1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
Comparison__anond620adc00111::Comparison36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
earlyUseOperand(MachineOperand Op)74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::SINT_TO_FP);
645   setTargetDAGCombine(ISD::UINT_TO_FP);
646   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
647   setTargetDAGCombine(ISD::BSWAP);
648   setTargetDAGCombine(ISD::SDIV);
649   setTargetDAGCombine(ISD::UDIV);
650   setTargetDAGCombine(ISD::SREM);
651   setTargetDAGCombine(ISD::UREM);
652   setTargetDAGCombine(ISD::INTRINSIC_VOID);
653   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
654 
655   // Handle intrinsics.
656   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
657   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
658 
659   // We want to use MVC in preference to even a single load/store pair.
660   MaxStoresPerMemcpy = 0;
661   MaxStoresPerMemcpyOptSize = 0;
662 
663   // The main memset sequence is a byte store followed by an MVC.
664   // Two STC or MV..I stores win over that, but the kind of fused stores
665   // generated by target-independent code don't when the byte value is
666   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
667   // than "STC;MVC".  Handle the choice in target-specific code instead.
668   MaxStoresPerMemset = 0;
669   MaxStoresPerMemsetOptSize = 0;
670 
671   // Default to having -disable-strictnode-mutation on
672   IsStrictFPEnabled = true;
673 }
674 
useSoftFloat() const675 bool SystemZTargetLowering::useSoftFloat() const {
676   return Subtarget.hasSoftFloat();
677 }
678 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
680                                               LLVMContext &, EVT VT) const {
681   if (!VT.isVector())
682     return MVT::i32;
683   return VT.changeVectorElementTypeToInteger();
684 }
685 
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
687     const MachineFunction &MF, EVT VT) const {
688   VT = VT.getScalarType();
689 
690   if (!VT.isSimple())
691     return false;
692 
693   switch (VT.getSimpleVT().SimpleTy) {
694   case MVT::f32:
695   case MVT::f64:
696     return true;
697   case MVT::f128:
698     return Subtarget.hasVectorEnhancements1();
699   default:
700     break;
701   }
702 
703   return false;
704 }
705 
706 // Return true if the constant can be generated with a vector instruction,
707 // such as VGM, VGMB or VREPI.
isVectorConstantLegal(const SystemZSubtarget & Subtarget)708 bool SystemZVectorConstantInfo::isVectorConstantLegal(
709     const SystemZSubtarget &Subtarget) {
710   const SystemZInstrInfo *TII =
711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
712   if (!Subtarget.hasVector() ||
713       (isFP128 && !Subtarget.hasVectorEnhancements1()))
714     return false;
715 
716   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
717   // preferred way of creating all-zero and all-one vectors so give it
718   // priority over other methods below.
719   unsigned Mask = 0;
720   unsigned I = 0;
721   for (; I < SystemZ::VectorBytes; ++I) {
722     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
723     if (Byte == 0xff)
724       Mask |= 1ULL << I;
725     else if (Byte != 0)
726       break;
727   }
728   if (I == SystemZ::VectorBytes) {
729     Opcode = SystemZISD::BYTE_MASK;
730     OpVals.push_back(Mask);
731     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
732     return true;
733   }
734 
735   if (SplatBitSize > 64)
736     return false;
737 
738   auto tryValue = [&](uint64_t Value) -> bool {
739     // Try VECTOR REPLICATE IMMEDIATE
740     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
741     if (isInt<16>(SignedValue)) {
742       OpVals.push_back(((unsigned) SignedValue));
743       Opcode = SystemZISD::REPLICATE;
744       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
745                                SystemZ::VectorBits / SplatBitSize);
746       return true;
747     }
748     // Try VECTOR GENERATE MASK
749     unsigned Start, End;
750     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
751       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
752       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
753       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
754       OpVals.push_back(Start - (64 - SplatBitSize));
755       OpVals.push_back(End - (64 - SplatBitSize));
756       Opcode = SystemZISD::ROTATE_MASK;
757       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
758                                SystemZ::VectorBits / SplatBitSize);
759       return true;
760     }
761     return false;
762   };
763 
764   // First try assuming that any undefined bits above the highest set bit
765   // and below the lowest set bit are 1s.  This increases the likelihood of
766   // being able to use a sign-extended element value in VECTOR REPLICATE
767   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
768   uint64_t SplatBitsZ = SplatBits.getZExtValue();
769   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
770   uint64_t Lower =
771       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
772   uint64_t Upper =
773       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
774   if (tryValue(SplatBitsZ | Upper | Lower))
775     return true;
776 
777   // Now try assuming that any undefined bits between the first and
778   // last defined set bits are set.  This increases the chances of
779   // using a non-wraparound mask.
780   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
781   return tryValue(SplatBitsZ | Middle);
782 }
783 
SystemZVectorConstantInfo(APFloat FPImm)784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
785   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
786   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
787   SplatBits = FPImm.bitcastToAPInt();
788   unsigned Width = SplatBits.getBitWidth();
789   IntBits <<= (SystemZ::VectorBits - Width);
790 
791   // Find the smallest splat.
792   while (Width > 8) {
793     unsigned HalfSize = Width / 2;
794     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
795     APInt LowValue = SplatBits.trunc(HalfSize);
796 
797     // If the two halves do not match, stop here.
798     if (HighValue != LowValue || 8 > HalfSize)
799       break;
800 
801     SplatBits = HighValue;
802     Width = HalfSize;
803   }
804   SplatUndef = 0;
805   SplatBitSize = Width;
806 }
807 
SystemZVectorConstantInfo(BuildVectorSDNode * BVN)808 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
809   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
810   bool HasAnyUndefs;
811 
812   // Get IntBits by finding the 128 bit splat.
813   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
814                        true);
815 
816   // Get SplatBits by finding the 8 bit or greater splat.
817   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
818                        true);
819 }
820 
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const821 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
822                                          bool ForCodeSize) const {
823   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
824   if (Imm.isZero() || Imm.isNegZero())
825     return true;
826 
827   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
828 }
829 
830 /// Returns true if stack probing through inline assembly is requested.
hasInlineStackProbe(MachineFunction & MF) const831 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
832   // If the function specifically requests inline stack probes, emit them.
833   if (MF.getFunction().hasFnAttribute("probe-stack"))
834     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
835            "inline-asm";
836   return false;
837 }
838 
isLegalICmpImmediate(int64_t Imm) const839 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
840   // We can use CGFI or CLGFI.
841   return isInt<32>(Imm) || isUInt<32>(Imm);
842 }
843 
isLegalAddImmediate(int64_t Imm) const844 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
845   // We can use ALGFI or SLGFI.
846   return isUInt<32>(Imm) || isUInt<32>(-Imm);
847 }
848 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,MachineMemOperand::Flags,bool * Fast) const849 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
850     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
851   // Unaligned accesses should never be slower than the expanded version.
852   // We check specifically for aligned accesses in the few cases where
853   // they are required.
854   if (Fast)
855     *Fast = true;
856   return true;
857 }
858 
859 // Information about the addressing mode for a memory access.
860 struct AddressingMode {
861   // True if a long displacement is supported.
862   bool LongDisplacement;
863 
864   // True if use of index register is supported.
865   bool IndexReg;
866 
AddressingModeAddressingMode867   AddressingMode(bool LongDispl, bool IdxReg) :
868     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
869 };
870 
871 // Return the desired addressing mode for a Load which has only one use (in
872 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)873 static AddressingMode getLoadStoreAddrMode(bool HasVector,
874                                           Type *Ty) {
875   // With vector support a Load->Store combination may be combined to either
876   // an MVC or vector operations and it seems to work best to allow the
877   // vector addressing mode.
878   if (HasVector)
879     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
880 
881   // Otherwise only the MVC case is special.
882   bool MVC = Ty->isIntegerTy(8);
883   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
884 }
885 
886 // Return the addressing mode which seems most desirable given an LLVM
887 // Instruction pointer.
888 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)889 supportedAddressingMode(Instruction *I, bool HasVector) {
890   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
891     switch (II->getIntrinsicID()) {
892     default: break;
893     case Intrinsic::memset:
894     case Intrinsic::memmove:
895     case Intrinsic::memcpy:
896       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
897     }
898   }
899 
900   if (isa<LoadInst>(I) && I->hasOneUse()) {
901     auto *SingleUser = cast<Instruction>(*I->user_begin());
902     if (SingleUser->getParent() == I->getParent()) {
903       if (isa<ICmpInst>(SingleUser)) {
904         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
905           if (C->getBitWidth() <= 64 &&
906               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
907             // Comparison of memory with 16 bit signed / unsigned immediate
908             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
909       } else if (isa<StoreInst>(SingleUser))
910         // Load->Store
911         return getLoadStoreAddrMode(HasVector, I->getType());
912     }
913   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
914     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
915       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
916         // Load->Store
917         return getLoadStoreAddrMode(HasVector, LoadI->getType());
918   }
919 
920   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
921 
922     // * Use LDE instead of LE/LEY for z13 to avoid partial register
923     //   dependencies (LDE only supports small offsets).
924     // * Utilize the vector registers to hold floating point
925     //   values (vector load / store instructions only support small
926     //   offsets).
927 
928     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
929                          I->getOperand(0)->getType());
930     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
931     bool IsVectorAccess = MemAccessTy->isVectorTy();
932 
933     // A store of an extracted vector element will be combined into a VSTE type
934     // instruction.
935     if (!IsVectorAccess && isa<StoreInst>(I)) {
936       Value *DataOp = I->getOperand(0);
937       if (isa<ExtractElementInst>(DataOp))
938         IsVectorAccess = true;
939     }
940 
941     // A load which gets inserted into a vector element will be combined into a
942     // VLE type instruction.
943     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
944       User *LoadUser = *I->user_begin();
945       if (isa<InsertElementInst>(LoadUser))
946         IsVectorAccess = true;
947     }
948 
949     if (IsFPAccess || IsVectorAccess)
950       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
951   }
952 
953   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
954 }
955 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const956 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
957        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
958   // Punt on globals for now, although they can be used in limited
959   // RELATIVE LONG cases.
960   if (AM.BaseGV)
961     return false;
962 
963   // Require a 20-bit signed offset.
964   if (!isInt<20>(AM.BaseOffs))
965     return false;
966 
967   AddressingMode SupportedAM(true, true);
968   if (I != nullptr)
969     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
970 
971   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
972     return false;
973 
974   if (!SupportedAM.IndexReg)
975     // No indexing allowed.
976     return AM.Scale == 0;
977   else
978     // Indexing is OK but no scale factor can be applied.
979     return AM.Scale == 0 || AM.Scale == 1;
980 }
981 
isTruncateFree(Type * FromType,Type * ToType) const982 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
983   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
984     return false;
985   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
986   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
987   return FromBits > ToBits;
988 }
989 
isTruncateFree(EVT FromVT,EVT ToVT) const990 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
991   if (!FromVT.isInteger() || !ToVT.isInteger())
992     return false;
993   unsigned FromBits = FromVT.getFixedSizeInBits();
994   unsigned ToBits = ToVT.getFixedSizeInBits();
995   return FromBits > ToBits;
996 }
997 
998 //===----------------------------------------------------------------------===//
999 // Inline asm support
1000 //===----------------------------------------------------------------------===//
1001 
1002 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const1003 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1004   if (Constraint.size() == 1) {
1005     switch (Constraint[0]) {
1006     case 'a': // Address register
1007     case 'd': // Data register (equivalent to 'r')
1008     case 'f': // Floating-point register
1009     case 'h': // High-part register
1010     case 'r': // General-purpose register
1011     case 'v': // Vector register
1012       return C_RegisterClass;
1013 
1014     case 'Q': // Memory with base and unsigned 12-bit displacement
1015     case 'R': // Likewise, plus an index
1016     case 'S': // Memory with base and signed 20-bit displacement
1017     case 'T': // Likewise, plus an index
1018     case 'm': // Equivalent to 'T'.
1019       return C_Memory;
1020 
1021     case 'I': // Unsigned 8-bit constant
1022     case 'J': // Unsigned 12-bit constant
1023     case 'K': // Signed 16-bit constant
1024     case 'L': // Signed 20-bit displacement (on all targets we support)
1025     case 'M': // 0x7fffffff
1026       return C_Immediate;
1027 
1028     default:
1029       break;
1030     }
1031   }
1032   return TargetLowering::getConstraintType(Constraint);
1033 }
1034 
1035 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1036 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1037                                const char *constraint) const {
1038   ConstraintWeight weight = CW_Invalid;
1039   Value *CallOperandVal = info.CallOperandVal;
1040   // If we don't have a value, we can't do a match,
1041   // but allow it at the lowest weight.
1042   if (!CallOperandVal)
1043     return CW_Default;
1044   Type *type = CallOperandVal->getType();
1045   // Look at the constraint type.
1046   switch (*constraint) {
1047   default:
1048     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1049     break;
1050 
1051   case 'a': // Address register
1052   case 'd': // Data register (equivalent to 'r')
1053   case 'h': // High-part register
1054   case 'r': // General-purpose register
1055     if (CallOperandVal->getType()->isIntegerTy())
1056       weight = CW_Register;
1057     break;
1058 
1059   case 'f': // Floating-point register
1060     if (type->isFloatingPointTy())
1061       weight = CW_Register;
1062     break;
1063 
1064   case 'v': // Vector register
1065     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1066         Subtarget.hasVector())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'I': // Unsigned 8-bit constant
1071     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1072       if (isUInt<8>(C->getZExtValue()))
1073         weight = CW_Constant;
1074     break;
1075 
1076   case 'J': // Unsigned 12-bit constant
1077     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078       if (isUInt<12>(C->getZExtValue()))
1079         weight = CW_Constant;
1080     break;
1081 
1082   case 'K': // Signed 16-bit constant
1083     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084       if (isInt<16>(C->getSExtValue()))
1085         weight = CW_Constant;
1086     break;
1087 
1088   case 'L': // Signed 20-bit displacement (on all targets we support)
1089     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090       if (isInt<20>(C->getSExtValue()))
1091         weight = CW_Constant;
1092     break;
1093 
1094   case 'M': // 0x7fffffff
1095     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096       if (C->getZExtValue() == 0x7fffffff)
1097         weight = CW_Constant;
1098     break;
1099   }
1100   return weight;
1101 }
1102 
1103 // Parse a "{tNNN}" register constraint for which the register type "t"
1104 // has already been verified.  MC is the class associated with "t" and
1105 // Map maps 0-based register numbers to LLVM register numbers.
1106 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)1107 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1108                     const unsigned *Map, unsigned Size) {
1109   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1110   if (isdigit(Constraint[2])) {
1111     unsigned Index;
1112     bool Failed =
1113         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1114     if (!Failed && Index < Size && Map[Index])
1115       return std::make_pair(Map[Index], RC);
1116   }
1117   return std::make_pair(0U, nullptr);
1118 }
1119 
1120 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1121 SystemZTargetLowering::getRegForInlineAsmConstraint(
1122     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1123   if (Constraint.size() == 1) {
1124     // GCC Constraint Letters
1125     switch (Constraint[0]) {
1126     default: break;
1127     case 'd': // Data register (equivalent to 'r')
1128     case 'r': // General-purpose register
1129       if (VT == MVT::i64)
1130         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1131       else if (VT == MVT::i128)
1132         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1133       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1134 
1135     case 'a': // Address register
1136       if (VT == MVT::i64)
1137         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1138       else if (VT == MVT::i128)
1139         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1140       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1141 
1142     case 'h': // High-part register (an LLVM extension)
1143       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1144 
1145     case 'f': // Floating-point register
1146       if (!useSoftFloat()) {
1147         if (VT == MVT::f64)
1148           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1149         else if (VT == MVT::f128)
1150           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1151         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1152       }
1153       break;
1154     case 'v': // Vector register
1155       if (Subtarget.hasVector()) {
1156         if (VT == MVT::f32)
1157           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1158         if (VT == MVT::f64)
1159           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1160         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1161       }
1162       break;
1163     }
1164   }
1165   if (Constraint.size() > 0 && Constraint[0] == '{') {
1166     // We need to override the default register parsing for GPRs and FPRs
1167     // because the interpretation depends on VT.  The internal names of
1168     // the registers are also different from the external names
1169     // (F0D and F0S instead of F0, etc.).
1170     if (Constraint[1] == 'r') {
1171       if (VT == MVT::i32)
1172         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1173                                    SystemZMC::GR32Regs, 16);
1174       if (VT == MVT::i128)
1175         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1176                                    SystemZMC::GR128Regs, 16);
1177       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1178                                  SystemZMC::GR64Regs, 16);
1179     }
1180     if (Constraint[1] == 'f') {
1181       if (useSoftFloat())
1182         return std::make_pair(
1183             0u, static_cast<const TargetRegisterClass *>(nullptr));
1184       if (VT == MVT::f32)
1185         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1186                                    SystemZMC::FP32Regs, 16);
1187       if (VT == MVT::f128)
1188         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1189                                    SystemZMC::FP128Regs, 16);
1190       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1191                                  SystemZMC::FP64Regs, 16);
1192     }
1193     if (Constraint[1] == 'v') {
1194       if (!Subtarget.hasVector())
1195         return std::make_pair(
1196             0u, static_cast<const TargetRegisterClass *>(nullptr));
1197       if (VT == MVT::f32)
1198         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1199                                    SystemZMC::VR32Regs, 32);
1200       if (VT == MVT::f64)
1201         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1202                                    SystemZMC::VR64Regs, 32);
1203       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1204                                  SystemZMC::VR128Regs, 32);
1205     }
1206   }
1207   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1208 }
1209 
1210 // FIXME? Maybe this could be a TableGen attribute on some registers and
1211 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const1212 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1213                                                   const MachineFunction &MF) const {
1214 
1215   Register Reg = StringSwitch<Register>(RegName)
1216                    .Case("r15", SystemZ::R15D)
1217                    .Default(0);
1218   if (Reg)
1219     return Reg;
1220   report_fatal_error("Invalid register name global variable");
1221 }
1222 
1223 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const1224 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1225                              std::vector<SDValue> &Ops,
1226                              SelectionDAG &DAG) const {
1227   // Only support length 1 constraints for now.
1228   if (Constraint.length() == 1) {
1229     switch (Constraint[0]) {
1230     case 'I': // Unsigned 8-bit constant
1231       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1232         if (isUInt<8>(C->getZExtValue()))
1233           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1234                                               Op.getValueType()));
1235       return;
1236 
1237     case 'J': // Unsigned 12-bit constant
1238       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1239         if (isUInt<12>(C->getZExtValue()))
1240           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1241                                               Op.getValueType()));
1242       return;
1243 
1244     case 'K': // Signed 16-bit constant
1245       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1246         if (isInt<16>(C->getSExtValue()))
1247           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1248                                               Op.getValueType()));
1249       return;
1250 
1251     case 'L': // Signed 20-bit displacement (on all targets we support)
1252       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1253         if (isInt<20>(C->getSExtValue()))
1254           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1255                                               Op.getValueType()));
1256       return;
1257 
1258     case 'M': // 0x7fffffff
1259       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1260         if (C->getZExtValue() == 0x7fffffff)
1261           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1262                                               Op.getValueType()));
1263       return;
1264     }
1265   }
1266   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 // Calling conventions
1271 //===----------------------------------------------------------------------===//
1272 
1273 #include "SystemZGenCallingConv.inc"
1274 
getScratchRegisters(CallingConv::ID) const1275 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1276   CallingConv::ID) const {
1277   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1278                                            SystemZ::R14D, 0 };
1279   return ScratchRegs;
1280 }
1281 
allowTruncateForTailCall(Type * FromType,Type * ToType) const1282 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1283                                                      Type *ToType) const {
1284   return isTruncateFree(FromType, ToType);
1285 }
1286 
mayBeEmittedAsTailCall(const CallInst * CI) const1287 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1288   return CI->isTailCall();
1289 }
1290 
1291 // We do not yet support 128-bit single-element vector types.  If the user
1292 // attempts to use such types as function argument or return type, prefer
1293 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)1294 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1295   if (ArgVT.isVector() && !VT.isVector())
1296     report_fatal_error("Unsupported vector argument or return type");
1297 }
1298 
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)1299 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1300   for (unsigned i = 0; i < Ins.size(); ++i)
1301     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1302 }
1303 
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)1304 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1305   for (unsigned i = 0; i < Outs.size(); ++i)
1306     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1307 }
1308 
1309 // Value is a value that has been passed to us in the location described by VA
1310 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1311 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1312 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1313                                    CCValAssign &VA, SDValue Chain,
1314                                    SDValue Value) {
1315   // If the argument has been promoted from a smaller type, insert an
1316   // assertion to capture this.
1317   if (VA.getLocInfo() == CCValAssign::SExt)
1318     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1319                         DAG.getValueType(VA.getValVT()));
1320   else if (VA.getLocInfo() == CCValAssign::ZExt)
1321     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1322                         DAG.getValueType(VA.getValVT()));
1323 
1324   if (VA.isExtInLoc())
1325     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1326   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1327     // If this is a short vector argument loaded from the stack,
1328     // extend from i64 to full vector size and then bitcast.
1329     assert(VA.getLocVT() == MVT::i64);
1330     assert(VA.getValVT().isVector());
1331     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1332     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1333   } else
1334     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1335   return Value;
1336 }
1337 
1338 // Value is a value of type VA.getValVT() that we need to copy into
1339 // the location described by VA.  Return a copy of Value converted to
1340 // VA.getValVT().  The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1341 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1342                                    CCValAssign &VA, SDValue Value) {
1343   switch (VA.getLocInfo()) {
1344   case CCValAssign::SExt:
1345     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1346   case CCValAssign::ZExt:
1347     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1348   case CCValAssign::AExt:
1349     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1350   case CCValAssign::BCvt:
1351     // If this is a short vector argument to be stored to the stack,
1352     // bitcast to v2i64 and then extract first element.
1353     assert(VA.getLocVT() == MVT::i64);
1354     assert(VA.getValVT().isVector());
1355     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1356     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1357                        DAG.getConstant(0, DL, MVT::i32));
1358   case CCValAssign::Full:
1359     return Value;
1360   default:
1361     llvm_unreachable("Unhandled getLocInfo()");
1362   }
1363 }
1364 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1365 SDValue SystemZTargetLowering::LowerFormalArguments(
1366     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1367     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1368     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1369   MachineFunction &MF = DAG.getMachineFunction();
1370   MachineFrameInfo &MFI = MF.getFrameInfo();
1371   MachineRegisterInfo &MRI = MF.getRegInfo();
1372   SystemZMachineFunctionInfo *FuncInfo =
1373       MF.getInfo<SystemZMachineFunctionInfo>();
1374   auto *TFL =
1375       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1377 
1378   // Detect unsupported vector argument types.
1379   if (Subtarget.hasVector())
1380     VerifyVectorTypes(Ins);
1381 
1382   // Assign locations to all of the incoming arguments.
1383   SmallVector<CCValAssign, 16> ArgLocs;
1384   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1385   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1386 
1387   unsigned NumFixedGPRs = 0;
1388   unsigned NumFixedFPRs = 0;
1389   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1390     SDValue ArgValue;
1391     CCValAssign &VA = ArgLocs[I];
1392     EVT LocVT = VA.getLocVT();
1393     if (VA.isRegLoc()) {
1394       // Arguments passed in registers
1395       const TargetRegisterClass *RC;
1396       switch (LocVT.getSimpleVT().SimpleTy) {
1397       default:
1398         // Integers smaller than i64 should be promoted to i64.
1399         llvm_unreachable("Unexpected argument type");
1400       case MVT::i32:
1401         NumFixedGPRs += 1;
1402         RC = &SystemZ::GR32BitRegClass;
1403         break;
1404       case MVT::i64:
1405         NumFixedGPRs += 1;
1406         RC = &SystemZ::GR64BitRegClass;
1407         break;
1408       case MVT::f32:
1409         NumFixedFPRs += 1;
1410         RC = &SystemZ::FP32BitRegClass;
1411         break;
1412       case MVT::f64:
1413         NumFixedFPRs += 1;
1414         RC = &SystemZ::FP64BitRegClass;
1415         break;
1416       case MVT::v16i8:
1417       case MVT::v8i16:
1418       case MVT::v4i32:
1419       case MVT::v2i64:
1420       case MVT::v4f32:
1421       case MVT::v2f64:
1422         RC = &SystemZ::VR128BitRegClass;
1423         break;
1424       }
1425 
1426       Register VReg = MRI.createVirtualRegister(RC);
1427       MRI.addLiveIn(VA.getLocReg(), VReg);
1428       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1429     } else {
1430       assert(VA.isMemLoc() && "Argument not register or memory");
1431 
1432       // Create the frame index object for this incoming parameter.
1433       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1434                                      VA.getLocMemOffset(), true);
1435 
1436       // Create the SelectionDAG nodes corresponding to a load
1437       // from this parameter.  Unpromoted ints and floats are
1438       // passed as right-justified 8-byte values.
1439       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1440       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1441         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1442                           DAG.getIntPtrConstant(4, DL));
1443       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1444                              MachinePointerInfo::getFixedStack(MF, FI));
1445     }
1446 
1447     // Convert the value of the argument register into the value that's
1448     // being passed.
1449     if (VA.getLocInfo() == CCValAssign::Indirect) {
1450       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1451                                    MachinePointerInfo()));
1452       // If the original argument was split (e.g. i128), we need
1453       // to load all parts of it here (using the same address).
1454       unsigned ArgIndex = Ins[I].OrigArgIndex;
1455       assert (Ins[I].PartOffset == 0);
1456       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1457         CCValAssign &PartVA = ArgLocs[I + 1];
1458         unsigned PartOffset = Ins[I + 1].PartOffset;
1459         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1460                                       DAG.getIntPtrConstant(PartOffset, DL));
1461         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1462                                      MachinePointerInfo()));
1463         ++I;
1464       }
1465     } else
1466       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1467   }
1468 
1469   if (IsVarArg) {
1470     // Save the number of non-varargs registers for later use by va_start, etc.
1471     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1472     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1473 
1474     // Likewise the address (in the form of a frame index) of where the
1475     // first stack vararg would be.  The 1-byte size here is arbitrary.
1476     int64_t StackSize = CCInfo.getNextStackOffset();
1477     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1478 
1479     // ...and a similar frame index for the caller-allocated save area
1480     // that will be used to store the incoming registers.
1481     int64_t RegSaveOffset =
1482       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1483     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1484     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1485 
1486     // Store the FPR varargs in the reserved frame slots.  (We store the
1487     // GPRs as part of the prologue.)
1488     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1489       SDValue MemOps[SystemZ::NumArgFPRs];
1490       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1491         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1492         int FI =
1493           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1494         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1495         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1496                                      &SystemZ::FP64BitRegClass);
1497         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1498         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1499                                  MachinePointerInfo::getFixedStack(MF, FI));
1500       }
1501       // Join the stores, which are independent of one another.
1502       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1503                           makeArrayRef(&MemOps[NumFixedFPRs],
1504                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1505     }
1506   }
1507 
1508   return Chain;
1509 }
1510 
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1511 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1512                               SmallVectorImpl<CCValAssign> &ArgLocs,
1513                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1514   // Punt if there are any indirect or stack arguments, or if the call
1515   // needs the callee-saved argument register R6, or if the call uses
1516   // the callee-saved register arguments SwiftSelf and SwiftError.
1517   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1518     CCValAssign &VA = ArgLocs[I];
1519     if (VA.getLocInfo() == CCValAssign::Indirect)
1520       return false;
1521     if (!VA.isRegLoc())
1522       return false;
1523     Register Reg = VA.getLocReg();
1524     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1525       return false;
1526     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1527       return false;
1528   }
1529   return true;
1530 }
1531 
1532 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1533 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1534                                  SmallVectorImpl<SDValue> &InVals) const {
1535   SelectionDAG &DAG = CLI.DAG;
1536   SDLoc &DL = CLI.DL;
1537   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1538   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1539   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1540   SDValue Chain = CLI.Chain;
1541   SDValue Callee = CLI.Callee;
1542   bool &IsTailCall = CLI.IsTailCall;
1543   CallingConv::ID CallConv = CLI.CallConv;
1544   bool IsVarArg = CLI.IsVarArg;
1545   MachineFunction &MF = DAG.getMachineFunction();
1546   EVT PtrVT = getPointerTy(MF.getDataLayout());
1547 
1548   // Detect unsupported vector argument and return types.
1549   if (Subtarget.hasVector()) {
1550     VerifyVectorTypes(Outs);
1551     VerifyVectorTypes(Ins);
1552   }
1553 
1554   // Analyze the operands of the call, assigning locations to each operand.
1555   SmallVector<CCValAssign, 16> ArgLocs;
1556   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1557   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1558 
1559   // We don't support GuaranteedTailCallOpt, only automatically-detected
1560   // sibling calls.
1561   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1562     IsTailCall = false;
1563 
1564   // Get a count of how many bytes are to be pushed on the stack.
1565   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1566 
1567   // Mark the start of the call.
1568   if (!IsTailCall)
1569     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1570 
1571   // Copy argument values to their designated locations.
1572   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1573   SmallVector<SDValue, 8> MemOpChains;
1574   SDValue StackPtr;
1575   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1576     CCValAssign &VA = ArgLocs[I];
1577     SDValue ArgValue = OutVals[I];
1578 
1579     if (VA.getLocInfo() == CCValAssign::Indirect) {
1580       // Store the argument in a stack slot and pass its address.
1581       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1582       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1583       MemOpChains.push_back(
1584           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1585                        MachinePointerInfo::getFixedStack(MF, FI)));
1586       // If the original argument was split (e.g. i128), we need
1587       // to store all parts of it here (and pass just one address).
1588       unsigned ArgIndex = Outs[I].OrigArgIndex;
1589       assert (Outs[I].PartOffset == 0);
1590       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1591         SDValue PartValue = OutVals[I + 1];
1592         unsigned PartOffset = Outs[I + 1].PartOffset;
1593         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1594                                       DAG.getIntPtrConstant(PartOffset, DL));
1595         MemOpChains.push_back(
1596             DAG.getStore(Chain, DL, PartValue, Address,
1597                          MachinePointerInfo::getFixedStack(MF, FI)));
1598         ++I;
1599       }
1600       ArgValue = SpillSlot;
1601     } else
1602       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1603 
1604     if (VA.isRegLoc())
1605       // Queue up the argument copies and emit them at the end.
1606       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1607     else {
1608       assert(VA.isMemLoc() && "Argument not register or memory");
1609 
1610       // Work out the address of the stack slot.  Unpromoted ints and
1611       // floats are passed as right-justified 8-byte values.
1612       if (!StackPtr.getNode())
1613         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1614       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1615       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1616         Offset += 4;
1617       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1618                                     DAG.getIntPtrConstant(Offset, DL));
1619 
1620       // Emit the store.
