1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetOperations.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/IVUsers.h"
71 #include "llvm/Analysis/LoopAnalysisManager.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/LoopPass.h"
74 #include "llvm/Analysis/MemorySSA.h"
75 #include "llvm/Analysis/MemorySSAUpdater.h"
76 #include "llvm/Analysis/ScalarEvolution.h"
77 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
78 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Config/llvm-config.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/DebugInfoMetadata.h"
85 #include "llvm/IR/DerivedTypes.h"
86 #include "llvm/IR/Dominators.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/Intrinsics.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/OperandTraits.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstdlib>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 // Temporary flag to cleanup congruent phis after LSR phi expansion.
139 // It's currently disabled until we can determine whether it's truly useful or
140 // not. The flag should be removed after the v3.0 release.
141 // This is now needed for ivchains.
142 static cl::opt<bool> EnablePhiElim(
143   "enable-lsr-phielim", cl::Hidden, cl::init(true),
144   cl::desc("Enable LSR phi elimination"));
145 
146 // The flag adds instruction count to solutions cost comparision.
147 static cl::opt<bool> InsnsCost(
148   "lsr-insns-cost", cl::Hidden, cl::init(true),
149   cl::desc("Add instruction count to a LSR cost model"));
150 
151 // Flag to choose how to narrow complex lsr solution
152 static cl::opt<bool> LSRExpNarrow(
153   "lsr-exp-narrow", cl::Hidden, cl::init(false),
154   cl::desc("Narrow LSR complex solution using"
155            " expectation of registers number"));
156 
157 // Flag to narrow search space by filtering non-optimal formulae with
158 // the same ScaledReg and Scale.
159 static cl::opt<bool> FilterSameScaledReg(
160     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
161     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
162              " with the same ScaledReg and Scale"));
163 
164 static cl::opt<bool> EnableBackedgeIndexing(
165   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
166   cl::desc("Enable the generation of cross iteration indexed memops"));
167 
168 static cl::opt<unsigned> ComplexityLimit(
169   "lsr-complexity-limit", cl::Hidden,
170   cl::init(std::numeric_limits<uint16_t>::max()),
171   cl::desc("LSR search space complexity limit"));
172 
173 static cl::opt<unsigned> SetupCostDepthLimit(
174     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
175     cl::desc("The limit on recursion depth for LSRs setup cost"));
176 
177 #ifndef NDEBUG
178 // Stress test IV chain generation.
179 static cl::opt<bool> StressIVChain(
180   "stress-ivchain", cl::Hidden, cl::init(false),
181   cl::desc("Stress test LSR IV chains"));
182 #else
183 static bool StressIVChain = false;
184 #endif
185 
186 namespace {
187 
188 struct MemAccessTy {
189   /// Used in situations where the accessed memory type is unknown.
190   static const unsigned UnknownAddressSpace =
191       std::numeric_limits<unsigned>::max();
192 
193   Type *MemTy = nullptr;
194   unsigned AddrSpace = UnknownAddressSpace;
195 
196   MemAccessTy() = default;
MemAccessTy__anondbe16f4d0111::MemAccessTy197   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
198 
operator ==__anondbe16f4d0111::MemAccessTy199   bool operator==(MemAccessTy Other) const {
200     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
201   }
202 
operator !=__anondbe16f4d0111::MemAccessTy203   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
204 
getUnknown__anondbe16f4d0111::MemAccessTy205   static MemAccessTy getUnknown(LLVMContext &Ctx,
206                                 unsigned AS = UnknownAddressSpace) {
207     return MemAccessTy(Type::getVoidTy(Ctx), AS);
208   }
209 
getType__anondbe16f4d0111::MemAccessTy210   Type *getType() { return MemTy; }
211 };
212 
213 /// This class holds data which is used to order reuse candidates.
214 class RegSortData {
215 public:
216   /// This represents the set of LSRUse indices which reference
217   /// a particular register.
218   SmallBitVector UsedByIndices;
219 
220   void print(raw_ostream &OS) const;
221   void dump() const;
222 };
223 
224 } // end anonymous namespace
225 
226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const227 void RegSortData::print(raw_ostream &OS) const {
228   OS << "[NumUses=" << UsedByIndices.count() << ']';
229 }
230 
dump() const231 LLVM_DUMP_METHOD void RegSortData::dump() const {
232   print(errs()); errs() << '\n';
233 }
234 #endif
235 
236 namespace {
237 
238 /// Map register candidates to information about how they are used.
239 class RegUseTracker {
240   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
241 
242   RegUsesTy RegUsesMap;
243   SmallVector<const SCEV *, 16> RegSequence;
244 
245 public:
246   void countRegister(const SCEV *Reg, size_t LUIdx);
247   void dropRegister(const SCEV *Reg, size_t LUIdx);
248   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
249 
250   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
251 
252   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
253 
254   void clear();
255 
256   using iterator = SmallVectorImpl<const SCEV *>::iterator;
257   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
258 
begin()259   iterator begin() { return RegSequence.begin(); }
end()260   iterator end()   { return RegSequence.end(); }
begin() const261   const_iterator begin() const { return RegSequence.begin(); }
end() const262   const_iterator end() const   { return RegSequence.end(); }
263 };
264 
265 } // end anonymous namespace
266 
267 void
countRegister(const SCEV * Reg,size_t LUIdx)268 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
269   std::pair<RegUsesTy::iterator, bool> Pair =
270     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
271   RegSortData &RSD = Pair.first->second;
272   if (Pair.second)
273     RegSequence.push_back(Reg);
274   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
275   RSD.UsedByIndices.set(LUIdx);
276 }
277 
278 void
dropRegister(const SCEV * Reg,size_t LUIdx)279 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
280   RegUsesTy::iterator It = RegUsesMap.find(Reg);
281   assert(It != RegUsesMap.end());
282   RegSortData &RSD = It->second;
283   assert(RSD.UsedByIndices.size() > LUIdx);
284   RSD.UsedByIndices.reset(LUIdx);
285 }
286 
287 void
swapAndDropUse(size_t LUIdx,size_t LastLUIdx)288 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
289   assert(LUIdx <= LastLUIdx);
290 
291   // Update RegUses. The data structure is not optimized for this purpose;
292   // we must iterate through it and update each of the bit vectors.
293   for (auto &Pair : RegUsesMap) {
294     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
295     if (LUIdx < UsedByIndices.size())
296       UsedByIndices[LUIdx] =
297         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
298     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
299   }
300 }
301 
302 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const303 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
304   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
305   if (I == RegUsesMap.end())
306     return false;
307   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
308   int i = UsedByIndices.find_first();
309   if (i == -1) return false;
310   if ((size_t)i != LUIdx) return true;
311   return UsedByIndices.find_next(i) != -1;
312 }
313 
getUsedByIndices(const SCEV * Reg) const314 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
315   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
316   assert(I != RegUsesMap.end() && "Unknown register!");
317   return I->second.UsedByIndices;
318 }
319 
clear()320 void RegUseTracker::clear() {
321   RegUsesMap.clear();
322   RegSequence.clear();
323 }
324 
325 namespace {
326 
327 /// This class holds information that describes a formula for computing
328 /// satisfying a use. It may include broken-out immediates and scaled registers.
329 struct Formula {
330   /// Global base address used for complex addressing.
331   GlobalValue *BaseGV = nullptr;
332 
333   /// Base offset for complex addressing.
334   int64_t BaseOffset = 0;
335 
336   /// Whether any complex addressing has a base register.
337   bool HasBaseReg = false;
338 
339   /// The scale of any complex addressing.
340   int64_t Scale = 0;
341 
342   /// The list of "base" registers for this use. When this is non-empty. The
343   /// canonical representation of a formula is
344   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
345   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
346   /// 3. The reg containing recurrent expr related with currect loop in the
347   /// formula should be put in the ScaledReg.
348   /// #1 enforces that the scaled register is always used when at least two
349   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
350   /// #2 enforces that 1 * reg is reg.
351   /// #3 ensures invariant regs with respect to current loop can be combined
352   /// together in LSR codegen.
353   /// This invariant can be temporarily broken while building a formula.
354   /// However, every formula inserted into the LSRInstance must be in canonical
355   /// form.
356   SmallVector<const SCEV *, 4> BaseRegs;
357 
358   /// The 'scaled' register for this use. This should be non-null when Scale is
359   /// not zero.
360   const SCEV *ScaledReg = nullptr;
361 
362   /// An additional constant offset which added near the use. This requires a
363   /// temporary register, but the offset itself can live in an add immediate
364   /// field rather than a register.
365   int64_t UnfoldedOffset = 0;
366 
367   Formula() = default;
368 
369   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
370 
371   bool isCanonical(const Loop &L) const;
372 
373   void canonicalize(const Loop &L);
374 
375   bool unscale();
376 
377   bool hasZeroEnd() const;
378 
379   size_t getNumRegs() const;
380   Type *getType() const;
381 
382   void deleteBaseReg(const SCEV *&S);
383 
384   bool referencesReg(const SCEV *S) const;
385   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
386                                   const RegUseTracker &RegUses) const;
387 
388   void print(raw_ostream &OS) const;
389   void dump() const;
390 };
391 
392 } // end anonymous namespace
393 
394 /// Recursion helper for initialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)395 static void DoInitialMatch(const SCEV *S, Loop *L,
396                            SmallVectorImpl<const SCEV *> &Good,
397                            SmallVectorImpl<const SCEV *> &Bad,
398                            ScalarEvolution &SE) {
399   // Collect expressions which properly dominate the loop header.
400   if (SE.properlyDominates(S, L->getHeader())) {
401     Good.push_back(S);
402     return;
403   }
404 
405   // Look at add operands.
406   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
407     for (const SCEV *S : Add->operands())
408       DoInitialMatch(S, L, Good, Bad, SE);
409     return;
410   }
411 
412   // Look at addrec operands.
413   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
414     if (!AR->getStart()->isZero() && AR->isAffine()) {
415       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
416       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
417                                       AR->getStepRecurrence(SE),
418                                       // FIXME: AR->getNoWrapFlags()
419                                       AR->getLoop(), SCEV::FlagAnyWrap),
420                      L, Good, Bad, SE);
421       return;
422     }
423 
424   // Handle a multiplication by -1 (negation) if it didn't fold.
425   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
426     if (Mul->getOperand(0)->isAllOnesValue()) {
427       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
428       const SCEV *NewMul = SE.getMulExpr(Ops);
429 
430       SmallVector<const SCEV *, 4> MyGood;
431       SmallVector<const SCEV *, 4> MyBad;
432       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
433       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
434         SE.getEffectiveSCEVType(NewMul->getType())));
435       for (const SCEV *S : MyGood)
436         Good.push_back(SE.getMulExpr(NegOne, S));
437       for (const SCEV *S : MyBad)
438         Bad.push_back(SE.getMulExpr(NegOne, S));
439       return;
440     }
441 
442   // Ok, we can't do anything interesting. Just stuff the whole thing into a
443   // register and hope for the best.
444   Bad.push_back(S);
445 }
446 
447 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
448 /// all loop-invariant and loop-computable values in a single base register.
initialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)449 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
450   SmallVector<const SCEV *, 4> Good;
451   SmallVector<const SCEV *, 4> Bad;
452   DoInitialMatch(S, L, Good, Bad, SE);
453   if (!Good.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Good);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   if (!Bad.empty()) {
460     const SCEV *Sum = SE.getAddExpr(Bad);
461     if (!Sum->isZero())
462       BaseRegs.push_back(Sum);
463     HasBaseReg = true;
464   }
465   canonicalize(*L);
466 }
467 
468 /// Check whether or not this formula satisfies the canonical
469 /// representation.
