1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machinelicm"
60 
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63                  cl::desc("MachineLICM should avoid speculation"),
64                  cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68                 cl::desc("MachineLICM should hoist even cheap instructions"),
69                 cl::init(false), cl::Hidden);
70 
71 static cl::opt<bool>
72 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
73                        cl::desc("MachineLICM should sink instructions into "
74                                 "loops to avoid register spills"),
75                        cl::init(false), cl::Hidden);
76 static cl::opt<bool>
77 HoistConstStores("hoist-const-stores",
78                  cl::desc("Hoist invariant stores"),
79                  cl::init(true), cl::Hidden);
80 // The default threshold of 100 (i.e. if target block is 100 times hotter)
81 // is based on empirical data on a single target and is subject to tuning.
82 static cl::opt<unsigned>
83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
84                              cl::desc("Do not hoist instructions if target"
85                              "block is N times hotter than the source."),
86                              cl::init(100), cl::Hidden);
87 
88 enum class UseBFI { None, PGO, All };
89 
90 static cl::opt<UseBFI>
91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
92                               cl::desc("Disable hoisting instructions to"
93                               " hotter blocks"),
94                               cl::init(UseBFI::PGO), cl::Hidden,
95                               cl::values(clEnumValN(UseBFI::None, "none",
96                               "disable the feature"),
97                               clEnumValN(UseBFI::PGO, "pgo",
98                               "enable the feature when using profile data"),
99                               clEnumValN(UseBFI::All, "all",
100                               "enable the feature with/wo profile data")));
101 
102 STATISTIC(NumHoisted,
103           "Number of machine instructions hoisted out of loops");
104 STATISTIC(NumLowRP,
105           "Number of instructions hoisted in low reg pressure situation");
106 STATISTIC(NumHighLatency,
107           "Number of high latency instructions hoisted");
108 STATISTIC(NumCSEed,
109           "Number of hoisted machine instructions CSEed");
110 STATISTIC(NumPostRAHoisted,
111           "Number of machine instructions hoisted out of loops post regalloc");
112 STATISTIC(NumStoreConst,
113           "Number of stores of const phys reg hoisted out of loops");
114 STATISTIC(NumNotHoistedDueToHotness,
115           "Number of instructions not hoisted due to block frequency");
116 
117 namespace {
118 
119   class MachineLICMBase : public MachineFunctionPass {
120     const TargetInstrInfo *TII;
121     const TargetLoweringBase *TLI;
122     const TargetRegisterInfo *TRI;
123     const MachineFrameInfo *MFI;
124     MachineRegisterInfo *MRI;
125     TargetSchedModel SchedModel;
126     bool PreRegAlloc;
127     bool HasProfileData;
128 
129     // Various analyses that we use...
130     AliasAnalysis        *AA;      // Alias analysis info.
131     MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
132     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
133     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
134 
135     // State that is updated as we process loops
136     bool         Changed;          // True if a loop is changed.
137     bool         FirstInLoop;      // True if it's the first LICM in the loop.
138     MachineLoop *CurLoop;          // The current loop we are working on.
139     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
140 
141     // Exit blocks for CurLoop.
142     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
143 
isExitBlock(const MachineBasicBlock * MBB) const144     bool isExitBlock(const MachineBasicBlock *MBB) const {
145       return is_contained(ExitBlocks, MBB);
146     }
147 
148     // Track 'estimated' register pressure.
149     SmallSet<Register, 32> RegSeen;
150     SmallVector<unsigned, 8> RegPressure;
151 
152     // Register pressure "limit" per register pressure set. If the pressure
153     // is higher than the limit, then it's considered high.
154     SmallVector<unsigned, 8> RegLimit;
155 
156     // Register pressure on path leading from loop preheader to current BB.
157     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
158 
159     // For each opcode, keep a list of potential CSE instructions.
160     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
161 
162     enum {
163       SpeculateFalse   = 0,
164       SpeculateTrue    = 1,
165       SpeculateUnknown = 2
166     };
167 
168     // If a MBB does not dominate loop exiting blocks then it may not safe
169     // to hoist loads from this block.
170     // Tri-state: 0 - false, 1 - true, 2 - unknown
171     unsigned SpeculationState;
172 
173   public:
MachineLICMBase(char & PassID,bool PreRegAlloc)174     MachineLICMBase(char &PassID, bool PreRegAlloc)
175         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
176 
177     bool runOnMachineFunction(MachineFunction &MF) override;
178 
getAnalysisUsage(AnalysisUsage & AU) const179     void getAnalysisUsage(AnalysisUsage &AU) const override {
180       AU.addRequired<MachineLoopInfo>();
181       if (DisableHoistingToHotterBlocks != UseBFI::None)
182         AU.addRequired<MachineBlockFrequencyInfo>();
183       AU.addRequired<MachineDominatorTree>();
184       AU.addRequired<AAResultsWrapperPass>();
185       AU.addPreserved<MachineLoopInfo>();
186       MachineFunctionPass::getAnalysisUsage(AU);
187     }
188 
releaseMemory()189     void releaseMemory() override {
190       RegSeen.clear();
191       RegPressure.clear();
192       RegLimit.clear();
193       BackTrace.clear();
194       CSEMap.clear();
195     }
196 
197   private:
198     /// Keep track of information about hoisting candidates.
