1563   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1564     // It's possible the bits taken off by the truncate were all zero bits. If
1565     // so, we should be able to simplify this further.
1566     const SCEV *X = ST->getOperand();
1567     ConstantRange CR = getUnsignedRange(X);
1568     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1569     unsigned NewBits = getTypeSizeInBits(Ty);
1570     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1571             CR.zextOrTrunc(NewBits)))
1572       return getTruncateOrZeroExtend(X, Ty, Depth);
1573   }
1574 
1575   // If the input value is a chrec scev, and we can prove that the value
1576   // did not overflow the old, smaller, value, we can zero extend all of the
1577   // operands (often constants).  This allows analysis of something like
1578   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1579   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1580     if (AR->isAffine()) {
1581       const SCEV *Start = AR->getStart();
1582       const SCEV *Step = AR->getStepRecurrence(*this);
1583       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1584       const Loop *L = AR->getLoop();
1585 
1586       if (!AR->hasNoUnsignedWrap()) {
1587         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1588         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1589       }
1590 
1591       // If we have special knowledge that this addrec won't overflow,
1592       // we don't need to do any further analysis.
1593       if (AR->hasNoUnsignedWrap())
1594         return getAddRecExpr(
1595             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1596             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1597 
1598       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1599       // Note that this serves two purposes: It filters out loops that are
1600       // simply not analyzable, and it covers the case where this code is
1601       // being called from within backedge-taken count analysis, such that
1602       // attempting to ask for the backedge-taken count would likely result
1603       // in infinite recursion. In the later case, the analysis code will
1604       // cope with a conservative value, and it will take care to purge
1605       // that value once it has finished.
1606       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1607       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1608         // Manually compute the final value for AR, checking for
1609         // overflow.
1610 
1611         // Check whether the backedge-taken count can be losslessly casted to
1612         // the addrec's type. The count is always unsigned.
1613         const SCEV *CastedMaxBECount =
1614             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1615         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1616             CastedMaxBECount, MaxBECount->getType(), Depth);
1617         if (MaxBECount == RecastedMaxBECount) {
1618           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1619           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1620           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1621                                         SCEV::FlagAnyWrap, Depth + 1);
1622           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1623                                                           SCEV::FlagAnyWrap,
1624                                                           Depth + 1),
1625                                                WideTy, Depth + 1);
1626           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1627           const SCEV *WideMaxBECount =
1628             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1629           const SCEV *OperandExtendedAdd =
1630             getAddExpr(WideStart,
1631                        getMulExpr(WideMaxBECount,
1632                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1633                                   SCEV::FlagAnyWrap, Depth + 1),
1634                        SCEV::FlagAnyWrap, Depth + 1);
1635           if (ZAdd == OperandExtendedAdd) {
1636             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1637             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1638             // Return the expression with the addrec on the outside.
1639             return getAddRecExpr(
1640                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1641                                                          Depth + 1),
1642                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1643                 AR->getNoWrapFlags());
1644           }
1645           // Similar to above, only this time treat the step value as signed.
1646           // This covers loops that count down.
1647           OperandExtendedAdd =
1648             getAddExpr(WideStart,
1649                        getMulExpr(WideMaxBECount,
1650                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1651                                   SCEV::FlagAnyWrap, Depth + 1),
1652                        SCEV::FlagAnyWrap, Depth + 1);
1653           if (ZAdd == OperandExtendedAdd) {
1654             // Cache knowledge of AR NW, which is propagated to this AddRec.
1655             // Negative step causes unsigned wrap, but it still can't self-wrap.
1656             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1657             // Return the expression with the addrec on the outside.
1658             return getAddRecExpr(
1659                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1660                                                          Depth + 1),
1661                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1662                 AR->getNoWrapFlags());
1663           }
1664         }
1665       }
1666 
1667       // Normally, in the cases we can prove no-overflow via a
1668       // backedge guarding condition, we can also compute a backedge
1669       // taken count for the loop.  The exceptions are assumptions and
1670       // guards present in the loop -- SCEV is not great at exploiting
1671       // these to compute max backedge taken counts, but can still use
1672       // these to prove lack of overflow.  Use this fact to avoid
1673       // doing extra work that may not pay off.
1674       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1675           !AC.assumptions().empty()) {
1676         // If the backedge is guarded by a comparison with the pre-inc
1677         // value the addrec is safe. Also, if the entry is guarded by
1678         // a comparison with the start value and the backedge is
1679         // guarded by a comparison with the post-inc value, the addrec
1680         // is safe.
1681         if (isKnownPositive(Step)) {
1682           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1683                                       getUnsignedRangeMax(Step));
1684           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1685               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1686             // Cache knowledge of AR NUW, which is propagated to this
1687             // AddRec.
1688             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1689             // Return the expression with the addrec on the outside.
1690             return getAddRecExpr(
1691                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1692                                                          Depth + 1),
1693                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1694                 AR->getNoWrapFlags());
1695           }
1696         } else if (isKnownNegative(Step)) {
1697           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1698                                       getSignedRangeMin(Step));
1699           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1700               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1701             // Cache knowledge of AR NW, which is propagated to this
1702             // AddRec.  Negative step causes unsigned wrap, but it
1703             // still can't self-wrap.
1704             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1705             // Return the expression with the addrec on the outside.
1706             return getAddRecExpr(
1707                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1708                                                          Depth + 1),
1709                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1710                 AR->getNoWrapFlags());
1711           }
1712         }
1713       }
1714 
1715       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1716       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1717       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1718       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1719         const APInt &C = SC->getAPInt();
1720         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1721         if (D != 0) {
1722           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1723           const SCEV *SResidual =
1724               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1725           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1726           return getAddExpr(SZExtD, SZExtR,
1727                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1728                             Depth + 1);
1729         }
1730       }
1731 
1732       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1733         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1734         return getAddRecExpr(
1735             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1736             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1737       }
1738     }
1739 
1740   // zext(A % B) --> zext(A) % zext(B)
1741   {
1742     const SCEV *LHS;
1743     const SCEV *RHS;
1744     if (matchURem(Op, LHS, RHS))
1745       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1746                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1747   }
1748 
1749   // zext(A / B) --> zext(A) / zext(B).
1750   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1751     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1752                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1753 
1754   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1755     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1756     if (SA->hasNoUnsignedWrap()) {
1757       // If the addition does not unsign overflow then we can, by definition,
1758       // commute the zero extension with the addition operation.
1759       SmallVector<const SCEV *, 4> Ops;
1760       for (const auto *Op : SA->operands())
1761         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1762       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1763     }
1764 
1765     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1766     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1767     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1768     //
1769     // Often address arithmetics contain expressions like
1770     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1771     // This transformation is useful while proving that such expressions are
1772     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1773     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1774       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1775       if (D != 0) {
1776         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1777         const SCEV *SResidual =
1778             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1779         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1780         return getAddExpr(SZExtD, SZExtR,
1781                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1782                           Depth + 1);
1783       }
1784     }
1785   }
1786 
1787   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1788     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1789     if (SM->hasNoUnsignedWrap()) {
1790       // If the multiply does not unsign overflow then we can, by definition,
1791       // commute the zero extension with the multiply operation.
1792       SmallVector<const SCEV *, 4> Ops;
1793       for (const auto *Op : SM->operands())
1794         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1795       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1796     }
1797 
1798     // zext(2^K * (trunc X to iN)) to iM ->
1799     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1800     //
1801     // Proof:
1802     //
1803     //     zext(2^K * (trunc X to iN)) to iM
1804     //   = zext((trunc X to iN) << K) to iM
1805     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1806     //     (because shl removes the top K bits)
1807     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1808     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1809     //
1810     if (SM->getNumOperands() == 2)
1811       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1812         if (MulLHS->getAPInt().isPowerOf2())
1813           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1814             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1815                                MulLHS->getAPInt().logBase2();
1816             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1817             return getMulExpr(
1818                 getZeroExtendExpr(MulLHS, Ty),
1819                 getZeroExtendExpr(
1820                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1821                 SCEV::FlagNUW, Depth + 1);
1822           }
1823   }
1824 
1825   // The cast wasn't folded; create an explicit cast node.
1826   // Recompute the insert position, as it may have been invalidated.
1827   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1828   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1829                                                    Op, Ty);
1830   UniqueSCEVs.InsertNode(S, IP);
1831   addToLoopUseLists(S);
1832   return S;
1833 }
1834 
1835 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1836 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1837   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1838          "This is not an extending conversion!");
1839   assert(isSCEVable(Ty) &&
1840          "This is not a conversion to a SCEVable type!");
1841   Ty = getEffectiveSCEVType(Ty);
1842 
1843   // Fold if the operand is constant.
1844   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1845     return getConstant(
1846       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1847 
1848   // sext(sext(x)) --> sext(x)
1849   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1850     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1851 
1852   // sext(zext(x)) --> zext(x)
1853   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1854     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1855 
1856   // Before doing any expensive analysis, check to see if we've already
1857   // computed a SCEV for this Op and Ty.
1858   FoldingSetNodeID ID;
1859   ID.AddInteger(scSignExtend);
1860   ID.AddPointer(Op);
1861   ID.AddPointer(Ty);
1862   void *IP = nullptr;
1863   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1864   // Limit recursion depth.
1865   if (Depth > MaxCastDepth) {
1866     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1867                                                      Op, Ty);
1868     UniqueSCEVs.InsertNode(S, IP);
1869     addToLoopUseLists(S);
1870     return S;
1871   }
1872 
1873   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1874   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1875     // It's possible the bits taken off by the truncate were all sign bits. If
1876     // so, we should be able to simplify this further.
1877     const SCEV *X = ST->getOperand();
1878     ConstantRange CR = getSignedRange(X);
1879     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1880     unsigned NewBits = getTypeSizeInBits(Ty);
1881     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1882             CR.sextOrTrunc(NewBits)))
1883       return getTruncateOrSignExtend(X, Ty, Depth);
1884   }
1885 
1886   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1887     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1888     if (SA->hasNoSignedWrap()) {
1889       // If the addition does not sign overflow then we can, by definition,
1890       // commute the sign extension with the addition operation.
1891       SmallVector<const SCEV *, 4> Ops;
1892       for (const auto *Op : SA->operands())
1893         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1894       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1895     }
1896 
1897     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1898     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1899     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1900     //
1901     // For instance, this will bring two seemingly different expressions:
1902     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1903     //         sext(6 + 20 * %x + 24 * %y)
1904     // to the same form:
1905     //     2 + sext(4 + 20 * %x + 24 * %y)
1906     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1907       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1908       if (D != 0) {
1909         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1910         const SCEV *SResidual =
1911             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1912         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1913         return getAddExpr(SSExtD, SSExtR,
1914                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1915                           Depth + 1);
1916       }
1917     }
1918   }
1919   // If the input value is a chrec scev, and we can prove that the value
1920   // did not overflow the old, smaller, value, we can sign extend all of the
1921   // operands (often constants).  This allows analysis of something like
1922   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1923   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1924     if (AR->isAffine()) {
1925       const SCEV *Start = AR->getStart();
1926       const SCEV *Step = AR->getStepRecurrence(*this);
1927       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1928       const Loop *L = AR->getLoop();
1929 
1930       if (!AR->hasNoSignedWrap()) {
1931         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1932         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1933       }
1934 
1935       // If we have special knowledge that this addrec won't overflow,
1936       // we don't need to do any further analysis.
1937       if (AR->hasNoSignedWrap())
1938         return getAddRecExpr(
1939             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1940             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1941 
1942       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1943       // Note that this serves two purposes: It filters out loops that are
1944       // simply not analyzable, and it covers the case where this code is
1945       // being called from within backedge-taken count analysis, such that
1946       // attempting to ask for the backedge-taken count would likely result
1947       // in infinite recursion. In the later case, the analysis code will
1948       // cope with a conservative value, and it will take care to purge
1949       // that value once it has finished.
1950       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1951       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1952         // Manually compute the final value for AR, checking for
1953         // overflow.
1954 
1955         // Check whether the backedge-taken count can be losslessly casted to
1956         // the addrec's type. The count is always unsigned.
1957         const SCEV *CastedMaxBECount =
1958             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1959         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1960             CastedMaxBECount, MaxBECount->getType(), Depth);
1961         if (MaxBECount == RecastedMaxBECount) {
1962           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1963           // Check whether Start+Step*MaxBECount has no signed overflow.
1964           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1965                                         SCEV::FlagAnyWrap, Depth + 1);
1966           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1967                                                           SCEV::FlagAnyWrap,
1968                                                           Depth + 1),
1969                                                WideTy, Depth + 1);
1970           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1971           const SCEV *WideMaxBECount =
1972             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1973           const SCEV *OperandExtendedAdd =
1974             getAddExpr(WideStart,
1975                        getMulExpr(WideMaxBECount,
1976                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1977                                   SCEV::FlagAnyWrap, Depth + 1),
1978                        SCEV::FlagAnyWrap, Depth + 1);
1979           if (SAdd == OperandExtendedAdd) {
1980             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1981             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1982             // Return the expression with the addrec on the outside.
1983             return getAddRecExpr(
1984                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1985                                                          Depth + 1),
1986                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1987                 AR->getNoWrapFlags());
1988           }
1989           // Similar to above, only this time treat the step value as unsigned.
1990           // This covers loops that count up with an unsigned step.
1991           OperandExtendedAdd =
1992             getAddExpr(WideStart,
1993                        getMulExpr(WideMaxBECount,
1994                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1995                                   SCEV::FlagAnyWrap, Depth + 1),
1996                        SCEV::FlagAnyWrap, Depth + 1);
1997           if (SAdd == OperandExtendedAdd) {
1998             // If AR wraps around then
1999             //
2000             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2001             // => SAdd != OperandExtendedAdd
2002             //
2003             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2004             // (SAdd == OperandExtendedAdd => AR is NW)
2005 
2006             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2007 
2008             // Return the expression with the addrec on the outside.
2009             return getAddRecExpr(
2010                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2011                                                          Depth + 1),
2012                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2013                 AR->getNoWrapFlags());
2014           }
2015         }
2016       }
2017 
2018       // Normally, in the cases we can prove no-overflow via a
2019       // backedge guarding condition, we can also compute a backedge
2020       // taken count for the loop.  The exceptions are assumptions and
2021       // guards present in the loop -- SCEV is not great at exploiting
2022       // these to compute max backedge taken counts, but can still use
2023       // these to prove lack of overflow.  Use this fact to avoid
2024       // doing extra work that may not pay off.
2025 
2026       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2027           !AC.assumptions().empty()) {
2028         // If the backedge is guarded by a comparison with the pre-inc
2029         // value the addrec is safe. Also, if the entry is guarded by
2030         // a comparison with the start value and the backedge is
2031         // guarded by a comparison with the post-inc value, the addrec
2032         // is safe.
2033         ICmpInst::Predicate Pred;
2034         const SCEV *OverflowLimit =
2035             getSignedOverflowLimitForStep(Step, &Pred, this);
2036         if (OverflowLimit &&
2037             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2038              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2039           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2040           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2041           return getAddRecExpr(
2042               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2043               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2044         }
2045       }
2046 
2047       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2048       // if D + (C - D + Step * n) could be proven to not signed wrap
2049       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2050       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2051         const APInt &C = SC->getAPInt();
2052         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2053         if (D != 0) {
2054           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2055           const SCEV *SResidual =
2056               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2057           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2058           return getAddExpr(SSExtD, SSExtR,
2059                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2060                             Depth + 1);
2061         }
2062       }
2063 
2064       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2065         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2066         return getAddRecExpr(
2067             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2068             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2069       }
2070     }
2071 
2072   // If the input value is provably positive and we could not simplify
2073   // away the sext build a zext instead.
2074   if (isKnownNonNegative(Op))
2075     return getZeroExtendExpr(Op, Ty, Depth + 1);
2076 
2077   // The cast wasn't folded; create an explicit cast node.
2078   // Recompute the insert position, as it may have been invalidated.
2079   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2080   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2081                                                    Op, Ty);
2082   UniqueSCEVs.InsertNode(S, IP);
2083   addToLoopUseLists(S);
2084   return S;
2085 }
2086 
2087 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2088 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2089 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2090                                               Type *Ty) {
2091   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2092          "This is not an extending conversion!");
2093   assert(isSCEVable(Ty) &&
2094          "This is not a conversion to a SCEVable type!");
2095   Ty = getEffectiveSCEVType(Ty);
2096 
2097   // Sign-extend negative constants.
2098   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2099     if (SC->getAPInt().isNegative())
2100       return getSignExtendExpr(Op, Ty);
2101 
2102   // Peel off a truncate cast.
2103   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2104     const SCEV *NewOp = T->getOperand();
2105     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2106       return getAnyExtendExpr(NewOp, Ty);
2107     return getTruncateOrNoop(NewOp, Ty);
2108   }
2109 
2110   // Next try a zext cast. If the cast is folded, use it.
2111   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2112   if (!isa<SCEVZeroExtendExpr>(ZExt))
2113     return ZExt;
2114 
2115   // Next try a sext cast. If the cast is folded, use it.
2116   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2117   if (!isa<SCEVSignExtendExpr>(SExt))
2118     return SExt;
2119 
2120   // Force the cast to be folded into the operands of an addrec.
2121   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2122     SmallVector<const SCEV *, 4> Ops;
2123     for (const SCEV *Op : AR->operands())
2124       Ops.push_back(getAnyExtendExpr(Op, Ty));
2125     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2126   }
2127 
2128   // If the expression is obviously signed, use the sext cast value.
2129   if (isa<SCEVSMaxExpr>(Op))
2130     return SExt;
2131 
2132   // Absent any other information, use the zext cast value.
2133   return ZExt;
2134 }
2135 
2136 /// Process the given Ops list, which is a list of operands to be added under
2137 /// the given scale, update the given map. This is a helper function for
2138 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2139 /// that would form an add expression like this:
2140 ///
2141 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2142 ///
2143 /// where A and B are constants, update the map with these values:
2144 ///
2145 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2146 ///
2147 /// and add 13 + A*B*29 to AccumulatedConstant.
2148 /// This will allow getAddRecExpr to produce this:
2149 ///
2150 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2151 ///
2152 /// This form often exposes folding opportunities that are hidden in
2153 /// the original operand list.
2154 ///
2155 /// Return true iff it appears that any interesting folding opportunities
2156 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2157 /// the common case where no interesting opportunities are present, and
2158 /// is also used as a check to avoid infinite recursion.
2159 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2160 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2161                              SmallVectorImpl<const SCEV *> &NewOps,
2162                              APInt &AccumulatedConstant,
2163                              const SCEV *const *Ops, size_t NumOperands,
2164                              const APInt &Scale,
2165                              ScalarEvolution &SE) {
2166   bool Interesting = false;
2167 
2168   // Iterate over the add operands. They are sorted, with constants first.
2169   unsigned i = 0;
2170   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2171     ++i;
2172     // Pull a buried constant out to the outside.
2173     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2174       Interesting = true;
2175     AccumulatedConstant += Scale * C->getAPInt();
2176   }
2177 
2178   // Next comes everything else. We're especially interested in multiplies
2179   // here, but they're in the middle, so just visit the rest with one loop.
2180   for (; i != NumOperands; ++i) {
2181     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2182     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2183       APInt NewScale =
2184           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2185       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2186         // A multiplication of a constant with another add; recurse.
2187         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2188         Interesting |=
2189           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2190                                        Add->op_begin(), Add->getNumOperands(),
2191                                        NewScale, SE);
2192       } else {
2193         // A multiplication of a constant with some other value. Update
2194         // the map.
2195         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2196         const SCEV *Key = SE.getMulExpr(MulOps);
2197         auto Pair = M.insert({Key, NewScale});
2198         if (Pair.second) {
2199           NewOps.push_back(Pair.first->first);
2200         } else {
2201           Pair.first->second += NewScale;
2202           // The map already had an entry for this value, which may indicate
2203           // a folding opportunity.
2204           Interesting = true;
2205         }
2206       }
2207     } else {
2208       // An ordinary operand. Update the map.
2209       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2210           M.insert({Ops[i], Scale});
2211       if (Pair.second) {
2212         NewOps.push_back(Pair.first->first);
2213       } else {
2214         Pair.first->second += Scale;
2215         // The map already had an entry for this value, which may indicate
2216         // a folding opportunity.
2217         Interesting = true;
2218       }
2219     }
2220   }
2221 
2222   return Interesting;
2223 }
2224 
2225 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2226 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2227 // can't-overflow flags for the operation if possible.
2228 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2229 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2230                       const ArrayRef<const SCEV *> Ops,
2231                       SCEV::NoWrapFlags Flags) {
2232   using namespace std::placeholders;
2233 
2234   using OBO = OverflowingBinaryOperator;
2235 
2236   bool CanAnalyze =
2237       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2238   (void)CanAnalyze;
2239   assert(CanAnalyze && "don't call from other places!");
2240 
2241   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2242   SCEV::NoWrapFlags SignOrUnsignWrap =
2243       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2244 
2245   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2246   auto IsKnownNonNegative = [&](const SCEV *S) {
2247     return SE->isKnownNonNegative(S);
2248   };
2249 
2250   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2251     Flags =
2252         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2253 
2254   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2255 
2256   if (SignOrUnsignWrap != SignOrUnsignMask &&
2257       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2258       isa<SCEVConstant>(Ops[0])) {
2259 
2260     auto Opcode = [&] {
2261       switch (Type) {
2262       case scAddExpr:
2263         return Instruction::Add;
2264       case scMulExpr:
2265         return Instruction::Mul;
2266       default:
2267         llvm_unreachable("Unexpected SCEV op.");
2268       }
2269     }();
2270 
2271     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2272 
2273     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2274     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2275       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2276           Opcode, C, OBO::NoSignedWrap);
2277       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2278         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2279     }
2280 
2281     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2282     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2283       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2284           Opcode, C, OBO::NoUnsignedWrap);
2285       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2286         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2287     }
2288   }
2289 
2290   return Flags;
2291 }
2292 
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2293 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2294   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2295 }
2296 
2297 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2298 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2299                                         SCEV::NoWrapFlags OrigFlags,
2300                                         unsigned Depth) {
2301   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2302          "only nuw or nsw allowed");
2303   assert(!Ops.empty() && "Cannot get empty add!");
2304   if (Ops.size() == 1) return Ops[0];
2305 #ifndef NDEBUG
2306   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2307   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2308     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2309            "SCEVAddExpr operand types don't match!");
2310 #endif
2311 
2312   // Sort by complexity, this groups all similar expression types together.
2313   GroupByComplexity(Ops, &LI, DT);
2314 
2315   // If there are any constants, fold them together.
2316   unsigned Idx = 0;
2317   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2318     ++Idx;
2319     assert(Idx < Ops.size());
2320     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2321       // We found two constants, fold them together!
2322       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2323       if (Ops.size() == 2) return Ops[0];
2324       Ops.erase(Ops.begin()+1);  // Erase the folded element
2325       LHSC = cast<SCEVConstant>(Ops[0]);
2326     }
2327 
2328     // If we are left with a constant zero being added, strip it off.
2329     if (LHSC->getValue()->isZero()) {
2330       Ops.erase(Ops.begin());
2331       --Idx;
2332     }
2333 
2334     if (Ops.size() == 1) return Ops[0];
2335   }
2336 
2337   // Delay expensive flag strengthening until necessary.
2338   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2339     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2340   };
2341 
2342   // Limit recursion calls depth.
2343   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2344     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2345 
2346   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2347     // Don't strengthen flags if we have no new information.
2348     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2349     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2350       Add->setNoWrapFlags(ComputeFlags(Ops));
2351     return S;
2352   }
2353 
2354   // Okay, check to see if the same value occurs in the operand list more than
2355   // once.  If so, merge them together into an multiply expression.  Since we
2356   // sorted the list, these values are required to be adjacent.
2357   Type *Ty = Ops[0]->getType();
2358   bool FoundMatch = false;
2359   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2360     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2361       // Scan ahead to count how many equal operands there are.
2362       unsigned Count = 2;
2363       while (i+Count != e && Ops[i+Count] == Ops[i])
2364         ++Count;
2365       // Merge the values into a multiply.
2366       const SCEV *Scale = getConstant(Ty, Count);
2367       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2368       if (Ops.size() == Count)
2369         return Mul;
2370       Ops[i] = Mul;
2371       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2372       --i; e -= Count - 1;
2373       FoundMatch = true;
2374     }
2375   if (FoundMatch)
2376     return getAddExpr(Ops, OrigFlags, Depth + 1);
2377 
2378   // Check for truncates. If all the operands are truncated from the same
2379   // type, see if factoring out the truncate would permit the result to be
2380   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2381   // if the contents of the resulting outer trunc fold to something simple.
2382   auto FindTruncSrcType = [&]() -> Type * {
2383     // We're ultimately looking to fold an addrec of truncs and muls of only
2384     // constants and truncs, so if we find any other types of SCEV
2385     // as operands of the addrec then we bail and return nullptr here.
2386     // Otherwise, we return the type of the operand of a trunc that we find.
2387     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2388       return T->getOperand()->getType();
2389     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2390       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2391       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2392         return T->getOperand()->getType();
2393     }
2394     return nullptr;
2395   };
2396   if (auto *SrcType = FindTruncSrcType()) {
2397     SmallVector<const SCEV *, 8> LargeOps;
2398     bool Ok = true;
2399     // Check all the operands to see if they can be represented in the
2400     // source type of the truncate.
2401     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2402       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2403         if (T->getOperand()->getType() != SrcType) {
2404           Ok = false;
2405           break;
2406         }
2407         LargeOps.push_back(T->getOperand());
2408       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2409         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2410       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2411         SmallVector<const SCEV *, 8> LargeMulOps;
2412         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2413           if (const SCEVTruncateExpr *T =
2414                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2415             if (T->getOperand()->getType() != SrcType) {
2416               Ok = false;
2417               break;
2418             }
2419             LargeMulOps.push_back(T->getOperand());
2420           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2421             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2422           } else {
2423             Ok = false;
2424             break;
2425           }
2426         }
2427         if (Ok)
2428           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2429       } else {
2430         Ok = false;
2431         break;
2432       }
2433     }
2434     if (Ok) {
2435       // Evaluate the expression in the larger type.
2436       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2437       // If it folds to something simple, use it. Otherwise, don't.
2438       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2439         return getTruncateExpr(Fold, Ty);
2440     }
2441   }
2442 
2443   // Skip past any other cast SCEVs.
2444   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2445     ++Idx;
2446 
2447   // If there are add operands they would be next.
2448   if (Idx < Ops.size()) {
2449     bool DeletedAdd = false;
2450     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2451       if (Ops.size() > AddOpsInlineThreshold ||
2452           Add->getNumOperands() > AddOpsInlineThreshold)
2453         break;
2454       // If we have an add, expand the add operands onto the end of the operands
2455       // list.
2456       Ops.erase(Ops.begin()+Idx);
2457       Ops.append(Add->op_begin(), Add->op_end());
2458       DeletedAdd = true;
2459     }
2460 
2461     // If we deleted at least one add, we added operands to the end of the list,
2462     // and they are not necessarily sorted.  Recurse to resort and resimplify
2463     // any operands we just acquired.
2464     if (DeletedAdd)
2465       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2466   }
2467 
2468   // Skip over the add expression until we get to a multiply.
2469   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2470     ++Idx;
2471 
2472   // Check to see if there are any folding opportunities present with
2473   // operands multiplied by constant values.
2474   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2475     uint64_t BitWidth = getTypeSizeInBits(Ty);
2476     DenseMap<const SCEV *, APInt> M;
2477     SmallVector<const SCEV *, 8> NewOps;
2478     APInt AccumulatedConstant(BitWidth, 0);
2479     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2480                                      Ops.data(), Ops.size(),
2481                                      APInt(BitWidth, 1), *this)) {
2482       struct APIntCompare {
2483         bool operator()(const APInt &LHS, const APInt &RHS) const {
2484           return LHS.ult(RHS);
2485         }
2486       };
2487 
2488       // Some interesting folding opportunity is present, so its worthwhile to
2489       // re-generate the operands list. Group the operands by constant scale,
2490       // to avoid multiplying by the same constant scale multiple times.
2491       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2492       for (const SCEV *NewOp : NewOps)
2493         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2494       // Re-generate the operands list.
2495       Ops.clear();
2496       if (AccumulatedConstant != 0)
2497         Ops.push_back(getConstant(AccumulatedConstant));
2498       for (auto &MulOp : MulOpLists)
2499         if (MulOp.first != 0)
2500           Ops.push_back(getMulExpr(
2501               getConstant(MulOp.first),
2502               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2503               SCEV::FlagAnyWrap, Depth + 1));
2504       if (Ops.empty())
2505         return getZero(Ty);
2506       if (Ops.size() == 1)
2507         return Ops[0];
2508       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2509     }
2510   }
2511 
2512   // If we are adding something to a multiply expression, make sure the
2513   // something is not already an operand of the multiply.  If so, merge it into
2514   // the multiply.
2515   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2516     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2517     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2518       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2519       if (isa<SCEVConstant>(MulOpSCEV))
2520         continue;
2521       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2522         if (MulOpSCEV == Ops[AddOp]) {
2523           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2524           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2525           if (Mul->getNumOperands() != 2) {
2526             // If the multiply has more than two operands, we must get the
2527             // Y*Z term.
2528             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2529                                                 Mul->op_begin()+MulOp);
2530             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2531             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2532           }
2533           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2534           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2535           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2536                                             SCEV::FlagAnyWrap, Depth + 1);
2537           if (Ops.size() == 2) return OuterMul;
2538           if (AddOp < Idx) {
2539             Ops.erase(Ops.begin()+AddOp);
2540             Ops.erase(Ops.begin()+Idx-1);
2541           } else {
2542             Ops.erase(Ops.begin()+Idx);
2543             Ops.erase(Ops.begin()+AddOp-1);
2544           }
2545           Ops.push_back(OuterMul);
2546           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2547         }
2548 
2549       // Check this multiply against other multiplies being added together.
2550       for (unsigned OtherMulIdx = Idx+1;
2551            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2552            ++OtherMulIdx) {
2553         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2554         // If MulOp occurs in OtherMul, we can fold the two multiplies
2555         // together.
2556         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2557              OMulOp != e; ++OMulOp)
2558           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2559             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2560             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2561             if (Mul->getNumOperands() != 2) {
2562               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2563                                                   Mul->op_begin()+MulOp);
2564               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2565               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2566             }
2567             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2568             if (OtherMul->getNumOperands() != 2) {
2569               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2570                                                   OtherMul->op_begin()+OMulOp);
2571               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2572               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2573             }
2574             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2575             const SCEV *InnerMulSum =
2576                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2577             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2578                                               SCEV::FlagAnyWrap, Depth + 1);
2579             if (Ops.size() == 2) return OuterMul;
2580             Ops.erase(Ops.begin()+Idx);
2581             Ops.erase(Ops.begin()+OtherMulIdx-1);
2582             Ops.push_back(OuterMul);
2583             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2584           }
2585       }
2586     }
2587   }
2588 
2589   // If there are any add recurrences in the operands list, see if any other
2590   // added values are loop invariant.  If so, we can fold them into the
2591   // recurrence.
2592   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2593     ++Idx;
2594 
2595   // Scan over all recurrences, trying to fold loop invariants into them.
2596   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2597     // Scan all of the other operands to this add and add them to the vector if
2598     // they are loop invariant w.r.t. the recurrence.
2599     SmallVector<const SCEV *, 8> LIOps;
2600     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2601     const Loop *AddRecLoop = AddRec->getLoop();
2602     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2603       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2604         LIOps.push_back(Ops[i]);
2605         Ops.erase(Ops.begin()+i);
2606         --i; --e;
2607       }
2608 
2609     // If we found some loop invariants, fold them into the recurrence.
2610     if (!LIOps.empty()) {
2611       // Compute nowrap flags for the addition of the loop-invariant ops and
2612       // the addrec. Temporarily push it as an operand for that purpose.
2613       LIOps.push_back(AddRec);
2614       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2615       LIOps.pop_back();
2616 
2617       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2618       LIOps.push_back(AddRec->getStart());
2619 
2620       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2621                                              AddRec->op_end());
2622       // This follows from the fact that the no-wrap flags on the outer add
2623       // expression are applicable on the 0th iteration, when the add recurrence
2624       // will be equal to its start value.
2625       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2626 
2627       // Build the new addrec. Propagate the NUW and NSW flags if both the
2628       // outer add and the inner addrec are guaranteed to have no overflow.
2629       // Always propagate NW.
2630       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2631       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2632 
2633       // If all of the other operands were loop invariant, we are done.
2634       if (Ops.size() == 1) return NewRec;
2635 
2636       // Otherwise, add the folded AddRec by the non-invariant parts.
2637       for (unsigned i = 0;; ++i)
2638         if (Ops[i] == AddRec) {
2639           Ops[i] = NewRec;
2640           break;
2641         }
2642       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2643     }
2644 
2645     // Okay, if there weren't any loop invariants to be folded, check to see if
2646     // there are multiple AddRec's with the same loop induction variable being
2647     // added together.  If so, we can fold them.
2648     for (unsigned OtherIdx = Idx+1;
2649          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2650          ++OtherIdx) {
2651       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2652       // so that the 1st found AddRecExpr is dominated by all others.
2653       assert(DT.dominates(
2654            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2655            AddRec->getLoop()->getHeader()) &&
2656         "AddRecExprs are not sorted in reverse dominance order?");
2657       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2658         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2659         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2660                                                AddRec->op_end());
2661         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2662              ++OtherIdx) {
2663           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2664           if (OtherAddRec->getLoop() == AddRecLoop) {
2665             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2666                  i != e; ++i) {
2667               if (i >= AddRecOps.size()) {
2668                 AddRecOps.append(OtherAddRec->op_begin()+i,
2669                                  OtherAddRec->op_end());
2670                 break;
2671               }
2672               SmallVector<const SCEV *, 2> TwoOps = {
2673                   AddRecOps[i], OtherAddRec->getOperand(i)};
2674               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2675             }
2676             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2677           }
2678         }
2679         // Step size has changed, so we cannot guarantee no self-wraparound.
2680         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2681         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2682       }
2683     }
2684 
2685     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2686     // next one.
2687   }
2688 
2689   // Okay, it looks like we really DO need an add expr.  Check to see if we
2690   // already have one, otherwise create a new one.
2691   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2692 }
2693 
2694 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2695 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2696                                     SCEV::NoWrapFlags Flags) {
2697   FoldingSetNodeID ID;
2698   ID.AddInteger(scAddExpr);
2699   for (const SCEV *Op : Ops)
2700     ID.AddPointer(Op);
2701   void *IP = nullptr;
2702   SCEVAddExpr *S =
2703       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2704   if (!S) {
2705     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2706     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2707     S = new (SCEVAllocator)
2708         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2709     UniqueSCEVs.InsertNode(S, IP);
2710     addToLoopUseLists(S);
2711   }
2712   S->setNoWrapFlags(Flags);
2713   return S;
2714 }
2715 
2716 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2717 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2718                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2719   FoldingSetNodeID ID;
2720   ID.AddInteger(scAddRecExpr);
2721   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2722     ID.AddPointer(Ops[i]);
2723   ID.AddPointer(L);
2724   void *IP = nullptr;
2725   SCEVAddRecExpr *S =
2726       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2727   if (!S) {
2728     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2729     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2730     S = new (SCEVAllocator)
2731         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2732     UniqueSCEVs.InsertNode(S, IP);
2733     addToLoopUseLists(S);
2734   }
2735   setNoWrapFlags(S, Flags);
2736   return S;
2737 }
2738 
2739 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2740 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2741                                     SCEV::NoWrapFlags Flags) {
2742   FoldingSetNodeID ID;
2743   ID.AddInteger(scMulExpr);
2744   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2745     ID.AddPointer(Ops[i]);
2746   void *IP = nullptr;
2747   SCEVMulExpr *S =
2748     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2749   if (!S) {
2750     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2751     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2752     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2753                                         O, Ops.size());
2754     UniqueSCEVs.InsertNode(S, IP);
2755     addToLoopUseLists(S);
2756   }
2757   S->setNoWrapFlags(Flags);
2758   return S;
2759 }
2760 
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2761 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2762   uint64_t k = i*j;
2763   if (j > 1 && k / j != i) Overflow = true;
2764   return k;
2765 }
2766 
2767 /// Compute the result of "n choose k", the binomial coefficient.  If an
2768 /// intermediate computation overflows, Overflow will be set and the return will
2769 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2770 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2771   // We use the multiplicative formula:
2772   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2773   // At each iteration, we take the n-th term of the numeral and divide by the
2774   // (k-n)th term of the denominator.  This division will always produce an
2775   // integral result, and helps reduce the chance of overflow in the
2776   // intermediate computations. However, we can still overflow even when the
2777   // final result would fit.
2778 
2779   if (n == 0 || n == k) return 1;
2780   if (k > n) return 0;
2781 
2782   if (k > n/2)
2783     k = n-k;
2784 
2785   uint64_t r = 1;
2786   for (uint64_t i = 1; i <= k; ++i) {
2787     r = umul_ov(r, n-(i-1), Overflow);
2788     r /= i;
2789   }
2790   return r;
2791 }
2792 
2793 /// Determine if any of the operands in this SCEV are a constant or if
2794 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2795 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2796   struct FindConstantInAddMulChain {
2797     bool FoundConstant = false;
2798 
2799     bool follow(const SCEV *S) {
2800       FoundConstant |= isa<SCEVConstant>(S);
2801       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2802     }
2803 
2804     bool isDone() const {
2805       return FoundConstant;
2806     }
2807   };
2808 
2809   FindConstantInAddMulChain F;
2810   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2811   ST.visitAll(StartExpr);
2812   return F.FoundConstant;
2813 }
2814 
2815 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2816 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2817                                         SCEV::NoWrapFlags OrigFlags,
2818                                         unsigned Depth) {
2819   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2820          "only nuw or nsw allowed");
2821   assert(!Ops.empty() && "Cannot get empty mul!");
2822   if (Ops.size() == 1) return Ops[0];
2823 #ifndef NDEBUG
2824   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2825   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2826     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2827            "SCEVMulExpr operand types don't match!");
2828 #endif
2829 
2830   // Sort by complexity, this groups all similar expression types together.
2831   GroupByComplexity(Ops, &LI, DT);
2832 
2833   // If there are any constants, fold them together.
2834   unsigned Idx = 0;
2835   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2836     ++Idx;
2837     assert(Idx < Ops.size());
2838     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2839       // We found two constants, fold them together!
2840       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2841       if (Ops.size() == 2) return Ops[0];
2842       Ops.erase(Ops.begin()+1);  // Erase the folded element
2843       LHSC = cast<SCEVConstant>(Ops[0]);
2844     }
2845 
2846     // If we have a multiply of zero, it will always be zero.
2847     if (LHSC->getValue()->isZero())
2848       return LHSC;
2849 
2850     // If we are left with a constant one being multiplied, strip it off.
2851     if (LHSC->getValue()->isOne()) {
2852       Ops.erase(Ops.begin());
2853       --Idx;
2854     }
2855 
2856     if (Ops.size() == 1)
2857       return Ops[0];
2858   }
2859 
2860   // Delay expensive flag strengthening until necessary.
2861   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2862     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2863   };
2864 
2865   // Limit recursion calls depth.
2866   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2867     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2868 
2869   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2870     // Don't strengthen flags if we have no new information.
2871     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2872     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2873       Mul->setNoWrapFlags(ComputeFlags(Ops));
2874     return S;
2875   }
2876 
2877   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2878     if (Ops.size() == 2) {
2879       // C1*(C2+V) -> C1*C2 + C1*V
2880       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2881         // If any of Add's ops are Adds or Muls with a constant, apply this
2882         // transformation as well.
2883         //
2884         // TODO: There are some cases where this transformation is not
2885         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2886         // this transformation should be narrowed down.
2887         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2888           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2889                                        SCEV::FlagAnyWrap, Depth + 1),
2890                             getMulExpr(LHSC, Add->getOperand(1),
2891                                        SCEV::FlagAnyWrap, Depth + 1),
2892                             SCEV::FlagAnyWrap, Depth + 1);
2893 
2894       if (Ops[0]->isAllOnesValue()) {
2895         // If we have a mul by -1 of an add, try distributing the -1 among the
2896         // add operands.
2897         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2898           SmallVector<const SCEV *, 4> NewOps;
2899           bool AnyFolded = false;
2900           for (const SCEV *AddOp : Add->operands()) {
2901             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2902                                          Depth + 1);
2903             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2904             NewOps.push_back(Mul);
2905           }
2906           if (AnyFolded)
2907             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2908         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2909           // Negation preserves a recurrence's no self-wrap property.
2910           SmallVector<const SCEV *, 4> Operands;
2911           for (const SCEV *AddRecOp : AddRec->operands())
2912             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2913                                           Depth + 1));
2914 
2915           return getAddRecExpr(Operands, AddRec->getLoop(),
2916                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2917         }
2918       }
2919     }
2920   }
2921 
2922   // Skip over the add expression until we get to a multiply.
2923   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2924     ++Idx;
2925 
2926   // If there are mul operands inline them all into this expression.
2927   if (Idx < Ops.size()) {
2928     bool DeletedMul = false;
2929     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2930       if (Ops.size() > MulOpsInlineThreshold)
2931         break;
2932       // If we have an mul, expand the mul operands onto the end of the
2933       // operands list.
2934       Ops.erase(Ops.begin()+Idx);
2935       Ops.append(Mul->op_begin(), Mul->op_end());
2936       DeletedMul = true;
2937     }
2938 
2939     // If we deleted at least one mul, we added operands to the end of the
2940     // list, and they are not necessarily sorted.  Recurse to resort and
2941     // resimplify any operands we just acquired.
2942     if (DeletedMul)
2943       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2944   }
2945 
2946   // If there are any add recurrences in the operands list, see if any other
2947   // added values are loop invariant.  If so, we can fold them into the
2948   // recurrence.
2949   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2950     ++Idx;
2951 
2952   // Scan over all recurrences, trying to fold loop invariants into them.
2953   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2954     // Scan all of the other operands to this mul and add them to the vector
2955     // if they are loop invariant w.r.t. the recurrence.
2956     SmallVector<const SCEV *, 8> LIOps;
2957     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2958     const Loop *AddRecLoop = AddRec->getLoop();
2959     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2960       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2961         LIOps.push_back(Ops[i]);
2962         Ops.erase(Ops.begin()+i);
2963         --i; --e;
2964       }
2965 
2966     // If we found some loop invariants, fold them into the recurrence.
2967     if (!LIOps.empty()) {
2968       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2969       SmallVector<const SCEV *, 4> NewOps;
2970       NewOps.reserve(AddRec->getNumOperands());
2971       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2972       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2973         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2974                                     SCEV::FlagAnyWrap, Depth + 1));
2975 
2976       // Build the new addrec. Propagate the NUW and NSW flags if both the
2977       // outer mul and the inner addrec are guaranteed to have no overflow.
2978       //
2979       // No self-wrap cannot be guaranteed after changing the step size, but
2980       // will be inferred if either NUW or NSW is true.
2981       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2982       const SCEV *NewRec = getAddRecExpr(
2983           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2984 
2985       // If all of the other operands were loop invariant, we are done.
2986       if (Ops.size() == 1) return NewRec;
2987 
2988       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2989       for (unsigned i = 0;; ++i)
2990         if (Ops[i] == AddRec) {
2991           Ops[i] = NewRec;
2992           break;
2993         }
2994       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2995     }
2996 
2997     // Okay, if there weren't any loop invariants to be folded, check to see
2998     // if there are multiple AddRec's with the same loop induction variable
2999     // being multiplied together.  If so, we can fold them.
3000 
3001     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3002     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3003     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3004     //   ]]],+,...up to x=2n}.
3005     // Note that the arguments to choose() are always integers with values
3006     // known at compile time, never SCEV objects.
3007     //
3008     // The implementation avoids pointless extra computations when the two
3009     // addrec's are of different length (mathematically, it's equivalent to
3010     // an infinite stream of zeros on the right).
3011     bool OpsModified = false;
3012     for (unsigned OtherIdx = Idx+1;
3013          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3014          ++OtherIdx) {
3015       const SCEVAddRecExpr *OtherAddRec =
3016         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3017       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3018         continue;
3019 
3020       // Limit max number of arguments to avoid creation of unreasonably big
3021       // SCEVAddRecs with very complex operands.