470 /// \see Formula::BaseRegs.
isCanonical(const Loop & L) const471 bool Formula::isCanonical(const Loop &L) const {
472   if (!ScaledReg)
473     return BaseRegs.size() <= 1;
474 
475   if (Scale != 1)
476     return true;
477 
478   if (Scale == 1 && BaseRegs.empty())
479     return false;
480 
481   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
482   if (SAR && SAR->getLoop() == &L)
483     return true;
484 
485   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
486   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
487   // loop, we want to swap the reg in BaseRegs with ScaledReg.
488   auto I =
489       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
490         return isa<const SCEVAddRecExpr>(S) &&
491                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
492       });
493   return I == BaseRegs.end();
494 }
495 
496 /// Helper method to morph a formula into its canonical representation.
497 /// \see Formula::BaseRegs.
498 /// Every formula having more than one base register, must use the ScaledReg
499 /// field. Otherwise, we would have to do special cases everywhere in LSR
500 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
501 /// On the other hand, 1*reg should be canonicalized into reg.
canonicalize(const Loop & L)502 void Formula::canonicalize(const Loop &L) {
503   if (isCanonical(L))
504     return;
505   // So far we did not need this case. This is easy to implement but it is
506   // useless to maintain dead code. Beside it could hurt compile time.
507   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
508 
509   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
510   if (!ScaledReg) {
511     ScaledReg = BaseRegs.back();
512     BaseRegs.pop_back();
513     Scale = 1;
514   }
515 
516   // If ScaledReg is an invariant with respect to L, find the reg from
517   // BaseRegs containing the recurrent expr related with Loop L. Swap the
518   // reg with ScaledReg.
519   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
520   if (!SAR || SAR->getLoop() != &L) {
521     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
522                      [&](const SCEV *S) {
523                        return isa<const SCEVAddRecExpr>(S) &&
524                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
525                      });
526     if (I != BaseRegs.end())
527       std::swap(ScaledReg, *I);
528   }
529 }
530 
531 /// Get rid of the scale in the formula.
532 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
533 /// \return true if it was possible to get rid of the scale, false otherwise.
534 /// \note After this operation the formula may not be in the canonical form.
unscale()535 bool Formula::unscale() {
536   if (Scale != 1)
537     return false;
538   Scale = 0;
539   BaseRegs.push_back(ScaledReg);
540   ScaledReg = nullptr;
541   return true;
542 }
543 
hasZeroEnd() const544 bool Formula::hasZeroEnd() const {
545   if (UnfoldedOffset || BaseOffset)
546     return false;
547   if (BaseRegs.size() != 1 || ScaledReg)
548     return false;
549   return true;
550 }
551 
552 /// Return the total number of register operands used by this formula. This does
553 /// not include register uses implied by non-constant addrec strides.
getNumRegs() const554 size_t Formula::getNumRegs() const {
555   return !!ScaledReg + BaseRegs.size();
556 }
557 
558 /// Return the type of this formula, if it has one, or null otherwise. This type
559 /// is meaningless except for the bit size.
getType() const560 Type *Formula::getType() const {
561   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
562          ScaledReg ? ScaledReg->getType() :
563          BaseGV ? BaseGV->getType() :
564          nullptr;
565 }
566 
567 /// Delete the given base reg from the BaseRegs list.
deleteBaseReg(const SCEV * & S)568 void Formula::deleteBaseReg(const SCEV *&S) {
569   if (&S != &BaseRegs.back())
570     std::swap(S, BaseRegs.back());
571   BaseRegs.pop_back();
572 }
573 
574 /// Test if this formula references the given register.
referencesReg(const SCEV * S) const575 bool Formula::referencesReg(const SCEV *S) const {
576   return S == ScaledReg || is_contained(BaseRegs, S);
577 }
578 
579 /// Test whether this formula uses registers which are used by uses other than
580 /// the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const581 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
582                                          const RegUseTracker &RegUses) const {
583   if (ScaledReg)
584     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
585       return true;
586   for (const SCEV *BaseReg : BaseRegs)
587     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
588       return true;
589   return false;
590 }
591 
592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const593 void Formula::print(raw_ostream &OS) const {
594   bool First = true;
595   if (BaseGV) {
596     if (!First) OS << " + "; else First = false;
597     BaseGV->printAsOperand(OS, /*PrintType=*/false);
598   }
599   if (BaseOffset != 0) {
600     if (!First) OS << " + "; else First = false;
601     OS << BaseOffset;
602   }
603   for (const SCEV *BaseReg : BaseRegs) {
604     if (!First) OS << " + "; else First = false;
605     OS << "reg(" << *BaseReg << ')';
606   }
607   if (HasBaseReg && BaseRegs.empty()) {
608     if (!First) OS << " + "; else First = false;
609     OS << "**error: HasBaseReg**";
610   } else if (!HasBaseReg && !BaseRegs.empty()) {
611     if (!First) OS << " + "; else First = false;
612     OS << "**error: !HasBaseReg**";
613   }
614   if (Scale != 0) {
615     if (!First) OS << " + "; else First = false;
616     OS << Scale << "*reg(";
617     if (ScaledReg)
618       OS << *ScaledReg;
619     else
620       OS << "<unknown>";
621     OS << ')';
622   }
623   if (UnfoldedOffset != 0) {
624     if (!First) OS << " + ";
625     OS << "imm(" << UnfoldedOffset << ')';
626   }
627 }
628 
dump() const629 LLVM_DUMP_METHOD void Formula::dump() const {
630   print(errs()); errs() << '\n';
631 }
632 #endif
633 
634 /// Return true if the given addrec can be sign-extended without changing its
635 /// value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)636 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
637   Type *WideTy =
638     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
639   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
640 }
641 
642 /// Return true if the given add can be sign-extended without changing its
643 /// value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)644 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
645   Type *WideTy =
646     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
647   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
648 }
649 
650 /// Return true if the given mul can be sign-extended without changing its
651 /// value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)652 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
653   Type *WideTy =
654     IntegerType::get(SE.getContext(),
655                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
656   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
657 }
658 
659 /// Return an expression for LHS /s RHS, if it can be determined and if the
660 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
661 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
662 /// the multiplication may overflow, which is useful when the result will be
663 /// used in a context where the most significant bits are ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)664 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
665                                 ScalarEvolution &SE,
666                                 bool IgnoreSignificantBits = false) {
667   // Handle the trivial case, which works for any SCEV type.
668   if (LHS == RHS)
669     return SE.getConstant(LHS->getType(), 1);
670 
671   // Handle a few RHS special cases.
672   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
673   if (RC) {
674     const APInt &RA = RC->getAPInt();
675     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
676     // some folding.
677     if (RA.isAllOnesValue())
678       return SE.getMulExpr(LHS, RC);
679     // Handle x /s 1 as x.
680     if (RA == 1)
681       return LHS;
682   }
683 
684   // Check for a division of a constant by a constant.
685   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
686     if (!RC)
687       return nullptr;
688     const APInt &LA = C->getAPInt();
689     const APInt &RA = RC->getAPInt();
690     if (LA.srem(RA) != 0)
691       return nullptr;
692     return SE.getConstant(LA.sdiv(RA));
693   }
694 
695   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
696   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
697     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
698       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
699                                       IgnoreSignificantBits);
700       if (!Step) return nullptr;
701       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
702                                        IgnoreSignificantBits);
703       if (!Start) return nullptr;
704       // FlagNW is independent of the start value, step direction, and is
705       // preserved with smaller magnitude steps.
706       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
707       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
708     }
709     return nullptr;
710   }
711 
712   // Distribute the sdiv over add operands, if the add doesn't overflow.
713   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
714     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
715       SmallVector<const SCEV *, 8> Ops;
716       for (const SCEV *S : Add->operands()) {
717         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
718         if (!Op) return nullptr;
719         Ops.push_back(Op);
720       }
721       return SE.getAddExpr(Ops);
722     }
723     return nullptr;
724   }
725 
726   // Check for a multiply operand that we can pull RHS out of.
727   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
728     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
729       SmallVector<const SCEV *, 4> Ops;
730       bool Found = false;
731       for (const SCEV *S : Mul->operands()) {
732         if (!Found)
733           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
734                                            IgnoreSignificantBits)) {
735             S = Q;
736             Found = true;
737           }
738         Ops.push_back(S);
739       }
740       return Found ? SE.getMulExpr(Ops) : nullptr;
741     }
742     return nullptr;
743   }
744 
745   // Otherwise we don't know.
746   return nullptr;
747 }
748 
749 /// If S involves the addition of a constant integer value, return that integer
750 /// value, and mutate S to point to a new SCEV with that value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)751 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
752   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
753     if (C->getAPInt().getMinSignedBits() <= 64) {
754       S = SE.getConstant(C->getType(), 0);
755       return C->getValue()->getSExtValue();
756     }
757   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddExpr(NewOps);
762     return Result;
763   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
764     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
765     int64_t Result = ExtractImmediate(NewOps.front(), SE);
766     if (Result != 0)
767       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
768                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
769                            SCEV::FlagAnyWrap);
770     return Result;
771   }
772   return 0;
773 }
774 
775 /// If S involves the addition of a GlobalValue address, return that symbol, and
776 /// mutate S to point to a new SCEV with that value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)777 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
778   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
779     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
780       S = SE.getConstant(GV->getType(), 0);
781       return GV;
782     }
783   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
786     if (Result)
787       S = SE.getAddExpr(NewOps);
788     return Result;
789   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
790     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
791     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
792     if (Result)
793       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
794                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
795                            SCEV::FlagAnyWrap);
796     return Result;
797   }
798   return nullptr;
799 }
800 
801 /// Returns true if the specified instruction is using the specified value as an
802 /// address.
isAddressUse(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)803 static bool isAddressUse(const TargetTransformInfo &TTI,
804                          Instruction *Inst, Value *OperandVal) {
805   bool isAddress = isa<LoadInst>(Inst);
806   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
807     if (SI->getPointerOperand() == OperandVal)
808       isAddress = true;
809   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
810     // Addressing modes can also be folded into prefetches and a variety
811     // of intrinsics.
812     switch (II->getIntrinsicID()) {
813     case Intrinsic::memset:
814     case Intrinsic::prefetch:
815     case Intrinsic::masked_load:
816       if (II->getArgOperand(0) == OperandVal)
817         isAddress = true;
818       break;
819     case Intrinsic::masked_store:
820       if (II->getArgOperand(1) == OperandVal)
821         isAddress = true;
822       break;
823     case Intrinsic::memmove:
824     case Intrinsic::memcpy:
825       if (II->getArgOperand(0) == OperandVal ||
826           II->getArgOperand(1) == OperandVal)
827         isAddress = true;
828       break;
829     default: {
830       MemIntrinsicInfo IntrInfo;
831       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
832         if (IntrInfo.PtrVal == OperandVal)
833           isAddress = true;
834       }
835     }
836     }
837   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
838     if (RMW->getPointerOperand() == OperandVal)
839       isAddress = true;
840   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
841     if (CmpX->getPointerOperand() == OperandVal)
842       isAddress = true;
843   }
844   return isAddress;
845 }
846 
847 /// Return the type of the memory being accessed.
getAccessType(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)848 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
849                                  Instruction *Inst, Value *OperandVal) {
850   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
851   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
852     AccessTy.MemTy = SI->getOperand(0)->getType();
853     AccessTy.AddrSpace = SI->getPointerAddressSpace();
854   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
855     AccessTy.AddrSpace = LI->getPointerAddressSpace();
856   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
857     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
858   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
859     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
860   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
861     switch (II->getIntrinsicID()) {
862     case Intrinsic::prefetch:
863     case Intrinsic::memset:
864       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
865       AccessTy.MemTy = OperandVal->getType();
866       break;
867     case Intrinsic::memmove:
868     case Intrinsic::memcpy:
869       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
870       AccessTy.MemTy = OperandVal->getType();
871       break;
872     case Intrinsic::masked_load:
873       AccessTy.AddrSpace =
874           II->getArgOperand(0)->getType()->getPointerAddressSpace();
875       break;
876     case Intrinsic::masked_store:
877       AccessTy.MemTy = II->getOperand(0)->getType();
878       AccessTy.AddrSpace =
879           II->getArgOperand(1)->getType()->getPointerAddressSpace();
880       break;
881     default: {
882       MemIntrinsicInfo IntrInfo;
883       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
884         AccessTy.AddrSpace
885           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
886       }
887 
888       break;
889     }
890     }
891   }
892 
893   // All pointers have the same requirements, so canonicalize them to an
894   // arbitrary pointer type to minimize variation.