1621       MemOpChains.push_back(
1622           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1623     }
1624   }
1625 
1626   // Join the stores, which are independent of one another.
1627   if (!MemOpChains.empty())
1628     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1629 
1630   // Accept direct calls by converting symbolic call addresses to the
1631   // associated Target* opcodes.  Force %r1 to be used for indirect
1632   // tail calls.
1633   SDValue Glue;
1634   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1635     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1636     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1637   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1638     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1639     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1640   } else if (IsTailCall) {
1641     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1642     Glue = Chain.getValue(1);
1643     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1644   }
1645 
1646   // Build a sequence of copy-to-reg nodes, chained and glued together.
1647   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1648     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1649                              RegsToPass[I].second, Glue);
1650     Glue = Chain.getValue(1);
1651   }
1652 
1653   // The first call operand is the chain and the second is the target address.
1654   SmallVector<SDValue, 8> Ops;
1655   Ops.push_back(Chain);
1656   Ops.push_back(Callee);
1657 
1658   // Add argument registers to the end of the list so that they are
1659   // known live into the call.
1660   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1661     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1662                                   RegsToPass[I].second.getValueType()));
1663 
1664   // Add a register mask operand representing the call-preserved registers.
1665   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1666   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1667   assert(Mask && "Missing call preserved mask for calling convention");
1668   Ops.push_back(DAG.getRegisterMask(Mask));
1669 
1670   // Glue the call to the argument copies, if any.
1671   if (Glue.getNode())
1672     Ops.push_back(Glue);
1673 
1674   // Emit the call.
1675   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1676   if (IsTailCall)
1677     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1678   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1679   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1680   Glue = Chain.getValue(1);
1681 
1682   // Mark the end of the call, which is glued to the call itself.
1683   Chain = DAG.getCALLSEQ_END(Chain,
1684                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1685                              DAG.getConstant(0, DL, PtrVT, true),
1686                              Glue, DL);
1687   Glue = Chain.getValue(1);
1688 
1689   // Assign locations to each value returned by this call.
1690   SmallVector<CCValAssign, 16> RetLocs;
1691   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1692   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1693 
1694   // Copy all of the result registers out of their specified physreg.
1695   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1696     CCValAssign &VA = RetLocs[I];
1697 
1698     // Copy the value out, gluing the copy to the end of the call sequence.
1699     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1700                                           VA.getLocVT(), Glue);
1701     Chain = RetValue.getValue(1);
1702     Glue = RetValue.getValue(2);
1703 
1704     // Convert the value of the return register into the value that's
1705     // being returned.
1706     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1707   }
1708 
1709   return Chain;
1710 }
1711 
1712 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1713 CanLowerReturn(CallingConv::ID CallConv,
1714                MachineFunction &MF, bool isVarArg,
1715                const SmallVectorImpl<ISD::OutputArg> &Outs,
1716                LLVMContext &Context) const {
1717   // Detect unsupported vector return types.
1718   if (Subtarget.hasVector())
1719     VerifyVectorTypes(Outs);
1720 
1721   // Special case that we cannot easily detect in RetCC_SystemZ since
1722   // i128 is not a legal type.
1723   for (auto &Out : Outs)
1724     if (Out.ArgVT == MVT::i128)
1725       return false;
1726 
1727   SmallVector<CCValAssign, 16> RetLocs;
1728   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1729   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1730 }
1731 
1732 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1733 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1734                                    bool IsVarArg,
1735                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1736                                    const SmallVectorImpl<SDValue> &OutVals,
1737                                    const SDLoc &DL, SelectionDAG &DAG) const {
1738   MachineFunction &MF = DAG.getMachineFunction();
1739 
1740   // Detect unsupported vector return types.
1741   if (Subtarget.hasVector())
1742     VerifyVectorTypes(Outs);
1743 
1744   // Assign locations to each returned value.
1745   SmallVector<CCValAssign, 16> RetLocs;
1746   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1747   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1748 
1749   // Quick exit for void returns
1750   if (RetLocs.empty())
1751     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1752 
1753   if (CallConv == CallingConv::GHC)
1754     report_fatal_error("GHC functions return void only");
1755 
1756   // Copy the result values into the output registers.
1757   SDValue Glue;
1758   SmallVector<SDValue, 4> RetOps;
1759   RetOps.push_back(Chain);
1760   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1761     CCValAssign &VA = RetLocs[I];
1762     SDValue RetValue = OutVals[I];
1763 
1764     // Make the return register live on exit.
1765     assert(VA.isRegLoc() && "Can only return in registers!");
1766 
1767     // Promote the value as required.
1768     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1769 
1770     // Chain and glue the copies together.
1771     Register Reg = VA.getLocReg();
1772     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1773     Glue = Chain.getValue(1);
1774     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1775   }
1776 
1777   // Update chain and glue.
1778   RetOps[0] = Chain;
1779   if (Glue.getNode())
1780     RetOps.push_back(Glue);
1781 
1782   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1783 }
1784 
1785 // Return true if Op is an intrinsic node with chain that returns the CC value
1786 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1787 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1788 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1789                                       unsigned &CCValid) {
1790   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1791   switch (Id) {
1792   case Intrinsic::s390_tbegin:
1793     Opcode = SystemZISD::TBEGIN;
1794     CCValid = SystemZ::CCMASK_TBEGIN;
1795     return true;
1796 
1797   case Intrinsic::s390_tbegin_nofloat:
1798     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1799     CCValid = SystemZ::CCMASK_TBEGIN;
1800     return true;
1801 
1802   case Intrinsic::s390_tend:
1803     Opcode = SystemZISD::TEND;
1804     CCValid = SystemZ::CCMASK_TEND;
1805     return true;
1806 
1807   default:
1808     return false;
1809   }
1810 }
1811 
1812 // Return true if Op is an intrinsic node without chain that returns the
1813 // CC value as its final argument.  Provide the associated SystemZISD
1814 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1815 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1816   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1817   switch (Id) {
1818   case Intrinsic::s390_vpkshs:
1819   case Intrinsic::s390_vpksfs:
1820   case Intrinsic::s390_vpksgs:
1821     Opcode = SystemZISD::PACKS_CC;
1822     CCValid = SystemZ::CCMASK_VCMP;
1823     return true;
1824 
1825   case Intrinsic::s390_vpklshs:
1826   case Intrinsic::s390_vpklsfs:
1827   case Intrinsic::s390_vpklsgs:
1828     Opcode = SystemZISD::PACKLS_CC;
1829     CCValid = SystemZ::CCMASK_VCMP;
1830     return true;
1831 
1832   case Intrinsic::s390_vceqbs:
1833   case Intrinsic::s390_vceqhs:
1834   case Intrinsic::s390_vceqfs:
1835   case Intrinsic::s390_vceqgs:
1836     Opcode = SystemZISD::VICMPES;
1837     CCValid = SystemZ::CCMASK_VCMP;
1838     return true;
1839 
1840   case Intrinsic::s390_vchbs:
1841   case Intrinsic::s390_vchhs:
1842   case Intrinsic::s390_vchfs:
1843   case Intrinsic::s390_vchgs:
1844     Opcode = SystemZISD::VICMPHS;
1845     CCValid = SystemZ::CCMASK_VCMP;
1846     return true;
1847 
1848   case Intrinsic::s390_vchlbs:
1849   case Intrinsic::s390_vchlhs:
1850   case Intrinsic::s390_vchlfs:
1851   case Intrinsic::s390_vchlgs:
1852     Opcode = SystemZISD::VICMPHLS;
1853     CCValid = SystemZ::CCMASK_VCMP;
1854     return true;
1855 
1856   case Intrinsic::s390_vtm:
1857     Opcode = SystemZISD::VTM;
1858     CCValid = SystemZ::CCMASK_VCMP;
1859     return true;
1860 
1861   case Intrinsic::s390_vfaebs:
1862   case Intrinsic::s390_vfaehs:
1863   case Intrinsic::s390_vfaefs:
1864     Opcode = SystemZISD::VFAE_CC;
1865     CCValid = SystemZ::CCMASK_ANY;
1866     return true;
1867 
1868   case Intrinsic::s390_vfaezbs:
1869   case Intrinsic::s390_vfaezhs:
1870   case Intrinsic::s390_vfaezfs:
1871     Opcode = SystemZISD::VFAEZ_CC;
1872     CCValid = SystemZ::CCMASK_ANY;
1873     return true;
1874 
1875   case Intrinsic::s390_vfeebs:
1876   case Intrinsic::s390_vfeehs:
1877   case Intrinsic::s390_vfeefs:
1878     Opcode = SystemZISD::VFEE_CC;
1879     CCValid = SystemZ::CCMASK_ANY;
1880     return true;
1881 
1882   case Intrinsic::s390_vfeezbs:
1883   case Intrinsic::s390_vfeezhs:
1884   case Intrinsic::s390_vfeezfs:
1885     Opcode = SystemZISD::VFEEZ_CC;
1886     CCValid = SystemZ::CCMASK_ANY;
1887     return true;
1888 
1889   case Intrinsic::s390_vfenebs:
1890   case Intrinsic::s390_vfenehs:
1891   case Intrinsic::s390_vfenefs:
1892     Opcode = SystemZISD::VFENE_CC;
1893     CCValid = SystemZ::CCMASK_ANY;
1894     return true;
1895 
1896   case Intrinsic::s390_vfenezbs:
1897   case Intrinsic::s390_vfenezhs:
1898   case Intrinsic::s390_vfenezfs:
1899     Opcode = SystemZISD::VFENEZ_CC;
1900     CCValid = SystemZ::CCMASK_ANY;
1901     return true;
1902 
1903   case Intrinsic::s390_vistrbs:
1904   case Intrinsic::s390_vistrhs:
1905   case Intrinsic::s390_vistrfs:
1906     Opcode = SystemZISD::VISTR_CC;
1907     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1908     return true;
1909 
1910   case Intrinsic::s390_vstrcbs:
1911   case Intrinsic::s390_vstrchs:
1912   case Intrinsic::s390_vstrcfs:
1913     Opcode = SystemZISD::VSTRC_CC;
1914     CCValid = SystemZ::CCMASK_ANY;
1915     return true;
1916 
1917   case Intrinsic::s390_vstrczbs:
1918   case Intrinsic::s390_vstrczhs:
1919   case Intrinsic::s390_vstrczfs:
1920     Opcode = SystemZISD::VSTRCZ_CC;
1921     CCValid = SystemZ::CCMASK_ANY;
1922     return true;
1923 
1924   case Intrinsic::s390_vstrsb:
1925   case Intrinsic::s390_vstrsh:
1926   case Intrinsic::s390_vstrsf:
1927     Opcode = SystemZISD::VSTRS_CC;
1928     CCValid = SystemZ::CCMASK_ANY;
1929     return true;
1930 
1931   case Intrinsic::s390_vstrszb:
1932   case Intrinsic::s390_vstrszh:
1933   case Intrinsic::s390_vstrszf:
1934     Opcode = SystemZISD::VSTRSZ_CC;
1935     CCValid = SystemZ::CCMASK_ANY;
1936     return true;
1937 
1938   case Intrinsic::s390_vfcedbs:
1939   case Intrinsic::s390_vfcesbs:
1940     Opcode = SystemZISD::VFCMPES;
1941     CCValid = SystemZ::CCMASK_VCMP;
1942     return true;
1943 
1944   case Intrinsic::s390_vfchdbs:
1945   case Intrinsic::s390_vfchsbs:
1946     Opcode = SystemZISD::VFCMPHS;
1947     CCValid = SystemZ::CCMASK_VCMP;
1948     return true;
1949 
1950   case Intrinsic::s390_vfchedbs:
1951   case Intrinsic::s390_vfchesbs:
1952     Opcode = SystemZISD::VFCMPHES;
1953     CCValid = SystemZ::CCMASK_VCMP;
1954     return true;
1955 
1956   case Intrinsic::s390_vftcidb:
1957   case Intrinsic::s390_vftcisb:
1958     Opcode = SystemZISD::VFTCI;
1959     CCValid = SystemZ::CCMASK_VCMP;
1960     return true;
1961 
1962   case Intrinsic::s390_tdc:
1963     Opcode = SystemZISD::TDC;
1964     CCValid = SystemZ::CCMASK_TDC;
1965     return true;
1966 
1967   default:
1968     return false;
1969   }
1970 }
1971 
1972 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1973 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1974                                            unsigned Opcode) {
1975   // Copy all operands except the intrinsic ID.
1976   unsigned NumOps = Op.getNumOperands();
1977   SmallVector<SDValue, 6> Ops;
1978   Ops.reserve(NumOps - 1);
1979   Ops.push_back(Op.getOperand(0));
1980   for (unsigned I = 2; I < NumOps; ++I)
1981     Ops.push_back(Op.getOperand(I));
1982 
1983   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1984   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1985   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1986   SDValue OldChain = SDValue(Op.getNode(), 1);
1987   SDValue NewChain = SDValue(Intr.getNode(), 1);
1988   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1989   return Intr.getNode();
1990 }
1991 
1992 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1993 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1994                                    unsigned Opcode) {
1995   // Copy all operands except the intrinsic ID.
1996   unsigned NumOps = Op.getNumOperands();
1997   SmallVector<SDValue, 6> Ops;
1998   Ops.reserve(NumOps - 1);
1999   for (unsigned I = 1; I < NumOps; ++I)
2000     Ops.push_back(Op.getOperand(I));
2001 
2002   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2003   return Intr.getNode();
2004 }
2005 
2006 // CC is a comparison that will be implemented using an integer or
2007 // floating-point comparison.  Return the condition code mask for
2008 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2009 // unsigned comparisons and clear for signed ones.  In the floating-point
2010 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)2011 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2012 #define CONV(X) \
2013   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2014   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2015   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2016 
2017   switch (CC) {
2018   default:
2019     llvm_unreachable("Invalid integer condition!");
2020 
2021   CONV(EQ);
2022   CONV(NE);
2023   CONV(GT);
2024   CONV(GE);
2025   CONV(LT);
2026   CONV(LE);
2027 
2028   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2029   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2030   }
2031 #undef CONV
2032 }
2033 
2034 // If C can be converted to a comparison against zero, adjust the operands
2035 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2036 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2037   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2038     return;
2039 
2040   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2041   if (!ConstOp1)
2042     return;
2043 
2044   int64_t Value = ConstOp1->getSExtValue();
2045   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2046       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2047       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2048       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2049     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2050     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2051   }
2052 }
2053 
2054 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2055 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2056 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2057                              Comparison &C) {
2058   // For us to make any changes, it must a comparison between a single-use
2059   // load and a constant.
2060   if (!C.Op0.hasOneUse() ||
2061       C.Op0.getOpcode() != ISD::LOAD ||
2062       C.Op1.getOpcode() != ISD::Constant)
2063     return;
2064 
2065   // We must have an 8- or 16-bit load.
2066   auto *Load = cast<LoadSDNode>(C.Op0);
2067   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2068   if ((NumBits != 8 && NumBits != 16) ||
2069       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2070     return;
2071 
2072   // The load must be an extending one and the constant must be within the
2073   // range of the unextended value.
2074   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2075   uint64_t Value = ConstOp1->getZExtValue();
2076   uint64_t Mask = (1 << NumBits) - 1;
2077   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2078     // Make sure that ConstOp1 is in range of C.Op0.
2079     int64_t SignedValue = ConstOp1->getSExtValue();
2080     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2081       return;
2082     if (C.ICmpType != SystemZICMP::SignedOnly) {
2083       // Unsigned comparison between two sign-extended values is equivalent
2084       // to unsigned comparison between two zero-extended values.
2085       Value &= Mask;
2086     } else if (NumBits == 8) {
2087       // Try to treat the comparison as unsigned, so that we can use CLI.
2088       // Adjust CCMask and Value as necessary.
2089       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2090         // Test whether the high bit of the byte is set.
2091         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2092       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2093         // Test whether the high bit of the byte is clear.
2094         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2095       else
2096         // No instruction exists for this combination.
2097         return;
2098       C.ICmpType = SystemZICMP::UnsignedOnly;
2099     }
2100   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2101     if (Value > Mask)
2102       return;
2103     // If the constant is in range, we can use any comparison.
2104     C.ICmpType = SystemZICMP::Any;
2105   } else
2106     return;
2107 
2108   // Make sure that the first operand is an i32 of the right extension type.
2109   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2110                               ISD::SEXTLOAD :
2111                               ISD::ZEXTLOAD);
2112   if (C.Op0.getValueType() != MVT::i32 ||
2113       Load->getExtensionType() != ExtType) {
2114     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2115                            Load->getBasePtr(), Load->getPointerInfo(),
2116                            Load->getMemoryVT(), Load->getAlignment(),
2117                            Load->getMemOperand()->getFlags());
2118     // Update the chain uses.
2119     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2120   }
2121 
2122   // Make sure that the second operand is an i32 with the right value.
2123   if (C.Op1.getValueType() != MVT::i32 ||
2124       Value != ConstOp1->getZExtValue())
2125     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2126 }
2127 
2128 // Return true if Op is either an unextended load, or a load suitable
2129 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)2130 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2131   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2132   if (Load) {
2133     // There are no instructions to compare a register with a memory byte.
2134     if (Load->getMemoryVT() == MVT::i8)
2135       return false;
2136     // Otherwise decide on extension type.
2137     switch (Load->getExtensionType()) {
2138     case ISD::NON_EXTLOAD:
2139       return true;
2140     case ISD::SEXTLOAD:
2141       return ICmpType != SystemZICMP::UnsignedOnly;
2142     case ISD::ZEXTLOAD:
2143       return ICmpType != SystemZICMP::SignedOnly;
2144     default:
2145       break;
2146     }
2147   }
2148   return false;
2149 }
2150 
2151 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)2152 static bool shouldSwapCmpOperands(const Comparison &C) {
2153   // Leave f128 comparisons alone, since they have no memory forms.
2154   if (C.Op0.getValueType() == MVT::f128)
2155     return false;
2156 
2157   // Always keep a floating-point constant second, since comparisons with
2158   // zero can use LOAD TEST and comparisons with other constants make a
2159   // natural memory operand.
2160   if (isa<ConstantFPSDNode>(C.Op1))
2161     return false;
2162 
2163   // Never swap comparisons with zero since there are many ways to optimize
2164   // those later.
2165   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2166   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2167     return false;
2168 
2169   // Also keep natural memory operands second if the loaded value is
2170   // only used here.  Several comparisons have memory forms.
2171   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2172     return false;
2173 
2174   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2175   // In that case we generally prefer the memory to be second.
2176   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2177     // The only exceptions are when the second operand is a constant and
2178     // we can use things like CHHSI.
2179     if (!ConstOp1)
2180       return true;
2181     // The unsigned memory-immediate instructions can handle 16-bit
2182     // unsigned integers.
2183     if (C.ICmpType != SystemZICMP::SignedOnly &&
2184         isUInt<16>(ConstOp1->getZExtValue()))
2185       return false;
2186     // The signed memory-immediate instructions can handle 16-bit
2187     // signed integers.
2188     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2189         isInt<16>(ConstOp1->getSExtValue()))
2190       return false;
2191     return true;
2192   }
2193 
2194   // Try to promote the use of CGFR and CLGFR.
2195   unsigned Opcode0 = C.Op0.getOpcode();
2196   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2197     return true;
2198   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2199     return true;
2200   if (C.ICmpType != SystemZICMP::SignedOnly &&
2201       Opcode0 == ISD::AND &&
2202       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2203       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2204     return true;
2205 
2206   return false;
2207 }
2208 
2209 // Check whether C tests for equality between X and Y and whether X - Y
2210 // or Y - X is also computed.  In that case it's better to compare the
2211 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2212 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2213                                  Comparison &C) {
2214   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2215       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2216     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2217       SDNode *N = *I;
2218       if (N->getOpcode() == ISD::SUB &&
2219           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2220            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2221         C.Op0 = SDValue(N, 0);
2222         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2223         return;
2224       }
2225     }
2226   }
2227 }
2228 
2229 // Check whether C compares a floating-point value with zero and if that
2230 // floating-point value is also negated.  In this case we can use the
2231 // negation to set CC, so avoiding separate LOAD AND TEST and
2232 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)2233 static void adjustForFNeg(Comparison &C) {
2234   // This optimization is invalid for strict comparisons, since FNEG
2235   // does not raise any exceptions.
2236   if (C.Chain)
2237     return;
2238   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2239   if (C1 && C1->isZero()) {
2240     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2241       SDNode *N = *I;
2242       if (N->getOpcode() == ISD::FNEG) {
2243         C.Op0 = SDValue(N, 0);
2244         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2245         return;
2246       }
2247     }
2248   }
2249 }
2250 
2251 // Check whether C compares (shl X, 32) with 0 and whether X is
2252 // also sign-extended.  In that case it is better to test the result
2253 // of the sign extension using LTGFR.
2254 //
2255 // This case is important because InstCombine transforms a comparison
2256 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)2257 static void adjustForLTGFR(Comparison &C) {
2258   // Check for a comparison between (shl X, 32) and 0.
2259   if (C.Op0.getOpcode() == ISD::SHL &&
2260       C.Op0.getValueType() == MVT::i64 &&
2261       C.Op1.getOpcode() == ISD::Constant &&
2262       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2263     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2264     if (C1 && C1->getZExtValue() == 32) {
2265       SDValue ShlOp0 = C.Op0.getOperand(0);
2266       // See whether X has any SIGN_EXTEND_INREG uses.
2267       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2268         SDNode *N = *I;
2269         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2270             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2271           C.Op0 = SDValue(N, 0);
2272           return;
2273         }
2274       }
2275     }
2276   }
2277 }
2278 
2279 // If C compares the truncation of an extending load, try to compare
2280 // the untruncated value instead.  This exposes more opportunities to
2281 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2282 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2283                                Comparison &C) {
2284   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2285       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2286       C.Op1.getOpcode() == ISD::Constant &&
2287       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2288     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2289     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2290         C.Op0.getValueSizeInBits().getFixedSize()) {
2291       unsigned Type = L->getExtensionType();
2292       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2293           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2294         C.Op0 = C.Op0.getOperand(0);
2295         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2296       }
2297     }
2298   }
2299 }
2300 
2301 // Return true if shift operation N has an in-range constant shift value.
2302 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2303 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2304   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2305   if (!Shift)
2306     return false;
2307 
2308   uint64_t Amount = Shift->getZExtValue();
2309   if (Amount >= N.getValueSizeInBits())
2310     return false;
2311 
2312   ShiftVal = Amount;
2313   return true;
2314 }
2315 
2316 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2317 // instruction and whether the CC value is descriptive enough to handle
2318 // a comparison of type Opcode between the AND result and CmpVal.
2319 // CCMask says which comparison result is being tested and BitSize is
2320 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2321 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2322 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2323                                      uint64_t Mask, uint64_t CmpVal,
2324                                      unsigned ICmpType) {
2325   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2326 
2327   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2328   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2329       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2330     return 0;
2331 
2332   // Work out the masks for the lowest and highest bits.
2333   unsigned HighShift = 63 - countLeadingZeros(Mask);
2334   uint64_t High = uint64_t(1) << HighShift;
2335   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2336 
2337   // Signed ordered comparisons are effectively unsigned if the sign
2338   // bit is dropped.
2339   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2340 
2341   // Check for equality comparisons with 0, or the equivalent.
2342   if (CmpVal == 0) {
2343     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2344       return SystemZ::CCMASK_TM_ALL_0;
2345     if (CCMask == SystemZ::CCMASK_CMP_NE)
2346       return SystemZ::CCMASK_TM_SOME_1;
2347   }
2348   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2349     if (CCMask == SystemZ::CCMASK_CMP_LT)
2350       return SystemZ::CCMASK_TM_ALL_0;
2351     if (CCMask == SystemZ::CCMASK_CMP_GE)
2352       return SystemZ::CCMASK_TM_SOME_1;
2353   }
2354   if (EffectivelyUnsigned && CmpVal < Low) {
2355     if (CCMask == SystemZ::CCMASK_CMP_LE)
2356       return SystemZ::CCMASK_TM_ALL_0;
2357     if (CCMask == SystemZ::CCMASK_CMP_GT)
2358       return SystemZ::CCMASK_TM_SOME_1;
2359   }
2360 
2361   // Check for equality comparisons with the mask, or the equivalent.
2362   if (CmpVal == Mask) {
2363     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2364       return SystemZ::CCMASK_TM_ALL_1;
2365     if (CCMask == SystemZ::CCMASK_CMP_NE)
2366       return SystemZ::CCMASK_TM_SOME_0;
2367   }
2368   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2369     if (CCMask == SystemZ::CCMASK_CMP_GT)
2370       return SystemZ::CCMASK_TM_ALL_1;
2371     if (CCMask == SystemZ::CCMASK_CMP_LE)
2372       return SystemZ::CCMASK_TM_SOME_0;
2373   }
2374   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2375     if (CCMask == SystemZ::CCMASK_CMP_GE)
2376       return SystemZ::CCMASK_TM_ALL_1;
2377     if (CCMask == SystemZ::CCMASK_CMP_LT)
2378       return SystemZ::CCMASK_TM_SOME_0;
2379   }
2380 
2381   // Check for ordered comparisons with the top bit.
2382   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2383     if (CCMask == SystemZ::CCMASK_CMP_LE)
2384       return SystemZ::CCMASK_TM_MSB_0;
2385     if (CCMask == SystemZ::CCMASK_CMP_GT)
2386       return SystemZ::CCMASK_TM_MSB_1;
2387   }
2388   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2389     if (CCMask == SystemZ::CCMASK_CMP_LT)
2390       return SystemZ::CCMASK_TM_MSB_0;
2391     if (CCMask == SystemZ::CCMASK_CMP_GE)
2392       return SystemZ::CCMASK_TM_MSB_1;
2393   }
2394 
2395   // If there are just two bits, we can do equality checks for Low and High
2396   // as well.
2397   if (Mask == Low + High) {
2398     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2399       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2400     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2401       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2402     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2403       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2404     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2405       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2406   }
2407 
2408   // Looks like we've exhausted our options.
2409   return 0;
2410 }
2411 
2412 // See whether C can be implemented as a TEST UNDER MASK instruction.
2413 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2414 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2415                                    Comparison &C) {
2416   // Check that we have a comparison with a constant.
2417   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2418   if (!ConstOp1)
2419     return;
2420   uint64_t CmpVal = ConstOp1->getZExtValue();
2421 
2422   // Check whether the nonconstant input is an AND with a constant mask.
2423   Comparison NewC(C);
2424   uint64_t MaskVal;
2425   ConstantSDNode *Mask = nullptr;
2426   if (C.Op0.getOpcode() == ISD::AND) {
2427     NewC.Op0 = C.Op0.getOperand(0);
2428     NewC.Op1 = C.Op0.getOperand(1);
2429     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2430     if (!Mask)
2431       return;
2432     MaskVal = Mask->getZExtValue();
2433   } else {
2434     // There is no instruction to compare with a 64-bit immediate
2435     // so use TMHH instead if possible.  We need an unsigned ordered
2436     // comparison with an i64 immediate.
2437     if (NewC.Op0.getValueType() != MVT::i64 ||
2438         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2439         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2440         NewC.ICmpType == SystemZICMP::SignedOnly)
2441       return;
2442     // Convert LE and GT comparisons into LT and GE.
2443     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2444         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2445       if (CmpVal == uint64_t(-1))
2446         return;
2447       CmpVal += 1;
2448       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2449     }
2450     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2451     // be masked off without changing the result.
2452     MaskVal = -(CmpVal & -CmpVal);
2453     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2454   }
2455   if (!MaskVal)
2456     return;
2457 
2458   // Check whether the combination of mask, comparison value and comparison
2459   // type are suitable.
2460   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2461   unsigned NewCCMask, ShiftVal;
2462   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2463       NewC.Op0.getOpcode() == ISD::SHL &&
2464       isSimpleShift(NewC.Op0, ShiftVal) &&
2465       (MaskVal >> ShiftVal != 0) &&
2466       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2467       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2468                                         MaskVal >> ShiftVal,
2469                                         CmpVal >> ShiftVal,
2470                                         SystemZICMP::Any))) {
2471     NewC.Op0 = NewC.Op0.getOperand(0);
2472     MaskVal >>= ShiftVal;
2473   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2474              NewC.Op0.getOpcode() == ISD::SRL &&
2475              isSimpleShift(NewC.Op0, ShiftVal) &&
2476              (MaskVal << ShiftVal != 0) &&
2477              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2478              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2479                                                MaskVal << ShiftVal,
2480                                                CmpVal << ShiftVal,
2481                                                SystemZICMP::UnsignedOnly))) {
2482     NewC.Op0 = NewC.Op0.getOperand(0);
2483     MaskVal <<= ShiftVal;
2484   } else {
2485     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2486                                      NewC.ICmpType);
2487     if (!NewCCMask)
2488       return;
2489   }
2490 
2491   // Go ahead and make the change.
2492   C.Opcode = SystemZISD::TM;
2493   C.Op0 = NewC.Op0;
2494   if (Mask && Mask->getZExtValue() == MaskVal)
2495     C.Op1 = SDValue(Mask, 0);
2496   else
2497     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2498   C.CCValid = SystemZ::CCMASK_TM;
2499   C.CCMask = NewCCMask;
2500 }
2501 
2502 // See whether the comparison argument contains a redundant AND
2503 // and remove it if so.  This sometimes happens due to the generic
2504 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2505 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2506                                   Comparison &C) {
2507   if (C.Op0.getOpcode() != ISD::AND)
2508     return;
2509   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2510   if (!Mask)
2511     return;
2512   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2513   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2514     return;
2515 
2516   C.Op0 = C.Op0.getOperand(0);
2517 }
2518 
2519 // Return a Comparison that tests the condition-code result of intrinsic
2520 // node Call against constant integer CC using comparison code Cond.
2521 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2522 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2523 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2524                                   SDValue Call, unsigned CCValid, uint64_t CC,
2525                                   ISD::CondCode Cond) {
2526   Comparison C(Call, SDValue(), SDValue());
2527   C.Opcode = Opcode;
2528   C.CCValid = CCValid;
2529   if (Cond == ISD::SETEQ)
2530     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2531     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2532   else if (Cond == ISD::SETNE)
2533     // ...and the inverse of that.
2534     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2535   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2536     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2537     // always true for CC>3.
2538     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2539   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2540     // ...and the inverse of that.
2541     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2542   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2543     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2544     // always true for CC>3.
2545     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2546   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2547     // ...and the inverse of that.
