1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
getCacheSize(TargetTransformInfo::CacheLevel Level) const68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
getNumberOfRegisters(unsigned ClassID) const119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
getRegisterBitWidth(bool Vector) const132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
getLoadStoreVecRegBitWidth(unsigned) const150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
getMaxInterleaveFactor(unsigned VF)154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // TODO: Handle more cost kinds.
181   if (CostKind != TTI::TCK_RecipThroughput)
182     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
183                                          Op2Info, Opd1PropInfo,
184                                          Opd2PropInfo, Args, CxtI);
185   // Legalize the type.
186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
187 
188   int ISD = TLI->InstructionOpcodeToISD(Opcode);
189   assert(ISD && "Invalid opcode");
190 
191   static const CostTblEntry GLMCostTable[] = {
192     { ISD::FDIV,  MVT::f32,   18 }, // divss
193     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
194     { ISD::FDIV,  MVT::f64,   33 }, // divsd
195     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
196   };
197 
198   if (ST->useGLMDivSqrtCosts())
199     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
200                                             LT.second))
201       return LT.first * Entry->Cost;
202 
203   static const CostTblEntry SLMCostTable[] = {
204     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
205     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
206     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
207     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
208     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
209     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
210     { ISD::FDIV,  MVT::f32,   17 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
212     { ISD::FDIV,  MVT::f64,   32 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
214     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
215     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
216     // v2i64/v4i64 mul is custom lowered as a series of long:
217     // multiplies(3), shifts(3) and adds(2)
218     // slm muldq version throughput is 2 and addq throughput 4
219     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
220     //       3X4 (addq throughput) = 17
221     { ISD::MUL,   MVT::v2i64, 17 },
222     // slm addq\subq throughput is 4
223     { ISD::ADD,   MVT::v2i64, 4  },
224     { ISD::SUB,   MVT::v2i64, 4  },
225   };
226 
227   if (ST->isSLM()) {
228     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
229       // Check if the operands can be shrinked into a smaller datatype.
230       bool Op1Signed = false;
231       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
232       bool Op2Signed = false;
233       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
234 
235       bool signedMode = Op1Signed | Op2Signed;
236       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
237 
238       if (OpMinSize <= 7)
239         return LT.first * 3; // pmullw/sext
240       if (!signedMode && OpMinSize <= 8)
241         return LT.first * 3; // pmullw/zext
242       if (OpMinSize <= 15)
243         return LT.first * 5; // pmullw/pmulhw/pshuf
244       if (!signedMode && OpMinSize <= 16)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246     }
247 
248     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
249                                             LT.second)) {
250       return LT.first * Entry->Cost;
251     }
252   }
253 
254   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
255        ISD == ISD::UREM) &&
256       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
257        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
258       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
259     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
260       // On X86, vector signed division by constants power-of-two are
261       // normally expanded to the sequence SRA + SRL + ADD + SRA.
262       // The OperandValue properties may not be the same as that of the previous
263       // operation; conservatively assume OP_None.
264       int Cost =
265           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
266                                      Op2Info,
267                                      TargetTransformInfo::OP_None,
268                                      TargetTransformInfo::OP_None);
269       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277 
278       if (ISD == ISD::SREM) {
279         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
280         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
281                                        Op2Info);
282         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
283                                        Op2Info);
284       }
285 
286       return Cost;
287     }
288 
289     // Vector unsigned division/remainder will be simplified to shifts/masks.
290     if (ISD == ISD::UDIV)
291       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
292                                     Op1Info, Op2Info,
293                                     TargetTransformInfo::OP_None,
294                                     TargetTransformInfo::OP_None);
295 
296     else // UREM
297       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
298                                     Op1Info, Op2Info,
299                                     TargetTransformInfo::OP_None,
300                                     TargetTransformInfo::OP_None);
301   }
302 
303   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
304     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
305     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
306     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasBWI()) {
311     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX512UniformConstCostTable[] = {
317     { ISD::SRA,  MVT::v2i64,   1 },
318     { ISD::SRA,  MVT::v4i64,   1 },
319     { ISD::SRA,  MVT::v8i64,   1 },
320 
321     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
322     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
323     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
324 
325     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
326     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
327     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
328     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
329   };
330 
331   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
332       ST->hasAVX512()) {
333     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
334                                             LT.second))
335       return LT.first * Entry->Cost;
336   }
337 
338   static const CostTblEntry AVX2UniformConstCostTable[] = {
339     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
340     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
341     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
342 
343     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
344 
345     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
346     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
347     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
348     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
349   };
350 
351   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
352       ST->hasAVX2()) {
353     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
354                                             LT.second))
355       return LT.first * Entry->Cost;
356   }
357 
358   static const CostTblEntry SSE2UniformConstCostTable[] = {
359     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
360     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
361     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
362 
363     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
364     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
365     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
366 
367     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
368     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
369     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
370     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
371     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
372     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
373     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
374     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
375   };
376 
377   // XOP has faster vXi8 shifts.
378   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
379       ST->hasSSE2() && !ST->hasXOP()) {
380     if (const auto *Entry =
381             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
382       return LT.first * Entry->Cost;
383   }
384 
385   static const CostTblEntry AVX512BWConstCostTable[] = {
386     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
387     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
388     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
389     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
390     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
391     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
393     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
394   };
395 
396   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
397        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
398       ST->hasBWI()) {
399     if (const auto *Entry =
400             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
401       return LT.first * Entry->Cost;
402   }
403 
404   static const CostTblEntry AVX512ConstCostTable[] = {
405     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
406     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
407     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
408     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
409     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
410     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
411     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
412     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
414     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
416     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
417   };
418 
419   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
420        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
421       ST->hasAVX512()) {
422     if (const auto *Entry =
423             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
424       return LT.first * Entry->Cost;
425   }
426 
427   static const CostTblEntry AVX2ConstCostTable[] = {
428     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
431     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
432     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
433     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
434     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
435     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
436     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
437     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
438     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
439     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
440   };
441 
442   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
443        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
444       ST->hasAVX2()) {
445     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447   }
448 
449   static const CostTblEntry SSE2ConstCostTable[] = {
450     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
451     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
452     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
453     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
454     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
455     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
456     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
457     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
458     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
459     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
460     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
461     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
462     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
463     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
464     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
465     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
466     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
467     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
468     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
469     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
470     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
471     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
472     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
473     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
474   };
475 
476   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
477        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
478       ST->hasSSE2()) {
479     // pmuldq sequence.
480     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
481       return LT.first * 32;
482     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
483       return LT.first * 38;
484     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
485       return LT.first * 15;
486     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
487       return LT.first * 20;
488 
489     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
490       return LT.first * Entry->Cost;
491   }
492 
493   static const CostTblEntry AVX512BWShiftCostTable[] = {
494     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
495     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
496     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
497 
498     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
499     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
505   };
506 
507   if (ST->hasBWI())
508     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
509       return LT.first * Entry->Cost;
510 
511   static const CostTblEntry AVX2UniformCostTable[] = {
512     // Uniform splats are cheaper for the following instructions.
513     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
514     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
515     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
516     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
517     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
518     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
519   };
520 
521   if (ST->hasAVX2() &&
522       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
523        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
524     if (const auto *Entry =
525             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
526       return LT.first * Entry->Cost;
527   }
528 
529   static const CostTblEntry SSE2UniformCostTable[] = {
530     // Uniform splats are cheaper for the following instructions.
531     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
532     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
533     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
534 
535     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
536     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
537     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
538 
539     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
540     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
541   };
542 
543   if (ST->hasSSE2() &&
544       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
545        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
546     if (const auto *Entry =
547             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
548       return LT.first * Entry->Cost;
549   }
550 
551   static const CostTblEntry AVX512DQCostTable[] = {
552     { ISD::MUL,  MVT::v2i64, 1 },
553     { ISD::MUL,  MVT::v4i64, 1 },
554     { ISD::MUL,  MVT::v8i64, 1 }
555   };
556 
557   // Look for AVX512DQ lowering tricks for custom cases.
558   if (ST->hasDQI())
559     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
560       return LT.first * Entry->Cost;
561 
562   static const CostTblEntry AVX512BWCostTable[] = {
563     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
564     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
565     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
566 
567     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
569     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
570   };
571 
572   // Look for AVX512BW lowering tricks for custom cases.
573   if (ST->hasBWI())
574     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
575       return LT.first * Entry->Cost;
576 
577   static const CostTblEntry AVX512CostTable[] = {
578     { ISD::SHL,     MVT::v16i32,     1 },
579     { ISD::SRL,     MVT::v16i32,     1 },
580     { ISD::SRA,     MVT::v16i32,     1 },
581 
582     { ISD::SHL,     MVT::v8i64,      1 },
583     { ISD::SRL,     MVT::v8i64,      1 },
584 
585     { ISD::SRA,     MVT::v2i64,      1 },
586     { ISD::SRA,     MVT::v4i64,      1 },
587     { ISD::SRA,     MVT::v8i64,      1 },
588 
589     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
590     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
591     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
592     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
593     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
594     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
595     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
596 
597     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
598     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
599     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
600 
601     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
602     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
603     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
604   };
605 
606   if (ST->hasAVX512())
607     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
608       return LT.first * Entry->Cost;
609 
610   static const CostTblEntry AVX2ShiftCostTable[] = {
611     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
612     // customize them to detect the cases where shift amount is a scalar one.
613     { ISD::SHL,     MVT::v4i32,    1 },
614     { ISD::SRL,     MVT::v4i32,    1 },
615     { ISD::SRA,     MVT::v4i32,    1 },
616     { ISD::SHL,     MVT::v8i32,    1 },
617     { ISD::SRL,     MVT::v8i32,    1 },
618     { ISD::SRA,     MVT::v8i32,    1 },
619     { ISD::SHL,     MVT::v2i64,    1 },
620     { ISD::SRL,     MVT::v2i64,    1 },
621     { ISD::SHL,     MVT::v4i64,    1 },
622     { ISD::SRL,     MVT::v4i64,    1 },
623   };
624 
625   if (ST->hasAVX512()) {
626     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
627         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
628          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
629       // On AVX512, a packed v32i16 shift left by a constant build_vector
630       // is lowered into a vector multiply (vpmullw).
631       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
632                                     Op1Info, Op2Info,
633                                     TargetTransformInfo::OP_None,
634                                     TargetTransformInfo::OP_None);
635   }
636 
637   // Look for AVX2 lowering tricks.
638   if (ST->hasAVX2()) {
639     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
640         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
641          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
642       // On AVX2, a packed v16i16 shift left by a constant build_vector
643       // is lowered into a vector multiply (vpmullw).
644       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
645                                     Op1Info, Op2Info,
646                                     TargetTransformInfo::OP_None,
647                                     TargetTransformInfo::OP_None);
648 
649     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
650       return LT.first * Entry->Cost;
651   }
652 
653   static const CostTblEntry XOPShiftCostTable[] = {
654     // 128bit shifts take 1cy, but right shifts require negation beforehand.
655     { ISD::SHL,     MVT::v16i8,    1 },
656     { ISD::SRL,     MVT::v16i8,    2 },
657     { ISD::SRA,     MVT::v16i8,    2 },
658     { ISD::SHL,     MVT::v8i16,    1 },
659     { ISD::SRL,     MVT::v8i16,    2 },
660     { ISD::SRA,     MVT::v8i16,    2 },
661     { ISD::SHL,     MVT::v4i32,    1 },
662     { ISD::SRL,     MVT::v4i32,    2 },
663     { ISD::SRA,     MVT::v4i32,    2 },
664     { ISD::SHL,     MVT::v2i64,    1 },
665     { ISD::SRL,     MVT::v2i64,    2 },
666     { ISD::SRA,     MVT::v2i64,    2 },
667     // 256bit shifts require splitting if AVX2 didn't catch them above.
668     { ISD::SHL,     MVT::v32i8,  2+2 },
669     { ISD::SRL,     MVT::v32i8,  4+2 },
670     { ISD::SRA,     MVT::v32i8,  4+2 },
671     { ISD::SHL,     MVT::v16i16, 2+2 },
672     { ISD::SRL,     MVT::v16i16, 4+2 },
673     { ISD::SRA,     MVT::v16i16, 4+2 },
674     { ISD::SHL,     MVT::v8i32,  2+2 },
675     { ISD::SRL,     MVT::v8i32,  4+2 },
676     { ISD::SRA,     MVT::v8i32,  4+2 },
677     { ISD::SHL,     MVT::v4i64,  2+2 },
678     { ISD::SRL,     MVT::v4i64,  4+2 },
679     { ISD::SRA,     MVT::v4i64,  4+2 },
680   };
681 
682   // Look for XOP lowering tricks.
683   if (ST->hasXOP()) {
684     // If the right shift is constant then we'll fold the negation so
685     // it's as cheap as a left shift.
686     int ShiftISD = ISD;
687     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
688         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
689          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
690       ShiftISD = ISD::SHL;
691     if (const auto *Entry =
692             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
693       return LT.first * Entry->Cost;
694   }
695 
696   static const CostTblEntry SSE2UniformShiftCostTable[] = {
697     // Uniform splats are cheaper for the following instructions.
698     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
699     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
700     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
701 
702     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
703     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
704     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
705 
706     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
707     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
708     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
709     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
710   };
711 
712   if (ST->hasSSE2() &&
713       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
714        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
715 
716     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
717     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
718       return LT.first * 4; // 2*psrad + shuffle.
719 
720     if (const auto *Entry =
721             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
722       return LT.first * Entry->Cost;
723   }
724 
725   if (ISD == ISD::SHL &&
726       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
727     MVT VT = LT.second;
728     // Vector shift left by non uniform constant can be lowered
729     // into vector multiply.
730     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
731         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
732       ISD = ISD::MUL;
733   }
734 
735   static const CostTblEntry AVX2CostTable[] = {
736     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
737     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
738     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
739     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
740 
741     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
742     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
743     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
744     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
745 
746     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
747     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
748     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
749     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
750     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
751     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
752 
753     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
754     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
755     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
756     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
757     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
758     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
759     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
760     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
761 
762     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
763     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
764     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
765     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
766     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
767 
768     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
769     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
770     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
771     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
772     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
773     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
774 
775     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
776     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
777     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
778     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
779     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
780     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
781   };
782 
783   // Look for AVX2 lowering tricks for custom cases.
784   if (ST->hasAVX2())
785     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
786       return LT.first * Entry->Cost;
787 
788   static const CostTblEntry AVX1CostTable[] = {
789     // We don't have to scalarize unsupported ops. We can issue two half-sized
790     // operations and we only need to extract the upper YMM half.
791     // Two ops + 1 extract + 1 insert = 4.
792     { ISD::MUL,     MVT::v16i16,     4 },
793     { ISD::MUL,     MVT::v8i32,      4 },
794     { ISD::SUB,     MVT::v32i8,      4 },
795     { ISD::ADD,     MVT::v32i8,      4 },
796     { ISD::SUB,     MVT::v16i16,     4 },
797     { ISD::ADD,     MVT::v16i16,     4 },
798     { ISD::SUB,     MVT::v8i32,      4 },
799     { ISD::ADD,     MVT::v8i32,      4 },
800     { ISD::SUB,     MVT::v4i64,      4 },
801     { ISD::ADD,     MVT::v4i64,      4 },
802 
803     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
804     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
805     // Because we believe v4i64 to be a legal type, we must also include the
806     // extract+insert in the cost table. Therefore, the cost here is 18
807     // instead of 8.