199     struct CandidateInfo {
200       MachineInstr *MI;
201       unsigned      Def;
202       int           FI;
203 
CandidateInfo__anone76600a70111::MachineLICMBase::CandidateInfo204       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
205         : MI(mi), Def(def), FI(fi) {}
206     };
207 
208     void HoistRegionPostRA();
209 
210     void HoistPostRA(MachineInstr *MI, unsigned Def);
211 
212     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
213                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
214                    SmallVectorImpl<CandidateInfo> &Candidates);
215 
216     void AddToLiveIns(MCRegister Reg);
217 
218     bool IsLICMCandidate(MachineInstr &I);
219 
220     bool IsLoopInvariantInst(MachineInstr &I);
221 
222     bool HasLoopPHIUse(const MachineInstr *MI) const;
223 
224     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
225                                Register Reg) const;
226 
227     bool IsCheapInstruction(MachineInstr &MI) const;
228 
229     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
230                                  bool Cheap);
231 
232     void UpdateBackTraceRegPressure(const MachineInstr *MI);
233 
234     bool IsProfitableToHoist(MachineInstr &MI);
235 
236     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
237 
238     void EnterScope(MachineBasicBlock *MBB);
239 
240     void ExitScope(MachineBasicBlock *MBB);
241 
242     void ExitScopeIfDone(
243         MachineDomTreeNode *Node,
244         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
245         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
246 
247     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
248 
249     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
250 
251     void SinkIntoLoop();
252 
253     void InitRegPressure(MachineBasicBlock *BB);
254 
255     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
256                                              bool ConsiderSeen,
257                                              bool ConsiderUnseenAsDef);
258 
259     void UpdateRegPressure(const MachineInstr *MI,
260                            bool ConsiderUnseenAsDef = false);
261 
262     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
263 
264     const MachineInstr *
265     LookForDuplicate(const MachineInstr *MI,
266                      std::vector<const MachineInstr *> &PrevMIs);
267 
268     bool EliminateCSE(
269         MachineInstr *MI,
270         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
271 
272     bool MayCSE(MachineInstr *MI);
273 
274     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
275 
276     void InitCSEMap(MachineBasicBlock *BB);
277 
278     bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
279                             MachineBasicBlock *TgtBlock);
280     MachineBasicBlock *getCurPreheader();
281   };
282 
283   class MachineLICM : public MachineLICMBase {
284   public:
285     static char ID;
MachineLICM()286     MachineLICM() : MachineLICMBase(ID, false) {
287       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
288     }
289   };
290 
291   class EarlyMachineLICM : public MachineLICMBase {
292   public:
293     static char ID;
EarlyMachineLICM()294     EarlyMachineLICM() : MachineLICMBase(ID, true) {
295       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
296     }
297   };
298 
299 } // end anonymous namespace
300 
301 char MachineLICM::ID;
302 char EarlyMachineLICM::ID;
303 
304 char &llvm::MachineLICMID = MachineLICM::ID;
305 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
306 
307 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
308                       "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)309 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
310 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
311 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
312 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
313 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
314                     "Machine Loop Invariant Code Motion", false, false)
315 
316 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
317                       "Early Machine Loop Invariant Code Motion", false, false)
318 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
319 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
320 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
321 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
322 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
323                     "Early Machine Loop Invariant Code Motion", false, false)
324 
325 /// Test if the given loop is the outer-most loop that has a unique predecessor.
326 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
327   // Check whether this loop even has a unique predecessor.
328   if (!CurLoop->getLoopPredecessor())
329     return false;
330   // Ok, now check to see if any of its outer loops do.
331   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
332     if (L->getLoopPredecessor())
333       return false;
334   // None of them did, so this is the outermost with a unique predecessor.
335   return true;
336 }
337 
runOnMachineFunction(MachineFunction & MF)338 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
339   if (skipFunction(MF.getFunction()))
340     return false;
341 
342   Changed = FirstInLoop = false;
343   const TargetSubtargetInfo &ST = MF.getSubtarget();
344   TII = ST.getInstrInfo();
345   TLI = ST.getTargetLowering();
346   TRI = ST.getRegisterInfo();
347   MFI = &MF.getFrameInfo();
348   MRI = &MF.getRegInfo();
349   SchedModel.init(&ST);
350 
351   PreRegAlloc = MRI->isSSA();
352   HasProfileData = MF.getFunction().hasProfileData();
353 
354   if (PreRegAlloc)
355     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
356   else
357     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
358   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
359 
360   if (PreRegAlloc) {
361     // Estimate register pressure during pre-regalloc pass.
362     unsigned NumRPS = TRI->getNumRegPressureSets();
363     RegPressure.resize(NumRPS);
364     std::fill(RegPressure.begin(), RegPressure.end(), 0);
365     RegLimit.resize(NumRPS);
366     for (unsigned i = 0, e = NumRPS; i != e; ++i)
367       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
368   }
369 
370   // Get our Loop information...
371   if (DisableHoistingToHotterBlocks != UseBFI::None)
372     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
373   MLI = &getAnalysis<MachineLoopInfo>();
374   DT  = &getAnalysis<MachineDominatorTree>();
375   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 
377   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
378   while (!Worklist.empty()) {
379     CurLoop = Worklist.pop_back_val();
380     CurPreheader = nullptr;
381     ExitBlocks.clear();
382 
383     // If this is done before regalloc, only visit outer-most preheader-sporting
384     // loops.
385     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
386       Worklist.append(CurLoop->begin(), CurLoop->end());
387       continue;
388     }
389 
390     CurLoop->getExitBlocks(ExitBlocks);
391 
392     if (!PreRegAlloc)
393       HoistRegionPostRA();
394     else {
395       // CSEMap is initialized for loop header when the first instruction is
396       // being hoisted.
397       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
398       FirstInLoop = true;
399       HoistOutOfLoop(N);
400       CSEMap.clear();
401 
402       if (SinkInstsToAvoidSpills)
403         SinkIntoLoop();
404     }
405   }
406 
407   return Changed;
408 }
409 
410 /// Return true if instruction stores to the specified frame.
InstructionStoresToFI(const MachineInstr * MI,int FI)411 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
412   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
413   // true since they have no memory operands.
414   if (!MI->mayStore())
415      return false;
416   // If we lost memory operands, conservatively assume that the instruction
417   // writes to all slots.
418   if (MI->memoperands_empty())
419     return true;
420   for (const MachineMemOperand *MemOp : MI->memoperands()) {
421     if (!MemOp->isStore() || !MemOp->getPseudoValue())
422       continue;
423     if (const FixedStackPseudoSourceValue *Value =
424         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
425       if (Value->getFrameIndex() == FI)
426         return true;
427     }
428   }
429   return false;
430 }
431 
432 /// Examine the instruction for potentai LICM candidate. Also
433 /// gather register def and frame object update information.
ProcessMI(MachineInstr * MI,BitVector & PhysRegDefs,BitVector & PhysRegClobbers,SmallSet<int,32> & StoredFIs,SmallVectorImpl<CandidateInfo> & Candidates)434 void MachineLICMBase::ProcessMI(MachineInstr *MI,
435                                 BitVector &PhysRegDefs,
436                                 BitVector &PhysRegClobbers,
437                                 SmallSet<int, 32> &StoredFIs,
438                                 SmallVectorImpl<CandidateInfo> &Candidates) {
439   bool RuledOut = false;
440   bool HasNonInvariantUse = false;
441   unsigned Def = 0;
442   for (const MachineOperand &MO : MI->operands()) {
443     if (MO.isFI()) {
444       // Remember if the instruction stores to the frame index.
445       int FI = MO.getIndex();
446       if (!StoredFIs.count(FI) &&
447           MFI->isSpillSlotObjectIndex(FI) &&
448           InstructionStoresToFI(MI, FI))
449         StoredFIs.insert(FI);
450       HasNonInvariantUse = true;
451       continue;
452     }
453 
454     // We can't hoist an instruction defining a physreg that is clobbered in
455     // the loop.
456     if (MO.isRegMask()) {
457       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
458       continue;
459     }
460 
461     if (!MO.isReg())
462       continue;
463     Register Reg = MO.getReg();
464     if (!Reg)
465       continue;
466     assert(Register::isPhysicalRegister(Reg) &&
467            "Not expecting virtual register!");
468 
469     if (!MO.isDef()) {
470       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
471         // If it's using a non-loop-invariant register, then it's obviously not
472         // safe to hoist.
