1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Scalar/LoopReroll.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <map>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "loop-reroll"
70 
71 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
72 
73 static cl::opt<unsigned>
74 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
75                           cl::Hidden,
76                           cl::desc("The maximum number of failures to tolerate"
77                                    " during fuzzy matching. (default: 400)"));
78 
79 // This loop re-rolling transformation aims to transform loops like this:
80 //
81 // int foo(int a);
82 // void bar(int *x) {
83 //   for (int i = 0; i < 500; i += 3) {
84 //     foo(i);
85 //     foo(i+1);
86 //     foo(i+2);
87 //   }
88 // }
89 //
90 // into a loop like this:
91 //
92 // void bar(int *x) {
93 //   for (int i = 0; i < 500; ++i)
94 //     foo(i);
95 // }
96 //
97 // It does this by looking for loops that, besides the latch code, are composed
98 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
99 // to the induction variable, and where each DAG is isomorphic to the DAG
100 // rooted at the induction variable (excepting the sub-DAGs which root the
101 // other induction-variable increments). In other words, we're looking for loop
102 // bodies of the form:
103 //
104 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
105 // f(%iv)
106 // %iv.1 = add %iv, 1                <-- a root increment
107 // f(%iv.1)
108 // %iv.2 = add %iv, 2                <-- a root increment
109 // f(%iv.2)
110 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
111 // f(%iv.scale_m_1)
112 // ...
113 // %iv.next = add %iv, scale
114 // %cmp = icmp(%iv, ...)
115 // br %cmp, header, exit
116 //
117 // where each f(i) is a set of instructions that, collectively, are a function
118 // only of i (and other loop-invariant values).
119 //
120 // As a special case, we can also reroll loops like this:
121 //
122 // int foo(int);
123 // void bar(int *x) {
124 //   for (int i = 0; i < 500; ++i) {
125 //     x[3*i] = foo(0);
126 //     x[3*i+1] = foo(0);
127 //     x[3*i+2] = foo(0);
128 //   }
129 // }
130 //
131 // into this:
132 //
133 // void bar(int *x) {
134 //   for (int i = 0; i < 1500; ++i)
135 //     x[i] = foo(0);
136 // }
137 //
138 // in which case, we're looking for inputs like this:
139 //
140 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
141 // %scaled.iv = mul %iv, scale
142 // f(%scaled.iv)
143 // %scaled.iv.1 = add %scaled.iv, 1
144 // f(%scaled.iv.1)
145 // %scaled.iv.2 = add %scaled.iv, 2
146 // f(%scaled.iv.2)
147 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
148 // f(%scaled.iv.scale_m_1)
149 // ...
150 // %iv.next = add %iv, 1
151 // %cmp = icmp(%iv, ...)
152 // br %cmp, header, exit
153 
154 namespace {
155 
156   enum IterationLimits {
157     /// The maximum number of iterations that we'll try and reroll.
158     IL_MaxRerollIterations = 32,
159     /// The bitvector index used by loop induction variables and other
160     /// instructions that belong to all iterations.
161     IL_All,
162     IL_End
163   };
164 
165   class LoopRerollLegacyPass : public LoopPass {
166   public:
167     static char ID; // Pass ID, replacement for typeid
168 
LoopRerollLegacyPass()169     LoopRerollLegacyPass() : LoopPass(ID) {
170       initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
171     }
172 
173     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
174 
getAnalysisUsage(AnalysisUsage & AU) const175     void getAnalysisUsage(AnalysisUsage &AU) const override {
176       AU.addRequired<TargetLibraryInfoWrapperPass>();
177       getLoopAnalysisUsage(AU);
178     }
179   };
180 
181   class LoopReroll {
182   public:
LoopReroll(AliasAnalysis * AA,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,DominatorTree * DT,bool PreserveLCSSA)183     LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
184                TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
185         : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
186           PreserveLCSSA(PreserveLCSSA) {}
187     bool runOnLoop(Loop *L);
188 
189   protected:
190     AliasAnalysis *AA;
191     LoopInfo *LI;
192     ScalarEvolution *SE;
193     TargetLibraryInfo *TLI;
194     DominatorTree *DT;
195     bool PreserveLCSSA;
196 
197     using SmallInstructionVector = SmallVector<Instruction *, 16>;
198     using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
199 
200     // Map between induction variable and its increment
201     DenseMap<Instruction *, int64_t> IVToIncMap;
202 
203     // For loop with multiple induction variable, remember the one used only to
204     // control the loop.
205     Instruction *LoopControlIV;
206 
207     // A chain of isomorphic instructions, identified by a single-use PHI
208     // representing a reduction. Only the last value may be used outside the
209     // loop.
210     struct SimpleLoopReduction {
SimpleLoopReduction__anon475e668d0111::LoopReroll::SimpleLoopReduction211       SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
212         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
213         add(L);
214       }
215 
valid__anon475e668d0111::LoopReroll::SimpleLoopReduction216       bool valid() const {
217         return Valid;
218       }
219 
getPHI__anon475e668d0111::LoopReroll::SimpleLoopReduction220       Instruction *getPHI() const {
221         assert(Valid && "Using invalid reduction");
222         return Instructions.front();
223       }
224 
getReducedValue__anon475e668d0111::LoopReroll::SimpleLoopReduction225       Instruction *getReducedValue() const {
226         assert(Valid && "Using invalid reduction");
227         return Instructions.back();
228       }
229 
get__anon475e668d0111::LoopReroll::SimpleLoopReduction230       Instruction *get(size_t i) const {
231         assert(Valid && "Using invalid reduction");
232         return Instructions[i+1];
233       }
234 
operator []__anon475e668d0111::LoopReroll::SimpleLoopReduction235       Instruction *operator [] (size_t i) const { return get(i); }
236 
237       // The size, ignoring the initial PHI.
size__anon475e668d0111::LoopReroll::SimpleLoopReduction238       size_t size() const {
239         assert(Valid && "Using invalid reduction");
240         return Instructions.size()-1;
241       }
242 
243       using iterator = SmallInstructionVector::iterator;
244       using const_iterator = SmallInstructionVector::const_iterator;
245 
begin__anon475e668d0111::LoopReroll::SimpleLoopReduction246       iterator begin() {
247         assert(Valid && "Using invalid reduction");
248         return std::next(Instructions.begin());
249       }
250 
begin__anon475e668d0111::LoopReroll::SimpleLoopReduction251       const_iterator begin() const {
252         assert(Valid && "Using invalid reduction");
253         return std::next(Instructions.begin());
254       }
255 
end__anon475e668d0111::LoopReroll::SimpleLoopReduction256       iterator end() { return Instructions.end(); }
end__anon475e668d0111::LoopReroll::SimpleLoopReduction257       const_iterator end() const { return Instructions.end(); }
258 
259     protected:
260       bool Valid = false;
261       SmallInstructionVector Instructions;
262 
263       void add(Loop *L);
264     };
265 
266     // The set of all reductions, and state tracking of possible reductions
267     // during loop instruction processing.