808     { ISD::MUL,     MVT::v4i64,     18 },
809 
810     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
811 
812     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
813     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
814     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
815     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
816     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
817     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
818   };
819 
820   if (ST->hasAVX())
821     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
822       return LT.first * Entry->Cost;
823 
824   static const CostTblEntry SSE42CostTable[] = {
825     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
826     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
827     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
828     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
829 
830     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
831     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
832     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
833     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
834 
835     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
836     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
837     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
838     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
839 
840     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
841     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
842     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
843     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
844   };
845 
846   if (ST->hasSSE42())
847     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
848       return LT.first * Entry->Cost;
849 
850   static const CostTblEntry SSE41CostTable[] = {
851     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
852     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
853     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
854     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
855     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
856     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
857 
858     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
859     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
860     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
861     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
862     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
863     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
864 
865     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
866     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
867     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
868     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
869     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
870     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
871 
872     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
873   };
874 
875   if (ST->hasSSE41())
876     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
877       return LT.first * Entry->Cost;
878 
879   static const CostTblEntry SSE2CostTable[] = {
880     // We don't correctly identify costs of casts because they are marked as
881     // custom.
882     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
883     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
884     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
885     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
886     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
887 
888     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
889     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
890     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
891     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
892     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
893 
894     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
895     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
896     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
897     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
898     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
899 
900     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
901     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
902     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
903     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
904 
905     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
906     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
907     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
908     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
909 
910     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
911     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
912 
913     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
914     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
915   };
916 
917   if (ST->hasSSE2())
918     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
919       return LT.first * Entry->Cost;
920 
921   static const CostTblEntry SSE1CostTable[] = {
922     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
923     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
924 
925     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
926     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
927 
928     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
929     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
930 
931     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
932     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
933     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
934 
935     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
936     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
937     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
938   };
939 
940   if (ST->hasSSE1())
941     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
942       return LT.first * Entry->Cost;
943 
944   // It is not a good idea to vectorize division. We have to scalarize it and
945   // in the process we will often end up having to spilling regular
946   // registers. The overhead of division is going to dominate most kernels
947   // anyways so try hard to prevent vectorization of division - it is
948   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
949   // to hide "20 cycles" for each lane.
950   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
951                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
952     int ScalarCost = getArithmeticInstrCost(
953         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
954         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
955     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
956   }
957 
958   // Fallback to the default implementation.
959   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
960 }
961 
getShuffleCost(TTI::ShuffleKind Kind,VectorType * BaseTp,int Index,VectorType * SubTp)962 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
963                                int Index, VectorType *SubTp) {
964   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
965   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
966   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
967 
968   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
969   if (Kind == TTI::SK_Transpose)
970     Kind = TTI::SK_PermuteTwoSrc;
971 
972   // For Broadcasts we are splatting the first element from the first input
973   // register, so only need to reference that input and all the output
974   // registers are the same.
975   if (Kind == TTI::SK_Broadcast)
976     LT.first = 1;
977 
978   // Subvector extractions are free if they start at the beginning of a
979   // vector and cheap if the subvectors are aligned.
980   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
981     int NumElts = LT.second.getVectorNumElements();
982     if ((Index % NumElts) == 0)
983       return 0;
984     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
985     if (SubLT.second.isVector()) {
986       int NumSubElts = SubLT.second.getVectorNumElements();
987       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
988         return SubLT.first;
989       // Handle some cases for widening legalization. For now we only handle
990       // cases where the original subvector was naturally aligned and evenly
991       // fit in its legalized subvector type.
992       // FIXME: Remove some of the alignment restrictions.
993       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
994       // vectors.
995       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
996       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
997           (NumSubElts % OrigSubElts) == 0 &&
998           LT.second.getVectorElementType() ==
999               SubLT.second.getVectorElementType() &&
1000           LT.second.getVectorElementType().getSizeInBits() ==
1001               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1002         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1003                "Unexpected number of elements!");
1004         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1005                                            LT.second.getVectorNumElements());
1006         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1007                                            SubLT.second.getVectorNumElements());
1008         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1009         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
1010                                          ExtractIndex, SubTy);
1011 
1012         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1013         // if we have SSSE3 we can use pshufb.
1014         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1015           return ExtractCost + 1; // pshufd or pshufb
1016 
1017         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1018                "Unexpected vector size");
1019 
1020         return ExtractCost + 2; // worst case pshufhw + pshufd
1021       }
1022     }
1023   }
1024 
1025   // Handle some common (illegal) sub-vector types as they are often very cheap
1026   // to shuffle even on targets without PSHUFB.
1027   EVT VT = TLI->getValueType(DL, BaseTp);
1028   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1029       !ST->hasSSSE3()) {
1030      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1031       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1032       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1033       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1034       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1035       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1036 
1037       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1038       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1039       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1040       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1041 
1042       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1043       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1044       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1045       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1046       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1047 
1048       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1049       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1050       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1051       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1052       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1053     };
1054 
1055     if (ST->hasSSE2())
1056       if (const auto *Entry =
1057               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1058         return Entry->Cost;
1059   }
1060 
1061   // We are going to permute multiple sources and the result will be in multiple
1062   // destinations. Providing an accurate cost only for splits where the element
1063   // type remains the same.
1064   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1065     MVT LegalVT = LT.second;
1066     if (LegalVT.isVector() &&
1067         LegalVT.getVectorElementType().getSizeInBits() ==
1068             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1069         LegalVT.getVectorNumElements() <
1070             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1071 
1072       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1073       unsigned LegalVTSize = LegalVT.getStoreSize();
1074       // Number of source vectors after legalization:
1075       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1076       // Number of destination vectors after legalization:
1077       unsigned NumOfDests = LT.first;
1078 
1079       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1080                                               LegalVT.getVectorNumElements());
1081 
1082       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1083       return NumOfShuffles *
1084              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1085     }
1086 
1087     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1088   }
1089 
1090   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1091   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1092     // We assume that source and destination have the same vector type.
1093     int NumOfDests = LT.first;
1094     int NumOfShufflesPerDest = LT.first * 2 - 1;
1095     LT.first = NumOfDests * NumOfShufflesPerDest;
1096   }
1097 
1098   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1099       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1100       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1101 
1102       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1103       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1104 
1105       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1106       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1107       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1108   };
1109 
1110   if (ST->hasVBMI())
1111     if (const auto *Entry =
1112             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry AVX512BWShuffleTbl[] = {
1116       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1117       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1118 
1119       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1120       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1121       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1122 
1123       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1124       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1125       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1126 
1127       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1128       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1129       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1130       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1131 
1132       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1133       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1134   };
1135 
1136   if (ST->hasBWI())
1137     if (const auto *Entry =
1138             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1139       return LT.first * Entry->Cost;
1140 
1141   static const CostTblEntry AVX512ShuffleTbl[] = {
1142       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1143       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1144       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1145       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1146       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1147       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1148 
1149       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1150       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1151       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1152       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1153 
1154       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1155       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1156       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1157       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1158       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1159       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1160       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1161       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1162       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1163       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1164       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1165       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1166       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1167 
1168       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1169       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1170       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1171       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1172       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1173       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1174       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1175       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1176       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1177       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1178       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1179       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1180 
1181       // FIXME: This just applies the type legalization cost rules above
1182       // assuming these completely split.
1183       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1184       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1185       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1186       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1187 
1188       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1189       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1190       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1191       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1192       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1193       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1194   };
1195 
1196   if (ST->hasAVX512())
1197     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1198       return LT.first * Entry->Cost;
1199 
1200   static const CostTblEntry AVX2ShuffleTbl[] = {
1201       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1202       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1203       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1204       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1205       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1206       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1207 
1208       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1209       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1210       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1211       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1212       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1213       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1214 
1215       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1216       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1217 
1218       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1219       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1220       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1221       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1222       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1223                                                   // + vpblendvb
1224       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1225                                                   // + vpblendvb
1226 
1227       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1228       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1229       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1230       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1231       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1232                                                // + vpblendvb
1233       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1234                                                // + vpblendvb
1235   };
1236 
1237   if (ST->hasAVX2())
1238     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1239       return LT.first * Entry->Cost;
1240 
1241   static const CostTblEntry XOPShuffleTbl[] = {
1242       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1243       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1244       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1245       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1246       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1247                                                   // + vinsertf128
1248       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1249                                                   // + vinsertf128
1250 
1251       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1252                                                // + vinsertf128
1253       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1254       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1255                                                // + vinsertf128
1256       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1257   };
1258 
1259   if (ST->hasXOP())
1260     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1261       return LT.first * Entry->Cost;
1262 
1263   static const CostTblEntry AVX1ShuffleTbl[] = {
1264       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1265       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1266       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1267       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1268       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1269       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1270 
1271       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1272       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1273       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1274       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1275       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1276                                          // + vinsertf128
1277       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1278                                          // + vinsertf128
1279 
1280       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1281       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1282       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1283       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1284       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1285       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1286 
1287       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1288       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1289       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1290       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1291       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1292                                                   // + 2*por + vinsertf128
1293       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1294                                                   // + 2*por + vinsertf128
1295 
1296       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1297       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1298       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1299       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1300       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1301                                                 // + 4*por + vinsertf128
1302       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1303                                                 // + 4*por + vinsertf128
1304   };
1305 
1306   if (ST->hasAVX())
1307     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1308       return LT.first * Entry->Cost;
1309 
1310   static const CostTblEntry SSE41ShuffleTbl[] = {
1311       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1312       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1313       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1314       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1315       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1316       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1317   };
1318 
1319   if (ST->hasSSE41())
1320     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1321       return LT.first * Entry->Cost;
1322 
1323   static const CostTblEntry SSSE3ShuffleTbl[] = {
1324       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1325       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1326 
1327       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1328       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1329 
1330       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1331       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1332 
1333       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1334       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1335 
1336       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1337       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1338   };
1339 
1340   if (ST->hasSSSE3())
1341     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1342       return LT.first * Entry->Cost;
1343 
1344   static const CostTblEntry SSE2ShuffleTbl[] = {
1345       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1346       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1347       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1348       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1349       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1350 
1351       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1352       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1353       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1354       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1355       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1356                                         // + 2*pshufd + 2*unpck + packus
1357 
1358       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1359       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1360       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1361       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1362       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1363 
1364       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1365       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1366       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1367       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1368                                                   // + pshufd/unpck
1369     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1370                                                   // + 2*pshufd + 2*unpck + 2*packus
1371 
1372     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1373     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1374     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1375     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1376     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1377   };
1378 
1379   if (ST->hasSSE2())
1380     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1381       return LT.first * Entry->Cost;
1382 
1383   static const CostTblEntry SSE1ShuffleTbl[] = {
1384     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1385     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1386     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1387     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1388     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1389   };
1390 
1391   if (ST->hasSSE1())
1392     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1393       return LT.first * Entry->Cost;
1394 
1395   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1396 }
1397 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)1398 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1399                                  TTI::CastContextHint CCH,
1400                                  TTI::TargetCostKind CostKind,
1401                                  const Instruction *I) {
1402   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1403   assert(ISD && "Invalid opcode");
1404 
1405   // TODO: Allow non-throughput costs that aren't binary.
1406   auto AdjustCost = [&CostKind](int Cost) {
1407     if (CostKind != TTI::TCK_RecipThroughput)
1408       return Cost == 0 ? 0 : 1;
1409     return Cost;
1410   };
1411 
1412   // FIXME: Need a better design of the cost table to handle non-simple types of
1413   // potential massive combinations (elem_num x src_type x dst_type).
1414 
1415   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1416     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1417     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1418 
1419     // Mask sign extend has an instruction.
1420     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1421     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1422     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1423     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1424     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1425     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1426     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1427     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1428     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1429     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1430     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1431 
1432     // Mask zero extend is a sext + shift.
1433     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1434     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1435     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1436     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1437     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1438     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1439     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1440     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1441     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1442     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1443     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1444 
1445     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1446     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1447     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1448     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1449     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1450     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1451     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1452     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1453     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1454     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1455     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1456     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1457     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1458   };
1459 
1460   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1461     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1462     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1463 
1464     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1465     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1466 
1467     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1468     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1469 
1470     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1471     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1472   };
1473 
1474   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1475   // 256-bit wide vectors.
1476 
1477   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1478     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1479     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1480     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1481 
1482     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1483     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1484     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1485     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1486     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1487     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1488     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1489     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1490     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1491     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1492     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1493     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1494     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1495     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1496     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1497     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1498     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1499     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1500     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1501     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1502     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1503     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1504 
1505     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1506     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1507 
1508     // Sign extend is zmm vpternlogd+vptruncdb.
1509     // Zero extend is zmm broadcast load+vptruncdw.
1510     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1511     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1512     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1513     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1514     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1515     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1516     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1517     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1518 
1519     // Sign extend is zmm vpternlogd+vptruncdw.
1520     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1521     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1522     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1523     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1524     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1525     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1526     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1527     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1528     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1529 
1530     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1531     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1532     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1533     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1534     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1535     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1536     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1537     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1538     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1539     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1540 
1541     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1542     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1543     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1544     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1545 
1546     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1547     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1548     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1549     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1550     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1551     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1552     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1553     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1554     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1555     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1556 
1557     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1558     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1559 
1560     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1561     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1562     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1563     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1564     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1565     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1566     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1567     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1568 
1569     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1570     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1571     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1572     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1573     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1574     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1575     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1576     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1577     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1578     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1579 
1580     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1581     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1582     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1583     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1584 
1585     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1586     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1587     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1588     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1589     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1590     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1591   };
1592 
1593   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1594     // Mask sign extend has an instruction.
1595     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1596     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1597     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1598     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1599     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1600     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1601     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1602     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1603     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1604 
1605     // Mask zero extend is a sext + shift.
1606     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1607     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1608     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1609     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1610     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1611     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1612     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1613     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1614     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1615 
1616     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1617     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1618     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1619     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1620     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1621     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1622     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1623     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1624     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1625     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1626   };
1627 
1628   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1629     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1630     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1631     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1632     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1633 
1634     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1635     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1636     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1637     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1638 
1639     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1640     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1641     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1642     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1643 
1644     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1645     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1646     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1647     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1648   };
1649 
1650   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1651     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1652     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1653     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1654     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1655     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1656     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1657     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1658     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1659     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1660     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1661     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1662     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1663     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1664     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1665 
1666     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1667     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1668     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1669     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1670     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1671     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1672     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1673     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1674     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1675     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1676 
1677     // sign extend is vpcmpeq+maskedmove+vpmovdw
1678     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1679     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1680     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1681     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1682     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1683     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1684     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1685     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1686     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1687 
1688     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1689     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1690     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1691     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1692     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1693     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1694     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1695     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1696     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1697     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1698 
1699     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1700     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1701     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1702     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1703     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1704     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1705     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1706     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1707     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1708     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1709     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1710     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1711     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1712     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1713 
1714     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1715     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1716 
1717     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1718     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1719 
1720     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1721     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1722 
1723     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1724     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1725     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1726     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1727     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1728   };
1729 
1730   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1731     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1732     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1733     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1734     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1735     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1736     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1737     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1738     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1739     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1740     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1741     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1742     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1743     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1744     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1745     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1746     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1747     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1748     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1749     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1750     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1751 
1752     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1753     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1754 
1755     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1756     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1757     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1758     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1759 
1760     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1761     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1762 
1763     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1764   };
1765 
1766   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1767     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1768     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1769     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1770     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1771     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1772     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1773     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1774     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1775     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1776     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1777     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1778     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1779     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1780     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1781     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1782     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1783     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1784     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1785 
1786     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1787     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1788     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1789     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1790     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1791 
1792     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1793     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1794     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1795     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1796     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1797     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1798     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1799     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1800     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1801     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1802 
1803     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1804     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1805     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1806     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1807     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1808     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1809     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1810     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1811     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1812     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1813     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1814     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1815 
1816     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1817     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1818     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1819     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1820     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1821     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1822     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1823     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1824     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1825     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1826     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1827     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1828     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1829     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1830     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1831     // The generic code to compute the scalar overhead is currently broken.
1832     // Workaround this limitation by estimating the scalarization overhead
1833     // here. We have roughly 10 instructions per scalar element.
1834     // Multiply that by the vector width.
1835     // FIXME: remove that when PR19268 is fixed.
1836     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1837     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1838 
1839     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1840     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1841     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1842     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1843 
1844     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1845     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1846     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1847     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1848     // This node is expanded into scalarized operations but BasicTTI is overly
1849     // optimistic estimating its cost.  It computes 3 per element (one
1850     // vector-extract, one scalar conversion and one vector-insert).  The
1851     // problem is that the inserts form a read-modify-write chain so latency
1852     // should be factored in too.  Inflating the cost per element by 1.