3022       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3023           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3024         continue;
3025 
3026       bool Overflow = false;
3027       Type *Ty = AddRec->getType();
3028       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3029       SmallVector<const SCEV*, 7> AddRecOps;
3030       for (int x = 0, xe = AddRec->getNumOperands() +
3031              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3032         SmallVector <const SCEV *, 7> SumOps;
3033         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3034           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3035           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3036                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3037                z < ze && !Overflow; ++z) {
3038             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3039             uint64_t Coeff;
3040             if (LargerThan64Bits)
3041               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3042             else
3043               Coeff = Coeff1*Coeff2;
3044             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3045             const SCEV *Term1 = AddRec->getOperand(y-z);
3046             const SCEV *Term2 = OtherAddRec->getOperand(z);
3047             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3048                                         SCEV::FlagAnyWrap, Depth + 1));
3049           }
3050         }
3051         if (SumOps.empty())
3052           SumOps.push_back(getZero(Ty));
3053         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3054       }
3055       if (!Overflow) {
3056         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3057                                               SCEV::FlagAnyWrap);
3058         if (Ops.size() == 2) return NewAddRec;
3059         Ops[Idx] = NewAddRec;
3060         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3061         OpsModified = true;
3062         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3063         if (!AddRec)
3064           break;
3065       }
3066     }
3067     if (OpsModified)
3068       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3069 
3070     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3071     // next one.
3072   }
3073 
3074   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3075   // already have one, otherwise create a new one.
3076   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3077 }
3078 
3079 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3080 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3081                                          const SCEV *RHS) {
3082   assert(getEffectiveSCEVType(LHS->getType()) ==
3083          getEffectiveSCEVType(RHS->getType()) &&
3084          "SCEVURemExpr operand types don't match!");
3085 
3086   // Short-circuit easy cases
3087   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3088     // If constant is one, the result is trivial
3089     if (RHSC->getValue()->isOne())
3090       return getZero(LHS->getType()); // X urem 1 --> 0
3091 
3092     // If constant is a power of two, fold into a zext(trunc(LHS)).
3093     if (RHSC->getAPInt().isPowerOf2()) {
3094       Type *FullTy = LHS->getType();
3095       Type *TruncTy =
3096           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3097       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3098     }
3099   }
3100 
3101   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3102   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3103   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3104   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3105 }
3106 
3107 /// Get a canonical unsigned division expression, or something simpler if
3108 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3109 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3110                                          const SCEV *RHS) {
3111   assert(getEffectiveSCEVType(LHS->getType()) ==
3112          getEffectiveSCEVType(RHS->getType()) &&
3113          "SCEVUDivExpr operand types don't match!");
3114 
3115   FoldingSetNodeID ID;
3116   ID.AddInteger(scUDivExpr);
3117   ID.AddPointer(LHS);
3118   ID.AddPointer(RHS);
3119   void *IP = nullptr;
3120   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3121     return S;
3122 
3123   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3124     if (RHSC->getValue()->isOne())
3125       return LHS;                               // X udiv 1 --> x
3126     // If the denominator is zero, the result of the udiv is undefined. Don't
3127     // try to analyze it, because the resolution chosen here may differ from
3128     // the resolution chosen in other parts of the compiler.
3129     if (!RHSC->getValue()->isZero()) {
3130       // Determine if the division can be folded into the operands of
3131       // its operands.
3132       // TODO: Generalize this to non-constants by using known-bits information.
3133       Type *Ty = LHS->getType();
3134       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3135       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3136       // For non-power-of-two values, effectively round the value up to the
3137       // nearest power of two.
3138       if (!RHSC->getAPInt().isPowerOf2())
3139         ++MaxShiftAmt;
3140       IntegerType *ExtTy =
3141         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3142       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3143         if (const SCEVConstant *Step =
3144             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3145           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3146           const APInt &StepInt = Step->getAPInt();
3147           const APInt &DivInt = RHSC->getAPInt();
3148           if (!StepInt.urem(DivInt) &&
3149               getZeroExtendExpr(AR, ExtTy) ==
3150               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3151                             getZeroExtendExpr(Step, ExtTy),
3152                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3153             SmallVector<const SCEV *, 4> Operands;
3154             for (const SCEV *Op : AR->operands())
3155               Operands.push_back(getUDivExpr(Op, RHS));
3156             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3157           }
3158           /// Get a canonical UDivExpr for a recurrence.
3159           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3160           // We can currently only fold X%N if X is constant.
3161           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3162           if (StartC && !DivInt.urem(StepInt) &&
3163               getZeroExtendExpr(AR, ExtTy) ==
3164               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3165                             getZeroExtendExpr(Step, ExtTy),
3166                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3167             const APInt &StartInt = StartC->getAPInt();
3168             const APInt &StartRem = StartInt.urem(StepInt);
3169             if (StartRem != 0) {
3170               const SCEV *NewLHS =
3171                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3172                                 AR->getLoop(), SCEV::FlagNW);
3173               if (LHS != NewLHS) {
3174                 LHS = NewLHS;
3175 
3176                 // Reset the ID to include the new LHS, and check if it is
3177                 // already cached.
3178                 ID.clear();
3179                 ID.AddInteger(scUDivExpr);
3180                 ID.AddPointer(LHS);
3181                 ID.AddPointer(RHS);
3182                 IP = nullptr;
3183                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3184                   return S;
3185               }
3186             }
3187           }
3188         }
3189       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3190       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3191         SmallVector<const SCEV *, 4> Operands;
3192         for (const SCEV *Op : M->operands())
3193           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3194         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3195           // Find an operand that's safely divisible.
3196           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3197             const SCEV *Op = M->getOperand(i);
3198             const SCEV *Div = getUDivExpr(Op, RHSC);
3199             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3200               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3201                                                       M->op_end());
3202               Operands[i] = Div;
3203               return getMulExpr(Operands);
3204             }
3205           }
3206       }
3207 
3208       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3209       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3210         if (auto *DivisorConstant =
3211                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3212           bool Overflow = false;
3213           APInt NewRHS =
3214               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3215           if (Overflow) {
3216             return getConstant(RHSC->getType(), 0, false);
3217           }
3218           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3219         }
3220       }
3221 
3222       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3223       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3224         SmallVector<const SCEV *, 4> Operands;
3225         for (const SCEV *Op : A->operands())
3226           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3227         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3228           Operands.clear();
3229           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3230             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3231             if (isa<SCEVUDivExpr>(Op) ||
3232                 getMulExpr(Op, RHS) != A->getOperand(i))
3233               break;
3234             Operands.push_back(Op);
3235           }
3236           if (Operands.size() == A->getNumOperands())
3237             return getAddExpr(Operands);
3238         }
3239       }
3240 
3241       // Fold if both operands are constant.
3242       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3243         Constant *LHSCV = LHSC->getValue();
3244         Constant *RHSCV = RHSC->getValue();
3245         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3246                                                                    RHSCV)));
3247       }
3248     }
3249   }
3250 
3251   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3252   // changes). Make sure we get a new one.
3253   IP = nullptr;
3254   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3255   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3256                                              LHS, RHS);
3257   UniqueSCEVs.InsertNode(S, IP);
3258   addToLoopUseLists(S);
3259   return S;
3260 }
3261 
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3262 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3263   APInt A = C1->getAPInt().abs();
3264   APInt B = C2->getAPInt().abs();
3265   uint32_t ABW = A.getBitWidth();
3266   uint32_t BBW = B.getBitWidth();
3267 
3268   if (ABW > BBW)
3269     B = B.zext(ABW);
3270   else if (ABW < BBW)
3271     A = A.zext(BBW);
3272 
3273   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3274 }
3275 
3276 /// Get a canonical unsigned division expression, or something simpler if
3277 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3278 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3279 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3280 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3281                                               const SCEV *RHS) {
3282   // TODO: we could try to find factors in all sorts of things, but for now we
3283   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3284   // end of this file for inspiration.
3285 
3286   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3287   if (!Mul || !Mul->hasNoUnsignedWrap())
3288     return getUDivExpr(LHS, RHS);
3289 
3290   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3291     // If the mulexpr multiplies by a constant, then that constant must be the
3292     // first element of the mulexpr.
3293     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3294       if (LHSCst == RHSCst) {
3295         SmallVector<const SCEV *, 2> Operands;
3296         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3297         return getMulExpr(Operands);
3298       }
3299 
3300       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3301       // that there's a factor provided by one of the other terms. We need to
3302       // check.
3303       APInt Factor = gcd(LHSCst, RHSCst);
3304       if (!Factor.isIntN(1)) {
3305         LHSCst =
3306             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3307         RHSCst =
3308             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3309         SmallVector<const SCEV *, 2> Operands;
3310         Operands.push_back(LHSCst);
3311         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3312         LHS = getMulExpr(Operands);
3313         RHS = RHSCst;
3314         Mul = dyn_cast<SCEVMulExpr>(LHS);
3315         if (!Mul)
3316           return getUDivExactExpr(LHS, RHS);
3317       }
3318     }
3319   }
3320 
3321   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3322     if (Mul->getOperand(i) == RHS) {
3323       SmallVector<const SCEV *, 2> Operands;
3324       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3325       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3326       return getMulExpr(Operands);
3327     }
3328   }
3329 
3330   return getUDivExpr(LHS, RHS);
3331 }
3332 
3333 /// Get an add recurrence expression for the specified loop.  Simplify the
3334 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3335 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3336                                            const Loop *L,
3337                                            SCEV::NoWrapFlags Flags) {
3338   SmallVector<const SCEV *, 4> Operands;
3339   Operands.push_back(Start);
3340   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3341     if (StepChrec->getLoop() == L) {
3342       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3343       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3344     }
3345 
3346   Operands.push_back(Step);
3347   return getAddRecExpr(Operands, L, Flags);
3348 }
3349 
3350 /// Get an add recurrence expression for the specified loop.  Simplify the
3351 /// expression as much as possible.
3352 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3353 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3354                                const Loop *L, SCEV::NoWrapFlags Flags) {
3355   if (Operands.size() == 1) return Operands[0];
3356 #ifndef NDEBUG
3357   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3358   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3359     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3360            "SCEVAddRecExpr operand types don't match!");
3361   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3362     assert(isLoopInvariant(Operands[i], L) &&
3363            "SCEVAddRecExpr operand is not loop-invariant!");
3364 #endif
3365 
3366   if (Operands.back()->isZero()) {
3367     Operands.pop_back();
3368     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3369   }
3370 
3371   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3372   // use that information to infer NUW and NSW flags. However, computing a
3373   // BE count requires calling getAddRecExpr, so we may not yet have a
3374   // meaningful BE count at this point (and if we don't, we'd be stuck
3375   // with a SCEVCouldNotCompute as the cached BE count).
3376 
3377   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3378 
3379   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3380   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3381     const Loop *NestedLoop = NestedAR->getLoop();
3382     if (L->contains(NestedLoop)
3383             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3384             : (!NestedLoop->contains(L) &&
3385                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3386       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3387                                                   NestedAR->op_end());
3388       Operands[0] = NestedAR->getStart();
3389       // AddRecs require their operands be loop-invariant with respect to their
3390       // loops. Don't perform this transformation if it would break this
3391       // requirement.
3392       bool AllInvariant = all_of(
3393           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3394 
3395       if (AllInvariant) {
3396         // Create a recurrence for the outer loop with the same step size.
3397         //
3398         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3399         // inner recurrence has the same property.
3400         SCEV::NoWrapFlags OuterFlags =
3401           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3402 
3403         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3404         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3405           return isLoopInvariant(Op, NestedLoop);
3406         });
3407 
3408         if (AllInvariant) {
3409           // Ok, both add recurrences are valid after the transformation.
3410           //
3411           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3412           // the outer recurrence has the same property.
3413           SCEV::NoWrapFlags InnerFlags =
3414             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3415           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3416         }
3417       }
3418       // Reset Operands to its original state.
3419       Operands[0] = NestedAR;
3420     }
3421   }
3422 
3423   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3424   // already have one, otherwise create a new one.
3425   return getOrCreateAddRecExpr(Operands, L, Flags);
3426 }
3427 
3428 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3429 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3430                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3431   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3432   // getSCEV(Base)->getType() has the same address space as Base->getType()
3433   // because SCEV::getType() preserves the address space.
3434   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3435   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3436   // instruction to its SCEV, because the Instruction may be guarded by control
3437   // flow and the no-overflow bits may not be valid for the expression in any
3438   // context. This can be fixed similarly to how these flags are handled for
3439   // adds.
3440   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3441                                              : SCEV::FlagAnyWrap;
3442 
3443   Type *CurTy = GEP->getType();
3444   bool FirstIter = true;
3445   SmallVector<const SCEV *, 4> AddOps{BaseExpr};
3446   for (const SCEV *IndexExpr : IndexExprs) {
3447     // Compute the (potentially symbolic) offset in bytes for this index.
3448     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3449       // For a struct, add the member offset.
3450       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3451       unsigned FieldNo = Index->getZExtValue();
3452       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3453       AddOps.push_back(FieldOffset);
3454 
3455       // Update CurTy to the type of the field at Index.
3456       CurTy = STy->getTypeAtIndex(Index);
3457     } else {
3458       // Update CurTy to its element type.
3459       if (FirstIter) {
3460         assert(isa<PointerType>(CurTy) &&
3461                "The first index of a GEP indexes a pointer");
3462         CurTy = GEP->getSourceElementType();
3463         FirstIter = false;
3464       } else {
3465         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3466       }
3467       // For an array, add the element offset, explicitly scaled.
3468       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3469       // Getelementptr indices are signed.
3470       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3471 
3472       // Multiply the index by the element size to compute the element offset.
3473       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3474       AddOps.push_back(LocalOffset);
3475     }
3476   }
3477 
3478   // Add the base and all the offsets together.
3479   return getAddExpr(AddOps, Wrap);
3480 }
3481 
3482 std::tuple<SCEV *, FoldingSetNodeID, void *>
findExistingSCEVInCache(SCEVTypes SCEVType,ArrayRef<const SCEV * > Ops)3483 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3484                                          ArrayRef<const SCEV *> Ops) {
3485   FoldingSetNodeID ID;
3486   void *IP = nullptr;
3487   ID.AddInteger(SCEVType);
3488   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3489     ID.AddPointer(Ops[i]);
3490   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3491       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3492 }
3493 
getAbsExpr(const SCEV * Op,bool IsNSW)3494 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3495   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3496   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3497 }
3498 
getSignumExpr(const SCEV * Op)3499 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3500   Type *Ty = Op->getType();
3501   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3502 }
3503 
getMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)3504 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3505                                            SmallVectorImpl<const SCEV *> &Ops) {
3506   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3507   if (Ops.size() == 1) return Ops[0];
3508 #ifndef NDEBUG
3509   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3510   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3511     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3512            "Operand types don't match!");
3513 #endif
3514 
3515   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3516   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3517 
3518   // Sort by complexity, this groups all similar expression types together.
3519   GroupByComplexity(Ops, &LI, DT);
3520 
3521   // Check if we have created the same expression before.
3522   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3523     return S;
3524   }
3525 
3526   // If there are any constants, fold them together.
3527   unsigned Idx = 0;
3528   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3529     ++Idx;
3530     assert(Idx < Ops.size());
3531     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3532       if (Kind == scSMaxExpr)
3533         return APIntOps::smax(LHS, RHS);
3534       else if (Kind == scSMinExpr)
3535         return APIntOps::smin(LHS, RHS);
3536       else if (Kind == scUMaxExpr)
3537         return APIntOps::umax(LHS, RHS);
3538       else if (Kind == scUMinExpr)
3539         return APIntOps::umin(LHS, RHS);
3540       llvm_unreachable("Unknown SCEV min/max opcode");
3541     };
3542 
3543     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3544       // We found two constants, fold them together!
3545       ConstantInt *Fold = ConstantInt::get(
3546           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3547       Ops[0] = getConstant(Fold);
3548       Ops.erase(Ops.begin()+1);  // Erase the folded element
3549       if (Ops.size() == 1) return Ops[0];
3550       LHSC = cast<SCEVConstant>(Ops[0]);
3551     }
3552 
3553     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3554     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3555 
3556     if (IsMax ? IsMinV : IsMaxV) {
3557       // If we are left with a constant minimum(/maximum)-int, strip it off.
3558       Ops.erase(Ops.begin());
3559       --Idx;
3560     } else if (IsMax ? IsMaxV : IsMinV) {
3561       // If we have a max(/min) with a constant maximum(/minimum)-int,
3562       // it will always be the extremum.
3563       return LHSC;
3564     }
3565 
3566     if (Ops.size() == 1) return Ops[0];
3567   }
3568 
3569   // Find the first operation of the same kind
3570   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3571     ++Idx;
3572 
3573   // Check to see if one of the operands is of the same kind. If so, expand its
3574   // operands onto our operand list, and recurse to simplify.
3575   if (Idx < Ops.size()) {
3576     bool DeletedAny = false;
3577     while (Ops[Idx]->getSCEVType() == Kind) {
3578       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3579       Ops.erase(Ops.begin()+Idx);
3580       Ops.append(SMME->op_begin(), SMME->op_end());
3581       DeletedAny = true;
3582     }
3583 
3584     if (DeletedAny)
3585       return getMinMaxExpr(Kind, Ops);
3586   }
3587 
3588   // Okay, check to see if the same value occurs in the operand list twice.  If
3589   // so, delete one.  Since we sorted the list, these values are required to
3590   // be adjacent.
3591   llvm::CmpInst::Predicate GEPred =
3592       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3593   llvm::CmpInst::Predicate LEPred =
3594       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3595   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3596   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3597   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3598     if (Ops[i] == Ops[i + 1] ||
3599         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3600       //  X op Y op Y  -->  X op Y
3601       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3602       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3603       --i;
3604       --e;
3605     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3606                                                Ops[i + 1])) {
3607       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3608       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3609       --i;
3610       --e;
3611     }
3612   }
3613 
3614   if (Ops.size() == 1) return Ops[0];
3615 
3616   assert(!Ops.empty() && "Reduced smax down to nothing!");
3617 
3618   // Okay, it looks like we really DO need an expr.  Check to see if we
3619   // already have one, otherwise create a new one.
3620   const SCEV *ExistingSCEV;
3621   FoldingSetNodeID ID;
3622   void *IP;
3623   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3624   if (ExistingSCEV)
3625     return ExistingSCEV;
3626   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3627   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3628   SCEV *S = new (SCEVAllocator)
3629       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3630 
3631   UniqueSCEVs.InsertNode(S, IP);
3632   addToLoopUseLists(S);
3633   return S;
3634 }
3635 
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3636 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3637   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3638   return getSMaxExpr(Ops);
3639 }
3640 
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3641 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3642   return getMinMaxExpr(scSMaxExpr, Ops);
3643 }
3644 
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3645 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3646   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3647   return getUMaxExpr(Ops);
3648 }
3649 
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3650 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3651   return getMinMaxExpr(scUMaxExpr, Ops);
3652 }
3653 
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3654 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3655                                          const SCEV *RHS) {
3656   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3657   return getSMinExpr(Ops);
3658 }
3659 
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3660 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3661   return getMinMaxExpr(scSMinExpr, Ops);
3662 }
3663 
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3664 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3665                                          const SCEV *RHS) {
3666   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3667   return getUMinExpr(Ops);
3668 }
3669 
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3670 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3671   return getMinMaxExpr(scUMinExpr, Ops);
3672 }
3673 
getSizeOfExpr(Type * IntTy,Type * AllocTy)3674 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3675   if (isa<ScalableVectorType>(AllocTy)) {
3676     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3677     Constant *One = ConstantInt::get(IntTy, 1);
3678     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3679     // Note that the expression we created is the final expression, we don't
3680     // want to simplify it any further Also, if we call a normal getSCEV(),
3681     // we'll end up in an endless recursion. So just create an SCEVUnknown.
3682     return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3683   }
3684   // We can bypass creating a target-independent
3685   // constant expression and then folding it back into a ConstantInt.
3686   // This is just a compile-time optimization.
3687   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3688 }
3689 
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3690 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3691                                              StructType *STy,
3692                                              unsigned FieldNo) {
3693   // We can bypass creating a target-independent
3694   // constant expression and then folding it back into a ConstantInt.
3695   // This is just a compile-time optimization.
3696   return getConstant(
3697       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3698 }
3699 
getUnknown(Value * V)3700 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3701   // Don't attempt to do anything other than create a SCEVUnknown object
3702   // here.  createSCEV only calls getUnknown after checking for all other
3703   // interesting possibilities, and any other code that calls getUnknown
3704   // is doing so in order to hide a value from SCEV canonicalization.
3705 
3706   FoldingSetNodeID ID;
3707   ID.AddInteger(scUnknown);
3708   ID.AddPointer(V);
3709   void *IP = nullptr;
3710   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3711     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3712            "Stale SCEVUnknown in uniquing map!");
3713     return S;
3714   }
3715   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3716                                             FirstUnknown);
3717   FirstUnknown = cast<SCEVUnknown>(S);
3718   UniqueSCEVs.InsertNode(S, IP);
3719   return S;
3720 }
3721 
3722 //===----------------------------------------------------------------------===//
3723 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3724 //
3725 
3726 /// Test if values of the given type are analyzable within the SCEV
3727 /// framework. This primarily includes integer types, and it can optionally
3728 /// include pointer types if the ScalarEvolution class has access to
3729 /// target-specific information.
isSCEVable(Type * Ty) const3730 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3731   // Integers and pointers are always SCEVable.
3732   return Ty->isIntOrPtrTy();
3733 }
3734 
3735 /// Return the size in bits of the specified type, for which isSCEVable must
3736 /// return true.
getTypeSizeInBits(Type * Ty) const3737 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3738   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3739   if (Ty->isPointerTy())
3740     return getDataLayout().getIndexTypeSizeInBits(Ty);
3741   return getDataLayout().getTypeSizeInBits(Ty);
3742 }
3743 
3744 /// Return a type with the same bitwidth as the given type and which represents
3745 /// how SCEV will treat the given type, for which isSCEVable must return
3746 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3747 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3748   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3749 
3750   if (Ty->isIntegerTy())
3751     return Ty;
3752 
3753   // The only other support type is pointer.
3754   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3755   return getDataLayout().getIndexType(Ty);
3756 }
3757 
getWiderType(Type * T1,Type * T2) const3758 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3759   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3760 }
3761 
getCouldNotCompute()3762 const SCEV *ScalarEvolution::getCouldNotCompute() {
3763   return CouldNotCompute.get();
3764 }
3765 
checkValidity(const SCEV * S) const3766 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3767   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3768     auto *SU = dyn_cast<SCEVUnknown>(S);
3769     return SU && SU->getValue() == nullptr;
3770   });
3771 
3772   return !ContainsNulls;
3773 }
3774 
containsAddRecurrence(const SCEV * S)3775 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3776   HasRecMapType::iterator I = HasRecMap.find(S);
3777   if (I != HasRecMap.end())
3778     return I->second;
3779 
3780   bool FoundAddRec =
3781       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3782   HasRecMap.insert({S, FoundAddRec});
3783   return FoundAddRec;
3784 }
3785 
3786 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3787 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3788 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3789 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3790   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3791   if (!Add)
3792     return {S, nullptr};
3793 
3794   if (Add->getNumOperands() != 2)
3795     return {S, nullptr};
3796 
3797   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3798   if (!ConstOp)
3799     return {S, nullptr};
3800 
3801   return {Add->getOperand(1), ConstOp->getValue()};
3802 }
3803 
3804 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3805 /// by the value and offset from any ValueOffsetPair in the set.
3806 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3807 ScalarEvolution::getSCEVValues(const SCEV *S) {
3808   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3809   if (SI == ExprValueMap.end())
3810     return nullptr;
3811 #ifndef NDEBUG
3812   if (VerifySCEVMap) {
3813     // Check there is no dangling Value in the set returned.
3814     for (const auto &VE : SI->second)
3815       assert(ValueExprMap.count(VE.first));
3816   }
3817 #endif
3818   return &SI->second;
3819 }
3820 
3821 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3822 /// cannot be used separately. eraseValueFromMap should be used to remove
3823 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3824 void ScalarEvolution::eraseValueFromMap(Value *V) {
3825   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3826   if (I != ValueExprMap.end()) {
3827     const SCEV *S = I->second;
3828     // Remove {V, 0} from the set of ExprValueMap[S]
3829     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3830       SV->remove({V, nullptr});
3831 
3832     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3833     const SCEV *Stripped;
3834     ConstantInt *Offset;
3835     std::tie(Stripped, Offset) = splitAddExpr(S);
3836     if (Offset != nullptr) {
3837       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3838         SV->remove({V, Offset});
3839     }
3840     ValueExprMap.erase(V);
3841   }
3842 }
3843 
3844 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3845 /// TODO: In reality it is better to check the poison recursively
3846 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3847 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3848   if (auto *I = dyn_cast<Instruction>(V)) {
3849     if (isa<OverflowingBinaryOperator>(I)) {
3850       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3851         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3852           return true;
3853         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3854           return true;
3855       }
3856     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3857       return true;
3858   }
3859   return false;
3860 }
3861 
3862 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3863 /// create a new one.
getSCEV(Value * V)3864 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3865   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3866 
3867   const SCEV *S = getExistingSCEV(V);
3868   if (S == nullptr) {
3869     S = createSCEV(V);
3870     // During PHI resolution, it is possible to create two SCEVs for the same
3871     // V, so it is needed to double check whether V->S is inserted into
3872     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3873     std::pair<ValueExprMapType::iterator, bool> Pair =
3874         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3875     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3876       ExprValueMap[S].insert({V, nullptr});
3877 
3878       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3879       // ExprValueMap.
3880       const SCEV *Stripped = S;
3881       ConstantInt *Offset = nullptr;
3882       std::tie(Stripped, Offset) = splitAddExpr(S);
3883       // If stripped is SCEVUnknown, don't bother to save
3884       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3885       // increase the complexity of the expansion code.
3886       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3887       // because it may generate add/sub instead of GEP in SCEV expansion.
3888       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3889           !isa<GetElementPtrInst>(V))
3890         ExprValueMap[Stripped].insert({V, Offset});
3891     }
3892   }
3893   return S;
3894 }
3895 
getExistingSCEV(Value * V)3896 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3897   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3898 
3899   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3900   if (I != ValueExprMap.end()) {
3901     const SCEV *S = I->second;
3902     if (checkValidity(S))
3903       return S;
3904     eraseValueFromMap(V);
3905     forgetMemoizedResults(S);
3906   }
3907   return nullptr;
3908 }
3909 
3910 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3911 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3912                                              SCEV::NoWrapFlags Flags) {
3913   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3914     return getConstant(
3915                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3916 
3917   Type *Ty = V->getType();
3918   Ty = getEffectiveSCEVType(Ty);
3919   return getMulExpr(V, getMinusOne(Ty), Flags);
3920 }
3921 
3922 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)3923 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3924   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3925   if (!Add || Add->getNumOperands() != 2 ||
3926       !Add->getOperand(0)->isAllOnesValue())
3927     return nullptr;
3928 
3929   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3930   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3931       !AddRHS->getOperand(0)->isAllOnesValue())
3932     return nullptr;
3933 
3934   return AddRHS->getOperand(1);
3935 }
3936 
3937 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3938 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3939   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3940     return getConstant(
3941                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3942 
3943   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3944   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3945     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3946       SmallVector<const SCEV *, 2> MatchedOperands;
3947       for (const SCEV *Operand : MME->operands()) {
3948         const SCEV *Matched = MatchNotExpr(Operand);
3949         if (!Matched)
3950           return (const SCEV *)nullptr;
3951         MatchedOperands.push_back(Matched);
3952       }
3953       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3954                            MatchedOperands);
3955     };
3956     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3957       return Replaced;
3958   }
3959 
3960   Type *Ty = V->getType();
3961   Ty = getEffectiveSCEVType(Ty);
3962   return getMinusSCEV(getMinusOne(Ty), V);
3963 }
3964 
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3965 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3966                                           SCEV::NoWrapFlags Flags,
3967                                           unsigned Depth) {
3968   // Fast path: X - X --> 0.
3969   if (LHS == RHS)
3970     return getZero(LHS->getType());
3971 
3972   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3973   // makes it so that we cannot make much use of NUW.
3974   auto AddFlags = SCEV::FlagAnyWrap;
3975   const bool RHSIsNotMinSigned =
3976       !getSignedRangeMin(RHS).isMinSignedValue();
3977   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3978     // Let M be the minimum representable signed value. Then (-1)*RHS
3979     // signed-wraps if and only if RHS is M. That can happen even for
3980     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3981     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3982     // (-1)*RHS, we need to prove that RHS != M.
3983     //
3984     // If LHS is non-negative and we know that LHS - RHS does not
3985     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3986     // either by proving that RHS > M or that LHS >= 0.
3987     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3988       AddFlags = SCEV::FlagNSW;
3989     }
3990   }
3991 
3992   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3993   // RHS is NSW and LHS >= 0.
3994   //
3995   // The difficulty here is that the NSW flag may have been proven
3996   // relative to a loop that is to be found in a recurrence in LHS and
3997   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3998   // larger scope than intended.
3999   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4000 
4001   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4002 }
4003 
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4004 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4005                                                      unsigned Depth) {
4006   Type *SrcTy = V->getType();
4007   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4008          "Cannot truncate or zero extend with non-integer arguments!");
4009   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4010     return V;  // No conversion
4011   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4012     return getTruncateExpr(V, Ty, Depth);
4013   return getZeroExtendExpr(V, Ty, Depth);
4014 }
4015 
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4016 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4017                                                      unsigned Depth) {
4018   Type *SrcTy = V->getType();
4019   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4020          "Cannot truncate or zero extend with non-integer arguments!");
4021   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4022     return V;  // No conversion
4023   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4024     return getTruncateExpr(V, Ty, Depth);
4025   return getSignExtendExpr(V, Ty, Depth);
4026 }
4027 
4028 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4029 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4030   Type *SrcTy = V->getType();
4031   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4032          "Cannot noop or zero extend with non-integer arguments!");
4033   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4034          "getNoopOrZeroExtend cannot truncate!");
4035   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4036     return V;  // No conversion
4037   return getZeroExtendExpr(V, Ty);
4038 }
4039 
4040 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4041 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4042   Type *SrcTy = V->getType();
4043   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4044          "Cannot noop or sign extend with non-integer arguments!");
4045   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4046          "getNoopOrSignExtend cannot truncate!");
4047   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4048     return V;  // No conversion
4049   return getSignExtendExpr(V, Ty);
4050 }
4051 
4052 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4053 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4054   Type *SrcTy = V->getType();
4055   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4056          "Cannot noop or any extend with non-integer arguments!");
4057   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4058          "getNoopOrAnyExtend cannot truncate!");
4059   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4060     return V;  // No conversion
4061   return getAnyExtendExpr(V, Ty);
4062 }
4063 
4064 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4065 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4066   Type *SrcTy = V->getType();
4067   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4068          "Cannot truncate or noop with non-integer arguments!");
4069   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4070          "getTruncateOrNoop cannot extend!");
4071   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4072     return V;  // No conversion
4073   return getTruncateExpr(V, Ty);
4074 }
4075 
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4076 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4077                                                         const SCEV *RHS) {
4078   const SCEV *PromotedLHS = LHS;
4079   const SCEV *PromotedRHS = RHS;
4080 
4081   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4082     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4083   else
4084     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4085 
4086   return getUMaxExpr(PromotedLHS, PromotedRHS);
4087 }
4088 
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4089 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4090                                                         const SCEV *RHS) {
4091   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4092   return getUMinFromMismatchedTypes(Ops);
4093 }
4094 
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4095 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4096     SmallVectorImpl<const SCEV *> &Ops) {
4097   assert(!Ops.empty() && "At least one operand must be!");
4098   // Trivial case.
4099   if (Ops.size() == 1)
4100     return Ops[0];
4101 
4102   // Find the max type first.
4103   Type *MaxType = nullptr;
4104   for (auto *S : Ops)
4105     if (MaxType)
4106       MaxType = getWiderType(MaxType, S->getType());
4107     else
4108       MaxType = S->getType();
4109   assert(MaxType && "Failed to find maximum type!");
4110 
4111   // Extend all ops to max type.
4112   SmallVector<const SCEV *, 2> PromotedOps;
4113   for (auto *S : Ops)
4114     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4115 
4116   // Generate umin.
4117   return getUMinExpr(PromotedOps);
4118 }
4119 
getPointerBase(const SCEV * V)4120 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4121   // A pointer operand may evaluate to a nonpointer expression, such as null.
4122   if (!V->getType()->isPointerTy())
4123     return V;
4124 
4125   while (true) {
4126     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4127       V = Cast->getOperand();
4128     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4129       const SCEV *PtrOp = nullptr;
4130       for (const SCEV *NAryOp : NAry->operands()) {
4131         if (NAryOp->getType()->isPointerTy()) {
4132           // Cannot find the base of an expression with multiple pointer ops.
4133           if (PtrOp)
4134             return V;
4135           PtrOp = NAryOp;
4136         }
4137       }
4138       if (!PtrOp) // All operands were non-pointer.
4139         return V;
4140       V = PtrOp;
4141     } else // Not something we can look further into.
4142       return V;
4143   }
4144 }
4145 
4146 /// Push users of the given Instruction onto the given Worklist.
4147 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4148 PushDefUseChildren(Instruction *I,
4149                    SmallVectorImpl<Instruction *> &Worklist) {
4150   // Push the def-use children onto the Worklist stack.
4151   for (User *U : I->users())
4152     Worklist.push_back(cast<Instruction>(U));
4153 }
4154 
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4155 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4156   SmallVector<Instruction *, 16> Worklist;
4157   PushDefUseChildren(PN, Worklist);
4158 
4159   SmallPtrSet<Instruction *, 8> Visited;
4160   Visited.insert(PN);
4161   while (!Worklist.empty()) {
4162     Instruction *I = Worklist.pop_back_val();
4163     if (!Visited.insert(I).second)
4164       continue;
4165 
4166     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4167     if (It != ValueExprMap.end()) {
4168       const SCEV *Old = It->second;
4169 
4170       // Short-circuit the def-use traversal if the symbolic name
4171       // ceases to appear in expressions.
4172       if (Old != SymName && !hasOperand(Old, SymName))
4173         continue;
4174 
4175       // SCEVUnknown for a PHI either means that it has an unrecognized
4176       // structure, it's a PHI that's in the progress of being computed
4177       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4178       // additional loop trip count information isn't going to change anything.
4179       // In the second case, createNodeForPHI will perform the necessary
4180       // updates on its own when it gets to that point. In the third, we do
4181       // want to forget the SCEVUnknown.
4182       if (!isa<PHINode>(I) ||
4183           !isa<SCEVUnknown>(Old) ||
4184           (I != PN && Old == SymName)) {
4185         eraseValueFromMap(It->first);
4186         forgetMemoizedResults(Old);
4187       }
4188     }
4189 
4190     PushDefUseChildren(I, Worklist);
4191   }
4192 }
4193 
4194 namespace {
4195 
4196 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4197 /// expression in case its Loop is L. If it is not L then
4198 /// if IgnoreOtherLoops is true then use AddRec itself
4199 /// otherwise rewrite cannot be done.
4200 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4201 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4202 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4203   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4204                              bool IgnoreOtherLoops = true) {
4205     SCEVInitRewriter Rewriter(L, SE);
4206     const SCEV *Result = Rewriter.visit(S);
4207     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4208       return SE.getCouldNotCompute();
4209     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4210                ? SE.getCouldNotCompute()
4211                : Result;
4212   }
4213 
visitUnknown(const SCEVUnknown * Expr)4214   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4215     if (!SE.isLoopInvariant(Expr, L))
4216       SeenLoopVariantSCEVUnknown = true;
4217     return Expr;
4218   }
4219 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4220   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4221     // Only re-write AddRecExprs for this loop.
4222     if (Expr->getLoop() == L)
4223       return Expr->getStart();
4224     SeenOtherLoops = true;
4225     return Expr;
4226   }
4227 
hasSeenLoopVariantSCEVUnknown()4228   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4229 
hasSeenOtherLoops()4230   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4231 
4232 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4233   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4234       : SCEVRewriteVisitor(SE), L(L) {}
4235 
4236   const Loop *L;
4237   bool SeenLoopVariantSCEVUnknown = false;
4238   bool SeenOtherLoops = false;
4239 };
4240 
4241 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4242 /// increment expression in case its Loop is L. If it is not L then
4243 /// use AddRec itself.
4244 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4245 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4246 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4247   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4248     SCEVPostIncRewriter Rewriter(L, SE);
4249     const SCEV *Result = Rewriter.visit(S);
4250     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4251         ? SE.getCouldNotCompute()
4252         : Result;
4253   }
4254 
visitUnknown(const SCEVUnknown * Expr)4255   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4256     if (!SE.isLoopInvariant(Expr, L))
4257       SeenLoopVariantSCEVUnknown = true;
4258     return Expr;
4259   }
4260 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4261   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4262     // Only re-write AddRecExprs for this loop.
4263     if (Expr->getLoop() == L)
4264       return Expr->getPostIncExpr(SE);
4265     SeenOtherLoops = true;
4266     return Expr;
4267   }
4268 
hasSeenLoopVariantSCEVUnknown()4269   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4270 
hasSeenOtherLoops()4271   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4272 
4273 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4274   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4275       : SCEVRewriteVisitor(SE), L(L) {}
4276 
4277   const Loop *L;
4278   bool SeenLoopVariantSCEVUnknown = false;
4279   bool SeenOtherLoops = false;
4280 };
4281 
4282 /// This class evaluates the compare condition by matching it against the
4283 /// condition of loop latch. If there is a match we assume a true value
4284 /// for the condition while building SCEV nodes.
4285 class SCEVBackedgeConditionFolder
4286     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4287 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4288   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4289                              ScalarEvolution &SE) {
4290     bool IsPosBECond = false;
4291     Value *BECond = nullptr;
4292     if (BasicBlock *Latch = L->getLoopLatch()) {
4293       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4294       if (BI && BI->isConditional()) {
4295         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4296                "Both outgoing branches should not target same header!");
4297         BECond = BI->getCondition();
4298         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4299       } else {
4300         return S;
4301       }
4302     }
4303     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4304     return Rewriter.visit(S);
4305   }
4306 
visitUnknown(const SCEVUnknown * Expr)4307   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4308     const SCEV *Result = Expr;
4309     bool InvariantF = SE.isLoopInvariant(Expr, L);
4310 
4311     if (!InvariantF) {
4312       Instruction *I = cast<Instruction>(Expr->getValue());
4313       switch (I->getOpcode()) {
4314       case Instruction::Select: {
4315         SelectInst *SI = cast<SelectInst>(I);
4316         Optional<const SCEV *> Res =
4317             compareWithBackedgeCondition(SI->getCondition());
4318         if (Res.hasValue()) {
4319           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4320           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4321         }
4322         break;
4323       }
4324       default: {
4325         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4326         if (Res.hasValue())
4327           Result = Res.getValue();
4328         break;
4329       }
4330       }
4331     }
4332     return Result;
4333   }
4334 
4335 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4336   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4337                                        bool IsPosBECond, ScalarEvolution &SE)
4338       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4339         IsPositiveBECond(IsPosBECond) {}
4340 
4341   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4342 
4343   const Loop *L;
4344   /// Loop back condition.
4345   Value *BackedgeCond = nullptr;
4346   /// Set to true if loop back is on positive branch condition.
4347   bool IsPositiveBECond;
4348 };
4349 
4350 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4351 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4352 
4353   // If value matches the backedge condition for loop latch,
4354   // then return a constant evolution node based on loopback
4355   // branch taken.
4356   if (BackedgeCond == IC)
4357     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4358                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4359   return None;
4360 }
4361 
4362 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4363 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4364   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4365                              ScalarEvolution &SE) {
4366     SCEVShiftRewriter Rewriter(L, SE);
4367     const SCEV *Result = Rewriter.visit(S);
4368     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4369   }
4370 
visitUnknown(const SCEVUnknown * Expr)4371   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4372     // Only allow AddRecExprs for this loop.
4373     if (!SE.isLoopInvariant(Expr, L))
4374       Valid = false;
4375     return Expr;
4376   }
4377 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4378   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4379     if (Expr->getLoop() == L && Expr->isAffine())
4380       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4381     Valid = false;
4382     return Expr;
4383   }
4384 
isValid()4385   bool isValid() { return Valid; }
4386 
4387 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4388   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4389       : SCEVRewriteVisitor(SE), L(L) {}
4390 
4391   const Loop *L;
4392   bool Valid = true;
4393 };
4394 
4395 } // end anonymous namespace
4396 
4397 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4398 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4399   if (!AR->isAffine())
4400     return SCEV::FlagAnyWrap;
4401 
4402   using OBO = OverflowingBinaryOperator;
4403 
4404   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4405 
4406   if (!AR->hasNoSignedWrap()) {
4407     ConstantRange AddRecRange = getSignedRange(AR);
4408     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4409 
4410     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4411         Instruction::Add, IncRange, OBO::NoSignedWrap);
4412     if (NSWRegion.contains(AddRecRange))
4413       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4414   }
4415 
4416   if (!AR->hasNoUnsignedWrap()) {
4417     ConstantRange AddRecRange = getUnsignedRange(AR);
4418     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4419 
4420     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4421         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4422     if (NUWRegion.contains(AddRecRange))
4423       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4424   }
4425 
4426   return Result;
4427 }
4428 
4429 namespace {
4430 
4431 /// Represents an abstract binary operation.  This may exist as a
4432 /// normal instruction or constant expression, or may have been
4433 /// derived from an expression tree.
4434 struct BinaryOp {
4435   unsigned Opcode;
4436   Value *LHS;
4437   Value *RHS;
4438   bool IsNSW = false;
4439   bool IsNUW = false;
4440   bool IsExact = false;
4441 
4442   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4443   /// constant expression.
4444   Operator *Op = nullptr;
4445 
BinaryOp__anonb3a128371111::BinaryOp4446   explicit BinaryOp(Operator *Op)
4447       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4448         Op(Op) {
4449     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4450       IsNSW = OBO->hasNoSignedWrap();
4451       IsNUW = OBO->hasNoUnsignedWrap();
4452     }
4453     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4454       IsExact = PEO->isExact();
4455   }
4456 
BinaryOp__anonb3a128371111::BinaryOp4457   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4458                     bool IsNUW = false, bool IsExact = false)
4459       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4460         IsExact(IsExact) {}
4461 };
4462 
4463 } // end anonymous namespace
4464 
4465 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4466 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4467   auto *Op = dyn_cast<Operator>(V);
4468   if (!Op)
4469     return None;
4470 
4471   // Implementation detail: all the cleverness here should happen without
4472   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4473   // SCEV expressions when possible, and we should not break that.
4474 
4475   switch (Op->getOpcode()) {
4476   case Instruction::Add:
4477   case Instruction::Sub:
4478   case Instruction::Mul:
4479   case Instruction::UDiv:
4480   case Instruction::URem:
4481   case Instruction::And:
4482   case Instruction::Or:
4483   case Instruction::AShr:
4484   case Instruction::Shl:
4485     return BinaryOp(Op);
4486 
4487   case Instruction::Xor:
4488     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4489       // If the RHS of the xor is a signmask, then this is just an add.
4490       // Instcombine turns add of signmask into xor as a strength reduction step.
4491       if (RHSC->getValue().isSignMask())
4492         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4493     return BinaryOp(Op);
4494 
4495   case Instruction::LShr:
4496     // Turn logical shift right of a constant into a unsigned divide.
4497     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4498       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4499 
4500       // If the shift count is not less than the bitwidth, the result of
4501       // the shift is undefined. Don't try to analyze it, because the
4502       // resolution chosen here may differ from the resolution chosen in
4503       // other parts of the compiler.
4504       if (SA->getValue().ult(BitWidth)) {
4505         Constant *X =
4506             ConstantInt::get(SA->getContext(),
4507                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4508         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4509       }
4510     }
4511     return BinaryOp(Op);
4512 
4513   case Instruction::ExtractValue: {
4514     auto *EVI = cast<ExtractValueInst>(Op);
4515     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4516       break;
4517 
4518     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4519     if (!WO)
4520       break;
4521 
4522     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4523     bool Signed = WO->isSigned();
4524     // TODO: Should add nuw/nsw flags for mul as well.
4525     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4526       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4527 
4528     // Now that we know that all uses of the arithmetic-result component of
4529     // CI are guarded by the overflow check, we can go ahead and pretend
4530     // that the arithmetic is non-overflowing.
4531     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4532                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4533   }
4534 
4535   default:
4536     break;
4537   }
4538 
4539   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4540   // semantics as a Sub, return a binary sub expression.
4541   if (auto *II = dyn_cast<IntrinsicInst>(V))
4542     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4543       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4544 
4545   return None;
4546 }
4547 
4548 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4549 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4550 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4551 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4552 /// follows one of the following patterns:
4553 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4554 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4555 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4556 /// we return the type of the truncation operation, and indicate whether the
4557 /// truncated type should be treated as signed/unsigned by setting
4558 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4559 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4560                                bool &Signed, ScalarEvolution &SE) {
4561   // The case where Op == SymbolicPHI (that is, with no type conversions on
4562   // the way) is handled by the regular add recurrence creating logic and
4563   // would have already been triggered in createAddRecForPHI. Reaching it here
4564   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4565   // because one of the other operands of the SCEVAddExpr updating this PHI is
4566   // not invariant).