473         HasNonInvariantUse = true;
474       continue;
475     }
476 
477     if (MO.isImplicit()) {
478       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
479         PhysRegClobbers.set(*AI);
480       if (!MO.isDead())
481         // Non-dead implicit def? This cannot be hoisted.
482         RuledOut = true;
483       // No need to check if a dead implicit def is also defined by
484       // another instruction.
485       continue;
486     }
487 
488     // FIXME: For now, avoid instructions with multiple defs, unless
489     // it's a dead implicit def.
490     if (Def)
491       RuledOut = true;
492     else
493       Def = Reg;
494 
495     // If we have already seen another instruction that defines the same
496     // register, then this is not safe.  Two defs is indicated by setting a
497     // PhysRegClobbers bit.
498     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
499       if (PhysRegDefs.test(*AS))
500         PhysRegClobbers.set(*AS);
501     }
502     // Need a second loop because MCRegAliasIterator can visit the same
503     // register twice.
504     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
505       PhysRegDefs.set(*AS);
506 
507     if (PhysRegClobbers.test(Reg))
508       // MI defined register is seen defined by another instruction in
509       // the loop, it cannot be a LICM candidate.
510       RuledOut = true;
511   }
512 
513   // Only consider reloads for now and remats which do not have register
514   // operands. FIXME: Consider unfold load folding instructions.
515   if (Def && !RuledOut) {
516     int FI = std::numeric_limits<int>::min();
517     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
518         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
519       Candidates.push_back(CandidateInfo(MI, Def, FI));
520   }
521 }
522 
523 /// Walk the specified region of the CFG and hoist loop invariants out to the
524 /// preheader.
HoistRegionPostRA()525 void MachineLICMBase::HoistRegionPostRA() {
526   MachineBasicBlock *Preheader = getCurPreheader();
527   if (!Preheader)
528     return;
529 
530   unsigned NumRegs = TRI->getNumRegs();
531   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
532   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
533 
534   SmallVector<CandidateInfo, 32> Candidates;
535   SmallSet<int, 32> StoredFIs;
536 
537   // Walk the entire region, count number of defs for each register, and
538   // collect potential LICM candidates.
539   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
540     // If the header of the loop containing this basic block is a landing pad,
541     // then don't try to hoist instructions out of this loop.
542     const MachineLoop *ML = MLI->getLoopFor(BB);
543     if (ML && ML->getHeader()->isEHPad()) continue;
544 
545     // Conservatively treat live-in's as an external def.
546     // FIXME: That means a reload that're reused in successor block(s) will not
547     // be LICM'ed.
548     for (const auto &LI : BB->liveins()) {
549       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
550         PhysRegDefs.set(*AI);
551     }
552 
553     SpeculationState = SpeculateUnknown;
554     for (MachineInstr &MI : *BB)
555       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
556   }
557 
558   // Gather the registers read / clobbered by the terminator.
559   BitVector TermRegs(NumRegs);
560   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
561   if (TI != Preheader->end()) {
562     for (const MachineOperand &MO : TI->operands()) {
563       if (!MO.isReg())
564         continue;
565       Register Reg = MO.getReg();
566       if (!Reg)
567         continue;
568       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
569         TermRegs.set(*AI);
570     }
571   }
572 
573   // Now evaluate whether the potential candidates qualify.
574   // 1. Check if the candidate defined register is defined by another
575   //    instruction in the loop.
576   // 2. If the candidate is a load from stack slot (always true for now),
577   //    check if the slot is stored anywhere in the loop.
578   // 3. Make sure candidate def should not clobber
579   //    registers read by the terminator. Similarly its def should not be
580   //    clobbered by the terminator.
581   for (CandidateInfo &Candidate : Candidates) {
582     if (Candidate.FI != std::numeric_limits<int>::min() &&
583         StoredFIs.count(Candidate.FI))
584       continue;
585 
586     unsigned Def = Candidate.Def;
587     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
588       bool Safe = true;
589       MachineInstr *MI = Candidate.MI;
590       for (const MachineOperand &MO : MI->operands()) {
591         if (!MO.isReg() || MO.isDef() || !MO.getReg())
592           continue;
593         Register Reg = MO.getReg();
594         if (PhysRegDefs.test(Reg) ||
595             PhysRegClobbers.test(Reg)) {
596           // If it's using a non-loop-invariant register, then it's obviously
597           // not safe to hoist.
598           Safe = false;
599           break;
600         }
601       }
602       if (Safe)
603         HoistPostRA(MI, Candidate.Def);
604     }
605   }
606 }
607 
608 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
609 /// sure it is not killed by any instructions in the loop.
AddToLiveIns(MCRegister Reg)610 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
611   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
612     if (!BB->isLiveIn(Reg))
613       BB->addLiveIn(Reg);
614     for (MachineInstr &MI : *BB) {
615       for (MachineOperand &MO : MI.operands()) {
616         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
617         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
618           MO.setIsKill(false);
619       }
620     }
621   }
622 }
623 
624 /// When an instruction is found to only use loop invariant operands that is
625 /// safe to hoist, this instruction is called to do the dirty work.
HoistPostRA(MachineInstr * MI,unsigned Def)626 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
627   MachineBasicBlock *Preheader = getCurPreheader();
628 
629   // Now move the instructions to the predecessor, inserting it before any
630   // terminator instructions.
631   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
632                     << " from " << printMBBReference(*MI->getParent()) << ": "
633                     << *MI);
634 
635   // Splice the instruction to the preheader.
636   MachineBasicBlock *MBB = MI->getParent();
637   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
638 
639   // Since we are moving the instruction out of its basic block, we do not
640   // retain its debug location. Doing so would degrade the debugging
641   // experience and adversely affect the accuracy of profiling information.
642   assert(!MI->isDebugInstr() && "Should not hoist debug inst");
643   MI->setDebugLoc(DebugLoc());
644 
645   // Add register to livein list to all the BBs in the current loop since a
646   // loop invariant must be kept live throughout the whole loop. This is
647   // important to ensure later passes do not scavenge the def register.
648   AddToLiveIns(Def);
649 
650   ++NumPostRAHoisted;
651   Changed = true;
652 }
653 
654 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
655 /// may not be safe to hoist.
IsGuaranteedToExecute(MachineBasicBlock * BB)656 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
657   if (SpeculationState != SpeculateUnknown)
658     return SpeculationState == SpeculateFalse;
659 
660   if (BB != CurLoop->getHeader()) {
661     // Check loop exiting blocks.