268     struct ReductionTracker {
269       using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
270 
271       // Add a new possible reduction.
addSLR__anon475e668d0111::LoopReroll::ReductionTracker272       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
273 
274       // Setup to track possible reductions corresponding to the provided
275       // rerolling scale. Only reductions with a number of non-PHI instructions
276       // that is divisible by the scale are considered. Three instructions sets
277       // are filled in:
278       //   - A set of all possible instructions in eligible reductions.
279       //   - A set of all PHIs in eligible reductions
280       //   - A set of all reduced values (last instructions) in eligible
281       //     reductions.
restrictToScale__anon475e668d0111::LoopReroll::ReductionTracker282       void restrictToScale(uint64_t Scale,
283                            SmallInstructionSet &PossibleRedSet,
284                            SmallInstructionSet &PossibleRedPHISet,
285                            SmallInstructionSet &PossibleRedLastSet) {
286         PossibleRedIdx.clear();
287         PossibleRedIter.clear();
288         Reds.clear();
289 
290         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
291           if (PossibleReds[i].size() % Scale == 0) {
292             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
293             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
294 
295             PossibleRedSet.insert(PossibleReds[i].getPHI());
296             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
297             for (Instruction *J : PossibleReds[i]) {
298               PossibleRedSet.insert(J);
299               PossibleRedIdx[J] = i;
300             }
301           }
302       }
303 
304       // The functions below are used while processing the loop instructions.
305 
306       // Are the two instructions both from reductions, and furthermore, from
307       // the same reduction?
isPairInSame__anon475e668d0111::LoopReroll::ReductionTracker308       bool isPairInSame(Instruction *J1, Instruction *J2) {
309         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
310         if (J1I != PossibleRedIdx.end()) {
311           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
312           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
313             return true;
314         }
315 
316         return false;
317       }
318 
319       // The two provided instructions, the first from the base iteration, and
320       // the second from iteration i, form a matched pair. If these are part of
321       // a reduction, record that fact.
recordPair__anon475e668d0111::LoopReroll::ReductionTracker322       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
323         if (PossibleRedIdx.count(J1)) {
324           assert(PossibleRedIdx.count(J2) &&
325                  "Recording reduction vs. non-reduction instruction?");
326 
327           PossibleRedIter[J1] = 0;
328           PossibleRedIter[J2] = i;
329 
330           int Idx = PossibleRedIdx[J1];
331           assert(Idx == PossibleRedIdx[J2] &&
332                  "Recording pair from different reductions?");
333           Reds.insert(Idx);
334         }
335       }
336 
337       // The functions below can be called after we've finished processing all
338       // instructions in the loop, and we know which reductions were selected.
339 
340       bool validateSelected();
341       void replaceSelected();
342 
343     protected:
344       // The vector of all possible reductions (for any scale).
345       SmallReductionVector PossibleReds;
346 
347       DenseMap<Instruction *, int> PossibleRedIdx;
348       DenseMap<Instruction *, int> PossibleRedIter;
349       DenseSet<int> Reds;
350     };
351 
352     // A DAGRootSet models an induction variable being used in a rerollable
353     // loop. For example,
354     //
355     //   x[i*3+0] = y1
356     //   x[i*3+1] = y2
357     //   x[i*3+2] = y3
358     //
359     //   Base instruction -> i*3
360     //                    +---+----+
361     //                   /    |     \
362     //               ST[y1]  +1     +2  <-- Roots
363     //                        |      |
364     //                      ST[y2] ST[y3]
365     //
366     // There may be multiple DAGRoots, for example:
367     //
368     //   x[i*2+0] = ...   (1)
369     //   x[i*2+1] = ...   (1)
370     //   x[i*2+4] = ...   (2)
371     //   x[i*2+5] = ...   (2)
372     //   x[(i+1234)*2+5678] = ... (3)
373     //   x[(i+1234)*2+5679] = ... (3)
374     //
375     // The loop will be rerolled by adding a new loop induction variable,
376     // one for the Base instruction in each DAGRootSet.
377     //
378     struct DAGRootSet {
379       Instruction *BaseInst;
380       SmallInstructionVector Roots;
381 
382       // The instructions between IV and BaseInst (but not including BaseInst).
383       SmallInstructionSet SubsumedInsts;
384     };
385 
386     // The set of all DAG roots, and state tracking of all roots
387     // for a particular induction variable.
388     struct DAGRootTracker {
DAGRootTracker__anon475e668d0111::LoopReroll::DAGRootTracker389       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
390                      ScalarEvolution *SE, AliasAnalysis *AA,
391                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
392                      bool PreserveLCSSA,
393                      DenseMap<Instruction *, int64_t> &IncrMap,
394                      Instruction *LoopCtrlIV)
395           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
396             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
397             LoopControlIV(LoopCtrlIV) {}
398 
399       /// Stage 1: Find all the DAG roots for the induction variable.
400       bool findRoots();
401 
402       /// Stage 2: Validate if the found roots are valid.
403       bool validate(ReductionTracker &Reductions);
404 
405       /// Stage 3: Assuming validate() returned true, perform the
406       /// replacement.
407       /// @param BackedgeTakenCount The backedge-taken count of L.
408       void replace(const SCEV *BackedgeTakenCount);
409 
410     protected:
411       using UsesTy = MapVector<Instruction *, BitVector>;
412 
413       void findRootsRecursive(Instruction *IVU,
414                               SmallInstructionSet SubsumedInsts);
415       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
416       bool collectPossibleRoots(Instruction *Base,
417                                 std::map<int64_t,Instruction*> &Roots);
418       bool validateRootSet(DAGRootSet &DRS);
419 
420       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
421       void collectInLoopUserSet(const SmallInstructionVector &Roots,
422                                 const SmallInstructionSet &Exclude,
423                                 const SmallInstructionSet &Final,
424                                 DenseSet<Instruction *> &Users);
425       void collectInLoopUserSet(Instruction *Root,
426                                 const SmallInstructionSet &Exclude,
427                                 const SmallInstructionSet &Final,
428                                 DenseSet<Instruction *> &Users);
429 
430       UsesTy::iterator nextInstr(int Val, UsesTy &In,
431                                  const SmallInstructionSet &Exclude,
432                                  UsesTy::iterator *StartI=nullptr);
433       bool isBaseInst(Instruction *I);
434       bool isRootInst(Instruction *I);
435       bool instrDependsOn(Instruction *I,
436                           UsesTy::iterator Start,
437                           UsesTy::iterator End);
438       void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
439 
440       LoopReroll *Parent;
441 
442       // Members of Parent, replicated here for brevity.
443       Loop *L;
444       ScalarEvolution *SE;
445       AliasAnalysis *AA;
446       TargetLibraryInfo *TLI;
447       DominatorTree *DT;
448       LoopInfo *LI;
449       bool PreserveLCSSA;
450 
451       // The loop induction variable.
452       Instruction *IV;
453 
454       // Loop step amount.
455       int64_t Inc;
456 
457       // Loop reroll count; if Inc == 1, this records the scaling applied
458       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
459       // If Inc is not 1, Scale = Inc.
460       uint64_t Scale;
461 
462       // The roots themselves.
463       SmallVector<DAGRootSet,16> RootSets;
464 
465       // All increment instructions for IV.
466       SmallInstructionVector LoopIncs;
467 
468       // Map of all instructions in the loop (in order) to the iterations
469       // they are used in (or specially, IL_All for instructions
470       // used in the loop increment mechanism).