4567   //
4568   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4569   // this case predicates that allow us to prove that Op == SymbolicPHI will
4570   // be added.
4571   if (Op == SymbolicPHI)
4572     return nullptr;
4573 
4574   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4575   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4576   if (SourceBits != NewBits)
4577     return nullptr;
4578 
4579   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4580   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4581   if (!SExt && !ZExt)
4582     return nullptr;
4583   const SCEVTruncateExpr *Trunc =
4584       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4585            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4586   if (!Trunc)
4587     return nullptr;
4588   const SCEV *X = Trunc->getOperand();
4589   if (X != SymbolicPHI)
4590     return nullptr;
4591   Signed = SExt != nullptr;
4592   return Trunc->getType();
4593 }
4594 
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4595 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4596   if (!PN->getType()->isIntegerTy())
4597     return nullptr;
4598   const Loop *L = LI.getLoopFor(PN->getParent());
4599   if (!L || L->getHeader() != PN->getParent())
4600     return nullptr;
4601   return L;
4602 }
4603 
4604 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4605 // computation that updates the phi follows the following pattern:
4606 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4607 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4608 // If so, try to see if it can be rewritten as an AddRecExpr under some
4609 // Predicates. If successful, return them as a pair. Also cache the results
4610 // of the analysis.
4611 //
4612 // Example usage scenario:
4613 //    Say the Rewriter is called for the following SCEV:
4614 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4615 //    where:
4616 //         %X = phi i64 (%Start, %BEValue)
4617 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4618 //    and call this function with %SymbolicPHI = %X.
4619 //
4620 //    The analysis will find that the value coming around the backedge has
4621 //    the following SCEV:
4622 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4623 //    Upon concluding that this matches the desired pattern, the function
4624 //    will return the pair {NewAddRec, SmallPredsVec} where:
4625 //         NewAddRec = {%Start,+,%Step}
4626 //         SmallPredsVec = {P1, P2, P3} as follows:
4627 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4628 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4629 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4630 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4631 //    under the predicates {P1,P2,P3}.
4632 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4633 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4634 //
4635 // TODO's:
4636 //
4637 // 1) Extend the Induction descriptor to also support inductions that involve
4638 //    casts: When needed (namely, when we are called in the context of the
4639 //    vectorizer induction analysis), a Set of cast instructions will be
4640 //    populated by this method, and provided back to isInductionPHI. This is
4641 //    needed to allow the vectorizer to properly record them to be ignored by
4642 //    the cost model and to avoid vectorizing them (otherwise these casts,
4643 //    which are redundant under the runtime overflow checks, will be
4644 //    vectorized, which can be costly).
4645 //
4646 // 2) Support additional induction/PHISCEV patterns: We also want to support
4647 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4648 //    after the induction update operation (the induction increment):
4649 //
4650 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4651 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4652 //
4653 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4654 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4655 //
4656 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4657 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4658 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4659   SmallVector<const SCEVPredicate *, 3> Predicates;
4660 
4661   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4662   // return an AddRec expression under some predicate.
4663 
4664   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4665   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4666   assert(L && "Expecting an integer loop header phi");
4667 
4668   // The loop may have multiple entrances or multiple exits; we can analyze
4669   // this phi as an addrec if it has a unique entry value and a unique
4670   // backedge value.
4671   Value *BEValueV = nullptr, *StartValueV = nullptr;
4672   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4673     Value *V = PN->getIncomingValue(i);
4674     if (L->contains(PN->getIncomingBlock(i))) {
4675       if (!BEValueV) {
4676         BEValueV = V;
4677       } else if (BEValueV != V) {
4678         BEValueV = nullptr;
4679         break;
4680       }
4681     } else if (!StartValueV) {
4682       StartValueV = V;
4683     } else if (StartValueV != V) {
4684       StartValueV = nullptr;
4685       break;
4686     }
4687   }
4688   if (!BEValueV || !StartValueV)
4689     return None;
4690 
4691   const SCEV *BEValue = getSCEV(BEValueV);
4692 
4693   // If the value coming around the backedge is an add with the symbolic
4694   // value we just inserted, possibly with casts that we can ignore under
4695   // an appropriate runtime guard, then we found a simple induction variable!
4696   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4697   if (!Add)
4698     return None;
4699 
4700   // If there is a single occurrence of the symbolic value, possibly
4701   // casted, replace it with a recurrence.
4702   unsigned FoundIndex = Add->getNumOperands();
4703   Type *TruncTy = nullptr;
4704   bool Signed;
4705   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4706     if ((TruncTy =
4707              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4708       if (FoundIndex == e) {
4709         FoundIndex = i;
4710         break;
4711       }
4712 
4713   if (FoundIndex == Add->getNumOperands())
4714     return None;
4715 
4716   // Create an add with everything but the specified operand.
4717   SmallVector<const SCEV *, 8> Ops;
4718   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4719     if (i != FoundIndex)
4720       Ops.push_back(Add->getOperand(i));
4721   const SCEV *Accum = getAddExpr(Ops);
4722 
4723   // The runtime checks will not be valid if the step amount is
4724   // varying inside the loop.
4725   if (!isLoopInvariant(Accum, L))
4726     return None;
4727 
4728   // *** Part2: Create the predicates
4729 
4730   // Analysis was successful: we have a phi-with-cast pattern for which we
4731   // can return an AddRec expression under the following predicates:
4732   //
4733   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4734   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4735   // P2: An Equal predicate that guarantees that
4736   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4737   // P3: An Equal predicate that guarantees that
4738   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4739   //
4740   // As we next prove, the above predicates guarantee that:
4741   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4742   //
4743   //
4744   // More formally, we want to prove that:
4745   //     Expr(i+1) = Start + (i+1) * Accum
4746   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4747   //
4748   // Given that:
4749   // 1) Expr(0) = Start
4750   // 2) Expr(1) = Start + Accum
4751   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4752   // 3) Induction hypothesis (step i):
4753   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4754   //
4755   // Proof:
4756   //  Expr(i+1) =
4757   //   = Start + (i+1)*Accum
4758   //   = (Start + i*Accum) + Accum
4759   //   = Expr(i) + Accum
4760   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4761   //                                                             :: from step i
4762   //
4763   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4764   //
4765   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4766   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4767   //     + Accum                                                     :: from P3
4768   //
4769   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4770   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4771   //
4772   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4773   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4774   //
4775   // By induction, the same applies to all iterations 1<=i<n:
4776   //
4777 
4778   // Create a truncated addrec for which we will add a no overflow check (P1).
4779   const SCEV *StartVal = getSCEV(StartValueV);
4780   const SCEV *PHISCEV =
4781       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4782                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4783 
4784   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4785   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4786   // will be constant.
4787   //
4788   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4789   // add P1.
4790   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4791     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4792         Signed ? SCEVWrapPredicate::IncrementNSSW
4793                : SCEVWrapPredicate::IncrementNUSW;
4794     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4795     Predicates.push_back(AddRecPred);
4796   }
4797 
4798   // Create the Equal Predicates P2,P3:
4799 
4800   // It is possible that the predicates P2 and/or P3 are computable at
4801   // compile time due to StartVal and/or Accum being constants.
4802   // If either one is, then we can check that now and escape if either P2
4803   // or P3 is false.
4804 
4805   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4806   // for each of StartVal and Accum
4807   auto getExtendedExpr = [&](const SCEV *Expr,
4808                              bool CreateSignExtend) -> const SCEV * {
4809     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4810     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4811     const SCEV *ExtendedExpr =
4812         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4813                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4814     return ExtendedExpr;
4815   };
4816 
4817   // Given:
4818   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4819   //               = getExtendedExpr(Expr)
4820   // Determine whether the predicate P: Expr == ExtendedExpr
4821   // is known to be false at compile time
4822   auto PredIsKnownFalse = [&](const SCEV *Expr,
4823                               const SCEV *ExtendedExpr) -> bool {
4824     return Expr != ExtendedExpr &&
4825            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4826   };
4827 
4828   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4829   if (PredIsKnownFalse(StartVal, StartExtended)) {
4830     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4831     return None;
4832   }
4833 
4834   // The Step is always Signed (because the overflow checks are either
4835   // NSSW or NUSW)
4836   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4837   if (PredIsKnownFalse(Accum, AccumExtended)) {
4838     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4839     return None;
4840   }
4841 
4842   auto AppendPredicate = [&](const SCEV *Expr,
4843                              const SCEV *ExtendedExpr) -> void {
4844     if (Expr != ExtendedExpr &&
4845         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4846       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4847       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4848       Predicates.push_back(Pred);
4849     }
4850   };
4851 
4852   AppendPredicate(StartVal, StartExtended);
4853   AppendPredicate(Accum, AccumExtended);
4854 
4855   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4856   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4857   // into NewAR if it will also add the runtime overflow checks specified in
4858   // Predicates.
4859   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4860 
4861   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4862       std::make_pair(NewAR, Predicates);
4863   // Remember the result of the analysis for this SCEV at this locayyytion.
4864   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4865   return PredRewrite;
4866 }
4867 
4868 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4869 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4870   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4871   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4872   if (!L)
4873     return None;
4874 
4875   // Check to see if we already analyzed this PHI.
4876   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4877   if (I != PredicatedSCEVRewrites.end()) {
4878     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4879         I->second;
4880     // Analysis was done before and failed to create an AddRec:
4881     if (Rewrite.first == SymbolicPHI)
4882       return None;
4883     // Analysis was done before and succeeded to create an AddRec under
4884     // a predicate:
4885     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4886     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4887     return Rewrite;
4888   }
4889 
4890   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4891     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4892 
4893   // Record in the cache that the analysis failed
4894   if (!Rewrite) {
4895     SmallVector<const SCEVPredicate *, 3> Predicates;
4896     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4897     return None;
4898   }
4899 
4900   return Rewrite;
4901 }
4902 
4903 // FIXME: This utility is currently required because the Rewriter currently
4904 // does not rewrite this expression:
4905 // {0, +, (sext ix (trunc iy to ix) to iy)}
4906 // into {0, +, %step},
4907 // even when the following Equal predicate exists:
4908 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const4909 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4910     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4911   if (AR1 == AR2)
4912     return true;
4913 
4914   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4915     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4916         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4917       return false;
4918     return true;
4919   };
4920 
4921   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4922       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4923     return false;
4924   return true;
4925 }
4926 
4927 /// A helper function for createAddRecFromPHI to handle simple cases.
4928 ///
4929 /// This function tries to find an AddRec expression for the simplest (yet most
4930 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4931 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4932 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)4933 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4934                                                       Value *BEValueV,
4935                                                       Value *StartValueV) {
4936   const Loop *L = LI.getLoopFor(PN->getParent());
4937   assert(L && L->getHeader() == PN->getParent());
4938   assert(BEValueV && StartValueV);
4939 
4940   auto BO = MatchBinaryOp(BEValueV, DT);
4941   if (!BO)
4942     return nullptr;
4943 
4944   if (BO->Opcode != Instruction::Add)
4945     return nullptr;
4946 
4947   const SCEV *Accum = nullptr;
4948   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4949     Accum = getSCEV(BO->RHS);
4950   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4951     Accum = getSCEV(BO->LHS);
4952 
4953   if (!Accum)
4954     return nullptr;
4955 
4956   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4957   if (BO->IsNUW)
4958     Flags = setFlags(Flags, SCEV::FlagNUW);
4959   if (BO->IsNSW)
4960     Flags = setFlags(Flags, SCEV::FlagNSW);
4961 
4962   const SCEV *StartVal = getSCEV(StartValueV);
4963   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4964 
4965   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4966 
4967   // We can add Flags to the post-inc expression only if we
4968   // know that it is *undefined behavior* for BEValueV to
4969   // overflow.
4970   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4971     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4972       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4973 
4974   return PHISCEV;
4975 }
4976 
createAddRecFromPHI(PHINode * PN)4977 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4978   const Loop *L = LI.getLoopFor(PN->getParent());
4979   if (!L || L->getHeader() != PN->getParent())
4980     return nullptr;
4981 
4982   // The loop may have multiple entrances or multiple exits; we can analyze
4983   // this phi as an addrec if it has a unique entry value and a unique
4984   // backedge value.
4985   Value *BEValueV = nullptr, *StartValueV = nullptr;
4986   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4987     Value *V = PN->getIncomingValue(i);
4988     if (L->contains(PN->getIncomingBlock(i))) {
4989       if (!BEValueV) {
4990         BEValueV = V;
4991       } else if (BEValueV != V) {
4992         BEValueV = nullptr;
4993         break;
4994       }
4995     } else if (!StartValueV) {
4996       StartValueV = V;
4997     } else if (StartValueV != V) {
4998       StartValueV = nullptr;
4999       break;
5000     }
5001   }
5002   if (!BEValueV || !StartValueV)
5003     return nullptr;
5004 
5005   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5006          "PHI node already processed?");
5007 
5008   // First, try to find AddRec expression without creating a fictituos symbolic
5009   // value for PN.
5010   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5011     return S;
5012 
5013   // Handle PHI node value symbolically.
5014   const SCEV *SymbolicName = getUnknown(PN);
5015   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5016 
5017   // Using this symbolic name for the PHI, analyze the value coming around
5018   // the back-edge.
5019   const SCEV *BEValue = getSCEV(BEValueV);
5020 
5021   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5022   // has a special value for the first iteration of the loop.
5023 
5024   // If the value coming around the backedge is an add with the symbolic
5025   // value we just inserted, then we found a simple induction variable!
5026   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5027     // If there is a single occurrence of the symbolic value, replace it
5028     // with a recurrence.
5029     unsigned FoundIndex = Add->getNumOperands();
5030     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5031       if (Add->getOperand(i) == SymbolicName)
5032         if (FoundIndex == e) {
5033           FoundIndex = i;
5034           break;
5035         }
5036 
5037     if (FoundIndex != Add->getNumOperands()) {
5038       // Create an add with everything but the specified operand.
5039       SmallVector<const SCEV *, 8> Ops;
5040       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5041         if (i != FoundIndex)
5042           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5043                                                              L, *this));
5044       const SCEV *Accum = getAddExpr(Ops);
5045 
5046       // This is not a valid addrec if the step amount is varying each
5047       // loop iteration, but is not itself an addrec in this loop.
5048       if (isLoopInvariant(Accum, L) ||
5049           (isa<SCEVAddRecExpr>(Accum) &&
5050            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5051         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5052 
5053         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5054           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5055             if (BO->IsNUW)
5056               Flags = setFlags(Flags, SCEV::FlagNUW);
5057             if (BO->IsNSW)
5058               Flags = setFlags(Flags, SCEV::FlagNSW);
5059           }
5060         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5061           // If the increment is an inbounds GEP, then we know the address
5062           // space cannot be wrapped around. We cannot make any guarantee
5063           // about signed or unsigned overflow because pointers are
5064           // unsigned but we may have a negative index from the base
5065           // pointer. We can guarantee that no unsigned wrap occurs if the
5066           // indices form a positive value.
5067           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5068             Flags = setFlags(Flags, SCEV::FlagNW);
5069 
5070             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5071             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5072               Flags = setFlags(Flags, SCEV::FlagNUW);
5073           }
5074 
5075           // We cannot transfer nuw and nsw flags from subtraction
5076           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5077           // for instance.
5078         }
5079 
5080         const SCEV *StartVal = getSCEV(StartValueV);
5081         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5082 
5083         // Okay, for the entire analysis of this edge we assumed the PHI
5084         // to be symbolic.  We now need to go back and purge all of the
5085         // entries for the scalars that use the symbolic expression.
5086         forgetSymbolicName(PN, SymbolicName);
5087         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5088 
5089         // We can add Flags to the post-inc expression only if we
5090         // know that it is *undefined behavior* for BEValueV to
5091         // overflow.
5092         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5093           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5094             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5095 
5096         return PHISCEV;
5097       }
5098     }
5099   } else {
5100     // Otherwise, this could be a loop like this:
5101     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5102     // In this case, j = {1,+,1}  and BEValue is j.
5103     // Because the other in-value of i (0) fits the evolution of BEValue
5104     // i really is an addrec evolution.
5105     //
5106     // We can generalize this saying that i is the shifted value of BEValue
5107     // by one iteration:
5108     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5109     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5110     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5111     if (Shifted != getCouldNotCompute() &&
5112         Start != getCouldNotCompute()) {
5113       const SCEV *StartVal = getSCEV(StartValueV);
5114       if (Start == StartVal) {
5115         // Okay, for the entire analysis of this edge we assumed the PHI
5116         // to be symbolic.  We now need to go back and purge all of the
5117         // entries for the scalars that use the symbolic expression.
5118         forgetSymbolicName(PN, SymbolicName);
5119         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5120         return Shifted;
5121       }
5122     }
5123   }
5124 
5125   // Remove the temporary PHI node SCEV that has been inserted while intending
5126   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5127   // as it will prevent later (possibly simpler) SCEV expressions to be added
5128   // to the ValueExprMap.
5129   eraseValueFromMap(PN);
5130 
5131   return nullptr;
5132 }
5133 
5134 // Checks if the SCEV S is available at BB.  S is considered available at BB
5135 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5136 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5137                                BasicBlock *BB) {
5138   struct CheckAvailable {
5139     bool TraversalDone = false;
5140     bool Available = true;
5141 
5142     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5143     BasicBlock *BB = nullptr;
5144     DominatorTree &DT;
5145 
5146     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5147       : L(L), BB(BB), DT(DT) {}
5148 
5149     bool setUnavailable() {
5150       TraversalDone = true;
5151       Available = false;
5152       return false;
5153     }
5154 
5155     bool follow(const SCEV *S) {
5156       switch (S->getSCEVType()) {
5157       case scConstant:
5158       case scPtrToInt:
5159       case scTruncate:
5160       case scZeroExtend:
5161       case scSignExtend:
5162       case scAddExpr:
5163       case scMulExpr:
5164       case scUMaxExpr:
5165       case scSMaxExpr:
5166       case scUMinExpr:
5167       case scSMinExpr:
5168         // These expressions are available if their operand(s) is/are.
5169         return true;
5170 
5171       case scAddRecExpr: {
5172         // We allow add recurrences that are on the loop BB is in, or some
5173         // outer loop.  This guarantees availability because the value of the
5174         // add recurrence at BB is simply the "current" value of the induction
5175         // variable.  We can relax this in the future; for instance an add
5176         // recurrence on a sibling dominating loop is also available at BB.
5177         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5178         if (L && (ARLoop == L || ARLoop->contains(L)))
5179           return true;
5180 
5181         return setUnavailable();
5182       }
5183 
5184       case scUnknown: {
5185         // For SCEVUnknown, we check for simple dominance.
5186         const auto *SU = cast<SCEVUnknown>(S);
5187         Value *V = SU->getValue();
5188 
5189         if (isa<Argument>(V))
5190           return false;
5191 
5192         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5193           return false;
5194 
5195         return setUnavailable();
5196       }
5197 
5198       case scUDivExpr:
5199       case scCouldNotCompute:
5200         // We do not try to smart about these at all.
5201         return setUnavailable();
5202       }
5203       llvm_unreachable("Unknown SCEV kind!");
5204     }
5205 
5206     bool isDone() { return TraversalDone; }
5207   };
5208 
5209   CheckAvailable CA(L, BB, DT);
5210   SCEVTraversal<CheckAvailable> ST(CA);
5211 
5212   ST.visitAll(S);
5213   return CA.Available;
5214 }
5215 
5216 // Try to match a control flow sequence that branches out at BI and merges back
5217 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5218 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5219 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5220                           Value *&C, Value *&LHS, Value *&RHS) {
5221   C = BI->getCondition();
5222 
5223   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5224   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5225 
5226   if (!LeftEdge.isSingleEdge())
5227     return false;
5228 
5229   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5230 
5231   Use &LeftUse = Merge->getOperandUse(0);
5232   Use &RightUse = Merge->getOperandUse(1);
5233 
5234   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5235     LHS = LeftUse;
5236     RHS = RightUse;
5237     return true;
5238   }
5239 
5240   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5241     LHS = RightUse;
5242     RHS = LeftUse;
5243     return true;
5244   }
5245 
5246   return false;
5247 }
5248 
createNodeFromSelectLikePHI(PHINode * PN)5249 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5250   auto IsReachable =
5251       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5252   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5253     const Loop *L = LI.getLoopFor(PN->getParent());
5254 
5255     // We don't want to break LCSSA, even in a SCEV expression tree.
5256     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5257       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5258         return nullptr;
5259 
5260     // Try to match
5261     //
5262     //  br %cond, label %left, label %right
5263     // left:
5264     //  br label %merge
5265     // right:
5266     //  br label %merge
5267     // merge:
5268     //  V = phi [ %x, %left ], [ %y, %right ]
5269     //
5270     // as "select %cond, %x, %y"
5271 
5272     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5273     assert(IDom && "At least the entry block should dominate PN");
5274 
5275     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5276     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5277 
5278     if (BI && BI->isConditional() &&
5279         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5280         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5281         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5282       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5283   }
5284 
5285   return nullptr;
5286 }
5287 
createNodeForPHI(PHINode * PN)5288 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5289   if (const SCEV *S = createAddRecFromPHI(PN))
5290     return S;
5291 
5292   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5293     return S;
5294 
5295   // If the PHI has a single incoming value, follow that value, unless the
5296   // PHI's incoming blocks are in a different loop, in which case doing so
5297   // risks breaking LCSSA form. Instcombine would normally zap these, but
5298   // it doesn't have DominatorTree information, so it may miss cases.
5299   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5300     if (LI.replacementPreservesLCSSAForm(PN, V))
5301       return getSCEV(V);
5302 
5303   // If it's not a loop phi, we can't handle it yet.
5304   return getUnknown(PN);
5305 }
5306 
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5307 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5308                                                       Value *Cond,
5309                                                       Value *TrueVal,
5310                                                       Value *FalseVal) {
5311   // Handle "constant" branch or select. This can occur for instance when a
5312   // loop pass transforms an inner loop and moves on to process the outer loop.
5313   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5314     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5315 
5316   // Try to match some simple smax or umax patterns.
5317   auto *ICI = dyn_cast<ICmpInst>(Cond);
5318   if (!ICI)
5319     return getUnknown(I);
5320 
5321   Value *LHS = ICI->getOperand(0);
5322   Value *RHS = ICI->getOperand(1);
5323 
5324   switch (ICI->getPredicate()) {
5325   case ICmpInst::ICMP_SLT:
5326   case ICmpInst::ICMP_SLE:
5327     std::swap(LHS, RHS);
5328     LLVM_FALLTHROUGH;
5329   case ICmpInst::ICMP_SGT:
5330   case ICmpInst::ICMP_SGE:
5331     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5332     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5333     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5334       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5335       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5336       const SCEV *LA = getSCEV(TrueVal);
5337       const SCEV *RA = getSCEV(FalseVal);
5338       const SCEV *LDiff = getMinusSCEV(LA, LS);
5339       const SCEV *RDiff = getMinusSCEV(RA, RS);
5340       if (LDiff == RDiff)
5341         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5342       LDiff = getMinusSCEV(LA, RS);
5343       RDiff = getMinusSCEV(RA, LS);
5344       if (LDiff == RDiff)
5345         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5346     }
5347     break;
5348   case ICmpInst::ICMP_ULT:
5349   case ICmpInst::ICMP_ULE:
5350     std::swap(LHS, RHS);
5351     LLVM_FALLTHROUGH;
5352   case ICmpInst::ICMP_UGT:
5353   case ICmpInst::ICMP_UGE:
5354     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5355     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5356     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5357       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5358       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5359       const SCEV *LA = getSCEV(TrueVal);
5360       const SCEV *RA = getSCEV(FalseVal);
5361       const SCEV *LDiff = getMinusSCEV(LA, LS);
5362       const SCEV *RDiff = getMinusSCEV(RA, RS);
5363       if (LDiff == RDiff)
5364         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5365       LDiff = getMinusSCEV(LA, RS);
5366       RDiff = getMinusSCEV(RA, LS);
5367       if (LDiff == RDiff)
5368         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5369     }
5370     break;
5371   case ICmpInst::ICMP_NE:
5372     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5373     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5374         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5375       const SCEV *One = getOne(I->getType());
5376       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5377       const SCEV *LA = getSCEV(TrueVal);
5378       const SCEV *RA = getSCEV(FalseVal);
5379       const SCEV *LDiff = getMinusSCEV(LA, LS);
5380       const SCEV *RDiff = getMinusSCEV(RA, One);
5381       if (LDiff == RDiff)
5382         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5383     }
5384     break;
5385   case ICmpInst::ICMP_EQ:
5386     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5387     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5388         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5389       const SCEV *One = getOne(I->getType());
5390       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5391       const SCEV *LA = getSCEV(TrueVal);
5392       const SCEV *RA = getSCEV(FalseVal);
5393       const SCEV *LDiff = getMinusSCEV(LA, One);
5394       const SCEV *RDiff = getMinusSCEV(RA, LS);
5395       if (LDiff == RDiff)
5396         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5397     }
5398     break;
5399   default:
5400     break;
5401   }
5402 
5403   return getUnknown(I);
5404 }
5405 
5406 /// Expand GEP instructions into add and multiply operations. This allows them
5407 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5408 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5409   // Don't attempt to analyze GEPs over unsized objects.
5410   if (!GEP->getSourceElementType()->isSized())
5411     return getUnknown(GEP);
5412 
5413   SmallVector<const SCEV *, 4> IndexExprs;
5414   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5415     IndexExprs.push_back(getSCEV(*Index));
5416   return getGEPExpr(GEP, IndexExprs);
5417 }
5418 
GetMinTrailingZerosImpl(const SCEV * S)5419 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5420   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5421     return C->getAPInt().countTrailingZeros();
5422 
5423   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5424     return GetMinTrailingZeros(I->getOperand());
5425 
5426   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5427     return std::min(GetMinTrailingZeros(T->getOperand()),
5428                     (uint32_t)getTypeSizeInBits(T->getType()));
5429 
5430   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5431     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5432     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5433                ? getTypeSizeInBits(E->getType())
5434                : OpRes;
5435   }
5436 
5437   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5438     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5439     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5440                ? getTypeSizeInBits(E->getType())
5441                : OpRes;
5442   }
5443 
5444   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5445     // The result is the min of all operands results.
5446     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5447     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5448       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5449     return MinOpRes;
5450   }
5451 
5452   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5453     // The result is the sum of all operands results.
5454     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5455     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5456     for (unsigned i = 1, e = M->getNumOperands();
5457          SumOpRes != BitWidth && i != e; ++i)
5458       SumOpRes =
5459           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5460     return SumOpRes;
5461   }
5462 
5463   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5464     // The result is the min of all operands results.
5465     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5466     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5467       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5468     return MinOpRes;
5469   }
5470 
5471   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5472     // The result is the min of all operands results.
5473     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5474     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5475       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5476     return MinOpRes;
5477   }
5478 
5479   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5480     // The result is the min of all operands results.
5481     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5482     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5483       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5484     return MinOpRes;
5485   }
5486 
5487   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5488     // For a SCEVUnknown, ask ValueTracking.
5489     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5490     return Known.countMinTrailingZeros();
5491   }
5492 
5493   // SCEVUDivExpr
5494   return 0;
5495 }
5496 
GetMinTrailingZeros(const SCEV * S)5497 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5498   auto I = MinTrailingZerosCache.find(S);
5499   if (I != MinTrailingZerosCache.end())
5500     return I->second;
5501 
5502   uint32_t Result = GetMinTrailingZerosImpl(S);
5503   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5504   assert(InsertPair.second && "Should insert a new key");
5505   return InsertPair.first->second;
5506 }
5507 
5508 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5509 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5510   if (Instruction *I = dyn_cast<Instruction>(V))
5511     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5512       return getConstantRangeFromMetadata(*MD);
5513 
5514   return None;
5515 }
5516 
setNoWrapFlags(SCEVAddRecExpr * AddRec,SCEV::NoWrapFlags Flags)5517 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5518                                      SCEV::NoWrapFlags Flags) {
5519   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5520     AddRec->setNoWrapFlags(Flags);
5521     UnsignedRanges.erase(AddRec);
5522     SignedRanges.erase(AddRec);
5523   }
5524 }
5525 
5526 /// Determine the range for a particular SCEV.  If SignHint is
5527 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5528 /// with a "cleaner" unsigned (resp. signed) representation.
5529 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5530 ScalarEvolution::getRangeRef(const SCEV *S,
5531                              ScalarEvolution::RangeSignHint SignHint) {
5532   DenseMap<const SCEV *, ConstantRange> &Cache =
5533       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5534                                                        : SignedRanges;
5535   ConstantRange::PreferredRangeType RangeType =
5536       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5537           ? ConstantRange::Unsigned : ConstantRange::Signed;
5538 
5539   // See if we've computed this range already.
5540   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5541   if (I != Cache.end())
5542     return I->second;
5543 
5544   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5545     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5546 
5547   unsigned BitWidth = getTypeSizeInBits(S->getType());
5548   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5549   using OBO = OverflowingBinaryOperator;
5550 
5551   // If the value has known zeros, the maximum value will have those known zeros
5552   // as well.
5553   uint32_t TZ = GetMinTrailingZeros(S);
5554   if (TZ != 0) {
5555     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5556       ConservativeResult =
5557           ConstantRange(APInt::getMinValue(BitWidth),
5558                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5559     else
5560       ConservativeResult = ConstantRange(
5561           APInt::getSignedMinValue(BitWidth),
5562           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5563   }
5564 
5565   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5566     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5567     unsigned WrapType = OBO::AnyWrap;
5568     if (Add->hasNoSignedWrap())
5569       WrapType |= OBO::NoSignedWrap;
5570     if (Add->hasNoUnsignedWrap())
5571       WrapType |= OBO::NoUnsignedWrap;
5572     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5573       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5574                           WrapType, RangeType);
5575     return setRange(Add, SignHint,
5576                     ConservativeResult.intersectWith(X, RangeType));
5577   }
5578 
5579   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5580     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5581     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5582       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5583     return setRange(Mul, SignHint,
5584                     ConservativeResult.intersectWith(X, RangeType));
5585   }
5586 
5587   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5588     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5589     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5590       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5591     return setRange(SMax, SignHint,
5592                     ConservativeResult.intersectWith(X, RangeType));
5593   }
5594 
5595   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5596     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5597     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5598       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5599     return setRange(UMax, SignHint,
5600                     ConservativeResult.intersectWith(X, RangeType));
5601   }
5602 
5603   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5604     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5605     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5606       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5607     return setRange(SMin, SignHint,
5608                     ConservativeResult.intersectWith(X, RangeType));
5609   }
5610 
5611   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5612     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5613     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5614       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5615     return setRange(UMin, SignHint,
5616                     ConservativeResult.intersectWith(X, RangeType));
5617   }
5618 
5619   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5620     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5621     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5622     return setRange(UDiv, SignHint,
5623                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5624   }
5625 
5626   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5627     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5628     return setRange(ZExt, SignHint,
5629                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5630                                                      RangeType));
5631   }
5632 
5633   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5634     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5635     return setRange(SExt, SignHint,
5636                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5637                                                      RangeType));
5638   }
5639 
5640   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5641     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5642     return setRange(PtrToInt, SignHint, X);
5643   }
5644 
5645   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5646     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5647     return setRange(Trunc, SignHint,
5648                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5649                                                      RangeType));
5650   }
5651 
5652   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5653     // If there's no unsigned wrap, the value will never be less than its
5654     // initial value.
5655     if (AddRec->hasNoUnsignedWrap()) {
5656       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5657       if (!UnsignedMinValue.isNullValue())
5658         ConservativeResult = ConservativeResult.intersectWith(
5659             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5660     }
5661 
5662     // If there's no signed wrap, and all the operands except initial value have
5663     // the same sign or zero, the value won't ever be:
5664     // 1: smaller than initial value if operands are non negative,
5665     // 2: bigger than initial value if operands are non positive.
5666     // For both cases, value can not cross signed min/max boundary.
5667     if (AddRec->hasNoSignedWrap()) {
5668       bool AllNonNeg = true;
5669       bool AllNonPos = true;
5670       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5671         if (!isKnownNonNegative(AddRec->getOperand(i)))
5672           AllNonNeg = false;
5673         if (!isKnownNonPositive(AddRec->getOperand(i)))
5674           AllNonPos = false;
5675       }
5676       if (AllNonNeg)
5677         ConservativeResult = ConservativeResult.intersectWith(
5678             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5679                                        APInt::getSignedMinValue(BitWidth)),
5680             RangeType);
5681       else if (AllNonPos)
5682         ConservativeResult = ConservativeResult.intersectWith(
5683             ConstantRange::getNonEmpty(
5684                 APInt::getSignedMinValue(BitWidth),
5685                 getSignedRangeMax(AddRec->getStart()) + 1),
5686             RangeType);
5687     }
5688 
5689     // TODO: non-affine addrec
5690     if (AddRec->isAffine()) {
5691       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5692       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5693           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5694         auto RangeFromAffine = getRangeForAffineAR(
5695             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5696             BitWidth);
5697         ConservativeResult =
5698             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5699 
5700         auto RangeFromFactoring = getRangeViaFactoring(
5701             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5702             BitWidth);
5703         ConservativeResult =
5704             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5705       }
5706 
5707       // Now try symbolic BE count and more powerful methods.
5708       if (UseExpensiveRangeSharpening) {
5709         const SCEV *SymbolicMaxBECount =
5710             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5711         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5712             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5713             AddRec->hasNoSelfWrap()) {
5714           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5715               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5716           ConservativeResult =
5717               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5718         }
5719       }
5720     }
5721 
5722     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5723   }
5724 
5725   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5726     // Check if the IR explicitly contains !range metadata.
5727     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5728     if (MDRange.hasValue())
5729       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5730                                                             RangeType);
5731 
5732     // Split here to avoid paying the compile-time cost of calling both
5733     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5734     // if needed.
5735     const DataLayout &DL = getDataLayout();
5736     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5737       // For a SCEVUnknown, ask ValueTracking.
5738       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5739       if (Known.getBitWidth() != BitWidth)
5740         Known = Known.zextOrTrunc(BitWidth);
5741       // If Known does not result in full-set, intersect with it.
5742       if (Known.getMinValue() != Known.getMaxValue() + 1)
5743         ConservativeResult = ConservativeResult.intersectWith(
5744             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5745             RangeType);
5746     } else {
5747       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5748              "generalize as needed!");
5749       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5750       // If the pointer size is larger than the index size type, this can cause
5751       // NS to be larger than BitWidth. So compensate for this.
5752       if (U->getType()->isPointerTy()) {
5753         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5754         int ptrIdxDiff = ptrSize - BitWidth;
5755         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5756           NS -= ptrIdxDiff;
5757       }
5758 
5759       if (NS > 1)
5760         ConservativeResult = ConservativeResult.intersectWith(
5761             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5762                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5763             RangeType);
5764     }
5765 
5766     // A range of Phi is a subset of union of all ranges of its input.
5767     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5768       // Make sure that we do not run over cycled Phis.
5769       if (PendingPhiRanges.insert(Phi).second) {
5770         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5771         for (auto &Op : Phi->operands()) {
5772           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5773           RangeFromOps = RangeFromOps.unionWith(OpRange);
5774           // No point to continue if we already have a full set.
5775           if (RangeFromOps.isFullSet())
5776             break;
5777         }
5778         ConservativeResult =
5779             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5780         bool Erased = PendingPhiRanges.erase(Phi);
5781         assert(Erased && "Failed to erase Phi properly?");
5782         (void) Erased;
5783       }
5784     }
5785 
5786     return setRange(U, SignHint, std::move(ConservativeResult));
5787   }
5788 
5789   return setRange(S, SignHint, std::move(ConservativeResult));
5790 }
5791 
5792 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5793 // values that the expression can take. Initially, the expression has a value
5794 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5795 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5796 static ConstantRange getRangeForAffineARHelper(APInt Step,
5797                                                const ConstantRange &StartRange,
5798                                                const APInt &MaxBECount,
5799                                                unsigned BitWidth, bool Signed) {
5800   // If either Step or MaxBECount is 0, then the expression won't change, and we
5801   // just need to return the initial range.
5802   if (Step == 0 || MaxBECount == 0)
5803     return StartRange;
5804 
5805   // If we don't know anything about the initial value (i.e. StartRange is
5806   // FullRange), then we don't know anything about the final range either.
5807   // Return FullRange.
5808   if (StartRange.isFullSet())
5809     return ConstantRange::getFull(BitWidth);
5810 
5811   // If Step is signed and negative, then we use its absolute value, but we also
5812   // note that we're moving in the opposite direction.
5813   bool Descending = Signed && Step.isNegative();
5814 
5815   if (Signed)
5816     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5817     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5818     // This equations hold true due to the well-defined wrap-around behavior of
5819     // APInt.
5820     Step = Step.abs();
5821 
5822   // Check if Offset is more than full span of BitWidth. If it is, the
5823   // expression is guaranteed to overflow.
5824   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5825     return ConstantRange::getFull(BitWidth);
5826 
5827   // Offset is by how much the expression can change. Checks above guarantee no
5828   // overflow here.
5829   APInt Offset = Step * MaxBECount;
5830 
5831   // Minimum value of the final range will match the minimal value of StartRange
5832   // if the expression is increasing and will be decreased by Offset otherwise.
5833   // Maximum value of the final range will match the maximal value of StartRange
5834   // if the expression is decreasing and will be increased by Offset otherwise.
5835   APInt StartLower = StartRange.getLower();
5836   APInt StartUpper = StartRange.getUpper() - 1;
5837   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5838                                    : (StartUpper + std::move(Offset));
5839 
5840   // It's possible that the new minimum/maximum value will fall into the initial
5841   // range (due to wrap around). This means that the expression can take any
5842   // value in this bitwidth, and we have to return full range.
5843   if (StartRange.contains(MovedBoundary))
5844     return ConstantRange::getFull(BitWidth);
5845 
5846   APInt NewLower =
5847       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5848   APInt NewUpper =
5849       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5850   NewUpper += 1;
5851 
5852   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5853   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5854 }
5855 
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5856 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5857                                                    const SCEV *Step,
5858                                                    const SCEV *MaxBECount,
5859                                                    unsigned BitWidth) {
5860   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5861          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5862          "Precondition!");
5863 
5864   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5865   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5866 
5867   // First, consider step signed.
5868   ConstantRange StartSRange = getSignedRange(Start);
5869   ConstantRange StepSRange = getSignedRange(Step);
5870 
5871   // If Step can be both positive and negative, we need to find ranges for the
5872   // maximum absolute step values in both directions and union them.
5873   ConstantRange SR =
5874       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5875                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5876   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5877                                               StartSRange, MaxBECountValue,
5878                                               BitWidth, /* Signed = */ true));
5879 
5880   // Next, consider step unsigned.
5881   ConstantRange UR = getRangeForAffineARHelper(
5882       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5883       MaxBECountValue, BitWidth, /* Signed = */ false);
5884 
5885   // Finally, intersect signed and unsigned ranges.
5886   return SR.intersectWith(UR, ConstantRange::Smallest);
5887 }
5888 
getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr * AddRec,const SCEV * MaxBECount,unsigned BitWidth,ScalarEvolution::RangeSignHint SignHint)5889 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
5890     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
5891     ScalarEvolution::RangeSignHint SignHint) {
5892   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
5893   assert(AddRec->hasNoSelfWrap() &&
5894          "This only works for non-self-wrapping AddRecs!");
5895   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
5896   const SCEV *Step = AddRec->getStepRecurrence(*this);
5897   // Only deal with constant step to save compile time.
5898   if (!isa<SCEVConstant>(Step))
5899     return ConstantRange::getFull(BitWidth);
5900   // Let's make sure that we can prove that we do not self-wrap during
5901   // MaxBECount iterations. We need this because MaxBECount is a maximum
5902   // iteration count estimate, and we might infer nw from some exit for which we
5903   // do not know max exit count (or any other side reasoning).
5904   // TODO: Turn into assert at some point.
5905   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
5906   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
5907   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
5908   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
5909   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
5910                                          MaxItersWithoutWrap))
5911     return ConstantRange::getFull(BitWidth);
5912 
5913   ICmpInst::Predicate LEPred =
5914       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
5915   ICmpInst::Predicate GEPred =
5916       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
5917   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
5918 
5919   // We know that there is no self-wrap. Let's take Start and End values and
5920   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
5921   // the iteration. They either lie inside the range [Min(Start, End),
5922   // Max(Start, End)] or outside it:
5923   //
5924   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
5925   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
5926   //
5927   // No self wrap flag guarantees that the intermediate values cannot be BOTH
5928   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
5929   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
5930   // Start <= End and step is positive, or Start >= End and step is negative.
5931   const SCEV *Start = AddRec->getStart();
5932   ConstantRange StartRange = getRangeRef(Start, SignHint);
5933   ConstantRange EndRange = getRangeRef(End, SignHint);
5934   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
5935   // If they already cover full iteration space, we will know nothing useful
5936   // even if we prove what we want to prove.
5937   if (RangeBetween.isFullSet())
5938     return RangeBetween;
5939   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
5940   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
5941                                : RangeBetween.isWrappedSet();
5942   if (IsWrappedSet)
5943     return ConstantRange::getFull(BitWidth);
5944 
5945   if (isKnownPositive(Step) &&
5946       isKnownPredicateViaConstantRanges(LEPred, Start, End))
5947     return RangeBetween;
5948   else if (isKnownNegative(Step) &&
5949            isKnownPredicateViaConstantRanges(GEPred, Start, End))
5950     return RangeBetween;
5951   return ConstantRange::getFull(BitWidth);
5952 }
5953 
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5954 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5955                                                     const SCEV *Step,
5956                                                     const SCEV *MaxBECount,
5957                                                     unsigned BitWidth) {
5958   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5959   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5960 
5961   struct SelectPattern {
5962     Value *Condition = nullptr;
5963     APInt TrueValue;
5964     APInt FalseValue;
5965 
5966     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5967                            const SCEV *S) {
5968       Optional<unsigned> CastOp;
5969       APInt Offset(BitWidth, 0);
5970 
5971       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5972              "Should be!");
5973 
5974       // Peel off a constant offset:
5975       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5976         // In the future we could consider being smarter here and handle
5977         // {Start+Step,+,Step} too.
5978         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5979           return;
5980 
5981         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5982         S = SA->getOperand(1);
5983       }
5984 
5985       // Peel off a cast operation
5986       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
5987         CastOp = SCast->getSCEVType();
5988         S = SCast->getOperand();
5989       }
5990 
5991       using namespace llvm::PatternMatch;
5992 
5993       auto *SU = dyn_cast<SCEVUnknown>(S);
5994       const APInt *TrueVal, *FalseVal;
5995       if (!SU ||
5996           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5997                                           m_APInt(FalseVal)))) {
5998         Condition = nullptr;
5999         return;
6000       }
6001 
6002       TrueValue = *TrueVal;
6003       FalseValue = *FalseVal;
6004 
6005       // Re-apply the cast we peeled off earlier
6006       if (CastOp.hasValue())
6007         switch (*CastOp) {
6008         default:
6009           llvm_unreachable("Unknown SCEV cast type!");
6010 
6011         case scTruncate:
6012           TrueValue = TrueValue.trunc(BitWidth);
6013           FalseValue = FalseValue.trunc(BitWidth);
6014           break;
6015         case scZeroExtend:
6016           TrueValue = TrueValue.zext(BitWidth);
6017           FalseValue = FalseValue.zext(BitWidth);
6018           break;
6019         case scSignExtend:
6020           TrueValue = TrueValue.sext(BitWidth);
6021           FalseValue = FalseValue.sext(BitWidth);
6022           break;
6023         }
6024 
6025       // Re-apply the constant offset we peeled off earlier
6026       TrueValue += Offset;
6027       FalseValue += Offset;
6028     }
6029 
6030     bool isRecognized() { return Condition != nullptr; }
6031   };
6032 
6033   SelectPattern StartPattern(*this, BitWidth, Start);
6034   if (!StartPattern.isRecognized())
6035     return ConstantRange::getFull(BitWidth);
6036 
6037   SelectPattern StepPattern(*this, BitWidth, Step);
6038   if (!StepPattern.isRecognized())
6039     return ConstantRange::getFull(BitWidth);
6040 
6041   if (StartPattern.Condition != StepPattern.Condition) {
6042     // We don't handle this case today; but we could, by considering four
6043     // possibilities below instead of two. I'm not sure if there are cases where
6044     // that will help over what getRange already does, though.
6045     return ConstantRange::getFull(BitWidth);
6046   }
6047 
6048   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6049   // construct arbitrary general SCEV expressions here.  This function is called
6050   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6051   // say) can end up caching a suboptimal value.