895   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
896     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
897                                       PTy->getAddressSpace());
898 
899   return AccessTy;
900 }
901 
902 /// Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)903 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
904   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
905     if (SE.isSCEVable(PN.getType()) &&
906         (SE.getEffectiveSCEVType(PN.getType()) ==
907          SE.getEffectiveSCEVType(AR->getType())) &&
908         SE.getSCEV(&PN) == AR)
909       return true;
910   }
911   return false;
912 }
913 
914 /// Check if expanding this expression is likely to incur significant cost. This
915 /// is tricky because SCEV doesn't track which expressions are actually computed
916 /// by the current IR.
917 ///
918 /// We currently allow expansion of IV increments that involve adds,
919 /// multiplication by constants, and AddRecs from existing phis.
920 ///
921 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
922 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)923 static bool isHighCostExpansion(const SCEV *S,
924                                 SmallPtrSetImpl<const SCEV*> &Processed,
925                                 ScalarEvolution &SE) {
926   // Zero/One operand expressions
927   switch (S->getSCEVType()) {
928   case scUnknown:
929   case scConstant:
930     return false;
931   case scTruncate:
932     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
933                                Processed, SE);
934   case scZeroExtend:
935     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
936                                Processed, SE);
937   case scSignExtend:
938     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
939                                Processed, SE);
940   default:
941     break;
942   }
943 
944   if (!Processed.insert(S).second)
945     return false;
946 
947   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
948     for (const SCEV *S : Add->operands()) {
949       if (isHighCostExpansion(S, Processed, SE))
950         return true;
951     }
952     return false;
953   }
954 
955   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
956     if (Mul->getNumOperands() == 2) {
957       // Multiplication by a constant is ok
958       if (isa<SCEVConstant>(Mul->getOperand(0)))
959         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
960 
961       // If we have the value of one operand, check if an existing
962       // multiplication already generates this expression.
963       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
964         Value *UVal = U->getValue();
965         for (User *UR : UVal->users()) {
966           // If U is a constant, it may be used by a ConstantExpr.
967           Instruction *UI = dyn_cast<Instruction>(UR);
968           if (UI && UI->getOpcode() == Instruction::Mul &&
969               SE.isSCEVable(UI->getType())) {
970             return SE.getSCEV(UI) == Mul;
971           }
972         }
973       }
974     }
975   }
976 
977   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
978     if (isExistingPhi(AR, SE))
979       return false;
980   }
981 
982   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
983   return true;
984 }
985 
986 namespace {
987 
988 class LSRUse;
989 
990 } // end anonymous namespace
991 
992 /// Check if the addressing mode defined by \p F is completely
993 /// folded in \p LU at isel time.
994 /// This includes address-mode folding and special icmp tricks.
995 /// This function returns true if \p LU can accommodate what \p F
996 /// defines and up to 1 base + 1 scaled + offset.
997 /// In other words, if \p F has several base registers, this function may
998 /// still return true. Therefore, users still need to account for
999 /// additional base registers and/or unfolded offsets to derive an
1000 /// accurate cost model.
1001 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1002                                  const LSRUse &LU, const Formula &F);
1003 
1004 // Get the cost of the scaling factor used in F for LU.
1005 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1006                                      const LSRUse &LU, const Formula &F,
1007                                      const Loop &L);
1008 
1009 namespace {
1010 
1011 /// This class is used to measure and compare candidate formulae.
1012 class Cost {
1013   const Loop *L = nullptr;
1014   ScalarEvolution *SE = nullptr;
1015   const TargetTransformInfo *TTI = nullptr;
1016   TargetTransformInfo::LSRCost C;
1017 
1018 public:
1019   Cost() = delete;
Cost(const Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI)1020   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1021     L(L), SE(&SE), TTI(&TTI) {
1022     C.Insns = 0;
1023     C.NumRegs = 0;
1024     C.AddRecCost = 0;
1025     C.NumIVMuls = 0;
1026     C.NumBaseAdds = 0;
1027     C.ImmCost = 0;
1028     C.SetupCost = 0;
1029     C.ScaleCost = 0;
1030   }
1031 
1032   bool isLess(Cost &Other);
1033 
1034   void Lose();
1035 
1036 #ifndef NDEBUG
1037   // Once any of the metrics loses, they must all remain losers.
isValid()1038   bool isValid() {
1039     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1040              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1041       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1042            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1043   }
1044 #endif
1045 
isLoser()1046   bool isLoser() {
1047     assert(isValid() && "invalid cost");
1048     return C.NumRegs == ~0u;
1049   }
1050 
1051   void RateFormula(const Formula &F,
1052                    SmallPtrSetImpl<const SCEV *> &Regs,
1053                    const DenseSet<const SCEV *> &VisitedRegs,
1054                    const LSRUse &LU,
1055                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1056 
1057   void print(raw_ostream &OS) const;
1058   void dump() const;
1059 
1060 private:
1061   void RateRegister(const Formula &F, const SCEV *Reg,
1062                     SmallPtrSetImpl<const SCEV *> &Regs);
1063   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1064                            SmallPtrSetImpl<const SCEV *> &Regs,
1065                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1066 };
1067 
1068 /// An operand value in an instruction which is to be replaced with some
1069 /// equivalent, possibly strength-reduced, replacement.
1070 struct LSRFixup {
1071   /// The instruction which will be updated.
1072   Instruction *UserInst = nullptr;
1073 
1074   /// The operand of the instruction which will be replaced. The operand may be
1075   /// used more than once; every instance will be replaced.
1076   Value *OperandValToReplace = nullptr;
1077 
1078   /// If this user is to use the post-incremented value of an induction
1079   /// variable, this set is non-empty and holds the loops associated with the
1080   /// induction variable.
1081   PostIncLoopSet PostIncLoops;
1082 
1083   /// A constant offset to be added to the LSRUse expression.  This allows
1084   /// multiple fixups to share the same LSRUse with different offsets, for
1085   /// example in an unrolled loop.
1086   int64_t Offset = 0;
1087 
1088   LSRFixup() = default;
1089 
1090   bool isUseFullyOutsideLoop(const Loop *L) const;
1091 
1092   void print(raw_ostream &OS) const;
1093   void dump() const;
1094 };
1095 
1096 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1097 /// SmallVectors of const SCEV*.
1098 struct UniquifierDenseMapInfo {
getEmptyKey__anondbe16f4d0711::UniquifierDenseMapInfo1099   static SmallVector<const SCEV *, 4> getEmptyKey() {
1100     SmallVector<const SCEV *, 4>  V;
1101     V.push_back(reinterpret_cast<const SCEV *>(-1));
1102     return V;
1103   }
1104 
getTombstoneKey__anondbe16f4d0711::UniquifierDenseMapInfo1105   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1106     SmallVector<const SCEV *, 4> V;
1107     V.push_back(reinterpret_cast<const SCEV *>(-2));
1108     return V;
1109   }
1110 
getHashValue__anondbe16f4d0711::UniquifierDenseMapInfo1111   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1112     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1113   }
1114 
isEqual__anondbe16f4d0711::UniquifierDenseMapInfo1115   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1116                       const SmallVector<const SCEV *, 4> &RHS) {
1117     return LHS == RHS;
1118   }
1119 };
1120 
1121 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1122 /// as uses invented by LSR itself. It includes information about what kinds of
1123 /// things can be folded into the user, information about the user itself, and
1124 /// information about how the use may be satisfied.  TODO: Represent multiple
1125 /// users of the same expression in common?
1126 class LSRUse {
1127   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1128 
1129 public:
1130   /// An enum for a kind of use, indicating what types of scaled and immediate
1131   /// operands it might support.
1132   enum KindType {
1133     Basic,   ///< A normal use, with no folding.
1134     Special, ///< A special case of basic, allowing -1 scales.
1135     Address, ///< An address use; folding according to TargetLowering
1136     ICmpZero ///< An equality icmp with both operands folded into one.
1137     // TODO: Add a generic icmp too?
1138   };
1139 
1140   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1141 
1142   KindType Kind;
1143   MemAccessTy AccessTy;
1144 
1145   /// The list of operands which are to be replaced.
1146   SmallVector<LSRFixup, 8> Fixups;
1147 
1148   /// Keep track of the min and max offsets of the fixups.
1149   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1150   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1151 
1152   /// This records whether all of the fixups using this LSRUse are outside of
1153   /// the loop, in which case some special-case heuristics may be used.
1154   bool AllFixupsOutsideLoop = true;
1155 
1156   /// RigidFormula is set to true to guarantee that this use will be associated
1157   /// with a single formula--the one that initially matched. Some SCEV
1158   /// expressions cannot be expanded. This allows LSR to consider the registers
1159   /// used by those expressions without the need to expand them later after
1160   /// changing the formula.
1161   bool RigidFormula = false;
1162 
1163   /// This records the widest use type for any fixup using this
1164   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1165   /// fixup widths to be equivalent, because the narrower one may be relying on
1166   /// the implicit truncation to truncate away bogus bits.
1167   Type *WidestFixupType = nullptr;
1168 
1169   /// A list of ways to build a value that can satisfy this user.  After the
1170   /// list is populated, one of these is selected heuristically and used to
1171   /// formulate a replacement for OperandValToReplace in UserInst.
1172   SmallVector<Formula, 12> Formulae;
1173 
1174   /// The set of register candidates used by all formulae in this LSRUse.
1175   SmallPtrSet<const SCEV *, 4> Regs;
1176 
LSRUse(KindType K,MemAccessTy AT)1177   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1178 
getNewFixup()1179   LSRFixup &getNewFixup() {
1180     Fixups.push_back(LSRFixup());
1181     return Fixups.back();
1182   }
1183 
pushFixup(LSRFixup & f)1184   void pushFixup(LSRFixup &f) {
1185     Fixups.push_back(f);
1186     if (f.Offset > MaxOffset)
1187       MaxOffset = f.Offset;
1188     if (f.Offset < MinOffset)
1189       MinOffset = f.Offset;
1190   }
1191 
1192   bool HasFormulaWithSameRegs(const Formula &F) const;
1193   float getNotSelectedProbability(const SCEV *Reg) const;
1194   bool InsertFormula(const Formula &F, const Loop &L);
1195   void DeleteFormula(Formula &F);
1196   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1197 
1198   void print(raw_ostream &OS) const;
1199   void dump() const;
1200 };
1201 
1202 } // end anonymous namespace
1203 
1204 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1205                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1206                                  GlobalValue *BaseGV, int64_t BaseOffset,
1207                                  bool HasBaseReg, int64_t Scale,
1208                                  Instruction *Fixup = nullptr);
1209 
getSetupCost(const SCEV * Reg,unsigned Depth)1210 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1211   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1212     return 1;
1213   if (Depth == 0)
1214     return 0;
1215   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1216     return getSetupCost(S->getStart(), Depth - 1);
1217   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1218     return getSetupCost(S->getOperand(), Depth - 1);
1219   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1220     return std::accumulate(S->op_begin(), S->op_end(), 0,
1221                            [&](unsigned i, const SCEV *Reg) {
1222                              return i + getSetupCost(Reg, Depth - 1);
1223                            });
1224   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1225     return getSetupCost(S->getLHS(), Depth - 1) +
1226            getSetupCost(S->getRHS(), Depth - 1);
1227   return 0;
1228 }
1229 
1230 /// Tally up interesting quantities from the given register.
RateRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs)1231 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1232                         SmallPtrSetImpl<const SCEV *> &Regs) {
1233   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1234     // If this is an addrec for another loop, it should be an invariant
1235     // with respect to L since L is the innermost loop (at least
1236     // for now LSR only handles innermost loops).
1237     if (AR->getLoop() != L) {
1238       // If the AddRec exists, consider it's register free and leave it alone.
1239       if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc())
1240         return;
1241 
1242       // It is bad to allow LSR for current loop to add induction variables
1243       // for its sibling loops.
1244       if (!AR->getLoop()->contains(L)) {
1245         Lose();
1246         return;
1247       }
1248 
1249       // Otherwise, it will be an invariant with respect to Loop L.
1250       ++C.NumRegs;
1251       return;
1252     }
1253 
1254     unsigned LoopCost = 1;
1255     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1256         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1257 
1258       // If the step size matches the base offset, we could use pre-indexed
1259       // addressing.
1260       if (TTI->shouldFavorBackedgeIndex(L)) {
1261         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1262           if (Step->getAPInt() == F.BaseOffset)
1263             LoopCost = 0;
1264       }
1265 
1266       if (TTI->shouldFavorPostInc()) {
1267         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1268         if (isa<SCEVConstant>(LoopStep)) {
1269           const SCEV *LoopStart = AR->getStart();
1270           if (!isa<SCEVConstant>(LoopStart) &&
1271               SE->isLoopInvariant(LoopStart, L))
1272             LoopCost = 0;
1273         }
1274       }
1275     }
1276     C.AddRecCost += LoopCost;
1277 
1278     // Add the step value register, if it needs one.
1279     // TODO: The non-affine case isn't precisely modeled here.
1280     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1281       if (!Regs.count(AR->getOperand(1))) {
1282         RateRegister(F, AR->getOperand(1), Regs);
1283         if (isLoser())
1284           return;
1285       }
1286     }
1287   }
1288   ++C.NumRegs;
1289 
1290   // Rough heuristic; favor registers which don't require extra setup
1291   // instructions in the preheader.
1292   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1293   // Ensure we don't, even with the recusion limit, produce invalid costs.
1294   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1295 
1296   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1297                SE->hasComputableLoopEvolution(Reg, L);
1298 }
1299 
1300 /// Record this register in the set. If we haven't seen it before, rate
1301 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1302 /// one of those regs an instant loser.
RatePrimaryRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,SmallPtrSetImpl<const SCEV * > * LoserRegs)1303 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1304                                SmallPtrSetImpl<const SCEV *> &Regs,
1305                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1306   if (LoserRegs && LoserRegs->count(Reg)) {
1307     Lose();
1308     return;
1309   }
1310   if (Regs.insert(Reg).second) {
1311     RateRegister(F, Reg, Regs);
1312     if (LoserRegs && isLoser())
1313       LoserRegs->insert(Reg);
1314   }
1315 }
1316 
RateFormula(const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)1317 void Cost::RateFormula(const Formula &F,
1318                        SmallPtrSetImpl<const SCEV *> &Regs,
1319                        const DenseSet<const SCEV *> &VisitedRegs,
1320                        const LSRUse &LU,
1321                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1322   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1323   // Tally up the registers.
1324   unsigned PrevAddRecCost = C.AddRecCost;
1325   unsigned PrevNumRegs = C.NumRegs;
1326   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1327   if (const SCEV *ScaledReg = F.ScaledReg) {
1328     if (VisitedRegs.count(ScaledReg)) {
1329       Lose();
1330       return;
1331     }
1332     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1333     if (isLoser())
1334       return;
1335   }
1336   for (const SCEV *BaseReg : F.BaseRegs) {
1337     if (VisitedRegs.count(BaseReg)) {
1338       Lose();
1339       return;
1340     }
1341     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1342     if (isLoser())
1343       return;
1344   }
1345 
1346   // Determine how many (unfolded) adds we'll need inside the loop.
1347   size_t NumBaseParts = F.getNumRegs();
1348   if (NumBaseParts > 1)
1349     // Do not count the base and a possible second register if the target
1350     // allows to fold 2 registers.
1351     C.NumBaseAdds +=
1352         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1353   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1354 
1355   // Accumulate non-free scaling amounts.
1356   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1357 
1358   // Tally up the non-zero immediates.
1359   for (const LSRFixup &Fixup : LU.Fixups) {
1360     int64_t O = Fixup.Offset;
1361     int64_t Offset = (uint64_t)O + F.BaseOffset;
1362     if (F.BaseGV)
1363       C.ImmCost += 64; // Handle symbolic values conservatively.
1364                      // TODO: This should probably be the pointer size.
1365     else if (Offset != 0)
1366       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1367 
1368     // Check with target if this offset with this instruction is
1369     // specifically not supported.
1370     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1371         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1372                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1373       C.NumBaseAdds++;
1374   }
1375 
1376   // If we don't count instruction cost exit here.
1377   if (!InsnsCost) {
1378     assert(isValid() && "invalid cost");
1379     return;
1380   }
1381 
1382   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1383   // additional instruction (at least fill).
1384   // TODO: Need distinguish register class?
1385   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1386                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1387   if (C.NumRegs > TTIRegNum) {
1388     // Cost already exceeded TTIRegNum, then only newly added register can add
1389     // new instructions.
1390     if (PrevNumRegs > TTIRegNum)
1391       C.Insns += (C.NumRegs - PrevNumRegs);
1392     else
1393       C.Insns += (C.NumRegs - TTIRegNum);
1394   }
1395 
1396   // If ICmpZero formula ends with not 0, it could not be replaced by
1397   // just add or sub. We'll need to compare final result of AddRec.
1398   // That means we'll need an additional instruction. But if the target can
1399   // macro-fuse a compare with a branch, don't count this extra instruction.
1400   // For -10 + {0, +, 1}:
1401   // i = i + 1;
1402   // cmp i, 10
1403   //
1404   // For {-10, +, 1}:
1405   // i = i + 1;
1406   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1407       !TTI->canMacroFuseCmp())
1408     C.Insns++;
1409   // Each new AddRec adds 1 instruction to calculation.
1410   C.Insns += (C.AddRecCost - PrevAddRecCost);
1411 
1412   // BaseAdds adds instructions for unfolded registers.
1413   if (LU.Kind != LSRUse::ICmpZero)
1414     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1415   assert(isValid() && "invalid cost");
1416 }
1417 
1418 /// Set this cost to a losing value.
Lose()1419 void Cost::Lose() {
1420   C.Insns = std::numeric_limits<unsigned>::max();
1421   C.NumRegs = std::numeric_limits<unsigned>::max();
1422   C.AddRecCost = std::numeric_limits<unsigned>::max();
1423   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1424   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1425   C.ImmCost = std::numeric_limits<unsigned>::max();
1426   C.SetupCost = std::numeric_limits<unsigned>::max();
1427   C.ScaleCost = std::numeric_limits<unsigned>::max();
1428 }
1429 
1430 /// Choose the lower cost.
isLess(Cost & Other)1431 bool Cost::isLess(Cost &Other) {
1432   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1433       C.Insns != Other.C.Insns)
1434     return C.Insns < Other.C.Insns;
1435   return TTI->isLSRCostLess(C, Other.C);
1436 }
1437 
1438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1439 void Cost::print(raw_ostream &OS) const {
1440   if (InsnsCost)
1441     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1442   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1443   if (C.AddRecCost != 0)
1444     OS << ", with addrec cost " << C.AddRecCost;
1445   if (C.NumIVMuls != 0)
1446     OS << ", plus " << C.NumIVMuls << " IV mul"
1447        << (C.NumIVMuls == 1 ? "" : "s");
1448   if (C.NumBaseAdds != 0)
1449     OS << ", plus " << C.NumBaseAdds << " base add"
1450        << (C.NumBaseAdds == 1 ? "" : "s");
1451   if (C.ScaleCost != 0)
1452     OS << ", plus " << C.ScaleCost << " scale cost";
1453   if (C.ImmCost != 0)
1454     OS << ", plus " << C.ImmCost << " imm cost";
1455   if (C.SetupCost != 0)
1456     OS << ", plus " << C.SetupCost << " setup cost";
1457 }
1458 
dump() const1459 LLVM_DUMP_METHOD void Cost::dump() const {
1460   print(errs()); errs() << '\n';
1461 }
1462 #endif
1463 
1464 /// Test whether this fixup always uses its value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1465 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1466   // PHI nodes use their value in their incoming blocks.
1467   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1468     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1469       if (PN->getIncomingValue(i) == OperandValToReplace &&
1470           L->contains(PN->getIncomingBlock(i)))
1471         return false;
1472     return true;
1473   }
1474 
1475   return !L->contains(UserInst);
1476 }
1477 
1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1479 void LSRFixup::print(raw_ostream &OS) const {
1480   OS << "UserInst=";
1481   // Store is common and interesting enough to be worth special-casing.
1482   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1483     OS << "store ";
1484     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1485   } else if (UserInst->getType()->isVoidTy())
1486     OS << UserInst->getOpcodeName();
1487   else
1488     UserInst->printAsOperand(OS, /*PrintType=*/false);
1489 
1490   OS << ", OperandValToReplace=";
1491   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1492 
1493   for (const Loop *PIL : PostIncLoops) {
1494     OS << ", PostIncLoop=";
1495     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1496   }
1497 
1498   if (Offset != 0)
1499     OS << ", Offset=" << Offset;
1500 }
1501 
dump() const1502 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1503   print(errs()); errs() << '\n';
1504 }
1505 #endif
1506 
1507 /// Test whether this use as a formula which has the same registers as the given
1508 /// formula.
HasFormulaWithSameRegs(const Formula & F) const1509 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1510   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1511   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1512   // Unstable sort by host order ok, because this is only used for uniquifying.
1513   llvm::sort(Key);
1514   return Uniquifier.count(Key);
1515 }
1516 
1517 /// The function returns a probability of selecting formula without Reg.
getNotSelectedProbability(const SCEV * Reg) const1518 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1519   unsigned FNum = 0;
1520   for (const Formula &F : Formulae)
1521     if (F.referencesReg(Reg))
1522       FNum++;
1523   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1524 }
1525 
1526 /// If the given formula has not yet been inserted, add it to the list, and
1527 /// return true. Return false otherwise.  The formula must be in canonical form.
InsertFormula(const Formula & F,const Loop & L)1528 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1529   assert(F.isCanonical(L) && "Invalid canonical representation");
1530 
1531   if (!Formulae.empty() && RigidFormula)
1532     return false;
1533 
1534   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1535   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1536   // Unstable sort by host order ok, because this is only used for uniquifying.
1537   llvm::sort(Key);
1538 
1539   if (!Uniquifier.insert(Key).second)
1540     return false;
1541 
1542   // Using a register to hold the value of 0 is not profitable.
1543   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1544          "Zero allocated in a scaled register!");
1545 #ifndef NDEBUG
1546   for (const SCEV *BaseReg : F.BaseRegs)
1547     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1548 #endif
1549 
1550   // Add the formula to the list.
1551   Formulae.push_back(F);
1552 
1553   // Record registers now being used by this use.