662     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
663     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
664     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
665       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
666         SpeculationState = SpeculateTrue;
667         return false;
668       }
669   }
670 
671   SpeculationState = SpeculateFalse;
672   return true;
673 }
674 
EnterScope(MachineBasicBlock * MBB)675 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
676   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
677 
678   // Remember livein register pressure.
679   BackTrace.push_back(RegPressure);
680 }
681 
ExitScope(MachineBasicBlock * MBB)682 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
683   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
684   BackTrace.pop_back();
685 }
686 
687 /// Destroy scope for the MBB that corresponds to the given dominator tree node
688 /// if its a leaf or all of its children are done. Walk up the dominator tree to
689 /// destroy ancestors which are now done.
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren,DenseMap<MachineDomTreeNode *,MachineDomTreeNode * > & ParentMap)690 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
691     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
692     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
693   if (OpenChildren[Node])
694     return;
695 
696   // Pop scope.
697   ExitScope(Node->getBlock());
698 
699   // Now traverse upwards to pop ancestors whose offsprings are all done.
700   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
701     unsigned Left = --OpenChildren[Parent];
702     if (Left != 0)
703       break;
704     ExitScope(Parent->getBlock());
705     Node = Parent;
706   }
707 }
708 
709 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
710 /// specified header block, and that are in the current loop) in depth first
711 /// order w.r.t the DominatorTree. This allows us to visit definitions before
712 /// uses, allowing us to hoist a loop body in one pass without iteration.
HoistOutOfLoop(MachineDomTreeNode * HeaderN)713 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
714   MachineBasicBlock *Preheader = getCurPreheader();
715   if (!Preheader)
716     return;
717 
718   SmallVector<MachineDomTreeNode*, 32> Scopes;
719   SmallVector<MachineDomTreeNode*, 8> WorkList;
720   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
721   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
722 
723   // Perform a DFS walk to determine the order of visit.
724   WorkList.push_back(HeaderN);
725   while (!WorkList.empty()) {
726     MachineDomTreeNode *Node = WorkList.pop_back_val();
727     assert(Node && "Null dominator tree node?");
728     MachineBasicBlock *BB = Node->getBlock();
729 
730     // If the header of the loop containing this basic block is a landing pad,
731     // then don't try to hoist instructions out of this loop.
732     const MachineLoop *ML = MLI->getLoopFor(BB);
733     if (ML && ML->getHeader()->isEHPad())
734       continue;
735 
736     // If this subregion is not in the top level loop at all, exit.
737     if (!CurLoop->contains(BB))
738       continue;
739 
740     Scopes.push_back(Node);
741     unsigned NumChildren = Node->getNumChildren();
742 
743     // Don't hoist things out of a large switch statement.  This often causes
744     // code to be hoisted that wasn't going to be executed, and increases
745     // register pressure in a situation where it's likely to matter.
746     if (BB->succ_size() >= 25)
747       NumChildren = 0;
748 
749     OpenChildren[Node] = NumChildren;
750     if (NumChildren) {
751       // Add children in reverse order as then the next popped worklist node is
752       // the first child of this node.  This means we ultimately traverse the
753       // DOM tree in exactly the same order as if we'd recursed.
754       for (MachineDomTreeNode *Child : reverse(Node->children())) {
755         ParentMap[Child] = Node;
756         WorkList.push_back(Child);
757       }
758     }
759   }
760 
761   if (Scopes.size() == 0)
762     return;
763 
764   // Compute registers which are livein into the loop headers.
765   RegSeen.clear();
766   BackTrace.clear();
767   InitRegPressure(Preheader);
768 
769   // Now perform LICM.
770   for (MachineDomTreeNode *Node : Scopes) {
771     MachineBasicBlock *MBB = Node->getBlock();
772 
773     EnterScope(MBB);
774 
775     // Process the block
776     SpeculationState = SpeculateUnknown;
777     for (MachineBasicBlock::iterator
778          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
779       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
780       MachineInstr *MI = &*MII;
781       if (!Hoist(MI, Preheader))
782         UpdateRegPressure(MI);
783       // If we have hoisted an instruction that may store, it can only be a
784       // constant store.
785       MII = NextMII;
786     }
787 
788     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
789     ExitScopeIfDone(Node, OpenChildren, ParentMap);
790   }
791 }
792 
793 /// Sink instructions into loops if profitable. This especially tries to prevent
794 /// register spills caused by register pressure if there is little to no
795 /// overhead moving instructions into loops.
SinkIntoLoop()796 void MachineLICMBase::SinkIntoLoop() {
797   MachineBasicBlock *Preheader = getCurPreheader();
798   if (!Preheader)
799     return;
800 
801   SmallVector<MachineInstr *, 8> Candidates;
802   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
803        I != Preheader->instr_end(); ++I) {
804     // We need to ensure that we can safely move this instruction into the loop.
805     // As such, it must not have side-effects, e.g. such as a call has.
806     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
807       Candidates.push_back(&*I);
808   }
809 
810   for (MachineInstr *I : Candidates) {
811     const MachineOperand &MO = I->getOperand(0);
812     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
813       continue;
814     if (!MRI->hasOneDef(MO.getReg()))
815       continue;
816     bool CanSink = true;
817     MachineBasicBlock *B = nullptr;
818     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
819       // FIXME: Come up with a proper cost model that estimates whether sinking
820       // the instruction (and thus possibly executing it on every loop
821       // iteration) is more expensive than a register.
822       // For now assumes that copies are cheap and thus almost always worth it.
823       if (!MI.isCopy()) {
824         CanSink = false;
825         break;
826       }
827       if (!B) {
828         B = MI.getParent();
829         continue;
830       }
831       B = DT->findNearestCommonDominator(B, MI.getParent());
832       if (!B) {
833         CanSink = false;
834         break;
835       }
836     }
837     if (!CanSink || !B || B == Preheader)
838       continue;
839 
840     LLVM_DEBUG(dbgs() << "Sinking to " << printMBBReference(*B) << " from "
841                       << printMBBReference(*I->getParent()) << ": " << *I);
842     B->splice(B->getFirstNonPHI(), Preheader, I);
843 
844     // The instruction is is moved from its basic block, so do not retain the
845     // debug information.
846     assert(!I->isDebugInstr() && "Should not sink debug inst");
847     I->setDebugLoc(DebugLoc());
848   }
849 }
850 
isOperandKill(const MachineOperand & MO,MachineRegisterInfo * MRI)851 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
852   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
853 }
854 
855 /// Find all virtual register references that are liveout of the preheader to
856 /// initialize the starting "register pressure". Note this does not count live
857 /// through (livein but not used) registers.
InitRegPressure(MachineBasicBlock * BB)858 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
859   std::fill(RegPressure.begin(), RegPressure.end(), 0);
860 
861   // If the preheader has only a single predecessor and it ends with a
862   // fallthrough or an unconditional branch, then scan its predecessor for live
863   // defs as well. This happens whenever the preheader is created by splitting
864   // the critical edge from the loop predecessor to the loop header.