6052 
6053   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6054   // C2352 and C2512 (otherwise it isn't needed).
6055 
6056   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6057   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6058   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6059   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6060 
6061   ConstantRange TrueRange =
6062       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6063   ConstantRange FalseRange =
6064       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6065 
6066   return TrueRange.unionWith(FalseRange);
6067 }
6068 
getNoWrapFlagsFromUB(const Value * V)6069 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6070   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6071   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6072 
6073   // Return early if there are no flags to propagate to the SCEV.
6074   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6075   if (BinOp->hasNoUnsignedWrap())
6076     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6077   if (BinOp->hasNoSignedWrap())
6078     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6079   if (Flags == SCEV::FlagAnyWrap)
6080     return SCEV::FlagAnyWrap;
6081 
6082   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6083 }
6084 
isSCEVExprNeverPoison(const Instruction * I)6085 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6086   // Here we check that I is in the header of the innermost loop containing I,
6087   // since we only deal with instructions in the loop header. The actual loop we
6088   // need to check later will come from an add recurrence, but getting that
6089   // requires computing the SCEV of the operands, which can be expensive. This
6090   // check we can do cheaply to rule out some cases early.
6091   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6092   if (InnermostContainingLoop == nullptr ||
6093       InnermostContainingLoop->getHeader() != I->getParent())
6094     return false;
6095 
6096   // Only proceed if we can prove that I does not yield poison.
6097   if (!programUndefinedIfPoison(I))
6098     return false;
6099 
6100   // At this point we know that if I is executed, then it does not wrap
6101   // according to at least one of NSW or NUW. If I is not executed, then we do
6102   // not know if the calculation that I represents would wrap. Multiple
6103   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6104   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6105   // derived from other instructions that map to the same SCEV. We cannot make
6106   // that guarantee for cases where I is not executed. So we need to find the
6107   // loop that I is considered in relation to and prove that I is executed for
6108   // every iteration of that loop. That implies that the value that I
6109   // calculates does not wrap anywhere in the loop, so then we can apply the
6110   // flags to the SCEV.
6111   //
6112   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6113   // from different loops, so that we know which loop to prove that I is
6114   // executed in.
6115   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6116     // I could be an extractvalue from a call to an overflow intrinsic.
6117     // TODO: We can do better here in some cases.
6118     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6119       return false;
6120     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6121     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6122       bool AllOtherOpsLoopInvariant = true;
6123       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6124            ++OtherOpIndex) {
6125         if (OtherOpIndex != OpIndex) {
6126           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6127           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6128             AllOtherOpsLoopInvariant = false;
6129             break;
6130           }
6131         }
6132       }
6133       if (AllOtherOpsLoopInvariant &&
6134           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6135         return true;
6136     }
6137   }
6138   return false;
6139 }
6140 
isAddRecNeverPoison(const Instruction * I,const Loop * L)6141 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6142   // If we know that \c I can never be poison period, then that's enough.
6143   if (isSCEVExprNeverPoison(I))
6144     return true;
6145 
6146   // For an add recurrence specifically, we assume that infinite loops without
6147   // side effects are undefined behavior, and then reason as follows:
6148   //
6149   // If the add recurrence is poison in any iteration, it is poison on all
6150   // future iterations (since incrementing poison yields poison). If the result
6151   // of the add recurrence is fed into the loop latch condition and the loop
6152   // does not contain any throws or exiting blocks other than the latch, we now
6153   // have the ability to "choose" whether the backedge is taken or not (by
6154   // choosing a sufficiently evil value for the poison feeding into the branch)
6155   // for every iteration including and after the one in which \p I first became
6156   // poison.  There are two possibilities (let's call the iteration in which \p
6157   // I first became poison as K):
6158   //
6159   //  1. In the set of iterations including and after K, the loop body executes
6160   //     no side effects.  In this case executing the backege an infinte number
6161   //     of times will yield undefined behavior.
6162   //
6163   //  2. In the set of iterations including and after K, the loop body executes
6164   //     at least one side effect.  In this case, that specific instance of side
6165   //     effect is control dependent on poison, which also yields undefined
6166   //     behavior.
6167 
6168   auto *ExitingBB = L->getExitingBlock();
6169   auto *LatchBB = L->getLoopLatch();
6170   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6171     return false;
6172 
6173   SmallPtrSet<const Instruction *, 16> Pushed;
6174   SmallVector<const Instruction *, 8> PoisonStack;
6175 
6176   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6177   // things that are known to be poison under that assumption go on the
6178   // PoisonStack.
6179   Pushed.insert(I);
6180   PoisonStack.push_back(I);
6181 
6182   bool LatchControlDependentOnPoison = false;
6183   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6184     const Instruction *Poison = PoisonStack.pop_back_val();
6185 
6186     for (auto *PoisonUser : Poison->users()) {
6187       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6188         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6189           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6190       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6191         assert(BI->isConditional() && "Only possibility!");
6192         if (BI->getParent() == LatchBB) {
6193           LatchControlDependentOnPoison = true;
6194           break;
6195         }
6196       }
6197     }
6198   }
6199 
6200   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6201 }
6202 
6203 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6204 ScalarEvolution::getLoopProperties(const Loop *L) {
6205   using LoopProperties = ScalarEvolution::LoopProperties;
6206 
6207   auto Itr = LoopPropertiesCache.find(L);
6208   if (Itr == LoopPropertiesCache.end()) {
6209     auto HasSideEffects = [](Instruction *I) {
6210       if (auto *SI = dyn_cast<StoreInst>(I))
6211         return !SI->isSimple();
6212 
6213       return I->mayHaveSideEffects();
6214     };
6215 
6216     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6217                          /*HasNoSideEffects*/ true};
6218 
6219     for (auto *BB : L->getBlocks())
6220       for (auto &I : *BB) {
6221         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6222           LP.HasNoAbnormalExits = false;
6223         if (HasSideEffects(&I))
6224           LP.HasNoSideEffects = false;
6225         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6226           break; // We're already as pessimistic as we can get.
6227       }
6228 
6229     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6230     assert(InsertPair.second && "We just checked!");
6231     Itr = InsertPair.first;
6232   }
6233 
6234   return Itr->second;
6235 }
6236 
createSCEV(Value * V)6237 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6238   if (!isSCEVable(V->getType()))
6239     return getUnknown(V);
6240 
6241   if (Instruction *I = dyn_cast<Instruction>(V)) {
6242     // Don't attempt to analyze instructions in blocks that aren't
6243     // reachable. Such instructions don't matter, and they aren't required
6244     // to obey basic rules for definitions dominating uses which this
6245     // analysis depends on.
6246     if (!DT.isReachableFromEntry(I->getParent()))
6247       return getUnknown(UndefValue::get(V->getType()));
6248   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6249     return getConstant(CI);
6250   else if (isa<ConstantPointerNull>(V))
6251     // FIXME: we shouldn't special-case null pointer constant.
6252     return getZero(V->getType());
6253   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6254     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6255   else if (!isa<ConstantExpr>(V))
6256     return getUnknown(V);
6257 
6258   Operator *U = cast<Operator>(V);
6259   if (auto BO = MatchBinaryOp(U, DT)) {
6260     switch (BO->Opcode) {
6261     case Instruction::Add: {
6262       // The simple thing to do would be to just call getSCEV on both operands
6263       // and call getAddExpr with the result. However if we're looking at a
6264       // bunch of things all added together, this can be quite inefficient,
6265       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6266       // Instead, gather up all the operands and make a single getAddExpr call.
6267       // LLVM IR canonical form means we need only traverse the left operands.
6268       SmallVector<const SCEV *, 4> AddOps;
6269       do {
6270         if (BO->Op) {
6271           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6272             AddOps.push_back(OpSCEV);
6273             break;
6274           }
6275 
6276           // If a NUW or NSW flag can be applied to the SCEV for this
6277           // addition, then compute the SCEV for this addition by itself
6278           // with a separate call to getAddExpr. We need to do that
6279           // instead of pushing the operands of the addition onto AddOps,
6280           // since the flags are only known to apply to this particular
6281           // addition - they may not apply to other additions that can be
6282           // formed with operands from AddOps.
6283           const SCEV *RHS = getSCEV(BO->RHS);
6284           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6285           if (Flags != SCEV::FlagAnyWrap) {
6286             const SCEV *LHS = getSCEV(BO->LHS);
6287             if (BO->Opcode == Instruction::Sub)
6288               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6289             else
6290               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6291             break;
6292           }
6293         }
6294 
6295         if (BO->Opcode == Instruction::Sub)
6296           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6297         else
6298           AddOps.push_back(getSCEV(BO->RHS));
6299 
6300         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6301         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6302                        NewBO->Opcode != Instruction::Sub)) {
6303           AddOps.push_back(getSCEV(BO->LHS));
6304           break;
6305         }
6306         BO = NewBO;
6307       } while (true);
6308 
6309       return getAddExpr(AddOps);
6310     }
6311 
6312     case Instruction::Mul: {
6313       SmallVector<const SCEV *, 4> MulOps;
6314       do {
6315         if (BO->Op) {
6316           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6317             MulOps.push_back(OpSCEV);
6318             break;
6319           }
6320 
6321           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6322           if (Flags != SCEV::FlagAnyWrap) {
6323             MulOps.push_back(
6324                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6325             break;
6326           }
6327         }
6328 
6329         MulOps.push_back(getSCEV(BO->RHS));
6330         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6331         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6332           MulOps.push_back(getSCEV(BO->LHS));
6333           break;
6334         }
6335         BO = NewBO;
6336       } while (true);
6337 
6338       return getMulExpr(MulOps);
6339     }
6340     case Instruction::UDiv:
6341       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6342     case Instruction::URem:
6343       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6344     case Instruction::Sub: {
6345       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6346       if (BO->Op)
6347         Flags = getNoWrapFlagsFromUB(BO->Op);
6348       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6349     }
6350     case Instruction::And:
6351       // For an expression like x&255 that merely masks off the high bits,
6352       // use zext(trunc(x)) as the SCEV expression.
6353       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6354         if (CI->isZero())
6355           return getSCEV(BO->RHS);
6356         if (CI->isMinusOne())
6357           return getSCEV(BO->LHS);
6358         const APInt &A = CI->getValue();
6359 
6360         // Instcombine's ShrinkDemandedConstant may strip bits out of
6361         // constants, obscuring what would otherwise be a low-bits mask.
6362         // Use computeKnownBits to compute what ShrinkDemandedConstant
6363         // knew about to reconstruct a low-bits mask value.
6364         unsigned LZ = A.countLeadingZeros();
6365         unsigned TZ = A.countTrailingZeros();
6366         unsigned BitWidth = A.getBitWidth();
6367         KnownBits Known(BitWidth);
6368         computeKnownBits(BO->LHS, Known, getDataLayout(),
6369                          0, &AC, nullptr, &DT);
6370 
6371         APInt EffectiveMask =
6372             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6373         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6374           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6375           const SCEV *LHS = getSCEV(BO->LHS);
6376           const SCEV *ShiftedLHS = nullptr;
6377           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6378             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6379               // For an expression like (x * 8) & 8, simplify the multiply.
6380               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6381               unsigned GCD = std::min(MulZeros, TZ);
6382               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6383               SmallVector<const SCEV*, 4> MulOps;
6384               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6385               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6386               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6387               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6388             }
6389           }
6390           if (!ShiftedLHS)
6391             ShiftedLHS = getUDivExpr(LHS, MulCount);
6392           return getMulExpr(
6393               getZeroExtendExpr(
6394                   getTruncateExpr(ShiftedLHS,
6395                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6396                   BO->LHS->getType()),
6397               MulCount);
6398         }
6399       }
6400       break;
6401 
6402     case Instruction::Or:
6403       // If the RHS of the Or is a constant, we may have something like:
6404       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6405       // optimizations will transparently handle this case.
6406       //
6407       // In order for this transformation to be safe, the LHS must be of the
6408       // form X*(2^n) and the Or constant must be less than 2^n.
6409       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6410         const SCEV *LHS = getSCEV(BO->LHS);
6411         const APInt &CIVal = CI->getValue();
6412         if (GetMinTrailingZeros(LHS) >=
6413             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6414           // Build a plain add SCEV.
6415           return getAddExpr(LHS, getSCEV(CI),
6416                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6417         }
6418       }
6419       break;
6420 
6421     case Instruction::Xor:
6422       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6423         // If the RHS of xor is -1, then this is a not operation.
6424         if (CI->isMinusOne())
6425           return getNotSCEV(getSCEV(BO->LHS));
6426 
6427         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6428         // This is a variant of the check for xor with -1, and it handles
6429         // the case where instcombine has trimmed non-demanded bits out
6430         // of an xor with -1.
6431         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6432           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6433             if (LBO->getOpcode() == Instruction::And &&
6434                 LCI->getValue() == CI->getValue())
6435               if (const SCEVZeroExtendExpr *Z =
6436                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6437                 Type *UTy = BO->LHS->getType();
6438                 const SCEV *Z0 = Z->getOperand();
6439                 Type *Z0Ty = Z0->getType();
6440                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6441 
6442                 // If C is a low-bits mask, the zero extend is serving to
6443                 // mask off the high bits. Complement the operand and
6444                 // re-apply the zext.
6445                 if (CI->getValue().isMask(Z0TySize))
6446                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6447 
6448                 // If C is a single bit, it may be in the sign-bit position
6449                 // before the zero-extend. In this case, represent the xor
6450                 // using an add, which is equivalent, and re-apply the zext.
6451                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6452                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6453                     Trunc.isSignMask())
6454                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6455                                            UTy);
6456               }
6457       }
6458       break;
6459 
6460     case Instruction::Shl:
6461       // Turn shift left of a constant amount into a multiply.
6462       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6463         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6464 
6465         // If the shift count is not less than the bitwidth, the result of
6466         // the shift is undefined. Don't try to analyze it, because the
6467         // resolution chosen here may differ from the resolution chosen in
6468         // other parts of the compiler.
6469         if (SA->getValue().uge(BitWidth))
6470           break;
6471 
6472         // We can safely preserve the nuw flag in all cases. It's also safe to
6473         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6474         // requires special handling. It can be preserved as long as we're not
6475         // left shifting by bitwidth - 1.
6476         auto Flags = SCEV::FlagAnyWrap;
6477         if (BO->Op) {
6478           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6479           if ((MulFlags & SCEV::FlagNSW) &&
6480               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6481             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6482           if (MulFlags & SCEV::FlagNUW)
6483             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6484         }
6485 
6486         Constant *X = ConstantInt::get(
6487             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6488         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6489       }
6490       break;
6491 
6492     case Instruction::AShr: {
6493       // AShr X, C, where C is a constant.
6494       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6495       if (!CI)
6496         break;
6497 
6498       Type *OuterTy = BO->LHS->getType();
6499       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6500       // If the shift count is not less than the bitwidth, the result of
6501       // the shift is undefined. Don't try to analyze it, because the
6502       // resolution chosen here may differ from the resolution chosen in
6503       // other parts of the compiler.
6504       if (CI->getValue().uge(BitWidth))
6505         break;
6506 
6507       if (CI->isZero())
6508         return getSCEV(BO->LHS); // shift by zero --> noop
6509 
6510       uint64_t AShrAmt = CI->getZExtValue();
6511       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6512 
6513       Operator *L = dyn_cast<Operator>(BO->LHS);
6514       if (L && L->getOpcode() == Instruction::Shl) {
6515         // X = Shl A, n
6516         // Y = AShr X, m
6517         // Both n and m are constant.
6518 
6519         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6520         if (L->getOperand(1) == BO->RHS)
6521           // For a two-shift sext-inreg, i.e. n = m,
6522           // use sext(trunc(x)) as the SCEV expression.
6523           return getSignExtendExpr(
6524               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6525 
6526         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6527         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6528           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6529           if (ShlAmt > AShrAmt) {
6530             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6531             // expression. We already checked that ShlAmt < BitWidth, so
6532             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6533             // ShlAmt - AShrAmt < Amt.
6534             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6535                                             ShlAmt - AShrAmt);
6536             return getSignExtendExpr(
6537                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6538                 getConstant(Mul)), OuterTy);
6539           }
6540         }
6541       }
6542       if (BO->IsExact) {
6543         // Given exact arithmetic in-bounds right-shift by a constant,
6544         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6545         const SCEV *X = getSCEV(BO->LHS);
6546         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6547         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6548         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6549         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6550       }
6551       break;
6552     }
6553     }
6554   }
6555 
6556   switch (U->getOpcode()) {
6557   case Instruction::Trunc:
6558     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6559 
6560   case Instruction::ZExt:
6561     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6562 
6563   case Instruction::SExt:
6564     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6565       // The NSW flag of a subtract does not always survive the conversion to
6566       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6567       // more likely to preserve NSW and allow later AddRec optimisations.
6568       //
6569       // NOTE: This is effectively duplicating this logic from getSignExtend:
6570       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6571       // but by that point the NSW information has potentially been lost.
6572       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6573         Type *Ty = U->getType();
6574         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6575         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6576         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6577       }
6578     }
6579     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6580 
6581   case Instruction::BitCast:
6582     // BitCasts are no-op casts so we just eliminate the cast.
6583     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6584       return getSCEV(U->getOperand(0));
6585     break;
6586 
6587   case Instruction::PtrToInt: {
6588     // Pointer to integer cast is straight-forward, so do model it.
6589     Value *Ptr = U->getOperand(0);
6590     const SCEV *Op = getSCEV(Ptr);
6591     Type *DstIntTy = U->getType();
6592     // SCEV doesn't have constant pointer expression type, but it supports
6593     // nullptr constant (and only that one), which is modelled in SCEV as a
6594     // zero integer constant. So just skip the ptrtoint cast for constants.
6595     if (isa<SCEVConstant>(Op))
6596       return getTruncateOrZeroExtend(Op, DstIntTy);
6597     Type *PtrTy = Ptr->getType();
6598     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6599     // But only if effective SCEV (integer) type is wide enough to represent
6600     // all possible pointer values.
6601     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6602         getDataLayout().getTypeSizeInBits(IntPtrTy))
6603       return getUnknown(V);
6604     return getPtrToIntExpr(Op, DstIntTy);
6605   }
6606   case Instruction::IntToPtr:
6607     // Just don't deal with inttoptr casts.
6608     return getUnknown(V);
6609 
6610   case Instruction::SDiv:
6611     // If both operands are non-negative, this is just an udiv.
6612     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6613         isKnownNonNegative(getSCEV(U->getOperand(1))))
6614       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6615     break;
6616 
6617   case Instruction::SRem:
6618     // If both operands are non-negative, this is just an urem.
6619     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6620         isKnownNonNegative(getSCEV(U->getOperand(1))))
6621       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6622     break;
6623 
6624   case Instruction::GetElementPtr:
6625     return createNodeForGEP(cast<GEPOperator>(U));
6626 
6627   case Instruction::PHI:
6628     return createNodeForPHI(cast<PHINode>(U));
6629 
6630   case Instruction::Select:
6631     // U can also be a select constant expr, which let fall through.  Since
6632     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6633     // constant expressions cannot have instructions as operands, we'd have
6634     // returned getUnknown for a select constant expressions anyway.
6635     if (isa<Instruction>(U))
6636       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6637                                       U->getOperand(1), U->getOperand(2));
6638     break;
6639 
6640   case Instruction::Call:
6641   case Instruction::Invoke:
6642     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6643       return getSCEV(RV);
6644 
6645     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6646       switch (II->getIntrinsicID()) {
6647       case Intrinsic::abs:
6648         return getAbsExpr(
6649             getSCEV(II->getArgOperand(0)),
6650             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6651       case Intrinsic::umax:
6652         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6653                            getSCEV(II->getArgOperand(1)));
6654       case Intrinsic::umin:
6655         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6656                            getSCEV(II->getArgOperand(1)));
6657       case Intrinsic::smax:
6658         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6659                            getSCEV(II->getArgOperand(1)));
6660       case Intrinsic::smin:
6661         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6662                            getSCEV(II->getArgOperand(1)));
6663       case Intrinsic::usub_sat: {
6664         const SCEV *X = getSCEV(II->getArgOperand(0));
6665         const SCEV *Y = getSCEV(II->getArgOperand(1));
6666         const SCEV *ClampedY = getUMinExpr(X, Y);
6667         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6668       }
6669       case Intrinsic::uadd_sat: {
6670         const SCEV *X = getSCEV(II->getArgOperand(0));
6671         const SCEV *Y = getSCEV(II->getArgOperand(1));
6672         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6673         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6674       }
6675       case Intrinsic::start_loop_iterations:
6676         // A start_loop_iterations is just equivalent to the first operand for
6677         // SCEV purposes.
6678         return getSCEV(II->getArgOperand(0));
6679       default:
6680         break;
6681       }
6682     }
6683     break;
6684   }
6685 
6686   return getUnknown(V);
6687 }
6688 
6689 //===----------------------------------------------------------------------===//
6690 //                   Iteration Count Computation Code
6691 //
6692 
getConstantTripCount(const SCEVConstant * ExitCount)6693 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6694   if (!ExitCount)
6695     return 0;
6696 
6697   ConstantInt *ExitConst = ExitCount->getValue();
6698 
6699   // Guard against huge trip counts.
6700   if (ExitConst->getValue().getActiveBits() > 32)
6701     return 0;
6702 
6703   // In case of integer overflow, this returns 0, which is correct.
6704   return ((unsigned)ExitConst->getZExtValue()) + 1;
6705 }
6706 
getSmallConstantTripCount(const Loop * L)6707 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6708   if (BasicBlock *ExitingBB = L->getExitingBlock())
6709     return getSmallConstantTripCount(L, ExitingBB);
6710 
6711   // No trip count information for multiple exits.
6712   return 0;
6713 }
6714 
6715 unsigned
getSmallConstantTripCount(const Loop * L,const BasicBlock * ExitingBlock)6716 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6717                                            const BasicBlock *ExitingBlock) {
6718   assert(ExitingBlock && "Must pass a non-null exiting block!");
6719   assert(L->isLoopExiting(ExitingBlock) &&
6720          "Exiting block must actually branch out of the loop!");
6721   const SCEVConstant *ExitCount =
6722       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6723   return getConstantTripCount(ExitCount);
6724 }
6725 
getSmallConstantMaxTripCount(const Loop * L)6726 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6727   const auto *MaxExitCount =
6728       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6729   return getConstantTripCount(MaxExitCount);
6730 }
6731 
getSmallConstantTripMultiple(const Loop * L)6732 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6733   if (BasicBlock *ExitingBB = L->getExitingBlock())
6734     return getSmallConstantTripMultiple(L, ExitingBB);
6735 
6736   // No trip multiple information for multiple exits.
6737   return 0;
6738 }
6739 
6740 /// Returns the largest constant divisor of the trip count of this loop as a
6741 /// normal unsigned value, if possible. This means that the actual trip count is
6742 /// always a multiple of the returned value (don't forget the trip count could
6743 /// very well be zero as well!).
6744 ///
6745 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6746 /// multiple of a constant (which is also the case if the trip count is simply
6747 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6748 /// if the trip count is very large (>= 2^32).
6749 ///
6750 /// As explained in the comments for getSmallConstantTripCount, this assumes
6751 /// that control exits the loop via ExitingBlock.
6752 unsigned
getSmallConstantTripMultiple(const Loop * L,const BasicBlock * ExitingBlock)6753 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6754                                               const BasicBlock *ExitingBlock) {
6755   assert(ExitingBlock && "Must pass a non-null exiting block!");
6756   assert(L->isLoopExiting(ExitingBlock) &&
6757          "Exiting block must actually branch out of the loop!");
6758   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6759   if (ExitCount == getCouldNotCompute())
6760     return 1;
6761 
6762   // Get the trip count from the BE count by adding 1.
6763   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6764 
6765   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6766   if (!TC)
6767     // Attempt to factor more general cases. Returns the greatest power of
6768     // two divisor. If overflow happens, the trip count expression is still
6769     // divisible by the greatest power of 2 divisor returned.
6770     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6771 
6772   ConstantInt *Result = TC->getValue();
6773 
6774   // Guard against huge trip counts (this requires checking
6775   // for zero to handle the case where the trip count == -1 and the
6776   // addition wraps).
6777   if (!Result || Result->getValue().getActiveBits() > 32 ||
6778       Result->getValue().getActiveBits() == 0)
6779     return 1;
6780 
6781   return (unsigned)Result->getZExtValue();
6782 }
6783 
getExitCount(const Loop * L,const BasicBlock * ExitingBlock,ExitCountKind Kind)6784 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6785                                           const BasicBlock *ExitingBlock,
6786                                           ExitCountKind Kind) {
6787   switch (Kind) {
6788   case Exact:
6789   case SymbolicMaximum:
6790     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6791   case ConstantMaximum:
6792     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6793   };
6794   llvm_unreachable("Invalid ExitCountKind!");
6795 }
6796 
6797 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6798 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6799                                                  SCEVUnionPredicate &Preds) {
6800   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6801 }
6802 
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)6803 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6804                                                    ExitCountKind Kind) {
6805   switch (Kind) {
6806   case Exact:
6807     return getBackedgeTakenInfo(L).getExact(L, this);
6808   case ConstantMaximum:
6809     return getBackedgeTakenInfo(L).getConstantMax(this);
6810   case SymbolicMaximum:
6811     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6812   };
6813   llvm_unreachable("Invalid ExitCountKind!");
6814 }
6815 
isBackedgeTakenCountMaxOrZero(const Loop * L)6816 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6817   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6818 }
6819 
6820 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6821 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6822 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6823   BasicBlock *Header = L->getHeader();
6824 
6825   // Push all Loop-header PHIs onto the Worklist stack.
6826   for (PHINode &PN : Header->phis())
6827     Worklist.push_back(&PN);
6828 }
6829 
6830 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6831 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6832   auto &BTI = getBackedgeTakenInfo(L);
6833   if (BTI.hasFullInfo())
6834     return BTI;
6835 
6836   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6837 
6838   if (!Pair.second)
6839     return Pair.first->second;
6840 
6841   BackedgeTakenInfo Result =
6842       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6843 
6844   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6845 }
6846 
6847 ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6848 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6849   // Initially insert an invalid entry for this loop. If the insertion
6850   // succeeds, proceed to actually compute a backedge-taken count and
6851   // update the value. The temporary CouldNotCompute value tells SCEV
6852   // code elsewhere that it shouldn't attempt to request a new
6853   // backedge-taken count, which could result in infinite recursion.
6854   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6855       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6856   if (!Pair.second)
6857     return Pair.first->second;
6858 
6859   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6860   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6861   // must be cleared in this scope.
6862   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6863 
6864   // In product build, there are no usage of statistic.
6865   (void)NumTripCountsComputed;
6866   (void)NumTripCountsNotComputed;
6867 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6868   const SCEV *BEExact = Result.getExact(L, this);
6869   if (BEExact != getCouldNotCompute()) {
6870     assert(isLoopInvariant(BEExact, L) &&
6871            isLoopInvariant(Result.getConstantMax(this), L) &&
6872            "Computed backedge-taken count isn't loop invariant for loop!");
6873     ++NumTripCountsComputed;
6874   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6875              isa<PHINode>(L->getHeader()->begin())) {
6876     // Only count loops that have phi nodes as not being computable.
6877     ++NumTripCountsNotComputed;
6878   }
6879 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6880 
6881   // Now that we know more about the trip count for this loop, forget any
6882   // existing SCEV values for PHI nodes in this loop since they are only
6883   // conservative estimates made without the benefit of trip count
6884   // information. This is similar to the code in forgetLoop, except that
6885   // it handles SCEVUnknown PHI nodes specially.
6886   if (Result.hasAnyInfo()) {
6887     SmallVector<Instruction *, 16> Worklist;
6888     PushLoopPHIs(L, Worklist);
6889 
6890     SmallPtrSet<Instruction *, 8> Discovered;
6891     while (!Worklist.empty()) {
6892       Instruction *I = Worklist.pop_back_val();
6893 
6894       ValueExprMapType::iterator It =
6895         ValueExprMap.find_as(static_cast<Value *>(I));
6896       if (It != ValueExprMap.end()) {
6897         const SCEV *Old = It->second;
6898 
6899         // SCEVUnknown for a PHI either means that it has an unrecognized
6900         // structure, or it's a PHI that's in the progress of being computed
6901         // by createNodeForPHI.  In the former case, additional loop trip
6902         // count information isn't going to change anything. In the later
6903         // case, createNodeForPHI will perform the necessary updates on its
6904         // own when it gets to that point.
6905         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6906           eraseValueFromMap(It->first);
6907           forgetMemoizedResults(Old);
6908         }
6909         if (PHINode *PN = dyn_cast<PHINode>(I))
6910           ConstantEvolutionLoopExitValue.erase(PN);
6911       }
6912 
6913       // Since we don't need to invalidate anything for correctness and we're
6914       // only invalidating to make SCEV's results more precise, we get to stop
6915       // early to avoid invalidating too much.  This is especially important in
6916       // cases like:
6917       //
6918       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6919       // loop0:
6920       //   %pn0 = phi
6921       //   ...
6922       // loop1:
6923       //   %pn1 = phi
6924       //   ...
6925       //
6926       // where both loop0 and loop1's backedge taken count uses the SCEV
6927       // expression for %v.  If we don't have the early stop below then in cases
6928       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6929       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6930       // count for loop1, effectively nullifying SCEV's trip count cache.
6931       for (auto *U : I->users())
6932         if (auto *I = dyn_cast<Instruction>(U)) {
6933           auto *LoopForUser = LI.getLoopFor(I->getParent());
6934           if (LoopForUser && L->contains(LoopForUser) &&
6935               Discovered.insert(I).second)
6936             Worklist.push_back(I);
6937         }
6938     }
6939   }
6940 
6941   // Re-lookup the insert position, since the call to
6942   // computeBackedgeTakenCount above could result in a
6943   // recusive call to getBackedgeTakenInfo (on a different
6944   // loop), which would invalidate the iterator computed
6945   // earlier.
6946   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6947 }
6948 
forgetAllLoops()6949 void ScalarEvolution::forgetAllLoops() {
6950   // This method is intended to forget all info about loops. It should
6951   // invalidate caches as if the following happened:
6952   // - The trip counts of all loops have changed arbitrarily
6953   // - Every llvm::Value has been updated in place to produce a different
6954   // result.
6955   BackedgeTakenCounts.clear();
6956   PredicatedBackedgeTakenCounts.clear();
6957   LoopPropertiesCache.clear();
6958   ConstantEvolutionLoopExitValue.clear();
6959   ValueExprMap.clear();
6960   ValuesAtScopes.clear();
6961   LoopDispositions.clear();
6962   BlockDispositions.clear();
6963   UnsignedRanges.clear();
6964   SignedRanges.clear();
6965   ExprValueMap.clear();
6966   HasRecMap.clear();
6967   MinTrailingZerosCache.clear();
6968   PredicatedSCEVRewrites.clear();
6969 }
6970 
forgetLoop(const Loop * L)6971 void ScalarEvolution::forgetLoop(const Loop *L) {
6972   // Drop any stored trip count value.
6973   auto RemoveLoopFromBackedgeMap =
6974       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6975         auto BTCPos = Map.find(L);
6976         if (BTCPos != Map.end()) {
6977           BTCPos->second.clear();
6978           Map.erase(BTCPos);
6979         }
6980       };
6981 
6982   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6983   SmallVector<Instruction *, 32> Worklist;
6984   SmallPtrSet<Instruction *, 16> Visited;
6985 
6986   // Iterate over all the loops and sub-loops to drop SCEV information.
6987   while (!LoopWorklist.empty()) {
6988     auto *CurrL = LoopWorklist.pop_back_val();
6989 
6990     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6991     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6992 
6993     // Drop information about predicated SCEV rewrites for this loop.
6994     for (auto I = PredicatedSCEVRewrites.begin();
6995          I != PredicatedSCEVRewrites.end();) {
6996       std::pair<const SCEV *, const Loop *> Entry = I->first;
6997       if (Entry.second == CurrL)
6998         PredicatedSCEVRewrites.erase(I++);
6999       else
7000         ++I;
7001     }
7002 
7003     auto LoopUsersItr = LoopUsers.find(CurrL);
7004     if (LoopUsersItr != LoopUsers.end()) {
7005       for (auto *S : LoopUsersItr->second)
7006         forgetMemoizedResults(S);
7007       LoopUsers.erase(LoopUsersItr);
7008     }
7009 
7010     // Drop information about expressions based on loop-header PHIs.
7011     PushLoopPHIs(CurrL, Worklist);
7012 
7013     while (!Worklist.empty()) {
7014       Instruction *I = Worklist.pop_back_val();
7015       if (!Visited.insert(I).second)
7016         continue;
7017 
7018       ValueExprMapType::iterator It =
7019           ValueExprMap.find_as(static_cast<Value *>(I));
7020       if (It != ValueExprMap.end()) {
7021         eraseValueFromMap(It->first);
7022         forgetMemoizedResults(It->second);
7023         if (PHINode *PN = dyn_cast<PHINode>(I))
7024           ConstantEvolutionLoopExitValue.erase(PN);
7025       }
7026 
7027       PushDefUseChildren(I, Worklist);
7028     }
7029 
7030     LoopPropertiesCache.erase(CurrL);
7031     // Forget all contained loops too, to avoid dangling entries in the
7032     // ValuesAtScopes map.
7033     LoopWorklist.append(CurrL->begin(), CurrL->end());
7034   }
7035 }
7036 
forgetTopmostLoop(const Loop * L)7037 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7038   while (Loop *Parent = L->getParentLoop())
7039     L = Parent;
7040   forgetLoop(L);
7041 }
7042 
forgetValue(Value * V)7043 void ScalarEvolution::forgetValue(Value *V) {
7044   Instruction *I = dyn_cast<Instruction>(V);
7045   if (!I) return;
7046 
7047   // Drop information about expressions based on loop-header PHIs.
7048   SmallVector<Instruction *, 16> Worklist;
7049   Worklist.push_back(I);
7050 
7051   SmallPtrSet<Instruction *, 8> Visited;
7052   while (!Worklist.empty()) {
7053     I = Worklist.pop_back_val();
7054     if (!Visited.insert(I).second)
7055       continue;
7056 
7057     ValueExprMapType::iterator It =
7058       ValueExprMap.find_as(static_cast<Value *>(I));
7059     if (It != ValueExprMap.end()) {
7060       eraseValueFromMap(It->first);
7061       forgetMemoizedResults(It->second);
7062       if (PHINode *PN = dyn_cast<PHINode>(I))
7063         ConstantEvolutionLoopExitValue.erase(PN);
7064     }
7065 
7066     PushDefUseChildren(I, Worklist);
7067   }
7068 }
7069 
forgetLoopDispositions(const Loop * L)7070 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7071   LoopDispositions.clear();
7072 }
7073 
7074 /// Get the exact loop backedge taken count considering all loop exits. A
7075 /// computable result can only be returned for loops with all exiting blocks
7076 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7077 /// is never skipped. This is a valid assumption as long as the loop exits via
7078 /// that test. For precise results, it is the caller's responsibility to specify
7079 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7080 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const7081 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7082                                              SCEVUnionPredicate *Preds) const {
7083   // If any exits were not computable, the loop is not computable.
7084   if (!isComplete() || ExitNotTaken.empty())
7085     return SE->getCouldNotCompute();
7086 
7087   const BasicBlock *Latch = L->getLoopLatch();
7088   // All exiting blocks we have collected must dominate the only backedge.
7089   if (!Latch)
7090     return SE->getCouldNotCompute();
7091 
7092   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7093   // count is simply a minimum out of all these calculated exit counts.
7094   SmallVector<const SCEV *, 2> Ops;
7095   for (auto &ENT : ExitNotTaken) {
7096     const SCEV *BECount = ENT.ExactNotTaken;
7097     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7098     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7099            "We should only have known counts for exiting blocks that dominate "
7100            "latch!");
7101 
7102     Ops.push_back(BECount);
7103 
7104     if (Preds && !ENT.hasAlwaysTruePredicate())
7105       Preds->add(ENT.Predicate.get());
7106 
7107     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7108            "Predicate should be always true!");
7109   }
7110 
7111   return SE->getUMinFromMismatchedTypes(Ops);
7112 }
7113 
7114 /// Get the exact not taken count for this loop exit.
7115 const SCEV *
getExact(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7116 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7117                                              ScalarEvolution *SE) const {
7118   for (auto &ENT : ExitNotTaken)
7119     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7120       return ENT.ExactNotTaken;
7121 
7122   return SE->getCouldNotCompute();
7123 }
7124 
getConstantMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7125 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7126     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7127   for (auto &ENT : ExitNotTaken)
7128     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7129       return ENT.MaxNotTaken;
7130 
7131   return SE->getCouldNotCompute();
7132 }
7133 
7134 /// getConstantMax - Get the constant max backedge taken count for the loop.
7135 const SCEV *
getConstantMax(ScalarEvolution * SE) const7136 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7137   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7138     return !ENT.hasAlwaysTruePredicate();
7139   };
7140 
7141   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7142     return SE->getCouldNotCompute();
7143 
7144   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7145           isa<SCEVConstant>(getConstantMax())) &&
7146          "No point in having a non-constant max backedge taken count!");
7147   return getConstantMax();
7148 }
7149 
7150 const SCEV *
getSymbolicMax(const Loop * L,ScalarEvolution * SE)7151 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7152                                                    ScalarEvolution *SE) {
7153   if (!SymbolicMax)
7154     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7155   return SymbolicMax;
7156 }
7157 
isConstantMaxOrZero(ScalarEvolution * SE) const7158 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7159     ScalarEvolution *SE) const {
7160   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7161     return !ENT.hasAlwaysTruePredicate();
7162   };
7163   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7164 }
7165 
hasOperand(const SCEV * S,ScalarEvolution * SE) const7166 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7167                                                     ScalarEvolution *SE) const {
7168   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7169       SE->hasOperand(getConstantMax(), S))
7170     return true;
7171 
7172   for (auto &ENT : ExitNotTaken)
7173     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7174         SE->hasOperand(ENT.ExactNotTaken, S))
7175       return true;
7176 
7177   return false;
7178 }
7179 
ExitLimit(const SCEV * E)7180 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7181     : ExactNotTaken(E), MaxNotTaken(E) {
7182   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7183           isa<SCEVConstant>(MaxNotTaken)) &&
7184          "No point in having a non-constant max backedge taken count!");
7185 }
7186 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)7187 ScalarEvolution::ExitLimit::ExitLimit(
7188     const SCEV *E, const SCEV *M, bool MaxOrZero,
7189     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7190     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7191   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7192           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7193          "Exact is not allowed to be less precise than Max");
7194   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7195           isa<SCEVConstant>(MaxNotTaken)) &&
7196          "No point in having a non-constant max backedge taken count!");
7197   for (auto *PredSet : PredSetList)
7198     for (auto *P : *PredSet)
7199       addPredicate(P);
7200 }
7201 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)7202 ScalarEvolution::ExitLimit::ExitLimit(
7203     const SCEV *E, const SCEV *M, bool MaxOrZero,
7204     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7205     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7206   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7207           isa<SCEVConstant>(MaxNotTaken)) &&
7208          "No point in having a non-constant max backedge taken count!");
7209 }
7210 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)7211 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7212                                       bool MaxOrZero)
7213     : ExitLimit(E, M, MaxOrZero, None) {
7214   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7215           isa<SCEVConstant>(MaxNotTaken)) &&
7216          "No point in having a non-constant max backedge taken count!");
7217 }
7218 
7219 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7220 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool IsComplete,const SCEV * ConstantMax,bool MaxOrZero)7221 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7222     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7223     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7224     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7225   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7226 
7227   ExitNotTaken.reserve(ExitCounts.size());
7228   std::transform(
7229       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7230       [&](const EdgeExitInfo &EEI) {
7231         BasicBlock *ExitBB = EEI.first;
7232         const ExitLimit &EL = EEI.second;
7233         if (EL.Predicates.empty())
7234           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7235                                   nullptr);
7236 
7237         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7238         for (auto *Pred : EL.Predicates)
7239           Predicate->add(Pred);
7240 
7241         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7242                                 std::move(Predicate));
7243       });
7244   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7245           isa<SCEVConstant>(ConstantMax)) &&
7246          "No point in having a non-constant max backedge taken count!");
7247 }
7248 
7249 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()7250 void ScalarEvolution::BackedgeTakenInfo::clear() {
7251   ExitNotTaken.clear();
7252 }
7253 
7254 /// Compute the number of times the backedge of the specified loop will execute.
7255 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7256 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7257                                            bool AllowPredicates) {
7258   SmallVector<BasicBlock *, 8> ExitingBlocks;
7259   L->getExitingBlocks(ExitingBlocks);
7260 
7261   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7262 
7263   SmallVector<EdgeExitInfo, 4> ExitCounts;
7264   bool CouldComputeBECount = true;
7265   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7266   const SCEV *MustExitMaxBECount = nullptr;
7267   const SCEV *MayExitMaxBECount = nullptr;
7268   bool MustExitMaxOrZero = false;
7269 
7270   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7271   // and compute maxBECount.
7272   // Do a union of all the predicates here.
7273   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7274     BasicBlock *ExitBB = ExitingBlocks[i];
7275 
7276     // We canonicalize untaken exits to br (constant), ignore them so that
7277     // proving an exit untaken doesn't negatively impact our ability to reason
7278     // about the loop as whole.
7279     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7280       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7281         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7282         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7283           continue;
7284       }
7285 
7286     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7287 
7288     assert((AllowPredicates || EL.Predicates.empty()) &&
7289            "Predicated exit limit when predicates are not allowed!");
7290 
7291     // 1. For each exit that can be computed, add an entry to ExitCounts.
7292     // CouldComputeBECount is true only if all exits can be computed.
7293     if (EL.ExactNotTaken == getCouldNotCompute())
7294       // We couldn't compute an exact value for this exit, so
7295       // we won't be able to compute an exact value for the loop.
7296       CouldComputeBECount = false;
7297     else
7298       ExitCounts.emplace_back(ExitBB, EL);
7299 
7300     // 2. Derive the loop's MaxBECount from each exit's max number of
7301     // non-exiting iterations. Partition the loop exits into two kinds:
7302     // LoopMustExits and LoopMayExits.
7303     //
7304     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7305     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7306     // MaxBECount is the minimum EL.MaxNotTaken of computable
7307     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7308     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7309     // computable EL.MaxNotTaken.
7310     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7311         DT.dominates(ExitBB, Latch)) {
7312       if (!MustExitMaxBECount) {
7313         MustExitMaxBECount = EL.MaxNotTaken;
7314         MustExitMaxOrZero = EL.MaxOrZero;
7315       } else {
7316         MustExitMaxBECount =
7317             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7318       }
7319     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7320       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7321         MayExitMaxBECount = EL.MaxNotTaken;
7322       else {
7323         MayExitMaxBECount =
7324             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7325       }
7326     }
7327   }
7328   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7329     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7330   // The loop backedge will be taken the maximum or zero times if there's
7331   // a single exit that must be taken the maximum or zero times.
7332   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7333   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7334                            MaxBECount, MaxOrZero);
7335 }
7336 
7337 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7338 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7339                                       bool AllowPredicates) {
7340   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7341   // If our exiting block does not dominate the latch, then its connection with
7342   // loop's exit limit may be far from trivial.
7343   const BasicBlock *Latch = L->getLoopLatch();
7344   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7345     return getCouldNotCompute();
7346 
7347   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7348   Instruction *Term = ExitingBlock->getTerminator();
7349   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7350     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7351     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7352     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7353            "It should have one successor in loop and one exit block!");
7354     // Proceed to the next level to examine the exit condition expression.
7355     return computeExitLimitFromCond(
7356         L, BI->getCondition(), ExitIfTrue,
7357         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7358   }
7359 
7360   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7361     // For switch, make sure that there is a single exit from the loop.
7362     BasicBlock *Exit = nullptr;
7363     for (auto *SBB : successors(ExitingBlock))
7364       if (!L->contains(SBB)) {
7365         if (Exit) // Multiple exit successors.