471       UsesTy Uses;
472 
473       // Map between induction variable and its increment
474       DenseMap<Instruction *, int64_t> &IVToIncMap;
475 
476       Instruction *LoopControlIV;
477     };
478 
479     // Check if it is a compare-like instruction whose user is a branch
isCompareUsedByBranch(Instruction * I)480     bool isCompareUsedByBranch(Instruction *I) {
481       auto *TI = I->getParent()->getTerminator();
482       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
483         return false;
484       return I->hasOneUse() && TI->getOperand(0) == I;
485     };
486 
487     bool isLoopControlIV(Loop *L, Instruction *IV);
488     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
489     void collectPossibleReductions(Loop *L,
490            ReductionTracker &Reductions);
491     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
492                 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
493   };
494 
495 } // end anonymous namespace
496 
497 char LoopRerollLegacyPass::ID = 0;
498 
499 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",
500                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)501 INITIALIZE_PASS_DEPENDENCY(LoopPass)
502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
503 INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,
504                     false)
505 
506 Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; }
507 
508 // Returns true if the provided instruction is used outside the given loop.
509 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
510 // non-loop blocks to be outside the loop.
hasUsesOutsideLoop(Instruction * I,Loop * L)511 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
512   for (User *U : I->users()) {
513     if (!L->contains(cast<Instruction>(U)))
514       return true;
515   }
516   return false;
517 }
518 
519 // Check if an IV is only used to control the loop. There are two cases:
520 // 1. It only has one use which is loop increment, and the increment is only
521 // used by comparison and the PHI (could has sext with nsw in between), and the
522 // comparison is only used by branch.
523 // 2. It is used by loop increment and the comparison, the loop increment is
524 // only used by the PHI, and the comparison is used only by the branch.
isLoopControlIV(Loop * L,Instruction * IV)525 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
526   unsigned IVUses = IV->getNumUses();
527   if (IVUses != 2 && IVUses != 1)
528     return false;
529 
530   for (auto *User : IV->users()) {
531     int32_t IncOrCmpUses = User->getNumUses();
532     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
533 
534     // User can only have one or two uses.
535     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
536       return false;
537 
538     // Case 1
539     if (IVUses == 1) {
540       // The only user must be the loop increment.
541       // The loop increment must have two uses.
542       if (IsCompInst || IncOrCmpUses != 2)
543         return false;
544     }
545 
546     // Case 2
547     if (IVUses == 2 && IncOrCmpUses != 1)
548       return false;
549 
550     // The users of the IV must be a binary operation or a comparison
551     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
552       if (BO->getOpcode() == Instruction::Add) {
553         // Loop Increment
554         // User of Loop Increment should be either PHI or CMP
555         for (auto *UU : User->users()) {
556           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
557             if (PN != IV)
558               return false;
559           }
560           // Must be a CMP or an ext (of a value with nsw) then CMP
561           else {
562             Instruction *UUser = dyn_cast<Instruction>(UU);
563             // Skip SExt if we are extending an nsw value
564             // TODO: Allow ZExt too
565             if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
566                 isa<SExtInst>(UUser))
567               UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
568             if (!isCompareUsedByBranch(UUser))
569               return false;
570           }
571         }
572       } else
573         return false;
574       // Compare : can only have one use, and must be branch
575     } else if (!IsCompInst)
576       return false;
577   }
578   return true;
579 }
580 
581 // Collect the list of loop induction variables with respect to which it might
582 // be possible to reroll the loop.
collectPossibleIVs(Loop * L,SmallInstructionVector & PossibleIVs)583 void LoopReroll::collectPossibleIVs(Loop *L,
584                                     SmallInstructionVector &PossibleIVs) {
585   BasicBlock *Header = L->getHeader();
586   for (BasicBlock::iterator I = Header->begin(),
587        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
588     if (!isa<PHINode>(I))
589       continue;
590     if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
591       continue;
592 
593     if (const SCEVAddRecExpr *PHISCEV =
594             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
595       if (PHISCEV->getLoop() != L)
596         continue;
597       if (!PHISCEV->isAffine())
598         continue;
599       auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
600       if (IncSCEV) {
601         IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
602         LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
603                           << "\n");
604 
605         if (isLoopControlIV(L, &*I)) {
606           assert(!LoopControlIV && "Found two loop control only IV");
607           LoopControlIV = &(*I);
608           LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
609                             << " = " << *PHISCEV << "\n");
610         } else
611           PossibleIVs.push_back(&*I);
612       }
613     }
614   }
615 }
616 
617 // Add the remainder of the reduction-variable chain to the instruction vector
618 // (the initial PHINode has already been added). If successful, the object is
619 // marked as valid.
add(Loop * L)620 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
621   assert(!Valid && "Cannot add to an already-valid chain");
622 
623   // The reduction variable must be a chain of single-use instructions
624   // (including the PHI), except for the last value (which is used by the PHI
625   // and also outside the loop).
626   Instruction *C = Instructions.front();
627   if (C->user_empty())
628     return;
629 
630   do {
631     C = cast<Instruction>(*C->user_begin());
632     if (C->hasOneUse()) {
633       if (!C->isBinaryOp())
634         return;
635 
636       if (!(isa<PHINode>(Instructions.back()) ||
637             C->isSameOperationAs(Instructions.back())))
638         return;
639 
640       Instructions.push_back(C);
641     }
642   } while (C->hasOneUse());
643 
644   if (Instructions.size() < 2 ||
645       !C->isSameOperationAs(Instructions.back()) ||
646       C->use_empty())
647     return;
648 
649   // C is now the (potential) last instruction in the reduction chain.
650   for (User *U : C->users()) {
651     // The only in-loop user can be the initial PHI.
652     if (L->contains(cast<Instruction>(U)))
653       if (cast<Instruction>(U) != Instructions.front())
654         return;
655   }
656 
657   Instructions.push_back(C);
658   Valid = true;
659 }
660 
661 // Collect the vector of possible reduction variables.
collectPossibleReductions(Loop * L,ReductionTracker & Reductions)662 void LoopReroll::collectPossibleReductions(Loop *L,
663   ReductionTracker &Reductions) {
664   BasicBlock *Header = L->getHeader();
665   for (BasicBlock::iterator I = Header->begin(),
666        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
667     if (!isa<PHINode>(I))
668       continue;
669     if (!I->getType()->isSingleValueType())
670       continue;
671 
672     SimpleLoopReduction SLR(&*I, L);
673     if (!SLR.valid())
674       continue;
675 
676     LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
677                       << SLR.size() << " chained instructions)\n");
678     Reductions.addSLR(SLR);
679   }
680 }
681 
682 // Collect the set of all users of the provided root instruction. This set of
683 // users contains not only the direct users of the root instruction, but also
684 // all users of those users, and so on. There are two exceptions:
685 //
686 //   1. Instructions in the set of excluded instructions are never added to the
687 //   use set (even if they are users). This is used, for example, to exclude
688 //   including root increments in the use set of the primary IV.