1554   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1555   if (F.ScaledReg)
1556     Regs.insert(F.ScaledReg);
1557 
1558   return true;
1559 }
1560 
1561 /// Remove the given formula from this use's list.
DeleteFormula(Formula & F)1562 void LSRUse::DeleteFormula(Formula &F) {
1563   if (&F != &Formulae.back())
1564     std::swap(F, Formulae.back());
1565   Formulae.pop_back();
1566 }
1567 
1568 /// Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1569 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1570   // Now that we've filtered out some formulae, recompute the Regs set.
1571   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1572   Regs.clear();
1573   for (const Formula &F : Formulae) {
1574     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1575     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1576   }
1577 
1578   // Update the RegTracker.
1579   for (const SCEV *S : OldRegs)
1580     if (!Regs.count(S))
1581       RegUses.dropRegister(S, LUIdx);
1582 }
1583 
1584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1585 void LSRUse::print(raw_ostream &OS) const {
1586   OS << "LSR Use: Kind=";
1587   switch (Kind) {
1588   case Basic:    OS << "Basic"; break;
1589   case Special:  OS << "Special"; break;
1590   case ICmpZero: OS << "ICmpZero"; break;
1591   case Address:
1592     OS << "Address of ";
1593     if (AccessTy.MemTy->isPointerTy())
1594       OS << "pointer"; // the full pointer type could be really verbose
1595     else {
1596       OS << *AccessTy.MemTy;
1597     }
1598 
1599     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1600   }
1601 
1602   OS << ", Offsets={";
1603   bool NeedComma = false;
1604   for (const LSRFixup &Fixup : Fixups) {
1605     if (NeedComma) OS << ',';
1606     OS << Fixup.Offset;
1607     NeedComma = true;
1608   }
1609   OS << '}';
1610 
1611   if (AllFixupsOutsideLoop)
1612     OS << ", all-fixups-outside-loop";
1613 
1614   if (WidestFixupType)
1615     OS << ", widest fixup type: " << *WidestFixupType;
1616 }
1617 
dump() const1618 LLVM_DUMP_METHOD void LSRUse::dump() const {
1619   print(errs()); errs() << '\n';
1620 }
1621 #endif
1622 
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,Instruction * Fixup)1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1624                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1625                                  GlobalValue *BaseGV, int64_t BaseOffset,
1626                                  bool HasBaseReg, int64_t Scale,
1627                                  Instruction *Fixup/*= nullptr*/) {
1628   switch (Kind) {
1629   case LSRUse::Address:
1630     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1631                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1632 
1633   case LSRUse::ICmpZero:
1634     // There's not even a target hook for querying whether it would be legal to
1635     // fold a GV into an ICmp.
1636     if (BaseGV)
1637       return false;
1638 
1639     // ICmp only has two operands; don't allow more than two non-trivial parts.
1640     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1641       return false;
1642 
1643     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1644     // putting the scaled register in the other operand of the icmp.
1645     if (Scale != 0 && Scale != -1)
1646       return false;
1647 
1648     // If we have low-level target information, ask the target if it can fold an
1649     // integer immediate on an icmp.
1650     if (BaseOffset != 0) {
1651       // We have one of:
1652       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1653       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1654       // Offs is the ICmp immediate.
1655       if (Scale == 0)
1656         // The cast does the right thing with
1657         // std::numeric_limits<int64_t>::min().
1658         BaseOffset = -(uint64_t)BaseOffset;
1659       return TTI.isLegalICmpImmediate(BaseOffset);
1660     }
1661 
1662     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1663     return true;
1664 
1665   case LSRUse::Basic:
1666     // Only handle single-register values.
1667     return !BaseGV && Scale == 0 && BaseOffset == 0;
1668 
1669   case LSRUse::Special:
1670     // Special case Basic to handle -1 scales.
1671     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1672   }
1673 
1674   llvm_unreachable("Invalid LSRUse Kind!");
1675 }
1676 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1677 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1678                                  int64_t MinOffset, int64_t MaxOffset,
1679                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1680                                  GlobalValue *BaseGV, int64_t BaseOffset,
1681                                  bool HasBaseReg, int64_t Scale) {
1682   // Check for overflow.
1683   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1684       (MinOffset > 0))
1685     return false;
1686   MinOffset = (uint64_t)BaseOffset + MinOffset;
1687   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1688       (MaxOffset > 0))
1689     return false;
1690   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1691 
1692   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1693                               HasBaseReg, Scale) &&
1694          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1695                               HasBaseReg, Scale);
1696 }
1697 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F,const Loop & L)1698 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1699                                  int64_t MinOffset, int64_t MaxOffset,
1700                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1701                                  const Formula &F, const Loop &L) {
1702   // For the purpose of isAMCompletelyFolded either having a canonical formula
1703   // or a scale not equal to zero is correct.
1704   // Problems may arise from non canonical formulae having a scale == 0.
1705   // Strictly speaking it would best to just rely on canonical formulae.
1706   // However, when we generate the scaled formulae, we first check that the
1707   // scaling factor is profitable before computing the actual ScaledReg for
1708   // compile time sake.
1709   assert((F.isCanonical(L) || F.Scale != 0));
1710   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1711                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1712 }
1713 
1714 /// Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1715 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1716                        int64_t MaxOffset, LSRUse::KindType Kind,
1717                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1718                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1719   // We know how to expand completely foldable formulae.
1720   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1721                               BaseOffset, HasBaseReg, Scale) ||
1722          // Or formulae that use a base register produced by a sum of base
1723          // registers.
1724          (Scale == 1 &&
1725           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1726                                BaseGV, BaseOffset, true, 0));
1727 }
1728 
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1729 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1730                        int64_t MaxOffset, LSRUse::KindType Kind,
1731                        MemAccessTy AccessTy, const Formula &F) {
1732   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1733                     F.BaseOffset, F.HasBaseReg, F.Scale);
1734 }
1735 
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1737                                  const LSRUse &LU, const Formula &F) {
1738   // Target may want to look at the user instructions.
1739   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1740     for (const LSRFixup &Fixup : LU.Fixups)
1741       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1742                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1743                                 F.Scale, Fixup.UserInst))
1744         return false;
1745     return true;
1746   }
1747 
1748   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1749                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1750                               F.Scale);
1751 }
1752 
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F,const Loop & L)1753 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1754                                      const LSRUse &LU, const Formula &F,
1755                                      const Loop &L) {
1756   if (!F.Scale)
1757     return 0;
1758 
1759   // If the use is not completely folded in that instruction, we will have to
1760   // pay an extra cost only for scale != 1.
1761   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1762                             LU.AccessTy, F, L))
1763     return F.Scale != 1;
1764 
1765   switch (LU.Kind) {
1766   case LSRUse::Address: {
1767     // Check the scaling factor cost with both the min and max offsets.
1768     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1769         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1770         F.Scale, LU.AccessTy.AddrSpace);
1771     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1772         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1773         F.Scale, LU.AccessTy.AddrSpace);
1774 
1775     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1776            "Legal addressing mode has an illegal cost!");
1777     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1778   }
1779   case LSRUse::ICmpZero:
1780   case LSRUse::Basic:
1781   case LSRUse::Special:
1782     // The use is completely folded, i.e., everything is folded into the
1783     // instruction.
1784     return 0;
1785   }
1786 
1787   llvm_unreachable("Invalid LSRUse Kind!");
1788 }
1789 
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1790 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1791                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1792                              GlobalValue *BaseGV, int64_t BaseOffset,
1793                              bool HasBaseReg) {
1794   // Fast-path: zero is always foldable.
1795   if (BaseOffset == 0 && !BaseGV) return true;
1796 
1797   // Conservatively, create an address with an immediate and a
1798   // base and a scale.
1799   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1800 
1801   // Canonicalize a scale of 1 to a base register if the formula doesn't
1802   // already have a base register.
1803   if (!HasBaseReg && Scale == 1) {
1804     Scale = 0;
1805     HasBaseReg = true;
1806   }
1807 
1808   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1809                               HasBaseReg, Scale);
1810 }
1811 
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const SCEV * S,bool HasBaseReg)1812 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1813                              ScalarEvolution &SE, int64_t MinOffset,
1814                              int64_t MaxOffset, LSRUse::KindType Kind,
1815                              MemAccessTy AccessTy, const SCEV *S,
1816                              bool HasBaseReg) {
1817   // Fast-path: zero is always foldable.
1818   if (S->isZero()) return true;
1819 
1820   // Conservatively, create an address with an immediate and a
1821   // base and a scale.
1822   int64_t BaseOffset = ExtractImmediate(S, SE);
1823   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1824 
1825   // If there's anything else involved, it's not foldable.
1826   if (!S->isZero()) return false;
1827 
1828   // Fast-path: zero is always foldable.
1829   if (BaseOffset == 0 && !BaseGV) return true;
1830 
1831   // Conservatively, create an address with an immediate and a
1832   // base and a scale.
1833   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1834 
1835   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1836                               BaseOffset, HasBaseReg, Scale);
1837 }
1838 
1839 namespace {
1840 
1841 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1842 /// an expression that computes the IV it uses from the IV used by the previous
1843 /// link in the Chain.
1844 ///
1845 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1846 /// original IVOperand. The head of the chain's IVOperand is only valid during
1847 /// chain collection, before LSR replaces IV users. During chain generation,
1848 /// IncExpr can be used to find the new IVOperand that computes the same
1849 /// expression.
1850 struct IVInc {
1851   Instruction *UserInst;
1852   Value* IVOperand;
1853   const SCEV *IncExpr;
1854 
IVInc__anondbe16f4d0911::IVInc1855   IVInc(Instruction *U, Value *O, const SCEV *E)
1856       : UserInst(U), IVOperand(O), IncExpr(E) {}
1857 };
1858 
1859 // The list of IV increments in program order.  We typically add the head of a
1860 // chain without finding subsequent links.
1861 struct IVChain {
1862   SmallVector<IVInc, 1> Incs;
1863   const SCEV *ExprBase = nullptr;
1864 
1865   IVChain() = default;
IVChain__anondbe16f4d0911::IVChain1866   IVChain(const IVInc &Head, const SCEV *Base)
1867       : Incs(1, Head), ExprBase(Base) {}
1868 
1869   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1870 
1871   // Return the first increment in the chain.
begin__anondbe16f4d0911::IVChain1872   const_iterator begin() const {
1873     assert(!Incs.empty());
1874     return std::next(Incs.begin());
1875   }
end__anondbe16f4d0911::IVChain1876   const_iterator end() const {
1877     return Incs.end();
1878   }
1879 
1880   // Returns true if this chain contains any increments.
hasIncs__anondbe16f4d0911::IVChain1881   bool hasIncs() const { return Incs.size() >= 2; }
1882 
1883   // Add an IVInc to the end of this chain.
add__anondbe16f4d0911::IVChain1884   void add(const IVInc &X) { Incs.push_back(X); }
1885 
1886   // Returns the last UserInst in the chain.
tailUserInst__anondbe16f4d0911::IVChain1887   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1888 
1889   // Returns true if IncExpr can be profitably added to this chain.
1890   bool isProfitableIncrement(const SCEV *OperExpr,
1891                              const SCEV *IncExpr,
1892                              ScalarEvolution&);
1893 };
1894 
1895 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1896 /// between FarUsers that definitely cross IV increments and NearUsers that may
1897 /// be used between IV increments.
1898 struct ChainUsers {
1899   SmallPtrSet<Instruction*, 4> FarUsers;
1900   SmallPtrSet<Instruction*, 4> NearUsers;
1901 };
1902 
1903 /// This class holds state for the main loop strength reduction logic.