2548     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2549   else
2550     llvm_unreachable("Unexpected integer comparison type");
2551   C.CCMask &= CCValid;
2552   return C;
2553 }
2554 
2555 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL,SDValue Chain=SDValue (),bool IsSignaling=false)2556 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2557                          ISD::CondCode Cond, const SDLoc &DL,
2558                          SDValue Chain = SDValue(),
2559                          bool IsSignaling = false) {
2560   if (CmpOp1.getOpcode() == ISD::Constant) {
2561     assert(!Chain);
2562     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2563     unsigned Opcode, CCValid;
2564     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2565         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2566         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2567       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2568     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2569         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2570         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2571       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2572   }
2573   Comparison C(CmpOp0, CmpOp1, Chain);
2574   C.CCMask = CCMaskForCondCode(Cond);
2575   if (C.Op0.getValueType().isFloatingPoint()) {
2576     C.CCValid = SystemZ::CCMASK_FCMP;
2577     if (!C.Chain)
2578       C.Opcode = SystemZISD::FCMP;
2579     else if (!IsSignaling)
2580       C.Opcode = SystemZISD::STRICT_FCMP;
2581     else
2582       C.Opcode = SystemZISD::STRICT_FCMPS;
2583     adjustForFNeg(C);
2584   } else {
2585     assert(!C.Chain);
2586     C.CCValid = SystemZ::CCMASK_ICMP;
2587     C.Opcode = SystemZISD::ICMP;
2588     // Choose the type of comparison.  Equality and inequality tests can
2589     // use either signed or unsigned comparisons.  The choice also doesn't
2590     // matter if both sign bits are known to be clear.  In those cases we
2591     // want to give the main isel code the freedom to choose whichever
2592     // form fits best.
2593     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2594         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2595         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2596       C.ICmpType = SystemZICMP::Any;
2597     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2598       C.ICmpType = SystemZICMP::UnsignedOnly;
2599     else
2600       C.ICmpType = SystemZICMP::SignedOnly;
2601     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2602     adjustForRedundantAnd(DAG, DL, C);
2603     adjustZeroCmp(DAG, DL, C);
2604     adjustSubwordCmp(DAG, DL, C);
2605     adjustForSubtraction(DAG, DL, C);
2606     adjustForLTGFR(C);
2607     adjustICmpTruncate(DAG, DL, C);
2608   }
2609 
2610   if (shouldSwapCmpOperands(C)) {
2611     std::swap(C.Op0, C.Op1);
2612     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2613   }
2614 
2615   adjustForTestUnderMask(DAG, DL, C);
2616   return C;
2617 }
2618 
2619 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2620 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2621   if (!C.Op1.getNode()) {
2622     SDNode *Node;
2623     switch (C.Op0.getOpcode()) {
2624     case ISD::INTRINSIC_W_CHAIN:
2625       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2626       return SDValue(Node, 0);
2627     case ISD::INTRINSIC_WO_CHAIN:
2628       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2629       return SDValue(Node, Node->getNumValues() - 1);
2630     default:
2631       llvm_unreachable("Invalid comparison operands");
2632     }
2633   }
2634   if (C.Opcode == SystemZISD::ICMP)
2635     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2636                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2637   if (C.Opcode == SystemZISD::TM) {
2638     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2639                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2640     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2641                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2642   }
2643   if (C.Chain) {
2644     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2645     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2646   }
2647   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2648 }
2649 
2650 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2651 // 64 bits.  Extend is the extension type to use.  Store the high part
2652 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2653 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2654                             SDValue Op0, SDValue Op1, SDValue &Hi,
2655                             SDValue &Lo) {
2656   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2657   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2658   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2659   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2660                    DAG.getConstant(32, DL, MVT::i64));
2661   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2662   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2663 }
2664 
2665 // Lower a binary operation that produces two VT results, one in each
2666 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2667 // and Opcode performs the GR128 operation.  Store the even register result
2668 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2669 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2670                              unsigned Opcode, SDValue Op0, SDValue Op1,
2671                              SDValue &Even, SDValue &Odd) {
2672   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2673   bool Is32Bit = is32Bit(VT);
2674   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2675   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2676 }
2677 
2678 // Return an i32 value that is 1 if the CC value produced by CCReg is
2679 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2680 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)2681 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2682                          unsigned CCValid, unsigned CCMask) {
2683   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2684                    DAG.getConstant(0, DL, MVT::i32),
2685                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2686                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2687   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2688 }
2689 
2690 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2691 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2692 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2693 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2694 // floating-point comparisons.
2695 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
getVectorComparison(ISD::CondCode CC,CmpMode Mode)2696 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2697   switch (CC) {
2698   case ISD::SETOEQ:
2699   case ISD::SETEQ:
2700     switch (Mode) {
2701     case CmpMode::Int:         return SystemZISD::VICMPE;
2702     case CmpMode::FP:          return SystemZISD::VFCMPE;
2703     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2704     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2705     }
2706     llvm_unreachable("Bad mode");
2707 
2708   case ISD::SETOGE:
2709   case ISD::SETGE:
2710     switch (Mode) {
2711     case CmpMode::Int:         return 0;
2712     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2713     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2714     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2715     }
2716     llvm_unreachable("Bad mode");
2717 
2718   case ISD::SETOGT:
2719   case ISD::SETGT:
2720     switch (Mode) {
2721     case CmpMode::Int:         return SystemZISD::VICMPH;
2722     case CmpMode::FP:          return SystemZISD::VFCMPH;
2723     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2724     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2725     }
2726     llvm_unreachable("Bad mode");
2727 
2728   case ISD::SETUGT:
2729     switch (Mode) {
2730     case CmpMode::Int:         return SystemZISD::VICMPHL;
2731     case CmpMode::FP:          return 0;
2732     case CmpMode::StrictFP:    return 0;
2733     case CmpMode::SignalingFP: return 0;
2734     }
2735     llvm_unreachable("Bad mode");
2736 
2737   default:
2738     return 0;
2739   }
2740 }
2741 
2742 // Return the SystemZISD vector comparison operation for CC or its inverse,
2743 // or 0 if neither can be done directly.  Indicate in Invert whether the
2744 // result is for the inverse of CC.  Mode is as above.
getVectorComparisonOrInvert(ISD::CondCode CC,CmpMode Mode,bool & Invert)2745 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2746                                             bool &Invert) {
2747   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2748     Invert = false;
2749     return Opcode;
2750   }
2751 
2752   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2753   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2754     Invert = true;
2755     return Opcode;
2756   }
2757 
2758   return 0;
2759 }
2760 
2761 // Return a v2f64 that contains the extended form of elements Start and Start+1
2762 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op,SDValue Chain)2763 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2764                                   SDValue Op, SDValue Chain) {
2765   int Mask[] = { Start, -1, Start + 1, -1 };
2766   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2767   if (Chain) {
2768     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2769     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2770   }
2771   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2772 }
2773 
2774 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2775 // producing a result of type VT.  If Chain is nonnull, return the strict form.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain) const2776 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2777                                             const SDLoc &DL, EVT VT,
2778                                             SDValue CmpOp0,
2779                                             SDValue CmpOp1,
2780                                             SDValue Chain) const {
2781   // There is no hardware support for v4f32 (unless we have the vector
2782   // enhancements facility 1), so extend the vector into two v2f64s
2783   // and compare those.
2784   if (CmpOp0.getValueType() == MVT::v4f32 &&
2785       !Subtarget.hasVectorEnhancements1()) {
2786     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2787     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2788     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2789     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2790     if (Chain) {
2791       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2792       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2793       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2794       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2795       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2796                             H1.getValue(1), L1.getValue(1),
2797                             HRes.getValue(1), LRes.getValue(1) };
2798       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2799       SDValue Ops[2] = { Res, NewChain };
2800       return DAG.getMergeValues(Ops, DL);
2801     }
2802     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2803     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2804     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2805   }
2806   if (Chain) {
2807     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2808     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2809   }
2810   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2811 }
2812 
2813 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2814 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2815 // floating-point comparison.  If in addition IsSignaling is true, we have
2816 // a strict signaling floating-point comparison.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain,bool IsSignaling) const2817 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2818                                                 const SDLoc &DL, EVT VT,
2819                                                 ISD::CondCode CC,
2820                                                 SDValue CmpOp0,
2821                                                 SDValue CmpOp1,
2822                                                 SDValue Chain,
2823                                                 bool IsSignaling) const {
2824   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2825   assert (!Chain || IsFP);
2826   assert (!IsSignaling || Chain);
2827   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2828                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2829   bool Invert = false;
2830   SDValue Cmp;
2831   switch (CC) {
2832     // Handle tests for order using (or (ogt y x) (oge x y)).
2833   case ISD::SETUO:
2834     Invert = true;
2835     LLVM_FALLTHROUGH;
2836   case ISD::SETO: {
2837     assert(IsFP && "Unexpected integer comparison");
2838     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2839                               DL, VT, CmpOp1, CmpOp0, Chain);
2840     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2841                               DL, VT, CmpOp0, CmpOp1, Chain);
2842     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2843     if (Chain)
2844       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2845                           LT.getValue(1), GE.getValue(1));
2846     break;
2847   }
2848 
2849     // Handle <> tests using (or (ogt y x) (ogt x y)).
2850   case ISD::SETUEQ:
2851     Invert = true;
2852     LLVM_FALLTHROUGH;
2853   case ISD::SETONE: {
2854     assert(IsFP && "Unexpected integer comparison");
2855     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2856                               DL, VT, CmpOp1, CmpOp0, Chain);
2857     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2858                               DL, VT, CmpOp0, CmpOp1, Chain);
2859     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2860     if (Chain)
2861       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2862                           LT.getValue(1), GT.getValue(1));
2863     break;
2864   }
2865 
2866     // Otherwise a single comparison is enough.  It doesn't really
2867     // matter whether we try the inversion or the swap first, since
2868     // there are no cases where both work.
2869   default:
2870     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2871       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2872     else {
2873       CC = ISD::getSetCCSwappedOperands(CC);
2874       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2875         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2876       else
2877         llvm_unreachable("Unhandled comparison");
2878     }
2879     if (Chain)
2880       Chain = Cmp.getValue(1);
2881     break;
2882   }
2883   if (Invert) {
2884     SDValue Mask =
2885       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2886     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2887   }
2888   if (Chain && Chain.getNode() != Cmp.getNode()) {
2889     SDValue Ops[2] = { Cmp, Chain };
2890     Cmp = DAG.getMergeValues(Ops, DL);
2891   }
2892   return Cmp;
2893 }
2894 
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2895 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2896                                           SelectionDAG &DAG) const {
2897   SDValue CmpOp0   = Op.getOperand(0);
2898   SDValue CmpOp1   = Op.getOperand(1);
2899   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2900   SDLoc DL(Op);
2901   EVT VT = Op.getValueType();
2902   if (VT.isVector())
2903     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2904 
2905   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2906   SDValue CCReg = emitCmp(DAG, DL, C);
2907   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2908 }
2909 
lowerSTRICT_FSETCC(SDValue Op,SelectionDAG & DAG,bool IsSignaling) const2910 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2911                                                   SelectionDAG &DAG,
2912                                                   bool IsSignaling) const {
2913   SDValue Chain    = Op.getOperand(0);
2914   SDValue CmpOp0   = Op.getOperand(1);
2915   SDValue CmpOp1   = Op.getOperand(2);
2916   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2917   SDLoc DL(Op);
2918   EVT VT = Op.getNode()->getValueType(0);
2919   if (VT.isVector()) {
2920     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2921                                    Chain, IsSignaling);
2922     return Res.getValue(Op.getResNo());
2923   }
2924 
2925   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2926   SDValue CCReg = emitCmp(DAG, DL, C);
2927   CCReg->setFlags(Op->getFlags());
2928   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2929   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2930   return DAG.getMergeValues(Ops, DL);
2931 }
2932 
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2933 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2934   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2935   SDValue CmpOp0   = Op.getOperand(2);
2936   SDValue CmpOp1   = Op.getOperand(3);
2937   SDValue Dest     = Op.getOperand(4);
2938   SDLoc DL(Op);
2939 
2940   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2941   SDValue CCReg = emitCmp(DAG, DL, C);
2942   return DAG.getNode(
2943       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2944       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2945       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2946 }
2947 
2948 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2949 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2950 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2951   return (Neg.getOpcode() == ISD::SUB &&
2952           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2953           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2954           Neg.getOperand(1) == Pos &&
2955           (Pos == CmpOp ||
2956            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2957             Pos.getOperand(0) == CmpOp)));
2958 }
2959 
2960 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2961 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2962                            bool IsNegative) {
2963   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2964   if (IsNegative)
2965     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2966                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2967   return Op;
2968 }
2969 
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2970 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2971                                               SelectionDAG &DAG) const {
2972   SDValue CmpOp0   = Op.getOperand(0);
2973   SDValue CmpOp1   = Op.getOperand(1);
2974   SDValue TrueOp   = Op.getOperand(2);
2975   SDValue FalseOp  = Op.getOperand(3);
2976   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2977   SDLoc DL(Op);
2978 
2979   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2980 
2981   // Check for absolute and negative-absolute selections, including those
2982   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2983   // This check supplements the one in DAGCombiner.
2984   if (C.Opcode == SystemZISD::ICMP &&
2985       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2986       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2987       C.Op1.getOpcode() == ISD::Constant &&
2988       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2989     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2990       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2991     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2992       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2993   }
2994 
2995   SDValue CCReg = emitCmp(DAG, DL, C);
2996   SDValue Ops[] = {TrueOp, FalseOp,
2997                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2998                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2999 
3000   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3001 }
3002 
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3003 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3004                                                   SelectionDAG &DAG) const {
3005   SDLoc DL(Node);
3006   const GlobalValue *GV = Node->getGlobal();
3007   int64_t Offset = Node->getOffset();
3008   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3009   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3010 
3011   SDValue Result;
3012   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3013     if (isInt<32>(Offset)) {
3014       // Assign anchors at 1<<12 byte boundaries.
3015       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3016       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3017       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3018 
3019       // The offset can be folded into the address if it is aligned to a
3020       // halfword.
3021       Offset -= Anchor;
3022       if (Offset != 0 && (Offset & 1) == 0) {
3023         SDValue Full =
3024           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3025         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3026         Offset = 0;
3027       }
3028     } else {
3029       // Conservatively load a constant offset greater than 32 bits into a
3030       // register below.
3031       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3032       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3033     }
3034   } else {
3035     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3036     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3037     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3038                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3039   }
3040 
3041   // If there was a non-zero offset that we didn't fold, create an explicit
3042   // addition for it.
3043   if (Offset != 0)
3044     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3045                          DAG.getConstant(Offset, DL, PtrVT));
3046 
3047   return Result;
3048 }
3049 
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const3050 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3051                                                  SelectionDAG &DAG,
3052                                                  unsigned Opcode,
3053                                                  SDValue GOTOffset) const {
3054   SDLoc DL(Node);
3055   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3056   SDValue Chain = DAG.getEntryNode();
3057   SDValue Glue;
3058 
3059   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3060       CallingConv::GHC)
3061     report_fatal_error("In GHC calling convention TLS is not supported");
3062 
3063   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3064   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3065   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3066   Glue = Chain.getValue(1);
3067   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3068   Glue = Chain.getValue(1);
3069 
3070   // The first call operand is the chain and the second is the TLS symbol.
3071   SmallVector<SDValue, 8> Ops;
3072   Ops.push_back(Chain);
3073   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3074                                            Node->getValueType(0),
3075                                            0, 0));
3076 
3077   // Add argument registers to the end of the list so that they are
3078   // known live into the call.
3079   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3080   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3081 
3082   // Add a register mask operand representing the call-preserved registers.
3083   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3084   const uint32_t *Mask =
3085       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3086   assert(Mask && "Missing call preserved mask for calling convention");
3087   Ops.push_back(DAG.getRegisterMask(Mask));
3088 
3089   // Glue the call to the argument copies.
3090   Ops.push_back(Glue);
3091 
3092   // Emit the call.
3093   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3094   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3095   Glue = Chain.getValue(1);
3096 
3097   // Copy the return value from %r2.
3098   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3099 }
3100 
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const3101 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3102                                                   SelectionDAG &DAG) const {
3103   SDValue Chain = DAG.getEntryNode();
3104   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3105 
3106   // The high part of the thread pointer is in access register 0.
3107   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3108   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3109 
3110   // The low part of the thread pointer is in access register 1.
3111   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3112   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3113 
3114   // Merge them into a single 64-bit address.
3115   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3116                                     DAG.getConstant(32, DL, PtrVT));
3117   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3118 }
3119 
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3120 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3121                                                      SelectionDAG &DAG) const {
3122   if (DAG.getTarget().useEmulatedTLS())
3123     return LowerToTLSEmulatedModel(Node, DAG);
3124   SDLoc DL(Node);
3125   const GlobalValue *GV = Node->getGlobal();
3126   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3127   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3128 
3129   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3130       CallingConv::GHC)
3131     report_fatal_error("In GHC calling convention TLS is not supported");
3132 
3133   SDValue TP = lowerThreadPointer(DL, DAG);
3134 
3135   // Get the offset of GA from the thread pointer, based on the TLS model.
3136   SDValue Offset;
3137   switch (model) {
3138     case TLSModel::GeneralDynamic: {
3139       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3140       SystemZConstantPoolValue *CPV =
3141         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3142 
3143       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3144       Offset = DAG.getLoad(
3145           PtrVT, DL, DAG.getEntryNode(), Offset,
3146           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3147 
3148       // Call __tls_get_offset to retrieve the offset.
3149       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3150       break;
3151     }
3152 
3153     case TLSModel::LocalDynamic: {
3154       // Load the GOT offset of the module ID.
3155       SystemZConstantPoolValue *CPV =
3156         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3157 
3158       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3159       Offset = DAG.getLoad(
3160           PtrVT, DL, DAG.getEntryNode(), Offset,
3161           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3162 
3163       // Call __tls_get_offset to retrieve the module base offset.
3164       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3165 
3166       // Note: The SystemZLDCleanupPass will remove redundant computations
3167       // of the module base offset.  Count total number of local-dynamic
3168       // accesses to trigger execution of that pass.
3169       SystemZMachineFunctionInfo* MFI =
3170         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3171       MFI->incNumLocalDynamicTLSAccesses();
3172 
3173       // Add the per-symbol offset.
3174       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3175 
3176       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3177       DTPOffset = DAG.getLoad(
3178           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3179           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3180 
3181       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3182       break;
3183     }
3184 
3185     case TLSModel::InitialExec: {
3186       // Load the offset from the GOT.
3187       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3188                                           SystemZII::MO_INDNTPOFF);
3189       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3190       Offset =
3191           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3192                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3193       break;
3194     }
3195 
3196     case TLSModel::LocalExec: {
3197       // Force the offset into the constant pool and load it from there.
3198       SystemZConstantPoolValue *CPV =
3199         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3200 
3201       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3202       Offset = DAG.getLoad(
3203           PtrVT, DL, DAG.getEntryNode(), Offset,
3204           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3205       break;
3206     }
3207   }
3208 
3209   // Add the base and offset together.
3210   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3211 }
3212 
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const3213 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3214                                                  SelectionDAG &DAG) const {
3215   SDLoc DL(Node);
3216   const BlockAddress *BA = Node->getBlockAddress();
3217   int64_t Offset = Node->getOffset();
3218   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3219 
3220   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3221   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3222   return Result;
3223 }
3224 
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const3225 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3226                                               SelectionDAG &DAG) const {
3227   SDLoc DL(JT);
3228   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3229   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3230 
3231   // Use LARL to load the address of the table.
3232   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3233 }
3234 
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const3235 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3236                                                  SelectionDAG &DAG) const {
3237   SDLoc DL(CP);
3238   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3239 
3240   SDValue Result;
3241   if (CP->isMachineConstantPoolEntry())
3242     Result =
3243         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3244   else
3245     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3246                                        CP->getOffset());
3247 
3248   // Use LARL to load the address of the constant pool entry.
3249   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3250 }
3251 
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3252 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3253                                               SelectionDAG &DAG) const {
3254   auto *TFL =
3255       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3256   MachineFunction &MF = DAG.getMachineFunction();
3257   MachineFrameInfo &MFI = MF.getFrameInfo();
3258   MFI.setFrameAddressIsTaken(true);
3259 
3260   SDLoc DL(Op);
3261   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3262   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3263 
3264   // Return null if the back chain is not present.
3265   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3266   if (TFL->usePackedStack(MF) && !HasBackChain)
3267     return DAG.getConstant(0, DL, PtrVT);
3268 
3269   // By definition, the frame address is the address of the back chain.
3270   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3271   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3272 
3273   // FIXME The frontend should detect this case.
3274   if (Depth > 0) {
3275     report_fatal_error("Unsupported stack frame traversal count");
3276   }
3277 
3278   return BackChain;
3279 }
3280 
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3281 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3282                                                SelectionDAG &DAG) const {
3283   MachineFunction &MF = DAG.getMachineFunction();
3284   MachineFrameInfo &MFI = MF.getFrameInfo();
3285   MFI.setReturnAddressIsTaken(true);
3286 
3287   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3288     return SDValue();
3289 
3290   SDLoc DL(Op);
3291   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3292   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3293 
3294   // FIXME The frontend should detect this case.
3295   if (Depth > 0) {
3296     report_fatal_error("Unsupported stack frame traversal count");
3297   }
3298 
3299   // Return R14D, which has the return address. Mark it an implicit live-in.
3300   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3301   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3302 }
3303 
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const3304 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3305                                             SelectionDAG &DAG) const {
3306   SDLoc DL(Op);
3307   SDValue In = Op.getOperand(0);
3308   EVT InVT = In.getValueType();
3309   EVT ResVT = Op.getValueType();
3310 
3311   // Convert loads directly.  This is normally done by DAGCombiner,
3312   // but we need this case for bitcasts that are created during lowering
3313   // and which are then lowered themselves.
3314   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3315     if (ISD::isNormalLoad(LoadN)) {
3316       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3317                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3318       // Update the chain uses.
3319       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3320       return NewLoad;
3321     }
3322 
3323   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3324     SDValue In64;
3325     if (Subtarget.hasHighWord()) {
3326       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3327                                        MVT::i64);
3328       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3329                                        MVT::i64, SDValue(U64, 0), In);
3330     } else {
3331       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3332       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3333                          DAG.getConstant(32, DL, MVT::i64));
3334     }
3335     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3336     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3337                                       DL, MVT::f32, Out64);
3338   }
3339   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3340     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3341     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3342                                              MVT::f64, SDValue(U64, 0), In);
3343     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3344     if (Subtarget.hasHighWord())
3345       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3346                                         MVT::i32, Out64);
3347     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3348                                 DAG.getConstant(32, DL, MVT::i64));
3349     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3350   }
3351   llvm_unreachable("Unexpected bitcast combination");
3352 }
3353 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const3354 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3355                                             SelectionDAG &DAG) const {
3356   MachineFunction &MF = DAG.getMachineFunction();
3357   SystemZMachineFunctionInfo *FuncInfo =
3358     MF.getInfo<SystemZMachineFunctionInfo>();
3359   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3360 
3361   SDValue Chain   = Op.getOperand(0);
3362   SDValue Addr    = Op.getOperand(1);
3363   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3364   SDLoc DL(Op);
3365 
3366   // The initial values of each field.
3367   const unsigned NumFields = 4;
3368   SDValue Fields[NumFields] = {
3369     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3370     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3371     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3372     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3373   };
3374 
3375   // Store each field into its respective slot.
3376   SDValue MemOps[NumFields];
3377   unsigned Offset = 0;
3378   for (unsigned I = 0; I < NumFields; ++I) {
3379     SDValue FieldAddr = Addr;
3380     if (Offset != 0)
3381       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3382                               DAG.getIntPtrConstant(Offset, DL));
3383     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3384                              MachinePointerInfo(SV, Offset));
3385     Offset += 8;
3386   }
3387   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3388 }
3389 
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const3390 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3391                                            SelectionDAG &DAG) const {
3392   SDValue Chain      = Op.getOperand(0);
3393   SDValue DstPtr     = Op.getOperand(1);
3394   SDValue SrcPtr     = Op.getOperand(2);
3395   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3396   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3397   SDLoc DL(Op);
3398 
3399   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3400                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3401                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3402                        MachinePointerInfo(SrcSV));
3403 }
3404 
3405 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3406 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3407   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3408   MachineFunction &MF = DAG.getMachineFunction();
3409   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3410   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3411 
3412   SDValue Chain = Op.getOperand(0);
3413   SDValue Size  = Op.getOperand(1);
3414   SDValue Align = Op.getOperand(2);
3415   SDLoc DL(Op);
3416 
3417   // If user has set the no alignment function attribute, ignore
3418   // alloca alignments.
3419   uint64_t AlignVal = (RealignOpt ?
3420                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3421 
3422   uint64_t StackAlign = TFI->getStackAlignment();
3423   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3424   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3425 
3426   Register SPReg = getStackPointerRegisterToSaveRestore();
3427   SDValue NeededSpace = Size;
3428 
3429   // Get a reference to the stack pointer.
3430   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3431 
3432   // If we need a backchain, save it now.
3433   SDValue Backchain;
3434   if (StoreBackchain)
3435     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3436 
3437   // Add extra space for alignment if needed.
3438   if (ExtraAlignSpace)
3439     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3440                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3441 
3442   // Get the new stack pointer value.
3443   SDValue NewSP;
3444   if (hasInlineStackProbe(MF)) {
3445     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3446                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3447     Chain = NewSP.getValue(1);
3448   }
3449   else {
3450     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3451     // Copy the new stack pointer back.
3452     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3453   }
3454 
3455   // The allocated data lives above the 160 bytes allocated for the standard
3456   // frame, plus any outgoing stack arguments.  We don't know how much that
3457   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3458   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3459   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3460 
3461   // Dynamically realign if needed.
3462   if (RequiredAlign > StackAlign) {
3463     Result =
3464       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3465                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3466     Result =
3467       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3468                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3469   }
3470 
3471   if (StoreBackchain)
3472     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3473 
3474   SDValue Ops[2] = { Result, Chain };
3475   return DAG.getMergeValues(Ops, DL);
3476 }
3477 
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const3478 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3479     SDValue Op, SelectionDAG &DAG) const {
3480   SDLoc DL(Op);
3481 
3482   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3483 }
3484 
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3485 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3486                                               SelectionDAG &DAG) const {
3487   EVT VT = Op.getValueType();
3488   SDLoc DL(Op);
3489   SDValue Ops[2];
3490   if (is32Bit(VT))
3491     // Just do a normal 64-bit multiplication and extract the results.
3492     // We define this so that it can be used for constant division.
3493     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3494                     Op.getOperand(1), Ops[1], Ops[0]);
3495   else if (Subtarget.hasMiscellaneousExtensions2())
3496     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3497     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3498     // return the low half first, so the results are in reverse order.
3499     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3500                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3501   else {
3502     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3503     //
3504     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3505     //
3506     // but using the fact that the upper halves are either all zeros
3507     // or all ones:
3508     //
3509     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3510     //
3511     // and grouping the right terms together since they are quicker than the
3512     // multiplication:
3513     //
3514     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3515     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3516     SDValue LL = Op.getOperand(0);
3517     SDValue RL = Op.getOperand(1);
3518     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3519     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3520     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3521     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3522     // return the low half first, so the results are in reverse order.
3523     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3524                      LL, RL, Ops[1], Ops[0]);
3525     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3526     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3527     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3528     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3529   }
3530   return DAG.getMergeValues(Ops, DL);
3531 }
3532 
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3533 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3534                                               SelectionDAG &DAG) const {
3535   EVT VT = Op.getValueType();
3536   SDLoc DL(Op);
3537   SDValue Ops[2];
3538   if (is32Bit(VT))
3539     // Just do a normal 64-bit multiplication and extract the results.
3540     // We define this so that it can be used for constant division.
3541     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3542                     Op.getOperand(1), Ops[1], Ops[0]);
3543   else
3544     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3545     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3546     // return the low half first, so the results are in reverse order.
3547     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3548                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3549   return DAG.getMergeValues(Ops, DL);
3550 }
3551 
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const3552 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3553                                             SelectionDAG &DAG) const {
3554   SDValue Op0 = Op.getOperand(0);
3555   SDValue Op1 = Op.getOperand(1);
3556   EVT VT = Op.getValueType();
3557   SDLoc DL(Op);
3558 
3559   // We use DSGF for 32-bit division.  This means the first operand must
3560   // always be 64-bit, and the second operand should be 32-bit whenever
3561   // that is possible, to improve performance.
3562   if (is32Bit(VT))
3563     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3564   else if (DAG.ComputeNumSignBits(Op1) > 32)
3565     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3566 
3567   // DSG(F) returns the remainder in the even register and the
3568   // quotient in the odd register.
3569   SDValue Ops[2];
3570   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3571   return DAG.getMergeValues(Ops, DL);
3572 }
3573 
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3574 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3575                                             SelectionDAG &DAG) const {
3576   EVT VT = Op.getValueType();
3577   SDLoc DL(Op);
3578 
3579   // DL(G) returns the remainder in the even register and the
3580   // quotient in the odd register.
3581   SDValue Ops[2];
3582   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3583                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3584   return DAG.getMergeValues(Ops, DL);
3585 }
3586 
lowerOR(SDValue Op,SelectionDAG & DAG) const3587 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3588   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3589 
3590   // Get the known-zero masks for each operand.
3591   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3592   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3593                         DAG.computeKnownBits(Ops[1])};
3594 
3595   // See if the upper 32 bits of one operand and the lower 32 bits of the
3596   // other are known zero.  They are the low and high operands respectively.
3597   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3598                        Known[1].Zero.getZExtValue() };
3599   unsigned High, Low;
3600   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3601     High = 1, Low = 0;
3602   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3603     High = 0, Low = 1;
3604   else
3605     return Op;
3606 
3607   SDValue LowOp = Ops[Low];
3608   SDValue HighOp = Ops[High];
3609 
3610   // If the high part is a constant, we're better off using IILH.
3611   if (HighOp.getOpcode() == ISD::Constant)
3612     return Op;
3613 
3614   // If the low part is a constant that is outside the range of LHI,
3615   // then we're better off using IILF.
3616   if (LowOp.getOpcode() == ISD::Constant) {
3617     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3618     if (!isInt<16>(Value))
3619       return Op;
3620   }
3621 
3622   // Check whether the high part is an AND that doesn't change the
3623   // high 32 bits and just masks out low bits.  We can skip it if so.
3624   if (HighOp.getOpcode() == ISD::AND &&
3625       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3626     SDValue HighOp0 = HighOp.getOperand(0);
3627     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3628     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3629       HighOp = HighOp0;
3630   }
3631 
3632   // Take advantage of the fact that all GR32 operations only change the
3633   // low 32 bits by truncating Low to an i32 and inserting it directly
3634   // using a subreg.  The interesting cases are those where the truncation
3635   // can be folded.