689 //
690 //   2. Instructions in the set of final instructions are added to the use set
691 //   if they are users, but their users are not added. This is used, for
692 //   example, to prevent a reduction update from forcing all later reduction
693 //   updates into the use set.
collectInLoopUserSet(Instruction * Root,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)694 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
695   Instruction *Root, const SmallInstructionSet &Exclude,
696   const SmallInstructionSet &Final,
697   DenseSet<Instruction *> &Users) {
698   SmallInstructionVector Queue(1, Root);
699   while (!Queue.empty()) {
700     Instruction *I = Queue.pop_back_val();
701     if (!Users.insert(I).second)
702       continue;
703 
704     if (!Final.count(I))
705       for (Use &U : I->uses()) {
706         Instruction *User = cast<Instruction>(U.getUser());
707         if (PHINode *PN = dyn_cast<PHINode>(User)) {
708           // Ignore "wrap-around" uses to PHIs of this loop's header.
709           if (PN->getIncomingBlock(U) == L->getHeader())
710             continue;
711         }
712 
713         if (L->contains(User) && !Exclude.count(User)) {
714           Queue.push_back(User);
715         }
716       }
717 
718     // We also want to collect single-user "feeder" values.
719     for (User::op_iterator OI = I->op_begin(),
720          OIE = I->op_end(); OI != OIE; ++OI) {
721       if (Instruction *Op = dyn_cast<Instruction>(*OI))
722         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
723             !Final.count(Op))
724           Queue.push_back(Op);
725     }
726   }
727 }
728 
729 // Collect all of the users of all of the provided root instructions (combined
730 // into a single set).
collectInLoopUserSet(const SmallInstructionVector & Roots,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)731 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
732   const SmallInstructionVector &Roots,
733   const SmallInstructionSet &Exclude,
734   const SmallInstructionSet &Final,
735   DenseSet<Instruction *> &Users) {
736   for (Instruction *Root : Roots)
737     collectInLoopUserSet(Root, Exclude, Final, Users);
738 }
739 
isUnorderedLoadStore(Instruction * I)740 static bool isUnorderedLoadStore(Instruction *I) {
741   if (LoadInst *LI = dyn_cast<LoadInst>(I))
742     return LI->isUnordered();
743   if (StoreInst *SI = dyn_cast<StoreInst>(I))
744     return SI->isUnordered();
745   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
746     return !MI->isVolatile();
747   return false;
748 }
749 
750 /// Return true if IVU is a "simple" arithmetic operation.
751 /// This is used for narrowing the search space for DAGRoots; only arithmetic
752 /// and GEPs can be part of a DAGRoot.
isSimpleArithmeticOp(User * IVU)753 static bool isSimpleArithmeticOp(User *IVU) {
754   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
755     switch (I->getOpcode()) {
756     default: return false;
757     case Instruction::Add:
758     case Instruction::Sub:
759     case Instruction::Mul:
760     case Instruction::Shl:
761     case Instruction::AShr:
762     case Instruction::LShr:
763     case Instruction::GetElementPtr:
764     case Instruction::Trunc:
765     case Instruction::ZExt:
766     case Instruction::SExt:
767       return true;
768     }
769   }
770   return false;
771 }
772 
isLoopIncrement(User * U,Instruction * IV)773 static bool isLoopIncrement(User *U, Instruction *IV) {
774   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
775 
776   if ((BO && BO->getOpcode() != Instruction::Add) ||
777       (!BO && !isa<GetElementPtrInst>(U)))
778     return false;
779 
780   for (auto *UU : U->users()) {
781     PHINode *PN = dyn_cast<PHINode>(UU);
782     if (PN && PN == IV)
783       return true;
784   }
785   return false;
786 }
787 
788 bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction * Base,std::map<int64_t,Instruction * > & Roots)789 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
790   SmallInstructionVector BaseUsers;
791 
792   for (auto *I : Base->users()) {
793     ConstantInt *CI = nullptr;
794 
795     if (isLoopIncrement(I, IV)) {
796       LoopIncs.push_back(cast<Instruction>(I));
797       continue;
798     }
799 
800     // The root nodes must be either GEPs, ORs or ADDs.
801     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
802       if (BO->getOpcode() == Instruction::Add ||
803           BO->getOpcode() == Instruction::Or)
804         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
805     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
806       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
807       CI = dyn_cast<ConstantInt>(LastOperand);
808     }
809 
810     if (!CI) {
811       if (Instruction *II = dyn_cast<Instruction>(I)) {
812         BaseUsers.push_back(II);
813         continue;
814       } else {
815         LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
816                           << "\n");
817         return false;
818       }
819     }
820 
821     int64_t V = std::abs(CI->getValue().getSExtValue());
822     if (Roots.find(V) != Roots.end())
823       // No duplicates, please.
824       return false;
825 
826     Roots[V] = cast<Instruction>(I);
827   }
828 
829   // Make sure we have at least two roots.
830   if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
831     return false;
832 
833   // If we found non-loop-inc, non-root users of Base, assume they are
834   // for the zeroth root index. This is because "add %a, 0" gets optimized
835   // away.
836   if (BaseUsers.size()) {
837     if (Roots.find(0) != Roots.end()) {
838       LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
839       return false;
840     }
841     Roots[0] = Base;
842   }
843 
844   // Calculate the number of users of the base, or lowest indexed, iteration.
845   unsigned NumBaseUses = BaseUsers.size();
846   if (NumBaseUses == 0)
847     NumBaseUses = Roots.begin()->second->getNumUses();
848 
849   // Check that every node has the same number of users.
850   for (auto &KV : Roots) {
851     if (KV.first == 0)
852       continue;
853     if (!KV.second->hasNUses(NumBaseUses)) {
854       LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
855                         << "#Base=" << NumBaseUses
856                         << ", #Root=" << KV.second->getNumUses() << "\n");
857       return false;
858     }
859   }
860 
861   return true;
862 }
863 
864 void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction * I,SmallInstructionSet SubsumedInsts)865 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
866   // Does the user look like it could be part of a root set?
867   // All its users must be simple arithmetic ops.
868   if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
869     return;
870 
871   if (I != IV && findRootsBase(I, SubsumedInsts))
872     return;
873 
874   SubsumedInsts.insert(I);
875 
876   for (User *V : I->users()) {
877     Instruction *I = cast<Instruction>(V);
878     if (is_contained(LoopIncs, I))
879       continue;
880 
881     if (!isSimpleArithmeticOp(I))
882       continue;
883 
884     // The recursive call makes a copy of SubsumedInsts.
885     findRootsRecursive(I, SubsumedInsts);
886   }
887 }
888 
validateRootSet(DAGRootSet & DRS)889 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
890   if (DRS.Roots.empty())
891     return false;
892 
893   // If the value of the base instruction is used outside the loop, we cannot
894   // reroll the loop. Check for other root instructions is unnecessary because
895   // they don't match any base instructions if their values are used outside.
896   if (hasUsesOutsideLoop(DRS.BaseInst, L))
897     return false;
898 
899   // Consider a DAGRootSet with N-1 roots (so N different values including
900   //   BaseInst).
901   // Define d = Roots[0] - BaseInst, which should be the same as
902   //   Roots[I] - Roots[I-1] for all I in [1..N).
903   // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
904   //   loop iteration J.