1853     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1854     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1855 
1856     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1857     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1858   };
1859 
1860   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1861     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1862     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1863     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1864     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1865     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1866     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1867 
1868     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1869     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1870     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1871     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1872     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1873     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1874     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1875     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1876     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1877     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1878     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1879     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1880     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1881     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1882     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1883     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1884     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1885     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1886 
1887     // These truncates end up widening elements.
1888     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1889     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1890     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1891 
1892     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1893     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1894     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1895     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1896     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1897     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1898     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1899     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1900     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1901 
1902     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1903     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1904 
1905     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1906     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1907 
1908     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1909     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1910     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1911   };
1912 
1913   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1914     // These are somewhat magic numbers justified by looking at the output of
1915     // Intel's IACA, running some kernels and making sure when we take
1916     // legalization into account the throughput will be overestimated.
1917     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1918     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1919     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1920     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1921     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1922     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1923     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1924     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1925     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1926 
1927     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1928     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1929     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1930     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1931     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1932     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1933     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1934     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1935 
1936     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1937     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1938     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1939     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1940     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1941     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1942 
1943     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1944 
1945     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1946     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1947 
1948     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1949     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1950     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1951     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1952     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1953     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1954     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1955     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1956 
1957     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1958     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1959     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1960     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1961     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1962     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1963     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1964     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1965     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1966     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1967     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1968     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1969     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1970     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1971     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1972     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1973     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1974     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1975     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1976     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1977     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1978     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1979     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1980     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1981 
1982     // These truncates are really widening elements.
1983     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1984     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1985     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1986     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1987     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1988     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1989 
1990     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1991     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1992     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1993     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1994     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1995     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1996     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1997     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1998     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1999     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2000     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2001     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
2002     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2003     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2004     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
2005   };
2006 
2007   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2008   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
2009 
2010   if (ST->hasSSE2() && !ST->hasAVX()) {
2011     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2012                                                    LTDest.second, LTSrc.second))
2013       return AdjustCost(LTSrc.first * Entry->Cost);
2014   }
2015 
2016   EVT SrcTy = TLI->getValueType(DL, Src);
2017   EVT DstTy = TLI->getValueType(DL, Dst);
2018 
2019   // The function getSimpleVT only handles simple value types.
2020   if (!SrcTy.isSimple() || !DstTy.isSimple())
2021     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2022 
2023   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2024   MVT SimpleDstTy = DstTy.getSimpleVT();
2025 
2026   if (ST->useAVX512Regs()) {
2027     if (ST->hasBWI())
2028       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2029                                                      SimpleDstTy, SimpleSrcTy))
2030         return AdjustCost(Entry->Cost);
2031 
2032     if (ST->hasDQI())
2033       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2034                                                      SimpleDstTy, SimpleSrcTy))
2035         return AdjustCost(Entry->Cost);
2036 
2037     if (ST->hasAVX512())
2038       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2039                                                      SimpleDstTy, SimpleSrcTy))
2040         return AdjustCost(Entry->Cost);
2041   }
2042 
2043   if (ST->hasBWI())
2044     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2045                                                    SimpleDstTy, SimpleSrcTy))
2046       return AdjustCost(Entry->Cost);
2047 
2048   if (ST->hasDQI())
2049     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2050                                                    SimpleDstTy, SimpleSrcTy))
2051       return AdjustCost(Entry->Cost);
2052 
2053   if (ST->hasAVX512())
2054     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2055                                                    SimpleDstTy, SimpleSrcTy))
2056       return AdjustCost(Entry->Cost);
2057 
2058   if (ST->hasAVX2()) {
2059     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2060                                                    SimpleDstTy, SimpleSrcTy))
2061       return AdjustCost(Entry->Cost);
2062   }
2063 
2064   if (ST->hasAVX()) {
2065     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2066                                                    SimpleDstTy, SimpleSrcTy))
2067       return AdjustCost(Entry->Cost);
2068   }
2069 
2070   if (ST->hasSSE41()) {
2071     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2072                                                    SimpleDstTy, SimpleSrcTy))
2073       return AdjustCost(Entry->Cost);
2074   }
2075 
2076   if (ST->hasSSE2()) {
2077     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2078                                                    SimpleDstTy, SimpleSrcTy))
2079       return AdjustCost(Entry->Cost);
2080   }
2081 
2082   return AdjustCost(
2083       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2084 }
2085 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2086 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2087                                    CmpInst::Predicate VecPred,
2088                                    TTI::TargetCostKind CostKind,
2089                                    const Instruction *I) {
2090   // TODO: Handle other cost kinds.
2091   if (CostKind != TTI::TCK_RecipThroughput)
2092     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2093                                      I);
2094 
2095   // Legalize the type.
2096   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2097 
2098   MVT MTy = LT.second;
2099 
2100   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2101   assert(ISD && "Invalid opcode");
2102 
2103   unsigned ExtraCost = 0;
2104   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2105     // Some vector comparison predicates cost extra instructions.
2106     if (MTy.isVector() &&
2107         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2108           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2109           ST->hasBWI())) {
2110       switch (cast<CmpInst>(I)->getPredicate()) {
2111       case CmpInst::Predicate::ICMP_NE:
2112         // xor(cmpeq(x,y),-1)
2113         ExtraCost = 1;
2114         break;
2115       case CmpInst::Predicate::ICMP_SGE:
2116       case CmpInst::Predicate::ICMP_SLE:
2117         // xor(cmpgt(x,y),-1)
2118         ExtraCost = 1;
2119         break;
2120       case CmpInst::Predicate::ICMP_ULT:
2121       case CmpInst::Predicate::ICMP_UGT:
2122         // cmpgt(xor(x,signbit),xor(y,signbit))
2123         // xor(cmpeq(pmaxu(x,y),x),-1)
2124         ExtraCost = 2;
2125         break;
2126       case CmpInst::Predicate::ICMP_ULE:
2127       case CmpInst::Predicate::ICMP_UGE:
2128         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2129             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2130           // cmpeq(psubus(x,y),0)
2131           // cmpeq(pminu(x,y),x)
2132           ExtraCost = 1;
2133         } else {
2134           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2135           ExtraCost = 3;
2136         }
2137         break;
2138       default:
2139         break;
2140       }
2141     }
2142   }
2143 
2144   static const CostTblEntry SLMCostTbl[] = {
2145     // slm pcmpeq/pcmpgt throughput is 2
2146     { ISD::SETCC,   MVT::v2i64,   2 },
2147   };
2148 
2149   static const CostTblEntry AVX512BWCostTbl[] = {
2150     { ISD::SETCC,   MVT::v32i16,  1 },
2151     { ISD::SETCC,   MVT::v64i8,   1 },
2152 
2153     { ISD::SELECT,  MVT::v32i16,  1 },
2154     { ISD::SELECT,  MVT::v64i8,   1 },
2155   };
2156 
2157   static const CostTblEntry AVX512CostTbl[] = {
2158     { ISD::SETCC,   MVT::v8i64,   1 },
2159     { ISD::SETCC,   MVT::v16i32,  1 },
2160     { ISD::SETCC,   MVT::v8f64,   1 },
2161     { ISD::SETCC,   MVT::v16f32,  1 },
2162 
2163     { ISD::SELECT,  MVT::v8i64,   1 },
2164     { ISD::SELECT,  MVT::v16i32,  1 },
2165     { ISD::SELECT,  MVT::v8f64,   1 },
2166     { ISD::SELECT,  MVT::v16f32,  1 },
2167 
2168     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2169     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2170 
2171     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2172     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2173   };
2174 
2175   static const CostTblEntry AVX2CostTbl[] = {
2176     { ISD::SETCC,   MVT::v4i64,   1 },
2177     { ISD::SETCC,   MVT::v8i32,   1 },
2178     { ISD::SETCC,   MVT::v16i16,  1 },
2179     { ISD::SETCC,   MVT::v32i8,   1 },
2180 
2181     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2182     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2183     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2184     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2185   };
2186 
2187   static const CostTblEntry AVX1CostTbl[] = {
2188     { ISD::SETCC,   MVT::v4f64,   1 },
2189     { ISD::SETCC,   MVT::v8f32,   1 },
2190     // AVX1 does not support 8-wide integer compare.
2191     { ISD::SETCC,   MVT::v4i64,   4 },
2192     { ISD::SETCC,   MVT::v8i32,   4 },
2193     { ISD::SETCC,   MVT::v16i16,  4 },
2194     { ISD::SETCC,   MVT::v32i8,   4 },
2195 
2196     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2197     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2198     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2199     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2200     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2201     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2202   };
2203 
2204   static const CostTblEntry SSE42CostTbl[] = {
2205     { ISD::SETCC,   MVT::v2f64,   1 },
2206     { ISD::SETCC,   MVT::v4f32,   1 },
2207     { ISD::SETCC,   MVT::v2i64,   1 },
2208   };
2209 
2210   static const CostTblEntry SSE41CostTbl[] = {
2211     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2212     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2213     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2214     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2215     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2216     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2217   };
2218 
2219   static const CostTblEntry SSE2CostTbl[] = {
2220     { ISD::SETCC,   MVT::v2f64,   2 },
2221     { ISD::SETCC,   MVT::f64,     1 },
2222     { ISD::SETCC,   MVT::v2i64,   8 },
2223     { ISD::SETCC,   MVT::v4i32,   1 },
2224     { ISD::SETCC,   MVT::v8i16,   1 },
2225     { ISD::SETCC,   MVT::v16i8,   1 },
2226 
2227     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2228     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2229     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2230     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2231     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2232   };
2233 
2234   static const CostTblEntry SSE1CostTbl[] = {
2235     { ISD::SETCC,   MVT::v4f32,   2 },
2236     { ISD::SETCC,   MVT::f32,     1 },
2237 
2238     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2239   };
2240 
2241   if (ST->isSLM())
2242     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2243       return LT.first * (ExtraCost + Entry->Cost);
2244 
2245   if (ST->hasBWI())
2246     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2247       return LT.first * (ExtraCost + Entry->Cost);
2248 
2249   if (ST->hasAVX512())
2250     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2251       return LT.first * (ExtraCost + Entry->Cost);
2252 
2253   if (ST->hasAVX2())
2254     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2255       return LT.first * (ExtraCost + Entry->Cost);
2256 
2257   if (ST->hasAVX())
2258     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2259       return LT.first * (ExtraCost + Entry->Cost);
2260 
2261   if (ST->hasSSE42())
2262     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2263       return LT.first * (ExtraCost + Entry->Cost);
2264 
2265   if (ST->hasSSE41())
2266     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2267       return LT.first * (ExtraCost + Entry->Cost);
2268 
2269   if (ST->hasSSE2())
2270     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2271       return LT.first * (ExtraCost + Entry->Cost);
2272 
2273   if (ST->hasSSE1())
2274     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2275       return LT.first * (ExtraCost + Entry->Cost);
2276 
2277   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2278 }
2279 
getAtomicMemIntrinsicMaxElementSize() const2280 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2281 
getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2282 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2283   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2284 
2285   // Costs should match the codegen from:
2286   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2287   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2288   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2289   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2290   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2291 
2292   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2293   //       specialized in these tables yet.