3636   SDLoc DL(Op);
3637   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3638   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3639                                    MVT::i64, HighOp, Low32);
3640 }
3641 
3642 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const3643 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3644                                           SelectionDAG &DAG) const {
3645   SDNode *N = Op.getNode();
3646   SDValue LHS = N->getOperand(0);
3647   SDValue RHS = N->getOperand(1);
3648   SDLoc DL(N);
3649   unsigned BaseOp = 0;
3650   unsigned CCValid = 0;
3651   unsigned CCMask = 0;
3652 
3653   switch (Op.getOpcode()) {
3654   default: llvm_unreachable("Unknown instruction!");
3655   case ISD::SADDO:
3656     BaseOp = SystemZISD::SADDO;
3657     CCValid = SystemZ::CCMASK_ARITH;
3658     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3659     break;
3660   case ISD::SSUBO:
3661     BaseOp = SystemZISD::SSUBO;
3662     CCValid = SystemZ::CCMASK_ARITH;
3663     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3664     break;
3665   case ISD::UADDO:
3666     BaseOp = SystemZISD::UADDO;
3667     CCValid = SystemZ::CCMASK_LOGICAL;
3668     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3669     break;
3670   case ISD::USUBO:
3671     BaseOp = SystemZISD::USUBO;
3672     CCValid = SystemZ::CCMASK_LOGICAL;
3673     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3674     break;
3675   }
3676 
3677   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3678   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3679 
3680   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3681   if (N->getValueType(1) == MVT::i1)
3682     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3683 
3684   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3685 }
3686 
isAddCarryChain(SDValue Carry)3687 static bool isAddCarryChain(SDValue Carry) {
3688   while (Carry.getOpcode() == ISD::ADDCARRY)
3689     Carry = Carry.getOperand(2);
3690   return Carry.getOpcode() == ISD::UADDO;
3691 }
3692 
isSubBorrowChain(SDValue Carry)3693 static bool isSubBorrowChain(SDValue Carry) {
3694   while (Carry.getOpcode() == ISD::SUBCARRY)
3695     Carry = Carry.getOperand(2);
3696   return Carry.getOpcode() == ISD::USUBO;
3697 }
3698 
3699 // Lower ADDCARRY/SUBCARRY nodes.
lowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG) const3700 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3701                                                 SelectionDAG &DAG) const {
3702 
3703   SDNode *N = Op.getNode();
3704   MVT VT = N->getSimpleValueType(0);
3705 
3706   // Let legalize expand this if it isn't a legal type yet.
3707   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3708     return SDValue();
3709 
3710   SDValue LHS = N->getOperand(0);
3711   SDValue RHS = N->getOperand(1);
3712   SDValue Carry = Op.getOperand(2);
3713   SDLoc DL(N);
3714   unsigned BaseOp = 0;
3715   unsigned CCValid = 0;
3716   unsigned CCMask = 0;
3717 
3718   switch (Op.getOpcode()) {
3719   default: llvm_unreachable("Unknown instruction!");
3720   case ISD::ADDCARRY:
3721     if (!isAddCarryChain(Carry))
3722       return SDValue();
3723 
3724     BaseOp = SystemZISD::ADDCARRY;
3725     CCValid = SystemZ::CCMASK_LOGICAL;
3726     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3727     break;
3728   case ISD::SUBCARRY:
3729     if (!isSubBorrowChain(Carry))
3730       return SDValue();
3731 
3732     BaseOp = SystemZISD::SUBCARRY;
3733     CCValid = SystemZ::CCMASK_LOGICAL;
3734     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3735     break;
3736   }
3737 
3738   // Set the condition code from the carry flag.
3739   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3740                       DAG.getConstant(CCValid, DL, MVT::i32),
3741                       DAG.getConstant(CCMask, DL, MVT::i32));
3742 
3743   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3744   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3745 
3746   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3747   if (N->getValueType(1) == MVT::i1)
3748     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3749 
3750   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3751 }
3752 
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3753 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3754                                           SelectionDAG &DAG) const {
3755   EVT VT = Op.getValueType();
3756   SDLoc DL(Op);
3757   Op = Op.getOperand(0);
3758 
3759   // Handle vector types via VPOPCT.
3760   if (VT.isVector()) {
3761     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3762     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3763     switch (VT.getScalarSizeInBits()) {
3764     case 8:
3765       break;
3766     case 16: {
3767       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3768       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3769       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3770       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3771       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3772       break;
3773     }
3774     case 32: {
3775       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3776                                             DAG.getConstant(0, DL, MVT::i32));
3777       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3778       break;
3779     }
3780     case 64: {
3781       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3782                                             DAG.getConstant(0, DL, MVT::i32));
3783       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3784       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3785       break;
3786     }
3787     default:
3788       llvm_unreachable("Unexpected type");
3789     }
3790     return Op;
3791   }
3792 
3793   // Get the known-zero mask for the operand.
3794   KnownBits Known = DAG.computeKnownBits(Op);
3795   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3796   if (NumSignificantBits == 0)
3797     return DAG.getConstant(0, DL, VT);
3798 
3799   // Skip known-zero high parts of the operand.
3800   int64_t OrigBitSize = VT.getSizeInBits();
3801   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3802   BitSize = std::min(BitSize, OrigBitSize);
3803 
3804   // The POPCNT instruction counts the number of bits in each byte.
3805   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3806   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3807   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3808 
3809   // Add up per-byte counts in a binary tree.  All bits of Op at
3810   // position larger than BitSize remain zero throughout.
3811   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3812     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3813     if (BitSize != OrigBitSize)
3814       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3815                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3816     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3817   }
3818 
3819   // Extract overall result from high byte.
3820   if (BitSize > 8)
3821     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3822                      DAG.getConstant(BitSize - 8, DL, VT));
3823 
3824   return Op;
3825 }
3826 
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3827 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3828                                                  SelectionDAG &DAG) const {
3829   SDLoc DL(Op);
3830   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3831     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3832   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3833     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3834 
3835   // The only fence that needs an instruction is a sequentially-consistent
3836   // cross-thread fence.
3837   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3838       FenceSSID == SyncScope::System) {
3839     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3840                                       Op.getOperand(0)),
3841                    0);
3842   }
3843 
3844   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3845   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3846 }
3847 
3848 // Op is an atomic load.  Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3849 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3850                                                 SelectionDAG &DAG) const {
3851   auto *Node = cast<AtomicSDNode>(Op.getNode());
3852   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3853                         Node->getChain(), Node->getBasePtr(),
3854                         Node->getMemoryVT(), Node->getMemOperand());
3855 }
3856 
3857 // Op is an atomic store.  Lower it into a normal volatile store.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3858 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3859                                                  SelectionDAG &DAG) const {
3860   auto *Node = cast<AtomicSDNode>(Op.getNode());
3861   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3862                                     Node->getBasePtr(), Node->getMemoryVT(),
3863                                     Node->getMemOperand());
3864   // We have to enforce sequential consistency by performing a
3865   // serialization operation after the store.
3866   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3867     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3868                                        MVT::Other, Chain), 0);
3869   return Chain;
3870 }
3871 
3872 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3873 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3874 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3875                                                    SelectionDAG &DAG,
3876                                                    unsigned Opcode) const {
3877   auto *Node = cast<AtomicSDNode>(Op.getNode());
3878 
3879   // 32-bit operations need no code outside the main loop.
3880   EVT NarrowVT = Node->getMemoryVT();
3881   EVT WideVT = MVT::i32;
3882   if (NarrowVT == WideVT)
3883     return Op;
3884 
3885   int64_t BitSize = NarrowVT.getSizeInBits();
3886   SDValue ChainIn = Node->getChain();
3887   SDValue Addr = Node->getBasePtr();
3888   SDValue Src2 = Node->getVal();
3889   MachineMemOperand *MMO = Node->getMemOperand();
3890   SDLoc DL(Node);
3891   EVT PtrVT = Addr.getValueType();
3892 
3893   // Convert atomic subtracts of constants into additions.
3894   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3895     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3896       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3897       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3898     }
3899 
3900   // Get the address of the containing word.
3901   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3902                                     DAG.getConstant(-4, DL, PtrVT));
3903 
3904   // Get the number of bits that the word must be rotated left in order
3905   // to bring the field to the top bits of a GR32.
3906   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3907                                  DAG.getConstant(3, DL, PtrVT));
3908   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3909 
3910   // Get the complementing shift amount, for rotating a field in the top
3911   // bits back to its proper position.
3912   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3913                                     DAG.getConstant(0, DL, WideVT), BitShift);
3914 
3915   // Extend the source operand to 32 bits and prepare it for the inner loop.
3916   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3917   // operations require the source to be shifted in advance.  (This shift
3918   // can be folded if the source is constant.)  For AND and NAND, the lower
3919   // bits must be set, while for other opcodes they should be left clear.
3920   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3921     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3922                        DAG.getConstant(32 - BitSize, DL, WideVT));
3923   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3924       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3925     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3926                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3927 
3928   // Construct the ATOMIC_LOADW_* node.
3929   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3930   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3931                     DAG.getConstant(BitSize, DL, WideVT) };
3932   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3933                                              NarrowVT, MMO);
3934 
3935   // Rotate the result of the final CS so that the field is in the lower
3936   // bits of a GR32, then truncate it.
3937   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3938                                     DAG.getConstant(BitSize, DL, WideVT));
3939   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3940 
3941   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3942   return DAG.getMergeValues(RetOps, DL);
3943 }
3944 
3945 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3946 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3947 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3948 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3949                                                     SelectionDAG &DAG) const {
3950   auto *Node = cast<AtomicSDNode>(Op.getNode());
3951   EVT MemVT = Node->getMemoryVT();
3952   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3953     // A full-width operation.
3954     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3955     SDValue Src2 = Node->getVal();
3956     SDValue NegSrc2;
3957     SDLoc DL(Src2);
3958 
3959     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3960       // Use an addition if the operand is constant and either LAA(G) is
3961       // available or the negative value is in the range of A(G)FHI.
3962       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3963       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3964         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3965     } else if (Subtarget.hasInterlockedAccess1())
3966       // Use LAA(G) if available.
3967       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3968                             Src2);
3969 
3970     if (NegSrc2.getNode())
3971       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3972                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3973                            Node->getMemOperand());
3974 
3975     // Use the node as-is.
3976     return Op;
3977   }
3978 
3979   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3980 }
3981 
3982 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3983 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3984                                                     SelectionDAG &DAG) const {
3985   auto *Node = cast<AtomicSDNode>(Op.getNode());
3986   SDValue ChainIn = Node->getOperand(0);
3987   SDValue Addr = Node->getOperand(1);
3988   SDValue CmpVal = Node->getOperand(2);
3989   SDValue SwapVal = Node->getOperand(3);
3990   MachineMemOperand *MMO = Node->getMemOperand();
3991   SDLoc DL(Node);
3992 
3993   // We have native support for 32-bit and 64-bit compare and swap, but we
3994   // still need to expand extracting the "success" result from the CC.
3995   EVT NarrowVT = Node->getMemoryVT();
3996   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3997   if (NarrowVT == WideVT) {
3998     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3999     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4000     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4001                                                DL, Tys, Ops, NarrowVT, MMO);
4002     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4003                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4004 
4005     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4006     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4007     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4008     return SDValue();
4009   }
4010 
4011   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4012   // via a fullword ATOMIC_CMP_SWAPW operation.
4013   int64_t BitSize = NarrowVT.getSizeInBits();
4014   EVT PtrVT = Addr.getValueType();
4015 
4016   // Get the address of the containing word.
4017   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4018                                     DAG.getConstant(-4, DL, PtrVT));
4019 
4020   // Get the number of bits that the word must be rotated left in order
4021   // to bring the field to the top bits of a GR32.
4022   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4023                                  DAG.getConstant(3, DL, PtrVT));
4024   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4025 
4026   // Get the complementing shift amount, for rotating a field in the top
4027   // bits back to its proper position.
4028   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4029                                     DAG.getConstant(0, DL, WideVT), BitShift);
4030 
4031   // Construct the ATOMIC_CMP_SWAPW node.
4032   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4033   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4034                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4035   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4036                                              VTList, Ops, NarrowVT, MMO);
4037   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4038                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4039 
4040   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4041   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4042   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4043   return SDValue();
4044 }
4045 
4046 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const4047 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4048   // Because of how we convert atomic_load and atomic_store to normal loads and
4049   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4050   // since DAGCombine hasn't been updated to account for atomic, but non
4051   // volatile loads.  (See D57601)
4052   if (auto *SI = dyn_cast<StoreInst>(&I))
4053     if (SI->isAtomic())
4054       return MachineMemOperand::MOVolatile;
4055   if (auto *LI = dyn_cast<LoadInst>(&I))
4056     if (LI->isAtomic())
4057       return MachineMemOperand::MOVolatile;
4058   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4059     if (AI->isAtomic())
4060       return MachineMemOperand::MOVolatile;
4061   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4062     if (AI->isAtomic())
4063       return MachineMemOperand::MOVolatile;
4064   return MachineMemOperand::MONone;
4065 }
4066 
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const4067 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4068                                               SelectionDAG &DAG) const {
4069   MachineFunction &MF = DAG.getMachineFunction();
4070   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4071   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4072     report_fatal_error("Variable-sized stack allocations are not supported "
4073                        "in GHC calling convention");
4074   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4075                             SystemZ::R15D, Op.getValueType());
4076 }
4077 
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const4078 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4079                                                  SelectionDAG &DAG) const {
4080   MachineFunction &MF = DAG.getMachineFunction();
4081   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4082   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4083 
4084   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4085     report_fatal_error("Variable-sized stack allocations are not supported "
4086                        "in GHC calling convention");
4087 
4088   SDValue Chain = Op.getOperand(0);
4089   SDValue NewSP = Op.getOperand(1);
4090   SDValue Backchain;
4091   SDLoc DL(Op);
4092 
4093   if (StoreBackchain) {
4094     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4095     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4096   }
4097 
4098   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4099 
4100   if (StoreBackchain)
4101     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4102 
4103   return Chain;
4104 }
4105 
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const4106 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4107                                              SelectionDAG &DAG) const {
4108   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4109   if (!IsData)
4110     // Just preserve the chain.
4111     return Op.getOperand(0);
4112 
4113   SDLoc DL(Op);
4114   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4115   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4116   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4117   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4118                    Op.getOperand(1)};
4119   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4120                                  Node->getVTList(), Ops,
4121                                  Node->getMemoryVT(), Node->getMemOperand());
4122 }
4123 
4124 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)4125 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4126   SDLoc DL(CCReg);
4127   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4128   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4129                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4130 }
4131 
4132 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const4133 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4134                                               SelectionDAG &DAG) const {
4135   unsigned Opcode, CCValid;
4136   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4137     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4138     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4139     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4140     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4141     return SDValue();
4142   }
4143 
4144   return SDValue();
4145 }
4146 
4147 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const4148 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4149                                                SelectionDAG &DAG) const {
4150   unsigned Opcode, CCValid;
4151   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4152     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4153     if (Op->getNumValues() == 1)
4154       return getCCResult(DAG, SDValue(Node, 0));
4155     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4156     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4157                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4158   }
4159 
4160   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4161   switch (Id) {
4162   case Intrinsic::thread_pointer:
4163     return lowerThreadPointer(SDLoc(Op), DAG);
4164 
4165   case Intrinsic::s390_vpdi:
4166     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4167                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4168 
4169   case Intrinsic::s390_vperm:
4170     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4171                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4172 
4173   case Intrinsic::s390_vuphb:
4174   case Intrinsic::s390_vuphh:
4175   case Intrinsic::s390_vuphf:
4176     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4177                        Op.getOperand(1));
4178 
4179   case Intrinsic::s390_vuplhb:
4180   case Intrinsic::s390_vuplhh:
4181   case Intrinsic::s390_vuplhf:
4182     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4183                        Op.getOperand(1));
4184 
4185   case Intrinsic::s390_vuplb:
4186   case Intrinsic::s390_vuplhw:
4187   case Intrinsic::s390_vuplf:
4188     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4189                        Op.getOperand(1));
4190 
4191   case Intrinsic::s390_vupllb:
4192   case Intrinsic::s390_vupllh:
4193   case Intrinsic::s390_vupllf:
4194     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4195                        Op.getOperand(1));
4196 
4197   case Intrinsic::s390_vsumb:
4198   case Intrinsic::s390_vsumh:
4199   case Intrinsic::s390_vsumgh:
4200   case Intrinsic::s390_vsumgf:
4201   case Intrinsic::s390_vsumqf:
4202   case Intrinsic::s390_vsumqg:
4203     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4204                        Op.getOperand(1), Op.getOperand(2));
4205   }
4206 
4207   return SDValue();
4208 }
4209 
4210 namespace {
4211 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4212 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4213 // Operand is the constant third operand, otherwise it is the number of
4214 // bytes in each element of the result.
4215 struct Permute {
4216   unsigned Opcode;
4217   unsigned Operand;
4218   unsigned char Bytes[SystemZ::VectorBytes];
4219 };
4220 }
4221 
4222 static const Permute PermuteForms[] = {
4223   // VMRHG
4224   { SystemZISD::MERGE_HIGH, 8,
4225     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4226   // VMRHF
4227   { SystemZISD::MERGE_HIGH, 4,
4228     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4229   // VMRHH
4230   { SystemZISD::MERGE_HIGH, 2,
4231     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4232   // VMRHB
4233   { SystemZISD::MERGE_HIGH, 1,
4234     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4235   // VMRLG
4236   { SystemZISD::MERGE_LOW, 8,
4237     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4238   // VMRLF
4239   { SystemZISD::MERGE_LOW, 4,
4240     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4241   // VMRLH
4242   { SystemZISD::MERGE_LOW, 2,
4243     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4244   // VMRLB
4245   { SystemZISD::MERGE_LOW, 1,
4246     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4247   // VPKG
4248   { SystemZISD::PACK, 4,
4249     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4250   // VPKF
4251   { SystemZISD::PACK, 2,
4252     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4253   // VPKH
4254   { SystemZISD::PACK, 1,
4255     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4256   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4257   { SystemZISD::PERMUTE_DWORDS, 4,
4258     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4259   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4260   { SystemZISD::PERMUTE_DWORDS, 1,
4261     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4262 };
4263 
4264 // Called after matching a vector shuffle against a particular pattern.
4265 // Both the original shuffle and the pattern have two vector operands.
4266 // OpNos[0] is the operand of the original shuffle that should be used for
4267 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4268 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4269 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4270 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)4271 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4272   if (OpNos[0] < 0) {
4273     if (OpNos[1] < 0)
4274       return false;
4275     OpNo0 = OpNo1 = OpNos[1];
4276   } else if (OpNos[1] < 0) {
4277     OpNo0 = OpNo1 = OpNos[0];
4278   } else {
4279     OpNo0 = OpNos[0];
4280     OpNo1 = OpNos[1];
4281   }
4282   return true;
4283 }
4284 
4285 // Bytes is a VPERM-like permute vector, except that -1 is used for
4286 // undefined bytes.  Return true if the VPERM can be implemented using P.
4287 // When returning true set OpNo0 to the VPERM operand that should be
4288 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4289 //
4290 // For example, if swapping the VPERM operands allows P to match, OpNo0
4291 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4292 // operand, but rewriting it to use two duplicated operands allows it to
4293 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)4294 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4295                          unsigned &OpNo0, unsigned &OpNo1) {
4296   int OpNos[] = { -1, -1 };
4297   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4298     int Elt = Bytes[I];
4299     if (Elt >= 0) {
4300       // Make sure that the two permute vectors use the same suboperand
4301       // byte number.  Only the operand numbers (the high bits) are
4302       // allowed to differ.
4303       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4304         return false;
4305       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4306       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4307       // Make sure that the operand mappings are consistent with previous
4308       // elements.
4309       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4310         return false;
4311       OpNos[ModelOpNo] = RealOpNo;
4312     }
4313   }
4314   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4315 }
4316 
4317 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)4318 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4319                                    unsigned &OpNo0, unsigned &OpNo1) {
4320   for (auto &P : PermuteForms)
4321     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4322       return &P;
4323   return nullptr;
4324 }
4325 
4326 // Bytes is a VPERM-like permute vector, except that -1 is used for
4327 // undefined bytes.  This permute is an operand of an outer permute.
4328 // See whether redistributing the -1 bytes gives a shuffle that can be
4329 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4330 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)4331 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4332                                const Permute &P,
4333                                SmallVectorImpl<int> &Transform) {
4334   unsigned To = 0;
4335   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4336     int Elt = Bytes[From];
4337     if (Elt < 0)
4338       // Byte number From of the result is undefined.
4339       Transform[From] = -1;
4340     else {
4341       while (P.Bytes[To] != Elt) {
4342         To += 1;
4343         if (To == SystemZ::VectorBytes)
4344           return false;
4345       }
4346       Transform[From] = To;
4347     }
4348   }
4349   return true;
4350 }
4351 
4352 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)4353 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4354                                          SmallVectorImpl<int> &Transform) {
4355   for (auto &P : PermuteForms)
4356     if (matchDoublePermute(Bytes, P, Transform))
4357       return &P;
4358   return nullptr;
4359 }
4360 
4361 // Convert the mask of the given shuffle op into a byte-level mask,
4362 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)4363 static bool getVPermMask(SDValue ShuffleOp,
4364                          SmallVectorImpl<int> &Bytes) {
4365   EVT VT = ShuffleOp.getValueType();
4366   unsigned NumElements = VT.getVectorNumElements();
4367   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4368 
4369   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4370     Bytes.resize(NumElements * BytesPerElement, -1);
4371     for (unsigned I = 0; I < NumElements; ++I) {
4372       int Index = VSN->getMaskElt(I);
4373       if (Index >= 0)
4374         for (unsigned J = 0; J < BytesPerElement; ++J)
4375           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4376     }
4377     return true;
4378   }
4379   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4380       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4381     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4382     Bytes.resize(NumElements * BytesPerElement, -1);
4383     for (unsigned I = 0; I < NumElements; ++I)
4384       for (unsigned J = 0; J < BytesPerElement; ++J)
4385         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4386     return true;
4387   }
4388   return false;
4389 }
4390 
4391 // Bytes is a VPERM-like permute vector, except that -1 is used for
4392 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4393 // the result come from a contiguous sequence of bytes from one input.
4394 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)4395 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4396                             unsigned BytesPerElement, int &Base) {
4397   Base = -1;
4398   for (unsigned I = 0; I < BytesPerElement; ++I) {
4399     if (Bytes[Start + I] >= 0) {
4400       unsigned Elem = Bytes[Start + I];
4401       if (Base < 0) {
4402         Base = Elem - I;
4403         // Make sure the bytes would come from one input operand.
4404         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4405           return false;
4406       } else if (unsigned(Base) != Elem - I)
4407         return false;
4408     }
4409   }
4410   return true;
4411 }
4412 
4413 // Bytes is a VPERM-like permute vector, except that -1 is used for
4414 // undefined bytes.  Return true if it can be performed using VSLDB.
4415 // When returning true, set StartIndex to the shift amount and OpNo0
4416 // and OpNo1 to the VPERM operands that should be used as the first
4417 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)4418 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4419                                unsigned &StartIndex, unsigned &OpNo0,
4420                                unsigned &OpNo1) {
4421   int OpNos[] = { -1, -1 };
4422   int Shift = -1;
4423   for (unsigned I = 0; I < 16; ++I) {
4424     int Index = Bytes[I];
4425     if (Index >= 0) {
4426       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4427       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4428       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4429       if (Shift < 0)
4430         Shift = ExpectedShift;
4431       else if (Shift != ExpectedShift)
4432         return false;
4433       // Make sure that the operand mappings are consistent with previous
4434       // elements.
4435       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4436         return false;
4437       OpNos[ModelOpNo] = RealOpNo;
4438     }
4439   }
4440   StartIndex = Shift;
4441   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4442 }
4443 
4444 // Create a node that performs P on operands Op0 and Op1, casting the
4445 // operands to the appropriate type.  The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)4446 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4447                               const Permute &P, SDValue Op0, SDValue Op1) {
4448   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4449   // elements of a PACK are twice as wide as the outputs.
4450   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4451                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4452                       P.Operand);
4453   // Cast both operands to the appropriate type.
4454   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4455                               SystemZ::VectorBytes / InBytes);
4456   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4457   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4458   SDValue Op;
4459   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4460     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4461     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4462   } else if (P.Opcode == SystemZISD::PACK) {
4463     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4464                                  SystemZ::VectorBytes / P.Operand);
4465     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4466   } else {
4467     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4468   }
4469   return Op;
4470 }
4471 
isZeroVector(SDValue N)4472 static bool isZeroVector(SDValue N) {
4473   if (N->getOpcode() == ISD::BITCAST)
4474     N = N->getOperand(0);
4475   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4476     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4477       return Op->getZExtValue() == 0;
4478   return ISD::isBuildVectorAllZeros(N.getNode());
4479 }
4480 
4481 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
findZeroVectorIdx(SDValue * Ops,unsigned Num)4482 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4483   for (unsigned I = 0; I < Num ; I++)
4484     if (isZeroVector(Ops[I]))
4485       return I;
4486   return UINT32_MAX;
4487 }
4488 
4489 // Bytes is a VPERM-like permute vector, except that -1 is used for
4490 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4491 // VSLDB or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)4492 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4493                                      SDValue *Ops,
4494                                      const SmallVectorImpl<int> &Bytes) {
4495   for (unsigned I = 0; I < 2; ++I)
4496     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4497 
4498   // First see whether VSLDB can be used.
4499   unsigned StartIndex, OpNo0, OpNo1;
4500   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4501     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4502                        Ops[OpNo1],
4503                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4504 
4505   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4506   // eliminate a zero vector by reusing any zero index in the permute vector.
4507   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4508   if (ZeroVecIdx != UINT32_MAX) {
4509     bool MaskFirst = true;
4510     int ZeroIdx = -1;
4511     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4512       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4513       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4514       if (OpNo == ZeroVecIdx && I == 0) {
4515         // If the first byte is zero, use mask as first operand.
4516         ZeroIdx = 0;
4517         break;
4518       }
4519       if (OpNo != ZeroVecIdx && Byte == 0) {
4520         // If mask contains a zero, use it by placing that vector first.
4521         ZeroIdx = I + SystemZ::VectorBytes;
4522         MaskFirst = false;
4523         break;
4524       }
4525     }
4526     if (ZeroIdx != -1) {
4527       SDValue IndexNodes[SystemZ::VectorBytes];
4528       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4529         if (Bytes[I] >= 0) {
4530           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4531           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4532           if (OpNo == ZeroVecIdx)
4533             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4534           else {
4535             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4536             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4537           }
4538         } else
4539           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4540       }
4541       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4542       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4543       if (MaskFirst)
4544         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4545                            Mask);
4546       else
4547         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4548                            Mask);
4549     }
4550   }
4551 
4552   SDValue IndexNodes[SystemZ::VectorBytes];
4553   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4554     if (Bytes[I] >= 0)
4555       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4556     else
4557       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4558   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4559   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4560                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4561 }
4562 
4563 namespace {
4564 // Describes a general N-operand vector shuffle.
4565 struct GeneralShuffle {
GeneralShuffle__anond620adc00411::GeneralShuffle4566   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4567   void addUndef();
4568   bool add(SDValue, unsigned);
4569   SDValue getNode(SelectionDAG &, const SDLoc &);
4570   void tryPrepareForUnpack();
unpackWasPrepared__anond620adc00411::GeneralShuffle4571   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4572   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4573 
4574   // The operands of the shuffle.
4575   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4576 
4577   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4578   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4579   // Bytes[I] / SystemZ::VectorBytes.
4580   SmallVector<int, SystemZ::VectorBytes> Bytes;
4581 
4582   // The type of the shuffle result.
4583   EVT VT;
4584 
4585   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4586   unsigned UnpackFromEltSize;
4587 };
4588 }
4589 
4590 // Add an extra undefined element to the shuffle.
addUndef()4591 void GeneralShuffle::addUndef() {
4592   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4593   for (unsigned I = 0; I < BytesPerElement; ++I)
4594     Bytes.push_back(-1);
4595 }
4596 
4597 // Add an extra element to the shuffle, taking it from element Elem of Op.
4598 // A null Op indicates a vector input whose value will be calculated later;
4599 // there is at most one such input per shuffle and it always has the same
4600 // type as the result. Aborts and returns false if the source vector elements
4601 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4602 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)4603 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4604   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4605 
4606   // The source vector can have wider elements than the result,
4607   // either through an explicit TRUNCATE or because of type legalization.
4608   // We want the least significant part.
4609   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4610   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4611 
4612   // Return false if the source elements are smaller than their destination
4613   // elements.
4614   if (FromBytesPerElement < BytesPerElement)
4615     return false;
4616 
4617   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4618                    (FromBytesPerElement - BytesPerElement));
4619 
4620   // Look through things like shuffles and bitcasts.
4621   while (Op.getNode()) {
4622     if (Op.getOpcode() == ISD::BITCAST)
4623       Op = Op.getOperand(0);
4624     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4625       // See whether the bytes we need come from a contiguous part of one
4626       // operand.
4627       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4628       if (!getVPermMask(Op, OpBytes))
4629         break;
4630       int NewByte;
4631       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4632         break;
4633       if (NewByte < 0) {
4634         addUndef();
4635         return true;
4636       }
4637       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4638       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4639     } else if (Op.isUndef()) {
4640       addUndef();
4641       return true;
4642     } else
4643       break;
4644   }
4645 
4646   // Make sure that the source of the extraction is in Ops.
4647   unsigned OpNo = 0;
4648   for (; OpNo < Ops.size(); ++OpNo)
4649     if (Ops[OpNo] == Op)
4650       break;
4651   if (OpNo == Ops.size())
4652     Ops.push_back(Op);
4653 
4654   // Add the element to Bytes.
4655   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4656   for (unsigned I = 0; I < BytesPerElement; ++I)
4657     Bytes.push_back(Base + I);
4658 
4659   return true;
4660 }
4661 
4662 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)4663 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4664   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4665 
4666   if (Ops.size() == 0)
4667     return DAG.getUNDEF(VT);
4668 
4669   // Use a single unpack if possible as the last operation.
4670   tryPrepareForUnpack();
4671 
4672   // Make sure that there are at least two shuffle operands.
4673   if (Ops.size() == 1)
4674     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4675 
4676   // Create a tree of shuffles, deferring root node until after the loop.
4677   // Try to redistribute the undefined elements of non-root nodes so that
4678   // the non-root shuffles match something like a pack or merge, then adjust
4679   // the parent node's permute vector to compensate for the new order.
4680   // Among other things, this copes with vectors like <2 x i16> that were
4681   // padded with undefined elements during type legalization.
4682   //
4683   // In the best case this redistribution will lead to the whole tree
4684   // using packs and merges.  It should rarely be a loss in other cases.
4685   unsigned Stride = 1;
4686   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4687     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4688       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4689 
4690       // Create a mask for just these two operands.
4691       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4692       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4693         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4694         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4695         if (OpNo == I)
4696           NewBytes[J] = Byte;
4697         else if (OpNo == I + Stride)
4698           NewBytes[J] = SystemZ::VectorBytes + Byte;
4699         else
4700           NewBytes[J] = -1;
4701       }
4702       // See if it would be better to reorganize NewMask to avoid using VPERM.