905   //
906   // Now, For the loop iterations to be consecutive:
907   //   D = d * N
908   const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
909   if (!ADR)
910     return false;
911 
912   // Check that the first root is evenly spaced.
913   unsigned N = DRS.Roots.size() + 1;
914   const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
915   const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
916   if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
917     return false;
918 
919   // Check that the remainling roots are evenly spaced.
920   for (unsigned i = 1; i < N - 1; ++i) {
921     const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
922                                                SE->getSCEV(DRS.Roots[i-1]));
923     if (NewStepSCEV != StepSCEV)
924       return false;
925   }
926 
927   return true;
928 }
929 
930 bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction * IVU,SmallInstructionSet SubsumedInsts)931 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
932   // The base of a RootSet must be an AddRec, so it can be erased.
933   const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
934   if (!IVU_ADR || IVU_ADR->getLoop() != L)
935     return false;
936 
937   std::map<int64_t, Instruction*> V;
938   if (!collectPossibleRoots(IVU, V))
939     return false;
940 
941   // If we didn't get a root for index zero, then IVU must be
942   // subsumed.
943   if (V.find(0) == V.end())
944     SubsumedInsts.insert(IVU);
945 
946   // Partition the vector into monotonically increasing indexes.
947   DAGRootSet DRS;
948   DRS.BaseInst = nullptr;
949 
950   SmallVector<DAGRootSet, 16> PotentialRootSets;
951 
952   for (auto &KV : V) {
953     if (!DRS.BaseInst) {
954       DRS.BaseInst = KV.second;
955       DRS.SubsumedInsts = SubsumedInsts;
956     } else if (DRS.Roots.empty()) {
957       DRS.Roots.push_back(KV.second);
958     } else if (V.find(KV.first - 1) != V.end()) {
959       DRS.Roots.push_back(KV.second);
960     } else {
961       // Linear sequence terminated.
962       if (!validateRootSet(DRS))
963         return false;
964 
965       // Construct a new DAGRootSet with the next sequence.
966       PotentialRootSets.push_back(DRS);
967       DRS.BaseInst = KV.second;
968       DRS.Roots.clear();
969     }
970   }
971 
972   if (!validateRootSet(DRS))
973     return false;
974 
975   PotentialRootSets.push_back(DRS);
976 
977   RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
978 
979   return true;
980 }
981 
findRoots()982 bool LoopReroll::DAGRootTracker::findRoots() {
983   Inc = IVToIncMap[IV];
984 
985   assert(RootSets.empty() && "Unclean state!");
986   if (std::abs(Inc) == 1) {
987     for (auto *IVU : IV->users()) {
988       if (isLoopIncrement(IVU, IV))
989         LoopIncs.push_back(cast<Instruction>(IVU));
990     }
991     findRootsRecursive(IV, SmallInstructionSet());
992     LoopIncs.push_back(IV);
993   } else {
994     if (!findRootsBase(IV, SmallInstructionSet()))
995       return false;
996   }
997 
998   // Ensure all sets have the same size.
999   if (RootSets.empty()) {
1000     LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
1001     return false;
1002   }
1003   for (auto &V : RootSets) {
1004     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
1005       LLVM_DEBUG(
1006           dbgs()
1007           << "LRR: Aborting because not all root sets have the same size\n");
1008       return false;
1009     }
1010   }
1011 
1012   Scale = RootSets[0].Roots.size() + 1;
1013 
1014   if (Scale > IL_MaxRerollIterations) {
1015     LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1016                       << "#Found=" << Scale
1017                       << ", #Max=" << IL_MaxRerollIterations << "\n");
1018     return false;
1019   }
1020 
1021   LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1022                     << "\n");
1023 
1024   return true;
1025 }
1026 
collectUsedInstructions(SmallInstructionSet & PossibleRedSet)1027 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1028   // Populate the MapVector with all instructions in the block, in order first,
1029   // so we can iterate over the contents later in perfect order.
1030   for (auto &I : *L->getHeader()) {
1031     Uses[&I].resize(IL_End);
1032   }
1033 
1034   SmallInstructionSet Exclude;
1035   for (auto &DRS : RootSets) {
1036     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1037     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1038     Exclude.insert(DRS.BaseInst);
1039   }
1040   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1041 
1042   for (auto &DRS : RootSets) {
1043     DenseSet<Instruction*> VBase;
1044     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1045     for (auto *I : VBase) {
1046       Uses[I].set(0);
1047     }
1048 
1049     unsigned Idx = 1;
1050     for (auto *Root : DRS.Roots) {
1051       DenseSet<Instruction*> V;
1052       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1053 
1054       // While we're here, check the use sets are the same size.
1055       if (V.size() != VBase.size()) {
1056         LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1057         return false;
1058       }
1059 
1060       for (auto *I : V) {
1061         Uses[I].set(Idx);
1062       }
1063       ++Idx;
1064     }
1065 
1066     // Make sure our subsumed instructions are remembered too.
1067     for (auto *I : DRS.SubsumedInsts) {
1068       Uses[I].set(IL_All);
1069     }
1070   }
1071 
1072   // Make sure the loop increments are also accounted for.
1073 
1074   Exclude.clear();
1075   for (auto &DRS : RootSets) {
1076     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1077     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1078     Exclude.insert(DRS.BaseInst);
1079   }
1080 
1081   DenseSet<Instruction*> V;
1082   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1083   for (auto *I : V) {
1084     Uses[I].set(IL_All);
1085   }
1086 
1087   return true;
1088 }
1089 
1090 /// Get the next instruction in "In" that is a member of set Val.
1091 /// Start searching from StartI, and do not return anything in Exclude.
1092 /// If StartI is not given, start from In.begin().
1093 LoopReroll::DAGRootTracker::UsesTy::iterator
nextInstr(int Val,UsesTy & In,const SmallInstructionSet & Exclude,UsesTy::iterator * StartI)1094 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1095                                       const SmallInstructionSet &Exclude,
1096                                       UsesTy::iterator *StartI) {
1097   UsesTy::iterator I = StartI ? *StartI : In.begin();
1098   while (I != In.end() && (I->second.test(Val) == 0 ||
1099                            Exclude.count(I->first) != 0))
1100     ++I;
1101   return I;
1102 }
1103 
isBaseInst(Instruction * I)1104 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1105   for (auto &DRS : RootSets) {
1106     if (DRS.BaseInst == I)
1107       return true;
1108   }
1109   return false;
1110 }
1111 
isRootInst(Instruction * I)1112 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1113   for (auto &DRS : RootSets) {
1114     if (is_contained(DRS.Roots, I))
1115       return true;
1116   }
1117   return false;
1118 }
1119 
1120 /// Return true if instruction I depends on any instruction between
1121 /// Start and End.