1904 class LSRInstance {
1905   IVUsers &IU;
1906   ScalarEvolution &SE;
1907   DominatorTree &DT;
1908   LoopInfo &LI;
1909   AssumptionCache &AC;
1910   TargetLibraryInfo &TLI;
1911   const TargetTransformInfo &TTI;
1912   Loop *const L;
1913   MemorySSAUpdater *MSSAU;
1914   bool FavorBackedgeIndex = false;
1915   bool Changed = false;
1916 
1917   /// This is the insert position that the current loop's induction variable
1918   /// increment should be placed. In simple loops, this is the latch block's
1919   /// terminator. But in more complicated cases, this is a position which will
1920   /// dominate all the in-loop post-increment users.
1921   Instruction *IVIncInsertPos = nullptr;
1922 
1923   /// Interesting factors between use strides.
1924   ///
1925   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1926   /// default, a SmallDenseSet, because we need to use the full range of
1927   /// int64_ts, and there's currently no good way of doing that with
1928   /// SmallDenseSet.
1929   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1930 
1931   /// Interesting use types, to facilitate truncation reuse.
1932   SmallSetVector<Type *, 4> Types;
1933 
1934   /// The list of interesting uses.
1935   mutable SmallVector<LSRUse, 16> Uses;
1936 
1937   /// Track which uses use which register candidates.
1938   RegUseTracker RegUses;
1939 
1940   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1941   // have more than a few IV increment chains in a loop. Missing a Chain falls
1942   // back to normal LSR behavior for those uses.
1943   static const unsigned MaxChains = 8;
1944 
1945   /// IV users can form a chain of IV increments.
1946   SmallVector<IVChain, MaxChains> IVChainVec;
1947 
1948   /// IV users that belong to profitable IVChains.
1949   SmallPtrSet<Use*, MaxChains> IVIncSet;
1950 
1951   void OptimizeShadowIV();
1952   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1953   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1954   void OptimizeLoopTermCond();
1955 
1956   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1957                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1958   void FinalizeChain(IVChain &Chain);
1959   void CollectChains();
1960   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1961                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1962 
1963   void CollectInterestingTypesAndFactors();
1964   void CollectFixupsAndInitialFormulae();
1965 
1966   // Support for sharing of LSRUses between LSRFixups.
1967   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1968   UseMapTy UseMap;
1969 
1970   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1971                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1972 
1973   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1974                                     MemAccessTy AccessTy);
1975 
1976   void DeleteUse(LSRUse &LU, size_t LUIdx);
1977 
1978   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1979 
1980   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1981   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1982   void CountRegisters(const Formula &F, size_t LUIdx);
1983   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1984 
1985   void CollectLoopInvariantFixupsAndFormulae();
1986 
1987   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1988                               unsigned Depth = 0);
1989 
1990   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1991                                   const Formula &Base, unsigned Depth,
1992                                   size_t Idx, bool IsScaledReg = false);
1993   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1994   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1995                                    const Formula &Base, size_t Idx,
1996                                    bool IsScaledReg = false);
1997   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1998   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1999                                    const Formula &Base,
2000                                    const SmallVectorImpl<int64_t> &Worklist,
2001                                    size_t Idx, bool IsScaledReg = false);
2002   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2004   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2005   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2006   void GenerateCrossUseConstantOffsets();
2007   void GenerateAllReuseFormulae();
2008 
2009   void FilterOutUndesirableDedicatedRegisters();
2010 
2011   size_t EstimateSearchSpaceComplexity() const;
2012   void NarrowSearchSpaceByDetectingSupersets();
2013   void NarrowSearchSpaceByCollapsingUnrolledCode();
2014   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2015   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2016   void NarrowSearchSpaceByFilterPostInc();
2017   void NarrowSearchSpaceByDeletingCostlyFormulas();
2018   void NarrowSearchSpaceByPickingWinnerRegs();
2019   void NarrowSearchSpaceUsingHeuristics();
2020 
2021   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2022                     Cost &SolutionCost,
2023                     SmallVectorImpl<const Formula *> &Workspace,
2024                     const Cost &CurCost,
2025                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2026                     DenseSet<const SCEV *> &VisitedRegs) const;
2027   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2028 
2029   BasicBlock::iterator
2030     HoistInsertPosition(BasicBlock::iterator IP,
2031                         const SmallVectorImpl<Instruction *> &Inputs) const;
2032   BasicBlock::iterator
2033     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2034                                   const LSRFixup &LF,
2035                                   const LSRUse &LU,
2036                                   SCEVExpander &Rewriter) const;
2037 
2038   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2039                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2040                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2041   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2042                      const Formula &F, SCEVExpander &Rewriter,
2043                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2044   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2045                SCEVExpander &Rewriter,
2046                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2047   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2048 
2049 public:
2050   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2051               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2052               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2053 
getChanged() const2054   bool getChanged() const { return Changed; }
2055 
2056   void print_factors_and_types(raw_ostream &OS) const;
2057   void print_fixups(raw_ostream &OS) const;
2058   void print_uses(raw_ostream &OS) const;
2059   void print(raw_ostream &OS) const;
2060   void dump() const;
2061 };
2062 
2063 } // end anonymous namespace
2064 
2065 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2066 /// the cast operation.
OptimizeShadowIV()2067 void LSRInstance::OptimizeShadowIV() {
2068   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2069   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2070     return;
2071 
2072   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2073        UI != E; /* empty */) {
2074     IVUsers::const_iterator CandidateUI = UI;
2075     ++UI;
2076     Instruction *ShadowUse = CandidateUI->getUser();
2077     Type *DestTy = nullptr;
2078     bool IsSigned = false;
2079 
2080     /* If shadow use is a int->float cast then insert a second IV
2081        to eliminate this cast.
2082 
2083          for (unsigned i = 0; i < n; ++i)
2084            foo((double)i);
2085 
2086        is transformed into
2087 
2088          double d = 0.0;
2089          for (unsigned i = 0; i < n; ++i, ++d)
2090            foo(d);
2091     */
2092     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2093       IsSigned = false;
2094       DestTy = UCast->getDestTy();
2095     }
2096     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2097       IsSigned = true;
2098       DestTy = SCast->getDestTy();
2099     }
2100     if (!DestTy) continue;
2101 
2102     // If target does not support DestTy natively then do not apply
2103     // this transformation.
2104     if (!TTI.isTypeLegal(DestTy)) continue;
2105 
2106     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2107     if (!PH) continue;
2108     if (PH->getNumIncomingValues() != 2) continue;
2109 
2110     // If the calculation in integers overflows, the result in FP type will
2111     // differ. So we only can do this transformation if we are guaranteed to not
2112     // deal with overflowing values
2113     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2114     if (!AR) continue;
2115     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2116     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2117 
2118     Type *SrcTy = PH->getType();
2119     int Mantissa = DestTy->getFPMantissaWidth();
2120     if (Mantissa == -1) continue;
2121     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2122       continue;
2123 
2124     unsigned Entry, Latch;
2125     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2126       Entry = 0;
2127       Latch = 1;
2128     } else {
2129       Entry = 1;
2130       Latch = 0;
2131     }
2132 
2133     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2134     if (!Init) continue;
2135     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2136                                         (double)Init->getSExtValue() :
2137                                         (double)Init->getZExtValue());
2138 
2139     BinaryOperator *Incr =
2140       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2141     if (!Incr) continue;
2142     if (Incr->getOpcode() != Instruction::Add
2143         && Incr->getOpcode() != Instruction::Sub)
2144       continue;
2145 
2146     /* Initialize new IV, double d = 0.0 in above example. */
2147     ConstantInt *C = nullptr;
2148     if (Incr->getOperand(0) == PH)
2149       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2150     else if (Incr->getOperand(1) == PH)
2151       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2152     else
2153       continue;
2154 
2155     if (!C) continue;
2156 
2157     // Ignore negative constants, as the code below doesn't handle them
2158     // correctly. TODO: Remove this restriction.
2159     if (!C->getValue().isStrictlyPositive()) continue;
2160 
2161     /* Add new PHINode. */
2162     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2163 
2164     /* create new increment. '++d' in above example. */
2165     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2166     BinaryOperator *NewIncr =
2167       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2168                                Instruction::FAdd : Instruction::FSub,
2169                              NewPH, CFP, "IV.S.next.", Incr);
2170 
2171     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2172     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2173 
2174     /* Remove cast operation */
2175     ShadowUse->replaceAllUsesWith(NewPH);
2176     ShadowUse->eraseFromParent();
2177     Changed = true;
2178     break;
2179   }
2180 }
2181 
2182 /// If Cond has an operand that is an expression of an IV, set the IV user and
2183 /// stride information and return true, otherwise return false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)2184 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2185   for (IVStrideUse &U : IU)
2186     if (U.getUser() == Cond) {
2187       // NOTE: we could handle setcc instructions with multiple uses here, but
2188       // InstCombine does it as well for simple uses, it's not clear that it
2189       // occurs enough in real life to handle.
2190       CondUse = &U;
2191       return true;
2192     }
2193   return false;
2194 }
2195 
2196 /// Rewrite the loop's terminating condition if it uses a max computation.
2197 ///
2198 /// This is a narrow solution to a specific, but acute, problem. For loops
2199 /// like this:
2200 ///
2201 ///   i = 0;
2202 ///   do {
2203 ///     p[i] = 0.0;
2204 ///   } while (++i < n);
2205 ///
2206 /// the trip count isn't just 'n', because 'n' might not be positive. And
2207 /// unfortunately this can come up even for loops where the user didn't use
2208 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2209 /// will commonly be lowered like this:
2210 ///
2211 ///   if (n > 0) {
2212 ///     i = 0;
2213 ///     do {
2214 ///       p[i] = 0.0;
2215 ///     } while (++i < n);
2216 ///   }
2217 ///
2218 /// and then it's possible for subsequent optimization to obscure the if
2219 /// test in such a way that indvars can't find it.
2220 ///
2221 /// When indvars can't find the if test in loops like this, it creates a
2222 /// max expression, which allows it to give the loop a canonical
2223 /// induction variable:
2224 ///
2225 ///   i = 0;
2226 ///   max = n < 1 ? 1 : n;
2227 ///   do {
2228 ///     p[i] = 0.0;
2229 ///   } while (++i != max);
2230 ///
2231 /// Canonical induction variables are necessary because the loop passes
2232 /// are designed around them. The most obvious example of this is the
2233 /// LoopInfo analysis, which doesn't remember trip count values. It
2234 /// expects to be able to rediscover the trip count each time it is
2235 /// needed, and it does this using a simple analysis that only succeeds if
2236 /// the loop has a canonical induction variable.
2237 ///
2238 /// However, when it comes time to generate code, the maximum operation
2239 /// can be quite costly, especially if it's inside of an outer loop.
2240 ///
2241 /// This function solves this problem by detecting this type of loop and
2242 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2243 /// the instructions for the maximum computation.
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)2244 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2245   // Check that the loop matches the pattern we're looking for.
2246   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2247       Cond->getPredicate() != CmpInst::ICMP_NE)
2248     return Cond;
2249 
2250   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2251   if (!Sel || !Sel->hasOneUse()) return Cond;
2252 
2253   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2254   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2255     return Cond;
2256   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2257 
2258   // Add one to the backedge-taken count to get the trip count.
2259   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2260   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2261 
2262   // Check for a max calculation that matches the pattern. There's no check
2263   // for ICMP_ULE here because the comparison would be with zero, which
2264   // isn't interesting.
2265   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2266   const SCEVNAryExpr *Max = nullptr;
2267   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2268     Pred = ICmpInst::ICMP_SLE;
2269     Max = S;
2270   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2271     Pred = ICmpInst::ICMP_SLT;
2272     Max = S;
2273   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2274     Pred = ICmpInst::ICMP_ULT;
2275     Max = U;
2276   } else {
2277     // No match; bail.