7366           return getCouldNotCompute();
7367         Exit = SBB;
7368       }
7369     assert(Exit && "Exiting block must have at least one exit");
7370     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7371                                                 /*ControlsExit=*/IsOnlyExit);
7372   }
7373 
7374   return getCouldNotCompute();
7375 }
7376 
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7377 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7378     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7379     bool ControlsExit, bool AllowPredicates) {
7380   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7381   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7382                                         ControlsExit, AllowPredicates);
7383 }
7384 
7385 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7386 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7387                                       bool ExitIfTrue, bool ControlsExit,
7388                                       bool AllowPredicates) {
7389   (void)this->L;
7390   (void)this->ExitIfTrue;
7391   (void)this->AllowPredicates;
7392 
7393   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7394          this->AllowPredicates == AllowPredicates &&
7395          "Variance in assumed invariant key components!");
7396   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7397   if (Itr == TripCountMap.end())
7398     return None;
7399   return Itr->second;
7400 }
7401 
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7402 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7403                                              bool ExitIfTrue,
7404                                              bool ControlsExit,
7405                                              bool AllowPredicates,
7406                                              const ExitLimit &EL) {
7407   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7408          this->AllowPredicates == AllowPredicates &&
7409          "Variance in assumed invariant key components!");
7410 
7411   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7412   assert(InsertResult.second && "Expected successful insertion!");
7413   (void)InsertResult;
7414   (void)ExitIfTrue;
7415 }
7416 
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7417 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7418     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7419     bool ControlsExit, bool AllowPredicates) {
7420 
7421   if (auto MaybeEL =
7422           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7423     return *MaybeEL;
7424 
7425   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7426                                               ControlsExit, AllowPredicates);
7427   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7428   return EL;
7429 }
7430 
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7431 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7432     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7433     bool ControlsExit, bool AllowPredicates) {
7434   // Check if the controlling expression for this loop is an And or Or.
7435   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7436     if (BO->getOpcode() == Instruction::And) {
7437       // Recurse on the operands of the and.
7438       bool EitherMayExit = !ExitIfTrue;
7439       ExitLimit EL0 = computeExitLimitFromCondCached(
7440           Cache, L, BO->getOperand(0), ExitIfTrue,
7441           ControlsExit && !EitherMayExit, AllowPredicates);
7442       ExitLimit EL1 = computeExitLimitFromCondCached(
7443           Cache, L, BO->getOperand(1), ExitIfTrue,
7444           ControlsExit && !EitherMayExit, AllowPredicates);
7445       // Be robust against unsimplified IR for the form "and i1 X, true"
7446       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7447         return CI->isOne() ? EL0 : EL1;
7448       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7449         return CI->isOne() ? EL1 : EL0;
7450       const SCEV *BECount = getCouldNotCompute();
7451       const SCEV *MaxBECount = getCouldNotCompute();
7452       if (EitherMayExit) {
7453         // Both conditions must be true for the loop to continue executing.
7454         // Choose the less conservative count.
7455         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7456             EL1.ExactNotTaken == getCouldNotCompute())
7457           BECount = getCouldNotCompute();
7458         else
7459           BECount =
7460               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7461         if (EL0.MaxNotTaken == getCouldNotCompute())
7462           MaxBECount = EL1.MaxNotTaken;
7463         else if (EL1.MaxNotTaken == getCouldNotCompute())
7464           MaxBECount = EL0.MaxNotTaken;
7465         else
7466           MaxBECount =
7467               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7468       } else {
7469         // Both conditions must be true at the same time for the loop to exit.
7470         // For now, be conservative.
7471         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7472           MaxBECount = EL0.MaxNotTaken;
7473         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7474           BECount = EL0.ExactNotTaken;
7475       }
7476 
7477       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7478       // to be more aggressive when computing BECount than when computing
7479       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7480       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7481       // to not.
7482       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7483           !isa<SCEVCouldNotCompute>(BECount))
7484         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7485 
7486       return ExitLimit(BECount, MaxBECount, false,
7487                        {&EL0.Predicates, &EL1.Predicates});
7488     }
7489     if (BO->getOpcode() == Instruction::Or) {
7490       // Recurse on the operands of the or.
7491       bool EitherMayExit = ExitIfTrue;
7492       ExitLimit EL0 = computeExitLimitFromCondCached(
7493           Cache, L, BO->getOperand(0), ExitIfTrue,
7494           ControlsExit && !EitherMayExit, AllowPredicates);
7495       ExitLimit EL1 = computeExitLimitFromCondCached(
7496           Cache, L, BO->getOperand(1), ExitIfTrue,
7497           ControlsExit && !EitherMayExit, AllowPredicates);
7498       // Be robust against unsimplified IR for the form "or i1 X, true"
7499       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7500         return CI->isZero() ? EL0 : EL1;
7501       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7502         return CI->isZero() ? EL1 : EL0;
7503       const SCEV *BECount = getCouldNotCompute();
7504       const SCEV *MaxBECount = getCouldNotCompute();
7505       if (EitherMayExit) {
7506         // Both conditions must be false for the loop to continue executing.
7507         // Choose the less conservative count.
7508         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7509             EL1.ExactNotTaken == getCouldNotCompute())
7510           BECount = getCouldNotCompute();
7511         else
7512           BECount =
7513               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7514         if (EL0.MaxNotTaken == getCouldNotCompute())
7515           MaxBECount = EL1.MaxNotTaken;
7516         else if (EL1.MaxNotTaken == getCouldNotCompute())
7517           MaxBECount = EL0.MaxNotTaken;
7518         else
7519           MaxBECount =
7520               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7521       } else {
7522         // Both conditions must be false at the same time for the loop to exit.
7523         // For now, be conservative.
7524         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7525           MaxBECount = EL0.MaxNotTaken;
7526         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7527           BECount = EL0.ExactNotTaken;
7528       }
7529       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7530       // to be more aggressive when computing BECount than when computing
7531       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7532       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7533       // to not.
7534       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7535           !isa<SCEVCouldNotCompute>(BECount))
7536         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7537 
7538       return ExitLimit(BECount, MaxBECount, false,
7539                        {&EL0.Predicates, &EL1.Predicates});
7540     }
7541   }
7542 
7543   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7544   // Proceed to the next level to examine the icmp.
7545   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7546     ExitLimit EL =
7547         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7548     if (EL.hasFullInfo() || !AllowPredicates)
7549       return EL;
7550 
7551     // Try again, but use SCEV predicates this time.
7552     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7553                                     /*AllowPredicates=*/true);
7554   }
7555 
7556   // Check for a constant condition. These are normally stripped out by
7557   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7558   // preserve the CFG and is temporarily leaving constant conditions
7559   // in place.
7560   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7561     if (ExitIfTrue == !CI->getZExtValue())
7562       // The backedge is always taken.
7563       return getCouldNotCompute();
7564     else
7565       // The backedge is never taken.
7566       return getZero(CI->getType());
7567   }
7568 
7569   // If it's not an integer or pointer comparison then compute it the hard way.
7570   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7571 }
7572 
7573 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7574 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7575                                           ICmpInst *ExitCond,
7576                                           bool ExitIfTrue,
7577                                           bool ControlsExit,
7578                                           bool AllowPredicates) {
7579   // If the condition was exit on true, convert the condition to exit on false
7580   ICmpInst::Predicate Pred;
7581   if (!ExitIfTrue)
7582     Pred = ExitCond->getPredicate();
7583   else
7584     Pred = ExitCond->getInversePredicate();
7585   const ICmpInst::Predicate OriginalPred = Pred;
7586 
7587   // Handle common loops like: for (X = "string"; *X; ++X)
7588   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7589     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7590       ExitLimit ItCnt =
7591         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7592       if (ItCnt.hasAnyInfo())
7593         return ItCnt;
7594     }
7595 
7596   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7597   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7598 
7599   // Try to evaluate any dependencies out of the loop.
7600   LHS = getSCEVAtScope(LHS, L);
7601   RHS = getSCEVAtScope(RHS, L);
7602 
7603   // At this point, we would like to compute how many iterations of the
7604   // loop the predicate will return true for these inputs.
7605   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7606     // If there is a loop-invariant, force it into the RHS.
7607     std::swap(LHS, RHS);
7608     Pred = ICmpInst::getSwappedPredicate(Pred);
7609   }
7610 
7611   // Simplify the operands before analyzing them.
7612   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7613 
7614   // If we have a comparison of a chrec against a constant, try to use value
7615   // ranges to answer this query.
7616   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7617     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7618       if (AddRec->getLoop() == L) {
7619         // Form the constant range.
7620         ConstantRange CompRange =
7621             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7622 
7623         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7624         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7625       }
7626 
7627   switch (Pred) {
7628   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7629     // Convert to: while (X-Y != 0)
7630     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7631                                 AllowPredicates);
7632     if (EL.hasAnyInfo()) return EL;
7633     break;
7634   }
7635   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7636     // Convert to: while (X-Y == 0)
7637     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7638     if (EL.hasAnyInfo()) return EL;
7639     break;
7640   }
7641   case ICmpInst::ICMP_SLT:
7642   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7643     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7644     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7645                                     AllowPredicates);
7646     if (EL.hasAnyInfo()) return EL;
7647     break;
7648   }
7649   case ICmpInst::ICMP_SGT:
7650   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7651     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7652     ExitLimit EL =
7653         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7654                             AllowPredicates);
7655     if (EL.hasAnyInfo()) return EL;
7656     break;
7657   }
7658   default:
7659     break;
7660   }
7661 
7662   auto *ExhaustiveCount =
7663       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7664 
7665   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7666     return ExhaustiveCount;
7667 
7668   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7669                                       ExitCond->getOperand(1), L, OriginalPred);
7670 }
7671 
7672 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7673 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7674                                                       SwitchInst *Switch,
7675                                                       BasicBlock *ExitingBlock,
7676                                                       bool ControlsExit) {
7677   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7678 
7679   // Give up if the exit is the default dest of a switch.
7680   if (Switch->getDefaultDest() == ExitingBlock)
7681     return getCouldNotCompute();
7682 
7683   assert(L->contains(Switch->getDefaultDest()) &&
7684          "Default case must not exit the loop!");
7685   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7686   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7687 
7688   // while (X != Y) --> while (X-Y != 0)
7689   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7690   if (EL.hasAnyInfo())
7691     return EL;
7692 
7693   return getCouldNotCompute();
7694 }
7695 
7696 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7697 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7698                                 ScalarEvolution &SE) {
7699   const SCEV *InVal = SE.getConstant(C);
7700   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7701   assert(isa<SCEVConstant>(Val) &&
7702          "Evaluation of SCEV at constant didn't fold correctly?");
7703   return cast<SCEVConstant>(Val)->getValue();
7704 }
7705 
7706 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7707 /// compute the backedge execution count.
7708 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7709 ScalarEvolution::computeLoadConstantCompareExitLimit(
7710   LoadInst *LI,
7711   Constant *RHS,
7712   const Loop *L,
7713   ICmpInst::Predicate predicate) {
7714   if (LI->isVolatile()) return getCouldNotCompute();
7715 
7716   // Check to see if the loaded pointer is a getelementptr of a global.
7717   // TODO: Use SCEV instead of manually grubbing with GEPs.
7718   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7719   if (!GEP) return getCouldNotCompute();
7720 
7721   // Make sure that it is really a constant global we are gepping, with an
7722   // initializer, and make sure the first IDX is really 0.
7723   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7724   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7725       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7726       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7727     return getCouldNotCompute();
7728 
7729   // Okay, we allow one non-constant index into the GEP instruction.
7730   Value *VarIdx = nullptr;
7731   std::vector<Constant*> Indexes;
7732   unsigned VarIdxNum = 0;
7733   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7734     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7735       Indexes.push_back(CI);
7736     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7737       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7738       VarIdx = GEP->getOperand(i);
7739       VarIdxNum = i-2;
7740       Indexes.push_back(nullptr);
7741     }
7742 
7743   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7744   if (!VarIdx)
7745     return getCouldNotCompute();
7746 
7747   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7748   // Check to see if X is a loop variant variable value now.
7749   const SCEV *Idx = getSCEV(VarIdx);
7750   Idx = getSCEVAtScope(Idx, L);
7751 
7752   // We can only recognize very limited forms of loop index expressions, in
7753   // particular, only affine AddRec's like {C1,+,C2}.
7754   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7755   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7756       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7757       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7758     return getCouldNotCompute();
7759 
7760   unsigned MaxSteps = MaxBruteForceIterations;
7761   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7762     ConstantInt *ItCst = ConstantInt::get(
7763                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7764     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7765 
7766     // Form the GEP offset.
7767     Indexes[VarIdxNum] = Val;
7768 
7769     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7770                                                          Indexes);
7771     if (!Result) break;  // Cannot compute!
7772 
7773     // Evaluate the condition for this iteration.
7774     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7775     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7776     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7777       ++NumArrayLenItCounts;
7778       return getConstant(ItCst);   // Found terminating iteration!
7779     }
7780   }
7781   return getCouldNotCompute();
7782 }
7783 
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7784 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7785     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7786   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7787   if (!RHS)
7788     return getCouldNotCompute();
7789 
7790   const BasicBlock *Latch = L->getLoopLatch();
7791   if (!Latch)
7792     return getCouldNotCompute();
7793 
7794   const BasicBlock *Predecessor = L->getLoopPredecessor();
7795   if (!Predecessor)
7796     return getCouldNotCompute();
7797 
7798   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7799   // Return LHS in OutLHS and shift_opt in OutOpCode.
7800   auto MatchPositiveShift =
7801       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7802 
7803     using namespace PatternMatch;
7804 
7805     ConstantInt *ShiftAmt;
7806     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7807       OutOpCode = Instruction::LShr;
7808     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7809       OutOpCode = Instruction::AShr;
7810     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7811       OutOpCode = Instruction::Shl;
7812     else
7813       return false;
7814 
7815     return ShiftAmt->getValue().isStrictlyPositive();
7816   };
7817 
7818   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7819   //
7820   // loop:
7821   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7822   //   %iv.shifted = lshr i32 %iv, <positive constant>
7823   //
7824   // Return true on a successful match.  Return the corresponding PHI node (%iv
7825   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7826   auto MatchShiftRecurrence =
7827       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7828     Optional<Instruction::BinaryOps> PostShiftOpCode;
7829 
7830     {
7831       Instruction::BinaryOps OpC;
7832       Value *V;
7833 
7834       // If we encounter a shift instruction, "peel off" the shift operation,
7835       // and remember that we did so.  Later when we inspect %iv's backedge
7836       // value, we will make sure that the backedge value uses the same
7837       // operation.
7838       //
7839       // Note: the peeled shift operation does not have to be the same
7840       // instruction as the one feeding into the PHI's backedge value.  We only
7841       // really care about it being the same *kind* of shift instruction --
7842       // that's all that is required for our later inferences to hold.
7843       if (MatchPositiveShift(LHS, V, OpC)) {
7844         PostShiftOpCode = OpC;
7845         LHS = V;
7846       }
7847     }
7848 
7849     PNOut = dyn_cast<PHINode>(LHS);
7850     if (!PNOut || PNOut->getParent() != L->getHeader())
7851       return false;
7852 
7853     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7854     Value *OpLHS;
7855 
7856     return
7857         // The backedge value for the PHI node must be a shift by a positive
7858         // amount
7859         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7860 
7861         // of the PHI node itself
7862         OpLHS == PNOut &&
7863 
7864         // and the kind of shift should be match the kind of shift we peeled
7865         // off, if any.
7866         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7867   };
7868 
7869   PHINode *PN;
7870   Instruction::BinaryOps OpCode;
7871   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7872     return getCouldNotCompute();
7873 
7874   const DataLayout &DL = getDataLayout();
7875 
7876   // The key rationale for this optimization is that for some kinds of shift
7877   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7878   // within a finite number of iterations.  If the condition guarding the
7879   // backedge (in the sense that the backedge is taken if the condition is true)
7880   // is false for the value the shift recurrence stabilizes to, then we know
7881   // that the backedge is taken only a finite number of times.
7882 
7883   ConstantInt *StableValue = nullptr;
7884   switch (OpCode) {
7885   default:
7886     llvm_unreachable("Impossible case!");
7887 
7888   case Instruction::AShr: {
7889     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7890     // bitwidth(K) iterations.
7891     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7892     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7893                                        Predecessor->getTerminator(), &DT);
7894     auto *Ty = cast<IntegerType>(RHS->getType());
7895     if (Known.isNonNegative())
7896       StableValue = ConstantInt::get(Ty, 0);
7897     else if (Known.isNegative())
7898       StableValue = ConstantInt::get(Ty, -1, true);
7899     else
7900       return getCouldNotCompute();
7901 
7902     break;
7903   }
7904   case Instruction::LShr:
7905   case Instruction::Shl:
7906     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7907     // stabilize to 0 in at most bitwidth(K) iterations.
7908     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7909     break;
7910   }
7911 
7912   auto *Result =
7913       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7914   assert(Result->getType()->isIntegerTy(1) &&
7915          "Otherwise cannot be an operand to a branch instruction");
7916 
7917   if (Result->isZeroValue()) {
7918     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7919     const SCEV *UpperBound =
7920         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7921     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7922   }
7923 
7924   return getCouldNotCompute();
7925 }
7926 
7927 /// Return true if we can constant fold an instruction of the specified type,
7928 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)7929 static bool CanConstantFold(const Instruction *I) {
7930   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7931       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7932       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7933     return true;
7934 
7935   if (const CallInst *CI = dyn_cast<CallInst>(I))
7936     if (const Function *F = CI->getCalledFunction())
7937       return canConstantFoldCallTo(CI, F);
7938   return false;
7939 }
7940 
7941 /// Determine whether this instruction can constant evolve within this loop
7942 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)7943 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7944   // An instruction outside of the loop can't be derived from a loop PHI.
7945   if (!L->contains(I)) return false;
7946 
7947   if (isa<PHINode>(I)) {
7948     // We don't currently keep track of the control flow needed to evaluate
7949     // PHIs, so we cannot handle PHIs inside of loops.
7950     return L->getHeader() == I->getParent();
7951   }
7952 
7953   // If we won't be able to constant fold this expression even if the operands
7954   // are constants, bail early.
7955   return CanConstantFold(I);
7956 }
7957 
7958 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7959 /// recursing through each instruction operand until reaching a loop header phi.
7960 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)7961 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7962                                DenseMap<Instruction *, PHINode *> &PHIMap,
7963                                unsigned Depth) {
7964   if (Depth > MaxConstantEvolvingDepth)
7965     return nullptr;
7966 
7967   // Otherwise, we can evaluate this instruction if all of its operands are
7968   // constant or derived from a PHI node themselves.
7969   PHINode *PHI = nullptr;
7970   for (Value *Op : UseInst->operands()) {
7971     if (isa<Constant>(Op)) continue;
7972 
7973     Instruction *OpInst = dyn_cast<Instruction>(Op);
7974     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7975 
7976     PHINode *P = dyn_cast<PHINode>(OpInst);
7977     if (!P)
7978       // If this operand is already visited, reuse the prior result.
7979       // We may have P != PHI if this is the deepest point at which the
7980       // inconsistent paths meet.
7981       P = PHIMap.lookup(OpInst);
7982     if (!P) {
7983       // Recurse and memoize the results, whether a phi is found or not.
7984       // This recursive call invalidates pointers into PHIMap.
7985       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7986       PHIMap[OpInst] = P;
7987     }
7988     if (!P)
7989       return nullptr;  // Not evolving from PHI
7990     if (PHI && PHI != P)
7991       return nullptr;  // Evolving from multiple different PHIs.
7992     PHI = P;
7993   }
7994   // This is a expression evolving from a constant PHI!
7995   return PHI;
7996 }
7997 
7998 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7999 /// in the loop that V is derived from.  We allow arbitrary operations along the
8000 /// way, but the operands of an operation must either be constants or a value
8001 /// derived from a constant PHI.  If this expression does not fit with these
8002 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)8003 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8004   Instruction *I = dyn_cast<Instruction>(V);
8005   if (!I || !canConstantEvolve(I, L)) return nullptr;
8006 
8007   if (PHINode *PN = dyn_cast<PHINode>(I))
8008     return PN;
8009 
8010   // Record non-constant instructions contained by the loop.
8011   DenseMap<Instruction *, PHINode *> PHIMap;
8012   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8013 }
8014 
8015 /// EvaluateExpression - Given an expression that passes the
8016 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8017 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8018 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)8019 static Constant *EvaluateExpression(Value *V, const Loop *L,
8020                                     DenseMap<Instruction *, Constant *> &Vals,
8021                                     const DataLayout &DL,
8022                                     const TargetLibraryInfo *TLI) {
8023   // Convenient constant check, but redundant for recursive calls.
8024   if (Constant *C = dyn_cast<Constant>(V)) return C;
8025   Instruction *I = dyn_cast<Instruction>(V);
8026   if (!I) return nullptr;
8027 
8028   if (Constant *C = Vals.lookup(I)) return C;
8029 
8030   // An instruction inside the loop depends on a value outside the loop that we
8031   // weren't given a mapping for, or a value such as a call inside the loop.
8032   if (!canConstantEvolve(I, L)) return nullptr;
8033 
8034   // An unmapped PHI can be due to a branch or another loop inside this loop,
8035   // or due to this not being the initial iteration through a loop where we
8036   // couldn't compute the evolution of this particular PHI last time.
8037   if (isa<PHINode>(I)) return nullptr;
8038 
8039   std::vector<Constant*> Operands(I->getNumOperands());
8040 
8041   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8042     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8043     if (!Operand) {
8044       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8045       if (!Operands[i]) return nullptr;
8046       continue;
8047     }
8048     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8049     Vals[Operand] = C;
8050     if (!C) return nullptr;
8051     Operands[i] = C;
8052   }
8053 
8054   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8055     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8056                                            Operands[1], DL, TLI);
8057   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8058     if (!LI->isVolatile())
8059       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8060   }
8061   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8062 }
8063 
8064 
8065 // If every incoming value to PN except the one for BB is a specific Constant,
8066 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)8067 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8068   Constant *IncomingVal = nullptr;
8069 
8070   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8071     if (PN->getIncomingBlock(i) == BB)
8072       continue;
8073 
8074     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8075     if (!CurrentVal)
8076       return nullptr;
8077 
8078     if (IncomingVal != CurrentVal) {
8079       if (IncomingVal)
8080         return nullptr;
8081       IncomingVal = CurrentVal;
8082     }
8083   }
8084 
8085   return IncomingVal;
8086 }
8087 
8088 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8089 /// in the header of its containing loop, we know the loop executes a
8090 /// constant number of times, and the PHI node is just a recurrence
8091 /// involving constants, fold it.
8092 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)8093 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8094                                                    const APInt &BEs,
8095                                                    const Loop *L) {
8096   auto I = ConstantEvolutionLoopExitValue.find(PN);
8097   if (I != ConstantEvolutionLoopExitValue.end())
8098     return I->second;
8099 
8100   if (BEs.ugt(MaxBruteForceIterations))
8101     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8102 
8103   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8104 
8105   DenseMap<Instruction *, Constant *> CurrentIterVals;
8106   BasicBlock *Header = L->getHeader();
8107   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8108 
8109   BasicBlock *Latch = L->getLoopLatch();
8110   if (!Latch)
8111     return nullptr;
8112 
8113   for (PHINode &PHI : Header->phis()) {
8114     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8115       CurrentIterVals[&PHI] = StartCST;
8116   }
8117   if (!CurrentIterVals.count(PN))
8118     return RetVal = nullptr;
8119 
8120   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8121 
8122   // Execute the loop symbolically to determine the exit value.
8123   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8124          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8125 
8126   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8127   unsigned IterationNum = 0;
8128   const DataLayout &DL = getDataLayout();
8129   for (; ; ++IterationNum) {
8130     if (IterationNum == NumIterations)
8131       return RetVal = CurrentIterVals[PN];  // Got exit value!
8132 
8133     // Compute the value of the PHIs for the next iteration.
8134     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8135     DenseMap<Instruction *, Constant *> NextIterVals;
8136     Constant *NextPHI =
8137         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8138     if (!NextPHI)
8139       return nullptr;        // Couldn't evaluate!
8140     NextIterVals[PN] = NextPHI;
8141 
8142     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8143 
8144     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8145     // cease to be able to evaluate one of them or if they stop evolving,
8146     // because that doesn't necessarily prevent us from computing PN.
8147     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8148     for (const auto &I : CurrentIterVals) {
8149       PHINode *PHI = dyn_cast<PHINode>(I.first);
8150       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8151       PHIsToCompute.emplace_back(PHI, I.second);
8152     }
8153     // We use two distinct loops because EvaluateExpression may invalidate any
8154     // iterators into CurrentIterVals.
8155     for (const auto &I : PHIsToCompute) {
8156       PHINode *PHI = I.first;
8157       Constant *&NextPHI = NextIterVals[PHI];
8158       if (!NextPHI) {   // Not already computed.
8159         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8160         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8161       }
8162       if (NextPHI != I.second)
8163         StoppedEvolving = false;
8164     }
8165 
8166     // If all entries in CurrentIterVals == NextIterVals then we can stop
8167     // iterating, the loop can't continue to change.
8168     if (StoppedEvolving)
8169       return RetVal = CurrentIterVals[PN];
8170 
8171     CurrentIterVals.swap(NextIterVals);
8172   }
8173 }
8174 
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)8175 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8176                                                           Value *Cond,
8177                                                           bool ExitWhen) {
8178   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8179   if (!PN) return getCouldNotCompute();
8180 
8181   // If the loop is canonicalized, the PHI will have exactly two entries.
8182   // That's the only form we support here.
8183   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8184 
8185   DenseMap<Instruction *, Constant *> CurrentIterVals;
8186   BasicBlock *Header = L->getHeader();
8187   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8188 
8189   BasicBlock *Latch = L->getLoopLatch();
8190   assert(Latch && "Should follow from NumIncomingValues == 2!");
8191 
8192   for (PHINode &PHI : Header->phis()) {
8193     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8194       CurrentIterVals[&PHI] = StartCST;
8195   }
8196   if (!CurrentIterVals.count(PN))
8197     return getCouldNotCompute();
8198 
8199   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8200   // the loop symbolically to determine when the condition gets a value of
8201   // "ExitWhen".
8202   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8203   const DataLayout &DL = getDataLayout();
8204   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8205     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8206         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8207 
8208     // Couldn't symbolically evaluate.
8209     if (!CondVal) return getCouldNotCompute();
8210 
8211     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8212       ++NumBruteForceTripCountsComputed;
8213       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8214     }
8215 
8216     // Update all the PHI nodes for the next iteration.
8217     DenseMap<Instruction *, Constant *> NextIterVals;
8218 
8219     // Create a list of which PHIs we need to compute. We want to do this before
8220     // calling EvaluateExpression on them because that may invalidate iterators
8221     // into CurrentIterVals.
8222     SmallVector<PHINode *, 8> PHIsToCompute;
8223     for (const auto &I : CurrentIterVals) {
8224       PHINode *PHI = dyn_cast<PHINode>(I.first);
8225       if (!PHI || PHI->getParent() != Header) continue;
8226       PHIsToCompute.push_back(PHI);
8227     }
8228     for (PHINode *PHI : PHIsToCompute) {
8229       Constant *&NextPHI = NextIterVals[PHI];
8230       if (NextPHI) continue;    // Already computed!
8231 
8232       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8233       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8234     }
8235     CurrentIterVals.swap(NextIterVals);
8236   }
8237 
8238   // Too many iterations were needed to evaluate.
8239   return getCouldNotCompute();
8240 }
8241 
getSCEVAtScope(const SCEV * V,const Loop * L)8242 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8243   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8244       ValuesAtScopes[V];
8245   // Check to see if we've folded this expression at this loop before.
8246   for (auto &LS : Values)
8247     if (LS.first == L)
8248       return LS.second ? LS.second : V;
8249 
8250   Values.emplace_back(L, nullptr);
8251 
8252   // Otherwise compute it.
8253   const SCEV *C = computeSCEVAtScope(V, L);
8254   for (auto &LS : reverse(ValuesAtScopes[V]))
8255     if (LS.first == L) {
8256       LS.second = C;
8257       break;
8258     }
8259   return C;
8260 }
8261 
8262 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8263 /// will return Constants for objects which aren't represented by a
8264 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8265 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)8266 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8267   switch (V->getSCEVType()) {
8268   case scCouldNotCompute:
8269   case scAddRecExpr:
8270     return nullptr;
8271   case scConstant:
8272     return cast<SCEVConstant>(V)->getValue();
8273   case scUnknown:
8274     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8275   case scSignExtend: {
8276     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8277     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8278       return ConstantExpr::getSExt(CastOp, SS->getType());
8279     return nullptr;
8280   }
8281   case scZeroExtend: {
8282     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8283     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8284       return ConstantExpr::getZExt(CastOp, SZ->getType());
8285     return nullptr;
8286   }
8287   case scPtrToInt: {
8288     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8289     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8290       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8291 
8292     return nullptr;
8293   }
8294   case scTruncate: {
8295     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8296     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8297       return ConstantExpr::getTrunc(CastOp, ST->getType());
8298     return nullptr;
8299   }
8300   case scAddExpr: {
8301     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8302     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8303       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8304         unsigned AS = PTy->getAddressSpace();
8305         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8306         C = ConstantExpr::getBitCast(C, DestPtrTy);
8307       }
8308       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8309         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8310         if (!C2)
8311           return nullptr;
8312 
8313         // First pointer!
8314         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8315           unsigned AS = C2->getType()->getPointerAddressSpace();
8316           std::swap(C, C2);
8317           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8318           // The offsets have been converted to bytes.  We can add bytes to an
8319           // i8* by GEP with the byte count in the first index.
8320           C = ConstantExpr::getBitCast(C, DestPtrTy);
8321         }
8322 
8323         // Don't bother trying to sum two pointers. We probably can't
8324         // statically compute a load that results from it anyway.
8325         if (C2->getType()->isPointerTy())
8326           return nullptr;
8327 
8328         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8329           if (PTy->getElementType()->isStructTy())
8330             C2 = ConstantExpr::getIntegerCast(
8331                 C2, Type::getInt32Ty(C->getContext()), true);
8332           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8333         } else
8334           C = ConstantExpr::getAdd(C, C2);
8335       }
8336       return C;
8337     }
8338     return nullptr;
8339   }
8340   case scMulExpr: {
8341     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8342     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8343       // Don't bother with pointers at all.
8344       if (C->getType()->isPointerTy())
8345         return nullptr;
8346       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8347         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8348         if (!C2 || C2->getType()->isPointerTy())
8349           return nullptr;
8350         C = ConstantExpr::getMul(C, C2);
8351       }
8352       return C;
8353     }
8354     return nullptr;
8355   }
8356   case scUDivExpr: {
8357     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8358     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8359       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8360         if (LHS->getType() == RHS->getType())
8361           return ConstantExpr::getUDiv(LHS, RHS);
8362     return nullptr;
8363   }
8364   case scSMaxExpr:
8365   case scUMaxExpr:
8366   case scSMinExpr:
8367   case scUMinExpr:
8368     return nullptr; // TODO: smax, umax, smin, umax.
8369   }
8370   llvm_unreachable("Unknown SCEV kind!");
8371 }
8372 
computeSCEVAtScope(const SCEV * V,const Loop * L)8373 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8374   if (isa<SCEVConstant>(V)) return V;
8375 
8376   // If this instruction is evolved from a constant-evolving PHI, compute the
8377   // exit value from the loop without using SCEVs.
8378   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8379     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8380       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8381         const Loop *CurrLoop = this->LI[I->getParent()];
8382         // Looking for loop exit value.
8383         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8384             PN->getParent() == CurrLoop->getHeader()) {
8385           // Okay, there is no closed form solution for the PHI node.  Check
8386           // to see if the loop that contains it has a known backedge-taken
8387           // count.  If so, we may be able to force computation of the exit
8388           // value.
8389           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8390           // This trivial case can show up in some degenerate cases where
8391           // the incoming IR has not yet been fully simplified.
8392           if (BackedgeTakenCount->isZero()) {
8393             Value *InitValue = nullptr;
8394             bool MultipleInitValues = false;
8395             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8396               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8397                 if (!InitValue)
8398                   InitValue = PN->getIncomingValue(i);
8399                 else if (InitValue != PN->getIncomingValue(i)) {
8400                   MultipleInitValues = true;
8401                   break;
8402                 }
8403               }
8404             }
8405             if (!MultipleInitValues && InitValue)
8406               return getSCEV(InitValue);
8407           }
8408           // Do we have a loop invariant value flowing around the backedge
8409           // for a loop which must execute the backedge?
8410           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8411               isKnownPositive(BackedgeTakenCount) &&
8412               PN->getNumIncomingValues() == 2) {
8413 
8414             unsigned InLoopPred =
8415                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8416             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8417             if (CurrLoop->isLoopInvariant(BackedgeVal))
8418               return getSCEV(BackedgeVal);
8419           }
8420           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8421             // Okay, we know how many times the containing loop executes.  If
8422             // this is a constant evolving PHI node, get the final value at
8423             // the specified iteration number.
8424             Constant *RV = getConstantEvolutionLoopExitValue(
8425                 PN, BTCC->getAPInt(), CurrLoop);
8426             if (RV) return getSCEV(RV);
8427           }
8428         }
8429 
8430         // If there is a single-input Phi, evaluate it at our scope. If we can
8431         // prove that this replacement does not break LCSSA form, use new value.
8432         if (PN->getNumOperands() == 1) {
8433           const SCEV *Input = getSCEV(PN->getOperand(0));
8434           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8435           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8436           // for the simplest case just support constants.
8437           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8438         }
8439       }
8440 
8441       // Okay, this is an expression that we cannot symbolically evaluate
8442       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8443       // the arguments into constants, and if so, try to constant propagate the
8444       // result.  This is particularly useful for computing loop exit values.
8445       if (CanConstantFold(I)) {
8446         SmallVector<Constant *, 4> Operands;
8447         bool MadeImprovement = false;
8448         for (Value *Op : I->operands()) {
8449           if (Constant *C = dyn_cast<Constant>(Op)) {
8450             Operands.push_back(C);
8451             continue;
8452           }
8453 
8454           // If any of the operands is non-constant and if they are
8455           // non-integer and non-pointer, don't even try to analyze them
8456           // with scev techniques.
8457           if (!isSCEVable(Op->getType()))
8458             return V;
8459 
8460           const SCEV *OrigV = getSCEV(Op);
8461           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8462           MadeImprovement |= OrigV != OpV;
8463 
8464           Constant *C = BuildConstantFromSCEV(OpV);
8465           if (!C) return V;
8466           if (C->getType() != Op->getType())
8467             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8468                                                               Op->getType(),
8469                                                               false),
8470                                       C, Op->getType());
8471           Operands.push_back(C);
8472         }
8473 
8474         // Check to see if getSCEVAtScope actually made an improvement.
8475         if (MadeImprovement) {
8476           Constant *C = nullptr;
8477           const DataLayout &DL = getDataLayout();
8478           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8479             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8480                                                 Operands[1], DL, &TLI);
8481           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8482             if (!Load->isVolatile())
8483               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8484                                                DL);
8485           } else
8486             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8487           if (!C) return V;
8488           return getSCEV(C);
8489         }
8490       }
8491     }
8492 
8493     // This is some other type of SCEVUnknown, just return it.
8494     return V;
8495   }
8496 
8497   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8498     // Avoid performing the look-up in the common case where the specified
8499     // expression has no loop-variant portions.
8500     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8501       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8502       if (OpAtScope != Comm->getOperand(i)) {
8503         // Okay, at least one of these operands is loop variant but might be
8504         // foldable.  Build a new instance of the folded commutative expression.
8505         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8506                                             Comm->op_begin()+i);
8507         NewOps.push_back(OpAtScope);
8508 
8509         for (++i; i != e; ++i) {
8510           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8511           NewOps.push_back(OpAtScope);
8512         }
8513         if (isa<SCEVAddExpr>(Comm))
8514           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8515         if (isa<SCEVMulExpr>(Comm))
8516           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8517         if (isa<SCEVMinMaxExpr>(Comm))
8518           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8519         llvm_unreachable("Unknown commutative SCEV type!");
8520       }
8521     }
8522     // If we got here, all operands are loop invariant.
8523     return Comm;
8524   }
8525 
8526   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8527     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8528     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8529     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8530       return Div;   // must be loop invariant
8531     return getUDivExpr(LHS, RHS);
8532   }
8533 
8534   // If this is a loop recurrence for a loop that does not contain L, then we
8535   // are dealing with the final value computed by the loop.
8536   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8537     // First, attempt to evaluate each operand.
8538     // Avoid performing the look-up in the common case where the specified
8539     // expression has no loop-variant portions.
8540     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8541       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8542       if (OpAtScope == AddRec->getOperand(i))
8543         continue;
8544 
8545       // Okay, at least one of these operands is loop variant but might be
8546       // foldable.  Build a new instance of the folded commutative expression.
8547       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8548                                           AddRec->op_begin()+i);
8549       NewOps.push_back(OpAtScope);
8550       for (++i; i != e; ++i)
8551         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8552 
8553       const SCEV *FoldedRec =
8554         getAddRecExpr(NewOps, AddRec->getLoop(),
8555                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8556       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8557       // The addrec may be folded to a nonrecurrence, for example, if the
8558       // induction variable is multiplied by zero after constant folding. Go
8559       // ahead and return the folded value.
8560       if (!AddRec)
8561         return FoldedRec;
8562       break;
8563     }
8564 
8565     // If the scope is outside the addrec's loop, evaluate it by using the
8566     // loop exit value of the addrec.
8567     if (!AddRec->getLoop()->contains(L)) {
8568       // To evaluate this recurrence, we need to know how many times the AddRec
8569       // loop iterates.  Compute this now.
8570       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8571       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8572 
8573       // Then, evaluate the AddRec.
8574       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8575     }
8576 
8577     return AddRec;
8578   }
8579 
8580   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8581     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8582     if (Op == Cast->getOperand())
8583       return Cast;  // must be loop invariant
8584     return getZeroExtendExpr(Op, Cast->getType());
8585   }
8586 
8587   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8588     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8589     if (Op == Cast->getOperand())
8590       return Cast;  // must be loop invariant
8591     return getSignExtendExpr(Op, Cast->getType());
8592   }
8593 
8594   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8595     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8596     if (Op == Cast->getOperand())
8597       return Cast;  // must be loop invariant
8598     return getTruncateExpr(Op, Cast->getType());
8599   }
8600 
8601   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8602     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8603     if (Op == Cast->getOperand())
8604       return Cast; // must be loop invariant
8605     return getPtrToIntExpr(Op, Cast->getType());
8606   }
8607 
8608   llvm_unreachable("Unknown SCEV type!");
8609 }
8610 
getSCEVAtScope(Value * V,const Loop * L)8611 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8612   return getSCEVAtScope(getSCEV(V), L);
8613 }
8614 
stripInjectiveFunctions(const SCEV * S) const8615 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8616   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8617     return stripInjectiveFunctions(ZExt->getOperand());
8618   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8619     return stripInjectiveFunctions(SExt->getOperand());
8620   return S;
8621 }
8622 
8623 /// Finds the minimum unsigned root of the following equation:
8624 ///
8625 ///     A * X = B (mod N)
8626 ///
8627 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8628 /// A and B isn't important.
8629 ///
8630 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8631 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8632                                                ScalarEvolution &SE) {
8633   uint32_t BW = A.getBitWidth();
8634   assert(BW == SE.getTypeSizeInBits(B->getType()));
8635   assert(A != 0 && "A must be non-zero.");
8636 
8637   // 1. D = gcd(A, N)
8638   //
8639   // The gcd of A and N may have only one prime factor: 2. The number of
8640   // trailing zeros in A is its multiplicity
8641   uint32_t Mult2 = A.countTrailingZeros();
8642   // D = 2^Mult2
8643 
8644   // 2. Check if B is divisible by D.
8645   //
8646   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8647   // is not less than multiplicity of this prime factor for D.
8648   if (SE.GetMinTrailingZeros(B) < Mult2)
8649     return SE.getCouldNotCompute();
8650 
8651   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8652   // modulo (N / D).
8653   //
8654   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8655   // (N / D) in general. The inverse itself always fits into BW bits, though,
8656   // so we immediately truncate it.
8657   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8658   APInt Mod(BW + 1, 0);
8659   Mod.setBit(BW - Mult2);  // Mod = N / D
8660   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8661 
8662   // 4. Compute the minimum unsigned root of the equation:
8663   // I * (B / D) mod (N / D)
8664   // To simplify the computation, we factor out the divide by D:
8665   // (I * B mod N) / D
8666   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8667   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8668 }
8669 
8670 /// For a given quadratic addrec, generate coefficients of the corresponding
8671 /// quadratic equation, multiplied by a common value to ensure that they are
8672 /// integers.
8673 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8674 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8675 /// were multiplied by, and BitWidth is the bit width of the original addrec
8676 /// coefficients.
8677 /// This function returns None if the addrec coefficients are not compile-
8678 /// time constants.
8679 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)8680 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8681   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8682   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8683   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8684   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8685   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8686                     << *AddRec << '\n');
8687 
8688   // We currently can only solve this if the coefficients are constants.
8689   if (!LC || !MC || !NC) {
8690     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8691     return None;
8692   }
8693 
8694   APInt L = LC->getAPInt();
8695   APInt M = MC->getAPInt();
8696   APInt N = NC->getAPInt();
8697   assert(!N.isNullValue() && "This is not a quadratic addrec");
8698 
8699   unsigned BitWidth = LC->getAPInt().getBitWidth();
8700   unsigned NewWidth = BitWidth + 1;
8701   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8702                     << BitWidth << '\n');
8703   // The sign-extension (as opposed to a zero-extension) here matches the
8704   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8705   N = N.sext(NewWidth);
8706   M = M.sext(NewWidth);
8707   L = L.sext(NewWidth);
8708 
8709   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8710   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8711   //   L+M, L+2M+N, L+3M+3N, ...
8712   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8713   //
8714   // The equation Acc = 0 is then
8715   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8716   // In a quadratic form it becomes:
8717   //   N n^2 + (2M-N) n + 2L = 0.
8718 
8719   APInt A = N;
8720   APInt B = 2 * M - A;
8721   APInt C = 2 * L;
8722   APInt T = APInt(NewWidth, 2);
8723   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8724                     << "x + " << C << ", coeff bw: " << NewWidth
8725                     << ", multiplied by " << T << '\n');
8726   return std::make_tuple(A, B, C, T, BitWidth);
8727 }
8728 
8729 /// Helper function to compare optional APInts:
8730 /// (a) if X and Y both exist, return min(X, Y),
8731 /// (b) if neither X nor Y exist, return None,
8732 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)8733 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8734   if (X.hasValue() && Y.hasValue()) {
8735     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8736     APInt XW = X->sextOrSelf(W);
8737     APInt YW = Y->sextOrSelf(W);
8738     return XW.slt(YW) ? *X : *Y;
8739   }
8740   if (!X.hasValue() && !Y.hasValue())
8741     return None;
8742   return X.hasValue() ? *X : *Y;
8743 }
8744 
8745 /// Helper function to truncate an optional APInt to a given BitWidth.
8746 /// When solving addrec-related equations, it is preferable to return a value
8747 /// that has the same bit width as the original addrec's coefficients. If the
8748 /// solution fits in the original bit width, truncate it (except for i1).
8749 /// Returning a value of a different bit width may inhibit some optimizations.
8750 ///
8751 /// In general, a solution to a quadratic equation generated from an addrec
8752 /// may require BW+1 bits, where BW is the bit width of the addrec's
8753 /// coefficients. The reason is that the coefficients of the quadratic
8754 /// equation are BW+1 bits wide (to avoid truncation when converting from
8755 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)8756 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8757   if (!X.hasValue())
8758     return None;
8759   unsigned W = X->getBitWidth();
8760   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8761     return X->trunc(BitWidth);
8762   return X;
8763 }
8764 
8765 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8766 /// iterations. The values L, M, N are assumed to be signed, and they
8767 /// should all have the same bit widths.
8768 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8769 /// where BW is the bit width of the addrec's coefficients.
8770 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8771 /// returned as such, otherwise the bit width of the returned value may
8772 /// be greater than BW.
8773 ///
8774 /// This function returns None if
8775 /// (a) the addrec coefficients are not constant, or
8776 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8777 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8778 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8779 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8780 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8781   APInt A, B, C, M;
8782   unsigned BitWidth;
8783   auto T = GetQuadraticEquation(AddRec);
8784   if (!T.hasValue())
8785     return None;
8786 
8787   std::tie(A, B, C, M, BitWidth) = *T;
8788   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8789   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8790   if (!X.hasValue())
8791     return None;
8792 
8793   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8794   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8795   if (!V->isZero())
8796     return None;
8797 
8798   return TruncIfPossible(X, BitWidth);
8799 }
8800 
8801 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8802 /// iterations. The values M, N are assumed to be signed, and they
8803 /// should all have the same bit widths.
8804 /// Find the least n such that c(n) does not belong to the given range,
8805 /// while c(n-1) does.
8806 ///
8807 /// This function returns None if
8808 /// (a) the addrec coefficients are not constant, or
8809 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8810 ///     bounds of the range.
8811 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)8812 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8813                           const ConstantRange &Range, ScalarEvolution &SE) {
8814   assert(AddRec->getOperand(0)->isZero() &&
8815          "Starting value of addrec should be 0");
8816   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8817                     << Range << ", addrec " << *AddRec << '\n');
8818   // This case is handled in getNumIterationsInRange. Here we can assume that
8819   // we start in the range.