865   if (BB->pred_size() == 1) {
866     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
867     SmallVector<MachineOperand, 4> Cond;
868     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
869       InitRegPressure(*BB->pred_begin());
870   }
871 
872   for (const MachineInstr &MI : *BB)
873     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
874 }
875 
876 /// Update estimate of register pressure after the specified instruction.
UpdateRegPressure(const MachineInstr * MI,bool ConsiderUnseenAsDef)877 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
878                                         bool ConsiderUnseenAsDef) {
879   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
880   for (const auto &RPIdAndCost : Cost) {
881     unsigned Class = RPIdAndCost.first;
882     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
883       RegPressure[Class] = 0;
884     else
885       RegPressure[Class] += RPIdAndCost.second;
886   }
887 }
888 
889 /// Calculate the additional register pressure that the registers used in MI
890 /// cause.
891 ///
892 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
893 /// figure out which usages are live-ins.
894 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
895 DenseMap<unsigned, int>
calcRegisterCost(const MachineInstr * MI,bool ConsiderSeen,bool ConsiderUnseenAsDef)896 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
897                                   bool ConsiderUnseenAsDef) {
898   DenseMap<unsigned, int> Cost;
899   if (MI->isImplicitDef())
900     return Cost;
901   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
902     const MachineOperand &MO = MI->getOperand(i);
903     if (!MO.isReg() || MO.isImplicit())
904       continue;
905     Register Reg = MO.getReg();
906     if (!Register::isVirtualRegister(Reg))
907       continue;
908 
909     // FIXME: It seems bad to use RegSeen only for some of these calculations.
910     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
911     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
912 
913     RegClassWeight W = TRI->getRegClassWeight(RC);
914     int RCCost = 0;
915     if (MO.isDef())
916       RCCost = W.RegWeight;
917     else {
918       bool isKill = isOperandKill(MO, MRI);
919       if (isNew && !isKill && ConsiderUnseenAsDef)
920         // Haven't seen this, it must be a livein.
921         RCCost = W.RegWeight;
922       else if (!isNew && isKill)
923         RCCost = -W.RegWeight;
924     }
925     if (RCCost == 0)
926       continue;
927     const int *PS = TRI->getRegClassPressureSets(RC);
928     for (; *PS != -1; ++PS) {
929       if (Cost.find(*PS) == Cost.end())
930         Cost[*PS] = RCCost;
931       else
932         Cost[*PS] += RCCost;
933     }
934   }
935   return Cost;
936 }
937 
938 /// Return true if this machine instruction loads from global offset table or
939 /// constant pool.
mayLoadFromGOTOrConstantPool(MachineInstr & MI)940 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
941   assert(MI.mayLoad() && "Expected MI that loads!");
942 
943   // If we lost memory operands, conservatively assume that the instruction
944   // reads from everything..
945   if (MI.memoperands_empty())
946     return true;
947 
948   for (MachineMemOperand *MemOp : MI.memoperands())
949     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
950       if (PSV->isGOT() || PSV->isConstantPool())
951         return true;
952 
953   return false;
954 }
955 
956 // This function iterates through all the operands of the input store MI and
957 // checks that each register operand statisfies isCallerPreservedPhysReg.
958 // This means, the value being stored and the address where it is being stored
959 // is constant throughout the body of the function (not including prologue and
960 // epilogue). When called with an MI that isn't a store, it returns false.
961 // A future improvement can be to check if the store registers are constant
962 // throughout the loop rather than throughout the funtion.
isInvariantStore(const MachineInstr & MI,const TargetRegisterInfo * TRI,const MachineRegisterInfo * MRI)963 static bool isInvariantStore(const MachineInstr &MI,
964                              const TargetRegisterInfo *TRI,
965                              const MachineRegisterInfo *MRI) {
966 
967   bool FoundCallerPresReg = false;
968   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
969       (MI.getNumOperands() == 0))
970     return false;
971 
972   // Check that all register operands are caller-preserved physical registers.
973   for (const MachineOperand &MO : MI.operands()) {
974     if (MO.isReg()) {
975       Register Reg = MO.getReg();
976       // If operand is a virtual register, check if it comes from a copy of a
977       // physical register.
978       if (Register::isVirtualRegister(Reg))
979         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
980       if (Register::isVirtualRegister(Reg))
981         return false;
982       if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
983         return false;
984       else
985         FoundCallerPresReg = true;
986     } else if (!MO.isImm()) {
987         return false;
988     }
989   }
990   return FoundCallerPresReg;
991 }
992 
993 // Return true if the input MI is a copy instruction that feeds an invariant
994 // store instruction. This means that the src of the copy has to satisfy
995 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
996 // isInvariantStore.
isCopyFeedingInvariantStore(const MachineInstr & MI,const MachineRegisterInfo * MRI,const TargetRegisterInfo * TRI)997 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
998                                         const MachineRegisterInfo *MRI,
999                                         const TargetRegisterInfo *TRI) {
1000 
1001   // FIXME: If targets would like to look through instructions that aren't
1002   // pure copies, this can be updated to a query.
1003   if (!MI.isCopy())
1004     return false;
1005 
1006   const MachineFunction *MF = MI.getMF();
1007   // Check that we are copying a constant physical register.
1008   Register CopySrcReg = MI.getOperand(1).getReg();
1009   if (Register::isVirtualRegister(CopySrcReg))
1010     return false;
1011 
1012   if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
1013     return false;
1014 
1015   Register CopyDstReg = MI.getOperand(0).getReg();
1016   // Check if any of the uses of the copy are invariant stores.
1017   assert(Register::isVirtualRegister(CopyDstReg) &&
1018          "copy dst is not a virtual reg");
1019 
1020   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
1021     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
1022       return true;
1023   }
1024   return false;
1025 }
1026 
1027 /// Returns true if the instruction may be a suitable candidate for LICM.
1028 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
IsLICMCandidate(MachineInstr & I)1029 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
1030   // Check if it's safe to move the instruction.
1031   bool DontMoveAcrossStore = true;
1032   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
1033       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
1034     return false;
1035   }
1036 
1037   // If it is load then check if it is guaranteed to execute by making sure that
1038   // it dominates all exiting blocks. If it doesn't, then there is a path out of
1039   // the loop which does not execute this load, so we can't hoist it. Loads
1040   // from constant memory are not safe to speculate all the time, for example
1041   // indexed load from a jump table.
1042   // Stores and side effects are already checked by isSafeToMove.