2294   static const CostTblEntry AVX512CDCostTbl[] = {
2295     { ISD::CTLZ,       MVT::v8i64,   1 },
2296     { ISD::CTLZ,       MVT::v16i32,  1 },
2297     { ISD::CTLZ,       MVT::v32i16,  8 },
2298     { ISD::CTLZ,       MVT::v64i8,  20 },
2299     { ISD::CTLZ,       MVT::v4i64,   1 },
2300     { ISD::CTLZ,       MVT::v8i32,   1 },
2301     { ISD::CTLZ,       MVT::v16i16,  4 },
2302     { ISD::CTLZ,       MVT::v32i8,  10 },
2303     { ISD::CTLZ,       MVT::v2i64,   1 },
2304     { ISD::CTLZ,       MVT::v4i32,   1 },
2305     { ISD::CTLZ,       MVT::v8i16,   4 },
2306     { ISD::CTLZ,       MVT::v16i8,   4 },
2307   };
2308   static const CostTblEntry AVX512BWCostTbl[] = {
2309     { ISD::ABS,        MVT::v32i16,  1 },
2310     { ISD::ABS,        MVT::v64i8,   1 },
2311     { ISD::BITREVERSE, MVT::v8i64,   5 },
2312     { ISD::BITREVERSE, MVT::v16i32,  5 },
2313     { ISD::BITREVERSE, MVT::v32i16,  5 },
2314     { ISD::BITREVERSE, MVT::v64i8,   5 },
2315     { ISD::CTLZ,       MVT::v8i64,  23 },
2316     { ISD::CTLZ,       MVT::v16i32, 22 },
2317     { ISD::CTLZ,       MVT::v32i16, 18 },
2318     { ISD::CTLZ,       MVT::v64i8,  17 },
2319     { ISD::CTPOP,      MVT::v8i64,   7 },
2320     { ISD::CTPOP,      MVT::v16i32, 11 },
2321     { ISD::CTPOP,      MVT::v32i16,  9 },
2322     { ISD::CTPOP,      MVT::v64i8,   6 },
2323     { ISD::CTTZ,       MVT::v8i64,  10 },
2324     { ISD::CTTZ,       MVT::v16i32, 14 },
2325     { ISD::CTTZ,       MVT::v32i16, 12 },
2326     { ISD::CTTZ,       MVT::v64i8,   9 },
2327     { ISD::SADDSAT,    MVT::v32i16,  1 },
2328     { ISD::SADDSAT,    MVT::v64i8,   1 },
2329     { ISD::SMAX,       MVT::v32i16,  1 },
2330     { ISD::SMAX,       MVT::v64i8,   1 },
2331     { ISD::SMIN,       MVT::v32i16,  1 },
2332     { ISD::SMIN,       MVT::v64i8,   1 },
2333     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2334     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2335     { ISD::UADDSAT,    MVT::v32i16,  1 },
2336     { ISD::UADDSAT,    MVT::v64i8,   1 },
2337     { ISD::UMAX,       MVT::v32i16,  1 },
2338     { ISD::UMAX,       MVT::v64i8,   1 },
2339     { ISD::UMIN,       MVT::v32i16,  1 },
2340     { ISD::UMIN,       MVT::v64i8,   1 },
2341     { ISD::USUBSAT,    MVT::v32i16,  1 },
2342     { ISD::USUBSAT,    MVT::v64i8,   1 },
2343   };
2344   static const CostTblEntry AVX512CostTbl[] = {
2345     { ISD::ABS,        MVT::v8i64,   1 },
2346     { ISD::ABS,        MVT::v16i32,  1 },
2347     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2348     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2349     { ISD::ABS,        MVT::v4i64,   1 },
2350     { ISD::ABS,        MVT::v2i64,   1 },
2351     { ISD::BITREVERSE, MVT::v8i64,  36 },
2352     { ISD::BITREVERSE, MVT::v16i32, 24 },
2353     { ISD::BITREVERSE, MVT::v32i16, 10 },
2354     { ISD::BITREVERSE, MVT::v64i8,  10 },
2355     { ISD::CTLZ,       MVT::v8i64,  29 },
2356     { ISD::CTLZ,       MVT::v16i32, 35 },
2357     { ISD::CTLZ,       MVT::v32i16, 28 },
2358     { ISD::CTLZ,       MVT::v64i8,  18 },
2359     { ISD::CTPOP,      MVT::v8i64,  16 },
2360     { ISD::CTPOP,      MVT::v16i32, 24 },
2361     { ISD::CTPOP,      MVT::v32i16, 18 },
2362     { ISD::CTPOP,      MVT::v64i8,  12 },
2363     { ISD::CTTZ,       MVT::v8i64,  20 },
2364     { ISD::CTTZ,       MVT::v16i32, 28 },
2365     { ISD::CTTZ,       MVT::v32i16, 24 },
2366     { ISD::CTTZ,       MVT::v64i8,  18 },
2367     { ISD::SMAX,       MVT::v8i64,   1 },
2368     { ISD::SMAX,       MVT::v16i32,  1 },
2369     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2370     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2371     { ISD::SMAX,       MVT::v4i64,   1 },
2372     { ISD::SMAX,       MVT::v2i64,   1 },
2373     { ISD::SMIN,       MVT::v8i64,   1 },
2374     { ISD::SMIN,       MVT::v16i32,  1 },
2375     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2376     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2377     { ISD::SMIN,       MVT::v4i64,   1 },
2378     { ISD::SMIN,       MVT::v2i64,   1 },
2379     { ISD::UMAX,       MVT::v8i64,   1 },
2380     { ISD::UMAX,       MVT::v16i32,  1 },
2381     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2382     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2383     { ISD::UMAX,       MVT::v4i64,   1 },
2384     { ISD::UMAX,       MVT::v2i64,   1 },
2385     { ISD::UMIN,       MVT::v8i64,   1 },
2386     { ISD::UMIN,       MVT::v16i32,  1 },
2387     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2388     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2389     { ISD::UMIN,       MVT::v4i64,   1 },
2390     { ISD::UMIN,       MVT::v2i64,   1 },
2391     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2392     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2393     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2394     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2395     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2396     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2397     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2398     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2399     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2400     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2401     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2402     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2403     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2404     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2405     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2406     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2407     { ISD::FMAXNUM,    MVT::f32,     2 },
2408     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2409     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2410     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2411     { ISD::FMAXNUM,    MVT::f64,     2 },
2412     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2413     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2414     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2415   };
2416   static const CostTblEntry XOPCostTbl[] = {
2417     { ISD::BITREVERSE, MVT::v4i64,   4 },
2418     { ISD::BITREVERSE, MVT::v8i32,   4 },
2419     { ISD::BITREVERSE, MVT::v16i16,  4 },
2420     { ISD::BITREVERSE, MVT::v32i8,   4 },
2421     { ISD::BITREVERSE, MVT::v2i64,   1 },
2422     { ISD::BITREVERSE, MVT::v4i32,   1 },
2423     { ISD::BITREVERSE, MVT::v8i16,   1 },
2424     { ISD::BITREVERSE, MVT::v16i8,   1 },
2425     { ISD::BITREVERSE, MVT::i64,     3 },
2426     { ISD::BITREVERSE, MVT::i32,     3 },
2427     { ISD::BITREVERSE, MVT::i16,     3 },
2428     { ISD::BITREVERSE, MVT::i8,      3 }
2429   };
2430   static const CostTblEntry AVX2CostTbl[] = {
2431     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2432     { ISD::ABS,        MVT::v8i32,   1 },
2433     { ISD::ABS,        MVT::v16i16,  1 },
2434     { ISD::ABS,        MVT::v32i8,   1 },
2435     { ISD::BITREVERSE, MVT::v4i64,   5 },
2436     { ISD::BITREVERSE, MVT::v8i32,   5 },
2437     { ISD::BITREVERSE, MVT::v16i16,  5 },
2438     { ISD::BITREVERSE, MVT::v32i8,   5 },
2439     { ISD::BSWAP,      MVT::v4i64,   1 },
2440     { ISD::BSWAP,      MVT::v8i32,   1 },
2441     { ISD::BSWAP,      MVT::v16i16,  1 },
2442     { ISD::CTLZ,       MVT::v4i64,  23 },
2443     { ISD::CTLZ,       MVT::v8i32,  18 },
2444     { ISD::CTLZ,       MVT::v16i16, 14 },
2445     { ISD::CTLZ,       MVT::v32i8,   9 },
2446     { ISD::CTPOP,      MVT::v4i64,   7 },
2447     { ISD::CTPOP,      MVT::v8i32,  11 },
2448     { ISD::CTPOP,      MVT::v16i16,  9 },
2449     { ISD::CTPOP,      MVT::v32i8,   6 },
2450     { ISD::CTTZ,       MVT::v4i64,  10 },
2451     { ISD::CTTZ,       MVT::v8i32,  14 },
2452     { ISD::CTTZ,       MVT::v16i16, 12 },
2453     { ISD::CTTZ,       MVT::v32i8,   9 },
2454     { ISD::SADDSAT,    MVT::v16i16,  1 },
2455     { ISD::SADDSAT,    MVT::v32i8,   1 },
2456     { ISD::SMAX,       MVT::v8i32,   1 },
2457     { ISD::SMAX,       MVT::v16i16,  1 },
2458     { ISD::SMAX,       MVT::v32i8,   1 },
2459     { ISD::SMIN,       MVT::v8i32,   1 },
2460     { ISD::SMIN,       MVT::v16i16,  1 },
2461     { ISD::SMIN,       MVT::v32i8,   1 },
2462     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2463     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2464     { ISD::UADDSAT,    MVT::v16i16,  1 },
2465     { ISD::UADDSAT,    MVT::v32i8,   1 },
2466     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2467     { ISD::UMAX,       MVT::v8i32,   1 },
2468     { ISD::UMAX,       MVT::v16i16,  1 },
2469     { ISD::UMAX,       MVT::v32i8,   1 },
2470     { ISD::UMIN,       MVT::v8i32,   1 },
2471     { ISD::UMIN,       MVT::v16i16,  1 },
2472     { ISD::UMIN,       MVT::v32i8,   1 },
2473     { ISD::USUBSAT,    MVT::v16i16,  1 },
2474     { ISD::USUBSAT,    MVT::v32i8,   1 },
2475     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2476     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2477     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2478     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2479     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2480     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2481     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2482     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2483     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2484   };
2485   static const CostTblEntry AVX1CostTbl[] = {
2486     { ISD::ABS,        MVT::v4i64,   6 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2487     { ISD::ABS,        MVT::v8i32,   3 },
2488     { ISD::ABS,        MVT::v16i16,  3 },
2489     { ISD::ABS,        MVT::v32i8,   3 },
2490     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2491     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2492     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2493     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2494     { ISD::BSWAP,      MVT::v4i64,   4 },
2495     { ISD::BSWAP,      MVT::v8i32,   4 },
2496     { ISD::BSWAP,      MVT::v16i16,  4 },
2497     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2498     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2499     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2500     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2501     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2502     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2503     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2504     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2505     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2506     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2507     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2508     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2509     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2510     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2511     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2512     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2513     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2514     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2515     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2516     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2517     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2518     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2519     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2520     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2521     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2522     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2523     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2524     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2525     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2526     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2527     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2528     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2529     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2530     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2531     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2532     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2533     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2534     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2535     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2536     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2537     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2538     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2539     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2540     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2541     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2542     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2543   };
2544   static const CostTblEntry GLMCostTbl[] = {
2545     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2546     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2547     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2548     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2549   };
2550   static const CostTblEntry SLMCostTbl[] = {
2551     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2552     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2553     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2554     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2555   };
2556   static const CostTblEntry SSE42CostTbl[] = {
2557     { ISD::ABS,        MVT::v2i64,   3 }, // BLENDVPD(X,PSUBQ(0,X),X)
2558     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2559     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2560     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2561     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2562   };
2563   static const CostTblEntry SSE41CostTbl[] = {
2564     { ISD::SMAX,       MVT::v4i32,   1 },
2565     { ISD::SMAX,       MVT::v16i8,   1 },
2566     { ISD::SMIN,       MVT::v4i32,   1 },
2567     { ISD::SMIN,       MVT::v16i8,   1 },
2568     { ISD::UMAX,       MVT::v4i32,   1 },
2569     { ISD::UMAX,       MVT::v8i16,   1 },
2570     { ISD::UMIN,       MVT::v4i32,   1 },
2571     { ISD::UMIN,       MVT::v8i16,   1 },
2572   };
2573   static const CostTblEntry SSSE3CostTbl[] = {
2574     { ISD::ABS,        MVT::v4i32,   1 },
2575     { ISD::ABS,        MVT::v8i16,   1 },
2576     { ISD::ABS,        MVT::v16i8,   1 },
2577     { ISD::BITREVERSE, MVT::v2i64,   5 },
2578     { ISD::BITREVERSE, MVT::v4i32,   5 },
2579     { ISD::BITREVERSE, MVT::v8i16,   5 },
2580     { ISD::BITREVERSE, MVT::v16i8,   5 },
2581     { ISD::BSWAP,      MVT::v2i64,   1 },
2582     { ISD::BSWAP,      MVT::v4i32,   1 },
2583     { ISD::BSWAP,      MVT::v8i16,   1 },
2584     { ISD::CTLZ,       MVT::v2i64,  23 },
2585     { ISD::CTLZ,       MVT::v4i32,  18 },
2586     { ISD::CTLZ,       MVT::v8i16,  14 },
2587     { ISD::CTLZ,       MVT::v16i8,   9 },
2588     { ISD::CTPOP,      MVT::v2i64,   7 },
2589     { ISD::CTPOP,      MVT::v4i32,  11 },
2590     { ISD::CTPOP,      MVT::v8i16,   9 },
2591     { ISD::CTPOP,      MVT::v16i8,   6 },
2592     { ISD::CTTZ,       MVT::v2i64,  10 },
2593     { ISD::CTTZ,       MVT::v4i32,  14 },
2594     { ISD::CTTZ,       MVT::v8i16,  12 },
2595     { ISD::CTTZ,       MVT::v16i8,   9 }
2596   };
2597   static const CostTblEntry SSE2CostTbl[] = {
2598     { ISD::ABS,        MVT::v2i64,   4 },
2599     { ISD::ABS,        MVT::v4i32,   3 },
2600     { ISD::ABS,        MVT::v8i16,   3 },
2601     { ISD::ABS,        MVT::v16i8,   3 },
2602     { ISD::BITREVERSE, MVT::v2i64,  29 },
2603     { ISD::BITREVERSE, MVT::v4i32,  27 },
2604     { ISD::BITREVERSE, MVT::v8i16,  27 },
2605     { ISD::BITREVERSE, MVT::v16i8,  20 },
2606     { ISD::BSWAP,      MVT::v2i64,   7 },
2607     { ISD::BSWAP,      MVT::v4i32,   7 },
2608     { ISD::BSWAP,      MVT::v8i16,   7 },
2609     { ISD::CTLZ,       MVT::v2i64,  25 },
2610     { ISD::CTLZ,       MVT::v4i32,  26 },
2611     { ISD::CTLZ,       MVT::v8i16,  20 },
2612     { ISD::CTLZ,       MVT::v16i8,  17 },
2613     { ISD::CTPOP,      MVT::v2i64,  12 },
2614     { ISD::CTPOP,      MVT::v4i32,  15 },
2615     { ISD::CTPOP,      MVT::v8i16,  13 },
2616     { ISD::CTPOP,      MVT::v16i8,  10 },
2617     { ISD::CTTZ,       MVT::v2i64,  14 },
2618     { ISD::CTTZ,       MVT::v4i32,  18 },
2619     { ISD::CTTZ,       MVT::v8i16,  16 },
2620     { ISD::CTTZ,       MVT::v16i8,  13 },
2621     { ISD::SADDSAT,    MVT::v8i16,   1 },
2622     { ISD::SADDSAT,    MVT::v16i8,   1 },
2623     { ISD::SMAX,       MVT::v8i16,   1 },
2624     { ISD::SMIN,       MVT::v8i16,   1 },
2625     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2626     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2627     { ISD::UADDSAT,    MVT::v8i16,   1 },
2628     { ISD::UADDSAT,    MVT::v16i8,   1 },
2629     { ISD::UMAX,       MVT::v8i16,   2 },
2630     { ISD::UMAX,       MVT::v16i8,   1 },
2631     { ISD::UMIN,       MVT::v8i16,   2 },
2632     { ISD::UMIN,       MVT::v16i8,   1 },
2633     { ISD::USUBSAT,    MVT::v8i16,   1 },
2634     { ISD::USUBSAT,    MVT::v16i8,   1 },
2635     { ISD::FMAXNUM,    MVT::f64,     4 },
2636     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2637     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2638     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2639   };
2640   static const CostTblEntry SSE1CostTbl[] = {
2641     { ISD::FMAXNUM,    MVT::f32,     4 },
2642     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2643     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2644     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2645   };
2646   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2647     { ISD::CTTZ,       MVT::i64,     1 },
2648   };
2649   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2650     { ISD::CTTZ,       MVT::i32,     1 },
2651     { ISD::CTTZ,       MVT::i16,     1 },
2652     { ISD::CTTZ,       MVT::i8,      1 },
2653   };
2654   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2655     { ISD::CTLZ,       MVT::i64,     1 },
2656   };
2657   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2658     { ISD::CTLZ,       MVT::i32,     1 },
2659     { ISD::CTLZ,       MVT::i16,     1 },
2660     { ISD::CTLZ,       MVT::i8,      1 },
2661   };
2662   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2663     { ISD::CTPOP,      MVT::i64,     1 },
2664   };
2665   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2666     { ISD::CTPOP,      MVT::i32,     1 },
2667     { ISD::CTPOP,      MVT::i16,     1 },
2668     { ISD::CTPOP,      MVT::i8,      1 },
2669   };
2670   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2671     { ISD::BITREVERSE, MVT::i64,    14 },
2672     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2673     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2674     { ISD::CTPOP,      MVT::i64,    10 },
2675     { ISD::SADDO,      MVT::i64,     1 },
2676     { ISD::UADDO,      MVT::i64,     1 },
2677     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2678   };
2679   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2680     { ISD::BITREVERSE, MVT::i32,    14 },
2681     { ISD::BITREVERSE, MVT::i16,    14 },
2682     { ISD::BITREVERSE, MVT::i8,     11 },
2683     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2684     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2685     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2686     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2687     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2688     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2689     { ISD::CTPOP,      MVT::i32,     8 },
2690     { ISD::CTPOP,      MVT::i16,     9 },
2691     { ISD::CTPOP,      MVT::i8,      7 },
2692     { ISD::SADDO,      MVT::i32,     1 },
2693     { ISD::SADDO,      MVT::i16,     1 },
2694     { ISD::SADDO,      MVT::i8,      1 },
2695     { ISD::UADDO,      MVT::i32,     1 },
2696     { ISD::UADDO,      MVT::i16,     1 },
2697     { ISD::UADDO,      MVT::i8,      1 },
2698     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2699     { ISD::UMULO,      MVT::i16,     2 },
2700     { ISD::UMULO,      MVT::i8,      2 },
2701   };
2702 
2703   Type *RetTy = ICA.getReturnType();
2704   Type *OpTy = RetTy;
2705   Intrinsic::ID IID = ICA.getID();
2706   unsigned ISD = ISD::DELETED_NODE;
2707   switch (IID) {
2708   default:
2709     break;
2710   case Intrinsic::abs:
2711     ISD = ISD::ABS;
2712     break;
2713   case Intrinsic::bitreverse:
2714     ISD = ISD::BITREVERSE;
2715     break;
2716   case Intrinsic::bswap:
2717     ISD = ISD::BSWAP;
2718     break;
2719   case Intrinsic::ctlz:
2720     ISD = ISD::CTLZ;
2721     break;
2722   case Intrinsic::ctpop:
2723     ISD = ISD::CTPOP;
2724     break;
2725   case Intrinsic::cttz:
2726     ISD = ISD::CTTZ;
2727     break;
2728   case Intrinsic::maxnum:
2729   case Intrinsic::minnum:
2730     // FMINNUM has same costs so don't duplicate.