8820   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8821          "Addrec's initial value should be in range");
8822 
8823   APInt A, B, C, M;
8824   unsigned BitWidth;
8825   auto T = GetQuadraticEquation(AddRec);
8826   if (!T.hasValue())
8827     return None;
8828 
8829   // Be careful about the return value: there can be two reasons for not
8830   // returning an actual number. First, if no solutions to the equations
8831   // were found, and second, if the solutions don't leave the given range.
8832   // The first case means that the actual solution is "unknown", the second
8833   // means that it's known, but not valid. If the solution is unknown, we
8834   // cannot make any conclusions.
8835   // Return a pair: the optional solution and a flag indicating if the
8836   // solution was found.
8837   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8838     // Solve for signed overflow and unsigned overflow, pick the lower
8839     // solution.
8840     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8841                       << Bound << " (before multiplying by " << M << ")\n");
8842     Bound *= M; // The quadratic equation multiplier.
8843 
8844     Optional<APInt> SO = None;
8845     if (BitWidth > 1) {
8846       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8847                            "signed overflow\n");
8848       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8849     }
8850     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8851                          "unsigned overflow\n");
8852     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8853                                                               BitWidth+1);
8854 
8855     auto LeavesRange = [&] (const APInt &X) {
8856       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8857       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8858       if (Range.contains(V0->getValue()))
8859         return false;
8860       // X should be at least 1, so X-1 is non-negative.
8861       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8862       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8863       if (Range.contains(V1->getValue()))
8864         return true;
8865       return false;
8866     };
8867 
8868     // If SolveQuadraticEquationWrap returns None, it means that there can
8869     // be a solution, but the function failed to find it. We cannot treat it
8870     // as "no solution".
8871     if (!SO.hasValue() || !UO.hasValue())
8872       return { None, false };
8873 
8874     // Check the smaller value first to see if it leaves the range.
8875     // At this point, both SO and UO must have values.
8876     Optional<APInt> Min = MinOptional(SO, UO);
8877     if (LeavesRange(*Min))
8878       return { Min, true };
8879     Optional<APInt> Max = Min == SO ? UO : SO;
8880     if (LeavesRange(*Max))
8881       return { Max, true };
8882 
8883     // Solutions were found, but were eliminated, hence the "true".
8884     return { None, true };
8885   };
8886 
8887   std::tie(A, B, C, M, BitWidth) = *T;
8888   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8889   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8890   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8891   auto SL = SolveForBoundary(Lower);
8892   auto SU = SolveForBoundary(Upper);
8893   // If any of the solutions was unknown, no meaninigful conclusions can
8894   // be made.
8895   if (!SL.second || !SU.second)
8896     return None;
8897 
8898   // Claim: The correct solution is not some value between Min and Max.
8899   //
8900   // Justification: Assuming that Min and Max are different values, one of
8901   // them is when the first signed overflow happens, the other is when the
8902   // first unsigned overflow happens. Crossing the range boundary is only
8903   // possible via an overflow (treating 0 as a special case of it, modeling
8904   // an overflow as crossing k*2^W for some k).
8905   //
8906   // The interesting case here is when Min was eliminated as an invalid
8907   // solution, but Max was not. The argument is that if there was another
8908   // overflow between Min and Max, it would also have been eliminated if
8909   // it was considered.
8910   //
8911   // For a given boundary, it is possible to have two overflows of the same
8912   // type (signed/unsigned) without having the other type in between: this
8913   // can happen when the vertex of the parabola is between the iterations
8914   // corresponding to the overflows. This is only possible when the two
8915   // overflows cross k*2^W for the same k. In such case, if the second one
8916   // left the range (and was the first one to do so), the first overflow
8917   // would have to enter the range, which would mean that either we had left
8918   // the range before or that we started outside of it. Both of these cases
8919   // are contradictions.
8920   //
8921   // Claim: In the case where SolveForBoundary returns None, the correct
8922   // solution is not some value between the Max for this boundary and the
8923   // Min of the other boundary.
8924   //
8925   // Justification: Assume that we had such Max_A and Min_B corresponding
8926   // to range boundaries A and B and such that Max_A < Min_B. If there was
8927   // a solution between Max_A and Min_B, it would have to be caused by an
8928   // overflow corresponding to either A or B. It cannot correspond to B,
8929   // since Min_B is the first occurrence of such an overflow. If it
8930   // corresponded to A, it would have to be either a signed or an unsigned
8931   // overflow that is larger than both eliminated overflows for A. But
8932   // between the eliminated overflows and this overflow, the values would
8933   // cover the entire value space, thus crossing the other boundary, which
8934   // is a contradiction.
8935 
8936   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8937 }
8938 
8939 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)8940 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8941                               bool AllowPredicates) {
8942 
8943   // This is only used for loops with a "x != y" exit test. The exit condition
8944   // is now expressed as a single expression, V = x-y. So the exit test is
8945   // effectively V != 0.  We know and take advantage of the fact that this
8946   // expression only being used in a comparison by zero context.
8947 
8948   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8949   // If the value is a constant
8950   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8951     // If the value is already zero, the branch will execute zero times.
8952     if (C->getValue()->isZero()) return C;
8953     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8954   }
8955 
8956   const SCEVAddRecExpr *AddRec =
8957       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8958 
8959   if (!AddRec && AllowPredicates)
8960     // Try to make this an AddRec using runtime tests, in the first X
8961     // iterations of this loop, where X is the SCEV expression found by the
8962     // algorithm below.
8963     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8964 
8965   if (!AddRec || AddRec->getLoop() != L)
8966     return getCouldNotCompute();
8967 
8968   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8969   // the quadratic equation to solve it.
8970   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8971     // We can only use this value if the chrec ends up with an exact zero
8972     // value at this index.  When solving for "X*X != 5", for example, we
8973     // should not accept a root of 2.
8974     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8975       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8976       return ExitLimit(R, R, false, Predicates);
8977     }
8978     return getCouldNotCompute();
8979   }
8980 
8981   // Otherwise we can only handle this if it is affine.
8982   if (!AddRec->isAffine())
8983     return getCouldNotCompute();
8984 
8985   // If this is an affine expression, the execution count of this branch is
8986   // the minimum unsigned root of the following equation:
8987   //
8988   //     Start + Step*N = 0 (mod 2^BW)
8989   //
8990   // equivalent to:
8991   //
8992   //             Step*N = -Start (mod 2^BW)
8993   //
8994   // where BW is the common bit width of Start and Step.
8995 
8996   // Get the initial value for the loop.
8997   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8998   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8999 
9000   // For now we handle only constant steps.
9001   //
9002   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9003   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9004   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9005   // We have not yet seen any such cases.
9006   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9007   if (!StepC || StepC->getValue()->isZero())
9008     return getCouldNotCompute();
9009 
9010   // For positive steps (counting up until unsigned overflow):
9011   //   N = -Start/Step (as unsigned)
9012   // For negative steps (counting down to zero):
9013   //   N = Start/-Step
9014   // First compute the unsigned distance from zero in the direction of Step.
9015   bool CountDown = StepC->getAPInt().isNegative();
9016   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9017 
9018   // Handle unitary steps, which cannot wraparound.
9019   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9020   //   N = Distance (as unsigned)
9021   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9022     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9023     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9024     if (MaxBECountBase.ult(MaxBECount))
9025       MaxBECount = MaxBECountBase;
9026 
9027     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9028     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9029     // case, and see if we can improve the bound.
9030     //
9031     // Explicitly handling this here is necessary because getUnsignedRange
9032     // isn't context-sensitive; it doesn't know that we only care about the
9033     // range inside the loop.
9034     const SCEV *Zero = getZero(Distance->getType());
9035     const SCEV *One = getOne(Distance->getType());
9036     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9037     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9038       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9039       // as "unsigned_max(Distance + 1) - 1".
9040       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9041       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9042     }
9043     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9044   }
9045 
9046   // If the condition controls loop exit (the loop exits only if the expression
9047   // is true) and the addition is no-wrap we can use unsigned divide to
9048   // compute the backedge count.  In this case, the step may not divide the
9049   // distance, but we don't care because if the condition is "missed" the loop
9050   // will have undefined behavior due to wrapping.
9051   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9052       loopHasNoAbnormalExits(AddRec->getLoop())) {
9053     const SCEV *Exact =
9054         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9055     const SCEV *Max =
9056         Exact == getCouldNotCompute()
9057             ? Exact
9058             : getConstant(getUnsignedRangeMax(Exact));
9059     return ExitLimit(Exact, Max, false, Predicates);
9060   }
9061 
9062   // Solve the general equation.
9063   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9064                                                getNegativeSCEV(Start), *this);
9065   const SCEV *M = E == getCouldNotCompute()
9066                       ? E
9067                       : getConstant(getUnsignedRangeMax(E));
9068   return ExitLimit(E, M, false, Predicates);
9069 }
9070 
9071 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)9072 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9073   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9074   // handle them yet except for the trivial case.  This could be expanded in the
9075   // future as needed.
9076 
9077   // If the value is a constant, check to see if it is known to be non-zero
9078   // already.  If so, the backedge will execute zero times.
9079   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9080     if (!C->getValue()->isZero())
9081       return getZero(C->getType());
9082     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9083   }
9084 
9085   // We could implement others, but I really doubt anyone writes loops like
9086   // this, and if they did, they would already be constant folded.
9087   return getCouldNotCompute();
9088 }
9089 
9090 std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock * BB) const9091 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9092     const {
9093   // If the block has a unique predecessor, then there is no path from the
9094   // predecessor to the block that does not go through the direct edge
9095   // from the predecessor to the block.
9096   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9097     return {Pred, BB};
9098 
9099   // A loop's header is defined to be a block that dominates the loop.
9100   // If the header has a unique predecessor outside the loop, it must be
9101   // a block that has exactly one successor that can reach the loop.
9102   if (const Loop *L = LI.getLoopFor(BB))
9103     return {L->getLoopPredecessor(), L->getHeader()};
9104 
9105   return {nullptr, nullptr};
9106 }
9107 
9108 /// SCEV structural equivalence is usually sufficient for testing whether two
9109 /// expressions are equal, however for the purposes of looking for a condition
9110 /// guarding a loop, it can be useful to be a little more general, since a
9111 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)9112 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9113   // Quick check to see if they are the same SCEV.
9114   if (A == B) return true;
9115 
9116   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9117     // Not all instructions that are "identical" compute the same value.  For
9118     // instance, two distinct alloca instructions allocating the same type are
9119     // identical and do not read memory; but compute distinct values.
9120     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9121   };
9122 
9123   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9124   // two different instructions with the same value. Check for this case.
9125   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9126     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9127       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9128         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9129           if (ComputesEqualValues(AI, BI))
9130             return true;
9131 
9132   // Otherwise assume they may have a different value.
9133   return false;
9134 }
9135 
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)9136 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9137                                            const SCEV *&LHS, const SCEV *&RHS,
9138                                            unsigned Depth) {
9139   bool Changed = false;
9140   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9141   // '0 != 0'.
9142   auto TrivialCase = [&](bool TriviallyTrue) {
9143     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9144     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9145     return true;
9146   };
9147   // If we hit the max recursion limit bail out.
9148   if (Depth >= 3)
9149     return false;
9150 
9151   // Canonicalize a constant to the right side.
9152   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9153     // Check for both operands constant.
9154     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9155       if (ConstantExpr::getICmp(Pred,
9156                                 LHSC->getValue(),
9157                                 RHSC->getValue())->isNullValue())
9158         return TrivialCase(false);
9159       else
9160         return TrivialCase(true);
9161     }
9162     // Otherwise swap the operands to put the constant on the right.
9163     std::swap(LHS, RHS);
9164     Pred = ICmpInst::getSwappedPredicate(Pred);
9165     Changed = true;
9166   }
9167 
9168   // If we're comparing an addrec with a value which is loop-invariant in the
9169   // addrec's loop, put the addrec on the left. Also make a dominance check,
9170   // as both operands could be addrecs loop-invariant in each other's loop.
9171   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9172     const Loop *L = AR->getLoop();
9173     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9174       std::swap(LHS, RHS);
9175       Pred = ICmpInst::getSwappedPredicate(Pred);
9176       Changed = true;
9177     }
9178   }
9179 
9180   // If there's a constant operand, canonicalize comparisons with boundary
9181   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9182   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9183     const APInt &RA = RC->getAPInt();
9184 
9185     bool SimplifiedByConstantRange = false;
9186 
9187     if (!ICmpInst::isEquality(Pred)) {
9188       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9189       if (ExactCR.isFullSet())
9190         return TrivialCase(true);
9191       else if (ExactCR.isEmptySet())
9192         return TrivialCase(false);
9193 
9194       APInt NewRHS;
9195       CmpInst::Predicate NewPred;
9196       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9197           ICmpInst::isEquality(NewPred)) {
9198         // We were able to convert an inequality to an equality.
9199         Pred = NewPred;
9200         RHS = getConstant(NewRHS);
9201         Changed = SimplifiedByConstantRange = true;
9202       }
9203     }
9204 
9205     if (!SimplifiedByConstantRange) {
9206       switch (Pred) {
9207       default:
9208         break;
9209       case ICmpInst::ICMP_EQ:
9210       case ICmpInst::ICMP_NE:
9211         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9212         if (!RA)
9213           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9214             if (const SCEVMulExpr *ME =
9215                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9216               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9217                   ME->getOperand(0)->isAllOnesValue()) {
9218                 RHS = AE->getOperand(1);
9219                 LHS = ME->getOperand(1);
9220                 Changed = true;
9221               }
9222         break;
9223 
9224 
9225         // The "Should have been caught earlier!" messages refer to the fact
9226         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9227         // should have fired on the corresponding cases, and canonicalized the
9228         // check to trivial case.
9229 
9230       case ICmpInst::ICMP_UGE:
9231         assert(!RA.isMinValue() && "Should have been caught earlier!");
9232         Pred = ICmpInst::ICMP_UGT;
9233         RHS = getConstant(RA - 1);
9234         Changed = true;
9235         break;
9236       case ICmpInst::ICMP_ULE:
9237         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9238         Pred = ICmpInst::ICMP_ULT;
9239         RHS = getConstant(RA + 1);
9240         Changed = true;
9241         break;
9242       case ICmpInst::ICMP_SGE:
9243         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9244         Pred = ICmpInst::ICMP_SGT;
9245         RHS = getConstant(RA - 1);
9246         Changed = true;
9247         break;
9248       case ICmpInst::ICMP_SLE:
9249         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9250         Pred = ICmpInst::ICMP_SLT;
9251         RHS = getConstant(RA + 1);
9252         Changed = true;
9253         break;
9254       }
9255     }
9256   }
9257 
9258   // Check for obvious equality.
9259   if (HasSameValue(LHS, RHS)) {
9260     if (ICmpInst::isTrueWhenEqual(Pred))
9261       return TrivialCase(true);
9262     if (ICmpInst::isFalseWhenEqual(Pred))
9263       return TrivialCase(false);
9264   }
9265 
9266   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9267   // adding or subtracting 1 from one of the operands.
9268   switch (Pred) {
9269   case ICmpInst::ICMP_SLE:
9270     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9271       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9272                        SCEV::FlagNSW);
9273       Pred = ICmpInst::ICMP_SLT;
9274       Changed = true;
9275     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9276       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9277                        SCEV::FlagNSW);
9278       Pred = ICmpInst::ICMP_SLT;
9279       Changed = true;
9280     }
9281     break;
9282   case ICmpInst::ICMP_SGE:
9283     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9284       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9285                        SCEV::FlagNSW);
9286       Pred = ICmpInst::ICMP_SGT;
9287       Changed = true;
9288     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9289       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9290                        SCEV::FlagNSW);
9291       Pred = ICmpInst::ICMP_SGT;
9292       Changed = true;
9293     }
9294     break;
9295   case ICmpInst::ICMP_ULE:
9296     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9297       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9298                        SCEV::FlagNUW);
9299       Pred = ICmpInst::ICMP_ULT;
9300       Changed = true;
9301     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9302       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9303       Pred = ICmpInst::ICMP_ULT;
9304       Changed = true;
9305     }
9306     break;
9307   case ICmpInst::ICMP_UGE:
9308     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9309       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9310       Pred = ICmpInst::ICMP_UGT;
9311       Changed = true;
9312     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9313       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9314                        SCEV::FlagNUW);
9315       Pred = ICmpInst::ICMP_UGT;
9316       Changed = true;
9317     }
9318     break;
9319   default:
9320     break;
9321   }
9322 
9323   // TODO: More simplifications are possible here.
9324 
9325   // Recursively simplify until we either hit a recursion limit or nothing
9326   // changes.
9327   if (Changed)
9328     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9329 
9330   return Changed;
9331 }
9332 
isKnownNegative(const SCEV * S)9333 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9334   return getSignedRangeMax(S).isNegative();
9335 }
9336 
isKnownPositive(const SCEV * S)9337 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9338   return getSignedRangeMin(S).isStrictlyPositive();
9339 }
9340 
isKnownNonNegative(const SCEV * S)9341 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9342   return !getSignedRangeMin(S).isNegative();
9343 }
9344 
isKnownNonPositive(const SCEV * S)9345 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9346   return !getSignedRangeMax(S).isStrictlyPositive();
9347 }
9348 
isKnownNonZero(const SCEV * S)9349 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9350   return isKnownNegative(S) || isKnownPositive(S);
9351 }
9352 
9353 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)9354 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9355   // Compute SCEV on entry of loop L.
9356   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9357   if (Start == getCouldNotCompute())
9358     return { Start, Start };
9359   // Compute post increment SCEV for loop L.
9360   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9361   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9362   return { Start, PostInc };
9363 }
9364 
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9365 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9366                                           const SCEV *LHS, const SCEV *RHS) {
9367   // First collect all loops.
9368   SmallPtrSet<const Loop *, 8> LoopsUsed;
9369   getUsedLoops(LHS, LoopsUsed);
9370   getUsedLoops(RHS, LoopsUsed);
9371 
9372   if (LoopsUsed.empty())
9373     return false;
9374 
9375   // Domination relationship must be a linear order on collected loops.
9376 #ifndef NDEBUG
9377   for (auto *L1 : LoopsUsed)
9378     for (auto *L2 : LoopsUsed)
9379       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9380               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9381              "Domination relationship is not a linear order");
9382 #endif
9383 
9384   const Loop *MDL =
9385       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9386                         [&](const Loop *L1, const Loop *L2) {
9387          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9388        });
9389 
9390   // Get init and post increment value for LHS.
9391   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9392   // if LHS contains unknown non-invariant SCEV then bail out.
9393   if (SplitLHS.first == getCouldNotCompute())
9394     return false;
9395   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9396   // Get init and post increment value for RHS.
9397   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9398   // if RHS contains unknown non-invariant SCEV then bail out.
9399   if (SplitRHS.first == getCouldNotCompute())
9400     return false;
9401   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9402   // It is possible that init SCEV contains an invariant load but it does
9403   // not dominate MDL and is not available at MDL loop entry, so we should
9404   // check it here.
9405   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9406       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9407     return false;
9408 
9409   // It seems backedge guard check is faster than entry one so in some cases
9410   // it can speed up whole estimation by short circuit
9411   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9412                                      SplitRHS.second) &&
9413          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9414 }
9415 
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9416 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9417                                        const SCEV *LHS, const SCEV *RHS) {
9418   // Canonicalize the inputs first.
9419   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9420 
9421   if (isKnownViaInduction(Pred, LHS, RHS))
9422     return true;
9423 
9424   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9425     return true;
9426 
9427   // Otherwise see what can be done with some simple reasoning.
9428   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9429 }
9430 
isKnownPredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * Context)9431 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9432                                          const SCEV *LHS, const SCEV *RHS,
9433                                          const Instruction *Context) {
9434   // TODO: Analyze guards and assumes from Context's block.
9435   return isKnownPredicate(Pred, LHS, RHS) ||
9436          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9437 }
9438 
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)9439 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9440                                               const SCEVAddRecExpr *LHS,
9441                                               const SCEV *RHS) {
9442   const Loop *L = LHS->getLoop();
9443   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9444          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9445 }
9446 
9447 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9448 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9449                                            ICmpInst::Predicate Pred) {
9450   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9451 
9452 #ifndef NDEBUG
9453   // Verify an invariant: inverting the predicate should turn a monotonically
9454   // increasing change to a monotonically decreasing one, and vice versa.
9455   if (Result) {
9456     auto ResultSwapped =
9457         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9458 
9459     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9460     assert(ResultSwapped.getValue() != Result.getValue() &&
9461            "monotonicity should flip as we flip the predicate");
9462   }
9463 #endif
9464 
9465   return Result;
9466 }
9467 
9468 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9469 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9470                                                ICmpInst::Predicate Pred) {
9471   // A zero step value for LHS means the induction variable is essentially a
9472   // loop invariant value. We don't really depend on the predicate actually
9473   // flipping from false to true (for increasing predicates, and the other way
9474   // around for decreasing predicates), all we care about is that *if* the
9475   // predicate changes then it only changes from false to true.
9476   //
9477   // A zero step value in itself is not very useful, but there may be places
9478   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9479   // as general as possible.
9480 
9481   // Only handle LE/LT/GE/GT predicates.
9482   if (!ICmpInst::isRelational(Pred))
9483     return None;
9484 
9485   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9486   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9487          "Should be greater or less!");
9488 
9489   // Check that AR does not wrap.
9490   if (ICmpInst::isUnsigned(Pred)) {
9491     if (!LHS->hasNoUnsignedWrap())
9492       return None;
9493     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9494   } else {
9495     assert(ICmpInst::isSigned(Pred) &&
9496            "Relational predicate is either signed or unsigned!");
9497     if (!LHS->hasNoSignedWrap())
9498       return None;
9499 
9500     const SCEV *Step = LHS->getStepRecurrence(*this);
9501 
9502     if (isKnownNonNegative(Step))
9503       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9504 
9505     if (isKnownNonPositive(Step))
9506       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9507 
9508     return None;
9509   }
9510 }
9511 
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)9512 bool ScalarEvolution::isLoopInvariantPredicate(
9513     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9514     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9515     const SCEV *&InvariantRHS) {
9516 
9517   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9518   if (!isLoopInvariant(RHS, L)) {
9519     if (!isLoopInvariant(LHS, L))
9520       return false;
9521 
9522     std::swap(LHS, RHS);
9523     Pred = ICmpInst::getSwappedPredicate(Pred);
9524   }
9525 
9526   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9527   if (!ArLHS || ArLHS->getLoop() != L)
9528     return false;
9529 
9530   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9531   if (!MonotonicType)
9532     return false;
9533   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9534   // true as the loop iterates, and the backedge is control dependent on
9535   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9536   //
9537   //   * if the predicate was false in the first iteration then the predicate
9538   //     is never evaluated again, since the loop exits without taking the
9539   //     backedge.
9540   //   * if the predicate was true in the first iteration then it will
9541   //     continue to be true for all future iterations since it is
9542   //     monotonically increasing.
9543   //
9544   // For both the above possibilities, we can replace the loop varying
9545   // predicate with its value on the first iteration of the loop (which is
9546   // loop invariant).
9547   //
9548   // A similar reasoning applies for a monotonically decreasing predicate, by
9549   // replacing true with false and false with true in the above two bullets.
9550   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9551   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9552 
9553   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9554     return false;
9555 
9556   InvariantPred = Pred;
9557   InvariantLHS = ArLHS->getStart();
9558   InvariantRHS = RHS;
9559   return true;
9560 }
9561 
isLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * Context,const SCEV * MaxIter,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)9562 bool ScalarEvolution::isLoopInvariantExitCondDuringFirstIterations(
9563     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9564     const Instruction *Context, const SCEV *MaxIter,
9565     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9566     const SCEV *&InvariantRHS) {
9567   // Try to prove the following set of facts:
9568   // - The predicate is monotonic.
9569   // - If the check does not fail on the 1st iteration:
9570   //   - No overflow will happen during first MaxIter iterations;
9571   //   - It will not fail on the MaxIter'th iteration.
9572   // If the check does fail on the 1st iteration, we leave the loop and no
9573   // other checks matter.
9574 
9575   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9576   if (!isLoopInvariant(RHS, L)) {
9577     if (!isLoopInvariant(LHS, L))
9578       return false;
9579 
9580     std::swap(LHS, RHS);
9581     Pred = ICmpInst::getSwappedPredicate(Pred);
9582   }
9583 
9584   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9585   if (!AR || AR->getLoop() != L)
9586     return false;
9587 
9588   // The predicate must be relational (i.e. <, <=, >=, >).
9589   if (!ICmpInst::isRelational(Pred))
9590     return false;
9591 
9592   const SCEV *Step = AR->getStepRecurrence(*this);
9593   bool IsStepNonPositive = isKnownNonPositive(Step);
9594   if (!IsStepNonPositive && !isKnownNonNegative(Step))
9595     return false;
9596   bool HasNoSelfWrap = AR->hasNoSelfWrap();
9597   if (!HasNoSelfWrap)
9598     // If num iter has same type as the AddRec, and step is +/- 1, even max
9599     // possible number of iterations is not enough to self-wrap.
9600     if (MaxIter->getType() == AR->getType())
9601       if (Step == getOne(AR->getType()) || Step == getMinusOne(AR->getType()))
9602         HasNoSelfWrap = true;
9603   // Only proceed with non-self-wrapping ARs.
9604   if (!HasNoSelfWrap)
9605     return false;
9606 
9607   // Value of IV on suggested last iteration.
9608   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9609   // Does it still meet the requirement?
9610   if (!isKnownPredicateAt(Pred, Last, RHS, Context))
9611     return false;
9612   // We know that the addrec does not have a self-wrap. To prove that there is
9613   // no signed/unsigned wrap, we need to check that
9614   // Start <= Last for positive step or Start >= Last for negative step. Either
9615   // works for zero step.
9616   ICmpInst::Predicate NoOverflowPred =
9617       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9618   if (IsStepNonPositive)
9619     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9620   const SCEV *Start = AR->getStart();
9621   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9622     return false;
9623 
9624   // Everything is fine.
9625   InvariantPred = Pred;
9626   InvariantLHS = Start;
9627   InvariantRHS = RHS;
9628   return true;
9629 }
9630 
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9631 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9632     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9633   if (HasSameValue(LHS, RHS))
9634     return ICmpInst::isTrueWhenEqual(Pred);
9635 
9636   // This code is split out from isKnownPredicate because it is called from
9637   // within isLoopEntryGuardedByCond.
9638 
9639   auto CheckRanges =
9640       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9641     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9642         .contains(RangeLHS);
9643   };
9644 
9645   // The check at the top of the function catches the case where the values are
9646   // known to be equal.
9647   if (Pred == CmpInst::ICMP_EQ)
9648     return false;
9649 
9650   if (Pred == CmpInst::ICMP_NE)
9651     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9652            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9653            isKnownNonZero(getMinusSCEV(LHS, RHS));
9654 
9655   if (CmpInst::isSigned(Pred))
9656     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9657 
9658   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9659 }
9660 
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9661 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9662                                                     const SCEV *LHS,
9663                                                     const SCEV *RHS) {
9664   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9665   // Return Y via OutY.
9666   auto MatchBinaryAddToConst =
9667       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9668              SCEV::NoWrapFlags ExpectedFlags) {
9669     const SCEV *NonConstOp, *ConstOp;
9670     SCEV::NoWrapFlags FlagsPresent;
9671 
9672     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9673         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9674       return false;
9675 
9676     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9677     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9678   };
9679 
9680   APInt C;
9681 
9682   switch (Pred) {
9683   default:
9684     break;
9685 
9686   case ICmpInst::ICMP_SGE:
9687     std::swap(LHS, RHS);
9688     LLVM_FALLTHROUGH;
9689   case ICmpInst::ICMP_SLE:
9690     // X s<= (X + C)<nsw> if C >= 0
9691     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9692       return true;
9693 
9694     // (X + C)<nsw> s<= X if C <= 0
9695     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9696         !C.isStrictlyPositive())
9697       return true;
9698     break;
9699 
9700   case ICmpInst::ICMP_SGT:
9701     std::swap(LHS, RHS);
9702     LLVM_FALLTHROUGH;
9703   case ICmpInst::ICMP_SLT:
9704     // X s< (X + C)<nsw> if C > 0
9705     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9706         C.isStrictlyPositive())
9707       return true;
9708 
9709     // (X + C)<nsw> s< X if C < 0
9710     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9711       return true;
9712     break;
9713 
9714   case ICmpInst::ICMP_UGE:
9715     std::swap(LHS, RHS);
9716     LLVM_FALLTHROUGH;
9717   case ICmpInst::ICMP_ULE:
9718     // X u<= (X + C)<nuw> for any C
9719     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9720       return true;
9721     break;
9722 
9723   case ICmpInst::ICMP_UGT:
9724     std::swap(LHS, RHS);
9725     LLVM_FALLTHROUGH;
9726   case ICmpInst::ICMP_ULT:
9727     // X u< (X + C)<nuw> if C != 0
9728     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9729       return true;
9730     break;
9731   }
9732 
9733   return false;
9734 }
9735 
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9736 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9737                                                    const SCEV *LHS,
9738                                                    const SCEV *RHS) {
9739   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9740     return false;
9741 
9742   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9743   // the stack can result in exponential time complexity.
9744   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9745 
9746   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9747   //
9748   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9749   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9750   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9751   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9752   // use isKnownPredicate later if needed.
9753   return isKnownNonNegative(RHS) &&
9754          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9755          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9756 }
9757 
isImpliedViaGuard(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9758 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9759                                         ICmpInst::Predicate Pred,
9760                                         const SCEV *LHS, const SCEV *RHS) {
9761   // No need to even try if we know the module has no guards.
9762   if (!HasGuards)
9763     return false;
9764 
9765   return any_of(*BB, [&](const Instruction &I) {
9766     using namespace llvm::PatternMatch;
9767 
9768     Value *Condition;
9769     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9770                          m_Value(Condition))) &&
9771            isImpliedCond(Pred, LHS, RHS, Condition, false);
9772   });
9773 }
9774 
9775 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9776 /// protected by a conditional between LHS and RHS.  This is used to
9777 /// to eliminate casts.
9778 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9779 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9780                                              ICmpInst::Predicate Pred,
9781                                              const SCEV *LHS, const SCEV *RHS) {
9782   // Interpret a null as meaning no loop, where there is obviously no guard
9783   // (interprocedural conditions notwithstanding).
9784   if (!L) return true;
9785 
9786   if (VerifyIR)
9787     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9788            "This cannot be done on broken IR!");
9789 
9790 
9791   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9792     return true;
9793 
9794   BasicBlock *Latch = L->getLoopLatch();
9795   if (!Latch)
9796     return false;
9797 
9798   BranchInst *LoopContinuePredicate =
9799     dyn_cast<BranchInst>(Latch->getTerminator());
9800   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9801       isImpliedCond(Pred, LHS, RHS,
9802                     LoopContinuePredicate->getCondition(),
9803                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9804     return true;
9805 
9806   // We don't want more than one activation of the following loops on the stack
9807   // -- that can lead to O(n!) time complexity.
9808   if (WalkingBEDominatingConds)
9809     return false;
9810 
9811   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9812 
9813   // See if we can exploit a trip count to prove the predicate.
9814   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9815   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9816   if (LatchBECount != getCouldNotCompute()) {
9817     // We know that Latch branches back to the loop header exactly
9818     // LatchBECount times.  This means the backdege condition at Latch is
9819     // equivalent to  "{0,+,1} u< LatchBECount".
9820     Type *Ty = LatchBECount->getType();
9821     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9822     const SCEV *LoopCounter =
9823       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9824     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9825                       LatchBECount))
9826       return true;
9827   }
9828 
9829   // Check conditions due to any @llvm.assume intrinsics.
9830   for (auto &AssumeVH : AC.assumptions()) {
9831     if (!AssumeVH)
9832       continue;
9833     auto *CI = cast<CallInst>(AssumeVH);
9834     if (!DT.dominates(CI, Latch->getTerminator()))
9835       continue;
9836 
9837     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9838       return true;
9839   }
9840 
9841   // If the loop is not reachable from the entry block, we risk running into an
9842   // infinite loop as we walk up into the dom tree.  These loops do not matter
9843   // anyway, so we just return a conservative answer when we see them.
9844   if (!DT.isReachableFromEntry(L->getHeader()))
9845     return false;
9846 
9847   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9848     return true;
9849 
9850   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9851        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9852     assert(DTN && "should reach the loop header before reaching the root!");
9853 
9854     BasicBlock *BB = DTN->getBlock();
9855     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9856       return true;
9857 
9858     BasicBlock *PBB = BB->getSinglePredecessor();
9859     if (!PBB)
9860       continue;
9861 
9862     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9863     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9864       continue;
9865 
9866     Value *Condition = ContinuePredicate->getCondition();
9867 
9868     // If we have an edge `E` within the loop body that dominates the only
9869     // latch, the condition guarding `E` also guards the backedge.  This
9870     // reasoning works only for loops with a single latch.
9871 
9872     BasicBlockEdge DominatingEdge(PBB, BB);
9873     if (DominatingEdge.isSingleEdge()) {
9874       // We're constructively (and conservatively) enumerating edges within the
9875       // loop body that dominate the latch.  The dominator tree better agree
9876       // with us on this:
9877       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9878 
9879       if (isImpliedCond(Pred, LHS, RHS, Condition,
9880                         BB != ContinuePredicate->getSuccessor(0)))
9881         return true;
9882     }
9883   }
9884 
9885   return false;
9886 }
9887 
isBasicBlockEntryGuardedByCond(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9888 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9889                                                      ICmpInst::Predicate Pred,
9890                                                      const SCEV *LHS,
9891                                                      const SCEV *RHS) {
9892   if (VerifyIR)
9893     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9894            "This cannot be done on broken IR!");
9895 
9896   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9897     return true;
9898 
9899   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9900   // the facts (a >= b && a != b) separately. A typical situation is when the
9901   // non-strict comparison is known from ranges and non-equality is known from
9902   // dominating predicates. If we are proving strict comparison, we always try
9903   // to prove non-equality and non-strict comparison separately.
9904   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9905   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9906   bool ProvedNonStrictComparison = false;
9907   bool ProvedNonEquality = false;
9908 
9909   if (ProvingStrictComparison) {
9910     ProvedNonStrictComparison =
9911         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9912     ProvedNonEquality =
9913         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9914     if (ProvedNonStrictComparison && ProvedNonEquality)
9915       return true;
9916   }
9917 
9918   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9919   auto ProveViaGuard = [&](const BasicBlock *Block) {
9920     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9921       return true;
9922     if (ProvingStrictComparison) {
9923       if (!ProvedNonStrictComparison)
9924         ProvedNonStrictComparison =
9925             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9926       if (!ProvedNonEquality)
9927         ProvedNonEquality =
9928             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9929       if (ProvedNonStrictComparison && ProvedNonEquality)
9930         return true;
9931     }
9932     return false;
9933   };
9934 
9935   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9936   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
9937     const Instruction *Context = &BB->front();
9938     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
9939       return true;
9940     if (ProvingStrictComparison) {
9941       if (!ProvedNonStrictComparison)
9942         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
9943                                                   Condition, Inverse, Context);
9944       if (!ProvedNonEquality)
9945         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
9946                                           Condition, Inverse, Context);
9947       if (ProvedNonStrictComparison && ProvedNonEquality)
9948         return true;
9949     }
9950     return false;
9951   };
9952 
9953   // Starting at the block's predecessor, climb up the predecessor chain, as long
9954   // as there are predecessors that can be found that have unique successors
9955   // leading to the original block.
9956   const Loop *ContainingLoop = LI.getLoopFor(BB);
9957   const BasicBlock *PredBB;
9958   if (ContainingLoop && ContainingLoop->getHeader() == BB)
9959     PredBB = ContainingLoop->getLoopPredecessor();
9960   else
9961     PredBB = BB->getSinglePredecessor();
9962   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
9963        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9964     if (ProveViaGuard(Pair.first))
9965       return true;
9966 
9967     const BranchInst *LoopEntryPredicate =
9968         dyn_cast<BranchInst>(Pair.first->getTerminator());
9969     if (!LoopEntryPredicate ||
9970         LoopEntryPredicate->isUnconditional())
9971       continue;
9972 
9973     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9974                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9975       return true;
9976   }
9977 
9978   // Check conditions due to any @llvm.assume intrinsics.
9979   for (auto &AssumeVH : AC.assumptions()) {
9980     if (!AssumeVH)
9981       continue;
9982     auto *CI = cast<CallInst>(AssumeVH);
9983     if (!DT.dominates(CI, BB))
9984       continue;
9985 
9986     if (ProveViaCond(CI->getArgOperand(0), false))
9987       return true;
9988   }
9989 
9990   return false;
9991 }
9992 
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9993 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9994                                                ICmpInst::Predicate Pred,
9995                                                const SCEV *LHS,
9996                                                const SCEV *RHS) {
9997   // Interpret a null as meaning no loop, where there is obviously no guard
9998   // (interprocedural conditions notwithstanding).
9999   if (!L)
10000     return false;
10001 
10002   // Both LHS and RHS must be available at loop entry.
10003   assert(isAvailableAtLoopEntry(LHS, L) &&
10004          "LHS is not available at Loop Entry");
10005   assert(isAvailableAtLoopEntry(RHS, L) &&
10006          "RHS is not available at Loop Entry");
10007   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10008 }
10009 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Value * FoundCondValue,bool Inverse,const Instruction * Context)10010 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10011                                     const SCEV *RHS,
10012                                     const Value *FoundCondValue, bool Inverse,
10013                                     const Instruction *Context) {
10014   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10015     return false;
10016 
10017   auto ClearOnExit =
10018       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10019 
10020   // Recursively handle And and Or conditions.
10021   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10022     if (BO->getOpcode() == Instruction::And) {
10023       if (!Inverse)
10024         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10025                              Context) ||
10026                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10027                              Context);
10028     } else if (BO->getOpcode() == Instruction::Or) {
10029       if (Inverse)
10030         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10031                              Context) ||
10032                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10033                              Context);
10034     }
10035   }
10036 
10037   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10038   if (!ICI) return false;
10039 
10040   // Now that we found a conditional branch that dominates the loop or controls
10041   // the loop latch. Check to see if it is the comparison we are looking for.
10042   ICmpInst::Predicate FoundPred;
10043   if (Inverse)
10044     FoundPred = ICI->getInversePredicate();
10045   else
10046     FoundPred = ICI->getPredicate();
10047 
10048   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10049   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10050 
10051   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10052 }
10053 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10054 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10055                                     const SCEV *RHS,
10056                                     ICmpInst::Predicate FoundPred,
10057                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10058                                     const Instruction *Context) {
10059   // Balance the types.
10060   if (getTypeSizeInBits(LHS->getType()) <
10061       getTypeSizeInBits(FoundLHS->getType())) {
10062     // For unsigned and equality predicates, try to prove that both found
10063     // operands fit into narrow unsigned range. If so, try to prove facts in
10064     // narrow types.
10065     if (!CmpInst::isSigned(FoundPred)) {
10066       auto *NarrowType = LHS->getType();
10067       auto *WideType = FoundLHS->getType();
10068       auto BitWidth = getTypeSizeInBits(NarrowType);
10069       const SCEV *MaxValue = getZeroExtendExpr(
10070           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10071       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10072           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10073         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10074         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10075         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10076                                        TruncFoundRHS, Context))
10077           return true;
10078       }
10079     }
10080 
10081     if (CmpInst::isSigned(Pred)) {
10082       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10083       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10084     } else {
10085       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10086       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10087     }
10088   } else if (getTypeSizeInBits(LHS->getType()) >
10089       getTypeSizeInBits(FoundLHS->getType())) {
10090     if (CmpInst::isSigned(FoundPred)) {
10091       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10092       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10093     } else {
10094       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10095       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10096     }
10097   }
10098   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10099                                     FoundRHS, Context);
10100 }
10101 
isImpliedCondBalancedTypes(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10102 bool ScalarEvolution::isImpliedCondBalancedTypes(
10103     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10104     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10105     const Instruction *Context) {
10106   assert(getTypeSizeInBits(LHS->getType()) ==
10107              getTypeSizeInBits(FoundLHS->getType()) &&
10108          "Types should be balanced!");
10109   // Canonicalize the query to match the way instcombine will have
10110   // canonicalized the comparison.
10111   if (SimplifyICmpOperands(Pred, LHS, RHS))
10112     if (LHS == RHS)
10113       return CmpInst::isTrueWhenEqual(Pred);
10114   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10115     if (FoundLHS == FoundRHS)
10116       return CmpInst::isFalseWhenEqual(FoundPred);
10117 
10118   // Check to see if we can make the LHS or RHS match.
10119   if (LHS == FoundRHS || RHS == FoundLHS) {
10120     if (isa<SCEVConstant>(RHS)) {
10121       std::swap(FoundLHS, FoundRHS);
10122       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10123     } else {
10124       std::swap(LHS, RHS);
10125       Pred = ICmpInst::getSwappedPredicate(Pred);
10126     }
10127   }
10128 
10129   // Check whether the found predicate is the same as the desired predicate.
10130   if (FoundPred == Pred)
10131     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10132 
10133   // Check whether swapping the found predicate makes it the same as the
10134   // desired predicate.
10135   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10136     if (isa<SCEVConstant>(RHS))
10137       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10138     else
10139       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10140                                    LHS, FoundLHS, FoundRHS, Context);
10141   }
10142 
10143   // Unsigned comparison is the same as signed comparison when both the operands
10144   // are non-negative.
10145   if (CmpInst::isUnsigned(FoundPred) &&
10146       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10147       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10148     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10149 
10150   // Check if we can make progress by sharpening ranges.
10151   if (FoundPred == ICmpInst::ICMP_NE &&
10152       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10153 
10154     const SCEVConstant *C = nullptr;
10155     const SCEV *V = nullptr;
10156 
10157     if (isa<SCEVConstant>(FoundLHS)) {
10158       C = cast<SCEVConstant>(FoundLHS);
10159       V = FoundRHS;
10160     } else {
10161       C = cast<SCEVConstant>(FoundRHS);
10162       V = FoundLHS;
10163     }
10164 
10165     // The guarding predicate tells us that C != V. If the known range
10166     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10167     // range we consider has to correspond to same signedness as the
10168     // predicate we're interested in folding.
10169 
10170     APInt Min = ICmpInst::isSigned(Pred) ?
10171         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10172 
10173     if (Min == C->getAPInt()) {
10174       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10175       // This is true even if (Min + 1) wraps around -- in case of
10176       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10177 
10178       APInt SharperMin = Min + 1;
10179 
10180       switch (Pred) {
10181         case ICmpInst::ICMP_SGE:
10182         case ICmpInst::ICMP_UGE:
10183           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10184           // RHS, we're done.
10185           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10186                                     Context))
10187             return true;
10188           LLVM_FALLTHROUGH;
10189 
10190         case ICmpInst::ICMP_SGT:
10191         case ICmpInst::ICMP_UGT:
10192           // We know from the range information that (V `Pred` Min ||
10193           // V == Min).  We know from the guarding condition that !(V
10194           // == Min).  This gives us
10195           //
10196           //       V `Pred` Min || V == Min && !(V == Min)
10197           //   =>  V `Pred` Min
10198           //
10199           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10200 
10201           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10202                                     Context))
10203             return true;
10204           break;
10205 
10206         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10207         case ICmpInst::ICMP_SLE:
10208         case ICmpInst::ICMP_ULE:
10209           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10210                                     LHS, V, getConstant(SharperMin), Context))
10211             return true;
10212           LLVM_FALLTHROUGH;
10213 
10214         case ICmpInst::ICMP_SLT:
10215         case ICmpInst::ICMP_ULT:
10216           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10217                                     LHS, V, getConstant(Min), Context))
10218             return true;
10219           break;
10220 
10221         default:
10222           // No change
10223           break;
10224       }
10225     }
10226   }
10227 
10228   // Check whether the actual condition is beyond sufficient.
10229   if (FoundPred == ICmpInst::ICMP_EQ)
10230     if (ICmpInst::isTrueWhenEqual(Pred))
10231       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10232         return true;
10233   if (Pred == ICmpInst::ICMP_NE)
10234     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10235       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10236                                 Context))
10237         return true;
10238 
10239   // Otherwise assume the worst.
10240   return false;
10241 }
10242 
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)10243 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10244                                      const SCEV *&L, const SCEV *&R,
10245                                      SCEV::NoWrapFlags &Flags) {
10246   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10247   if (!AE || AE->getNumOperands() != 2)
10248     return false;
10249 
10250   L = AE->getOperand(0);
10251   R = AE->getOperand(1);
10252   Flags = AE->getNoWrapFlags();
10253   return true;
10254 }
10255 
computeConstantDifference(const SCEV * More,const SCEV * Less)10256 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10257                                                            const SCEV *Less) {
10258   // We avoid subtracting expressions here because this function is usually
10259   // fairly deep in the call stack (i.e. is called many times).