1043   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
1044       !IsGuaranteedToExecute(I.getParent()))
1045     return false;
1046 
1047   // Convergent attribute has been used on operations that involve inter-thread
1048   // communication which results are implicitly affected by the enclosing
1049   // control flows. It is not safe to hoist or sink such operations across
1050   // control flow.
1051   if (I.isConvergent())
1052     return false;
1053 
1054   return true;
1055 }
1056 
1057 /// Returns true if the instruction is loop invariant.
1058 /// I.e., all virtual register operands are defined outside of the loop,
1059 /// physical registers aren't accessed explicitly, and there are no side
1060 /// effects that aren't captured by the operands or other flags.
IsLoopInvariantInst(MachineInstr & I)1061 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1062   if (!IsLICMCandidate(I))
1063     return false;
1064 
1065   // The instruction is loop invariant if all of its operands are.
1066   for (const MachineOperand &MO : I.operands()) {
1067     if (!MO.isReg())
1068       continue;
1069 
1070     Register Reg = MO.getReg();
1071     if (Reg == 0) continue;
1072 
1073     // Don't hoist an instruction that uses or defines a physical register.
1074     if (Register::isPhysicalRegister(Reg)) {
1075       if (MO.isUse()) {
1076         // If the physreg has no defs anywhere, it's just an ambient register
1077         // and we can freely move its uses. Alternatively, if it's allocatable,
1078         // it could get allocated to something with a def during allocation.
1079         // However, if the physreg is known to always be caller saved/restored
1080         // then this use is safe to hoist.
1081         if (!MRI->isConstantPhysReg(Reg) &&
1082             !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())))
1083           return false;
1084         // Otherwise it's safe to move.
1085         continue;
1086       } else if (!MO.isDead()) {
1087         // A def that isn't dead. We can't move it.
1088         return false;
1089       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1090         // If the reg is live into the loop, we can't hoist an instruction
1091         // which would clobber it.
1092         return false;
1093       }
1094     }
1095 
1096     if (!MO.isUse())
1097       continue;
1098 
1099     assert(MRI->getVRegDef(Reg) &&
1100            "Machine instr not mapped for this vreg?!");
1101 
1102     // If the loop contains the definition of an operand, then the instruction
1103     // isn't loop invariant.
1104     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1105       return false;
1106   }
1107 
1108   // If we got this far, the instruction is loop invariant!
1109   return true;
1110 }
1111 
1112 /// Return true if the specified instruction is used by a phi node and hoisting
1113 /// it could cause a copy to be inserted.
HasLoopPHIUse(const MachineInstr * MI) const1114 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1115   SmallVector<const MachineInstr*, 8> Work(1, MI);
1116   do {
1117     MI = Work.pop_back_val();
1118     for (const MachineOperand &MO : MI->operands()) {
1119       if (!MO.isReg() || !MO.isDef())
1120         continue;
1121       Register Reg = MO.getReg();
1122       if (!Register::isVirtualRegister(Reg))
1123         continue;
1124       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1125         // A PHI may cause a copy to be inserted.
1126         if (UseMI.isPHI()) {
1127           // A PHI inside the loop causes a copy because the live range of Reg is
1128           // extended across the PHI.
1129           if (CurLoop->contains(&UseMI))
1130             return true;
1131           // A PHI in an exit block can cause a copy to be inserted if the PHI
1132           // has multiple predecessors in the loop with different values.
1133           // For now, approximate by rejecting all exit blocks.
1134           if (isExitBlock(UseMI.getParent()))
1135             return true;
1136           continue;
1137         }
1138         // Look past copies as well.
1139         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1140           Work.push_back(&UseMI);
1141       }
1142     }
1143   } while (!Work.empty());
1144   return false;
1145 }
1146 
1147 /// Compute operand latency between a def of 'Reg' and an use in the current
1148 /// loop, return true if the target considered it high.
HasHighOperandLatency(MachineInstr & MI,unsigned DefIdx,Register Reg) const1149 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1150                                             Register Reg) const {
1151   if (MRI->use_nodbg_empty(Reg))
1152     return false;
1153 
1154   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1155     if (UseMI.isCopyLike())
1156       continue;
1157     if (!CurLoop->contains(UseMI.getParent()))
1158       continue;
1159     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1160       const MachineOperand &MO = UseMI.getOperand(i);
1161       if (!MO.isReg() || !MO.isUse())
1162         continue;
1163       Register MOReg = MO.getReg();
1164       if (MOReg != Reg)
1165         continue;
1166 
1167       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1168         return true;
1169     }
1170 
1171     // Only look at the first in loop use.
1172     break;
1173   }
1174 
1175   return false;
1176 }
1177 
1178 /// Return true if the instruction is marked "cheap" or the operand latency
1179 /// between its def and a use is one or less.
IsCheapInstruction(MachineInstr & MI) const1180 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1181   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1182     return true;
1183 
1184   bool isCheap = false;
1185   unsigned NumDefs = MI.getDesc().getNumDefs();
1186   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1187     MachineOperand &DefMO = MI.getOperand(i);
1188     if (!DefMO.isReg() || !DefMO.isDef())
1189       continue;
1190     --NumDefs;
1191     Register Reg = DefMO.getReg();
1192     if (Register::isPhysicalRegister(Reg))
1193       continue;
1194 
1195     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1196       return false;
1197     isCheap = true;
1198   }
1199 
1200   return isCheap;
1201 }
1202 
1203 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1204 /// given cost matrix can cause high register pressure.
1205 bool
CanCauseHighRegPressure(const DenseMap<unsigned,int> & Cost,bool CheapInstr)1206 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1207                                          bool CheapInstr) {
1208   for (const auto &RPIdAndCost : Cost) {
1209     if (RPIdAndCost.second <= 0)
1210       continue;
1211 
1212     unsigned Class = RPIdAndCost.first;
1213     int Limit = RegLimit[Class];
1214 
1215     // Don't hoist cheap instructions if they would increase register pressure,
1216     // even if we're under the limit.
1217     if (CheapInstr && !HoistCheapInsts)
1218       return true;
1219 
1220     for (const auto &RP : BackTrace)
1221       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1222         return true;
1223   }
1224 
1225   return false;
1226 }
1227 
1228 /// Traverse the back trace from header to the current block and update their
1229 /// register pressures to reflect the effect of hoisting MI from the current
1230 /// block to the preheader.
UpdateBackTraceRegPressure(const MachineInstr * MI)1231 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1232   // First compute the 'cost' of the instruction, i.e. its contribution
1233   // to register pressure.
1234   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1235                                /*ConsiderUnseenAsDef=*/false);
1236 
1237   // Update register pressure of blocks from loop header to current block.
1238   for (auto &RP : BackTrace)
1239     for (const auto &RPIdAndCost : Cost)
1240       RP[RPIdAndCost.first] += RPIdAndCost.second;
1241 }
1242 
1243 /// Return true if it is potentially profitable to hoist the given loop
1244 /// invariant.