4703       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4704       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4705         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4706         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4707         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4708           if (NewBytes[J] >= 0) {
4709             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4710                    "Invalid double permute");
4711             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4712           } else
4713             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4714         }
4715       } else {
4716         // Just use NewBytes on the operands.
4717         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4718         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4719           if (NewBytes[J] >= 0)
4720             Bytes[J] = I * SystemZ::VectorBytes + J;
4721       }
4722     }
4723   }
4724 
4725   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4726   if (Stride > 1) {
4727     Ops[1] = Ops[Stride];
4728     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4729       if (Bytes[I] >= int(SystemZ::VectorBytes))
4730         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4731   }
4732 
4733   // Look for an instruction that can do the permute without resorting
4734   // to VPERM.
4735   unsigned OpNo0, OpNo1;
4736   SDValue Op;
4737   if (unpackWasPrepared() && Ops[1].isUndef())
4738     Op = Ops[0];
4739   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4740     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4741   else
4742     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4743 
4744   Op = insertUnpackIfPrepared(DAG, DL, Op);
4745 
4746   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4747 }
4748 
4749 #ifndef NDEBUG
dumpBytes(const SmallVectorImpl<int> & Bytes,std::string Msg)4750 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4751   dbgs() << Msg.c_str() << " { ";
4752   for (unsigned i = 0; i < Bytes.size(); i++)
4753     dbgs() << Bytes[i] << " ";
4754   dbgs() << "}\n";
4755 }
4756 #endif
4757 
4758 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4759 // after all else by removing the zero vector and the effect of the unpack on
4760 // Bytes.
tryPrepareForUnpack()4761 void GeneralShuffle::tryPrepareForUnpack() {
4762   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4763   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4764     return;
4765 
4766   // Only do this if removing the zero vector reduces the depth, otherwise
4767   // the critical path will increase with the final unpack.
4768   if (Ops.size() > 2 &&
4769       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4770     return;
4771 
4772   // Find an unpack that would allow removing the zero vector from Ops.
4773   UnpackFromEltSize = 1;
4774   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4775     bool MatchUnpack = true;
4776     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4777     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4778       unsigned ToEltSize = UnpackFromEltSize * 2;
4779       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4780       if (!IsZextByte)
4781         SrcBytes.push_back(Bytes[Elt]);
4782       if (Bytes[Elt] != -1) {
4783         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4784         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4785           MatchUnpack = false;
4786           break;
4787         }
4788       }
4789     }
4790     if (MatchUnpack) {
4791       if (Ops.size() == 2) {
4792         // Don't use unpack if a single source operand needs rearrangement.
4793         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4794           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4795             UnpackFromEltSize = UINT_MAX;
4796             return;
4797           }
4798       }
4799       break;
4800     }
4801   }
4802   if (UnpackFromEltSize > 4)
4803     return;
4804 
4805   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4806              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4807              << ".\n";
4808              dumpBytes(Bytes, "Original Bytes vector:"););
4809 
4810   // Apply the unpack in reverse to the Bytes array.
4811   unsigned B = 0;
4812   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4813     Elt += UnpackFromEltSize;
4814     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4815       Bytes[B] = Bytes[Elt];
4816   }
4817   while (B < SystemZ::VectorBytes)
4818     Bytes[B++] = -1;
4819 
4820   // Remove the zero vector from Ops
4821   Ops.erase(&Ops[ZeroVecOpNo]);
4822   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4823     if (Bytes[I] >= 0) {
4824       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4825       if (OpNo > ZeroVecOpNo)
4826         Bytes[I] -= SystemZ::VectorBytes;
4827     }
4828 
4829   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4830              dbgs() << "\n";);
4831 }
4832 
insertUnpackIfPrepared(SelectionDAG & DAG,const SDLoc & DL,SDValue Op)4833 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4834                                                const SDLoc &DL,
4835                                                SDValue Op) {
4836   if (!unpackWasPrepared())
4837     return Op;
4838   unsigned InBits = UnpackFromEltSize * 8;
4839   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4840                                 SystemZ::VectorBits / InBits);
4841   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4842   unsigned OutBits = InBits * 2;
4843   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4844                                SystemZ::VectorBits / OutBits);
4845   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4846 }
4847 
4848 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)4849 static bool isScalarToVector(SDValue Op) {
4850   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4851     if (!Op.getOperand(I).isUndef())
4852       return false;
4853   return true;
4854 }
4855 
4856 // Return a vector of type VT that contains Value in the first element.
4857 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)4858 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4859                                    SDValue Value) {
4860   // If we have a constant, replicate it to all elements and let the
4861   // BUILD_VECTOR lowering take care of it.
4862   if (Value.getOpcode() == ISD::Constant ||
4863       Value.getOpcode() == ISD::ConstantFP) {
4864     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4865     return DAG.getBuildVector(VT, DL, Ops);
4866   }
4867   if (Value.isUndef())
4868     return DAG.getUNDEF(VT);
4869   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4870 }
4871 
4872 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4873 // element 1.  Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)4874 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4875                                  SDValue Op0, SDValue Op1) {
4876   if (Op0.isUndef()) {
4877     if (Op1.isUndef())
4878       return DAG.getUNDEF(VT);
4879     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4880   }
4881   if (Op1.isUndef())
4882     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4883   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4884                      buildScalarToVector(DAG, DL, VT, Op0),
4885                      buildScalarToVector(DAG, DL, VT, Op1));
4886 }
4887 
4888 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4889 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)4890 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4891                           SDValue Op1) {
4892   if (Op0.isUndef() && Op1.isUndef())
4893     return DAG.getUNDEF(MVT::v2i64);
4894   // If one of the two inputs is undefined then replicate the other one,
4895   // in order to avoid using another register unnecessarily.
4896   if (Op0.isUndef())
4897     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4898   else if (Op1.isUndef())
4899     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4900   else {
4901     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4902     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4903   }
4904   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4905 }
4906 
4907 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4908 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4909 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4910 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4911 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4912                                      BuildVectorSDNode *BVN) {
4913   EVT VT = BVN->getValueType(0);
4914   unsigned NumElements = VT.getVectorNumElements();
4915 
4916   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4917   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4918   // need a BUILD_VECTOR, add an additional placeholder operand for that
4919   // BUILD_VECTOR and store its operands in ResidueOps.
4920   GeneralShuffle GS(VT);
4921   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4922   bool FoundOne = false;
4923   for (unsigned I = 0; I < NumElements; ++I) {
4924     SDValue Op = BVN->getOperand(I);
4925     if (Op.getOpcode() == ISD::TRUNCATE)
4926       Op = Op.getOperand(0);
4927     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4928         Op.getOperand(1).getOpcode() == ISD::Constant) {
4929       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4930       if (!GS.add(Op.getOperand(0), Elem))
4931         return SDValue();
4932       FoundOne = true;
4933     } else if (Op.isUndef()) {
4934       GS.addUndef();
4935     } else {
4936       if (!GS.add(SDValue(), ResidueOps.size()))
4937         return SDValue();
4938       ResidueOps.push_back(BVN->getOperand(I));
4939     }
4940   }
4941 
4942   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4943   if (!FoundOne)
4944     return SDValue();
4945 
4946   // Create the BUILD_VECTOR for the remaining elements, if any.
4947   if (!ResidueOps.empty()) {
4948     while (ResidueOps.size() < NumElements)
4949       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4950     for (auto &Op : GS.Ops) {
4951       if (!Op.getNode()) {
4952         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4953         break;
4954       }
4955     }
4956   }
4957   return GS.getNode(DAG, SDLoc(BVN));
4958 }
4959 
isVectorElementLoad(SDValue Op) const4960 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4961   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4962     return true;
4963   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4964     return true;
4965   return false;
4966 }
4967 
4968 // Combine GPR scalar values Elems into a vector of type VT.
4969 SDValue
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems) const4970 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4971                                    SmallVectorImpl<SDValue> &Elems) const {
4972   // See whether there is a single replicated value.
4973   SDValue Single;
4974   unsigned int NumElements = Elems.size();
4975   unsigned int Count = 0;
4976   for (auto Elem : Elems) {
4977     if (!Elem.isUndef()) {
4978       if (!Single.getNode())
4979         Single = Elem;
4980       else if (Elem != Single) {
4981         Single = SDValue();
4982         break;
4983       }
4984       Count += 1;
4985     }
4986   }
4987   // There are three cases here:
4988   //
4989   // - if the only defined element is a loaded one, the best sequence
4990   //   is a replicating load.
4991   //
4992   // - otherwise, if the only defined element is an i64 value, we will
4993   //   end up with the same VLVGP sequence regardless of whether we short-cut
4994   //   for replication or fall through to the later code.
4995   //
4996   // - otherwise, if the only defined element is an i32 or smaller value,
4997   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4998   //   This is only a win if the single defined element is used more than once.
4999   //   In other cases we're better off using a single VLVGx.
5000   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5001     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5002 
5003   // If all elements are loads, use VLREP/VLEs (below).
5004   bool AllLoads = true;
5005   for (auto Elem : Elems)
5006     if (!isVectorElementLoad(Elem)) {
5007       AllLoads = false;
5008       break;
5009     }
5010 
5011   // The best way of building a v2i64 from two i64s is to use VLVGP.
5012   if (VT == MVT::v2i64 && !AllLoads)
5013     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5014 
5015   // Use a 64-bit merge high to combine two doubles.
5016   if (VT == MVT::v2f64 && !AllLoads)
5017     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5018 
5019   // Build v4f32 values directly from the FPRs:
5020   //
5021   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5022   //         V              V         VMRHF
5023   //      <ABxx>         <CDxx>
5024   //                V                 VMRHG
5025   //              <ABCD>
5026   if (VT == MVT::v4f32 && !AllLoads) {
5027     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5028     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5029     // Avoid unnecessary undefs by reusing the other operand.
5030     if (Op01.isUndef())
5031       Op01 = Op23;
5032     else if (Op23.isUndef())
5033       Op23 = Op01;
5034     // Merging identical replications is a no-op.
5035     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5036       return Op01;
5037     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5038     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5039     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5040                              DL, MVT::v2i64, Op01, Op23);
5041     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5042   }
5043 
5044   // Collect the constant terms.
5045   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5046   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5047 
5048   unsigned NumConstants = 0;
5049   for (unsigned I = 0; I < NumElements; ++I) {
5050     SDValue Elem = Elems[I];
5051     if (Elem.getOpcode() == ISD::Constant ||
5052         Elem.getOpcode() == ISD::ConstantFP) {
5053       NumConstants += 1;
5054       Constants[I] = Elem;
5055       Done[I] = true;
5056     }
5057   }
5058   // If there was at least one constant, fill in the other elements of
5059   // Constants with undefs to get a full vector constant and use that
5060   // as the starting point.
5061   SDValue Result;
5062   SDValue ReplicatedVal;
5063   if (NumConstants > 0) {
5064     for (unsigned I = 0; I < NumElements; ++I)
5065       if (!Constants[I].getNode())
5066         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5067     Result = DAG.getBuildVector(VT, DL, Constants);
5068   } else {
5069     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5070     // avoid a false dependency on any previous contents of the vector
5071     // register.
5072 
5073     // Use a VLREP if at least one element is a load. Make sure to replicate
5074     // the load with the most elements having its value.
5075     std::map<const SDNode*, unsigned> UseCounts;
5076     SDNode *LoadMaxUses = nullptr;
5077     for (unsigned I = 0; I < NumElements; ++I)
5078       if (isVectorElementLoad(Elems[I])) {
5079         SDNode *Ld = Elems[I].getNode();
5080         UseCounts[Ld]++;
5081         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5082           LoadMaxUses = Ld;
5083       }
5084     if (LoadMaxUses != nullptr) {
5085       ReplicatedVal = SDValue(LoadMaxUses, 0);
5086       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5087     } else {
5088       // Try to use VLVGP.
5089       unsigned I1 = NumElements / 2 - 1;
5090       unsigned I2 = NumElements - 1;
5091       bool Def1 = !Elems[I1].isUndef();
5092       bool Def2 = !Elems[I2].isUndef();
5093       if (Def1 || Def2) {
5094         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5095         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5096         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5097                              joinDwords(DAG, DL, Elem1, Elem2));
5098         Done[I1] = true;
5099         Done[I2] = true;
5100       } else
5101         Result = DAG.getUNDEF(VT);
5102     }
5103   }
5104 
5105   // Use VLVGx to insert the other elements.
5106   for (unsigned I = 0; I < NumElements; ++I)
5107     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5108       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5109                            DAG.getConstant(I, DL, MVT::i32));
5110   return Result;
5111 }
5112 
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5113 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5114                                                  SelectionDAG &DAG) const {
5115   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5116   SDLoc DL(Op);
5117   EVT VT = Op.getValueType();
5118 
5119   if (BVN->isConstant()) {
5120     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5121       return Op;
5122 
5123     // Fall back to loading it from memory.
5124     return SDValue();
5125   }
5126 
5127   // See if we should use shuffles to construct the vector from other vectors.
5128   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5129     return Res;
5130 
5131   // Detect SCALAR_TO_VECTOR conversions.
5132   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5133     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5134 
5135   // Otherwise use buildVector to build the vector up from GPRs.
5136   unsigned NumElements = Op.getNumOperands();
5137   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5138   for (unsigned I = 0; I < NumElements; ++I)
5139     Ops[I] = Op.getOperand(I);
5140   return buildVector(DAG, DL, VT, Ops);
5141 }
5142 
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5143 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5144                                                    SelectionDAG &DAG) const {
5145   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5146   SDLoc DL(Op);
5147   EVT VT = Op.getValueType();
5148   unsigned NumElements = VT.getVectorNumElements();
5149 
5150   if (VSN->isSplat()) {
5151     SDValue Op0 = Op.getOperand(0);
5152     unsigned Index = VSN->getSplatIndex();
5153     assert(Index < VT.getVectorNumElements() &&
5154            "Splat index should be defined and in first operand");
5155     // See whether the value we're splatting is directly available as a scalar.
5156     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5157         Op0.getOpcode() == ISD::BUILD_VECTOR)
5158       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5159     // Otherwise keep it as a vector-to-vector operation.
5160     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5161                        DAG.getTargetConstant(Index, DL, MVT::i32));
5162   }
5163 
5164   GeneralShuffle GS(VT);
5165   for (unsigned I = 0; I < NumElements; ++I) {
5166     int Elt = VSN->getMaskElt(I);
5167     if (Elt < 0)
5168       GS.addUndef();
5169     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5170                      unsigned(Elt) % NumElements))
5171       return SDValue();
5172   }
5173   return GS.getNode(DAG, SDLoc(VSN));
5174 }
5175 
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const5176 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5177                                                      SelectionDAG &DAG) const {
5178   SDLoc DL(Op);
5179   // Just insert the scalar into element 0 of an undefined vector.
5180   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5181                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5182                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5183 }
5184 
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5185 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5186                                                       SelectionDAG &DAG) const {
5187   // Handle insertions of floating-point values.
5188   SDLoc DL(Op);
5189   SDValue Op0 = Op.getOperand(0);
5190   SDValue Op1 = Op.getOperand(1);
5191   SDValue Op2 = Op.getOperand(2);
5192   EVT VT = Op.getValueType();
5193 
5194   // Insertions into constant indices of a v2f64 can be done using VPDI.
5195   // However, if the inserted value is a bitcast or a constant then it's
5196   // better to use GPRs, as below.
5197   if (VT == MVT::v2f64 &&
5198       Op1.getOpcode() != ISD::BITCAST &&
5199       Op1.getOpcode() != ISD::ConstantFP &&
5200       Op2.getOpcode() == ISD::Constant) {
5201     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5202     unsigned Mask = VT.getVectorNumElements() - 1;
5203     if (Index <= Mask)
5204       return Op;
5205   }
5206 
5207   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5208   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5209   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5210   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5211                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5212                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5213   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5214 }
5215 
5216 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5217 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5218                                                SelectionDAG &DAG) const {
5219   // Handle extractions of floating-point values.
5220   SDLoc DL(Op);
5221   SDValue Op0 = Op.getOperand(0);
5222   SDValue Op1 = Op.getOperand(1);
5223   EVT VT = Op.getValueType();
5224   EVT VecVT = Op0.getValueType();
5225 
5226   // Extractions of constant indices can be done directly.
5227   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5228     uint64_t Index = CIndexN->getZExtValue();
5229     unsigned Mask = VecVT.getVectorNumElements() - 1;
5230     if (Index <= Mask)
5231       return Op;
5232   }
5233 
5234   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5235   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5236   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5237   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5238                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5239   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5240 }
5241 
5242 SDValue SystemZTargetLowering::
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5243 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5244   SDValue PackedOp = Op.getOperand(0);
5245   EVT OutVT = Op.getValueType();
5246   EVT InVT = PackedOp.getValueType();
5247   unsigned ToBits = OutVT.getScalarSizeInBits();
5248   unsigned FromBits = InVT.getScalarSizeInBits();
5249   do {
5250     FromBits *= 2;
5251     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5252                                  SystemZ::VectorBits / FromBits);
5253     PackedOp =
5254       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5255   } while (FromBits != ToBits);
5256   return PackedOp;
5257 }
5258 
5259 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5260 SDValue SystemZTargetLowering::
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5261 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5262   SDValue PackedOp = Op.getOperand(0);
5263   SDLoc DL(Op);
5264   EVT OutVT = Op.getValueType();
5265   EVT InVT = PackedOp.getValueType();
5266   unsigned InNumElts = InVT.getVectorNumElements();
5267   unsigned OutNumElts = OutVT.getVectorNumElements();
5268   unsigned NumInPerOut = InNumElts / OutNumElts;
5269 
5270   SDValue ZeroVec =
5271     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5272 
5273   SmallVector<int, 16> Mask(InNumElts);
5274   unsigned ZeroVecElt = InNumElts;
5275   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5276     unsigned MaskElt = PackedElt * NumInPerOut;
5277     unsigned End = MaskElt + NumInPerOut - 1;
5278     for (; MaskElt < End; MaskElt++)
5279       Mask[MaskElt] = ZeroVecElt++;
5280     Mask[MaskElt] = PackedElt;
5281   }
5282   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5283   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5284 }
5285 
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const5286 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5287                                           unsigned ByScalar) const {
5288   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5289   SDValue Op0 = Op.getOperand(0);
5290   SDValue Op1 = Op.getOperand(1);
5291   SDLoc DL(Op);
5292   EVT VT = Op.getValueType();
5293   unsigned ElemBitSize = VT.getScalarSizeInBits();
5294 
5295   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5296   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5297     APInt SplatBits, SplatUndef;
5298     unsigned SplatBitSize;
5299     bool HasAnyUndefs;
5300     // Check for constant splats.  Use ElemBitSize as the minimum element
5301     // width and reject splats that need wider elements.
5302     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5303                              ElemBitSize, true) &&
5304         SplatBitSize == ElemBitSize) {
5305       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5306                                       DL, MVT::i32);
5307       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5308     }
5309     // Check for variable splats.
5310     BitVector UndefElements;
5311     SDValue Splat = BVN->getSplatValue(&UndefElements);
5312     if (Splat) {
5313       // Since i32 is the smallest legal type, we either need a no-op
5314       // or a truncation.
5315       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5316       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5317     }
5318   }
5319 
5320   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5321   // and the shift amount is directly available in a GPR.
5322   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5323     if (VSN->isSplat()) {
5324       SDValue VSNOp0 = VSN->getOperand(0);
5325       unsigned Index = VSN->getSplatIndex();
5326       assert(Index < VT.getVectorNumElements() &&
5327              "Splat index should be defined and in first operand");
5328       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5329           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5330         // Since i32 is the smallest legal type, we either need a no-op
5331         // or a truncation.
5332         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5333                                     VSNOp0.getOperand(Index));
5334         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5335       }
5336     }
5337   }
5338 
5339   // Otherwise just treat the current form as legal.
5340   return Op;
5341 }
5342 
LowerOperation(SDValue Op,SelectionDAG & DAG) const5343 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5344                                               SelectionDAG &DAG) const {
5345   switch (Op.getOpcode()) {
5346   case ISD::FRAMEADDR:
5347     return lowerFRAMEADDR(Op, DAG);
5348   case ISD::RETURNADDR:
5349     return lowerRETURNADDR(Op, DAG);
5350   case ISD::BR_CC:
5351     return lowerBR_CC(Op, DAG);
5352   case ISD::SELECT_CC:
5353     return lowerSELECT_CC(Op, DAG);
5354   case ISD::SETCC:
5355     return lowerSETCC(Op, DAG);
5356   case ISD::STRICT_FSETCC:
5357     return lowerSTRICT_FSETCC(Op, DAG, false);
5358   case ISD::STRICT_FSETCCS:
5359     return lowerSTRICT_FSETCC(Op, DAG, true);
5360   case ISD::GlobalAddress:
5361     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5362   case ISD::GlobalTLSAddress:
5363     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5364   case ISD::BlockAddress:
5365     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5366   case ISD::JumpTable:
5367     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5368   case ISD::ConstantPool:
5369     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5370   case ISD::BITCAST:
5371     return lowerBITCAST(Op, DAG);
5372   case ISD::VASTART:
5373     return lowerVASTART(Op, DAG);
5374   case ISD::VACOPY:
5375     return lowerVACOPY(Op, DAG);
5376   case ISD::DYNAMIC_STACKALLOC:
5377     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5378   case ISD::GET_DYNAMIC_AREA_OFFSET:
5379     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5380   case ISD::SMUL_LOHI:
5381     return lowerSMUL_LOHI(Op, DAG);
5382   case ISD::UMUL_LOHI:
5383     return lowerUMUL_LOHI(Op, DAG);
5384   case ISD::SDIVREM:
5385     return lowerSDIVREM(Op, DAG);
5386   case ISD::UDIVREM:
5387     return lowerUDIVREM(Op, DAG);
5388   case ISD::SADDO:
5389   case ISD::SSUBO:
5390   case ISD::UADDO:
5391   case ISD::USUBO:
5392     return lowerXALUO(Op, DAG);
5393   case ISD::ADDCARRY:
5394   case ISD::SUBCARRY:
5395     return lowerADDSUBCARRY(Op, DAG);
5396   case ISD::OR:
5397     return lowerOR(Op, DAG);
5398   case ISD::CTPOP:
5399     return lowerCTPOP(Op, DAG);
5400   case ISD::ATOMIC_FENCE:
5401     return lowerATOMIC_FENCE(Op, DAG);
5402   case ISD::ATOMIC_SWAP:
5403     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5404   case ISD::ATOMIC_STORE:
5405     return lowerATOMIC_STORE(Op, DAG);
5406   case ISD::ATOMIC_LOAD:
5407     return lowerATOMIC_LOAD(Op, DAG);
5408   case ISD::ATOMIC_LOAD_ADD:
5409     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5410   case ISD::ATOMIC_LOAD_SUB:
5411     return lowerATOMIC_LOAD_SUB(Op, DAG);
5412   case ISD::ATOMIC_LOAD_AND:
5413     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5414   case ISD::ATOMIC_LOAD_OR:
5415     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5416   case ISD::ATOMIC_LOAD_XOR:
5417     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5418   case ISD::ATOMIC_LOAD_NAND:
5419     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5420   case ISD::ATOMIC_LOAD_MIN:
5421     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5422   case ISD::ATOMIC_LOAD_MAX:
5423     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5424   case ISD::ATOMIC_LOAD_UMIN:
5425     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5426   case ISD::ATOMIC_LOAD_UMAX:
5427     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5428   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5429     return lowerATOMIC_CMP_SWAP(Op, DAG);
5430   case ISD::STACKSAVE:
5431     return lowerSTACKSAVE(Op, DAG);
5432   case ISD::STACKRESTORE:
5433     return lowerSTACKRESTORE(Op, DAG);
5434   case ISD::PREFETCH:
5435     return lowerPREFETCH(Op, DAG);
5436   case ISD::INTRINSIC_W_CHAIN:
5437     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5438   case ISD::INTRINSIC_WO_CHAIN:
5439     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5440   case ISD::BUILD_VECTOR:
5441     return lowerBUILD_VECTOR(Op, DAG);
5442   case ISD::VECTOR_SHUFFLE:
5443     return lowerVECTOR_SHUFFLE(Op, DAG);
5444   case ISD::SCALAR_TO_VECTOR:
5445     return lowerSCALAR_TO_VECTOR(Op, DAG);
5446   case ISD::INSERT_VECTOR_ELT:
5447     return lowerINSERT_VECTOR_ELT(Op, DAG);
5448   case ISD::EXTRACT_VECTOR_ELT:
5449     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5450   case ISD::SIGN_EXTEND_VECTOR_INREG:
5451     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5452   case ISD::ZERO_EXTEND_VECTOR_INREG:
5453     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5454   case ISD::SHL:
5455     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5456   case ISD::SRL:
5457     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5458   case ISD::SRA:
5459     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5460   default:
5461     llvm_unreachable("Unexpected node to lower");
5462   }
5463 }
5464 
5465 // Lower operations with invalid operand or result types (currently used
5466 // only for 128-bit integer types).
5467 
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)5468 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5469   SDLoc DL(In);
5470   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5471                            DAG.getIntPtrConstant(0, DL));
5472   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5473                            DAG.getIntPtrConstant(1, DL));
5474   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5475                                     MVT::Untyped, Hi, Lo);
5476   return SDValue(Pair, 0);
5477 }
5478 
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)5479 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5480   SDLoc DL(In);
5481   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5482                                           DL, MVT::i64, In);
5483   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5484                                           DL, MVT::i64, In);
5485   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5486 }
5487 
5488 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5489 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5490                                              SmallVectorImpl<SDValue> &Results,
5491                                              SelectionDAG &DAG) const {
5492   switch (N->getOpcode()) {
5493   case ISD::ATOMIC_LOAD: {
5494     SDLoc DL(N);
5495     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5496     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5497     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5498     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5499                                           DL, Tys, Ops, MVT::i128, MMO);
5500     Results.push_back(lowerGR128ToI128(DAG, Res));
5501     Results.push_back(Res.getValue(1));
5502     break;
5503   }
5504   case ISD::ATOMIC_STORE: {
5505     SDLoc DL(N);
5506     SDVTList Tys = DAG.getVTList(MVT::Other);
5507     SDValue Ops[] = { N->getOperand(0),
5508                       lowerI128ToGR128(DAG, N->getOperand(2)),
5509                       N->getOperand(1) };
5510     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5511     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5512                                           DL, Tys, Ops, MVT::i128, MMO);
5513     // We have to enforce sequential consistency by performing a
5514     // serialization operation after the store.
5515     if (cast<AtomicSDNode>(N)->getOrdering() ==
5516         AtomicOrdering::SequentiallyConsistent)
5517       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5518                                        MVT::Other, Res), 0);
5519     Results.push_back(Res);
5520     break;
5521   }
5522   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5523     SDLoc DL(N);
5524     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5525     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5526                       lowerI128ToGR128(DAG, N->getOperand(2)),
5527                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5528     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5529     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5530                                           DL, Tys, Ops, MVT::i128, MMO);
5531     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5532                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5533     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5534     Results.push_back(lowerGR128ToI128(DAG, Res));
5535     Results.push_back(Success);
5536     Results.push_back(Res.getValue(2));
5537     break;
5538   }
5539   default:
5540     llvm_unreachable("Unexpected node to lower");
5541   }
5542 }
5543 
5544 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5545 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5546                                           SmallVectorImpl<SDValue> &Results,
5547                                           SelectionDAG &DAG) const {
5548   return LowerOperationWrapper(N, Results, DAG);
5549 }
5550 
getTargetNodeName(unsigned Opcode) const5551 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5552 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5553   switch ((SystemZISD::NodeType)Opcode) {
5554     case SystemZISD::FIRST_NUMBER: break;
5555     OPCODE(RET_FLAG);
5556     OPCODE(CALL);
5557     OPCODE(SIBCALL);
5558     OPCODE(TLS_GDCALL);
5559     OPCODE(TLS_LDCALL);
5560     OPCODE(PCREL_WRAPPER);
5561     OPCODE(PCREL_OFFSET);
5562     OPCODE(IABS);
5563     OPCODE(ICMP);
5564     OPCODE(FCMP);
5565     OPCODE(STRICT_FCMP);
5566     OPCODE(STRICT_FCMPS);
5567     OPCODE(TM);
5568     OPCODE(BR_CCMASK);
5569     OPCODE(SELECT_CCMASK);
5570     OPCODE(ADJDYNALLOC);
5571     OPCODE(PROBED_ALLOCA);
5572     OPCODE(POPCNT);
5573     OPCODE(SMUL_LOHI);
5574     OPCODE(UMUL_LOHI);
5575     OPCODE(SDIVREM);
5576     OPCODE(UDIVREM);
5577     OPCODE(SADDO);
5578     OPCODE(SSUBO);
5579     OPCODE(UADDO);
5580     OPCODE(USUBO);
5581     OPCODE(ADDCARRY);
5582     OPCODE(SUBCARRY);
5583     OPCODE(GET_CCMASK);
5584     OPCODE(MVC);
5585     OPCODE(MVC_LOOP);
5586     OPCODE(NC);
5587     OPCODE(NC_LOOP);
5588     OPCODE(OC);
5589     OPCODE(OC_LOOP);
5590     OPCODE(XC);
5591     OPCODE(XC_LOOP);
5592     OPCODE(CLC);
5593     OPCODE(CLC_LOOP);
5594     OPCODE(STPCPY);
5595     OPCODE(STRCMP);
5596     OPCODE(SEARCH_STRING);
5597     OPCODE(IPM);
5598     OPCODE(MEMBARRIER);
5599     OPCODE(TBEGIN);
5600     OPCODE(TBEGIN_NOFLOAT);
5601     OPCODE(TEND);
5602     OPCODE(BYTE_MASK);
5603     OPCODE(ROTATE_MASK);
5604     OPCODE(REPLICATE);
5605     OPCODE(JOIN_DWORDS);
5606     OPCODE(SPLAT);
5607     OPCODE(MERGE_HIGH);
5608     OPCODE(MERGE_LOW);
5609     OPCODE(SHL_DOUBLE);
5610     OPCODE(PERMUTE_DWORDS);
5611     OPCODE(PERMUTE);
5612     OPCODE(PACK);
5613     OPCODE(PACKS_CC);
5614     OPCODE(PACKLS_CC);
5615     OPCODE(UNPACK_HIGH);
5616     OPCODE(UNPACKL_HIGH);
5617     OPCODE(UNPACK_LOW);
5618     OPCODE(UNPACKL_LOW);
5619     OPCODE(VSHL_BY_SCALAR);
5620     OPCODE(VSRL_BY_SCALAR);
5621     OPCODE(VSRA_BY_SCALAR);
5622     OPCODE(VSUM);
5623     OPCODE(VICMPE);
5624     OPCODE(VICMPH);
5625     OPCODE(VICMPHL);
5626     OPCODE(VICMPES);
5627     OPCODE(VICMPHS);
5628     OPCODE(VICMPHLS);
5629     OPCODE(VFCMPE);
5630     OPCODE(STRICT_VFCMPE);
5631     OPCODE(STRICT_VFCMPES);
5632     OPCODE(VFCMPH);
5633     OPCODE(STRICT_VFCMPH);
5634     OPCODE(STRICT_VFCMPHS);
5635     OPCODE(VFCMPHE);
5636     OPCODE(STRICT_VFCMPHE);
5637     OPCODE(STRICT_VFCMPHES);
5638     OPCODE(VFCMPES);
5639     OPCODE(VFCMPHS);
5640     OPCODE(VFCMPHES);
5641     OPCODE(VFTCI);
5642     OPCODE(VEXTEND);
5643     OPCODE(STRICT_VEXTEND);
5644     OPCODE(VROUND);
5645     OPCODE(STRICT_VROUND);
5646     OPCODE(VTM);
5647     OPCODE(VFAE_CC);
5648     OPCODE(VFAEZ_CC);
5649     OPCODE(VFEE_CC);
5650     OPCODE(VFEEZ_CC);
5651     OPCODE(VFENE_CC);
5652     OPCODE(VFENEZ_CC);
5653     OPCODE(VISTR_CC);
5654     OPCODE(VSTRC_CC);
5655     OPCODE(VSTRCZ_CC);
5656     OPCODE(VSTRS_CC);
5657     OPCODE(VSTRSZ_CC);
5658     OPCODE(TDC);
5659     OPCODE(ATOMIC_SWAPW);
5660     OPCODE(ATOMIC_LOADW_ADD);
5661     OPCODE(ATOMIC_LOADW_SUB);
5662     OPCODE(ATOMIC_LOADW_AND);
5663     OPCODE(ATOMIC_LOADW_OR);
5664     OPCODE(ATOMIC_LOADW_XOR);
5665     OPCODE(ATOMIC_LOADW_NAND);
5666     OPCODE(ATOMIC_LOADW_MIN);
5667     OPCODE(ATOMIC_LOADW_MAX);
5668     OPCODE(ATOMIC_LOADW_UMIN);
5669     OPCODE(ATOMIC_LOADW_UMAX);
5670     OPCODE(ATOMIC_CMP_SWAPW);
5671     OPCODE(ATOMIC_CMP_SWAP);
5672     OPCODE(ATOMIC_LOAD_128);
5673     OPCODE(ATOMIC_STORE_128);
5674     OPCODE(ATOMIC_CMP_SWAP_128);
5675     OPCODE(LRV);
5676     OPCODE(STRV);
5677     OPCODE(VLER);
5678     OPCODE(VSTER);
5679     OPCODE(PREFETCH);
5680   }
5681   return nullptr;
5682 #undef OPCODE
5683 }
5684 
5685 // Return true if VT is a vector whose elements are a whole number of bytes
5686 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const5687 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5688   if (!Subtarget.hasVector())
5689     return false;
5690 
5691   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5692 }
5693 
5694 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5695 // producing a result of type ResVT.  Op is a possibly bitcast version
5696 // of the input vector and Index is the index (based on type VecVT) that
5697 // should be extracted.  Return the new extraction if a simplification
5698 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const5699 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5700                                               EVT VecVT, SDValue Op,
5701                                               unsigned Index,
5702                                               DAGCombinerInfo &DCI,
5703                                               bool Force) const {
5704   SelectionDAG &DAG = DCI.DAG;
5705 
5706   // The number of bytes being extracted.