instrDependsOn(Instruction * I,UsesTy::iterator Start,UsesTy::iterator End)1122 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1123                                                 UsesTy::iterator Start,
1124                                                 UsesTy::iterator End) {
1125   for (auto *U : I->users()) {
1126     for (auto It = Start; It != End; ++It)
1127       if (U == It->first)
1128         return true;
1129   }
1130   return false;
1131 }
1132 
isIgnorableInst(const Instruction * I)1133 static bool isIgnorableInst(const Instruction *I) {
1134   if (isa<DbgInfoIntrinsic>(I))
1135     return true;
1136   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1137   if (!II)
1138     return false;
1139   switch (II->getIntrinsicID()) {
1140     default:
1141       return false;
1142     case Intrinsic::annotation:
1143     case Intrinsic::ptr_annotation:
1144     case Intrinsic::var_annotation:
1145     // TODO: the following intrinsics may also be allowed:
1146     //   lifetime_start, lifetime_end, invariant_start, invariant_end
1147       return true;
1148   }
1149   return false;
1150 }
1151 
validate(ReductionTracker & Reductions)1152 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1153   // We now need to check for equivalence of the use graph of each root with
1154   // that of the primary induction variable (excluding the roots). Our goal
1155   // here is not to solve the full graph isomorphism problem, but rather to
1156   // catch common cases without a lot of work. As a result, we will assume
1157   // that the relative order of the instructions in each unrolled iteration
1158   // is the same (although we will not make an assumption about how the
1159   // different iterations are intermixed). Note that while the order must be
1160   // the same, the instructions may not be in the same basic block.
1161 
1162   // An array of just the possible reductions for this scale factor. When we
1163   // collect the set of all users of some root instructions, these reduction
1164   // instructions are treated as 'final' (their uses are not considered).
1165   // This is important because we don't want the root use set to search down
1166   // the reduction chain.
1167   SmallInstructionSet PossibleRedSet;
1168   SmallInstructionSet PossibleRedLastSet;
1169   SmallInstructionSet PossibleRedPHISet;
1170   Reductions.restrictToScale(Scale, PossibleRedSet,
1171                              PossibleRedPHISet, PossibleRedLastSet);
1172 
1173   // Populate "Uses" with where each instruction is used.
1174   if (!collectUsedInstructions(PossibleRedSet))
1175     return false;
1176 
1177   // Make sure we mark the reduction PHIs as used in all iterations.
1178   for (auto *I : PossibleRedPHISet) {
1179     Uses[I].set(IL_All);
1180   }
1181 
1182   // Make sure we mark loop-control-only PHIs as used in all iterations. See
1183   // comment above LoopReroll::isLoopControlIV for more information.
1184   BasicBlock *Header = L->getHeader();
1185   if (LoopControlIV && LoopControlIV != IV) {
1186     for (auto *U : LoopControlIV->users()) {
1187       Instruction *IVUser = dyn_cast<Instruction>(U);
1188       // IVUser could be loop increment or compare
1189       Uses[IVUser].set(IL_All);
1190       for (auto *UU : IVUser->users()) {
1191         Instruction *UUser = dyn_cast<Instruction>(UU);
1192         // UUser could be compare, PHI or branch
1193         Uses[UUser].set(IL_All);
1194         // Skip SExt
1195         if (isa<SExtInst>(UUser)) {
1196           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1197           Uses[UUser].set(IL_All);
1198         }
1199         // Is UUser a compare instruction?
1200         if (UU->hasOneUse()) {
1201           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1202           if (BI == cast<BranchInst>(Header->getTerminator()))
1203             Uses[BI].set(IL_All);
1204         }
1205       }
1206     }
1207   }
1208 
1209   // Make sure all instructions in the loop are in one and only one
1210   // set.
1211   for (auto &KV : Uses) {
1212     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1213       LLVM_DEBUG(
1214           dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1215                  << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1216       return false;
1217     }
1218   }
1219 
1220   LLVM_DEBUG(for (auto &KV
1221                   : Uses) {
1222     dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1223   });
1224 
1225   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1226     // In addition to regular aliasing information, we need to look for
1227     // instructions from later (future) iterations that have side effects
1228     // preventing us from reordering them past other instructions with side
1229     // effects.
1230     bool FutureSideEffects = false;
1231     AliasSetTracker AST(*AA);
1232     // The map between instructions in f(%iv.(i+1)) and f(%iv).
1233     DenseMap<Value *, Value *> BaseMap;
1234 
1235     // Compare iteration Iter to the base.
1236     SmallInstructionSet Visited;
1237     auto BaseIt = nextInstr(0, Uses, Visited);
1238     auto RootIt = nextInstr(Iter, Uses, Visited);
1239     auto LastRootIt = Uses.begin();
1240 
1241     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1242       Instruction *BaseInst = BaseIt->first;
1243       Instruction *RootInst = RootIt->first;
1244 
1245       // Skip over the IV or root instructions; only match their users.
1246       bool Continue = false;
1247       if (isBaseInst(BaseInst)) {
1248         Visited.insert(BaseInst);
1249         BaseIt = nextInstr(0, Uses, Visited);
1250         Continue = true;
1251       }
1252       if (isRootInst(RootInst)) {
1253         LastRootIt = RootIt;
1254         Visited.insert(RootInst);
1255         RootIt = nextInstr(Iter, Uses, Visited);
1256         Continue = true;
1257       }
1258       if (Continue) continue;
1259 
1260       if (!BaseInst->isSameOperationAs(RootInst)) {
1261         // Last chance saloon. We don't try and solve the full isomorphism
1262         // problem, but try and at least catch the case where two instructions
1263         // *of different types* are round the wrong way. We won't be able to
1264         // efficiently tell, given two ADD instructions, which way around we
1265         // should match them, but given an ADD and a SUB, we can at least infer
1266         // which one is which.
1267         //
1268         // This should allow us to deal with a greater subset of the isomorphism
1269         // problem. It does however change a linear algorithm into a quadratic
1270         // one, so limit the number of probes we do.
1271         auto TryIt = RootIt;
1272         unsigned N = NumToleratedFailedMatches;
1273         while (TryIt != Uses.end() &&
1274                !BaseInst->isSameOperationAs(TryIt->first) &&
1275                N--) {
1276           ++TryIt;
1277           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1278         }
1279 
1280         if (TryIt == Uses.end() || TryIt == RootIt ||
1281             instrDependsOn(TryIt->first, RootIt, TryIt)) {
1282           LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1283                             << *BaseInst << " vs. " << *RootInst << "\n");
1284           return false;
1285         }
1286 
1287         RootIt = TryIt;
1288         RootInst = TryIt->first;
1289       }
1290 
1291       // All instructions between the last root and this root
1292       // may belong to some other iteration. If they belong to a
1293       // future iteration, then they're dangerous to alias with.
1294       //
1295       // Note that because we allow a limited amount of flexibility in the order
1296       // that we visit nodes, LastRootIt might be *before* RootIt, in which
1297       // case we've already checked this set of instructions so we shouldn't
1298       // do anything.
1299       for (; LastRootIt < RootIt; ++LastRootIt) {
1300         Instruction *I = LastRootIt->first;
1301         if (LastRootIt->second.find_first() < (int)Iter)
1302           continue;
1303         if (I->mayWriteToMemory())
1304           AST.add(I);
1305         // Note: This is specifically guarded by a check on isa<PHINode>,
1306         // which while a valid (somewhat arbitrary) micro-optimization, is
1307         // needed because otherwise isSafeToSpeculativelyExecute returns
1308         // false on PHI nodes.
1309         if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1310             !isSafeToSpeculativelyExecute(I))
1311           // Intervening instructions cause side effects.