2731     ISD = ISD::FMAXNUM;
2732     break;
2733   case Intrinsic::sadd_sat:
2734     ISD = ISD::SADDSAT;
2735     break;
2736   case Intrinsic::smax:
2737     ISD = ISD::SMAX;
2738     break;
2739   case Intrinsic::smin:
2740     ISD = ISD::SMIN;
2741     break;
2742   case Intrinsic::ssub_sat:
2743     ISD = ISD::SSUBSAT;
2744     break;
2745   case Intrinsic::uadd_sat:
2746     ISD = ISD::UADDSAT;
2747     break;
2748   case Intrinsic::umax:
2749     ISD = ISD::UMAX;
2750     break;
2751   case Intrinsic::umin:
2752     ISD = ISD::UMIN;
2753     break;
2754   case Intrinsic::usub_sat:
2755     ISD = ISD::USUBSAT;
2756     break;
2757   case Intrinsic::sqrt:
2758     ISD = ISD::FSQRT;
2759     break;
2760   case Intrinsic::sadd_with_overflow:
2761   case Intrinsic::ssub_with_overflow:
2762     // SSUBO has same costs so don't duplicate.
2763     ISD = ISD::SADDO;
2764     OpTy = RetTy->getContainedType(0);
2765     break;
2766   case Intrinsic::uadd_with_overflow:
2767   case Intrinsic::usub_with_overflow:
2768     // USUBO has same costs so don't duplicate.
2769     ISD = ISD::UADDO;
2770     OpTy = RetTy->getContainedType(0);
2771     break;
2772   case Intrinsic::umul_with_overflow:
2773   case Intrinsic::smul_with_overflow:
2774     // SMULO has same costs so don't duplicate.
2775     ISD = ISD::UMULO;
2776     OpTy = RetTy->getContainedType(0);
2777     break;
2778   }
2779 
2780   if (ISD != ISD::DELETED_NODE) {
2781     // Legalize the type.
2782     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2783     MVT MTy = LT.second;
2784 
2785     // Attempt to lookup cost.
2786     if (ST->useGLMDivSqrtCosts())
2787       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2788         return LT.first * Entry->Cost;
2789 
2790     if (ST->isSLM())
2791       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2792         return LT.first * Entry->Cost;
2793 
2794     if (ST->hasCDI())
2795       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2796         return LT.first * Entry->Cost;
2797 
2798     if (ST->hasBWI())
2799       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2800         return LT.first * Entry->Cost;
2801 
2802     if (ST->hasAVX512())
2803       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2804         return LT.first * Entry->Cost;
2805 
2806     if (ST->hasXOP())
2807       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2808         return LT.first * Entry->Cost;
2809 
2810     if (ST->hasAVX2())
2811       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2812         return LT.first * Entry->Cost;
2813 
2814     if (ST->hasAVX())
2815       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2816         return LT.first * Entry->Cost;
2817 
2818     if (ST->hasSSE42())
2819       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2820         return LT.first * Entry->Cost;
2821 
2822     if (ST->hasSSE41())
2823       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2824         return LT.first * Entry->Cost;
2825 
2826     if (ST->hasSSSE3())
2827       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2828         return LT.first * Entry->Cost;
2829 
2830     if (ST->hasSSE2())
2831       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2832         return LT.first * Entry->Cost;
2833 
2834     if (ST->hasSSE1())
2835       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2836         return LT.first * Entry->Cost;
2837 
2838     if (ST->hasBMI()) {
2839       if (ST->is64Bit())
2840         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2841           return LT.first * Entry->Cost;
2842 
2843       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2844         return LT.first * Entry->Cost;
2845     }
2846 
2847     if (ST->hasLZCNT()) {
2848       if (ST->is64Bit())
2849         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2850           return LT.first * Entry->Cost;
2851 
2852       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2853         return LT.first * Entry->Cost;
2854     }
2855 
2856     if (ST->hasPOPCNT()) {
2857       if (ST->is64Bit())
2858         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2859           return LT.first * Entry->Cost;
2860 
2861       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2862         return LT.first * Entry->Cost;
2863     }
2864 
2865     // TODO - add BMI (TZCNT) scalar handling
2866 
2867     if (ST->is64Bit())
2868       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2869         return LT.first * Entry->Cost;
2870 
2871     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2872       return LT.first * Entry->Cost;
2873   }
2874 
2875   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2876 }
2877 
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2878 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2879                                       TTI::TargetCostKind CostKind) {
2880   if (ICA.isTypeBasedOnly())
2881     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2882 
2883   static const CostTblEntry AVX512CostTbl[] = {
2884     { ISD::ROTL,       MVT::v8i64,   1 },
2885     { ISD::ROTL,       MVT::v4i64,   1 },
2886     { ISD::ROTL,       MVT::v2i64,   1 },
2887     { ISD::ROTL,       MVT::v16i32,  1 },
2888     { ISD::ROTL,       MVT::v8i32,   1 },
2889     { ISD::ROTL,       MVT::v4i32,   1 },
2890     { ISD::ROTR,       MVT::v8i64,   1 },
2891     { ISD::ROTR,       MVT::v4i64,   1 },
2892     { ISD::ROTR,       MVT::v2i64,   1 },
2893     { ISD::ROTR,       MVT::v16i32,  1 },
2894     { ISD::ROTR,       MVT::v8i32,   1 },
2895     { ISD::ROTR,       MVT::v4i32,   1 }
2896   };
2897   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2898   static const CostTblEntry XOPCostTbl[] = {
2899     { ISD::ROTL,       MVT::v4i64,   4 },
2900     { ISD::ROTL,       MVT::v8i32,   4 },
2901     { ISD::ROTL,       MVT::v16i16,  4 },
2902     { ISD::ROTL,       MVT::v32i8,   4 },
2903     { ISD::ROTL,       MVT::v2i64,   1 },
2904     { ISD::ROTL,       MVT::v4i32,   1 },
2905     { ISD::ROTL,       MVT::v8i16,   1 },
2906     { ISD::ROTL,       MVT::v16i8,   1 },
2907     { ISD::ROTR,       MVT::v4i64,   6 },
2908     { ISD::ROTR,       MVT::v8i32,   6 },
2909     { ISD::ROTR,       MVT::v16i16,  6 },
2910     { ISD::ROTR,       MVT::v32i8,   6 },
2911     { ISD::ROTR,       MVT::v2i64,   2 },
2912     { ISD::ROTR,       MVT::v4i32,   2 },
2913     { ISD::ROTR,       MVT::v8i16,   2 },
2914     { ISD::ROTR,       MVT::v16i8,   2 }
2915   };
2916   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2917     { ISD::ROTL,       MVT::i64,     1 },
2918     { ISD::ROTR,       MVT::i64,     1 },
2919     { ISD::FSHL,       MVT::i64,     4 }
2920   };
2921   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2922     { ISD::ROTL,       MVT::i32,     1 },
2923     { ISD::ROTL,       MVT::i16,     1 },
2924     { ISD::ROTL,       MVT::i8,      1 },
2925     { ISD::ROTR,       MVT::i32,     1 },
2926     { ISD::ROTR,       MVT::i16,     1 },
2927     { ISD::ROTR,       MVT::i8,      1 },
2928     { ISD::FSHL,       MVT::i32,     4 },
2929     { ISD::FSHL,       MVT::i16,     4 },
2930     { ISD::FSHL,       MVT::i8,      4 }
2931   };
2932 
2933   Intrinsic::ID IID = ICA.getID();
2934   Type *RetTy = ICA.getReturnType();
2935   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2936   unsigned ISD = ISD::DELETED_NODE;
2937   switch (IID) {
2938   default:
2939     break;
2940   case Intrinsic::fshl:
2941     ISD = ISD::FSHL;
2942     if (Args[0] == Args[1])
2943       ISD = ISD::ROTL;
2944     break;
2945   case Intrinsic::fshr:
2946     // FSHR has same costs so don't duplicate.
2947     ISD = ISD::FSHL;
2948     if (Args[0] == Args[1])
2949       ISD = ISD::ROTR;
2950     break;
2951   }
2952 
2953   if (ISD != ISD::DELETED_NODE) {
2954     // Legalize the type.
2955     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2956     MVT MTy = LT.second;
2957 
2958     // Attempt to lookup cost.
2959     if (ST->hasAVX512())
2960       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2961         return LT.first * Entry->Cost;
2962 
2963     if (ST->hasXOP())
2964       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2965         return LT.first * Entry->Cost;
2966 
2967     if (ST->is64Bit())
2968       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2969         return LT.first * Entry->Cost;
2970 
2971     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2972       return LT.first * Entry->Cost;
2973   }
2974 
2975   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2976 }
2977 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)2978 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2979   static const CostTblEntry SLMCostTbl[] = {
2980      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2981      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2982      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2983      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2984    };
2985 
2986   assert(Val->isVectorTy() && "This must be a vector type");
2987   Type *ScalarType = Val->getScalarType();
2988   int RegisterFileMoveCost = 0;
2989 
2990   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2991                        Opcode == Instruction::InsertElement)) {
2992     // Legalize the type.
2993     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2994 
2995     // This type is legalized to a scalar type.
2996     if (!LT.second.isVector())
2997       return 0;
2998 
2999     // The type may be split. Normalize the index to the new type.
3000     unsigned NumElts = LT.second.getVectorNumElements();
3001     unsigned SubNumElts = NumElts;
3002     Index = Index % NumElts;
3003 
3004     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3005     // For inserts, we also need to insert the subvector back.
3006     if (LT.second.getSizeInBits() > 128) {
3007       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3008       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3009       SubNumElts = NumElts / NumSubVecs;
3010       if (SubNumElts <= Index) {
3011         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3012         Index %= SubNumElts;
3013       }
3014     }
3015 
3016     if (Index == 0) {
3017       // Floating point scalars are already located in index #0.
3018       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3019       // true for all.
3020       if (ScalarType->isFloatingPointTy())
3021         return RegisterFileMoveCost;
3022 
3023       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3024       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3025         return 1 + RegisterFileMoveCost;
3026     }
3027 
3028     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3029     assert(ISD && "Unexpected vector opcode");
3030     MVT MScalarTy = LT.second.getScalarType();
3031     if (ST->isSLM())
3032       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3033         return Entry->Cost + RegisterFileMoveCost;
3034 
3035     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3036     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3037         (MScalarTy.isInteger() && ST->hasSSE41()))
3038       return 1 + RegisterFileMoveCost;
3039 
3040     // Assume insertps is relatively cheap on all targets.
3041     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3042         Opcode == Instruction::InsertElement)
3043       return 1 + RegisterFileMoveCost;
3044 
3045     // For extractions we just need to shuffle the element to index 0, which
3046     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3047     // the elements to its destination. In both cases we must handle the
3048     // subvector move(s).
3049     // If the vector type is already less than 128-bits then don't reduce it.
3050     // TODO: Under what circumstances should we shuffle using the full width?
3051     int ShuffleCost = 1;
3052     if (Opcode == Instruction::InsertElement) {
3053       auto *SubTy = cast<VectorType>(Val);
3054       EVT VT = TLI->getValueType(DL, Val);
3055       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3056         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3057       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
3058     }
3059     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3060     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3061   }
3062 
3063   // Add to the base cost if we know that the extracted element of a vector is
3064   // destined to be moved to and used in the integer register file.
3065   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3066     RegisterFileMoveCost += 1;
3067 
3068   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3069 }
3070 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract)3071 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3072                                               const APInt &DemandedElts,
3073                                               bool Insert, bool Extract) {
3074   unsigned Cost = 0;
3075 
3076   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3077   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3078   if (Insert) {
3079     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3080     MVT MScalarTy = LT.second.getScalarType();
3081 
3082     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3083         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3084         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3085       // For types we can insert directly, insertion into 128-bit sub vectors is
3086       // cheap, followed by a cheap chain of concatenations.
3087       if (LT.second.getSizeInBits() <= 128) {
3088         Cost +=
3089             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3090       } else {
3091         // In each 128-lane, if at least one index is demanded but not all
3092         // indices are demanded and this 128-lane is not the first 128-lane of
3093         // the legalized-vector, then this 128-lane needs a extracti128; If in
3094         // each 128-lane, there is at least one demanded index, this 128-lane
3095         // needs a inserti128.
3096 
3097         // The following cases will help you build a better understanding:
3098         // Assume we insert several elements into a v8i32 vector in avx2,
3099         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3100         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3101         // inserti128.
3102         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3103         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first;
3104         unsigned NumElts = LT.second.getVectorNumElements() * LT.first;
3105         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3106         unsigned Scale = NumElts / Num128Lanes;
3107         // We iterate each 128-lane, and check if we need a
3108         // extracti128/inserti128 for this 128-lane.
3109         for (unsigned I = 0; I < NumElts; I += Scale) {
3110           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3111           APInt MaskedDE = Mask & WidenedDemandedElts;
3112           unsigned Population = MaskedDE.countPopulation();
3113           Cost += (Population > 0 && Population != Scale &&
3114                    I % LT.second.getVectorNumElements() != 0);
3115           Cost += Population > 0;
3116         }
3117         Cost += DemandedElts.countPopulation();
3118 
3119         // For vXf32 cases, insertion into the 0'th index in each v4f32
3120         // 128-bit vector is free.
3121         // NOTE: This assumes legalization widens vXf32 vectors.
3122         if (MScalarTy == MVT::f32)
3123           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3124                i < e; i += 4)
3125             if (DemandedElts[i])
3126               Cost--;
3127       }
3128     } else if (LT.second.isVector()) {
3129       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3130       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3131       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3132       // considered cheap.
3133       if (Ty->isIntOrIntVectorTy())
3134         Cost += DemandedElts.countPopulation();
3135 
3136       // Get the smaller of the legalized or original pow2-extended number of
3137       // vector elements, which represents the number of unpacks we'll end up
3138       // performing.
3139       unsigned NumElts = LT.second.getVectorNumElements();
3140       unsigned Pow2Elts =
3141           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3142       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3143     }
3144   }
3145 
3146   // TODO: Use default extraction for now, but we should investigate extending this
3147   // to handle repeated subvector extraction.
3148   if (Extract)
3149     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3150 
3151   return Cost;
3152 }
3153 
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)3154 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3155                                 MaybeAlign Alignment, unsigned AddressSpace,
3156                                 TTI::TargetCostKind CostKind,
3157                                 const Instruction *I) {
3158   // TODO: Handle other cost kinds.
3159   if (CostKind != TTI::TCK_RecipThroughput) {
3160     if (isa_and_nonnull<StoreInst>(I)) {
3161       Value *Ptr = I->getOperand(1);
3162       // Store instruction with index and scale costs 2 Uops.
3163       // Check the preceding GEP to identify non-const indices.
3164       if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3165         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3166           return TTI::TCC_Basic * 2;
3167       }
3168     }
3169     return TTI::TCC_Basic;
3170   }
3171 
3172   // Handle non-power-of-two vectors such as <3 x float>
3173   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3174     unsigned NumElem = VTy->getNumElements();
3175 
3176     // Handle a few common cases:
3177     // <3 x float>
3178     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3179       // Cost = 64 bit store + extract + 32 bit store.
3180       return 3;
3181 
3182     // <3 x double>
3183     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3184       // Cost = 128 bit store + unpack + 64 bit store.
3185       return 3;
3186 
3187     // Assume that all other non-power-of-two numbers are scalarized.
3188     if (!isPowerOf2_32(NumElem)) {
3189       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3190       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3191                                         AddressSpace, CostKind);
3192       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3193                                                Opcode == Instruction::Load,
3194                                                Opcode == Instruction::Store);
3195       return NumElem * Cost + SplitCost;
3196     }
3197   }
3198 
3199   // Type legalization can't handle structs
3200   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3201     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3202                                   CostKind);
3203 
3204   // Legalize the type.
3205   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3206   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3207          "Invalid Opcode");
3208 
3209   // Each load/store unit costs 1.