5707   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5708 
5709   for (;;) {
5710     unsigned Opcode = Op.getOpcode();
5711     if (Opcode == ISD::BITCAST)
5712       // Look through bitcasts.
5713       Op = Op.getOperand(0);
5714     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5715              canTreatAsByteVector(Op.getValueType())) {
5716       // Get a VPERM-like permute mask and see whether the bytes covered
5717       // by the extracted element are a contiguous sequence from one
5718       // source operand.
5719       SmallVector<int, SystemZ::VectorBytes> Bytes;
5720       if (!getVPermMask(Op, Bytes))
5721         break;
5722       int First;
5723       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5724                            BytesPerElement, First))
5725         break;
5726       if (First < 0)
5727         return DAG.getUNDEF(ResVT);
5728       // Make sure the contiguous sequence starts at a multiple of the
5729       // original element size.
5730       unsigned Byte = unsigned(First) % Bytes.size();
5731       if (Byte % BytesPerElement != 0)
5732         break;
5733       // We can get the extracted value directly from an input.
5734       Index = Byte / BytesPerElement;
5735       Op = Op.getOperand(unsigned(First) / Bytes.size());
5736       Force = true;
5737     } else if (Opcode == ISD::BUILD_VECTOR &&
5738                canTreatAsByteVector(Op.getValueType())) {
5739       // We can only optimize this case if the BUILD_VECTOR elements are
5740       // at least as wide as the extracted value.
5741       EVT OpVT = Op.getValueType();
5742       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5743       if (OpBytesPerElement < BytesPerElement)
5744         break;
5745       // Make sure that the least-significant bit of the extracted value
5746       // is the least significant bit of an input.
5747       unsigned End = (Index + 1) * BytesPerElement;
5748       if (End % OpBytesPerElement != 0)
5749         break;
5750       // We're extracting the low part of one operand of the BUILD_VECTOR.
5751       Op = Op.getOperand(End / OpBytesPerElement - 1);
5752       if (!Op.getValueType().isInteger()) {
5753         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5754         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5755         DCI.AddToWorklist(Op.getNode());
5756       }
5757       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5758       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5759       if (VT != ResVT) {
5760         DCI.AddToWorklist(Op.getNode());
5761         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5762       }
5763       return Op;
5764     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5765                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5766                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5767                canTreatAsByteVector(Op.getValueType()) &&
5768                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5769       // Make sure that only the unextended bits are significant.
5770       EVT ExtVT = Op.getValueType();
5771       EVT OpVT = Op.getOperand(0).getValueType();
5772       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5773       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5774       unsigned Byte = Index * BytesPerElement;
5775       unsigned SubByte = Byte % ExtBytesPerElement;
5776       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5777       if (SubByte < MinSubByte ||
5778           SubByte + BytesPerElement > ExtBytesPerElement)
5779         break;
5780       // Get the byte offset of the unextended element
5781       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5782       // ...then add the byte offset relative to that element.
5783       Byte += SubByte - MinSubByte;
5784       if (Byte % BytesPerElement != 0)
5785         break;
5786       Op = Op.getOperand(0);
5787       Index = Byte / BytesPerElement;
5788       Force = true;
5789     } else
5790       break;
5791   }
5792   if (Force) {
5793     if (Op.getValueType() != VecVT) {
5794       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5795       DCI.AddToWorklist(Op.getNode());
5796     }
5797     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5798                        DAG.getConstant(Index, DL, MVT::i32));
5799   }
5800   return SDValue();
5801 }
5802 
5803 // Optimize vector operations in scalar value Op on the basis that Op
5804 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const5805 SDValue SystemZTargetLowering::combineTruncateExtract(
5806     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5807   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5808   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5809   // of type TruncVT.
5810   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5811       TruncVT.getSizeInBits() % 8 == 0) {
5812     SDValue Vec = Op.getOperand(0);
5813     EVT VecVT = Vec.getValueType();
5814     if (canTreatAsByteVector(VecVT)) {
5815       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5816         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5817         unsigned TruncBytes = TruncVT.getStoreSize();
5818         if (BytesPerElement % TruncBytes == 0) {
5819           // Calculate the value of Y' in the above description.  We are
5820           // splitting the original elements into Scale equal-sized pieces
5821           // and for truncation purposes want the last (least-significant)
5822           // of these pieces for IndexN.  This is easiest to do by calculating
5823           // the start index of the following element and then subtracting 1.
5824           unsigned Scale = BytesPerElement / TruncBytes;
5825           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5826 
5827           // Defer the creation of the bitcast from X to combineExtract,
5828           // which might be able to optimize the extraction.
5829           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5830                                    VecVT.getStoreSize() / TruncBytes);
5831           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5832           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5833         }
5834       }
5835     }
5836   }
5837   return SDValue();
5838 }
5839 
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5840 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5841     SDNode *N, DAGCombinerInfo &DCI) const {
5842   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5843   SelectionDAG &DAG = DCI.DAG;
5844   SDValue N0 = N->getOperand(0);
5845   EVT VT = N->getValueType(0);
5846   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5847     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5848     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5849     if (TrueOp && FalseOp) {
5850       SDLoc DL(N0);
5851       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5852                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5853                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5854       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5855       // If N0 has multiple uses, change other uses as well.
5856       if (!N0.hasOneUse()) {
5857         SDValue TruncSelect =
5858           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5859         DCI.CombineTo(N0.getNode(), TruncSelect);
5860       }
5861       return NewSelect;
5862     }
5863   }
5864   return SDValue();
5865 }
5866 
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const5867 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5868     SDNode *N, DAGCombinerInfo &DCI) const {
5869   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5870   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5871   // into (select_cc LHS, RHS, -1, 0, COND)
5872   SelectionDAG &DAG = DCI.DAG;
5873   SDValue N0 = N->getOperand(0);
5874   EVT VT = N->getValueType(0);
5875   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5876   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5877     N0 = N0.getOperand(0);
5878   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5879     SDLoc DL(N0);
5880     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5881                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5882                       N0.getOperand(2) };
5883     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5884   }
5885   return SDValue();
5886 }
5887 
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5888 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5889     SDNode *N, DAGCombinerInfo &DCI) const {
5890   // Convert (sext (ashr (shl X, C1), C2)) to
5891   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5892   // cheap as narrower ones.
5893   SelectionDAG &DAG = DCI.DAG;
5894   SDValue N0 = N->getOperand(0);
5895   EVT VT = N->getValueType(0);
5896   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5897     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5898     SDValue Inner = N0.getOperand(0);
5899     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5900       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5901         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5902         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5903         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5904         EVT ShiftVT = N0.getOperand(1).getValueType();
5905         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5906                                   Inner.getOperand(0));
5907         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5908                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5909                                                   ShiftVT));
5910         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5911                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5912       }
5913     }
5914   }
5915   return SDValue();
5916 }
5917 
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const5918 SDValue SystemZTargetLowering::combineMERGE(
5919     SDNode *N, DAGCombinerInfo &DCI) const {
5920   SelectionDAG &DAG = DCI.DAG;
5921   unsigned Opcode = N->getOpcode();
5922   SDValue Op0 = N->getOperand(0);
5923   SDValue Op1 = N->getOperand(1);
5924   if (Op0.getOpcode() == ISD::BITCAST)
5925     Op0 = Op0.getOperand(0);
5926   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5927     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5928     // for v4f32.
5929     if (Op1 == N->getOperand(0))
5930       return Op1;
5931     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5932     EVT VT = Op1.getValueType();
5933     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5934     if (ElemBytes <= 4) {
5935       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5936                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5937       EVT InVT = VT.changeVectorElementTypeToInteger();
5938       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5939                                    SystemZ::VectorBytes / ElemBytes / 2);
5940       if (VT != InVT) {
5941         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5942         DCI.AddToWorklist(Op1.getNode());
5943       }
5944       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5945       DCI.AddToWorklist(Op.getNode());
5946       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5947     }
5948   }
5949   return SDValue();
5950 }
5951 
combineLOAD(SDNode * N,DAGCombinerInfo & DCI) const5952 SDValue SystemZTargetLowering::combineLOAD(
5953     SDNode *N, DAGCombinerInfo &DCI) const {
5954   SelectionDAG &DAG = DCI.DAG;
5955   EVT LdVT = N->getValueType(0);
5956   if (LdVT.isVector() || LdVT.isInteger())
5957     return SDValue();
5958   // Transform a scalar load that is REPLICATEd as well as having other
5959   // use(s) to the form where the other use(s) use the first element of the
5960   // REPLICATE instead of the load. Otherwise instruction selection will not
5961   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5962   // point loads.
5963 
5964   SDValue Replicate;
5965   SmallVector<SDNode*, 8> OtherUses;
5966   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5967        UI != UE; ++UI) {
5968     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5969       if (Replicate)
5970         return SDValue(); // Should never happen
5971       Replicate = SDValue(*UI, 0);
5972     }
5973     else if (UI.getUse().getResNo() == 0)
5974       OtherUses.push_back(*UI);
5975   }
5976   if (!Replicate || OtherUses.empty())
5977     return SDValue();
5978 
5979   SDLoc DL(N);
5980   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5981                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5982   // Update uses of the loaded Value while preserving old chains.
5983   for (SDNode *U : OtherUses) {
5984     SmallVector<SDValue, 8> Ops;
5985     for (SDValue Op : U->ops())
5986       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5987     DAG.UpdateNodeOperands(U, Ops);
5988   }
5989   return SDValue(N, 0);
5990 }
5991 
canLoadStoreByteSwapped(EVT VT) const5992 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5993   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5994     return true;
5995   if (Subtarget.hasVectorEnhancements2())
5996     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5997       return true;
5998   return false;
5999 }
6000 
isVectorElementSwap(ArrayRef<int> M,EVT VT)6001 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6002   if (!VT.isVector() || !VT.isSimple() ||
6003       VT.getSizeInBits() != 128 ||
6004       VT.getScalarSizeInBits() % 8 != 0)
6005     return false;
6006 
6007   unsigned NumElts = VT.getVectorNumElements();
6008   for (unsigned i = 0; i < NumElts; ++i) {
6009     if (M[i] < 0) continue; // ignore UNDEF indices
6010     if ((unsigned) M[i] != NumElts - 1 - i)
6011       return false;
6012   }
6013 
6014   return true;
6015 }
6016 
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const6017 SDValue SystemZTargetLowering::combineSTORE(
6018     SDNode *N, DAGCombinerInfo &DCI) const {
6019   SelectionDAG &DAG = DCI.DAG;
6020   auto *SN = cast<StoreSDNode>(N);
6021   auto &Op1 = N->getOperand(1);
6022   EVT MemVT = SN->getMemoryVT();
6023   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6024   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6025   // If X has wider elements then convert it to:
6026   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6027   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6028     if (SDValue Value =
6029             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6030       DCI.AddToWorklist(Value.getNode());
6031 
6032       // Rewrite the store with the new form of stored value.
6033       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6034                                SN->getBasePtr(), SN->getMemoryVT(),
6035                                SN->getMemOperand());
6036     }
6037   }
6038   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6039   if (!SN->isTruncatingStore() &&
6040       Op1.getOpcode() == ISD::BSWAP &&
6041       Op1.getNode()->hasOneUse() &&
6042       canLoadStoreByteSwapped(Op1.getValueType())) {
6043 
6044       SDValue BSwapOp = Op1.getOperand(0);
6045 
6046       if (BSwapOp.getValueType() == MVT::i16)
6047         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6048 
6049       SDValue Ops[] = {
6050         N->getOperand(0), BSwapOp, N->getOperand(2)
6051       };
6052 
6053       return
6054         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6055                                 Ops, MemVT, SN->getMemOperand());
6056     }
6057   // Combine STORE (element-swap) into VSTER
6058   if (!SN->isTruncatingStore() &&
6059       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6060       Op1.getNode()->hasOneUse() &&
6061       Subtarget.hasVectorEnhancements2()) {
6062     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6063     ArrayRef<int> ShuffleMask = SVN->getMask();
6064     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6065       SDValue Ops[] = {
6066         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6067       };
6068 
6069       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6070                                      DAG.getVTList(MVT::Other),
6071                                      Ops, MemVT, SN->getMemOperand());
6072     }
6073   }
6074 
6075   return SDValue();
6076 }
6077 
combineVECTOR_SHUFFLE(SDNode * N,DAGCombinerInfo & DCI) const6078 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6079     SDNode *N, DAGCombinerInfo &DCI) const {
6080   SelectionDAG &DAG = DCI.DAG;
6081   // Combine element-swap (LOAD) into VLER
6082   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6083       N->getOperand(0).hasOneUse() &&
6084       Subtarget.hasVectorEnhancements2()) {
6085     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6086     ArrayRef<int> ShuffleMask = SVN->getMask();
6087     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6088       SDValue Load = N->getOperand(0);
6089       LoadSDNode *LD = cast<LoadSDNode>(Load);
6090 
6091       // Create the element-swapping load.
6092       SDValue Ops[] = {
6093         LD->getChain(),    // Chain
6094         LD->getBasePtr()   // Ptr
6095       };
6096       SDValue ESLoad =
6097         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6098                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6099                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6100 
6101       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6102       // by the load dead.
6103       DCI.CombineTo(N, ESLoad);
6104 
6105       // Next, combine the load away, we give it a bogus result value but a real
6106       // chain result.  The result value is dead because the shuffle is dead.
6107       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6108 
6109       // Return N so it doesn't get rechecked!
6110       return SDValue(N, 0);
6111     }
6112   }
6113 
6114   return SDValue();
6115 }
6116 
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const6117 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6118     SDNode *N, DAGCombinerInfo &DCI) const {
6119   SelectionDAG &DAG = DCI.DAG;
6120 
6121   if (!Subtarget.hasVector())
6122     return SDValue();
6123 
6124   // Look through bitcasts that retain the number of vector elements.
6125   SDValue Op = N->getOperand(0);
6126   if (Op.getOpcode() == ISD::BITCAST &&
6127       Op.getValueType().isVector() &&
6128       Op.getOperand(0).getValueType().isVector() &&
6129       Op.getValueType().getVectorNumElements() ==
6130       Op.getOperand(0).getValueType().getVectorNumElements())
6131     Op = Op.getOperand(0);
6132 
6133   // Pull BSWAP out of a vector extraction.
6134   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6135     EVT VecVT = Op.getValueType();
6136     EVT EltVT = VecVT.getVectorElementType();
6137     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6138                      Op.getOperand(0), N->getOperand(1));
6139     DCI.AddToWorklist(Op.getNode());
6140     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6141     if (EltVT != N->getValueType(0)) {
6142       DCI.AddToWorklist(Op.getNode());
6143       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6144     }
6145     return Op;
6146   }
6147 
6148   // Try to simplify a vector extraction.
6149   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6150     SDValue Op0 = N->getOperand(0);
6151     EVT VecVT = Op0.getValueType();
6152     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6153                           IndexN->getZExtValue(), DCI, false);
6154   }
6155   return SDValue();
6156 }
6157 
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const6158 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6159     SDNode *N, DAGCombinerInfo &DCI) const {
6160   SelectionDAG &DAG = DCI.DAG;
6161   // (join_dwords X, X) == (replicate X)
6162   if (N->getOperand(0) == N->getOperand(1))
6163     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6164                        N->getOperand(0));
6165   return SDValue();
6166 }
6167 
MergeInputChains(SDNode * N1,SDNode * N2)6168 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6169   SDValue Chain1 = N1->getOperand(0);
6170   SDValue Chain2 = N2->getOperand(0);
6171 
6172   // Trivial case: both nodes take the same chain.
6173   if (Chain1 == Chain2)
6174     return Chain1;
6175 
6176   // FIXME - we could handle more complex cases via TokenFactor,
6177   // assuming we can verify that this would not create a cycle.
6178   return SDValue();
6179 }
6180 
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const6181 SDValue SystemZTargetLowering::combineFP_ROUND(
6182     SDNode *N, DAGCombinerInfo &DCI) const {
6183 
6184   if (!Subtarget.hasVector())
6185     return SDValue();
6186 
6187   // (fpround (extract_vector_elt X 0))
6188   // (fpround (extract_vector_elt X 1)) ->
6189   // (extract_vector_elt (VROUND X) 0)
6190   // (extract_vector_elt (VROUND X) 2)
6191   //
6192   // This is a special case since the target doesn't really support v2f32s.
6193   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6194   SelectionDAG &DAG = DCI.DAG;
6195   SDValue Op0 = N->getOperand(OpNo);
6196   if (N->getValueType(0) == MVT::f32 &&
6197       Op0.hasOneUse() &&
6198       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6199       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6200       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6201       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6202     SDValue Vec = Op0.getOperand(0);
6203     for (auto *U : Vec->uses()) {
6204       if (U != Op0.getNode() &&
6205           U->hasOneUse() &&
6206           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6207           U->getOperand(0) == Vec &&
6208           U->getOperand(1).getOpcode() == ISD::Constant &&
6209           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6210         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6211         if (OtherRound.getOpcode() == N->getOpcode() &&
6212             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6213             OtherRound.getValueType() == MVT::f32) {
6214           SDValue VRound, Chain;
6215           if (N->isStrictFPOpcode()) {
6216             Chain = MergeInputChains(N, OtherRound.getNode());
6217             if (!Chain)
6218               continue;
6219             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6220                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6221             Chain = VRound.getValue(1);
6222           } else
6223             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6224                                  MVT::v4f32, Vec);
6225           DCI.AddToWorklist(VRound.getNode());
6226           SDValue Extract1 =
6227             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6228                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6229           DCI.AddToWorklist(Extract1.getNode());
6230           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6231           if (Chain)
6232             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6233           SDValue Extract0 =
6234             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6235                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6236           if (Chain)
6237             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6238                                N->getVTList(), Extract0, Chain);
6239           return Extract0;
6240         }
6241       }
6242     }
6243   }
6244   return SDValue();
6245 }
6246 
combineFP_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const6247 SDValue SystemZTargetLowering::combineFP_EXTEND(
6248     SDNode *N, DAGCombinerInfo &DCI) const {
6249 
6250   if (!Subtarget.hasVector())
6251     return SDValue();
6252 
6253   // (fpextend (extract_vector_elt X 0))
6254   // (fpextend (extract_vector_elt X 2)) ->
6255   // (extract_vector_elt (VEXTEND X) 0)
6256   // (extract_vector_elt (VEXTEND X) 1)
6257   //
6258   // This is a special case since the target doesn't really support v2f32s.
6259   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6260   SelectionDAG &DAG = DCI.DAG;
6261   SDValue Op0 = N->getOperand(OpNo);
6262   if (N->getValueType(0) == MVT::f64 &&
6263       Op0.hasOneUse() &&
6264       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6265       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6266       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6267       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6268     SDValue Vec = Op0.getOperand(0);
6269     for (auto *U : Vec->uses()) {
6270       if (U != Op0.getNode() &&
6271           U->hasOneUse() &&
6272           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6273           U->getOperand(0) == Vec &&
6274           U->getOperand(1).getOpcode() == ISD::Constant &&
6275           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6276         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6277         if (OtherExtend.getOpcode() == N->getOpcode() &&
6278             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6279             OtherExtend.getValueType() == MVT::f64) {
6280           SDValue VExtend, Chain;
6281           if (N->isStrictFPOpcode()) {
6282             Chain = MergeInputChains(N, OtherExtend.getNode());
6283             if (!Chain)
6284               continue;
6285             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6286                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6287             Chain = VExtend.getValue(1);
6288           } else
6289             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6290                                   MVT::v2f64, Vec);
6291           DCI.AddToWorklist(VExtend.getNode());
6292           SDValue Extract1 =
6293             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6294                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6295           DCI.AddToWorklist(Extract1.getNode());
6296           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6297           if (Chain)
6298             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6299           SDValue Extract0 =
6300             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6301                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6302           if (Chain)
6303             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6304                                N->getVTList(), Extract0, Chain);
6305           return Extract0;
6306         }
6307       }
6308     }
6309   }
6310   return SDValue();
6311 }
6312 
combineINT_TO_FP(SDNode * N,DAGCombinerInfo & DCI) const6313 SDValue SystemZTargetLowering::combineINT_TO_FP(
6314     SDNode *N, DAGCombinerInfo &DCI) const {
6315   if (DCI.Level != BeforeLegalizeTypes)
6316     return SDValue();
6317   unsigned Opcode = N->getOpcode();
6318   EVT OutVT = N->getValueType(0);
6319   SelectionDAG &DAG = DCI.DAG;
6320   SDValue Op = N->getOperand(0);
6321   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6322   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6323 
6324   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6325   // v2f64 = uint_to_fp v2i16
6326   // =>
6327   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6328   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6329     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6330                                  OutVT.getVectorNumElements());
6331     unsigned ExtOpcode =
6332       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6333     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6334     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6335   }
6336   return SDValue();
6337 }
6338 
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const6339 SDValue SystemZTargetLowering::combineBSWAP(
6340     SDNode *N, DAGCombinerInfo &DCI) const {
6341   SelectionDAG &DAG = DCI.DAG;
6342   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6343   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6344       N->getOperand(0).hasOneUse() &&
6345       canLoadStoreByteSwapped(N->getValueType(0))) {
6346       SDValue Load = N->getOperand(0);
6347       LoadSDNode *LD = cast<LoadSDNode>(Load);
6348 
6349       // Create the byte-swapping load.
6350       SDValue Ops[] = {
6351         LD->getChain(),    // Chain
6352         LD->getBasePtr()   // Ptr
6353       };
6354       EVT LoadVT = N->getValueType(0);
6355       if (LoadVT == MVT::i16)
6356         LoadVT = MVT::i32;
6357       SDValue BSLoad =
6358         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6359                                 DAG.getVTList(LoadVT, MVT::Other),
6360                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6361 
6362       // If this is an i16 load, insert the truncate.
6363       SDValue ResVal = BSLoad;
6364       if (N->getValueType(0) == MVT::i16)
6365         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6366 
6367       // First, combine the bswap away.  This makes the value produced by the
6368       // load dead.
6369       DCI.CombineTo(N, ResVal);
6370 
6371       // Next, combine the load away, we give it a bogus result value but a real
6372       // chain result.  The result value is dead because the bswap is dead.
6373       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6374 
6375       // Return N so it doesn't get rechecked!
6376       return SDValue(N, 0);
6377     }
6378 
6379   // Look through bitcasts that retain the number of vector elements.
6380   SDValue Op = N->getOperand(0);
6381   if (Op.getOpcode() == ISD::BITCAST &&
6382       Op.getValueType().isVector() &&
6383       Op.getOperand(0).getValueType().isVector() &&
6384       Op.getValueType().getVectorNumElements() ==
6385       Op.getOperand(0).getValueType().getVectorNumElements())
6386     Op = Op.getOperand(0);
6387 
6388   // Push BSWAP into a vector insertion if at least one side then simplifies.
6389   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6390     SDValue Vec = Op.getOperand(0);
6391     SDValue Elt = Op.getOperand(1);
6392     SDValue Idx = Op.getOperand(2);
6393 
6394     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6395         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6396         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6397         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6398         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6399          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6400       EVT VecVT = N->getValueType(0);
6401       EVT EltVT = N->getValueType(0).getVectorElementType();
6402       if (VecVT != Vec.getValueType()) {
6403         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6404         DCI.AddToWorklist(Vec.getNode());
6405       }
6406       if (EltVT != Elt.getValueType()) {
6407         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6408         DCI.AddToWorklist(Elt.getNode());
6409       }
6410       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6411       DCI.AddToWorklist(Vec.getNode());
6412       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6413       DCI.AddToWorklist(Elt.getNode());
6414       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6415                          Vec, Elt, Idx);
6416     }
6417   }
6418 
6419   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6420   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6421   if (SV && Op.hasOneUse()) {
6422     SDValue Op0 = Op.getOperand(0);
6423     SDValue Op1 = Op.getOperand(1);
6424 
6425     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6426         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6427         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6428         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6429       EVT VecVT = N->getValueType(0);
6430       if (VecVT != Op0.getValueType()) {
6431         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6432         DCI.AddToWorklist(Op0.getNode());
6433       }
6434       if (VecVT != Op1.getValueType()) {
6435         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6436         DCI.AddToWorklist(Op1.getNode());
6437       }
6438       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6439       DCI.AddToWorklist(Op0.getNode());
6440       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6441       DCI.AddToWorklist(Op1.getNode());
6442       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6443     }
6444   }
6445 
6446   return SDValue();
6447 }
6448 
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)6449 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6450   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6451   // set by the CCReg instruction using the CCValid / CCMask masks,
6452   // If the CCReg instruction is itself a ICMP testing the condition
6453   // code set by some other instruction, see whether we can directly
6454   // use that condition code.
6455 
6456   // Verify that we have an ICMP against some constant.
6457   if (CCValid != SystemZ::CCMASK_ICMP)
6458     return false;
6459   auto *ICmp = CCReg.getNode();
6460   if (ICmp->getOpcode() != SystemZISD::ICMP)
6461     return false;
6462   auto *CompareLHS = ICmp->getOperand(0).getNode();
6463   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6464   if (!CompareRHS)
6465     return false;
6466 
6467   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6468   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6469     // Verify that we have an appropriate mask for a EQ or NE comparison.
6470     bool Invert = false;
6471     if (CCMask == SystemZ::CCMASK_CMP_NE)
6472       Invert = !Invert;
6473     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6474       return false;
6475 
6476     // Verify that the ICMP compares against one of select values.
6477     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6478     if (!TrueVal)
6479       return false;
6480     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6481     if (!FalseVal)
6482       return false;
6483     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6484       Invert = !Invert;
6485     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6486       return false;
6487 
6488     // Compute the effective CC mask for the new branch or select.
6489     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6490     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6491     if (!NewCCValid || !NewCCMask)
6492       return false;
6493     CCValid = NewCCValid->getZExtValue();
6494     CCMask = NewCCMask->getZExtValue();
6495     if (Invert)
6496       CCMask ^= CCValid;
6497 
6498     // Return the updated CCReg link.
6499     CCReg = CompareLHS->getOperand(4);
6500     return true;
6501   }
6502 
6503   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6504   if (CompareLHS->getOpcode() == ISD::SRA) {
6505     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6506     if (!SRACount || SRACount->getZExtValue() != 30)
6507       return false;
6508     auto *SHL = CompareLHS->getOperand(0).getNode();
6509     if (SHL->getOpcode() != ISD::SHL)
6510       return false;
6511     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6512     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6513       return false;
6514     auto *IPM = SHL->getOperand(0).getNode();
6515     if (IPM->getOpcode() != SystemZISD::IPM)
6516       return false;
6517 
6518     // Avoid introducing CC spills (because SRA would clobber CC).
6519     if (!CompareLHS->hasOneUse())
6520       return false;
6521     // Verify that the ICMP compares against zero.
6522     if (CompareRHS->getZExtValue() != 0)
6523       return false;
6524 
6525     // Compute the effective CC mask for the new branch or select.
6526     CCMask = SystemZ::reverseCCMask(CCMask);
6527 
6528     // Return the updated CCReg link.