10260 
10261   // X - X = 0.
10262   if (More == Less)
10263     return APInt(getTypeSizeInBits(More->getType()), 0);
10264 
10265   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10266     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10267     const auto *MAR = cast<SCEVAddRecExpr>(More);
10268 
10269     if (LAR->getLoop() != MAR->getLoop())
10270       return None;
10271 
10272     // We look at affine expressions only; not for correctness but to keep
10273     // getStepRecurrence cheap.
10274     if (!LAR->isAffine() || !MAR->isAffine())
10275       return None;
10276 
10277     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10278       return None;
10279 
10280     Less = LAR->getStart();
10281     More = MAR->getStart();
10282 
10283     // fall through
10284   }
10285 
10286   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10287     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10288     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10289     return M - L;
10290   }
10291 
10292   SCEV::NoWrapFlags Flags;
10293   const SCEV *LLess = nullptr, *RLess = nullptr;
10294   const SCEV *LMore = nullptr, *RMore = nullptr;
10295   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10296   // Compare (X + C1) vs X.
10297   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10298     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10299       if (RLess == More)
10300         return -(C1->getAPInt());
10301 
10302   // Compare X vs (X + C2).
10303   if (splitBinaryAdd(More, LMore, RMore, Flags))
10304     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10305       if (RMore == Less)
10306         return C2->getAPInt();
10307 
10308   // Compare (X + C1) vs (X + C2).
10309   if (C1 && C2 && RLess == RMore)
10310     return C2->getAPInt() - C1->getAPInt();
10311 
10312   return None;
10313 }
10314 
isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10315 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10316     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10317     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10318   // Try to recognize the following pattern:
10319   //
10320   //   FoundRHS = ...
10321   // ...
10322   // loop:
10323   //   FoundLHS = {Start,+,W}
10324   // context_bb: // Basic block from the same loop
10325   //   known(Pred, FoundLHS, FoundRHS)
10326   //
10327   // If some predicate is known in the context of a loop, it is also known on
10328   // each iteration of this loop, including the first iteration. Therefore, in
10329   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10330   // prove the original pred using this fact.
10331   if (!Context)
10332     return false;
10333   const BasicBlock *ContextBB = Context->getParent();
10334   // Make sure AR varies in the context block.
10335   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10336     const Loop *L = AR->getLoop();
10337     // Make sure that context belongs to the loop and executes on 1st iteration
10338     // (if it ever executes at all).
10339     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10340       return false;
10341     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10342       return false;
10343     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10344   }
10345 
10346   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10347     const Loop *L = AR->getLoop();
10348     // Make sure that context belongs to the loop and executes on 1st iteration
10349     // (if it ever executes at all).
10350     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10351       return false;
10352     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10353       return false;
10354     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10355   }
10356 
10357   return false;
10358 }
10359 
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10360 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10361     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10362     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10363   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10364     return false;
10365 
10366   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10367   if (!AddRecLHS)
10368     return false;
10369 
10370   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10371   if (!AddRecFoundLHS)
10372     return false;
10373 
10374   // We'd like to let SCEV reason about control dependencies, so we constrain
10375   // both the inequalities to be about add recurrences on the same loop.  This
10376   // way we can use isLoopEntryGuardedByCond later.
10377 
10378   const Loop *L = AddRecFoundLHS->getLoop();
10379   if (L != AddRecLHS->getLoop())
10380     return false;
10381 
10382   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10383   //
10384   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10385   //                                                                  ... (2)
10386   //
10387   // Informal proof for (2), assuming (1) [*]:
10388   //
10389   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10390   //
10391   // Then
10392   //
10393   //       FoundLHS s< FoundRHS s< INT_MIN - C
10394   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10395   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10396   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10397   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10398   // <=>  FoundLHS + C s< FoundRHS + C
10399   //
10400   // [*]: (1) can be proved by ruling out overflow.
10401   //
10402   // [**]: This can be proved by analyzing all the four possibilities:
10403   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10404   //    (A s>= 0, B s>= 0).
10405   //
10406   // Note:
10407   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10408   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10409   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10410   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10411   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10412   // C)".
10413 
10414   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10415   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10416   if (!LDiff || !RDiff || *LDiff != *RDiff)
10417     return false;
10418 
10419   if (LDiff->isMinValue())
10420     return true;
10421 
10422   APInt FoundRHSLimit;
10423 
10424   if (Pred == CmpInst::ICMP_ULT) {
10425     FoundRHSLimit = -(*RDiff);
10426   } else {
10427     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10428     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10429   }
10430 
10431   // Try to prove (1) or (2), as needed.
10432   return isAvailableAtLoopEntry(FoundRHS, L) &&
10433          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10434                                   getConstant(FoundRHSLimit));
10435 }
10436 
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10437 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10438                                         const SCEV *LHS, const SCEV *RHS,
10439                                         const SCEV *FoundLHS,
10440                                         const SCEV *FoundRHS, unsigned Depth) {
10441   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10442 
10443   auto ClearOnExit = make_scope_exit([&]() {
10444     if (LPhi) {
10445       bool Erased = PendingMerges.erase(LPhi);
10446       assert(Erased && "Failed to erase LPhi!");
10447       (void)Erased;
10448     }
10449     if (RPhi) {
10450       bool Erased = PendingMerges.erase(RPhi);
10451       assert(Erased && "Failed to erase RPhi!");
10452       (void)Erased;
10453     }
10454   });
10455 
10456   // Find respective Phis and check that they are not being pending.
10457   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10458     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10459       if (!PendingMerges.insert(Phi).second)
10460         return false;
10461       LPhi = Phi;
10462     }
10463   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10464     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10465       // If we detect a loop of Phi nodes being processed by this method, for
10466       // example:
10467       //
10468       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10469       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10470       //
10471       // we don't want to deal with a case that complex, so return conservative
10472       // answer false.
10473       if (!PendingMerges.insert(Phi).second)
10474         return false;
10475       RPhi = Phi;
10476     }
10477 
10478   // If none of LHS, RHS is a Phi, nothing to do here.
10479   if (!LPhi && !RPhi)
10480     return false;
10481 
10482   // If there is a SCEVUnknown Phi we are interested in, make it left.
10483   if (!LPhi) {
10484     std::swap(LHS, RHS);
10485     std::swap(FoundLHS, FoundRHS);
10486     std::swap(LPhi, RPhi);
10487     Pred = ICmpInst::getSwappedPredicate(Pred);
10488   }
10489 
10490   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10491   const BasicBlock *LBB = LPhi->getParent();
10492   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10493 
10494   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10495     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10496            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10497            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10498   };
10499 
10500   if (RPhi && RPhi->getParent() == LBB) {
10501     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10502     // If we compare two Phis from the same block, and for each entry block
10503     // the predicate is true for incoming values from this block, then the
10504     // predicate is also true for the Phis.
10505     for (const BasicBlock *IncBB : predecessors(LBB)) {
10506       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10507       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10508       if (!ProvedEasily(L, R))
10509         return false;
10510     }
10511   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10512     // Case two: RHS is also a Phi from the same basic block, and it is an
10513     // AddRec. It means that there is a loop which has both AddRec and Unknown
10514     // PHIs, for it we can compare incoming values of AddRec from above the loop
10515     // and latch with their respective incoming values of LPhi.
10516     // TODO: Generalize to handle loops with many inputs in a header.
10517     if (LPhi->getNumIncomingValues() != 2) return false;
10518 
10519     auto *RLoop = RAR->getLoop();
10520     auto *Predecessor = RLoop->getLoopPredecessor();
10521     assert(Predecessor && "Loop with AddRec with no predecessor?");
10522     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10523     if (!ProvedEasily(L1, RAR->getStart()))
10524       return false;
10525     auto *Latch = RLoop->getLoopLatch();
10526     assert(Latch && "Loop with AddRec with no latch?");
10527     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10528     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10529       return false;
10530   } else {
10531     // In all other cases go over inputs of LHS and compare each of them to RHS,
10532     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10533     // At this point RHS is either a non-Phi, or it is a Phi from some block
10534     // different from LBB.
10535     for (const BasicBlock *IncBB : predecessors(LBB)) {
10536       // Check that RHS is available in this block.
10537       if (!dominates(RHS, IncBB))
10538         return false;
10539       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10540       if (!ProvedEasily(L, RHS))
10541         return false;
10542     }
10543   }
10544   return true;
10545 }
10546 
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10547 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10548                                             const SCEV *LHS, const SCEV *RHS,
10549                                             const SCEV *FoundLHS,
10550                                             const SCEV *FoundRHS,
10551                                             const Instruction *Context) {
10552   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10553     return true;
10554 
10555   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10556     return true;
10557 
10558   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10559                                           Context))
10560     return true;
10561 
10562   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10563                                      FoundLHS, FoundRHS) ||
10564          // ~x < ~y --> x > y
10565          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10566                                      getNotSCEV(FoundRHS),
10567                                      getNotSCEV(FoundLHS));
10568 }
10569 
10570 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10571 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)10572 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10573                                  const SCEV *Candidate) {
10574   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10575   if (!MinMaxExpr)
10576     return false;
10577 
10578   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10579 }
10580 
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10581 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10582                                            ICmpInst::Predicate Pred,
10583                                            const SCEV *LHS, const SCEV *RHS) {
10584   // If both sides are affine addrecs for the same loop, with equal
10585   // steps, and we know the recurrences don't wrap, then we only
10586   // need to check the predicate on the starting values.
10587 
10588   if (!ICmpInst::isRelational(Pred))
10589     return false;
10590 
10591   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10592   if (!LAR)
10593     return false;
10594   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10595   if (!RAR)
10596     return false;
10597   if (LAR->getLoop() != RAR->getLoop())
10598     return false;
10599   if (!LAR->isAffine() || !RAR->isAffine())
10600     return false;
10601 
10602   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10603     return false;
10604 
10605   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10606                          SCEV::FlagNSW : SCEV::FlagNUW;
10607   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10608     return false;
10609 
10610   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10611 }
10612 
10613 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10614 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10615 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10616                                         ICmpInst::Predicate Pred,
10617                                         const SCEV *LHS, const SCEV *RHS) {
10618   switch (Pred) {
10619   default:
10620     return false;
10621 
10622   case ICmpInst::ICMP_SGE:
10623     std::swap(LHS, RHS);
10624     LLVM_FALLTHROUGH;
10625   case ICmpInst::ICMP_SLE:
10626     return
10627         // min(A, ...) <= A
10628         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10629         // A <= max(A, ...)
10630         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10631 
10632   case ICmpInst::ICMP_UGE:
10633     std::swap(LHS, RHS);
10634     LLVM_FALLTHROUGH;
10635   case ICmpInst::ICMP_ULE:
10636     return
10637         // min(A, ...) <= A
10638         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10639         // A <= max(A, ...)
10640         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10641   }
10642 
10643   llvm_unreachable("covered switch fell through?!");
10644 }
10645 
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10646 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10647                                              const SCEV *LHS, const SCEV *RHS,
10648                                              const SCEV *FoundLHS,
10649                                              const SCEV *FoundRHS,
10650                                              unsigned Depth) {
10651   assert(getTypeSizeInBits(LHS->getType()) ==
10652              getTypeSizeInBits(RHS->getType()) &&
10653          "LHS and RHS have different sizes?");
10654   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10655              getTypeSizeInBits(FoundRHS->getType()) &&
10656          "FoundLHS and FoundRHS have different sizes?");
10657   // We want to avoid hurting the compile time with analysis of too big trees.
10658   if (Depth > MaxSCEVOperationsImplicationDepth)
10659     return false;
10660 
10661   // We only want to work with GT comparison so far.
10662   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10663     Pred = CmpInst::getSwappedPredicate(Pred);
10664     std::swap(LHS, RHS);
10665     std::swap(FoundLHS, FoundRHS);
10666   }
10667 
10668   // For unsigned, try to reduce it to corresponding signed comparison.
10669   if (Pred == ICmpInst::ICMP_UGT)
10670     // We can replace unsigned predicate with its signed counterpart if all
10671     // involved values are non-negative.
10672     // TODO: We could have better support for unsigned.
10673     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10674       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10675       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10676       // use this fact to prove that LHS and RHS are non-negative.
10677       const SCEV *MinusOne = getMinusOne(LHS->getType());
10678       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10679                                 FoundRHS) &&
10680           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10681                                 FoundRHS))
10682         Pred = ICmpInst::ICMP_SGT;
10683     }
10684 
10685   if (Pred != ICmpInst::ICMP_SGT)
10686     return false;
10687 
10688   auto GetOpFromSExt = [&](const SCEV *S) {
10689     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10690       return Ext->getOperand();
10691     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10692     // the constant in some cases.
10693     return S;
10694   };
10695 
10696   // Acquire values from extensions.
10697   auto *OrigLHS = LHS;
10698   auto *OrigFoundLHS = FoundLHS;
10699   LHS = GetOpFromSExt(LHS);
10700   FoundLHS = GetOpFromSExt(FoundLHS);
10701 
10702   // Is the SGT predicate can be proved trivially or using the found context.
10703   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10704     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10705            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10706                                   FoundRHS, Depth + 1);
10707   };
10708 
10709   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10710     // We want to avoid creation of any new non-constant SCEV. Since we are
10711     // going to compare the operands to RHS, we should be certain that we don't
10712     // need any size extensions for this. So let's decline all cases when the
10713     // sizes of types of LHS and RHS do not match.
10714     // TODO: Maybe try to get RHS from sext to catch more cases?
10715     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10716       return false;
10717 
10718     // Should not overflow.
10719     if (!LHSAddExpr->hasNoSignedWrap())
10720       return false;
10721 
10722     auto *LL = LHSAddExpr->getOperand(0);
10723     auto *LR = LHSAddExpr->getOperand(1);
10724     auto *MinusOne = getMinusOne(RHS->getType());
10725 
10726     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10727     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10728       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10729     };
10730     // Try to prove the following rule:
10731     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10732     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10733     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10734       return true;
10735   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10736     Value *LL, *LR;
10737     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10738 
10739     using namespace llvm::PatternMatch;
10740 
10741     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10742       // Rules for division.
10743       // We are going to perform some comparisons with Denominator and its
10744       // derivative expressions. In general case, creating a SCEV for it may
10745       // lead to a complex analysis of the entire graph, and in particular it
10746       // can request trip count recalculation for the same loop. This would
10747       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10748       // this, we only want to create SCEVs that are constants in this section.
10749       // So we bail if Denominator is not a constant.
10750       if (!isa<ConstantInt>(LR))
10751         return false;
10752 
10753       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10754 
10755       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10756       // then a SCEV for the numerator already exists and matches with FoundLHS.
10757       auto *Numerator = getExistingSCEV(LL);
10758       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10759         return false;
10760 
10761       // Make sure that the numerator matches with FoundLHS and the denominator
10762       // is positive.
10763       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10764         return false;
10765 
10766       auto *DTy = Denominator->getType();
10767       auto *FRHSTy = FoundRHS->getType();
10768       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10769         // One of types is a pointer and another one is not. We cannot extend
10770         // them properly to a wider type, so let us just reject this case.
10771         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10772         // to avoid this check.
10773         return false;
10774 
10775       // Given that:
10776       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10777       auto *WTy = getWiderType(DTy, FRHSTy);
10778       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10779       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10780 
10781       // Try to prove the following rule:
10782       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10783       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10784       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10785       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10786       if (isKnownNonPositive(RHS) &&
10787           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10788         return true;
10789 
10790       // Try to prove the following rule:
10791       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10792       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10793       // If we divide it by Denominator > 2, then:
10794       // 1. If FoundLHS is negative, then the result is 0.
10795       // 2. If FoundLHS is non-negative, then the result is non-negative.
10796       // Anyways, the result is non-negative.
10797       auto *MinusOne = getMinusOne(WTy);
10798       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10799       if (isKnownNegative(RHS) &&
10800           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10801         return true;
10802     }
10803   }
10804 
10805   // If our expression contained SCEVUnknown Phis, and we split it down and now
10806   // need to prove something for them, try to prove the predicate for every
10807   // possible incoming values of those Phis.
10808   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10809     return true;
10810 
10811   return false;
10812 }
10813 
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10814 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10815                                         const SCEV *LHS, const SCEV *RHS) {
10816   // zext x u<= sext x, sext x s<= zext x
10817   switch (Pred) {
10818   case ICmpInst::ICMP_SGE:
10819     std::swap(LHS, RHS);
10820     LLVM_FALLTHROUGH;
10821   case ICmpInst::ICMP_SLE: {
10822     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10823     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10824     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10825     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10826       return true;
10827     break;
10828   }
10829   case ICmpInst::ICMP_UGE:
10830     std::swap(LHS, RHS);
10831     LLVM_FALLTHROUGH;
10832   case ICmpInst::ICMP_ULE: {
10833     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10834     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10835     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10836     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10837       return true;
10838     break;
10839   }
10840   default:
10841     break;
10842   };
10843   return false;
10844 }
10845 
10846 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10847 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10848                                            const SCEV *LHS, const SCEV *RHS) {
10849   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10850          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10851          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10852          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10853          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10854 }
10855 
10856 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10857 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10858                                              const SCEV *LHS, const SCEV *RHS,
10859                                              const SCEV *FoundLHS,
10860                                              const SCEV *FoundRHS) {
10861   switch (Pred) {
10862   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10863   case ICmpInst::ICMP_EQ:
10864   case ICmpInst::ICMP_NE:
10865     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10866       return true;
10867     break;
10868   case ICmpInst::ICMP_SLT:
10869   case ICmpInst::ICMP_SLE:
10870     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10871         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10872       return true;
10873     break;
10874   case ICmpInst::ICMP_SGT:
10875   case ICmpInst::ICMP_SGE:
10876     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10877         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10878       return true;
10879     break;
10880   case ICmpInst::ICMP_ULT:
10881   case ICmpInst::ICMP_ULE:
10882     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10883         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10884       return true;
10885     break;
10886   case ICmpInst::ICMP_UGT:
10887   case ICmpInst::ICMP_UGE:
10888     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10889         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10890       return true;
10891     break;
10892   }
10893 
10894   // Maybe it can be proved via operations?
10895   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10896     return true;
10897 
10898   return false;
10899 }
10900 
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10901 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10902                                                      const SCEV *LHS,
10903                                                      const SCEV *RHS,
10904                                                      const SCEV *FoundLHS,
10905                                                      const SCEV *FoundRHS) {
10906   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10907     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10908     // reduce the compile time impact of this optimization.
10909     return false;
10910 
10911   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10912   if (!Addend)
10913     return false;
10914 
10915   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10916 
10917   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10918   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10919   ConstantRange FoundLHSRange =
10920       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10921 
10922   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10923   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10924 
10925   // We can also compute the range of values for `LHS` that satisfy the
10926   // consequent, "`LHS` `Pred` `RHS`":
10927   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10928   ConstantRange SatisfyingLHSRange =
10929       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10930 
10931   // The antecedent implies the consequent if every value of `LHS` that
10932   // satisfies the antecedent also satisfies the consequent.
10933   return SatisfyingLHSRange.contains(LHSRange);
10934 }
10935 
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10936 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10937                                          bool IsSigned, bool NoWrap) {
10938   assert(isKnownPositive(Stride) && "Positive stride expected!");
10939 
10940   if (NoWrap) return false;
10941 
10942   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10943   const SCEV *One = getOne(Stride->getType());
10944 
10945   if (IsSigned) {
10946     APInt MaxRHS = getSignedRangeMax(RHS);
10947     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10948     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10949 
10950     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10951     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10952   }
10953 
10954   APInt MaxRHS = getUnsignedRangeMax(RHS);
10955   APInt MaxValue = APInt::getMaxValue(BitWidth);
10956   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10957 
10958   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10959   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10960 }
10961 
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10962 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10963                                          bool IsSigned, bool NoWrap) {
10964   if (NoWrap) return false;
10965 
10966   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10967   const SCEV *One = getOne(Stride->getType());
10968 
10969   if (IsSigned) {
10970     APInt MinRHS = getSignedRangeMin(RHS);
10971     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10972     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10973 
10974     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10975     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10976   }
10977 
10978   APInt MinRHS = getUnsignedRangeMin(RHS);
10979   APInt MinValue = APInt::getMinValue(BitWidth);
10980   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10981 
10982   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10983   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10984 }
10985 
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)10986 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10987                                             bool Equality) {
10988   const SCEV *One = getOne(Step->getType());
10989   Delta = Equality ? getAddExpr(Delta, Step)
10990                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10991   return getUDivExpr(Delta, Step);
10992 }
10993 
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)10994 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10995                                                     const SCEV *Stride,
10996                                                     const SCEV *End,
10997                                                     unsigned BitWidth,
10998                                                     bool IsSigned) {
10999 
11000   assert(!isKnownNonPositive(Stride) &&
11001          "Stride is expected strictly positive!");
11002   // Calculate the maximum backedge count based on the range of values
11003   // permitted by Start, End, and Stride.
11004   const SCEV *MaxBECount;
11005   APInt MinStart =
11006       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11007 
11008   APInt StrideForMaxBECount =
11009       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11010 
11011   // We already know that the stride is positive, so we paper over conservatism
11012   // in our range computation by forcing StrideForMaxBECount to be at least one.
11013   // In theory this is unnecessary, but we expect MaxBECount to be a
11014   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11015   // is nothing to constant fold it to).
11016   APInt One(BitWidth, 1, IsSigned);
11017   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11018 
11019   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11020                             : APInt::getMaxValue(BitWidth);
11021   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11022 
11023   // Although End can be a MAX expression we estimate MaxEnd considering only
11024   // the case End = RHS of the loop termination condition. This is safe because
11025   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11026   // taken count.
11027   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11028                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11029 
11030   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11031                               getConstant(StrideForMaxBECount) /* Step */,
11032                               false /* Equality */);
11033 
11034   return MaxBECount;
11035 }
11036 
11037 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11038 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11039                                   const Loop *L, bool IsSigned,
11040                                   bool ControlsExit, bool AllowPredicates) {
11041   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11042 
11043   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11044   bool PredicatedIV = false;
11045 
11046   if (!IV && AllowPredicates) {
11047     // Try to make this an AddRec using runtime tests, in the first X
11048     // iterations of this loop, where X is the SCEV expression found by the
11049     // algorithm below.
11050     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11051     PredicatedIV = true;
11052   }
11053 
11054   // Avoid weird loops
11055   if (!IV || IV->getLoop() != L || !IV->isAffine())
11056     return getCouldNotCompute();
11057 
11058   bool NoWrap = ControlsExit &&
11059                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11060 
11061   const SCEV *Stride = IV->getStepRecurrence(*this);
11062 
11063   bool PositiveStride = isKnownPositive(Stride);
11064 
11065   // Avoid negative or zero stride values.
11066   if (!PositiveStride) {
11067     // We can compute the correct backedge taken count for loops with unknown
11068     // strides if we can prove that the loop is not an infinite loop with side
11069     // effects. Here's the loop structure we are trying to handle -
11070     //
11071     // i = start
11072     // do {
11073     //   A[i] = i;
11074     //   i += s;
11075     // } while (i < end);
11076     //
11077     // The backedge taken count for such loops is evaluated as -
11078     // (max(end, start + stride) - start - 1) /u stride
11079     //
11080     // The additional preconditions that we need to check to prove correctness
11081     // of the above formula is as follows -
11082     //
11083     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11084     //    NoWrap flag).
11085     // b) loop is single exit with no side effects.
11086     //
11087     //
11088     // Precondition a) implies that if the stride is negative, this is a single
11089     // trip loop. The backedge taken count formula reduces to zero in this case.
11090     //
11091     // Precondition b) implies that the unknown stride cannot be zero otherwise
11092     // we have UB.
11093     //
11094     // The positive stride case is the same as isKnownPositive(Stride) returning
11095     // true (original behavior of the function).
11096     //
11097     // We want to make sure that the stride is truly unknown as there are edge
11098     // cases where ScalarEvolution propagates no wrap flags to the
11099     // post-increment/decrement IV even though the increment/decrement operation
11100     // itself is wrapping. The computed backedge taken count may be wrong in
11101     // such cases. This is prevented by checking that the stride is not known to
11102     // be either positive or non-positive. For example, no wrap flags are
11103     // propagated to the post-increment IV of this loop with a trip count of 2 -
11104     //
11105     // unsigned char i;
11106     // for(i=127; i<128; i+=129)
11107     //   A[i] = i;
11108     //
11109     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11110         !loopHasNoSideEffects(L))
11111       return getCouldNotCompute();
11112   } else if (!Stride->isOne() &&
11113              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11114     // Avoid proven overflow cases: this will ensure that the backedge taken
11115     // count will not generate any unsigned overflow. Relaxed no-overflow
11116     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11117     // undefined behaviors like the case of C language.
11118     return getCouldNotCompute();
11119 
11120   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11121                                       : ICmpInst::ICMP_ULT;
11122   const SCEV *Start = IV->getStart();
11123   const SCEV *End = RHS;
11124   // When the RHS is not invariant, we do not know the end bound of the loop and
11125   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11126   // calculate the MaxBECount, given the start, stride and max value for the end
11127   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11128   // checked above).
11129   if (!isLoopInvariant(RHS, L)) {
11130     const SCEV *MaxBECount = computeMaxBECountForLT(
11131         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11132     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11133                      false /*MaxOrZero*/, Predicates);
11134   }
11135   // If the backedge is taken at least once, then it will be taken
11136   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11137   // is the LHS value of the less-than comparison the first time it is evaluated
11138   // and End is the RHS.
11139   const SCEV *BECountIfBackedgeTaken =
11140     computeBECount(getMinusSCEV(End, Start), Stride, false);
11141   // If the loop entry is guarded by the result of the backedge test of the
11142   // first loop iteration, then we know the backedge will be taken at least
11143   // once and so the backedge taken count is as above. If not then we use the
11144   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11145   // as if the backedge is taken at least once max(End,Start) is End and so the
11146   // result is as above, and if not max(End,Start) is Start so we get a backedge
11147   // count of zero.
11148   const SCEV *BECount;
11149   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11150     BECount = BECountIfBackedgeTaken;
11151   else {
11152     // If we know that RHS >= Start in the context of loop, then we know that
11153     // max(RHS, Start) = RHS at this point.
11154     if (isLoopEntryGuardedByCond(
11155             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11156       End = RHS;
11157     else
11158       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11159     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11160   }
11161 
11162   const SCEV *MaxBECount;
11163   bool MaxOrZero = false;
11164   if (isa<SCEVConstant>(BECount))
11165     MaxBECount = BECount;
11166   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11167     // If we know exactly how many times the backedge will be taken if it's
11168     // taken at least once, then the backedge count will either be that or
11169     // zero.
11170     MaxBECount = BECountIfBackedgeTaken;
11171     MaxOrZero = true;
11172   } else {
11173     MaxBECount = computeMaxBECountForLT(
11174         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11175   }
11176 
11177   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11178       !isa<SCEVCouldNotCompute>(BECount))
11179     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11180 
11181   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11182 }
11183 
11184 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11185 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11186                                      const Loop *L, bool IsSigned,
11187                                      bool ControlsExit, bool AllowPredicates) {
11188   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11189   // We handle only IV > Invariant
11190   if (!isLoopInvariant(RHS, L))
11191     return getCouldNotCompute();
11192 
11193   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11194   if (!IV && AllowPredicates)
11195     // Try to make this an AddRec using runtime tests, in the first X
11196     // iterations of this loop, where X is the SCEV expression found by the
11197     // algorithm below.
11198     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11199 
11200   // Avoid weird loops
11201   if (!IV || IV->getLoop() != L || !IV->isAffine())
11202     return getCouldNotCompute();
11203 
11204   bool NoWrap = ControlsExit &&
11205                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11206 
11207   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11208 
11209   // Avoid negative or zero stride values
11210   if (!isKnownPositive(Stride))
11211     return getCouldNotCompute();
11212 
11213   // Avoid proven overflow cases: this will ensure that the backedge taken count
11214   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11215   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11216   // behaviors like the case of C language.
11217   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11218     return getCouldNotCompute();
11219 
11220   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11221                                       : ICmpInst::ICMP_UGT;
11222 
11223   const SCEV *Start = IV->getStart();
11224   const SCEV *End = RHS;
11225   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11226     // If we know that Start >= RHS in the context of loop, then we know that
11227     // min(RHS, Start) = RHS at this point.
11228     if (isLoopEntryGuardedByCond(
11229             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11230       End = RHS;
11231     else
11232       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11233   }
11234 
11235   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11236 
11237   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11238                             : getUnsignedRangeMax(Start);
11239 
11240   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11241                              : getUnsignedRangeMin(Stride);
11242 
11243   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11244   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11245                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11246 
11247   // Although End can be a MIN expression we estimate MinEnd considering only
11248   // the case End = RHS. This is safe because in the other case (Start - End)
11249   // is zero, leading to a zero maximum backedge taken count.
11250   APInt MinEnd =
11251     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11252              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11253 
11254   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11255                                ? BECount
11256                                : computeBECount(getConstant(MaxStart - MinEnd),
11257                                                 getConstant(MinStride), false);
11258 
11259   if (isa<SCEVCouldNotCompute>(MaxBECount))
11260     MaxBECount = BECount;
11261 
11262   return ExitLimit(BECount, MaxBECount, false, Predicates);
11263 }
11264 
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const11265 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11266                                                     ScalarEvolution &SE) const {
11267   if (Range.isFullSet())  // Infinite loop.
11268     return SE.getCouldNotCompute();
11269 
11270   // If the start is a non-zero constant, shift the range to simplify things.
11271   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11272     if (!SC->getValue()->isZero()) {
11273       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
11274       Operands[0] = SE.getZero(SC->getType());
11275       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11276                                              getNoWrapFlags(FlagNW));
11277       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11278         return ShiftedAddRec->getNumIterationsInRange(
11279             Range.subtract(SC->getAPInt()), SE);
11280       // This is strange and shouldn't happen.
11281       return SE.getCouldNotCompute();
11282     }
11283 
11284   // The only time we can solve this is when we have all constant indices.
11285   // Otherwise, we cannot determine the overflow conditions.
11286   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11287     return SE.getCouldNotCompute();
11288 
11289   // Okay at this point we know that all elements of the chrec are constants and
11290   // that the start element is zero.
11291 
11292   // First check to see if the range contains zero.  If not, the first
11293   // iteration exits.
11294   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11295   if (!Range.contains(APInt(BitWidth, 0)))
11296     return SE.getZero(getType());
11297 
11298   if (isAffine()) {
11299     // If this is an affine expression then we have this situation:
11300     //   Solve {0,+,A} in Range  ===  Ax in Range
11301 
11302     // We know that zero is in the range.  If A is positive then we know that
11303     // the upper value of the range must be the first possible exit value.
11304     // If A is negative then the lower of the range is the last possible loop
11305     // value.  Also note that we already checked for a full range.
11306     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11307     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11308 
11309     // The exit value should be (End+A)/A.
11310     APInt ExitVal = (End + A).udiv(A);
11311     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11312 
11313     // Evaluate at the exit value.  If we really did fall out of the valid
11314     // range, then we computed our trip count, otherwise wrap around or other
11315     // things must have happened.
11316     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11317     if (Range.contains(Val->getValue()))
11318       return SE.getCouldNotCompute();  // Something strange happened
11319 
11320     // Ensure that the previous value is in the range.  This is a sanity check.
11321     assert(Range.contains(
11322            EvaluateConstantChrecAtConstant(this,
11323            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11324            "Linear scev computation is off in a bad way!");
11325     return SE.getConstant(ExitValue);
11326   }
11327 
11328   if (isQuadratic()) {
11329     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11330       return SE.getConstant(S.getValue());
11331   }
11332 
11333   return SE.getCouldNotCompute();
11334 }
11335 
11336 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const11337 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11338   assert(getNumOperands() > 1 && "AddRec with zero step?");
11339   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11340   // but in this case we cannot guarantee that the value returned will be an
11341   // AddRec because SCEV does not have a fixed point where it stops
11342   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11343   // may happen if we reach arithmetic depth limit while simplifying. So we
11344   // construct the returned value explicitly.
11345   SmallVector<const SCEV *, 3> Ops;
11346   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11347   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11348   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11349     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11350   // We know that the last operand is not a constant zero (otherwise it would
11351   // have been popped out earlier). This guarantees us that if the result has
11352   // the same last operand, then it will also not be popped out, meaning that
11353   // the returned value will be an AddRec.
11354   const SCEV *Last = getOperand(getNumOperands() - 1);
11355   assert(!Last->isZero() && "Recurrency with zero step?");
11356   Ops.push_back(Last);
11357   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11358                                                SCEV::FlagAnyWrap));
11359 }
11360 
11361 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)11362 static inline bool containsUndefs(const SCEV *S) {
11363   return SCEVExprContains(S, [](const SCEV *S) {
11364     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11365       return isa<UndefValue>(SU->getValue());
11366     return false;
11367   });
11368 }
11369 
11370 namespace {
11371 
11372 // Collect all steps of SCEV expressions.
11373 struct SCEVCollectStrides {
11374   ScalarEvolution &SE;
11375   SmallVectorImpl<const SCEV *> &Strides;
11376 
SCEVCollectStrides__anonb3a128373011::SCEVCollectStrides11377   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11378       : SE(SE), Strides(S) {}
11379 
follow__anonb3a128373011::SCEVCollectStrides11380   bool follow(const SCEV *S) {
11381     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11382       Strides.push_back(AR->getStepRecurrence(SE));
11383     return true;
11384   }
11385 
isDone__anonb3a128373011::SCEVCollectStrides11386   bool isDone() const { return false; }
11387 };
11388 
11389 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11390 struct SCEVCollectTerms {
11391   SmallVectorImpl<const SCEV *> &Terms;
11392 
SCEVCollectTerms__anonb3a128373011::SCEVCollectTerms11393   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11394 
follow__anonb3a128373011::SCEVCollectTerms11395   bool follow(const SCEV *S) {
11396     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11397         isa<SCEVSignExtendExpr>(S)) {
11398       if (!containsUndefs(S))
11399         Terms.push_back(S);
11400 
11401       // Stop recursion: once we collected a term, do not walk its operands.
11402       return false;
11403     }
11404 
11405     // Keep looking.
11406     return true;
11407   }
11408 
isDone__anonb3a128373011::SCEVCollectTerms11409   bool isDone() const { return false; }
11410 };
11411 
11412 // Check if a SCEV contains an AddRecExpr.
11413 struct SCEVHasAddRec {
11414   bool &ContainsAddRec;
11415 
SCEVHasAddRec__anonb3a128373011::SCEVHasAddRec11416   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11417     ContainsAddRec = false;
11418   }
11419 
follow__anonb3a128373011::SCEVHasAddRec11420   bool follow(const SCEV *S) {
11421     if (isa<SCEVAddRecExpr>(S)) {
11422       ContainsAddRec = true;
11423 
11424       // Stop recursion: once we collected a term, do not walk its operands.
11425       return false;
11426     }
11427 
11428     // Keep looking.
11429     return true;
11430   }
11431 
isDone__anonb3a128373011::SCEVHasAddRec11432   bool isDone() const { return false; }
11433 };
11434 
11435 // Find factors that are multiplied with an expression that (possibly as a
11436 // subexpression) contains an AddRecExpr. In the expression:
11437 //
11438 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11439 //
11440 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11441 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11442 // parameters as they form a product with an induction variable.
11443 //
11444 // This collector expects all array size parameters to be in the same MulExpr.
11445 // It might be necessary to later add support for collecting parameters that are
11446 // spread over different nested MulExpr.
11447 struct SCEVCollectAddRecMultiplies {
11448   SmallVectorImpl<const SCEV *> &Terms;
11449   ScalarEvolution &SE;
11450 
SCEVCollectAddRecMultiplies__anonb3a128373011::SCEVCollectAddRecMultiplies11451   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11452       : Terms(T), SE(SE) {}
11453 
follow__anonb3a128373011::SCEVCollectAddRecMultiplies11454   bool follow(const SCEV *S) {
11455     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11456       bool HasAddRec = false;
11457       SmallVector<const SCEV *, 0> Operands;
11458       for (auto Op : Mul->operands()) {
11459         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11460         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11461           Operands.push_back(Op);
11462         } else if (Unknown) {
11463           HasAddRec = true;
11464         } else {
11465           bool ContainsAddRec = false;
11466           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11467           visitAll(Op, ContiansAddRec);
11468           HasAddRec |= ContainsAddRec;
11469         }
11470       }
11471       if (Operands.size() == 0)
11472         return true;
11473 
11474       if (!HasAddRec)
11475         return false;
11476 
11477       Terms.push_back(SE.getMulExpr(Operands));
11478       // Stop recursion: once we collected a term, do not walk its operands.
11479       return false;
11480     }
11481 
11482     // Keep looking.
11483     return true;
11484   }
11485 
isDone__anonb3a128373011::SCEVCollectAddRecMultiplies11486   bool isDone() const { return false; }
11487 };
11488 
11489 } // end anonymous namespace
11490 
11491 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11492 /// two places:
11493 ///   1) The strides of AddRec expressions.
11494 ///   2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)11495 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11496     SmallVectorImpl<const SCEV *> &Terms) {
11497   SmallVector<const SCEV *, 4> Strides;
11498   SCEVCollectStrides StrideCollector(*this, Strides);
11499   visitAll(Expr, StrideCollector);
11500 
11501   LLVM_DEBUG({
11502     dbgs() << "Strides:\n";
11503     for (const SCEV *S : Strides)
11504       dbgs() << *S << "\n";
11505   });
11506 
11507   for (const SCEV *S : Strides) {
11508     SCEVCollectTerms TermCollector(Terms);
11509     visitAll(S, TermCollector);
11510   }
11511 
11512   LLVM_DEBUG({
11513     dbgs() << "Terms:\n";
11514     for (const SCEV *T : Terms)
11515       dbgs() << *T << "\n";
11516   });
11517 
11518   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11519   visitAll(Expr, MulCollector);
11520 }
11521 
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)11522 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11523                                    SmallVectorImpl<const SCEV *> &Terms,
11524                                    SmallVectorImpl<const SCEV *> &Sizes) {
11525   int Last = Terms.size() - 1;
11526   const SCEV *Step = Terms[Last];
11527 
11528   // End of recursion.
11529   if (Last == 0) {
11530     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11531       SmallVector<const SCEV *, 2> Qs;
11532       for (const SCEV *Op : M->operands())
11533         if (!isa<SCEVConstant>(Op))
11534           Qs.push_back(Op);
11535 
11536       Step = SE.getMulExpr(Qs);
11537     }
11538 
11539     Sizes.push_back(Step);
11540     return true;
11541   }
11542 
11543   for (const SCEV *&Term : Terms) {
11544     // Normalize the terms before the next call to findArrayDimensionsRec.
11545     const SCEV *Q, *R;
11546     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11547 
11548     // Bail out when GCD does not evenly divide one of the terms.
11549     if (!R->isZero())
11550       return false;
11551 
11552     Term = Q;
11553   }
11554 
11555   // Remove all SCEVConstants.
11556   Terms.erase(
11557       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11558       Terms.end());
11559 
11560   if (Terms.size() > 0)
11561     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11562       return false;
11563 
11564   Sizes.push_back(Step);
11565   return true;
11566 }
11567 
11568 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)11569 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11570   for (const SCEV *T : Terms)
11571     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11572       return true;
11573 
11574   return false;
11575 }
11576 
11577 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)11578 static inline int numberOfTerms(const SCEV *S) {
11579   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11580     return Expr->getNumOperands();
11581   return 1;
11582 }
11583 
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)11584 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11585   if (isa<SCEVConstant>(T))
11586     return nullptr;
11587 
11588   if (isa<SCEVUnknown>(T))
11589     return T;
11590 
11591   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11592     SmallVector<const SCEV *, 2> Factors;
11593     for (const SCEV *Op : M->operands())
11594       if (!isa<SCEVConstant>(Op))
11595         Factors.push_back(Op);
11596 
11597     return SE.getMulExpr(Factors);
11598   }
11599 
11600   return T;
11601 }
11602 
11603 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)11604 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11605   Type *Ty;
11606   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11607     Ty = Store->getValueOperand()->getType();
11608   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11609     Ty = Load->getType();
11610   else
11611     return nullptr;
11612 
11613   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11614   return getSizeOfExpr(ETy, Ty);
11615 }
11616 
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11617 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11618                                           SmallVectorImpl<const SCEV *> &Sizes,
11619                                           const SCEV *ElementSize) {
11620   if (Terms.size() < 1 || !ElementSize)
11621     return;
11622 
11623   // Early return when Terms do not contain parameters: we do not delinearize
11624   // non parametric SCEVs.
11625   if (!containsParameters(Terms))
11626     return;
11627 
11628   LLVM_DEBUG({
11629     dbgs() << "Terms:\n";
11630     for (const SCEV *T : Terms)
11631       dbgs() << *T << "\n";
11632   });
11633 
11634   // Remove duplicates.
11635   array_pod_sort(Terms.begin(), Terms.end());
11636   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11637 
11638   // Put larger terms first.
11639   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11640     return numberOfTerms(LHS) > numberOfTerms(RHS);
11641   });
11642 
11643   // Try to divide all terms by the element size. If term is not divisible by
11644   // element size, proceed with the original term.
11645   for (const SCEV *&Term : Terms) {
11646     const SCEV *Q, *R;
11647     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11648     if (!Q->isZero())
11649       Term = Q;
11650   }
11651 
11652   SmallVector<const SCEV *, 4> NewTerms;
11653 
11654   // Remove constant factors.
11655   for (const SCEV *T : Terms)
11656     if (const SCEV *NewT = removeConstantFactors(*this, T))
11657       NewTerms.push_back(NewT);
11658 
11659   LLVM_DEBUG({
11660     dbgs() << "Terms after sorting:\n";
11661     for (const SCEV *T : NewTerms)
11662       dbgs() << *T << "\n";
11663   });
11664 
11665   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11666     Sizes.clear();
11667     return;
11668   }
11669 
11670   // The last element to be pushed into Sizes is the size of an element.
11671   Sizes.push_back(ElementSize);
11672 
11673   LLVM_DEBUG({
11674     dbgs() << "Sizes:\n";
11675     for (const SCEV *S : Sizes)
11676       dbgs() << *S << "\n";
11677   });
11678 }
11679 
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)11680 void ScalarEvolution::computeAccessFunctions(
11681     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11682     SmallVectorImpl<const SCEV *> &Sizes) {
11683   // Early exit in case this SCEV is not an affine multivariate function.
11684   if (Sizes.empty())
11685     return;
11686 
11687   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11688     if (!AR->isAffine())
11689       return;
11690 
11691   const SCEV *Res = Expr;
11692   int Last = Sizes.size() - 1;
11693   for (int i = Last; i >= 0; i--) {
11694     const SCEV *Q, *R;
11695     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11696 
11697     LLVM_DEBUG({
11698       dbgs() << "Res: " << *Res << "\n";
11699       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11700       dbgs() << "Res divided by Sizes[i]:\n";
11701       dbgs() << "Quotient: " << *Q << "\n";
11702       dbgs() << "Remainder: " << *R << "\n";
11703     });
11704 
11705     Res = Q;
11706 
11707     // Do not record the last subscript corresponding to the size of elements in
11708     // the array.
11709     if (i == Last) {
11710 
11711       // Bail out if the remainder is too complex.
11712       if (isa<SCEVAddRecExpr>(R)) {
11713         Subscripts.clear();
11714         Sizes.clear();
11715         return;
11716       }
11717 
11718       continue;
11719     }
11720 
11721     // Record the access function for the current subscript.
11722     Subscripts.push_back(R);
11723   }
11724 
11725   // Also push in last position the remainder of the last division: it will be
11726   // the access function of the innermost dimension.
11727   Subscripts.push_back(Res);
11728 
11729   std::reverse(Subscripts.begin(), Subscripts.end());
11730 
11731   LLVM_DEBUG({
11732     dbgs() << "Subscripts:\n";
11733     for (const SCEV *S : Subscripts)
11734       dbgs() << *S << "\n";
11735   });
11736 }
11737 
11738 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11739 /// sizes of an array access. Returns the remainder of the delinearization that
11740 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11741 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11742 /// expressions in the stride and base of a SCEV corresponding to the
11743 /// computation of a GCD (greatest common divisor) of base and stride.  When
11744 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11745 ///
11746 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11747 ///
11748 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11749 ///
11750 ///    for (long i = 0; i < n; i++)
11751 ///      for (long j = 0; j < m; j++)
11752 ///        for (long k = 0; k < o; k++)
11753 ///          A[i][j][k] = 1.0;
11754 ///  }
11755 ///
11756 /// the delinearization input is the following AddRec SCEV:
11757 ///
11758 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11759 ///
11760 /// From this SCEV, we are able to say that the base offset of the access is %A
11761 /// because it appears as an offset that does not divide any of the strides in
11762 /// the loops:
11763 ///
11764 ///  CHECK: Base offset: %A
11765 ///
11766 /// and then SCEV->delinearize determines the size of some of the dimensions of
11767 /// the array as these are the multiples by which the strides are happening:
11768 ///
11769 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11770 ///
11771 /// Note that the outermost dimension remains of UnknownSize because there are
11772 /// no strides that would help identifying the size of the last dimension: when
11773 /// the array has been statically allocated, one could compute the size of that
11774 /// dimension by dividing the overall size of the array by the size of the known
11775 /// dimensions: %m * %o * 8.