1312           FutureSideEffects = true;
1313       }
1314 
1315       // Make sure that this instruction, which is in the use set of this
1316       // root instruction, does not also belong to the base set or the set of
1317       // some other root instruction.
1318       if (RootIt->second.count() > 1) {
1319         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1320                           << " vs. " << *RootInst << " (prev. case overlap)\n");
1321         return false;
1322       }
1323 
1324       // Make sure that we don't alias with any instruction in the alias set
1325       // tracker. If we do, then we depend on a future iteration, and we
1326       // can't reroll.
1327       if (RootInst->mayReadFromMemory())
1328         for (auto &K : AST) {
1329           if (K.aliasesUnknownInst(RootInst, *AA)) {
1330             LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1331                               << *BaseInst << " vs. " << *RootInst
1332                               << " (depends on future store)\n");
1333             return false;
1334           }
1335         }
1336 
1337       // If we've past an instruction from a future iteration that may have
1338       // side effects, and this instruction might also, then we can't reorder
1339       // them, and this matching fails. As an exception, we allow the alias
1340       // set tracker to handle regular (unordered) load/store dependencies.
1341       if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1342                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
1343                                 (!isUnorderedLoadStore(RootInst) &&
1344                                  !isSafeToSpeculativelyExecute(RootInst)))) {
1345         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1346                           << " vs. " << *RootInst
1347                           << " (side effects prevent reordering)\n");
1348         return false;
1349       }
1350 
1351       // For instructions that are part of a reduction, if the operation is
1352       // associative, then don't bother matching the operands (because we
1353       // already know that the instructions are isomorphic, and the order
1354       // within the iteration does not matter). For non-associative reductions,
1355       // we do need to match the operands, because we need to reject
1356       // out-of-order instructions within an iteration!
1357       // For example (assume floating-point addition), we need to reject this:
1358       //   x += a[i]; x += b[i];
1359       //   x += a[i+1]; x += b[i+1];
1360       //   x += b[i+2]; x += a[i+2];
1361       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1362 
1363       if (!(InReduction && BaseInst->isAssociative())) {
1364         bool Swapped = false, SomeOpMatched = false;
1365         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1366           Value *Op2 = RootInst->getOperand(j);
1367 
1368           // If this is part of a reduction (and the operation is not
1369           // associatve), then we match all operands, but not those that are
1370           // part of the reduction.
1371           if (InReduction)
1372             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1373               if (Reductions.isPairInSame(RootInst, Op2I))
1374                 continue;
1375 
1376           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1377           if (BMI != BaseMap.end()) {
1378             Op2 = BMI->second;
1379           } else {
1380             for (auto &DRS : RootSets) {
1381               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1382                 Op2 = DRS.BaseInst;
1383                 break;
1384               }
1385             }
1386           }
1387 
1388           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1389             // If we've not already decided to swap the matched operands, and
1390             // we've not already matched our first operand (note that we could
1391             // have skipped matching the first operand because it is part of a
1392             // reduction above), and the instruction is commutative, then try
1393             // the swapped match.
1394             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1395                 BaseInst->getOperand(!j) == Op2) {
1396               Swapped = true;
1397             } else {
1398               LLVM_DEBUG(dbgs()
1399                          << "LRR: iteration root match failed at " << *BaseInst
1400                          << " vs. " << *RootInst << " (operand " << j << ")\n");
1401               return false;
1402             }
1403           }
1404 
1405           SomeOpMatched = true;
1406         }
1407       }
1408 
1409       if ((!PossibleRedLastSet.count(BaseInst) &&
1410            hasUsesOutsideLoop(BaseInst, L)) ||
1411           (!PossibleRedLastSet.count(RootInst) &&
1412            hasUsesOutsideLoop(RootInst, L))) {
1413         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1414                           << " vs. " << *RootInst << " (uses outside loop)\n");
1415         return false;
1416       }
1417 
1418       Reductions.recordPair(BaseInst, RootInst, Iter);
1419       BaseMap.insert(std::make_pair(RootInst, BaseInst));
1420 
1421       LastRootIt = RootIt;
1422       Visited.insert(BaseInst);
1423       Visited.insert(RootInst);
1424       BaseIt = nextInstr(0, Uses, Visited);
1425       RootIt = nextInstr(Iter, Uses, Visited);
1426     }
1427     assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1428            "Mismatched set sizes!");
1429   }
1430 
1431   LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1432                     << "\n");
1433 
1434   return true;
1435 }
1436 
replace(const SCEV * BackedgeTakenCount)1437 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1438   BasicBlock *Header = L->getHeader();
1439 
1440   // Compute the start and increment for each BaseInst before we start erasing
1441   // instructions.
1442   SmallVector<const SCEV *, 8> StartExprs;
1443   SmallVector<const SCEV *, 8> IncrExprs;
1444   for (auto &DRS : RootSets) {
1445     const SCEVAddRecExpr *IVSCEV =
1446         cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1447     StartExprs.push_back(IVSCEV->getStart());
1448     IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1449   }
1450 
1451   // Remove instructions associated with non-base iterations.
1452   for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1453        J != JE;) {
1454     unsigned I = Uses[&*J].find_first();
1455     if (I > 0 && I < IL_All) {
1456       LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1457       J++->eraseFromParent();
1458       continue;
1459     }
1460 
1461     ++J;
1462   }
1463 
1464   // Rewrite each BaseInst using SCEV.
1465   for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1466     // Insert the new induction variable.
1467     replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1468 
1469   { // Limit the lifetime of SCEVExpander.
1470     BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1471     const DataLayout &DL = Header->getModule()->getDataLayout();
1472     SCEVExpander Expander(*SE, DL, "reroll");
1473     auto Zero = SE->getZero(BackedgeTakenCount->getType());
1474     auto One = SE->getOne(BackedgeTakenCount->getType());
1475     auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1476     Value *NewIV =
1477         Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1478                                Header->getFirstNonPHIOrDbg());
1479     // FIXME: This arithmetic can overflow.
1480     auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1481     auto ScaledTripCount = SE->getMulExpr(
1482         TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1483     auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1484     Value *TakenCount =
1485         Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1486                                Header->getFirstNonPHIOrDbg());
1487     Value *Cond =
1488         new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1489     BI->setCondition(Cond);
1490 
1491     if (BI->getSuccessor(1) != Header)
1492       BI->swapSuccessors();
1493   }
1494 
1495   SimplifyInstructionsInBlock(Header, TLI);
1496   DeleteDeadPHIs(Header, TLI);
1497 }
1498 
replaceIV(DAGRootSet & DRS,const SCEV * Start,const SCEV * IncrExpr)1499 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1500                                            const SCEV *Start,
1501                                            const SCEV *IncrExpr) {
1502   BasicBlock *Header = L->getHeader();
1503   Instruction *Inst = DRS.BaseInst;
1504 
1505   const SCEV *NewIVSCEV =
1506       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1507 
1508   { // Limit the lifetime of SCEVExpander.