2278     return Cond;
2279   }
2280 
2281   // To handle a max with more than two operands, this optimization would
2282   // require additional checking and setup.
2283   if (Max->getNumOperands() != 2)
2284     return Cond;
2285 
2286   const SCEV *MaxLHS = Max->getOperand(0);
2287   const SCEV *MaxRHS = Max->getOperand(1);
2288 
2289   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2290   // for a comparison with 1. For <= and >=, a comparison with zero.
2291   if (!MaxLHS ||
2292       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2293     return Cond;
2294 
2295   // Check the relevant induction variable for conformance to
2296   // the pattern.
2297   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2298   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2299   if (!AR || !AR->isAffine() ||
2300       AR->getStart() != One ||
2301       AR->getStepRecurrence(SE) != One)
2302     return Cond;
2303 
2304   assert(AR->getLoop() == L &&
2305          "Loop condition operand is an addrec in a different loop!");
2306 
2307   // Check the right operand of the select, and remember it, as it will
2308   // be used in the new comparison instruction.
2309   Value *NewRHS = nullptr;
2310   if (ICmpInst::isTrueWhenEqual(Pred)) {
2311     // Look for n+1, and grab n.
2312     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2313       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2314          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2315            NewRHS = BO->getOperand(0);
2316     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2317       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2318         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2319           NewRHS = BO->getOperand(0);
2320     if (!NewRHS)
2321       return Cond;
2322   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2323     NewRHS = Sel->getOperand(1);
2324   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2325     NewRHS = Sel->getOperand(2);
2326   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2327     NewRHS = SU->getValue();
2328   else
2329     // Max doesn't match expected pattern.
2330     return Cond;
2331 
2332   // Determine the new comparison opcode. It may be signed or unsigned,
2333   // and the original comparison may be either equality or inequality.
2334   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2335     Pred = CmpInst::getInversePredicate(Pred);
2336 
2337   // Ok, everything looks ok to change the condition into an SLT or SGE and
2338   // delete the max calculation.
2339   ICmpInst *NewCond =
2340     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2341 
2342   // Delete the max calculation instructions.
2343   Cond->replaceAllUsesWith(NewCond);
2344   CondUse->setUser(NewCond);
2345   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2346   Cond->eraseFromParent();
2347   Sel->eraseFromParent();
2348   if (Cmp->use_empty())
2349     Cmp->eraseFromParent();
2350   return NewCond;
2351 }
2352 
2353 /// Change loop terminating condition to use the postinc iv when possible.
2354 void
OptimizeLoopTermCond()2355 LSRInstance::OptimizeLoopTermCond() {
2356   SmallPtrSet<Instruction *, 4> PostIncs;
2357 
2358   // We need a different set of heuristics for rotated and non-rotated loops.
2359   // If a loop is rotated then the latch is also the backedge, so inserting
2360   // post-inc expressions just before the latch is ideal. To reduce live ranges
2361   // it also makes sense to rewrite terminating conditions to use post-inc
2362   // expressions.
2363   //
2364   // If the loop is not rotated then the latch is not a backedge; the latch
2365   // check is done in the loop head. Adding post-inc expressions before the
2366   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2367   // in the loop body. In this case we do *not* want to use post-inc expressions
2368   // in the latch check, and we want to insert post-inc expressions before
2369   // the backedge.
2370   BasicBlock *LatchBlock = L->getLoopLatch();
2371   SmallVector<BasicBlock*, 8> ExitingBlocks;
2372   L->getExitingBlocks(ExitingBlocks);
2373   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2374         return LatchBlock != BB;
2375       })) {
2376     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2377     IVIncInsertPos = LatchBlock->getTerminator();
2378     return;
2379   }
2380 
2381   // Otherwise treat this as a rotated loop.
2382   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2383     // Get the terminating condition for the loop if possible.  If we
2384     // can, we want to change it to use a post-incremented version of its
2385     // induction variable, to allow coalescing the live ranges for the IV into
2386     // one register value.
2387 
2388     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2389     if (!TermBr)
2390       continue;
2391     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2392     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2393       continue;
2394 
2395     // Search IVUsesByStride to find Cond's IVUse if there is one.
2396     IVStrideUse *CondUse = nullptr;
2397     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2398     if (!FindIVUserForCond(Cond, CondUse))
2399       continue;
2400 
2401     // If the trip count is computed in terms of a max (due to ScalarEvolution
2402     // being unable to find a sufficient guard, for example), change the loop
2403     // comparison to use SLT or ULT instead of NE.
2404     // One consequence of doing this now is that it disrupts the count-down
2405     // optimization. That's not always a bad thing though, because in such
2406     // cases it may still be worthwhile to avoid a max.
2407     Cond = OptimizeMax(Cond, CondUse);
2408 
2409     // If this exiting block dominates the latch block, it may also use
2410     // the post-inc value if it won't be shared with other uses.
2411     // Check for dominance.
2412     if (!DT.dominates(ExitingBlock, LatchBlock))
2413       continue;
2414 
2415     // Conservatively avoid trying to use the post-inc value in non-latch
2416     // exits if there may be pre-inc users in intervening blocks.
2417     if (LatchBlock != ExitingBlock)
2418       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2419         // Test if the use is reachable from the exiting block. This dominator
2420         // query is a conservative approximation of reachability.
2421         if (&*UI != CondUse &&
2422             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2423           // Conservatively assume there may be reuse if the quotient of their
2424           // strides could be a legal scale.
2425           const SCEV *A = IU.getStride(*CondUse, L);
2426           const SCEV *B = IU.getStride(*UI, L);
2427           if (!A || !B) continue;
2428           if (SE.getTypeSizeInBits(A->getType()) !=
2429               SE.getTypeSizeInBits(B->getType())) {
2430             if (SE.getTypeSizeInBits(A->getType()) >
2431                 SE.getTypeSizeInBits(B->getType()))
2432               B = SE.getSignExtendExpr(B, A->getType());
2433             else
2434               A = SE.getSignExtendExpr(A, B->getType());
2435           }
2436           if (const SCEVConstant *D =
2437                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2438             const ConstantInt *C = D->getValue();
2439             // Stride of one or negative one can have reuse with non-addresses.
2440             if (C->isOne() || C->isMinusOne())
2441               goto decline_post_inc;
2442             // Avoid weird situations.
2443             if (C->getValue().getMinSignedBits() >= 64 ||
2444                 C->getValue().isMinSignedValue())
2445               goto decline_post_inc;
2446             // Check for possible scaled-address reuse.
2447             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2448               MemAccessTy AccessTy = getAccessType(
2449                   TTI, UI->getUser(), UI->getOperandValToReplace());
2450               int64_t Scale = C->getSExtValue();
2451               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2452                                             /*BaseOffset=*/0,
2453                                             /*HasBaseReg=*/false, Scale,
2454                                             AccessTy.AddrSpace))
2455                 goto decline_post_inc;
2456               Scale = -Scale;
2457               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2458                                             /*BaseOffset=*/0,
2459                                             /*HasBaseReg=*/false, Scale,
2460                                             AccessTy.AddrSpace))
2461                 goto decline_post_inc;
2462             }
2463           }
2464         }
2465 
2466     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2467                       << *Cond << '\n');
2468 
2469     // It's possible for the setcc instruction to be anywhere in the loop, and
2470     // possible for it to have multiple users.  If it is not immediately before
2471     // the exiting block branch, move it.
2472     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2473       if (Cond->hasOneUse()) {
2474         Cond->moveBefore(TermBr);
2475       } else {
2476         // Clone the terminating condition and insert into the loopend.
2477         ICmpInst *OldCond = Cond;
2478         Cond = cast<ICmpInst>(Cond->clone());
2479         Cond->setName(L->getHeader()->getName() + ".termcond");
2480         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2481 
2482         // Clone the IVUse, as the old use still exists!
2483         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2484         TermBr->replaceUsesOfWith(OldCond, Cond);
2485       }
2486     }
2487 
2488     // If we get to here, we know that we can transform the setcc instruction to
2489     // use the post-incremented version of the IV, allowing us to coalesce the
2490     // live ranges for the IV correctly.
2491     CondUse->transformToPostInc(L);
2492     Changed = true;
2493 
2494     PostIncs.insert(Cond);
2495   decline_post_inc:;
2496   }
2497 
2498   // Determine an insertion point for the loop induction variable increment. It
2499   // must dominate all the post-inc comparisons we just set up, and it must
2500   // dominate the loop latch edge.
2501   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2502   for (Instruction *Inst : PostIncs) {
2503     BasicBlock *BB =
2504       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2505                                     Inst->getParent());
2506     if (BB == Inst->getParent())
2507       IVIncInsertPos = Inst;
2508     else if (BB != IVIncInsertPos->getParent())
2509       IVIncInsertPos = BB->getTerminator();
2510   }
2511 }
2512 
2513 /// Determine if the given use can accommodate a fixup at the given offset and
2514 /// other details. If so, update the use and return true.
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,MemAccessTy AccessTy)2515 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2516                                      bool HasBaseReg, LSRUse::KindType Kind,
2517                                      MemAccessTy AccessTy) {
2518   int64_t NewMinOffset = LU.MinOffset;
2519   int64_t NewMaxOffset = LU.MaxOffset;
2520   MemAccessTy NewAccessTy = AccessTy;
2521 
2522   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2523   // something conservative, however this can pessimize in the case that one of
2524   // the uses will have all its uses outside the loop, for example.
2525   if (LU.Kind != Kind)
2526     return false;
2527 
2528   // Check for a mismatched access type, and fall back conservatively as needed.
2529   // TODO: Be less conservative when the type is similar and can use the same
2530   // addressing modes.
2531   if (Kind == LSRUse::Address) {
2532     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2533       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2534                                             AccessTy.AddrSpace);
2535     }
2536   }
2537 
2538   // Conservatively assume HasBaseReg is true for now.
2539   if (NewOffset < LU.MinOffset) {
2540     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2541                           LU.MaxOffset - NewOffset, HasBaseReg))
2542       return false;
2543     NewMinOffset = NewOffset;
2544   } else if (NewOffset > LU.MaxOffset) {
2545     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2546                           NewOffset - LU.MinOffset, HasBaseReg))
2547       return false;
2548     NewMaxOffset = NewOffset;
2549   }
2550 
2551   // Update the use.
2552   LU.MinOffset = NewMinOffset;
2553   LU.MaxOffset = NewMaxOffset;
2554   LU.AccessTy = NewAccessTy;
2555   return true;
2556 }
2557 
2558 /// Return an LSRUse index and an offset value for a fixup which needs the given
2559 /// expression, with the given kind and optional access type.  Either reuse an
2560 /// existing use or create a new one, as needed.
getUse(const SCEV * & Expr,LSRUse::KindType Kind,MemAccessTy AccessTy)2561 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2562                                                LSRUse::KindType Kind,
2563                                                MemAccessTy AccessTy) {
2564   const SCEV *Copy = Expr;
2565   int64_t Offset = ExtractImmediate(Expr, SE);
2566 
2567   // Basic uses can't accept any offset, for example.
2568   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2569                         Offset, /*HasBaseReg=*/ true)) {
2570     Expr = Copy;
2571     Offset = 0;
2572   }
2573 
2574   std::pair<UseMapTy::iterator, bool> P =
2575     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2576   if (!P.second) {
2577     // A use already existed with this base.
2578     size_t LUIdx = P.first->second;
2579     LSRUse &LU = Uses[LUIdx];
2580     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2581       // Reuse this use.
2582       return std::make_pair(LUIdx, Offset);
2583   }
2584 
2585   // Create a new use.