3210   int Cost = LT.first * 1;
3211 
3212   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3213   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3214   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3215     Cost *= 2;
3216 
3217   return Cost;
3218 }
3219 
getMaskedMemoryOpCost(unsigned Opcode,Type * SrcTy,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)3220 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3221                                       Align Alignment, unsigned AddressSpace,
3222                                       TTI::TargetCostKind CostKind) {
3223   bool IsLoad = (Instruction::Load == Opcode);
3224   bool IsStore = (Instruction::Store == Opcode);
3225 
3226   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3227   if (!SrcVTy)
3228     // To calculate scalar take the regular cost, without mask
3229     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3230 
3231   unsigned NumElem = SrcVTy->getNumElements();
3232   auto *MaskTy =
3233       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3234   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3235       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3236       !isPowerOf2_32(NumElem)) {
3237     // Scalarization
3238     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3239     int MaskSplitCost =
3240         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3241     int ScalarCompareCost = getCmpSelInstrCost(
3242         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3243         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3244     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3245     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3246     int ValueSplitCost =
3247         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3248     int MemopCost =
3249         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3250                                          Alignment, AddressSpace, CostKind);
3251     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3252   }
3253 
3254   // Legalize the type.
3255   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3256   auto VT = TLI->getValueType(DL, SrcVTy);
3257   int Cost = 0;
3258   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3259       LT.second.getVectorNumElements() == NumElem)
3260     // Promotion requires expand/truncate for data and a shuffle for mask.
3261     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3262             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3263 
3264   else if (LT.second.getVectorNumElements() > NumElem) {
3265     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3266                                            LT.second.getVectorNumElements());
3267     // Expanding requires fill mask with zeroes
3268     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3269   }
3270 
3271   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3272   if (!ST->hasAVX512())
3273     return Cost + LT.first * (IsLoad ? 2 : 8);
3274 
3275   // AVX-512 masked load/store is cheapper
3276   return Cost + LT.first;
3277 }
3278 
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)3279 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3280                                           const SCEV *Ptr) {
3281   // Address computations in vectorized code with non-consecutive addresses will
3282   // likely result in more instructions compared to scalar code where the
3283   // computation can more often be merged into the index mode. The resulting
3284   // extra micro-ops can significantly decrease throughput.
3285   const unsigned NumVectorInstToHideOverhead = 10;
3286 
3287   // Cost modeling of Strided Access Computation is hidden by the indexing
3288   // modes of X86 regardless of the stride value. We dont believe that there
3289   // is a difference between constant strided access in gerenal and constant
3290   // strided value which is less than or equal to 64.
3291   // Even in the case of (loop invariant) stride whose value is not known at
3292   // compile time, the address computation will not incur more than one extra
3293   // ADD instruction.
3294   if (Ty->isVectorTy() && SE) {
3295     if (!BaseT::isStridedAccess(Ptr))
3296       return NumVectorInstToHideOverhead;
3297     if (!BaseT::getConstantStrideStep(SE, Ptr))
3298       return 1;
3299   }
3300 
3301   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3302 }
3303 
getArithmeticReductionCost(unsigned Opcode,VectorType * ValTy,bool IsPairwise,TTI::TargetCostKind CostKind)3304 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3305                                            bool IsPairwise,
3306                                            TTI::TargetCostKind CostKind) {
3307   // Just use the default implementation for pair reductions.
3308   if (IsPairwise)
3309     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3310 
3311   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3312   // and make it as the cost.
3313 
3314   static const CostTblEntry SLMCostTblNoPairWise[] = {
3315     { ISD::FADD,  MVT::v2f64,   3 },
3316     { ISD::ADD,   MVT::v2i64,   5 },
3317   };
3318 
3319   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3320     { ISD::FADD,  MVT::v2f64,   2 },
3321     { ISD::FADD,  MVT::v4f32,   4 },
3322     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3323     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3324     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3325     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3326     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3327     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3328     { ISD::ADD,   MVT::v2i8,    2 },
3329     { ISD::ADD,   MVT::v4i8,    2 },
3330     { ISD::ADD,   MVT::v8i8,    2 },
3331     { ISD::ADD,   MVT::v16i8,   3 },
3332   };
3333 
3334   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3335     { ISD::FADD,  MVT::v4f64,   3 },
3336     { ISD::FADD,  MVT::v4f32,   3 },
3337     { ISD::FADD,  MVT::v8f32,   4 },
3338     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3339     { ISD::ADD,   MVT::v4i64,   3 },
3340     { ISD::ADD,   MVT::v8i32,   5 },
3341     { ISD::ADD,   MVT::v16i16,  5 },
3342     { ISD::ADD,   MVT::v32i8,   4 },
3343   };
3344 
3345   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3346   assert(ISD && "Invalid opcode");
3347 
3348   // Before legalizing the type, give a chance to look up illegal narrow types
3349   // in the table.
3350   // FIXME: Is there a better way to do this?
3351   EVT VT = TLI->getValueType(DL, ValTy);
3352   if (VT.isSimple()) {
3353     MVT MTy = VT.getSimpleVT();
3354     if (ST->isSLM())
3355       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3356         return Entry->Cost;
3357 
3358     if (ST->hasAVX())
3359       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3360         return Entry->Cost;
3361 
3362     if (ST->hasSSE2())
3363       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3364         return Entry->Cost;
3365   }
3366 
3367   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3368 
3369   MVT MTy = LT.second;
3370 
3371   auto *ValVTy = cast<FixedVectorType>(ValTy);
3372 
3373   unsigned ArithmeticCost = 0;
3374   if (LT.first != 1 && MTy.isVector() &&
3375       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3376     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3377     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3378                                             MTy.getVectorNumElements());
3379     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3380     ArithmeticCost *= LT.first - 1;
3381   }
3382 
3383   if (ST->isSLM())
3384     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3385       return ArithmeticCost + Entry->Cost;
3386 
3387   if (ST->hasAVX())
3388     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3389       return ArithmeticCost + Entry->Cost;
3390 
3391   if (ST->hasSSE2())
3392     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3393       return ArithmeticCost + Entry->Cost;
3394 
3395   // FIXME: These assume a naive kshift+binop lowering, which is probably
3396   // conservative in most cases.
3397   static const CostTblEntry AVX512BoolReduction[] = {
3398     { ISD::AND,  MVT::v2i1,   3 },
3399     { ISD::AND,  MVT::v4i1,   5 },
3400     { ISD::AND,  MVT::v8i1,   7 },
3401     { ISD::AND,  MVT::v16i1,  9 },
3402     { ISD::AND,  MVT::v32i1, 11 },
3403     { ISD::AND,  MVT::v64i1, 13 },
3404     { ISD::OR,   MVT::v2i1,   3 },
3405     { ISD::OR,   MVT::v4i1,   5 },
3406     { ISD::OR,   MVT::v8i1,   7 },
3407     { ISD::OR,   MVT::v16i1,  9 },
3408     { ISD::OR,   MVT::v32i1, 11 },
3409     { ISD::OR,   MVT::v64i1, 13 },
3410   };
3411 
3412   static const CostTblEntry AVX2BoolReduction[] = {
3413     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3414     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3415     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3416     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3417   };
3418 
3419   static const CostTblEntry AVX1BoolReduction[] = {
3420     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3421     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3422     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3423     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3424     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3425     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3426     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3427     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3428   };
3429 
3430   static const CostTblEntry SSE2BoolReduction[] = {
3431     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3432     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3433     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3434     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3435     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3436     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3437     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3438     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3439   };
3440 
3441   // Handle bool allof/anyof patterns.
3442   if (ValVTy->getElementType()->isIntegerTy(1)) {
3443     unsigned ArithmeticCost = 0;
3444     if (LT.first != 1 && MTy.isVector() &&
3445         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3446       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3447       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3448                                               MTy.getVectorNumElements());
3449       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3450       ArithmeticCost *= LT.first - 1;
3451     }
3452 
3453     if (ST->hasAVX512())
3454       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3455         return ArithmeticCost + Entry->Cost;
3456     if (ST->hasAVX2())
3457       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3458         return ArithmeticCost + Entry->Cost;
3459     if (ST->hasAVX())
3460       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3461         return ArithmeticCost + Entry->Cost;
3462     if (ST->hasSSE2())
3463       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3464         return ArithmeticCost + Entry->Cost;
3465 
3466     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3467                                              CostKind);
3468   }
3469 
3470   unsigned NumVecElts = ValVTy->getNumElements();
3471   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3472 
3473   // Special case power of 2 reductions where the scalar type isn't changed
3474   // by type legalization.
3475   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3476     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3477                                              CostKind);
3478 
3479   unsigned ReductionCost = 0;
3480 
3481   auto *Ty = ValVTy;
3482   if (LT.first != 1 && MTy.isVector() &&
3483       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3484     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3485     Ty = FixedVectorType::get(ValVTy->getElementType(),
3486                               MTy.getVectorNumElements());
3487     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3488     ReductionCost *= LT.first - 1;
3489     NumVecElts = MTy.getVectorNumElements();
3490   }
3491 
3492   // Now handle reduction with the legal type, taking into account size changes
3493   // at each level.
3494   while (NumVecElts > 1) {
3495     // Determine the size of the remaining vector we need to reduce.
3496     unsigned Size = NumVecElts * ScalarSize;
3497     NumVecElts /= 2;
3498     // If we're reducing from 256/512 bits, use an extract_subvector.
3499     if (Size > 128) {
3500       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3501       ReductionCost +=
3502           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3503       Ty = SubTy;
3504     } else if (Size == 128) {
3505       // Reducing from 128 bits is a permute of v2f64/v2i64.
3506       FixedVectorType *ShufTy;
3507       if (ValVTy->isFloatingPointTy())
3508         ShufTy =
3509             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3510       else
3511         ShufTy =
3512             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3513       ReductionCost +=
3514           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3515     } else if (Size == 64) {
3516       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3517       FixedVectorType *ShufTy;
3518       if (ValVTy->isFloatingPointTy())
3519         ShufTy =
3520             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3521       else
3522         ShufTy =
3523             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3524       ReductionCost +=
3525           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3526     } else {
3527       // Reducing from smaller size is a shift by immediate.
3528       auto *ShiftTy = FixedVectorType::get(
3529           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3530       ReductionCost += getArithmeticInstrCost(
3531           Instruction::LShr, ShiftTy, CostKind,
3532           TargetTransformInfo::OK_AnyValue,
3533           TargetTransformInfo::OK_UniformConstantValue,
3534           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3535     }
3536 
3537     // Add the arithmetic op for this level.
3538     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3539   }
3540 
3541   // Add the final extract element to the cost.
3542   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3543 }
3544 
getMinMaxCost(Type * Ty,Type * CondTy,bool IsUnsigned)3545 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3546   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3547 
3548   MVT MTy = LT.second;
3549 
3550   int ISD;
3551   if (Ty->isIntOrIntVectorTy()) {
3552     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3553   } else {
3554     assert(Ty->isFPOrFPVectorTy() &&
3555            "Expected float point or integer vector type.");
3556     ISD = ISD::FMINNUM;
3557   }
3558 
3559   static const CostTblEntry SSE1CostTbl[] = {
3560     {ISD::FMINNUM, MVT::v4f32, 1},
3561   };
3562 
3563   static const CostTblEntry SSE2CostTbl[] = {
3564     {ISD::FMINNUM, MVT::v2f64, 1},
3565     {ISD::SMIN,    MVT::v8i16, 1},
3566     {ISD::UMIN,    MVT::v16i8, 1},
3567   };
3568 
3569   static const CostTblEntry SSE41CostTbl[] = {
3570     {ISD::SMIN,    MVT::v4i32, 1},
3571     {ISD::UMIN,    MVT::v4i32, 1},
3572     {ISD::UMIN,    MVT::v8i16, 1},
3573     {ISD::SMIN,    MVT::v16i8, 1},
3574   };
3575 
3576   static const CostTblEntry SSE42CostTbl[] = {
3577     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3578   };
3579 
3580   static const CostTblEntry AVX1CostTbl[] = {
3581     {ISD::FMINNUM, MVT::v8f32,  1},
3582     {ISD::FMINNUM, MVT::v4f64,  1},
3583     {ISD::SMIN,    MVT::v8i32,  3},
3584     {ISD::UMIN,    MVT::v8i32,  3},
3585     {ISD::SMIN,    MVT::v16i16, 3},
3586     {ISD::UMIN,    MVT::v16i16, 3},
3587     {ISD::SMIN,    MVT::v32i8,  3},
3588     {ISD::UMIN,    MVT::v32i8,  3},
3589   };
3590 
3591   static const CostTblEntry AVX2CostTbl[] = {
3592     {ISD::SMIN,    MVT::v8i32,  1},
3593     {ISD::UMIN,    MVT::v8i32,  1},
3594     {ISD::SMIN,    MVT::v16i16, 1},
3595     {ISD::UMIN,    MVT::v16i16, 1},
3596     {ISD::SMIN,    MVT::v32i8,  1},
3597     {ISD::UMIN,    MVT::v32i8,  1},
3598   };
3599 
3600   static const CostTblEntry AVX512CostTbl[] = {
3601     {ISD::FMINNUM, MVT::v16f32, 1},
3602     {ISD::FMINNUM, MVT::v8f64,  1},
3603     {ISD::SMIN,    MVT::v2i64,  1},
3604     {ISD::UMIN,    MVT::v2i64,  1},
3605     {ISD::SMIN,    MVT::v4i64,  1},
3606     {ISD::UMIN,    MVT::v4i64,  1},
3607     {ISD::SMIN,    MVT::v8i64,  1},
3608     {ISD::UMIN,    MVT::v8i64,  1},
3609     {ISD::SMIN,    MVT::v16i32, 1},
3610     {ISD::UMIN,    MVT::v16i32, 1},
3611   };
3612 
3613   static const CostTblEntry AVX512BWCostTbl[] = {
3614     {ISD::SMIN,    MVT::v32i16, 1},
3615     {ISD::UMIN,    MVT::v32i16, 1},
3616     {ISD::SMIN,    MVT::v64i8,  1},
3617     {ISD::UMIN,    MVT::v64i8,  1},
3618   };
3619 
3620   // If we have a native MIN/MAX instruction for this type, use it.
3621   if (ST->hasBWI())
3622     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3623       return LT.first * Entry->Cost;
3624 
3625   if (ST->hasAVX512())
3626     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3627       return LT.first * Entry->Cost;
3628 
3629   if (ST->hasAVX2())
3630     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3631       return LT.first * Entry->Cost;
3632 
3633   if (ST->hasAVX())
3634     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3635       return LT.first * Entry->Cost;
3636 
3637   if (ST->hasSSE42())
3638     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3639       return LT.first * Entry->Cost;
3640 
3641   if (ST->hasSSE41())
3642     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3643       return LT.first * Entry->Cost;
3644 
3645   if (ST->hasSSE2())
3646     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3647       return LT.first * Entry->Cost;
3648 
3649   if (ST->hasSSE1())
3650     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3651       return LT.first * Entry->Cost;
3652 
3653   unsigned CmpOpcode;
3654   if (Ty->isFPOrFPVectorTy()) {
3655     CmpOpcode = Instruction::FCmp;
3656   } else {
3657     assert(Ty->isIntOrIntVectorTy() &&
3658            "expecting floating point or integer type for min/max reduction");
3659     CmpOpcode = Instruction::ICmp;
3660   }
3661 
3662   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3663   // Otherwise fall back to cmp+select.
3664   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
3665                             CostKind) +
3666          getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
3667                             CmpInst::BAD_ICMP_PREDICATE, CostKind);
3668 }
3669 
getMinMaxReductionCost(VectorType * ValTy,VectorType * CondTy,bool IsPairwise,bool IsUnsigned,TTI::TargetCostKind CostKind)3670 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3671                                        bool IsPairwise, bool IsUnsigned,
3672                                        TTI::TargetCostKind CostKind) {
3673   // Just use the default implementation for pair reductions.
3674   if (IsPairwise)
3675     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3676                                          CostKind);
3677 
3678   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3679 
3680   MVT MTy = LT.second;
3681 
3682   int ISD;
3683   if (ValTy->isIntOrIntVectorTy()) {
3684     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3685   } else {
3686     assert(ValTy->isFPOrFPVectorTy() &&
3687            "Expected float point or integer vector type.");
3688     ISD = ISD::FMINNUM;
3689   }
3690 
3691   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3692   // and make it as the cost.