6529     CCReg = IPM->getOperand(0);
6530     return true;
6531   }
6532 
6533   return false;
6534 }
6535 
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6536 SDValue SystemZTargetLowering::combineBR_CCMASK(
6537     SDNode *N, DAGCombinerInfo &DCI) const {
6538   SelectionDAG &DAG = DCI.DAG;
6539 
6540   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6541   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6542   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6543   if (!CCValid || !CCMask)
6544     return SDValue();
6545 
6546   int CCValidVal = CCValid->getZExtValue();
6547   int CCMaskVal = CCMask->getZExtValue();
6548   SDValue Chain = N->getOperand(0);
6549   SDValue CCReg = N->getOperand(4);
6550 
6551   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6552     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6553                        Chain,
6554                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6555                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6556                        N->getOperand(3), CCReg);
6557   return SDValue();
6558 }
6559 
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6560 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6561     SDNode *N, DAGCombinerInfo &DCI) const {
6562   SelectionDAG &DAG = DCI.DAG;
6563 
6564   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6565   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6566   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6567   if (!CCValid || !CCMask)
6568     return SDValue();
6569 
6570   int CCValidVal = CCValid->getZExtValue();
6571   int CCMaskVal = CCMask->getZExtValue();
6572   SDValue CCReg = N->getOperand(4);
6573 
6574   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6575     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6576                        N->getOperand(0), N->getOperand(1),
6577                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6578                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6579                        CCReg);
6580   return SDValue();
6581 }
6582 
6583 
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6584 SDValue SystemZTargetLowering::combineGET_CCMASK(
6585     SDNode *N, DAGCombinerInfo &DCI) const {
6586 
6587   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6588   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6589   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6590   if (!CCValid || !CCMask)
6591     return SDValue();
6592   int CCValidVal = CCValid->getZExtValue();
6593   int CCMaskVal = CCMask->getZExtValue();
6594 
6595   SDValue Select = N->getOperand(0);
6596   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6597     return SDValue();
6598 
6599   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6600   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6601   if (!SelectCCValid || !SelectCCMask)
6602     return SDValue();
6603   int SelectCCValidVal = SelectCCValid->getZExtValue();
6604   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6605 
6606   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6607   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6608   if (!TrueVal || !FalseVal)
6609     return SDValue();
6610   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6611     ;
6612   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6613     SelectCCMaskVal ^= SelectCCValidVal;
6614   else
6615     return SDValue();
6616 
6617   if (SelectCCValidVal & ~CCValidVal)
6618     return SDValue();
6619   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6620     return SDValue();
6621 
6622   return Select->getOperand(4);
6623 }
6624 
combineIntDIVREM(SDNode * N,DAGCombinerInfo & DCI) const6625 SDValue SystemZTargetLowering::combineIntDIVREM(
6626     SDNode *N, DAGCombinerInfo &DCI) const {
6627   SelectionDAG &DAG = DCI.DAG;
6628   EVT VT = N->getValueType(0);
6629   // In the case where the divisor is a vector of constants a cheaper
6630   // sequence of instructions can replace the divide. BuildSDIV is called to
6631   // do this during DAG combining, but it only succeeds when it can build a
6632   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6633   // since it is not Legal but Custom it can only happen before
6634   // legalization. Therefore we must scalarize this early before Combine
6635   // 1. For widened vectors, this is already the result of type legalization.
6636   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6637       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6638     return DAG.UnrollVectorOp(N);
6639   return SDValue();
6640 }
6641 
combineINTRINSIC(SDNode * N,DAGCombinerInfo & DCI) const6642 SDValue SystemZTargetLowering::combineINTRINSIC(
6643     SDNode *N, DAGCombinerInfo &DCI) const {
6644   SelectionDAG &DAG = DCI.DAG;
6645 
6646   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6647   switch (Id) {
6648   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6649   // or larger is simply a vector load.
6650   case Intrinsic::s390_vll:
6651   case Intrinsic::s390_vlrl:
6652     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6653       if (C->getZExtValue() >= 15)
6654         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6655                            N->getOperand(3), MachinePointerInfo());
6656     break;
6657   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6658   case Intrinsic::s390_vstl:
6659   case Intrinsic::s390_vstrl:
6660     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6661       if (C->getZExtValue() >= 15)
6662         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6663                             N->getOperand(4), MachinePointerInfo());
6664     break;
6665   }
6666 
6667   return SDValue();
6668 }
6669 
unwrapAddress(SDValue N) const6670 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6671   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6672     return N->getOperand(0);
6673   return N;
6674 }
6675 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const6676 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6677                                                  DAGCombinerInfo &DCI) const {
6678   switch(N->getOpcode()) {
6679   default: break;
6680   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6681   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6682   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6683   case SystemZISD::MERGE_HIGH:
6684   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6685   case ISD::LOAD:               return combineLOAD(N, DCI);
6686   case ISD::STORE:              return combineSTORE(N, DCI);
6687   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6688   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6689   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6690   case ISD::STRICT_FP_ROUND:
6691   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6692   case ISD::STRICT_FP_EXTEND:
6693   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6694   case ISD::SINT_TO_FP:
6695   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6696   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6697   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6698   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6699   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6700   case ISD::SDIV:
6701   case ISD::UDIV:
6702   case ISD::SREM:
6703   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6704   case ISD::INTRINSIC_W_CHAIN:
6705   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6706   }
6707 
6708   return SDValue();
6709 }
6710 
6711 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6712 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)6713 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6714                                     unsigned OpNo) {
6715   EVT VT = Op.getValueType();
6716   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6717   APInt SrcDemE;
6718   unsigned Opcode = Op.getOpcode();
6719   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6720     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6721     switch (Id) {
6722     case Intrinsic::s390_vpksh:   // PACKS
6723     case Intrinsic::s390_vpksf:
6724     case Intrinsic::s390_vpksg:
6725     case Intrinsic::s390_vpkshs:  // PACKS_CC
6726     case Intrinsic::s390_vpksfs:
6727     case Intrinsic::s390_vpksgs:
6728     case Intrinsic::s390_vpklsh:  // PACKLS
6729     case Intrinsic::s390_vpklsf:
6730     case Intrinsic::s390_vpklsg:
6731     case Intrinsic::s390_vpklshs: // PACKLS_CC
6732     case Intrinsic::s390_vpklsfs:
6733     case Intrinsic::s390_vpklsgs:
6734       // VECTOR PACK truncates the elements of two source vectors into one.
6735       SrcDemE = DemandedElts;
6736       if (OpNo == 2)
6737         SrcDemE.lshrInPlace(NumElts / 2);
6738       SrcDemE = SrcDemE.trunc(NumElts / 2);
6739       break;
6740       // VECTOR UNPACK extends half the elements of the source vector.
6741     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6742     case Intrinsic::s390_vuphh:
6743     case Intrinsic::s390_vuphf:
6744     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6745     case Intrinsic::s390_vuplhh:
6746     case Intrinsic::s390_vuplhf:
6747       SrcDemE = APInt(NumElts * 2, 0);
6748       SrcDemE.insertBits(DemandedElts, 0);
6749       break;
6750     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6751     case Intrinsic::s390_vuplhw:
6752     case Intrinsic::s390_vuplf:
6753     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6754     case Intrinsic::s390_vupllh:
6755     case Intrinsic::s390_vupllf:
6756       SrcDemE = APInt(NumElts * 2, 0);
6757       SrcDemE.insertBits(DemandedElts, NumElts);
6758       break;
6759     case Intrinsic::s390_vpdi: {
6760       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6761       SrcDemE = APInt(NumElts, 0);
6762       if (!DemandedElts[OpNo - 1])
6763         break;
6764       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6765       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6766       // Demand input element 0 or 1, given by the mask bit value.
6767       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6768       break;
6769     }
6770     case Intrinsic::s390_vsldb: {
6771       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6772       assert(VT == MVT::v16i8 && "Unexpected type.");
6773       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6774       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6775       unsigned NumSrc0Els = 16 - FirstIdx;
6776       SrcDemE = APInt(NumElts, 0);
6777       if (OpNo == 1) {
6778         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6779         SrcDemE.insertBits(DemEls, FirstIdx);
6780       } else {
6781         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6782         SrcDemE.insertBits(DemEls, 0);
6783       }
6784       break;
6785     }
6786     case Intrinsic::s390_vperm:
6787       SrcDemE = APInt(NumElts, 1);
6788       break;
6789     default:
6790       llvm_unreachable("Unhandled intrinsic.");
6791       break;
6792     }
6793   } else {
6794     switch (Opcode) {
6795     case SystemZISD::JOIN_DWORDS:
6796       // Scalar operand.
6797       SrcDemE = APInt(1, 1);
6798       break;
6799     case SystemZISD::SELECT_CCMASK:
6800       SrcDemE = DemandedElts;
6801       break;
6802     default:
6803       llvm_unreachable("Unhandled opcode.");
6804       break;
6805     }
6806   }
6807   return SrcDemE;
6808 }
6809 
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)6810 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6811                                   const APInt &DemandedElts,
6812                                   const SelectionDAG &DAG, unsigned Depth,
6813                                   unsigned OpNo) {
6814   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6815   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6816   KnownBits LHSKnown =
6817       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6818   KnownBits RHSKnown =
6819       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6820   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6821 }
6822 
6823 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6824 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6825                                                      KnownBits &Known,
6826                                                      const APInt &DemandedElts,
6827                                                      const SelectionDAG &DAG,
6828                                                      unsigned Depth) const {
6829   Known.resetAll();
6830 
6831   // Intrinsic CC result is returned in the two low bits.
6832   unsigned tmp0, tmp1; // not used
6833   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6834     Known.Zero.setBitsFrom(2);
6835     return;
6836   }
6837   EVT VT = Op.getValueType();
6838   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6839     return;
6840   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6841           "KnownBits does not match VT in bitwidth");
6842   assert ((!VT.isVector() ||
6843            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6844           "DemandedElts does not match VT number of elements");
6845   unsigned BitWidth = Known.getBitWidth();
6846   unsigned Opcode = Op.getOpcode();
6847   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6848     bool IsLogical = false;
6849     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6850     switch (Id) {
6851     case Intrinsic::s390_vpksh:   // PACKS
6852     case Intrinsic::s390_vpksf:
6853     case Intrinsic::s390_vpksg:
6854     case Intrinsic::s390_vpkshs:  // PACKS_CC
6855     case Intrinsic::s390_vpksfs:
6856     case Intrinsic::s390_vpksgs:
6857     case Intrinsic::s390_vpklsh:  // PACKLS
6858     case Intrinsic::s390_vpklsf:
6859     case Intrinsic::s390_vpklsg:
6860     case Intrinsic::s390_vpklshs: // PACKLS_CC
6861     case Intrinsic::s390_vpklsfs:
6862     case Intrinsic::s390_vpklsgs:
6863     case Intrinsic::s390_vpdi:
6864     case Intrinsic::s390_vsldb:
6865     case Intrinsic::s390_vperm:
6866       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6867       break;
6868     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6869     case Intrinsic::s390_vuplhh:
6870     case Intrinsic::s390_vuplhf:
6871     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6872     case Intrinsic::s390_vupllh:
6873     case Intrinsic::s390_vupllf:
6874       IsLogical = true;
6875       LLVM_FALLTHROUGH;
6876     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6877     case Intrinsic::s390_vuphh:
6878     case Intrinsic::s390_vuphf:
6879     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6880     case Intrinsic::s390_vuplhw:
6881     case Intrinsic::s390_vuplf: {
6882       SDValue SrcOp = Op.getOperand(1);
6883       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6884       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6885       if (IsLogical) {
6886         Known = Known.zext(BitWidth);
6887       } else
6888         Known = Known.sext(BitWidth);
6889       break;
6890     }
6891     default:
6892       break;
6893     }
6894   } else {
6895     switch (Opcode) {
6896     case SystemZISD::JOIN_DWORDS:
6897     case SystemZISD::SELECT_CCMASK:
6898       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6899       break;
6900     case SystemZISD::REPLICATE: {
6901       SDValue SrcOp = Op.getOperand(0);
6902       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6903       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6904         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6905       break;
6906     }
6907     default:
6908       break;
6909     }
6910   }
6911 
6912   // Known has the width of the source operand(s). Adjust if needed to match
6913   // the passed bitwidth.
6914   if (Known.getBitWidth() != BitWidth)
6915     Known = Known.anyextOrTrunc(BitWidth);
6916 }
6917 
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)6918 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6919                                         const SelectionDAG &DAG, unsigned Depth,
6920                                         unsigned OpNo) {
6921   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6922   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6923   if (LHS == 1) return 1; // Early out.
6924   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6925   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6926   if (RHS == 1) return 1; // Early out.
6927   unsigned Common = std::min(LHS, RHS);
6928   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6929   EVT VT = Op.getValueType();
6930   unsigned VTBits = VT.getScalarSizeInBits();
6931   if (SrcBitWidth > VTBits) { // PACK
6932     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6933     if (Common > SrcExtraBits)
6934       return (Common - SrcExtraBits);
6935     return 1;
6936   }
6937   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6938   return Common;
6939 }
6940 
6941 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6942 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6943     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6944     unsigned Depth) const {
6945   if (Op.getResNo() != 0)
6946     return 1;
6947   unsigned Opcode = Op.getOpcode();
6948   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6949     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6950     switch (Id) {
6951     case Intrinsic::s390_vpksh:   // PACKS
6952     case Intrinsic::s390_vpksf:
6953     case Intrinsic::s390_vpksg:
6954     case Intrinsic::s390_vpkshs:  // PACKS_CC
6955     case Intrinsic::s390_vpksfs:
6956     case Intrinsic::s390_vpksgs:
6957     case Intrinsic::s390_vpklsh:  // PACKLS
6958     case Intrinsic::s390_vpklsf:
6959     case Intrinsic::s390_vpklsg:
6960     case Intrinsic::s390_vpklshs: // PACKLS_CC
6961     case Intrinsic::s390_vpklsfs:
6962     case Intrinsic::s390_vpklsgs:
6963     case Intrinsic::s390_vpdi:
6964     case Intrinsic::s390_vsldb:
6965     case Intrinsic::s390_vperm:
6966       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6967     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6968     case Intrinsic::s390_vuphh:
6969     case Intrinsic::s390_vuphf:
6970     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6971     case Intrinsic::s390_vuplhw:
6972     case Intrinsic::s390_vuplf: {
6973       SDValue PackedOp = Op.getOperand(1);
6974       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6975       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6976       EVT VT = Op.getValueType();
6977       unsigned VTBits = VT.getScalarSizeInBits();
6978       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6979       return Tmp;
6980     }
6981     default:
6982       break;
6983     }
6984   } else {
6985     switch (Opcode) {
6986     case SystemZISD::SELECT_CCMASK:
6987       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6988     default:
6989       break;
6990     }
6991   }
6992 
6993   return 1;
6994 }
6995 
6996 unsigned
getStackProbeSize(MachineFunction & MF) const6997 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
6998   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6999   unsigned StackAlign = TFI->getStackAlignment();
7000   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7001          "Unexpected stack alignment");
7002   // The default stack probe size is 4096 if the function has no
7003   // stack-probe-size attribute.
7004   unsigned StackProbeSize = 4096;
7005   const Function &Fn = MF.getFunction();
7006   if (Fn.hasFnAttribute("stack-probe-size"))
7007     Fn.getFnAttribute("stack-probe-size")
7008         .getValueAsString()
7009         .getAsInteger(0, StackProbeSize);
7010   // Round down to the stack alignment.
7011   StackProbeSize &= ~(StackAlign - 1);
7012   return StackProbeSize ? StackProbeSize : StackAlign;
7013 }
7014 
7015 //===----------------------------------------------------------------------===//
7016 // Custom insertion
7017 //===----------------------------------------------------------------------===//
7018 
7019 // Force base value Base into a register before MI.  Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)7020 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7021                          const SystemZInstrInfo *TII) {
7022   if (Base.isReg())
7023     return Base.getReg();
7024 
7025   MachineBasicBlock *MBB = MI.getParent();
7026   MachineFunction &MF = *MBB->getParent();
7027   MachineRegisterInfo &MRI = MF.getRegInfo();
7028 
7029   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7030   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7031       .add(Base)
7032       .addImm(0)
7033       .addReg(0);
7034   return Reg;
7035 }
7036 
7037 // The CC operand of MI might be missing a kill marker because there
7038 // were multiple uses of CC, and ISel didn't know which to mark.
7039 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)7040 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7041   // Scan forward through BB for a use/def of CC.
7042   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7043   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7044     const MachineInstr& mi = *miI;
7045     if (mi.readsRegister(SystemZ::CC))
7046       return false;
7047     if (mi.definesRegister(SystemZ::CC))
7048       break; // Should have kill-flag - update below.
7049   }
7050 
7051   // If we hit the end of the block, check whether CC is live into a
7052   // successor.
7053   if (miI == MBB->end()) {
7054     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7055       if ((*SI)->isLiveIn(SystemZ::CC))
7056         return false;
7057   }
7058 
7059   return true;
7060 }
7061 
7062 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7063 // together with other Select pseudo-opcodes into a single basic-block with
7064 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)7065 static bool isSelectPseudo(MachineInstr &MI) {
7066   switch (MI.getOpcode()) {
7067   case SystemZ::Select32:
7068   case SystemZ::Select64:
7069   case SystemZ::SelectF32:
7070   case SystemZ::SelectF64:
7071   case SystemZ::SelectF128:
7072   case SystemZ::SelectVR32:
7073   case SystemZ::SelectVR64:
7074   case SystemZ::SelectVR128:
7075     return true;
7076 
7077   default:
7078     return false;
7079   }
7080 }
7081 
7082 // Helper function, which inserts PHI functions into SinkMBB:
7083 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7084 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
createPHIsForSelects(SmallVector<MachineInstr *,8> & Selects,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)7085 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7086                                  MachineBasicBlock *TrueMBB,
7087                                  MachineBasicBlock *FalseMBB,
7088                                  MachineBasicBlock *SinkMBB) {
7089   MachineFunction *MF = TrueMBB->getParent();
7090   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7091 
7092   MachineInstr *FirstMI = Selects.front();
7093   unsigned CCValid = FirstMI->getOperand(3).getImm();
7094   unsigned CCMask = FirstMI->getOperand(4).getImm();
7095 
7096   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7097 
7098   // As we are creating the PHIs, we have to be careful if there is more than
7099   // one.  Later Selects may reference the results of earlier Selects, but later
7100   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7101   // That also means that PHI construction must work forward from earlier to
7102   // later, and that the code must maintain a mapping from earlier PHI's
7103   // destination registers, and the registers that went into the PHI.
7104   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7105 
7106   for (auto MI : Selects) {
7107     Register DestReg = MI->getOperand(0).getReg();
7108     Register TrueReg = MI->getOperand(1).getReg();
7109     Register FalseReg = MI->getOperand(2).getReg();
7110 
7111     // If this Select we are generating is the opposite condition from
7112     // the jump we generated, then we have to swap the operands for the
7113     // PHI that is going to be generated.
7114     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7115       std::swap(TrueReg, FalseReg);
7116 
7117     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7118       TrueReg = RegRewriteTable[TrueReg].first;
7119 
7120     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7121       FalseReg = RegRewriteTable[FalseReg].second;
7122 
7123     DebugLoc DL = MI->getDebugLoc();
7124     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7125       .addReg(TrueReg).addMBB(TrueMBB)
7126       .addReg(FalseReg).addMBB(FalseMBB);
7127 
7128     // Add this PHI to the rewrite table.
7129     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7130   }
7131 
7132   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7133 }
7134 
7135 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7136 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const7137 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7138                                   MachineBasicBlock *MBB) const {
7139   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7140   const SystemZInstrInfo *TII =
7141       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7142 
7143   unsigned CCValid = MI.getOperand(3).getImm();
7144   unsigned CCMask = MI.getOperand(4).getImm();
7145 
7146   // If we have a sequence of Select* pseudo instructions using the
7147   // same condition code value, we want to expand all of them into
7148   // a single pair of basic blocks using the same condition.
7149   SmallVector<MachineInstr*, 8> Selects;
7150   SmallVector<MachineInstr*, 8> DbgValues;
7151   Selects.push_back(&MI);
7152   unsigned Count = 0;
7153   for (MachineBasicBlock::iterator NextMIIt =
7154          std::next(MachineBasicBlock::iterator(MI));
7155        NextMIIt != MBB->end(); ++NextMIIt) {
7156     if (isSelectPseudo(*NextMIIt)) {
7157       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7158              "Bad CCValid operands since CC was not redefined.");
7159       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7160           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7161         Selects.push_back(&*NextMIIt);
7162         continue;
7163       }
7164       break;
7165     }
7166     if (NextMIIt->definesRegister(SystemZ::CC) ||
7167         NextMIIt->usesCustomInsertionHook())
7168       break;
7169     bool User = false;
7170     for (auto SelMI : Selects)
7171       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7172         User = true;
7173         break;
7174       }
7175     if (NextMIIt->isDebugInstr()) {
7176       if (User) {
7177         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7178         DbgValues.push_back(&*NextMIIt);
7179       }
7180     }
7181     else if (User || ++Count > 20)
7182       break;
7183   }
7184 
7185   MachineInstr *LastMI = Selects.back();
7186   bool CCKilled =
7187       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7188   MachineBasicBlock *StartMBB = MBB;
7189   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7190   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7191 
7192   // Unless CC was killed in the last Select instruction, mark it as
7193   // live-in to both FalseMBB and JoinMBB.
7194   if (!CCKilled) {
7195     FalseMBB->addLiveIn(SystemZ::CC);
7196     JoinMBB->addLiveIn(SystemZ::CC);
7197   }
7198 
7199   //  StartMBB:
7200   //   BRC CCMask, JoinMBB
7201   //   # fallthrough to FalseMBB
7202   MBB = StartMBB;
7203   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7204     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7205   MBB->addSuccessor(JoinMBB);
7206   MBB->addSuccessor(FalseMBB);
7207 
7208   //  FalseMBB:
7209   //   # fallthrough to JoinMBB
7210   MBB = FalseMBB;
7211   MBB->addSuccessor(JoinMBB);
7212 
7213   //  JoinMBB:
7214   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7215   //  ...
7216   MBB = JoinMBB;
7217   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7218   for (auto SelMI : Selects)
7219     SelMI->eraseFromParent();
7220 
7221   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7222   for (auto DbgMI : DbgValues)
7223     MBB->splice(InsertPos, StartMBB, DbgMI);
7224 
7225   return JoinMBB;
7226 }
7227 
7228 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7229 // StoreOpcode is the store to use and Invert says whether the store should
7230 // happen when the condition is false rather than true.  If a STORE ON
7231 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const7232 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7233                                                         MachineBasicBlock *MBB,
7234                                                         unsigned StoreOpcode,
7235                                                         unsigned STOCOpcode,
7236                                                         bool Invert) const {
7237   const SystemZInstrInfo *TII =
7238       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7239 
7240   Register SrcReg = MI.getOperand(0).getReg();
7241   MachineOperand Base = MI.getOperand(1);
7242   int64_t Disp = MI.getOperand(2).getImm();
7243   Register IndexReg = MI.getOperand(3).getReg();
7244   unsigned CCValid = MI.getOperand(4).getImm();
7245   unsigned CCMask = MI.getOperand(5).getImm();
7246   DebugLoc DL = MI.getDebugLoc();
7247 
7248   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7249 
7250   // ISel pattern matching also adds a load memory operand of the same
7251   // address, so take special care to find the storing memory operand.
7252   MachineMemOperand *MMO = nullptr;
7253   for (auto *I : MI.memoperands())
7254     if (I->isStore()) {
7255       MMO = I;
7256       break;
7257     }
7258 
7259   // Use STOCOpcode if possible.  We could use different store patterns in
7260   // order to avoid matching the index register, but the performance trade-offs
7261   // might be more complicated in that case.
7262   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7263     if (Invert)
7264       CCMask ^= CCValid;
7265 
7266     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7267       .addReg(SrcReg)
7268       .add(Base)
7269       .addImm(Disp)
7270       .addImm(CCValid)
7271       .addImm(CCMask)
7272       .addMemOperand(MMO);
7273 
7274     MI.eraseFromParent();
7275     return MBB;
7276   }
7277 
7278   // Get the condition needed to branch around the store.
7279   if (!Invert)
7280     CCMask ^= CCValid;
7281 
7282   MachineBasicBlock *StartMBB = MBB;
7283   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7284   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7285 
7286   // Unless CC was killed in the CondStore instruction, mark it as
7287   // live-in to both FalseMBB and JoinMBB.
7288   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7289     FalseMBB->addLiveIn(SystemZ::CC);
7290     JoinMBB->addLiveIn(SystemZ::CC);
7291   }
7292 
7293   //  StartMBB:
7294   //   BRC CCMask, JoinMBB
7295   //   # fallthrough to FalseMBB
7296   MBB = StartMBB;
7297   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7298     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7299   MBB->addSuccessor(JoinMBB);
7300   MBB->addSuccessor(FalseMBB);
7301 
7302   //  FalseMBB:
7303   //   store %SrcReg, %Disp(%Index,%Base)
7304   //   # fallthrough to JoinMBB
7305   MBB = FalseMBB;
7306   BuildMI(MBB, DL, TII->get(StoreOpcode))
7307       .addReg(SrcReg)
7308       .add(Base)
7309       .addImm(Disp)
7310       .addReg(IndexReg)
7311       .addMemOperand(MMO);
7312   MBB->addSuccessor(JoinMBB);
7313 
7314   MI.eraseFromParent();
7315   return JoinMBB;
7316 }
7317 
7318 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7319 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7320 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7321 // BitSize is the width of the field in bits, or 0 if this is a partword
7322 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7323 // is one of the operands.  Invert says whether the field should be
7324 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const7325 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7326     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7327     unsigned BitSize, bool Invert) const {
7328   MachineFunction &MF = *MBB->getParent();
7329   const SystemZInstrInfo *TII =
7330       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7331   MachineRegisterInfo &MRI = MF.getRegInfo();
7332   bool IsSubWord = (BitSize < 32);
7333 
7334   // Extract the operands.  Base can be a register or a frame index.
7335   // Src2 can be a register or immediate.
7336   Register Dest = MI.getOperand(0).getReg();
7337   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7338   int64_t Disp = MI.getOperand(2).getImm();
7339   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7340   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7341   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7342   DebugLoc DL = MI.getDebugLoc();
7343   if (IsSubWord)
7344     BitSize = MI.getOperand(6).getImm();
7345 
7346   // Subword operations use 32-bit registers.
7347   const TargetRegisterClass *RC = (BitSize <= 32 ?
7348                                    &SystemZ::GR32BitRegClass :
7349                                    &SystemZ::GR64BitRegClass);
7350   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7351   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7352 
7353   // Get the right opcodes for the displacement.
7354   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7355   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7356   assert(LOpcode && CSOpcode && "Displacement out of range");
7357 
7358   // Create virtual registers for temporary results.
7359   Register OrigVal       = MRI.createVirtualRegister(RC);
7360   Register OldVal        = MRI.createVirtualRegister(RC);
7361   Register NewVal        = (BinOpcode || IsSubWord ?
7362                             MRI.createVirtualRegister(RC) : Src2.getReg());
7363   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7364   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7365 
7366   // Insert a basic block for the main loop.
7367   MachineBasicBlock *StartMBB = MBB;
7368   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7369   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7370 
7371   //  StartMBB:
7372   //   ...
7373   //   %OrigVal = L Disp(%Base)
7374   //   # fall through to LoopMMB
7375   MBB = StartMBB;
7376   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7377   MBB->addSuccessor(LoopMBB);
7378 
7379   //  LoopMBB:
7380   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7381   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7382   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7383   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7384   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7385   //   JNE LoopMBB
7386   //   # fall through to DoneMMB
7387   MBB = LoopMBB;
7388   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7389     .addReg(OrigVal).addMBB(StartMBB)
7390     .addReg(Dest).addMBB(LoopMBB);
7391   if (IsSubWord)
7392     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7393       .addReg(OldVal).addReg(BitShift).addImm(0);
7394   if (Invert) {
7395     // Perform the operation normally and then invert every bit of the field.
7396     Register Tmp = MRI.createVirtualRegister(RC);
7397     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7398     if (BitSize <= 32)
7399       // XILF with the upper BitSize bits set.
7400       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7401         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7402     else {
7403       // Use LCGR and add -1 to the result, which is more compact than
7404       // an XILF, XILH pair.
7405       Register Tmp2 = MRI.createVirtualRegister(RC);
7406       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7407       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7408         .addReg(Tmp2).addImm(-1);
7409     }
7410   } else if (BinOpcode)
7411     // A simply binary operation.
7412     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7413         .addReg(RotatedOldVal)
7414         .add(Src2);
7415   else if (IsSubWord)
7416     // Use RISBG to rotate Src2 into position and use it to replace the
7417     // field in RotatedOldVal.
7418     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7419       .addReg(RotatedOldVal).addReg(Src2.getReg())
7420       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7421   if (IsSubWord)
7422     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7423       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7424   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7425       .addReg(OldVal)
7426       .addReg(NewVal)
7427       .add(Base)
7428       .addImm(Disp);
7429   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7430     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7431   MBB->addSuccessor(LoopMBB);
7432   MBB->addSuccessor(DoneMBB);
7433 
7434   MI.eraseFromParent();
7435   return DoneMBB;
7436 }
7437 
7438 // Implement EmitInstrWithCustomInserter for pseudo
7439 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7440 // instruction that should be used to compare the current field with the
7441 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7442 // for when the current field should be kept.  BitSize is the width of
7443 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const7444 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7445     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7446     unsigned KeepOldMask, unsigned BitSize) const {
7447   MachineFunction &MF = *MBB->getParent();
7448   const SystemZInstrInfo *TII =
7449       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7450   MachineRegisterInfo &MRI = MF.getRegInfo();
7451   bool IsSubWord = (BitSize < 32);
7452 
7453   // Extract the operands.  Base can be a register or a frame index.
7454   Register Dest = MI.getOperand(0).getReg();
7455   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7456   int64_t Disp = MI.getOperand(2).getImm();
7457   Register Src2 = MI.getOperand(3).getReg();
7458   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7459   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7460   DebugLoc DL = MI.getDebugLoc();
7461   if (IsSubWord)
7462     BitSize = MI.getOperand(6).getImm();
7463 
7464   // Subword operations use 32-bit registers.
7465   const TargetRegisterClass *RC = (BitSize <= 32 ?
7466                                    &SystemZ::GR32BitRegClass :
7467                                    &SystemZ::GR64BitRegClass);
7468   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7469   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7470 
7471   // Get the right opcodes for the displacement.
7472   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7473   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7474   assert(LOpcode && CSOpcode && "Displacement out of range");
7475 
7476   // Create virtual registers for temporary results.
7477   Register OrigVal       = MRI.createVirtualRegister(RC);
7478   Register OldVal        = MRI.createVirtualRegister(RC);
7479   Register NewVal        = MRI.createVirtualRegister(RC);
7480   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7481   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7482   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7483 
7484   // Insert 3 basic blocks for the loop.