IsProfitableToHoist(MachineInstr & MI)1245 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1246   if (MI.isImplicitDef())
1247     return true;
1248 
1249   // Besides removing computation from the loop, hoisting an instruction has
1250   // these effects:
1251   //
1252   // - The value defined by the instruction becomes live across the entire
1253   //   loop. This increases register pressure in the loop.
1254   //
1255   // - If the value is used by a PHI in the loop, a copy will be required for
1256   //   lowering the PHI after extending the live range.
1257   //
1258   // - When hoisting the last use of a value in the loop, that value no longer
1259   //   needs to be live in the loop. This lowers register pressure in the loop.
1260 
1261   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1262     return true;
1263 
1264   bool CheapInstr = IsCheapInstruction(MI);
1265   bool CreatesCopy = HasLoopPHIUse(&MI);
1266 
1267   // Don't hoist a cheap instruction if it would create a copy in the loop.
1268   if (CheapInstr && CreatesCopy) {
1269     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1270     return false;
1271   }
1272 
1273   // Rematerializable instructions should always be hoisted since the register
1274   // allocator can just pull them down again when needed.
1275   if (TII->isTriviallyReMaterializable(MI, AA))
1276     return true;
1277 
1278   // FIXME: If there are long latency loop-invariant instructions inside the
1279   // loop at this point, why didn't the optimizer's LICM hoist them?
1280   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1281     const MachineOperand &MO = MI.getOperand(i);
1282     if (!MO.isReg() || MO.isImplicit())
1283       continue;
1284     Register Reg = MO.getReg();
1285     if (!Register::isVirtualRegister(Reg))
1286       continue;
1287     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1288       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1289       ++NumHighLatency;
1290       return true;
1291     }
1292   }
1293 
1294   // Estimate register pressure to determine whether to LICM the instruction.
1295   // In low register pressure situation, we can be more aggressive about
1296   // hoisting. Also, favors hoisting long latency instructions even in
1297   // moderately high pressure situation.
1298   // Cheap instructions will only be hoisted if they don't increase register
1299   // pressure at all.
1300   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1301                                /*ConsiderUnseenAsDef=*/false);
1302 
1303   // Visit BBs from header to current BB, if hoisting this doesn't cause
1304   // high register pressure, then it's safe to proceed.
1305   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1306     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1307     ++NumLowRP;
1308     return true;
1309   }
1310 
1311   // Don't risk increasing register pressure if it would create copies.
1312   if (CreatesCopy) {
1313     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1314     return false;
1315   }
1316 
1317   // Do not "speculate" in high register pressure situation. If an
1318   // instruction is not guaranteed to be executed in the loop, it's best to be
1319   // conservative.
1320   if (AvoidSpeculation &&
1321       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1322     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1323     return false;
1324   }
1325 
1326   // High register pressure situation, only hoist if the instruction is going
1327   // to be remat'ed.
1328   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1329       !MI.isDereferenceableInvariantLoad(AA)) {
1330     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1331     return false;
1332   }
1333 
1334   return true;
1335 }
1336 
1337 /// Unfold a load from the given machineinstr if the load itself could be
1338 /// hoisted. Return the unfolded and hoistable load, or null if the load
1339 /// couldn't be unfolded or if it wouldn't be hoistable.
ExtractHoistableLoad(MachineInstr * MI)1340 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1341   // Don't unfold simple loads.
1342   if (MI->canFoldAsLoad())
1343     return nullptr;
1344 
1345   // If not, we may be able to unfold a load and hoist that.
1346   // First test whether the instruction is loading from an amenable
1347   // memory location.
1348   if (!MI->isDereferenceableInvariantLoad(AA))
1349     return nullptr;
1350 
1351   // Next determine the register class for a temporary register.
1352   unsigned LoadRegIndex;
1353   unsigned NewOpc =
1354     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1355                                     /*UnfoldLoad=*/true,
1356                                     /*UnfoldStore=*/false,
1357                                     &LoadRegIndex);
1358   if (NewOpc == 0) return nullptr;
1359   const MCInstrDesc &MID = TII->get(NewOpc);
1360   MachineFunction &MF = *MI->getMF();
1361   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1362   // Ok, we're unfolding. Create a temporary register and do the unfold.
1363   Register Reg = MRI->createVirtualRegister(RC);
1364 
1365   SmallVector<MachineInstr *, 2> NewMIs;
1366   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1367                                           /*UnfoldLoad=*/true,
1368                                           /*UnfoldStore=*/false, NewMIs);
1369   (void)Success;
1370   assert(Success &&
1371          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1372          "succeeded!");
1373   assert(NewMIs.size() == 2 &&
1374          "Unfolded a load into multiple instructions!");
1375   MachineBasicBlock *MBB = MI->getParent();
1376   MachineBasicBlock::iterator Pos = MI;
1377   MBB->insert(Pos, NewMIs[0]);
1378   MBB->insert(Pos, NewMIs[1]);
1379   // If unfolding produced a load that wasn't loop-invariant or profitable to
1380   // hoist, discard the new instructions and bail.
1381   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1382     NewMIs[0]->eraseFromParent();
1383     NewMIs[1]->eraseFromParent();
1384     return nullptr;
1385   }
1386 
1387   // Update register pressure for the unfolded instruction.
1388   UpdateRegPressure(NewMIs[1]);
1389 
1390   // Otherwise we successfully unfolded a load that we can hoist.
1391 
1392   // Update the call site info.
1393   if (MI->shouldUpdateCallSiteInfo())
1394     MF.eraseCallSiteInfo(MI);
1395 
1396   MI->eraseFromParent();
1397   return NewMIs[0];
1398 }
1399 
1400 /// Initialize the CSE map with instructions that are in the current loop
1401 /// preheader that may become duplicates of instructions that are hoisted
1402 /// out of the loop.
InitCSEMap(MachineBasicBlock * BB)1403 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1404   for (MachineInstr &MI : *BB)
1405     CSEMap[MI.getOpcode()].push_back(&MI);
1406 }
1407 
1408 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1409 /// Return this instruction if it's found.
1410 const MachineInstr*
LookForDuplicate(const MachineInstr * MI,std::vector<const MachineInstr * > & PrevMIs)1411 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1412                                   std::vector<const MachineInstr*> &PrevMIs) {
1413   for (const MachineInstr *PrevMI : PrevMIs)
1414     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1415       return PrevMI;
1416 
1417   return nullptr;
1418 }
1419 
1420 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1421 /// computes the same value. If it's found, do a RAU on with the definition of
1422 /// the existing instruction rather than hoisting the instruction to the
1423 /// preheader.
EliminateCSE(MachineInstr * MI,DenseMap<unsigned,std::vector<const MachineInstr * >>::iterator & CI)1424 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1425     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1426   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1427   // the undef property onto uses.