3693 
3694   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3695       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3696       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3697       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3698   };
3699 
3700   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3701       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3702       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3703       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3704       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3705       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3706       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3707       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3708       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3709       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3710       {ISD::SMIN, MVT::v16i8, 6},
3711       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3712       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3713       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3714       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3715   };
3716 
3717   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3718       {ISD::SMIN, MVT::v16i16, 6},
3719       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3720       {ISD::SMIN, MVT::v32i8, 8},
3721       {ISD::UMIN, MVT::v32i8, 8},
3722   };
3723 
3724   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3725       {ISD::SMIN, MVT::v32i16, 8},
3726       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3727       {ISD::SMIN, MVT::v64i8, 10},
3728       {ISD::UMIN, MVT::v64i8, 10},
3729   };
3730 
3731   // Before legalizing the type, give a chance to look up illegal narrow types
3732   // in the table.
3733   // FIXME: Is there a better way to do this?
3734   EVT VT = TLI->getValueType(DL, ValTy);
3735   if (VT.isSimple()) {
3736     MVT MTy = VT.getSimpleVT();
3737     if (ST->hasBWI())
3738       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3739         return Entry->Cost;
3740 
3741     if (ST->hasAVX())
3742       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3743         return Entry->Cost;
3744 
3745     if (ST->hasSSE41())
3746       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3747         return Entry->Cost;
3748 
3749     if (ST->hasSSE2())
3750       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3751         return Entry->Cost;
3752   }
3753 
3754   auto *ValVTy = cast<FixedVectorType>(ValTy);
3755   unsigned NumVecElts = ValVTy->getNumElements();
3756 
3757   auto *Ty = ValVTy;
3758   unsigned MinMaxCost = 0;
3759   if (LT.first != 1 && MTy.isVector() &&
3760       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3761     // Type needs to be split. We need LT.first - 1 operations ops.
3762     Ty = FixedVectorType::get(ValVTy->getElementType(),
3763                               MTy.getVectorNumElements());
3764     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3765                                            MTy.getVectorNumElements());
3766     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3767     MinMaxCost *= LT.first - 1;
3768     NumVecElts = MTy.getVectorNumElements();
3769   }
3770 
3771   if (ST->hasBWI())
3772     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3773       return MinMaxCost + Entry->Cost;
3774 
3775   if (ST->hasAVX())
3776     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3777       return MinMaxCost + Entry->Cost;
3778 
3779   if (ST->hasSSE41())
3780     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3781       return MinMaxCost + Entry->Cost;
3782 
3783   if (ST->hasSSE2())
3784     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3785       return MinMaxCost + Entry->Cost;
3786 
3787   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3788 
3789   // Special case power of 2 reductions where the scalar type isn't changed
3790   // by type legalization.
3791   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3792       ScalarSize != MTy.getScalarSizeInBits())
3793     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3794                                          CostKind);
3795 
3796   // Now handle reduction with the legal type, taking into account size changes
3797   // at each level.
3798   while (NumVecElts > 1) {
3799     // Determine the size of the remaining vector we need to reduce.
3800     unsigned Size = NumVecElts * ScalarSize;
3801     NumVecElts /= 2;
3802     // If we're reducing from 256/512 bits, use an extract_subvector.
3803     if (Size > 128) {
3804       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3805       MinMaxCost +=
3806           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3807       Ty = SubTy;
3808     } else if (Size == 128) {
3809       // Reducing from 128 bits is a permute of v2f64/v2i64.
3810       VectorType *ShufTy;
3811       if (ValTy->isFloatingPointTy())
3812         ShufTy =
3813             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3814       else
3815         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3816       MinMaxCost +=
3817           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3818     } else if (Size == 64) {
3819       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3820       FixedVectorType *ShufTy;
3821       if (ValTy->isFloatingPointTy())
3822         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3823       else
3824         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3825       MinMaxCost +=
3826           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3827     } else {
3828       // Reducing from smaller size is a shift by immediate.
3829       auto *ShiftTy = FixedVectorType::get(
3830           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3831       MinMaxCost += getArithmeticInstrCost(
3832           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3833           TargetTransformInfo::OK_AnyValue,
3834           TargetTransformInfo::OK_UniformConstantValue,
3835           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3836     }
3837 
3838     // Add the arithmetic op for this level.
3839     auto *SubCondTy =
3840         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3841     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3842   }
3843 
3844   // Add the final extract element to the cost.
3845   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3846 }
3847 
3848 /// Calculate the cost of materializing a 64-bit value. This helper
3849 /// method might only calculate a fraction of a larger immediate. Therefore it
3850 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)3851 int X86TTIImpl::getIntImmCost(int64_t Val) {
3852   if (Val == 0)
3853     return TTI::TCC_Free;
3854 
3855   if (isInt<32>(Val))
3856     return TTI::TCC_Basic;
3857 
3858   return 2 * TTI::TCC_Basic;
3859 }
3860 
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)3861 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3862                               TTI::TargetCostKind CostKind) {
3863   assert(Ty->isIntegerTy());
3864 
3865   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3866   if (BitSize == 0)
3867     return ~0U;
3868 
3869   // Never hoist constants larger than 128bit, because this might lead to
3870   // incorrect code generation or assertions in codegen.
3871   // Fixme: Create a cost model for types larger than i128 once the codegen
3872   // issues have been fixed.
3873   if (BitSize > 128)
3874     return TTI::TCC_Free;
3875 
3876   if (Imm == 0)
3877     return TTI::TCC_Free;
3878 
3879   // Sign-extend all constants to a multiple of 64-bit.
3880   APInt ImmVal = Imm;
3881   if (BitSize % 64 != 0)
3882     ImmVal = Imm.sext(alignTo(BitSize, 64));
3883 
3884   // Split the constant into 64-bit chunks and calculate the cost for each
3885   // chunk.
3886   int Cost = 0;
3887   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3888     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3889     int64_t Val = Tmp.getSExtValue();
3890     Cost += getIntImmCost(Val);
3891   }
3892   // We need at least one instruction to materialize the constant.
3893   return std::max(1, Cost);
3894 }
3895 
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)3896 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
3897                                   const APInt &Imm, Type *Ty,
3898                                   TTI::TargetCostKind CostKind,
3899                                   Instruction *Inst) {
3900   assert(Ty->isIntegerTy());
3901 
3902   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3903   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3904   // here, so that constant hoisting will ignore this constant.
3905   if (BitSize == 0)
3906     return TTI::TCC_Free;
3907 
3908   unsigned ImmIdx = ~0U;
3909   switch (Opcode) {
3910   default:
3911     return TTI::TCC_Free;
3912   case Instruction::GetElementPtr:
3913     // Always hoist the base address of a GetElementPtr. This prevents the
3914     // creation of new constants for every base constant that gets constant
3915     // folded with the offset.
3916     if (Idx == 0)
3917       return 2 * TTI::TCC_Basic;
3918     return TTI::TCC_Free;
3919   case Instruction::Store:
3920     ImmIdx = 0;
3921     break;
3922   case Instruction::ICmp:
3923     // This is an imperfect hack to prevent constant hoisting of
3924     // compares that might be trying to check if a 64-bit value fits in
3925     // 32-bits. The backend can optimize these cases using a right shift by 32.
3926     // Ideally we would check the compare predicate here. There also other
3927     // similar immediates the backend can use shifts for.
3928     if (Idx == 1 && Imm.getBitWidth() == 64) {
3929       uint64_t ImmVal = Imm.getZExtValue();
3930       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3931         return TTI::TCC_Free;
3932     }
3933     ImmIdx = 1;
3934     break;
3935   case Instruction::And:
3936     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3937     // by using a 32-bit operation with implicit zero extension. Detect such
3938     // immediates here as the normal path expects bit 31 to be sign extended.
3939     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3940       return TTI::TCC_Free;
3941     ImmIdx = 1;
3942     break;
3943   case Instruction::Add:
3944   case Instruction::Sub:
3945     // For add/sub, we can use the opposite instruction for INT32_MIN.
3946     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3947       return TTI::TCC_Free;
3948     ImmIdx = 1;
3949     break;
3950   case Instruction::UDiv:
3951   case Instruction::SDiv:
3952   case Instruction::URem:
3953   case Instruction::SRem:
3954     // Division by constant is typically expanded later into a different
3955     // instruction sequence. This completely changes the constants.
3956     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3957     return TTI::TCC_Free;
3958   case Instruction::Mul:
3959   case Instruction::Or:
3960   case Instruction::Xor:
3961     ImmIdx = 1;
3962     break;
3963   // Always return TCC_Free for the shift value of a shift instruction.
3964   case Instruction::Shl:
3965   case Instruction::LShr:
3966   case Instruction::AShr:
3967     if (Idx == 1)
3968       return TTI::TCC_Free;
3969     break;
3970   case Instruction::Trunc:
3971   case Instruction::ZExt:
3972   case Instruction::SExt:
3973   case Instruction::IntToPtr:
3974   case Instruction::PtrToInt:
3975   case Instruction::BitCast:
3976   case Instruction::PHI:
3977   case Instruction::Call:
3978   case Instruction::Select:
3979   case Instruction::Ret:
3980   case Instruction::Load:
3981     break;
3982   }
3983 
3984   if (Idx == ImmIdx) {
3985     int NumConstants = divideCeil(BitSize, 64);
3986     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3987     return (Cost <= NumConstants * TTI::TCC_Basic)
3988                ? static_cast<int>(TTI::TCC_Free)
3989                : Cost;
3990   }
3991 
3992   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3993 }
3994 
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)3995 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3996                                     const APInt &Imm, Type *Ty,
3997                                     TTI::TargetCostKind CostKind) {
3998   assert(Ty->isIntegerTy());
3999 
4000   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4001   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4002   // here, so that constant hoisting will ignore this constant.
4003   if (BitSize == 0)
4004     return TTI::TCC_Free;
4005 
4006   switch (IID) {
4007   default:
4008     return TTI::TCC_Free;
4009   case Intrinsic::sadd_with_overflow:
4010   case Intrinsic::uadd_with_overflow:
4011   case Intrinsic::ssub_with_overflow:
4012   case Intrinsic::usub_with_overflow:
4013   case Intrinsic::smul_with_overflow:
4014   case Intrinsic::umul_with_overflow:
4015     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4016       return TTI::TCC_Free;
4017     break;
4018   case Intrinsic::experimental_stackmap:
4019     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4020       return TTI::TCC_Free;
4021     break;
4022   case Intrinsic::experimental_patchpoint_void:
4023   case Intrinsic::experimental_patchpoint_i64:
4024     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4025       return TTI::TCC_Free;
4026     break;
4027   }
4028   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4029 }
4030 
4031 unsigned
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind)4032 X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
4033   if (CostKind != TTI::TCK_RecipThroughput)
4034     return Opcode == Instruction::PHI ? 0 : 1;
4035   // Branches are assumed to be predicted.
4036   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
4037 }
4038 
getGatherOverhead() const4039 int X86TTIImpl::getGatherOverhead() const {
4040   // Some CPUs have more overhead for gather. The specified overhead is relative
4041   // to the Load operation. "2" is the number provided by Intel architects. This
4042   // parameter is used for cost estimation of Gather Op and comparison with
4043   // other alternatives.
4044   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4045   // enable gather with a -march.
4046   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4047     return 2;
4048 
4049   return 1024;
4050 }
4051 
getScatterOverhead() const4052 int X86TTIImpl::getScatterOverhead() const {
4053   if (ST->hasAVX512())
4054     return 2;
4055 
4056   return 1024;
4057 }
4058 
4059 // Return an average cost of Gather / Scatter instruction, maybe improved later
getGSVectorCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,Align Alignment,unsigned AddressSpace)4060 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
4061                                 Align Alignment, unsigned AddressSpace) {
4062 
4063   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4064   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4065 
4066   // Try to reduce index size from 64 bit (default for GEP)
4067   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4068   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4069   // to split. Also check that the base pointer is the same for all lanes,
4070   // and that there's at most one variable index.
4071   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4072     unsigned IndexSize = DL.getPointerSizeInBits();
4073     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4074     if (IndexSize < 64 || !GEP)
4075       return IndexSize;
4076 
4077     unsigned NumOfVarIndices = 0;
4078     const Value *Ptrs = GEP->getPointerOperand();
4079     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4080       return IndexSize;
4081     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4082       if (isa<Constant>(GEP->getOperand(i)))
4083         continue;
4084       Type *IndxTy = GEP->getOperand(i)->getType();
4085       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4086         IndxTy = IndexVTy->getElementType();
4087       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4088           !isa<SExtInst>(GEP->getOperand(i))) ||
4089          ++NumOfVarIndices > 1)
4090         return IndexSize; // 64
4091     }
4092     return (unsigned)32;
4093   };
4094 
4095   // Trying to reduce IndexSize to 32 bits for vector 16.
4096   // By default the IndexSize is equal to pointer size.
4097   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4098                            ? getIndexSizeInBits(Ptr, DL)
4099                            : DL.getPointerSizeInBits();
4100 
4101   auto *IndexVTy = FixedVectorType::get(
4102       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4103   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4104   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4105   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4106   if (SplitFactor > 1) {
4107     // Handle splitting of vector of pointers
4108     auto *SplitSrcTy =
4109         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4110     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4111                                          AddressSpace);
4112   }
4113 
4114   // The gather / scatter cost is given by Intel architects. It is a rough
4115   // number since we are looking at one instruction in a time.
4116   const int GSOverhead = (Opcode == Instruction::Load)
4117                              ? getGatherOverhead()
4118                              : getScatterOverhead();
4119   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4120                                            MaybeAlign(Alignment), AddressSpace,
4121                                            TTI::TCK_RecipThroughput);
4122 }
4123 
4124 /// Return the cost of full scalarization of gather / scatter operation.
4125 ///
4126 /// Opcode - Load or Store instruction.
4127 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4128 /// VariableMask - The mask is non-constant at compile time.
4129 /// Alignment - Alignment for one element.
4130 /// AddressSpace - pointer[s] address space.
4131 ///
getGSScalarCost(unsigned Opcode,Type * SrcVTy,bool VariableMask,Align Alignment,unsigned AddressSpace)4132 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4133                                 bool VariableMask, Align Alignment,
4134                                 unsigned AddressSpace) {
4135   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4136   APInt DemandedElts = APInt::getAllOnesValue(VF);
4137   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4138 
4139   int MaskUnpackCost = 0;
4140   if (VariableMask) {
4141     auto *MaskTy =
4142         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4143     MaskUnpackCost =
4144         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4145     int ScalarCompareCost = getCmpSelInstrCost(
4146         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4147         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4148     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4149     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4150   }
4151 
4152   // The cost of the scalar loads/stores.
4153   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4154                                           MaybeAlign(Alignment), AddressSpace,
4155                                           CostKind);
4156 
4157   int InsertExtractCost = 0;
4158   if (Opcode == Instruction::Load)
4159     for (unsigned i = 0; i < VF; ++i)
4160       // Add the cost of inserting each scalar load into the vector
4161       InsertExtractCost +=
4162         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4163   else
4164     for (unsigned i = 0; i < VF; ++i)
4165       // Add the cost of extracting each element out of the data vector
4166       InsertExtractCost +=
4167         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4168 
4169   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4170 }
4171 
4172 /// Calculate the cost of Gather / Scatter operation
getGatherScatterOpCost(unsigned Opcode,Type * SrcVTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I=nullptr)4173 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
4174                                        const Value *Ptr, bool VariableMask,
4175                                        Align Alignment,
4176                                        TTI::TargetCostKind CostKind,
4177                                        const Instruction *I = nullptr) {
4178 
4179   if (CostKind != TTI::TCK_RecipThroughput)
4180     return 1;
4181 
4182   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4183   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4184   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4185   if (!PtrTy && Ptr->getType()->isVectorTy())
4186     PtrTy = dyn_cast<PointerType>(
4187         cast<VectorType>(Ptr->getType())->getElementType());
4188   assert(PtrTy && "Unexpected type for Ptr argument");
4189   unsigned AddressSpace = PtrTy->getAddressSpace();
4190 
4191   bool Scalarize = false;
4192   if ((Opcode == Instruction::Load &&
4193        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4194       (Opcode == Instruction::Store &&
4195        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4196     Scalarize = true;
4197   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4198   // Vector-4 of gather/scatter instruction does not exist on KNL.