7485   MachineBasicBlock *StartMBB  = MBB;
7486   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7487   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7488   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7489   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7490 
7491   //  StartMBB:
7492   //   ...
7493   //   %OrigVal     = L Disp(%Base)
7494   //   # fall through to LoopMMB
7495   MBB = StartMBB;
7496   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7497   MBB->addSuccessor(LoopMBB);
7498 
7499   //  LoopMBB:
7500   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7501   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7502   //   CompareOpcode %RotatedOldVal, %Src2
7503   //   BRC KeepOldMask, UpdateMBB
7504   MBB = LoopMBB;
7505   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7506     .addReg(OrigVal).addMBB(StartMBB)
7507     .addReg(Dest).addMBB(UpdateMBB);
7508   if (IsSubWord)
7509     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7510       .addReg(OldVal).addReg(BitShift).addImm(0);
7511   BuildMI(MBB, DL, TII->get(CompareOpcode))
7512     .addReg(RotatedOldVal).addReg(Src2);
7513   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7514     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7515   MBB->addSuccessor(UpdateMBB);
7516   MBB->addSuccessor(UseAltMBB);
7517 
7518   //  UseAltMBB:
7519   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7520   //   # fall through to UpdateMMB
7521   MBB = UseAltMBB;
7522   if (IsSubWord)
7523     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7524       .addReg(RotatedOldVal).addReg(Src2)
7525       .addImm(32).addImm(31 + BitSize).addImm(0);
7526   MBB->addSuccessor(UpdateMBB);
7527 
7528   //  UpdateMBB:
7529   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7530   //                        [ %RotatedAltVal, UseAltMBB ]
7531   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7532   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7533   //   JNE LoopMBB
7534   //   # fall through to DoneMMB
7535   MBB = UpdateMBB;
7536   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7537     .addReg(RotatedOldVal).addMBB(LoopMBB)
7538     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7539   if (IsSubWord)
7540     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7541       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7542   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7543       .addReg(OldVal)
7544       .addReg(NewVal)
7545       .add(Base)
7546       .addImm(Disp);
7547   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7548     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7549   MBB->addSuccessor(LoopMBB);
7550   MBB->addSuccessor(DoneMBB);
7551 
7552   MI.eraseFromParent();
7553   return DoneMBB;
7554 }
7555 
7556 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7557 // instruction MI.
7558 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const7559 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7560                                           MachineBasicBlock *MBB) const {
7561 
7562   MachineFunction &MF = *MBB->getParent();
7563   const SystemZInstrInfo *TII =
7564       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7565   MachineRegisterInfo &MRI = MF.getRegInfo();
7566 
7567   // Extract the operands.  Base can be a register or a frame index.
7568   Register Dest = MI.getOperand(0).getReg();
7569   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7570   int64_t Disp = MI.getOperand(2).getImm();
7571   Register OrigCmpVal = MI.getOperand(3).getReg();
7572   Register OrigSwapVal = MI.getOperand(4).getReg();
7573   Register BitShift = MI.getOperand(5).getReg();
7574   Register NegBitShift = MI.getOperand(6).getReg();
7575   int64_t BitSize = MI.getOperand(7).getImm();
7576   DebugLoc DL = MI.getDebugLoc();
7577 
7578   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7579 
7580   // Get the right opcodes for the displacement.
7581   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7582   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7583   assert(LOpcode && CSOpcode && "Displacement out of range");
7584 
7585   // Create virtual registers for temporary results.
7586   Register OrigOldVal = MRI.createVirtualRegister(RC);
7587   Register OldVal = MRI.createVirtualRegister(RC);
7588   Register CmpVal = MRI.createVirtualRegister(RC);
7589   Register SwapVal = MRI.createVirtualRegister(RC);
7590   Register StoreVal = MRI.createVirtualRegister(RC);
7591   Register RetryOldVal = MRI.createVirtualRegister(RC);
7592   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7593   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7594 
7595   // Insert 2 basic blocks for the loop.
7596   MachineBasicBlock *StartMBB = MBB;
7597   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7598   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7599   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7600 
7601   //  StartMBB:
7602   //   ...
7603   //   %OrigOldVal     = L Disp(%Base)
7604   //   # fall through to LoopMMB
7605   MBB = StartMBB;
7606   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7607       .add(Base)
7608       .addImm(Disp)
7609       .addReg(0);
7610   MBB->addSuccessor(LoopMBB);
7611 
7612   //  LoopMBB:
7613   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7614   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7615   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7616   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7617   //                      ^^ The low BitSize bits contain the field
7618   //                         of interest.
7619   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7620   //                      ^^ Replace the upper 32-BitSize bits of the
7621   //                         comparison value with those that we loaded,
7622   //                         so that we can use a full word comparison.
7623   //   CR %Dest, %RetryCmpVal
7624   //   JNE DoneMBB
7625   //   # Fall through to SetMBB
7626   MBB = LoopMBB;
7627   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7628     .addReg(OrigOldVal).addMBB(StartMBB)
7629     .addReg(RetryOldVal).addMBB(SetMBB);
7630   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7631     .addReg(OrigCmpVal).addMBB(StartMBB)
7632     .addReg(RetryCmpVal).addMBB(SetMBB);
7633   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7634     .addReg(OrigSwapVal).addMBB(StartMBB)
7635     .addReg(RetrySwapVal).addMBB(SetMBB);
7636   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7637     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7638   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7639     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7640   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7641     .addReg(Dest).addReg(RetryCmpVal);
7642   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7643     .addImm(SystemZ::CCMASK_ICMP)
7644     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7645   MBB->addSuccessor(DoneMBB);
7646   MBB->addSuccessor(SetMBB);
7647 
7648   //  SetMBB:
7649   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7650   //                      ^^ Replace the upper 32-BitSize bits of the new
7651   //                         value with those that we loaded.
7652   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7653   //                      ^^ Rotate the new field to its proper position.
7654   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7655   //   JNE LoopMBB
7656   //   # fall through to ExitMMB
7657   MBB = SetMBB;
7658   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7659     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7660   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7661     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7662   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7663       .addReg(OldVal)
7664       .addReg(StoreVal)
7665       .add(Base)
7666       .addImm(Disp);
7667   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7668     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7669   MBB->addSuccessor(LoopMBB);
7670   MBB->addSuccessor(DoneMBB);
7671 
7672   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7673   // to the block after the loop.  At this point, CC may have been defined
7674   // either by the CR in LoopMBB or by the CS in SetMBB.
7675   if (!MI.registerDefIsDead(SystemZ::CC))
7676     DoneMBB->addLiveIn(SystemZ::CC);
7677 
7678   MI.eraseFromParent();
7679   return DoneMBB;
7680 }
7681 
7682 // Emit a move from two GR64s to a GR128.
7683 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const7684 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7685                                    MachineBasicBlock *MBB) const {
7686   MachineFunction &MF = *MBB->getParent();
7687   const SystemZInstrInfo *TII =
7688       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7689   MachineRegisterInfo &MRI = MF.getRegInfo();
7690   DebugLoc DL = MI.getDebugLoc();
7691 
7692   Register Dest = MI.getOperand(0).getReg();
7693   Register Hi = MI.getOperand(1).getReg();
7694   Register Lo = MI.getOperand(2).getReg();
7695   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7696   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7697 
7698   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7699   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7700     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7701   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7702     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7703 
7704   MI.eraseFromParent();
7705   return MBB;
7706 }
7707 
7708 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7709 // if the high register of the GR128 value must be cleared or false if
7710 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const7711 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7712                                                      MachineBasicBlock *MBB,
7713                                                      bool ClearEven) const {
7714   MachineFunction &MF = *MBB->getParent();
7715   const SystemZInstrInfo *TII =
7716       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7717   MachineRegisterInfo &MRI = MF.getRegInfo();
7718   DebugLoc DL = MI.getDebugLoc();
7719 
7720   Register Dest = MI.getOperand(0).getReg();
7721   Register Src = MI.getOperand(1).getReg();
7722   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7723 
7724   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7725   if (ClearEven) {
7726     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7727     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7728 
7729     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7730       .addImm(0);
7731     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7732       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7733     In128 = NewIn128;
7734   }
7735   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7736     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7737 
7738   MI.eraseFromParent();
7739   return MBB;
7740 }
7741 
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7742 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7743     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7744   MachineFunction &MF = *MBB->getParent();
7745   const SystemZInstrInfo *TII =
7746       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7747   MachineRegisterInfo &MRI = MF.getRegInfo();
7748   DebugLoc DL = MI.getDebugLoc();
7749 
7750   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7751   uint64_t DestDisp = MI.getOperand(1).getImm();
7752   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7753   uint64_t SrcDisp = MI.getOperand(3).getImm();
7754   uint64_t Length = MI.getOperand(4).getImm();
7755 
7756   // When generating more than one CLC, all but the last will need to
7757   // branch to the end when a difference is found.
7758   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7759                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7760 
7761   // Check for the loop form, in which operand 5 is the trip count.
7762   if (MI.getNumExplicitOperands() > 5) {
7763     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7764 
7765     Register StartCountReg = MI.getOperand(5).getReg();
7766     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7767     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7768                               forceReg(MI, DestBase, TII));
7769 
7770     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7771     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7772     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7773                             MRI.createVirtualRegister(RC));
7774     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7775     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7776                             MRI.createVirtualRegister(RC));
7777 
7778     RC = &SystemZ::GR64BitRegClass;
7779     Register ThisCountReg = MRI.createVirtualRegister(RC);
7780     Register NextCountReg = MRI.createVirtualRegister(RC);
7781 
7782     MachineBasicBlock *StartMBB = MBB;
7783     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7784     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7785     MachineBasicBlock *NextMBB =
7786         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7787 
7788     //  StartMBB:
7789     //   # fall through to LoopMMB
7790     MBB->addSuccessor(LoopMBB);
7791 
7792     //  LoopMBB:
7793     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7794     //                      [ %NextDestReg, NextMBB ]
7795     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7796     //                     [ %NextSrcReg, NextMBB ]
7797     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7798     //                       [ %NextCountReg, NextMBB ]
7799     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7800     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7801     //   ( JLH EndMBB )
7802     //
7803     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7804     MBB = LoopMBB;
7805 
7806     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7807       .addReg(StartDestReg).addMBB(StartMBB)
7808       .addReg(NextDestReg).addMBB(NextMBB);
7809     if (!HaveSingleBase)
7810       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7811         .addReg(StartSrcReg).addMBB(StartMBB)
7812         .addReg(NextSrcReg).addMBB(NextMBB);
7813     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7814       .addReg(StartCountReg).addMBB(StartMBB)
7815       .addReg(NextCountReg).addMBB(NextMBB);
7816     if (Opcode == SystemZ::MVC)
7817       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7818         .addImm(SystemZ::PFD_WRITE)
7819         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7820     BuildMI(MBB, DL, TII->get(Opcode))
7821       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7822       .addReg(ThisSrcReg).addImm(SrcDisp);
7823     if (EndMBB) {
7824       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7825         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7826         .addMBB(EndMBB);
7827       MBB->addSuccessor(EndMBB);
7828       MBB->addSuccessor(NextMBB);
7829     }
7830 
7831     // NextMBB:
7832     //   %NextDestReg = LA 256(%ThisDestReg)
7833     //   %NextSrcReg = LA 256(%ThisSrcReg)
7834     //   %NextCountReg = AGHI %ThisCountReg, -1
7835     //   CGHI %NextCountReg, 0
7836     //   JLH LoopMBB
7837     //   # fall through to DoneMMB
7838     //
7839     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7840     MBB = NextMBB;
7841 
7842     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7843       .addReg(ThisDestReg).addImm(256).addReg(0);
7844     if (!HaveSingleBase)
7845       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7846         .addReg(ThisSrcReg).addImm(256).addReg(0);
7847     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7848       .addReg(ThisCountReg).addImm(-1);
7849     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7850       .addReg(NextCountReg).addImm(0);
7851     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7852       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7853       .addMBB(LoopMBB);
7854     MBB->addSuccessor(LoopMBB);
7855     MBB->addSuccessor(DoneMBB);
7856 
7857     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7858     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7859     Length &= 255;
7860     if (EndMBB && !Length)
7861       // If the loop handled the whole CLC range, DoneMBB will be empty with
7862       // CC live-through into EndMBB, so add it as live-in.
7863       DoneMBB->addLiveIn(SystemZ::CC);
7864     MBB = DoneMBB;
7865   }
7866   // Handle any remaining bytes with straight-line code.
7867   while (Length > 0) {
7868     uint64_t ThisLength = std::min(Length, uint64_t(256));
7869     // The previous iteration might have created out-of-range displacements.
7870     // Apply them using LAY if so.
7871     if (!isUInt<12>(DestDisp)) {
7872       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7873       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7874           .add(DestBase)
7875           .addImm(DestDisp)
7876           .addReg(0);
7877       DestBase = MachineOperand::CreateReg(Reg, false);
7878       DestDisp = 0;
7879     }
7880     if (!isUInt<12>(SrcDisp)) {
7881       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7882       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7883           .add(SrcBase)
7884           .addImm(SrcDisp)
7885           .addReg(0);
7886       SrcBase = MachineOperand::CreateReg(Reg, false);
7887       SrcDisp = 0;
7888     }
7889     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7890         .add(DestBase)
7891         .addImm(DestDisp)
7892         .addImm(ThisLength)
7893         .add(SrcBase)
7894         .addImm(SrcDisp)
7895         .setMemRefs(MI.memoperands());
7896     DestDisp += ThisLength;
7897     SrcDisp += ThisLength;
7898     Length -= ThisLength;
7899     // If there's another CLC to go, branch to the end if a difference
7900     // was found.
7901     if (EndMBB && Length > 0) {
7902       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7903       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7904         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7905         .addMBB(EndMBB);
7906       MBB->addSuccessor(EndMBB);
7907       MBB->addSuccessor(NextMBB);
7908       MBB = NextMBB;
7909     }
7910   }
7911   if (EndMBB) {
7912     MBB->addSuccessor(EndMBB);
7913     MBB = EndMBB;
7914     MBB->addLiveIn(SystemZ::CC);
7915   }
7916 
7917   MI.eraseFromParent();
7918   return MBB;
7919 }
7920 
7921 // Decompose string pseudo-instruction MI into a loop that continually performs
7922 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7923 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7924     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7925   MachineFunction &MF = *MBB->getParent();
7926   const SystemZInstrInfo *TII =
7927       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7928   MachineRegisterInfo &MRI = MF.getRegInfo();
7929   DebugLoc DL = MI.getDebugLoc();
7930 
7931   uint64_t End1Reg = MI.getOperand(0).getReg();
7932   uint64_t Start1Reg = MI.getOperand(1).getReg();
7933   uint64_t Start2Reg = MI.getOperand(2).getReg();
7934   uint64_t CharReg = MI.getOperand(3).getReg();
7935 
7936   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7937   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7938   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7939   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7940 
7941   MachineBasicBlock *StartMBB = MBB;
7942   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7943   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7944 
7945   //  StartMBB:
7946   //   # fall through to LoopMMB
7947   MBB->addSuccessor(LoopMBB);
7948 
7949   //  LoopMBB:
7950   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7951   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7952   //   R0L = %CharReg
7953   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7954   //   JO LoopMBB
7955   //   # fall through to DoneMMB
7956   //
7957   // The load of R0L can be hoisted by post-RA LICM.
7958   MBB = LoopMBB;
7959 
7960   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7961     .addReg(Start1Reg).addMBB(StartMBB)
7962     .addReg(End1Reg).addMBB(LoopMBB);
7963   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7964     .addReg(Start2Reg).addMBB(StartMBB)
7965     .addReg(End2Reg).addMBB(LoopMBB);
7966   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7967   BuildMI(MBB, DL, TII->get(Opcode))
7968     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7969     .addReg(This1Reg).addReg(This2Reg);
7970   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7971     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7972   MBB->addSuccessor(LoopMBB);
7973   MBB->addSuccessor(DoneMBB);
7974 
7975   DoneMBB->addLiveIn(SystemZ::CC);
7976 
7977   MI.eraseFromParent();
7978   return DoneMBB;
7979 }
7980 
7981 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const7982 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7983     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7984     bool NoFloat) const {
7985   MachineFunction &MF = *MBB->getParent();
7986   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7987   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7988 
7989   // Update opcode.
7990   MI.setDesc(TII->get(Opcode));
7991 
7992   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7993   // Make sure to add the corresponding GRSM bits if they are missing.
7994   uint64_t Control = MI.getOperand(2).getImm();
7995   static const unsigned GPRControlBit[16] = {
7996     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7997     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7998   };
7999   Control |= GPRControlBit[15];
8000   if (TFI->hasFP(MF))
8001     Control |= GPRControlBit[11];
8002   MI.getOperand(2).setImm(Control);
8003 
8004   // Add GPR clobbers.
8005   for (int I = 0; I < 16; I++) {
8006     if ((Control & GPRControlBit[I]) == 0) {
8007       unsigned Reg = SystemZMC::GR64Regs[I];
8008       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8009     }
8010   }
8011 
8012   // Add FPR/VR clobbers.
8013   if (!NoFloat && (Control & 4) != 0) {
8014     if (Subtarget.hasVector()) {
8015       for (int I = 0; I < 32; I++) {
8016         unsigned Reg = SystemZMC::VR128Regs[I];
8017         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8018       }
8019     } else {
8020       for (int I = 0; I < 16; I++) {
8021         unsigned Reg = SystemZMC::FP64Regs[I];
8022         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8023       }
8024     }
8025   }
8026 
8027   return MBB;
8028 }
8029 
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const8030 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8031     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8032   MachineFunction &MF = *MBB->getParent();
8033   MachineRegisterInfo *MRI = &MF.getRegInfo();
8034   const SystemZInstrInfo *TII =
8035       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8036   DebugLoc DL = MI.getDebugLoc();
8037 
8038   Register SrcReg = MI.getOperand(0).getReg();
8039 
8040   // Create new virtual register of the same class as source.
8041   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8042   Register DstReg = MRI->createVirtualRegister(RC);
8043 
8044   // Replace pseudo with a normal load-and-test that models the def as
8045   // well.
8046   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8047     .addReg(SrcReg)
8048     .setMIFlags(MI.getFlags());
8049   MI.eraseFromParent();
8050 
8051   return MBB;
8052 }
8053 
emitProbedAlloca(MachineInstr & MI,MachineBasicBlock * MBB) const8054 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8055     MachineInstr &MI, MachineBasicBlock *MBB) const {
8056   MachineFunction &MF = *MBB->getParent();
8057   MachineRegisterInfo *MRI = &MF.getRegInfo();
8058   const SystemZInstrInfo *TII =
8059       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8060   DebugLoc DL = MI.getDebugLoc();
8061   const unsigned ProbeSize = getStackProbeSize(MF);
8062   Register DstReg = MI.getOperand(0).getReg();
8063   Register SizeReg = MI.getOperand(2).getReg();
8064 
8065   MachineBasicBlock *StartMBB = MBB;
8066   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8067   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8068   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8069   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8070   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8071 
8072   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8073     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8074 
8075   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8076   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8077 
8078   //  LoopTestMBB
8079   //  BRC TailTestMBB
8080   //  # fallthrough to LoopBodyMBB
8081   StartMBB->addSuccessor(LoopTestMBB);
8082   MBB = LoopTestMBB;
8083   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8084     .addReg(SizeReg)
8085     .addMBB(StartMBB)
8086     .addReg(IncReg)
8087     .addMBB(LoopBodyMBB);
8088   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8089     .addReg(PHIReg)
8090     .addImm(ProbeSize);
8091   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8092     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8093     .addMBB(TailTestMBB);
8094   MBB->addSuccessor(LoopBodyMBB);
8095   MBB->addSuccessor(TailTestMBB);
8096 
8097   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8098   //  J LoopTestMBB
8099   MBB = LoopBodyMBB;
8100   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8101     .addReg(PHIReg)
8102     .addImm(ProbeSize);
8103   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8104     .addReg(SystemZ::R15D)
8105     .addImm(ProbeSize);
8106   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8107     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8108     .setMemRefs(VolLdMMO);
8109   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8110   MBB->addSuccessor(LoopTestMBB);
8111 
8112   //  TailTestMBB
8113   //  BRC DoneMBB
8114   //  # fallthrough to TailMBB
8115   MBB = TailTestMBB;
8116   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8117     .addReg(PHIReg)
8118     .addImm(0);
8119   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8120     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8121     .addMBB(DoneMBB);
8122   MBB->addSuccessor(TailMBB);
8123   MBB->addSuccessor(DoneMBB);
8124 
8125   //  TailMBB
8126   //  # fallthrough to DoneMBB
8127   MBB = TailMBB;
8128   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8129     .addReg(SystemZ::R15D)
8130     .addReg(PHIReg);
8131   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8132     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8133     .setMemRefs(VolLdMMO);
8134   MBB->addSuccessor(DoneMBB);
8135 
8136   //  DoneMBB
8137   MBB = DoneMBB;
8138   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8139     .addReg(SystemZ::R15D);
8140 
8141   MI.eraseFromParent();
8142   return DoneMBB;
8143 }
8144 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const8145 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8146     MachineInstr &MI, MachineBasicBlock *MBB) const {
8147   switch (MI.getOpcode()) {
8148   case SystemZ::Select32:
8149   case SystemZ::Select64:
8150   case SystemZ::SelectF32:
8151   case SystemZ::SelectF64:
8152   case SystemZ::SelectF128:
8153   case SystemZ::SelectVR32:
8154   case SystemZ::SelectVR64:
8155   case SystemZ::SelectVR128:
8156     return emitSelect(MI, MBB);
8157 
8158   case SystemZ::CondStore8Mux:
8159     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8160   case SystemZ::CondStore8MuxInv:
8161     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8162   case SystemZ::CondStore16Mux:
8163     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8164   case SystemZ::CondStore16MuxInv:
8165     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8166   case SystemZ::CondStore32Mux:
8167     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8168   case SystemZ::CondStore32MuxInv:
8169     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8170   case SystemZ::CondStore8:
8171     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8172   case SystemZ::CondStore8Inv:
8173     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8174   case SystemZ::CondStore16:
8175     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8176   case SystemZ::CondStore16Inv:
8177     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8178   case SystemZ::CondStore32:
8179     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8180   case SystemZ::CondStore32Inv:
8181     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8182   case SystemZ::CondStore64:
8183     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8184   case SystemZ::CondStore64Inv:
8185     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8186   case SystemZ::CondStoreF32:
8187     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8188   case SystemZ::CondStoreF32Inv:
8189     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8190   case SystemZ::CondStoreF64:
8191     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8192   case SystemZ::CondStoreF64Inv:
8193     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8194 
8195   case SystemZ::PAIR128:
8196     return emitPair128(MI, MBB);
8197   case SystemZ::AEXT128:
8198     return emitExt128(MI, MBB, false);
8199   case SystemZ::ZEXT128:
8200     return emitExt128(MI, MBB, true);
8201 
8202   case SystemZ::ATOMIC_SWAPW:
8203     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8204   case SystemZ::ATOMIC_SWAP_32:
8205     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8206   case SystemZ::ATOMIC_SWAP_64:
8207     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8208 
8209   case SystemZ::ATOMIC_LOADW_AR:
8210     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8211   case SystemZ::ATOMIC_LOADW_AFI:
8212     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8213   case SystemZ::ATOMIC_LOAD_AR:
8214     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8215   case SystemZ::ATOMIC_LOAD_AHI:
8216     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8217   case SystemZ::ATOMIC_LOAD_AFI:
8218     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8219   case SystemZ::ATOMIC_LOAD_AGR:
8220     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8221   case SystemZ::ATOMIC_LOAD_AGHI:
8222     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8223   case SystemZ::ATOMIC_LOAD_AGFI:
8224     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8225 
8226   case SystemZ::ATOMIC_LOADW_SR:
8227     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8228   case SystemZ::ATOMIC_LOAD_SR:
8229     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8230   case SystemZ::ATOMIC_LOAD_SGR:
8231     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8232 
8233   case SystemZ::ATOMIC_LOADW_NR:
8234     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8235   case SystemZ::ATOMIC_LOADW_NILH:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8237   case SystemZ::ATOMIC_LOAD_NR:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8239   case SystemZ::ATOMIC_LOAD_NILL:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8241   case SystemZ::ATOMIC_LOAD_NILH:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8243   case SystemZ::ATOMIC_LOAD_NILF:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8245   case SystemZ::ATOMIC_LOAD_NGR:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8247   case SystemZ::ATOMIC_LOAD_NILL64:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8249   case SystemZ::ATOMIC_LOAD_NILH64:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8251   case SystemZ::ATOMIC_LOAD_NIHL64:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8253   case SystemZ::ATOMIC_LOAD_NIHH64:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8255   case SystemZ::ATOMIC_LOAD_NILF64:
8256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8257   case SystemZ::ATOMIC_LOAD_NIHF64:
8258     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8259 
8260   case SystemZ::ATOMIC_LOADW_OR:
8261     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8262   case SystemZ::ATOMIC_LOADW_OILH:
8263     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8264   case SystemZ::ATOMIC_LOAD_OR:
8265     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8266   case SystemZ::ATOMIC_LOAD_OILL:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8268   case SystemZ::ATOMIC_LOAD_OILH:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8270   case SystemZ::ATOMIC_LOAD_OILF:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8272   case SystemZ::ATOMIC_LOAD_OGR:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8274   case SystemZ::ATOMIC_LOAD_OILL64:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8276   case SystemZ::ATOMIC_LOAD_OILH64:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8278   case SystemZ::ATOMIC_LOAD_OIHL64:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8280   case SystemZ::ATOMIC_LOAD_OIHH64:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8282   case SystemZ::ATOMIC_LOAD_OILF64:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8284   case SystemZ::ATOMIC_LOAD_OIHF64:
8285     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8286 
8287   case SystemZ::ATOMIC_LOADW_XR:
8288     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8289   case SystemZ::ATOMIC_LOADW_XILF:
8290     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8291   case SystemZ::ATOMIC_LOAD_XR:
8292     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8293   case SystemZ::ATOMIC_LOAD_XILF:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8295   case SystemZ::ATOMIC_LOAD_XGR:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8297   case SystemZ::ATOMIC_LOAD_XILF64:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8299   case SystemZ::ATOMIC_LOAD_XIHF64:
8300     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8301 
8302   case SystemZ::ATOMIC_LOADW_NRi:
8303     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8304   case SystemZ::ATOMIC_LOADW_NILHi:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8306   case SystemZ::ATOMIC_LOAD_NRi:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8308   case SystemZ::ATOMIC_LOAD_NILLi:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8310   case SystemZ::ATOMIC_LOAD_NILHi:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8312   case SystemZ::ATOMIC_LOAD_NILFi:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8314   case SystemZ::ATOMIC_LOAD_NGRi:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8316   case SystemZ::ATOMIC_LOAD_NILL64i:
8317     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8318   case SystemZ::ATOMIC_LOAD_NILH64i:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8320   case SystemZ::ATOMIC_LOAD_NIHL64i:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8322   case SystemZ::ATOMIC_LOAD_NIHH64i:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8324   case SystemZ::ATOMIC_LOAD_NILF64i:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8326   case SystemZ::ATOMIC_LOAD_NIHF64i:
8327     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8328 
8329   case SystemZ::ATOMIC_LOADW_MIN:
8330     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8331                                 SystemZ::CCMASK_CMP_LE, 0);
8332   case SystemZ::ATOMIC_LOAD_MIN_32:
8333     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8334                                 SystemZ::CCMASK_CMP_LE, 32);
8335   case SystemZ::ATOMIC_LOAD_MIN_64:
8336     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8337                                 SystemZ::CCMASK_CMP_LE, 64);
8338 
8339   case SystemZ::ATOMIC_LOADW_MAX:
8340     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8341                                 SystemZ::CCMASK_CMP_GE, 0);
8342   case SystemZ::ATOMIC_LOAD_MAX_32:
8343     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8344                                 SystemZ::CCMASK_CMP_GE, 32);
8345   case SystemZ::ATOMIC_LOAD_MAX_64:
8346     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8347                                 SystemZ::CCMASK_CMP_GE, 64);
8348 
8349   case SystemZ::ATOMIC_LOADW_UMIN:
8350     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8351                                 SystemZ::CCMASK_CMP_LE, 0);
8352   case SystemZ::ATOMIC_LOAD_UMIN_32:
8353     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8354                                 SystemZ::CCMASK_CMP_LE, 32);
8355   case SystemZ::ATOMIC_LOAD_UMIN_64:
8356     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8357                                 SystemZ::CCMASK_CMP_LE, 64);
8358 
8359   case SystemZ::ATOMIC_LOADW_UMAX:
8360     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8361                                 SystemZ::CCMASK_CMP_GE, 0);
8362   case SystemZ::ATOMIC_LOAD_UMAX_32:
8363     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8364                                 SystemZ::CCMASK_CMP_GE, 32);
8365   case SystemZ::ATOMIC_LOAD_UMAX_64:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8367                                 SystemZ::CCMASK_CMP_GE, 64);
8368 
8369   case SystemZ::ATOMIC_CMP_SWAPW:
8370     return emitAtomicCmpSwapW(MI, MBB);
8371   case SystemZ::MVCSequence:
8372   case SystemZ::MVCLoop:
8373     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8374   case SystemZ::NCSequence:
8375   case SystemZ::NCLoop:
8376     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8377   case SystemZ::OCSequence:
8378   case SystemZ::OCLoop:
8379     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8380   case SystemZ::XCSequence:
8381   case SystemZ::XCLoop:
8382     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8383   case SystemZ::CLCSequence:
8384   case SystemZ::CLCLoop:
8385     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8386   case SystemZ::CLSTLoop:
8387     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8388   case SystemZ::MVSTLoop:
8389     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8390   case SystemZ::SRSTLoop:
8391     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8392   case SystemZ::TBEGIN:
8393     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8394   case SystemZ::TBEGIN_nofloat:
8395     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8396   case SystemZ::TBEGINC:
8397     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8398   case SystemZ::LTEBRCompare_VecPseudo:
8399     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8400   case SystemZ::LTDBRCompare_VecPseudo:
8401     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8402   case SystemZ::LTXBRCompare_VecPseudo:
8403     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8404 
8405   case SystemZ::PROBED_ALLOCA:
8406     return emitProbedAlloca(MI, MBB);
8407 
8408   case TargetOpcode::STACKMAP:
8409   case TargetOpcode::PATCHPOINT:
8410     return emitPatchPoint(MI, MBB);
8411 
8412   default:
8413     llvm_unreachable("Unexpected instr type to insert");
8414   }
8415 }
8416 
8417 // This is only used by the isel schedulers, and is needed only to prevent
8418 // compiler from crashing when list-ilp is used.
8419 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const8420 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8421   if (VT == MVT::Untyped)
8422     return &SystemZ::ADDR128BitRegClass;
8423   return TargetLowering::getRepRegClassFor(VT);
8424 }
8425