1428   if (CI == CSEMap.end() || MI->isImplicitDef())
1429     return false;
1430 
1431   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1432     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1433 
1434     // Replace virtual registers defined by MI by their counterparts defined
1435     // by Dup.
1436     SmallVector<unsigned, 2> Defs;
1437     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1438       const MachineOperand &MO = MI->getOperand(i);
1439 
1440       // Physical registers may not differ here.
1441       assert((!MO.isReg() || MO.getReg() == 0 ||
1442               !Register::isPhysicalRegister(MO.getReg()) ||
1443               MO.getReg() == Dup->getOperand(i).getReg()) &&
1444              "Instructions with different phys regs are not identical!");
1445 
1446       if (MO.isReg() && MO.isDef() &&
1447           !Register::isPhysicalRegister(MO.getReg()))
1448         Defs.push_back(i);
1449     }
1450 
1451     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1452     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1453       unsigned Idx = Defs[i];
1454       Register Reg = MI->getOperand(Idx).getReg();
1455       Register DupReg = Dup->getOperand(Idx).getReg();
1456       OrigRCs.push_back(MRI->getRegClass(DupReg));
1457 
1458       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1459         // Restore old RCs if more than one defs.
1460         for (unsigned j = 0; j != i; ++j)
1461           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1462         return false;
1463       }
1464     }
1465 
1466     for (unsigned Idx : Defs) {
1467       Register Reg = MI->getOperand(Idx).getReg();
1468       Register DupReg = Dup->getOperand(Idx).getReg();
1469       MRI->replaceRegWith(Reg, DupReg);
1470       MRI->clearKillFlags(DupReg);
1471     }
1472 
1473     MI->eraseFromParent();
1474     ++NumCSEed;
1475     return true;
1476   }
1477   return false;
1478 }
1479 
1480 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1481 /// the loop.
MayCSE(MachineInstr * MI)1482 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1483   unsigned Opcode = MI->getOpcode();
1484   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1485     CI = CSEMap.find(Opcode);
1486   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1487   // the undef property onto uses.
1488   if (CI == CSEMap.end() || MI->isImplicitDef())
1489     return false;
1490 
1491   return LookForDuplicate(MI, CI->second) != nullptr;
1492 }
1493 
1494 /// When an instruction is found to use only loop invariant operands
1495 /// that are safe to hoist, this instruction is called to do the dirty work.
1496 /// It returns true if the instruction is hoisted.
Hoist(MachineInstr * MI,MachineBasicBlock * Preheader)1497 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1498   MachineBasicBlock *SrcBlock = MI->getParent();
1499 
1500   // Disable the instruction hoisting due to block hotness
1501   if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1502       (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1503       isTgtHotterThanSrc(SrcBlock, Preheader)) {
1504     ++NumNotHoistedDueToHotness;
1505     return false;
1506   }
1507   // First check whether we should hoist this instruction.
1508   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1509     // If not, try unfolding a hoistable load.
1510     MI = ExtractHoistableLoad(MI);
1511     if (!MI) return false;
1512   }
1513 
1514   // If we have hoisted an instruction that may store, it can only be a constant
1515   // store.
1516   if (MI->mayStore())
1517     NumStoreConst++;
1518 
1519   // Now move the instructions to the predecessor, inserting it before any
1520   // terminator instructions.
1521   LLVM_DEBUG({
1522     dbgs() << "Hoisting " << *MI;
1523     if (MI->getParent()->getBasicBlock())
1524       dbgs() << " from " << printMBBReference(*MI->getParent());
1525     if (Preheader->getBasicBlock())
1526       dbgs() << " to " << printMBBReference(*Preheader);
1527     dbgs() << "\n";
1528   });
1529 
1530   // If this is the first instruction being hoisted to the preheader,
1531   // initialize the CSE map with potential common expressions.
1532   if (FirstInLoop) {
1533     InitCSEMap(Preheader);
1534     FirstInLoop = false;
1535   }
1536 
1537   // Look for opportunity to CSE the hoisted instruction.
1538   unsigned Opcode = MI->getOpcode();
1539   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1540     CI = CSEMap.find(Opcode);
1541   if (!EliminateCSE(MI, CI)) {
1542     // Otherwise, splice the instruction to the preheader.
1543     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1544 
1545     // Since we are moving the instruction out of its basic block, we do not
1546     // retain its debug location. Doing so would degrade the debugging
1547     // experience and adversely affect the accuracy of profiling information.
1548     assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1549     MI->setDebugLoc(DebugLoc());
1550 
1551     // Update register pressure for BBs from header to this block.
1552     UpdateBackTraceRegPressure(MI);
1553 
1554     // Clear the kill flags of any register this instruction defines,
1555     // since they may need to be live throughout the entire loop
1556     // rather than just live for part of it.
1557     for (MachineOperand &MO : MI->operands())
1558       if (MO.isReg() && MO.isDef() && !MO.isDead())
1559         MRI->clearKillFlags(MO.getReg());
1560 
1561     // Add to the CSE map.
1562     if (CI != CSEMap.end())
1563       CI->second.push_back(MI);
1564     else
1565       CSEMap[Opcode].push_back(MI);
1566   }
1567 
1568   ++NumHoisted;
1569   Changed = true;
1570 
1571   return true;
1572 }
1573 
1574 /// Get the preheader for the current loop, splitting a critical edge if needed.
getCurPreheader()1575 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1576   // Determine the block to which to hoist instructions. If we can't find a
1577   // suitable loop predecessor, we can't do any hoisting.
1578 
1579   // If we've tried to get a preheader and failed, don't try again.
1580   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1581     return nullptr;
1582 
1583   if (!CurPreheader) {
1584     CurPreheader = CurLoop->getLoopPreheader();
1585     if (!CurPreheader) {
1586       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1587       if (!Pred) {
1588         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1589         return nullptr;
1590       }
1591 
1592       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1593       if (!CurPreheader) {
1594         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1595         return nullptr;
1596       }
1597     }
1598   }
1599   return CurPreheader;
1600 }
1601 
1602 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1603 /// times hotter than the source basic block.
isTgtHotterThanSrc(MachineBasicBlock * SrcBlock,MachineBasicBlock * TgtBlock)1604 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1605                                          MachineBasicBlock *TgtBlock) {
1606   // Parse source and target basic block frequency from MBFI
1607   uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1608   uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1609 
1610   // Disable the hoisting if source block frequency is zero
1611   if (!SrcBF)
1612     return true;
1613 
1614   double Ratio = (double)DstBF / SrcBF;
1615 
1616   // Compare the block frequency ratio with the threshold
1617   return Ratio > BlockFrequencyRatioThreshold;
1618 }
1619