11776 ///
11777 /// Finally delinearize provides the access functions for the array reference
11778 /// that does correspond to A[i][j][k] of the above C testcase:
11779 ///
11780 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11781 ///
11782 /// The testcases are checking the output of a function pass:
11783 /// DelinearizationPass that walks through all loads and stores of a function
11784 /// asking for the SCEV of the memory access with respect to all enclosing
11785 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11786 void ScalarEvolution::delinearize(const SCEV *Expr,
11787                                  SmallVectorImpl<const SCEV *> &Subscripts,
11788                                  SmallVectorImpl<const SCEV *> &Sizes,
11789                                  const SCEV *ElementSize) {
11790   // First step: collect parametric terms.
11791   SmallVector<const SCEV *, 4> Terms;
11792   collectParametricTerms(Expr, Terms);
11793 
11794   if (Terms.empty())
11795     return;
11796 
11797   // Second step: find subscript sizes.
11798   findArrayDimensions(Terms, Sizes, ElementSize);
11799 
11800   if (Sizes.empty())
11801     return;
11802 
11803   // Third step: compute the access functions for each subscript.
11804   computeAccessFunctions(Expr, Subscripts, Sizes);
11805 
11806   if (Subscripts.empty())
11807     return;
11808 
11809   LLVM_DEBUG({
11810     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11811     dbgs() << "ArrayDecl[UnknownSize]";
11812     for (const SCEV *S : Sizes)
11813       dbgs() << "[" << *S << "]";
11814 
11815     dbgs() << "\nArrayRef";
11816     for (const SCEV *S : Subscripts)
11817       dbgs() << "[" << *S << "]";
11818     dbgs() << "\n";
11819   });
11820 }
11821 
getIndexExpressionsFromGEP(const GetElementPtrInst * GEP,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<int> & Sizes)11822 bool ScalarEvolution::getIndexExpressionsFromGEP(
11823     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11824     SmallVectorImpl<int> &Sizes) {
11825   assert(Subscripts.empty() && Sizes.empty() &&
11826          "Expected output lists to be empty on entry to this function.");
11827   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11828   Type *Ty = GEP->getPointerOperandType();
11829   bool DroppedFirstDim = false;
11830   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11831     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11832     if (i == 1) {
11833       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11834         Ty = PtrTy->getElementType();
11835       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11836         Ty = ArrayTy->getElementType();
11837       } else {
11838         Subscripts.clear();
11839         Sizes.clear();
11840         return false;
11841       }
11842       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11843         if (Const->getValue()->isZero()) {
11844           DroppedFirstDim = true;
11845           continue;
11846         }
11847       Subscripts.push_back(Expr);
11848       continue;
11849     }
11850 
11851     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11852     if (!ArrayTy) {
11853       Subscripts.clear();
11854       Sizes.clear();
11855       return false;
11856     }
11857 
11858     Subscripts.push_back(Expr);
11859     if (!(DroppedFirstDim && i == 2))
11860       Sizes.push_back(ArrayTy->getNumElements());
11861 
11862     Ty = ArrayTy->getElementType();
11863   }
11864   return !Subscripts.empty();
11865 }
11866 
11867 //===----------------------------------------------------------------------===//
11868 //                   SCEVCallbackVH Class Implementation
11869 //===----------------------------------------------------------------------===//
11870 
deleted()11871 void ScalarEvolution::SCEVCallbackVH::deleted() {
11872   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11873   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11874     SE->ConstantEvolutionLoopExitValue.erase(PN);
11875   SE->eraseValueFromMap(getValPtr());
11876   // this now dangles!
11877 }
11878 
allUsesReplacedWith(Value * V)11879 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11880   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11881 
11882   // Forget all the expressions associated with users of the old value,
11883   // so that future queries will recompute the expressions using the new
11884   // value.
11885   Value *Old = getValPtr();
11886   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11887   SmallPtrSet<User *, 8> Visited;
11888   while (!Worklist.empty()) {
11889     User *U = Worklist.pop_back_val();
11890     // Deleting the Old value will cause this to dangle. Postpone
11891     // that until everything else is done.
11892     if (U == Old)
11893       continue;
11894     if (!Visited.insert(U).second)
11895       continue;
11896     if (PHINode *PN = dyn_cast<PHINode>(U))
11897       SE->ConstantEvolutionLoopExitValue.erase(PN);
11898     SE->eraseValueFromMap(U);
11899     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11900   }
11901   // Delete the Old value.
11902   if (PHINode *PN = dyn_cast<PHINode>(Old))
11903     SE->ConstantEvolutionLoopExitValue.erase(PN);
11904   SE->eraseValueFromMap(Old);
11905   // this now dangles!
11906 }
11907 
SCEVCallbackVH(Value * V,ScalarEvolution * se)11908 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11909   : CallbackVH(V), SE(se) {}
11910 
11911 //===----------------------------------------------------------------------===//
11912 //                   ScalarEvolution Class Implementation
11913 //===----------------------------------------------------------------------===//
11914 
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11915 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11916                                  AssumptionCache &AC, DominatorTree &DT,
11917                                  LoopInfo &LI)
11918     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11919       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11920       LoopDispositions(64), BlockDispositions(64) {
11921   // To use guards for proving predicates, we need to scan every instruction in
11922   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11923   // time if the IR does not actually contain any calls to
11924   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11925   //
11926   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11927   // to _add_ guards to the module when there weren't any before, and wants
11928   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11929   // efficient in lieu of being smart in that rather obscure case.
11930 
11931   auto *GuardDecl = F.getParent()->getFunction(
11932       Intrinsic::getName(Intrinsic::experimental_guard));
11933   HasGuards = GuardDecl && !GuardDecl->use_empty();
11934 }
11935 
ScalarEvolution(ScalarEvolution && Arg)11936 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11937     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11938       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11939       ValueExprMap(std::move(Arg.ValueExprMap)),
11940       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11941       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11942       PendingMerges(std::move(Arg.PendingMerges)),
11943       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11944       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11945       PredicatedBackedgeTakenCounts(
11946           std::move(Arg.PredicatedBackedgeTakenCounts)),
11947       ConstantEvolutionLoopExitValue(
11948           std::move(Arg.ConstantEvolutionLoopExitValue)),
11949       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11950       LoopDispositions(std::move(Arg.LoopDispositions)),
11951       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11952       BlockDispositions(std::move(Arg.BlockDispositions)),
11953       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11954       SignedRanges(std::move(Arg.SignedRanges)),
11955       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11956       UniquePreds(std::move(Arg.UniquePreds)),
11957       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11958       LoopUsers(std::move(Arg.LoopUsers)),
11959       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11960       FirstUnknown(Arg.FirstUnknown) {
11961   Arg.FirstUnknown = nullptr;
11962 }
11963 
~ScalarEvolution()11964 ScalarEvolution::~ScalarEvolution() {
11965   // Iterate through all the SCEVUnknown instances and call their
11966   // destructors, so that they release their references to their values.
11967   for (SCEVUnknown *U = FirstUnknown; U;) {
11968     SCEVUnknown *Tmp = U;
11969     U = U->Next;
11970     Tmp->~SCEVUnknown();
11971   }
11972   FirstUnknown = nullptr;
11973 
11974   ExprValueMap.clear();
11975   ValueExprMap.clear();
11976   HasRecMap.clear();
11977 
11978   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11979   // that a loop had multiple computable exits.
11980   for (auto &BTCI : BackedgeTakenCounts)
11981     BTCI.second.clear();
11982   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11983     BTCI.second.clear();
11984 
11985   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11986   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11987   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11988   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11989   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11990 }
11991 
hasLoopInvariantBackedgeTakenCount(const Loop * L)11992 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11993   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11994 }
11995 
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)11996 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11997                           const Loop *L) {
11998   // Print all inner loops first
11999   for (Loop *I : *L)
12000     PrintLoopInfo(OS, SE, I);
12001 
12002   OS << "Loop ";
12003   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12004   OS << ": ";
12005 
12006   SmallVector<BasicBlock *, 8> ExitingBlocks;
12007   L->getExitingBlocks(ExitingBlocks);
12008   if (ExitingBlocks.size() != 1)
12009     OS << "<multiple exits> ";
12010 
12011   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12012     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12013   else
12014     OS << "Unpredictable backedge-taken count.\n";
12015 
12016   if (ExitingBlocks.size() > 1)
12017     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12018       OS << "  exit count for " << ExitingBlock->getName() << ": "
12019          << *SE->getExitCount(L, ExitingBlock) << "\n";
12020     }
12021 
12022   OS << "Loop ";
12023   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12024   OS << ": ";
12025 
12026   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12027     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12028     if (SE->isBackedgeTakenCountMaxOrZero(L))
12029       OS << ", actual taken count either this or zero.";
12030   } else {
12031     OS << "Unpredictable max backedge-taken count. ";
12032   }
12033 
12034   OS << "\n"
12035         "Loop ";
12036   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12037   OS << ": ";
12038 
12039   SCEVUnionPredicate Pred;
12040   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12041   if (!isa<SCEVCouldNotCompute>(PBT)) {
12042     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12043     OS << " Predicates:\n";
12044     Pred.print(OS, 4);
12045   } else {
12046     OS << "Unpredictable predicated backedge-taken count. ";
12047   }
12048   OS << "\n";
12049 
12050   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12051     OS << "Loop ";
12052     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12053     OS << ": ";
12054     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12055   }
12056 }
12057 
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)12058 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12059   switch (LD) {
12060   case ScalarEvolution::LoopVariant:
12061     return "Variant";
12062   case ScalarEvolution::LoopInvariant:
12063     return "Invariant";
12064   case ScalarEvolution::LoopComputable:
12065     return "Computable";
12066   }
12067   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12068 }
12069 
print(raw_ostream & OS) const12070 void ScalarEvolution::print(raw_ostream &OS) const {
12071   // ScalarEvolution's implementation of the print method is to print
12072   // out SCEV values of all instructions that are interesting. Doing
12073   // this potentially causes it to create new SCEV objects though,
12074   // which technically conflicts with the const qualifier. This isn't
12075   // observable from outside the class though, so casting away the
12076   // const isn't dangerous.
12077   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12078 
12079   if (ClassifyExpressions) {
12080     OS << "Classifying expressions for: ";
12081     F.printAsOperand(OS, /*PrintType=*/false);
12082     OS << "\n";
12083     for (Instruction &I : instructions(F))
12084       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12085         OS << I << '\n';
12086         OS << "  -->  ";
12087         const SCEV *SV = SE.getSCEV(&I);
12088         SV->print(OS);
12089         if (!isa<SCEVCouldNotCompute>(SV)) {
12090           OS << " U: ";
12091           SE.getUnsignedRange(SV).print(OS);
12092           OS << " S: ";
12093           SE.getSignedRange(SV).print(OS);
12094         }
12095 
12096         const Loop *L = LI.getLoopFor(I.getParent());
12097 
12098         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12099         if (AtUse != SV) {
12100           OS << "  -->  ";
12101           AtUse->print(OS);
12102           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12103             OS << " U: ";
12104             SE.getUnsignedRange(AtUse).print(OS);
12105             OS << " S: ";
12106             SE.getSignedRange(AtUse).print(OS);
12107           }
12108         }
12109 
12110         if (L) {
12111           OS << "\t\t" "Exits: ";
12112           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12113           if (!SE.isLoopInvariant(ExitValue, L)) {
12114             OS << "<<Unknown>>";
12115           } else {
12116             OS << *ExitValue;
12117           }
12118 
12119           bool First = true;
12120           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12121             if (First) {
12122               OS << "\t\t" "LoopDispositions: { ";
12123               First = false;
12124             } else {
12125               OS << ", ";
12126             }
12127 
12128             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12129             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12130           }
12131 
12132           for (auto *InnerL : depth_first(L)) {
12133             if (InnerL == L)
12134               continue;
12135             if (First) {
12136               OS << "\t\t" "LoopDispositions: { ";
12137               First = false;
12138             } else {
12139               OS << ", ";
12140             }
12141 
12142             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12143             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12144           }
12145 
12146           OS << " }";
12147         }
12148 
12149         OS << "\n";
12150       }
12151   }
12152 
12153   OS << "Determining loop execution counts for: ";
12154   F.printAsOperand(OS, /*PrintType=*/false);
12155   OS << "\n";
12156   for (Loop *I : LI)
12157     PrintLoopInfo(OS, &SE, I);
12158 }
12159 
12160 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)12161 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12162   auto &Values = LoopDispositions[S];
12163   for (auto &V : Values) {
12164     if (V.getPointer() == L)
12165       return V.getInt();
12166   }
12167   Values.emplace_back(L, LoopVariant);
12168   LoopDisposition D = computeLoopDisposition(S, L);
12169   auto &Values2 = LoopDispositions[S];
12170   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12171     if (V.getPointer() == L) {
12172       V.setInt(D);
12173       break;
12174     }
12175   }
12176   return D;
12177 }
12178 
12179 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)12180 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12181   switch (S->getSCEVType()) {
12182   case scConstant:
12183     return LoopInvariant;
12184   case scPtrToInt:
12185   case scTruncate:
12186   case scZeroExtend:
12187   case scSignExtend:
12188     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12189   case scAddRecExpr: {
12190     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12191 
12192     // If L is the addrec's loop, it's computable.
12193     if (AR->getLoop() == L)
12194       return LoopComputable;
12195 
12196     // Add recurrences are never invariant in the function-body (null loop).
12197     if (!L)
12198       return LoopVariant;
12199 
12200     // Everything that is not defined at loop entry is variant.
12201     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12202       return LoopVariant;
12203     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12204            " dominate the contained loop's header?");
12205 
12206     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12207     if (AR->getLoop()->contains(L))
12208       return LoopInvariant;
12209 
12210     // This recurrence is variant w.r.t. L if any of its operands
12211     // are variant.
12212     for (auto *Op : AR->operands())
12213       if (!isLoopInvariant(Op, L))
12214         return LoopVariant;
12215 
12216     // Otherwise it's loop-invariant.
12217     return LoopInvariant;
12218   }
12219   case scAddExpr:
12220   case scMulExpr:
12221   case scUMaxExpr:
12222   case scSMaxExpr:
12223   case scUMinExpr:
12224   case scSMinExpr: {
12225     bool HasVarying = false;
12226     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12227       LoopDisposition D = getLoopDisposition(Op, L);
12228       if (D == LoopVariant)
12229         return LoopVariant;
12230       if (D == LoopComputable)
12231         HasVarying = true;
12232     }
12233     return HasVarying ? LoopComputable : LoopInvariant;
12234   }
12235   case scUDivExpr: {
12236     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12237     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12238     if (LD == LoopVariant)
12239       return LoopVariant;
12240     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12241     if (RD == LoopVariant)
12242       return LoopVariant;
12243     return (LD == LoopInvariant && RD == LoopInvariant) ?
12244            LoopInvariant : LoopComputable;
12245   }
12246   case scUnknown:
12247     // All non-instruction values are loop invariant.  All instructions are loop
12248     // invariant if they are not contained in the specified loop.
12249     // Instructions are never considered invariant in the function body
12250     // (null loop) because they are defined within the "loop".
12251     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12252       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12253     return LoopInvariant;
12254   case scCouldNotCompute:
12255     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12256   }
12257   llvm_unreachable("Unknown SCEV kind!");
12258 }
12259 
isLoopInvariant(const SCEV * S,const Loop * L)12260 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12261   return getLoopDisposition(S, L) == LoopInvariant;
12262 }
12263 
hasComputableLoopEvolution(const SCEV * S,const Loop * L)12264 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12265   return getLoopDisposition(S, L) == LoopComputable;
12266 }
12267 
12268 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)12269 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12270   auto &Values = BlockDispositions[S];
12271   for (auto &V : Values) {
12272     if (V.getPointer() == BB)
12273       return V.getInt();
12274   }
12275   Values.emplace_back(BB, DoesNotDominateBlock);
12276   BlockDisposition D = computeBlockDisposition(S, BB);
12277   auto &Values2 = BlockDispositions[S];
12278   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12279     if (V.getPointer() == BB) {
12280       V.setInt(D);
12281       break;
12282     }
12283   }
12284   return D;
12285 }
12286 
12287 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)12288 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12289   switch (S->getSCEVType()) {
12290   case scConstant:
12291     return ProperlyDominatesBlock;
12292   case scPtrToInt:
12293   case scTruncate:
12294   case scZeroExtend:
12295   case scSignExtend:
12296     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12297   case scAddRecExpr: {
12298     // This uses a "dominates" query instead of "properly dominates" query
12299     // to test for proper dominance too, because the instruction which
12300     // produces the addrec's value is a PHI, and a PHI effectively properly
12301     // dominates its entire containing block.
12302     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12303     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12304       return DoesNotDominateBlock;
12305 
12306     // Fall through into SCEVNAryExpr handling.
12307     LLVM_FALLTHROUGH;
12308   }
12309   case scAddExpr:
12310   case scMulExpr:
12311   case scUMaxExpr:
12312   case scSMaxExpr:
12313   case scUMinExpr:
12314   case scSMinExpr: {
12315     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12316     bool Proper = true;
12317     for (const SCEV *NAryOp : NAry->operands()) {
12318       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12319       if (D == DoesNotDominateBlock)
12320         return DoesNotDominateBlock;
12321       if (D == DominatesBlock)
12322         Proper = false;
12323     }
12324     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12325   }
12326   case scUDivExpr: {
12327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12328     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12329     BlockDisposition LD = getBlockDisposition(LHS, BB);
12330     if (LD == DoesNotDominateBlock)
12331       return DoesNotDominateBlock;
12332     BlockDisposition RD = getBlockDisposition(RHS, BB);
12333     if (RD == DoesNotDominateBlock)
12334       return DoesNotDominateBlock;
12335     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12336       ProperlyDominatesBlock : DominatesBlock;
12337   }
12338   case scUnknown:
12339     if (Instruction *I =
12340           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12341       if (I->getParent() == BB)
12342         return DominatesBlock;
12343       if (DT.properlyDominates(I->getParent(), BB))
12344         return ProperlyDominatesBlock;
12345       return DoesNotDominateBlock;
12346     }
12347     return ProperlyDominatesBlock;
12348   case scCouldNotCompute:
12349     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12350   }
12351   llvm_unreachable("Unknown SCEV kind!");
12352 }
12353 
dominates(const SCEV * S,const BasicBlock * BB)12354 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12355   return getBlockDisposition(S, BB) >= DominatesBlock;
12356 }
12357 
properlyDominates(const SCEV * S,const BasicBlock * BB)12358 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12359   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12360 }
12361 
hasOperand(const SCEV * S,const SCEV * Op) const12362 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12363   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12364 }
12365 
hasOperand(const SCEV * S) const12366 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12367   auto IsS = [&](const SCEV *X) { return S == X; };
12368   auto ContainsS = [&](const SCEV *X) {
12369     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12370   };
12371   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12372 }
12373 
12374 void
forgetMemoizedResults(const SCEV * S)12375 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12376   ValuesAtScopes.erase(S);
12377   LoopDispositions.erase(S);
12378   BlockDispositions.erase(S);
12379   UnsignedRanges.erase(S);
12380   SignedRanges.erase(S);
12381   ExprValueMap.erase(S);
12382   HasRecMap.erase(S);
12383   MinTrailingZerosCache.erase(S);
12384 
12385   for (auto I = PredicatedSCEVRewrites.begin();
12386        I != PredicatedSCEVRewrites.end();) {
12387     std::pair<const SCEV *, const Loop *> Entry = I->first;
12388     if (Entry.first == S)
12389       PredicatedSCEVRewrites.erase(I++);
12390     else
12391       ++I;
12392   }
12393 
12394   auto RemoveSCEVFromBackedgeMap =
12395       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12396         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12397           BackedgeTakenInfo &BEInfo = I->second;
12398           if (BEInfo.hasOperand(S, this)) {
12399             BEInfo.clear();
12400             Map.erase(I++);
12401           } else
12402             ++I;
12403         }
12404       };
12405 
12406   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12407   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12408 }
12409 
12410 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)12411 ScalarEvolution::getUsedLoops(const SCEV *S,
12412                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12413   struct FindUsedLoops {
12414     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12415         : LoopsUsed(LoopsUsed) {}
12416     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12417     bool follow(const SCEV *S) {
12418       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12419         LoopsUsed.insert(AR->getLoop());
12420       return true;
12421     }
12422 
12423     bool isDone() const { return false; }
12424   };
12425 
12426   FindUsedLoops F(LoopsUsed);
12427   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12428 }
12429 
addToLoopUseLists(const SCEV * S)12430 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12431   SmallPtrSet<const Loop *, 8> LoopsUsed;
12432   getUsedLoops(S, LoopsUsed);
12433   for (auto *L : LoopsUsed)
12434     LoopUsers[L].push_back(S);
12435 }
12436 
verify() const12437 void ScalarEvolution::verify() const {
12438   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12439   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12440 
12441   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12442 
12443   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12444   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12445     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12446 
12447     const SCEV *visitConstant(const SCEVConstant *Constant) {
12448       return SE.getConstant(Constant->getAPInt());
12449     }
12450 
12451     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12452       return SE.getUnknown(Expr->getValue());
12453     }
12454 
12455     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12456       return SE.getCouldNotCompute();
12457     }
12458   };
12459 
12460   SCEVMapper SCM(SE2);
12461 
12462   while (!LoopStack.empty()) {
12463     auto *L = LoopStack.pop_back_val();
12464     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12465 
12466     auto *CurBECount = SCM.visit(
12467         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12468     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12469 
12470     if (CurBECount == SE2.getCouldNotCompute() ||
12471         NewBECount == SE2.getCouldNotCompute()) {
12472       // NB! This situation is legal, but is very suspicious -- whatever pass
12473       // change the loop to make a trip count go from could not compute to
12474       // computable or vice-versa *should have* invalidated SCEV.  However, we
12475       // choose not to assert here (for now) since we don't want false
12476       // positives.
12477       continue;
12478     }
12479 
12480     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12481       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12482       // not propagate undef aggressively).  This means we can (and do) fail
12483       // verification in cases where a transform makes the trip count of a loop
12484       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12485       // both cases the loop iterates "undef" times, but SCEV thinks we
12486       // increased the trip count of the loop by 1 incorrectly.
12487       continue;
12488     }
12489 
12490     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12491         SE.getTypeSizeInBits(NewBECount->getType()))
12492       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12493     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12494              SE.getTypeSizeInBits(NewBECount->getType()))
12495       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12496 
12497     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12498 
12499     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12500     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12501       dbgs() << "Trip Count for " << *L << " Changed!\n";
12502       dbgs() << "Old: " << *CurBECount << "\n";
12503       dbgs() << "New: " << *NewBECount << "\n";
12504       dbgs() << "Delta: " << *Delta << "\n";
12505       std::abort();
12506     }
12507   }
12508 
12509   // Collect all valid loops currently in LoopInfo.
12510   SmallPtrSet<Loop *, 32> ValidLoops;
12511   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12512   while (!Worklist.empty()) {
12513     Loop *L = Worklist.pop_back_val();
12514     if (ValidLoops.contains(L))
12515       continue;
12516     ValidLoops.insert(L);
12517     Worklist.append(L->begin(), L->end());
12518   }
12519   // Check for SCEV expressions referencing invalid/deleted loops.
12520   for (auto &KV : ValueExprMap) {
12521     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12522     if (!AR)
12523       continue;
12524     assert(ValidLoops.contains(AR->getLoop()) &&
12525            "AddRec references invalid loop");
12526   }
12527 }
12528 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)12529 bool ScalarEvolution::invalidate(
12530     Function &F, const PreservedAnalyses &PA,
12531     FunctionAnalysisManager::Invalidator &Inv) {
12532   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12533   // of its dependencies is invalidated.
12534   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12535   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12536          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12537          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12538          Inv.invalidate<LoopAnalysis>(F, PA);
12539 }
12540 
12541 AnalysisKey ScalarEvolutionAnalysis::Key;
12542 
run(Function & F,FunctionAnalysisManager & AM)12543 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12544                                              FunctionAnalysisManager &AM) {
12545   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12546                          AM.getResult<AssumptionAnalysis>(F),
12547                          AM.getResult<DominatorTreeAnalysis>(F),
12548                          AM.getResult<LoopAnalysis>(F));
12549 }
12550 
12551 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12552 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12553   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12554   return PreservedAnalyses::all();
12555 }
12556 
12557 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12558 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12559   // For compatibility with opt's -analyze feature under legacy pass manager
12560   // which was not ported to NPM. This keeps tests using
12561   // update_analyze_test_checks.py working.
12562   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12563      << F.getName() << "':\n";
12564   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12565   return PreservedAnalyses::all();
12566 }
12567 
12568 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12569                       "Scalar Evolution Analysis", false, true)
12570 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12571 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12574 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12575                     "Scalar Evolution Analysis", false, true)
12576 
12577 char ScalarEvolutionWrapperPass::ID = 0;
12578 
ScalarEvolutionWrapperPass()12579 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12580   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12581 }
12582 
runOnFunction(Function & F)12583 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12584   SE.reset(new ScalarEvolution(
12585       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12586       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12587       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12588       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12589   return false;
12590 }
12591 
releaseMemory()12592 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12593 
print(raw_ostream & OS,const Module *) const12594 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12595   SE->print(OS);
12596 }
12597 
verifyAnalysis() const12598 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12599   if (!VerifySCEV)
12600     return;
12601 
12602   SE->verify();
12603 }
12604 
getAnalysisUsage(AnalysisUsage & AU) const12605 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12606   AU.setPreservesAll();
12607   AU.addRequiredTransitive<AssumptionCacheTracker>();
12608   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12609   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12610   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12611 }
12612 
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)12613 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12614                                                         const SCEV *RHS) {
12615   FoldingSetNodeID ID;
12616   assert(LHS->getType() == RHS->getType() &&
12617          "Type mismatch between LHS and RHS");
12618   // Unique this node based on the arguments
12619   ID.AddInteger(SCEVPredicate::P_Equal);
12620   ID.AddPointer(LHS);
12621   ID.AddPointer(RHS);
12622   void *IP = nullptr;
12623   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12624     return S;
12625   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12626       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12627   UniquePreds.InsertNode(Eq, IP);
12628   return Eq;
12629 }
12630 
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12631 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12632     const SCEVAddRecExpr *AR,
12633     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12634   FoldingSetNodeID ID;
12635   // Unique this node based on the arguments
12636   ID.AddInteger(SCEVPredicate::P_Wrap);
12637   ID.AddPointer(AR);
12638   ID.AddInteger(AddedFlags);
12639   void *IP = nullptr;
12640   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12641     return S;
12642   auto *OF = new (SCEVAllocator)
12643       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12644   UniquePreds.InsertNode(OF, IP);
12645   return OF;
12646 }
12647 
12648 namespace {
12649 
12650 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12651 public:
12652 
12653   /// Rewrites \p S in the context of a loop L and the SCEV predication
12654   /// infrastructure.
12655   ///
12656   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12657   /// equivalences present in \p Pred.
12658   ///
12659   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12660   /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12661   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12662                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12663                              SCEVUnionPredicate *Pred) {
12664     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12665     return Rewriter.visit(S);
12666   }
12667 
visitUnknown(const SCEVUnknown * Expr)12668   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12669     if (Pred) {
12670       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12671       for (auto *Pred : ExprPreds)
12672         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12673           if (IPred->getLHS() == Expr)
12674             return IPred->getRHS();
12675     }
12676     return convertToAddRecWithPreds(Expr);
12677   }
12678 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)12679   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12680     const SCEV *Operand = visit(Expr->getOperand());
12681     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12682     if (AR && AR->getLoop() == L && AR->isAffine()) {
12683       // This couldn't be folded because the operand didn't have the nuw
12684       // flag. Add the nusw flag as an assumption that we could make.
12685       const SCEV *Step = AR->getStepRecurrence(SE);
12686       Type *Ty = Expr->getType();
12687       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12688         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12689                                 SE.getSignExtendExpr(Step, Ty), L,
12690                                 AR->getNoWrapFlags());
12691     }
12692     return SE.getZeroExtendExpr(Operand, Expr->getType());
12693   }
12694 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)12695   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12696     const SCEV *Operand = visit(Expr->getOperand());
12697     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12698     if (AR && AR->getLoop() == L && AR->isAffine()) {
12699       // This couldn't be folded because the operand didn't have the nsw
12700       // flag. Add the nssw flag as an assumption that we could make.
12701       const SCEV *Step = AR->getStepRecurrence(SE);
12702       Type *Ty = Expr->getType();
12703       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12704         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12705                                 SE.getSignExtendExpr(Step, Ty), L,
12706                                 AR->getNoWrapFlags());
12707     }
12708     return SE.getSignExtendExpr(Operand, Expr->getType());
12709   }
12710 
12711 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12712   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12713                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12714                         SCEVUnionPredicate *Pred)
12715       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12716 
addOverflowAssumption(const SCEVPredicate * P)12717   bool addOverflowAssumption(const SCEVPredicate *P) {
12718     if (!NewPreds) {
12719       // Check if we've already made this assumption.
12720       return Pred && Pred->implies(P);
12721     }
12722     NewPreds->insert(P);
12723     return true;
12724   }
12725 
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12726   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12727                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12728     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12729     return addOverflowAssumption(A);
12730   }
12731 
12732   // If \p Expr represents a PHINode, we try to see if it can be represented
12733   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12734   // to add this predicate as a runtime overflow check, we return the AddRec.
12735   // If \p Expr does not meet these conditions (is not a PHI node, or we
12736   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12737   // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)12738   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12739     if (!isa<PHINode>(Expr->getValue()))
12740       return Expr;
12741     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12742     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12743     if (!PredicatedRewrite)
12744       return Expr;
12745     for (auto *P : PredicatedRewrite->second){
12746       // Wrap predicates from outer loops are not supported.
12747       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12748         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12749         if (L != AR->getLoop())
12750           return Expr;
12751       }
12752       if (!addOverflowAssumption(P))
12753         return Expr;
12754     }
12755     return PredicatedRewrite->first;
12756   }
12757 
12758   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12759   SCEVUnionPredicate *Pred;
12760   const Loop *L;
12761 };
12762 
12763 } // end anonymous namespace
12764 
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)12765 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12766                                                    SCEVUnionPredicate &Preds) {
12767   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12768 }
12769 
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)12770 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12771     const SCEV *S, const Loop *L,
12772     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12773   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12774   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12775   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12776 
12777   if (!AddRec)
12778     return nullptr;
12779 
12780   // Since the transformation was successful, we can now transfer the SCEV
12781   // predicates.
12782   for (auto *P : TransformPreds)
12783     Preds.insert(P);
12784 
12785   return AddRec;
12786 }
12787 
12788 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)12789 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12790                              SCEVPredicateKind Kind)
12791     : FastID(ID), Kind(Kind) {}
12792 
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)12793 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12794                                        const SCEV *LHS, const SCEV *RHS)
12795     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12796   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12797   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12798 }
12799 
implies(const SCEVPredicate * N) const12800 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12801   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12802 
12803   if (!Op)
12804     return false;
12805 
12806   return Op->LHS == LHS && Op->RHS == RHS;
12807 }
12808 
isAlwaysTrue() const12809 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12810 
getExpr() const12811 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12812 
print(raw_ostream & OS,unsigned Depth) const12813 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12814   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12815 }
12816 
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12817 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12818                                      const SCEVAddRecExpr *AR,
12819                                      IncrementWrapFlags Flags)
12820     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12821 
getExpr() const12822 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12823 
implies(const SCEVPredicate * N) const12824 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12825   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12826 
12827   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12828 }
12829 
isAlwaysTrue() const12830 bool SCEVWrapPredicate::isAlwaysTrue() const {
12831   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12832   IncrementWrapFlags IFlags = Flags;
12833 
12834   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12835     IFlags = clearFlags(IFlags, IncrementNSSW);
12836 
12837   return IFlags == IncrementAnyWrap;
12838 }
12839 
print(raw_ostream & OS,unsigned Depth) const12840 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12841   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12842   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12843     OS << "<nusw>";
12844   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12845     OS << "<nssw>";
12846   OS << "\n";
12847 }
12848 
12849 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12850 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12851                                    ScalarEvolution &SE) {
12852   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12853   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12854 
12855   // We can safely transfer the NSW flag as NSSW.
12856   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12857     ImpliedFlags = IncrementNSSW;
12858 
12859   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12860     // If the increment is positive, the SCEV NUW flag will also imply the
12861     // WrapPredicate NUSW flag.
12862     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12863       if (Step->getValue()->getValue().isNonNegative())
12864         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12865   }
12866 
12867   return ImpliedFlags;
12868 }
12869 
12870 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12871 SCEVUnionPredicate::SCEVUnionPredicate()
12872     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12873 
isAlwaysTrue() const12874 bool SCEVUnionPredicate::isAlwaysTrue() const {
12875   return all_of(Preds,
12876                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12877 }
12878 
12879 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12880 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12881   auto I = SCEVToPreds.find(Expr);
12882   if (I == SCEVToPreds.end())
12883     return ArrayRef<const SCEVPredicate *>();
12884   return I->second;
12885 }
12886 
implies(const SCEVPredicate * N) const12887 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12888   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12889     return all_of(Set->Preds,
12890                   [this](const SCEVPredicate *I) { return this->implies(I); });
12891 
12892   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12893   if (ScevPredsIt == SCEVToPreds.end())
12894     return false;
12895   auto &SCEVPreds = ScevPredsIt->second;
12896 
12897   return any_of(SCEVPreds,
12898                 [N](const SCEVPredicate *I) { return I->implies(N); });
12899 }
12900 
getExpr() const12901 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12902 
print(raw_ostream & OS,unsigned Depth) const12903 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12904   for (auto Pred : Preds)
12905     Pred->print(OS, Depth);
12906 }
12907 
add(const SCEVPredicate * N)12908 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12909   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12910     for (auto Pred : Set->Preds)
12911       add(Pred);
12912     return;
12913   }
12914 
12915   if (implies(N))
12916     return;
12917 
12918   const SCEV *Key = N->getExpr();
12919   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12920                 " associated expression!");
12921 
12922   SCEVToPreds[Key].push_back(N);
12923   Preds.push_back(N);
12924 }
12925 
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12926 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12927                                                      Loop &L)
12928     : SE(SE), L(L) {}
12929 
getSCEV(Value * V)12930 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12931   const SCEV *Expr = SE.getSCEV(V);
12932   RewriteEntry &Entry = RewriteMap[Expr];
12933 
12934   // If we already have an entry and the version matches, return it.
12935   if (Entry.second && Generation == Entry.first)
12936     return Entry.second;
12937 
12938   // We found an entry but it's stale. Rewrite the stale entry
12939   // according to the current predicate.
12940   if (Entry.second)
12941     Expr = Entry.second;
12942 
12943   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12944   Entry = {Generation, NewSCEV};
12945 
12946   return NewSCEV;
12947 }
12948 
getBackedgeTakenCount()12949 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12950   if (!BackedgeCount) {
12951     SCEVUnionPredicate BackedgePred;
12952     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12953     addPredicate(BackedgePred);
12954   }
12955   return BackedgeCount;
12956 }
12957 
addPredicate(const SCEVPredicate & Pred)12958 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12959   if (Preds.implies(&Pred))
12960     return;
12961   Preds.add(&Pred);
12962   updateGeneration();
12963 }
12964 
getUnionPredicate() const12965 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12966   return Preds;
12967 }
12968 
updateGeneration()12969 void PredicatedScalarEvolution::updateGeneration() {
12970   // If the generation number wrapped recompute everything.
12971   if (++Generation == 0) {
12972     for (auto &II : RewriteMap) {
12973       const SCEV *Rewritten = II.second.second;
12974       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12975     }
12976   }
12977 }
12978 
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12979 void PredicatedScalarEvolution::setNoOverflow(
12980     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12981   const SCEV *Expr = getSCEV(V);
12982   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12983 
12984   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12985 
12986   // Clear the statically implied flags.
12987   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12988   addPredicate(*SE.getWrapPredicate(AR, Flags));
12989 
12990   auto II = FlagsMap.insert({V, Flags});
12991   if (!II.second)
12992     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12993 }
12994 
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12995 bool PredicatedScalarEvolution::hasNoOverflow(
12996     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12997   const SCEV *Expr = getSCEV(V);
12998   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12999 
13000   Flags = SCEVWrapPredicate::clearFlags(
13001       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13002 
13003   auto II = FlagsMap.find(V);
13004 
13005   if (II != FlagsMap.end())
13006     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13007 
13008   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13009 }
13010 
getAsAddRec(Value * V)13011 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13012   const SCEV *Expr = this->getSCEV(V);
13013   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13014   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13015 
13016   if (!New)
13017     return nullptr;
13018 
13019   for (auto *P : NewPreds)
13020     Preds.add(P);
13021 
13022   updateGeneration();
13023   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13024   return New;
13025 }
13026 
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)13027 PredicatedScalarEvolution::PredicatedScalarEvolution(
13028     const PredicatedScalarEvolution &Init)
13029     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13030       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13031   for (auto I : Init.FlagsMap)
13032     FlagsMap.insert(I);
13033 }
13034 
print(raw_ostream & OS,unsigned Depth) const13035 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13036   // For each block.
13037   for (auto *BB : L.getBlocks())
13038     for (auto &I : *BB) {
13039       if (!SE.isSCEVable(I.getType()))
13040         continue;
13041 
13042       auto *Expr = SE.getSCEV(&I);
13043       auto II = RewriteMap.find(Expr);
13044 
13045       if (II == RewriteMap.end())
13046         continue;
13047 
13048       // Don't print things that are not interesting.
13049       if (II->second.second == Expr)
13050         continue;
13051 
13052       OS.indent(Depth) << "[PSE]" << I << ":\n";
13053       OS.indent(Depth + 2) << *Expr << "\n";
13054       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13055     }
13056 }
13057 
13058 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13059 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13060 // for URem with constant power-of-2 second operands.
13061 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13062 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)13063 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13064                                 const SCEV *&RHS) {
13065   // Try to match 'zext (trunc A to iB) to iY', which is used
13066   // for URem with constant power-of-2 second operands. Make sure the size of
13067   // the operand A matches the size of the whole expressions.
13068   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13069     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13070       LHS = Trunc->getOperand();
13071       if (LHS->getType() != Expr->getType())
13072         LHS = getZeroExtendExpr(LHS, Expr->getType());
13073       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13074                         << getTypeSizeInBits(Trunc->getType()));
13075       return true;
13076     }
13077   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13078   if (Add == nullptr || Add->getNumOperands() != 2)
13079     return false;
13080 
13081   const SCEV *A = Add->getOperand(1);
13082   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13083 
13084   if (Mul == nullptr)
13085     return false;
13086 
13087   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13088     // (SomeExpr + (-(SomeExpr / B) * B)).
13089     if (Expr == getURemExpr(A, B)) {
13090       LHS = A;
13091       RHS = B;
13092       return true;
13093     }
13094     return false;
13095   };
13096 
13097   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13098   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13099     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13100            MatchURemWithDivisor(Mul->getOperand(2));
13101 
13102   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13103   if (Mul->getNumOperands() == 2)
13104     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13105            MatchURemWithDivisor(Mul->getOperand(0)) ||
13106            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13107            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13108   return false;
13109 }
13110 
13111 const SCEV *
computeSymbolicMaxBackedgeTakenCount(const Loop * L)13112 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13113   SmallVector<BasicBlock*, 16> ExitingBlocks;
13114   L->getExitingBlocks(ExitingBlocks);
13115 
13116   // Form an expression for the maximum exit count possible for this loop. We
13117   // merge the max and exact information to approximate a version of
13118   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13119   SmallVector<const SCEV*, 4> ExitCounts;
13120   for (BasicBlock *ExitingBB : ExitingBlocks) {
13121     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13122     if (isa<SCEVCouldNotCompute>(ExitCount))
13123       ExitCount = getExitCount(L, ExitingBB,
13124                                   ScalarEvolution::ConstantMaximum);
13125     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13126       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13127              "We should only have known counts for exiting blocks that "
13128              "dominate latch!");
13129       ExitCounts.push_back(ExitCount);
13130     }
13131   }
13132   if (ExitCounts.empty())
13133     return getCouldNotCompute();
13134   return getUMinFromMismatchedTypes(ExitCounts);
13135 }
13136 
13137 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13138 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13139 /// we cannot guarantee that the replacement is loop invariant in the loop of
13140 /// the AddRec.
13141 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13142   ValueToSCEVMapTy &Map;
13143 
13144 public:
SCEVLoopGuardRewriter(ScalarEvolution & SE,ValueToSCEVMapTy & M)13145   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13146       : SCEVRewriteVisitor(SE), Map(M) {}
13147 
visitAddRecExpr(const SCEVAddRecExpr * Expr)13148   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13149 
visitUnknown(const SCEVUnknown * Expr)13150   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13151     auto I = Map.find(Expr->getValue());
13152     if (I == Map.end())
13153       return Expr;
13154     return I->second;
13155   }
13156 };
13157 
applyLoopGuards(const SCEV * Expr,const Loop * L)13158 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13159   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13160                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13161     if (!isa<SCEVUnknown>(LHS)) {
13162       std::swap(LHS, RHS);
13163       Predicate = CmpInst::getSwappedPredicate(Predicate);
13164     }
13165 
13166     // For now, limit to conditions that provide information about unknown
13167     // expressions.
13168     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13169     if (!LHSUnknown)
13170       return;
13171 
13172     // TODO: use information from more predicates.
13173     switch (Predicate) {
13174     case CmpInst::ICMP_ULT: {
13175       if (!containsAddRecurrence(RHS)) {
13176         const SCEV *Base = LHS;
13177         auto I = RewriteMap.find(LHSUnknown->getValue());
13178         if (I != RewriteMap.end())
13179           Base = I->second;
13180 
13181         RewriteMap[LHSUnknown->getValue()] =
13182             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13183       }
13184       break;
13185     }
13186     case CmpInst::ICMP_ULE: {
13187       if (!containsAddRecurrence(RHS)) {
13188         const SCEV *Base = LHS;
13189         auto I = RewriteMap.find(LHSUnknown->getValue());
13190         if (I != RewriteMap.end())
13191           Base = I->second;
13192         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13193       }
13194       break;
13195     }
13196     case CmpInst::ICMP_EQ:
13197       if (isa<SCEVConstant>(RHS))
13198         RewriteMap[LHSUnknown->getValue()] = RHS;
13199       break;
13200     case CmpInst::ICMP_NE:
13201       if (isa<SCEVConstant>(RHS) &&
13202           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13203         RewriteMap[LHSUnknown->getValue()] =
13204             getUMaxExpr(LHS, getOne(RHS->getType()));
13205       break;
13206     default:
13207       break;
13208     }
13209   };
13210   // Starting at the loop predecessor, climb up the predecessor chain, as long
13211   // as there are predecessors that can be found that have unique successors
13212   // leading to the original header.
13213   // TODO: share this logic with isLoopEntryGuardedByCond.
13214   ValueToSCEVMapTy RewriteMap;
13215   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13216            L->getLoopPredecessor(), L->getHeader());
13217        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13218 
13219     const BranchInst *LoopEntryPredicate =
13220         dyn_cast<BranchInst>(Pair.first->getTerminator());
13221     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13222       continue;
13223 
13224     // TODO: use information from more complex conditions, e.g. AND expressions.
13225     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13226     if (!Cmp)
13227       continue;
13228 
13229     auto Predicate = Cmp->getPredicate();
13230     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13231       Predicate = CmpInst::getInversePredicate(Predicate);
13232     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13233                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13234   }
13235 
13236   // Also collect information from assumptions dominating the loop.
13237   for (auto &AssumeVH : AC.assumptions()) {
13238     if (!AssumeVH)
13239       continue;
13240     auto *AssumeI = cast<CallInst>(AssumeVH);
13241     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13242     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13243       continue;
13244     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13245                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13246   }
13247 
13248   if (RewriteMap.empty())
13249     return Expr;
13250   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13251   return Rewriter.visit(Expr);
13252 }
13253