1509     const DataLayout &DL = Header->getModule()->getDataLayout();
1510     SCEVExpander Expander(*SE, DL, "reroll");
1511     Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1512                                           Header->getFirstNonPHIOrDbg());
1513 
1514     for (auto &KV : Uses)
1515       if (KV.second.find_first() == 0)
1516         KV.first->replaceUsesOfWith(Inst, NewIV);
1517   }
1518 }
1519 
1520 // Validate the selected reductions. All iterations must have an isomorphic
1521 // part of the reduction chain and, for non-associative reductions, the chain
1522 // entries must appear in order.
validateSelected()1523 bool LoopReroll::ReductionTracker::validateSelected() {
1524   // For a non-associative reduction, the chain entries must appear in order.
1525   for (int i : Reds) {
1526     int PrevIter = 0, BaseCount = 0, Count = 0;
1527     for (Instruction *J : PossibleReds[i]) {
1528       // Note that all instructions in the chain must have been found because
1529       // all instructions in the function must have been assigned to some
1530       // iteration.
1531       int Iter = PossibleRedIter[J];
1532       if (Iter != PrevIter && Iter != PrevIter + 1 &&
1533           !PossibleReds[i].getReducedValue()->isAssociative()) {
1534         LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1535                           << J << "\n");
1536         return false;
1537       }
1538 
1539       if (Iter != PrevIter) {
1540         if (Count != BaseCount) {
1541           LLVM_DEBUG(dbgs()
1542                      << "LRR: Iteration " << PrevIter << " reduction use count "
1543                      << Count << " is not equal to the base use count "
1544                      << BaseCount << "\n");
1545           return false;
1546         }
1547 
1548         Count = 0;
1549       }
1550 
1551       ++Count;
1552       if (Iter == 0)
1553         ++BaseCount;
1554 
1555       PrevIter = Iter;
1556     }
1557   }
1558 
1559   return true;
1560 }
1561 
1562 // For all selected reductions, remove all parts except those in the first
1563 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1564 // of the first-iteration reduced value (in other words, reroll the selected
1565 // reductions).
replaceSelected()1566 void LoopReroll::ReductionTracker::replaceSelected() {
1567   // Fixup reductions to refer to the last instruction associated with the
1568   // first iteration (not the last).
1569   for (int i : Reds) {
1570     int j = 0;
1571     for (int e = PossibleReds[i].size(); j != e; ++j)
1572       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1573         --j;
1574         break;
1575       }
1576 
1577     // Replace users with the new end-of-chain value.
1578     SmallInstructionVector Users;
1579     for (User *U : PossibleReds[i].getReducedValue()->users()) {
1580       Users.push_back(cast<Instruction>(U));
1581     }
1582 
1583     for (Instruction *User : Users)
1584       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1585                               PossibleReds[i][j]);
1586   }
1587 }
1588 
1589 // Reroll the provided loop with respect to the provided induction variable.
1590 // Generally, we're looking for a loop like this:
1591 //
1592 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1593 // f(%iv)
1594 // %iv.1 = add %iv, 1                <-- a root increment
1595 // f(%iv.1)
1596 // %iv.2 = add %iv, 2                <-- a root increment
1597 // f(%iv.2)
1598 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1599 // f(%iv.scale_m_1)
1600 // ...
1601 // %iv.next = add %iv, scale
1602 // %cmp = icmp(%iv, ...)
1603 // br %cmp, header, exit
1604 //
1605 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1606 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1607 // be intermixed with eachother. The restriction imposed by this algorithm is
1608 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1609 // etc. be the same.
1610 //
1611 // First, we collect the use set of %iv, excluding the other increment roots.
1612 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1613 // times, having collected the use set of f(%iv.(i+1)), during which we:
1614 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1615 //     the next unmatched instruction in f(%iv.(i+1)).
1616 //   - Ensure that both matched instructions don't have any external users
1617 //     (with the exception of last-in-chain reduction instructions).
1618 //   - Track the (aliasing) write set, and other side effects, of all
1619 //     instructions that belong to future iterations that come before the matched
1620 //     instructions. If the matched instructions read from that write set, then
1621 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1622 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1623 //     if any of these future instructions had side effects (could not be
1624 //     speculatively executed), and so do the matched instructions, when we
1625 //     cannot reorder those side-effect-producing instructions, and rerolling
1626 //     fails.
1627 //
1628 // Finally, we make sure that all loop instructions are either loop increment
1629 // roots, belong to simple latch code, parts of validated reductions, part of
1630 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1631 // have been validated), then we reroll the loop.
reroll(Instruction * IV,Loop * L,BasicBlock * Header,const SCEV * BackedgeTakenCount,ReductionTracker & Reductions)1632 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1633                         const SCEV *BackedgeTakenCount,
1634                         ReductionTracker &Reductions) {
1635   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1636                           IVToIncMap, LoopControlIV);
1637 
1638   if (!DAGRoots.findRoots())
1639     return false;
1640   LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1641                     << "\n");
1642 
1643   if (!DAGRoots.validate(Reductions))
1644     return false;
1645   if (!Reductions.validateSelected())
1646     return false;
1647   // At this point, we've validated the rerolling, and we're committed to
1648   // making changes!
1649 
1650   Reductions.replaceSelected();
1651   DAGRoots.replace(BackedgeTakenCount);
1652 
1653   ++NumRerolledLoops;
1654   return true;
1655 }
1656 
runOnLoop(Loop * L)1657 bool LoopReroll::runOnLoop(Loop *L) {
1658   BasicBlock *Header = L->getHeader();
1659   LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1660                     << Header->getName() << " (" << L->getNumBlocks()
1661                     << " block(s))\n");
1662 
1663   // For now, we'll handle only single BB loops.
1664   if (L->getNumBlocks() > 1)
1665     return false;
1666 
1667   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1668     return false;
1669 
1670   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1671   LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1672   LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1673                << "\n");
1674 
1675   // First, we need to find the induction variable with respect to which we can
1676   // reroll (there may be several possible options).
1677   SmallInstructionVector PossibleIVs;
1678   IVToIncMap.clear();
1679   LoopControlIV = nullptr;
1680   collectPossibleIVs(L, PossibleIVs);
1681 
1682   if (PossibleIVs.empty()) {
1683     LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1684     return false;
1685   }
1686 
1687   ReductionTracker Reductions;
1688   collectPossibleReductions(L, Reductions);
1689   bool Changed = false;
1690 
1691   // For each possible IV, collect the associated possible set of 'root' nodes
1692   // (i+1, i+2, etc.).
1693   for (Instruction *PossibleIV : PossibleIVs)
1694     if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1695       Changed = true;
1696       break;
1697     }
1698   LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1699 
1700   // Trip count of L has changed so SE must be re-evaluated.
1701   if (Changed)
1702     SE->forgetLoop(L);
1703 
1704   return Changed;
1705 }
1706 
runOnLoop(Loop * L,LPPassManager & LPM)1707 bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1708   if (skipLoop(L))
1709     return false;
1710 
1711   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1712   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1713   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1714   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1715       *L->getHeader()->getParent());
1716   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1717   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1718 
1719   return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L);
1720 }
1721 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1722 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1723                                       LoopStandardAnalysisResults &AR,
1724                                       LPMUpdater &U) {
1725   return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1726              ? getLoopPassPreservedAnalyses()
1727              : PreservedAnalyses::all();
1728 }
1729