4199   // We can extend it to 8 elements, but zeroing upper bits of
4200   // the mask vector will add more instructions. Right now we give the scalar
4201   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4202   // is better in the VariableMask case.
4203   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4204     Scalarize = true;
4205 
4206   if (Scalarize)
4207     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4208                            AddressSpace);
4209 
4210   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4211 }
4212 
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)4213 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4214                                TargetTransformInfo::LSRCost &C2) {
4215     // X86 specific here are "instruction number 1st priority".
4216     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4217                     C1.NumIVMuls, C1.NumBaseAdds,
4218                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4219            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4220                     C2.NumIVMuls, C2.NumBaseAdds,
4221                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4222 }
4223 
canMacroFuseCmp()4224 bool X86TTIImpl::canMacroFuseCmp() {
4225   return ST->hasMacroFusion() || ST->hasBranchFusion();
4226 }
4227 
isLegalMaskedLoad(Type * DataTy,Align Alignment)4228 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4229   if (!ST->hasAVX())
4230     return false;
4231 
4232   // The backend can't handle a single element vector.
4233   if (isa<VectorType>(DataTy) &&
4234       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4235     return false;
4236   Type *ScalarTy = DataTy->getScalarType();
4237 
4238   if (ScalarTy->isPointerTy())
4239     return true;
4240 
4241   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4242     return true;
4243 
4244   if (!ScalarTy->isIntegerTy())
4245     return false;
4246 
4247   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4248   return IntWidth == 32 || IntWidth == 64 ||
4249          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4250 }
4251 
isLegalMaskedStore(Type * DataType,Align Alignment)4252 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4253   return isLegalMaskedLoad(DataType, Alignment);
4254 }
4255 
isLegalNTLoad(Type * DataType,Align Alignment)4256 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4257   unsigned DataSize = DL.getTypeStoreSize(DataType);
4258   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4259   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4260   // (the equivalent stores only require AVX).
4261   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4262     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4263 
4264   return false;
4265 }
4266 
isLegalNTStore(Type * DataType,Align Alignment)4267 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4268   unsigned DataSize = DL.getTypeStoreSize(DataType);
4269 
4270   // SSE4A supports nontemporal stores of float and double at arbitrary
4271   // alignment.
4272   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4273     return true;
4274 
4275   // Besides the SSE4A subtarget exception above, only aligned stores are
4276   // available nontemporaly on any other subtarget.  And only stores with a size
4277   // of 4..32 bytes (powers of 2, only) are permitted.
4278   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4279       !isPowerOf2_32(DataSize))
4280     return false;
4281 
4282   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4283   // loads require AVX2).
4284   if (DataSize == 32)
4285     return ST->hasAVX();
4286   else if (DataSize == 16)
4287     return ST->hasSSE1();
4288   return true;
4289 }
4290 
isLegalMaskedExpandLoad(Type * DataTy)4291 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4292   if (!isa<VectorType>(DataTy))
4293     return false;
4294 
4295   if (!ST->hasAVX512())
4296     return false;
4297 
4298   // The backend can't handle a single element vector.
4299   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4300     return false;
4301 
4302   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4303 
4304   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4305     return true;
4306 
4307   if (!ScalarTy->isIntegerTy())
4308     return false;
4309 
4310   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4311   return IntWidth == 32 || IntWidth == 64 ||
4312          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4313 }
4314 
isLegalMaskedCompressStore(Type * DataTy)4315 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4316   return isLegalMaskedExpandLoad(DataTy);
4317 }
4318 
isLegalMaskedGather(Type * DataTy,Align Alignment)4319 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4320   // Some CPUs have better gather performance than others.
4321   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4322   // enable gather with a -march.
4323   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4324     return false;
4325 
4326   // This function is called now in two cases: from the Loop Vectorizer
4327   // and from the Scalarizer.
4328   // When the Loop Vectorizer asks about legality of the feature,
4329   // the vectorization factor is not calculated yet. The Loop Vectorizer
4330   // sends a scalar type and the decision is based on the width of the
4331   // scalar element.
4332   // Later on, the cost model will estimate usage this intrinsic based on
4333   // the vector type.
4334   // The Scalarizer asks again about legality. It sends a vector type.
4335   // In this case we can reject non-power-of-2 vectors.
4336   // We also reject single element vectors as the type legalizer can't
4337   // scalarize it.
4338   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4339     unsigned NumElts = DataVTy->getNumElements();
4340     if (NumElts == 1)
4341       return false;
4342   }
4343   Type *ScalarTy = DataTy->getScalarType();
4344   if (ScalarTy->isPointerTy())
4345     return true;
4346 
4347   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4348     return true;
4349 
4350   if (!ScalarTy->isIntegerTy())
4351     return false;
4352 
4353   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4354   return IntWidth == 32 || IntWidth == 64;
4355 }
4356 
isLegalMaskedScatter(Type * DataType,Align Alignment)4357 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4358   // AVX2 doesn't support scatter
4359   if (!ST->hasAVX512())
4360     return false;
4361   return isLegalMaskedGather(DataType, Alignment);
4362 }
4363 
hasDivRemOp(Type * DataType,bool IsSigned)4364 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4365   EVT VT = TLI->getValueType(DL, DataType);
4366   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4367 }
4368 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)4369 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4370   return false;
4371 }
4372 
areInlineCompatible(const Function * Caller,const Function * Callee) const4373 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4374                                      const Function *Callee) const {
4375   const TargetMachine &TM = getTLI()->getTargetMachine();
4376 
4377   // Work this as a subsetting of subtarget features.
4378   const FeatureBitset &CallerBits =
4379       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4380   const FeatureBitset &CalleeBits =
4381       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4382 
4383   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4384   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4385   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4386 }
4387 
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args) const4388 bool X86TTIImpl::areFunctionArgsABICompatible(
4389     const Function *Caller, const Function *Callee,
4390     SmallPtrSetImpl<Argument *> &Args) const {
4391   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4392     return false;
4393 
4394   // If we get here, we know the target features match. If one function
4395   // considers 512-bit vectors legal and the other does not, consider them
4396   // incompatible.
4397   const TargetMachine &TM = getTLI()->getTargetMachine();
4398 
4399   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4400       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4401     return true;
4402 
4403   // Consider the arguments compatible if they aren't vectors or aggregates.
4404   // FIXME: Look at the size of vectors.
4405   // FIXME: Look at the element types of aggregates to see if there are vectors.
4406   // FIXME: The API of this function seems intended to allow arguments
4407   // to be removed from the set, but the caller doesn't check if the set
4408   // becomes empty so that may not work in practice.
4409   return llvm::none_of(Args, [](Argument *A) {
4410     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4411     return EltTy->isVectorTy() || EltTy->isAggregateType();
4412   });
4413 }
4414 
4415 X86TTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const4416 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4417   TTI::MemCmpExpansionOptions Options;
4418   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4419   Options.NumLoadsPerBlock = 2;
4420   // All GPR and vector loads can be unaligned.
4421   Options.AllowOverlappingLoads = true;
4422   if (IsZeroCmp) {
4423     // Only enable vector loads for equality comparison. Right now the vector
4424     // version is not as fast for three way compare (see #33329).
4425     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4426     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4427     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4428     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4429   }
4430   if (ST->is64Bit()) {
4431     Options.LoadSizes.push_back(8);
4432   }
4433   Options.LoadSizes.push_back(4);
4434   Options.LoadSizes.push_back(2);
4435   Options.LoadSizes.push_back(1);
4436   return Options;
4437 }
4438 
enableInterleavedAccessVectorization()4439 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4440   // TODO: We expect this to be beneficial regardless of arch,
4441   // but there are currently some unexplained performance artifacts on Atom.
4442   // As a temporary solution, disable on Atom.
4443   return !(ST->isAtom());
4444 }
4445 
4446 // Get estimation for interleaved load/store operations for AVX2.
4447 // \p Factor is the interleaved-access factor (stride) - number of
4448 // (interleaved) elements in the group.
4449 // \p Indices contains the indices for a strided load: when the
4450 // interleaved load has gaps they indicate which elements are used.
4451 // If Indices is empty (or if the number of indices is equal to the size
4452 // of the interleaved-access as given in \p Factor) the access has no gaps.
4453 //
4454 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4455 // computing the cost using a generic formula as a function of generic
4456 // shuffles. We therefore use a lookup table instead, filled according to
4457 // the instruction sequences that codegen currently generates.
getInterleavedMemoryOpCostAVX2(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4458 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4459     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4460     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4461     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4462 
4463   if (UseMaskForCond || UseMaskForGaps)
4464     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4465                                              Alignment, AddressSpace, CostKind,
4466                                              UseMaskForCond, UseMaskForGaps);
4467 
4468   // We currently Support only fully-interleaved groups, with no gaps.
4469   // TODO: Support also strided loads (interleaved-groups with gaps).
4470   if (Indices.size() && Indices.size() != Factor)
4471     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4472                                              Alignment, AddressSpace,
4473                                              CostKind);
4474 
4475   // VecTy for interleave memop is <VF*Factor x Elt>.
4476   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4477   // VecTy = <12 x i32>.
4478   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4479 
4480   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4481   // the VF=2, while v2i128 is an unsupported MVT vector type
4482   // (see MachineValueType.h::getVectorVT()).
4483   if (!LegalVT.isVector())
4484     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4485                                              Alignment, AddressSpace,
4486                                              CostKind);
4487 
4488   unsigned VF = VecTy->getNumElements() / Factor;
4489   Type *ScalarTy = VecTy->getElementType();
4490 
4491   // Calculate the number of memory operations (NumOfMemOps), required
4492   // for load/store the VecTy.
4493   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4494   unsigned LegalVTSize = LegalVT.getStoreSize();
4495   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4496 
4497   // Get the cost of one memory operation.
4498   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4499                                              LegalVT.getVectorNumElements());
4500   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4501                                        MaybeAlign(Alignment), AddressSpace,
4502                                        CostKind);
4503 
4504   auto *VT = FixedVectorType::get(ScalarTy, VF);
4505   EVT ETy = TLI->getValueType(DL, VT);
4506   if (!ETy.isSimple())
4507     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4508                                              Alignment, AddressSpace,
4509                                              CostKind);
4510 
4511   // TODO: Complete for other data-types and strides.
4512   // Each combination of Stride, ElementTy and VF results in a different
4513   // sequence; The cost tables are therefore accessed with:
4514   // Factor (stride) and VectorType=VFxElemType.
4515   // The Cost accounts only for the shuffle sequence;
4516   // The cost of the loads/stores is accounted for separately.
4517   //
4518   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4519     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4520     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4521 
4522     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4523     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4524     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4525     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4526     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4527     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4528 
4529     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4530     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4531     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4532     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4533     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4534 
4535     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4536   };
4537 
4538   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4539     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4540     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4541 
4542     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4543     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4544     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4545     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4546     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4547 
4548     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4549     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4550     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4551     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4552     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4553   };
4554 
4555   if (Opcode == Instruction::Load) {
4556     if (const auto *Entry =
4557             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4558       return NumOfMemOps * MemOpCost + Entry->Cost;
4559   } else {
4560     assert(Opcode == Instruction::Store &&
4561            "Expected Store Instruction at this  point");
4562     if (const auto *Entry =
4563             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4564       return NumOfMemOps * MemOpCost + Entry->Cost;
4565   }
4566 
4567   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4568                                            Alignment, AddressSpace, CostKind);
4569 }
4570 
4571 // Get estimation for interleaved load/store operations and strided load.
4572 // \p Indices contains indices for strided load.
4573 // \p Factor - the factor of interleaving.
4574 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
getInterleavedMemoryOpCostAVX512(unsigned Opcode,FixedVectorType * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4575 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4576     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4577     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4578     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4579 
4580   if (UseMaskForCond || UseMaskForGaps)
4581     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4582                                              Alignment, AddressSpace, CostKind,
4583                                              UseMaskForCond, UseMaskForGaps);
4584 
4585   // VecTy for interleave memop is <VF*Factor x Elt>.
4586   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4587   // VecTy = <12 x i32>.
4588 
4589   // Calculate the number of memory operations (NumOfMemOps), required
4590   // for load/store the VecTy.
4591   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4592   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4593   unsigned LegalVTSize = LegalVT.getStoreSize();
4594   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4595 
4596   // Get the cost of one memory operation.
4597   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4598                                              LegalVT.getVectorNumElements());
4599   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4600                                        MaybeAlign(Alignment), AddressSpace,
4601                                        CostKind);
4602 
4603   unsigned VF = VecTy->getNumElements() / Factor;
4604   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4605 
4606   if (Opcode == Instruction::Load) {
4607     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4608     // contain the cost of the optimized shuffle sequence that the
4609     // X86InterleavedAccess pass will generate.
4610     // The cost of loads and stores are computed separately from the table.
4611 
4612     // X86InterleavedAccess support only the following interleaved-access group.
4613     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4614         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4615         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4616         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4617     };
4618 
4619     if (const auto *Entry =
4620             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4621       return NumOfMemOps * MemOpCost + Entry->Cost;
4622     //If an entry does not exist, fallback to the default implementation.
4623 
4624     // Kind of shuffle depends on number of loaded values.
4625     // If we load the entire data in one register, we can use a 1-src shuffle.
4626     // Otherwise, we'll merge 2 sources in each operation.
4627     TTI::ShuffleKind ShuffleKind =
4628         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4629 
4630     unsigned ShuffleCost =
4631         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4632 
4633     unsigned NumOfLoadsInInterleaveGrp =
4634         Indices.size() ? Indices.size() : Factor;
4635     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4636                                           VecTy->getNumElements() / Factor);
4637     unsigned NumOfResults =
4638         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4639         NumOfLoadsInInterleaveGrp;
4640 
4641     // About a half of the loads may be folded in shuffles when we have only
4642     // one result. If we have more than one result, we do not fold loads at all.
4643     unsigned NumOfUnfoldedLoads =
4644         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4645 
4646     // Get a number of shuffle operations per result.
4647     unsigned NumOfShufflesPerResult =
4648         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4649 
4650     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4651     // When we have more than one destination, we need additional instructions
4652     // to keep sources.
4653     unsigned NumOfMoves = 0;
4654     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4655       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4656 
4657     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4658                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4659 
4660     return Cost;
4661   }
4662 
4663   // Store.
4664   assert(Opcode == Instruction::Store &&
4665          "Expected Store Instruction at this  point");
4666   // X86InterleavedAccess support only the following interleaved-access group.
4667   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4668       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4669       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4670       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4671 
4672       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4673       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4674       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4675       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4676   };
4677 
4678   if (const auto *Entry =
4679           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4680     return NumOfMemOps * MemOpCost + Entry->Cost;
4681   //If an entry does not exist, fallback to the default implementation.
4682 
4683   // There is no strided stores meanwhile. And store can't be folded in
4684   // shuffle.
4685   unsigned NumOfSources = Factor; // The number of values to be merged.
4686   unsigned ShuffleCost =
4687       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4688   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4689 
4690   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4691   // We need additional instructions to keep sources.
4692   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4693   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4694              NumOfMoves;
4695   return Cost;
4696 }
4697 
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)4698 int X86TTIImpl::getInterleavedMemoryOpCost(
4699     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4700     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4701     bool UseMaskForCond, bool UseMaskForGaps) {
4702   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4703     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4704     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4705         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4706       return true;
4707     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4708       return HasBW;
4709     return false;
4710   };
4711   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4712     return getInterleavedMemoryOpCostAVX512(
4713         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4714         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4715   if (ST->hasAVX2())
4716     return getInterleavedMemoryOpCostAVX2(
4717         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4718         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4719 
4720   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4721                                            Alignment, AddressSpace, CostKind,
4722                                            UseMaskForCond, UseMaskForGaps);
4723 }
4724