2586   size_t LUIdx = Uses.size();
2587   P.first->second = LUIdx;
2588   Uses.push_back(LSRUse(Kind, AccessTy));
2589   LSRUse &LU = Uses[LUIdx];
2590 
2591   LU.MinOffset = Offset;
2592   LU.MaxOffset = Offset;
2593   return std::make_pair(LUIdx, Offset);
2594 }
2595 
2596 /// Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2597 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2598   if (&LU != &Uses.back())
2599     std::swap(LU, Uses.back());
2600   Uses.pop_back();
2601 
2602   // Update RegUses.
2603   RegUses.swapAndDropUse(LUIdx, Uses.size());
2604 }
2605 
2606 /// Look for a use distinct from OrigLU which is has a formula that has the same
2607 /// registers as the given formula.
2608 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2609 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2610                                        const LSRUse &OrigLU) {
2611   // Search all uses for the formula. This could be more clever.
2612   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2613     LSRUse &LU = Uses[LUIdx];
2614     // Check whether this use is close enough to OrigLU, to see whether it's
2615     // worthwhile looking through its formulae.
2616     // Ignore ICmpZero uses because they may contain formulae generated by
2617     // GenerateICmpZeroScales, in which case adding fixup offsets may
2618     // be invalid.
2619     if (&LU != &OrigLU &&
2620         LU.Kind != LSRUse::ICmpZero &&
2621         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2622         LU.WidestFixupType == OrigLU.WidestFixupType &&
2623         LU.HasFormulaWithSameRegs(OrigF)) {
2624       // Scan through this use's formulae.
2625       for (const Formula &F : LU.Formulae) {
2626         // Check to see if this formula has the same registers and symbols
2627         // as OrigF.
2628         if (F.BaseRegs == OrigF.BaseRegs &&
2629             F.ScaledReg == OrigF.ScaledReg &&
2630             F.BaseGV == OrigF.BaseGV &&
2631             F.Scale == OrigF.Scale &&
2632             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2633           if (F.BaseOffset == 0)
2634             return &LU;
2635           // This is the formula where all the registers and symbols matched;
2636           // there aren't going to be any others. Since we declined it, we
2637           // can skip the rest of the formulae and proceed to the next LSRUse.
2638           break;
2639         }
2640       }
2641     }
2642   }
2643 
2644   // Nothing looked good.
2645   return nullptr;
2646 }
2647 
CollectInterestingTypesAndFactors()2648 void LSRInstance::CollectInterestingTypesAndFactors() {
2649   SmallSetVector<const SCEV *, 4> Strides;
2650 
2651   // Collect interesting types and strides.
2652   SmallVector<const SCEV *, 4> Worklist;
2653   for (const IVStrideUse &U : IU) {
2654     const SCEV *Expr = IU.getExpr(U);
2655 
2656     // Collect interesting types.
2657     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2658 
2659     // Add strides for mentioned loops.
2660     Worklist.push_back(Expr);
2661     do {
2662       const SCEV *S = Worklist.pop_back_val();
2663       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2664         if (AR->getLoop() == L)
2665           Strides.insert(AR->getStepRecurrence(SE));
2666         Worklist.push_back(AR->getStart());
2667       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2668         Worklist.append(Add->op_begin(), Add->op_end());
2669       }
2670     } while (!Worklist.empty());
2671   }
2672 
2673   // Compute interesting factors from the set of interesting strides.
2674   for (SmallSetVector<const SCEV *, 4>::const_iterator
2675        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2676     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2677          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2678       const SCEV *OldStride = *I;
2679       const SCEV *NewStride = *NewStrideIter;
2680 
2681       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2682           SE.getTypeSizeInBits(NewStride->getType())) {
2683         if (SE.getTypeSizeInBits(OldStride->getType()) >
2684             SE.getTypeSizeInBits(NewStride->getType()))
2685           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2686         else
2687           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2688       }
2689       if (const SCEVConstant *Factor =
2690             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2691                                                         SE, true))) {
2692         if (Factor->getAPInt().getMinSignedBits() <= 64)
2693           Factors.insert(Factor->getAPInt().getSExtValue());
2694       } else if (const SCEVConstant *Factor =
2695                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2696                                                                NewStride,
2697                                                                SE, true))) {
2698         if (Factor->getAPInt().getMinSignedBits() <= 64)
2699           Factors.insert(Factor->getAPInt().getSExtValue());
2700       }
2701     }
2702 
2703   // If all uses use the same type, don't bother looking for truncation-based
2704   // reuse.
2705   if (Types.size() == 1)
2706     Types.clear();
2707 
2708   LLVM_DEBUG(print_factors_and_types(dbgs()));
2709 }
2710 
2711 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2712 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2713 /// IVStrideUses, we could partially skip this.
2714 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2715 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2716               Loop *L, ScalarEvolution &SE) {
2717   for(; OI != OE; ++OI) {
2718     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2719       if (!SE.isSCEVable(Oper->getType()))
2720         continue;
2721 
2722       if (const SCEVAddRecExpr *AR =
2723           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2724         if (AR->getLoop() == L)
2725           break;
2726       }
2727     }
2728   }
2729   return OI;
2730 }
2731 
2732 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2733 /// a convenient helper.
getWideOperand(Value * Oper)2734 static Value *getWideOperand(Value *Oper) {
2735   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2736     return Trunc->getOperand(0);
2737   return Oper;
2738 }
2739 
2740 /// Return true if we allow an IV chain to include both types.
isCompatibleIVType(Value * LVal,Value * RVal)2741 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2742   Type *LType = LVal->getType();
2743   Type *RType = RVal->getType();
2744   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2745                               // Different address spaces means (possibly)
2746                               // different types of the pointer implementation,
2747                               // e.g. i16 vs i32 so disallow that.
2748                               (LType->getPointerAddressSpace() ==
2749                                RType->getPointerAddressSpace()));
2750 }
2751 
2752 /// Return an approximation of this SCEV expression's "base", or NULL for any
2753 /// constant. Returning the expression itself is conservative. Returning a
2754 /// deeper subexpression is more precise and valid as long as it isn't less
2755 /// complex than another subexpression. For expressions involving multiple
2756 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2757 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2758 /// IVInc==b-a.
2759 ///
2760 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2761 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2762 static const SCEV *getExprBase(const SCEV *S) {
2763   switch (S->getSCEVType()) {
2764   default: // uncluding scUnknown.
2765     return S;
2766   case scConstant:
2767     return nullptr;
2768   case scTruncate:
2769     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2770   case scZeroExtend:
2771     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2772   case scSignExtend:
2773     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2774   case scAddExpr: {
2775     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2776     // there's nothing more complex.
2777     // FIXME: not sure if we want to recognize negation.
2778     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2779     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2780            E(Add->op_begin()); I != E; ++I) {
2781       const SCEV *SubExpr = *I;
2782       if (SubExpr->getSCEVType() == scAddExpr)
2783         return getExprBase(SubExpr);
2784 
2785       if (SubExpr->getSCEVType() != scMulExpr)
2786         return SubExpr;
2787     }
2788     return S; // all operands are scaled, be conservative.
2789   }
2790   case scAddRecExpr:
2791     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2792   }
2793   llvm_unreachable("Unknown SCEV kind!");
2794 }
2795 
2796 /// Return true if the chain increment is profitable to expand into a loop
2797 /// invariant value, which may require its own register. A profitable chain
2798 /// increment will be an offset relative to the same base. We allow such offsets
2799 /// to potentially be used as chain increment as long as it's not obviously
2800 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2801 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2802                                     const SCEV *IncExpr,
2803                                     ScalarEvolution &SE) {
2804   // Aggressively form chains when -stress-ivchain.
2805   if (StressIVChain)
2806     return true;
2807 
2808   // Do not replace a constant offset from IV head with a nonconstant IV
2809   // increment.
2810   if (!isa<SCEVConstant>(IncExpr)) {
2811     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2812     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2813       return false;
2814   }
2815 
2816   SmallPtrSet<const SCEV*, 8> Processed;
2817   return !isHighCostExpansion(IncExpr, Processed, SE);
2818 }
2819 
2820 /// Return true if the number of registers needed for the chain is estimated to
2821 /// be less than the number required for the individual IV users. First prohibit
2822 /// any IV users that keep the IV live across increments (the Users set should
2823 /// be empty). Next count the number and type of increments in the chain.
2824 ///
2825 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2826 /// effectively use postinc addressing modes. Only consider it profitable it the
2827 /// increments can be computed in fewer registers when chained.
2828 ///
2829 /// TODO: Consider IVInc free if it's already used in another chains.
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2830 static bool isProfitableChain(IVChain &Chain,
2831                               SmallPtrSetImpl<Instruction *> &Users,
2832                               ScalarEvolution &SE,
2833                               const TargetTransformInfo &TTI) {
2834   if (StressIVChain)
2835     return true;
2836 
2837   if (!Chain.hasIncs())
2838     return false;
2839 
2840   if (!Users.empty()) {
2841     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2842                for (Instruction *Inst
2843                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2844     return false;
2845   }
2846   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2847 
2848   // The chain itself may require a register, so intialize cost to 1.
2849   int cost = 1;
2850 
2851   // A complete chain likely eliminates the need for keeping the original IV in
2852   // a register. LSR does not currently know how to form a complete chain unless
2853   // the header phi already exists.
2854   if (isa<PHINode>(Chain.tailUserInst())
2855       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2856     --cost;
2857   }
2858   const SCEV *LastIncExpr = nullptr;
2859   unsigned NumConstIncrements = 0;
2860   unsigned NumVarIncrements = 0;
2861   unsigned NumReusedIncrements = 0;
2862 
2863   // If any LSRUse in the chain is marked as profitable by target, mark this
2864   // chain as profitable.
2865   for (const IVInc &Inc : Chain.Incs)
2866     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2867       return true;
2868 
2869   // If number of registers is not the major cost, we cannot benefit from this
2870   // profitable chain which is based on number of registers.
2871   // FIXME: add profitable chain optimization for other kinds major cost, for
2872   // example number of instructions.
2873   if (!TTI.isNumRegsMajorCostOfLSR())
2874     return false;
2875 
2876   for (const IVInc &Inc : Chain) {
2877     if (Inc.IncExpr->isZero())
2878       continue;
2879 
2880     // Incrementing by zero or some constant is neutral. We assume constants can
2881     // be folded into an addressing mode or an add's immediate operand.
2882     if (isa<SCEVConstant>(Inc.IncExpr)) {
2883       ++NumConstIncrements;
2884       continue;
2885     }
2886 
2887     if (Inc.IncExpr == LastIncExpr)
2888       ++NumReusedIncrements;
2889     else
2890       ++NumVarIncrements;
2891 
2892     LastIncExpr = Inc.IncExpr;
2893   }
2894   // An IV chain with a single increment is handled by LSR's postinc
2895   // uses. However, a chain with multiple increments requires keeping the IV's
2896   // value live longer than it needs to be if chained.
2897   if (NumConstIncrements > 1)
2898     --cost;
2899 
2900   // Materializing increment expressions in the preheader that didn't exist in
2901   // the original code may cost a register. For example, sign-extended array
2902   // indices can produce ridiculous increments like this:
2903   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2904   cost += NumVarIncrements;
2905 
2906   // Reusing variable increments likely saves a register to hold the multiple of
2907   // the stride.
2908   cost -= NumReusedIncrements;
2909 
2910   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2911                     << "\n");
2912 
2913   return cost < 0;
2914 }
2915 
2916 /// Add this IV user to an existing chain or make it the head of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2917 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2918                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2919   // When IVs are used as types of varying widths, they are generally converted
2920   // to a wider type with some uses remaining narrow under a (free) trunc.
2921   Value *const NextIV = getWideOperand(IVOper);
2922   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2923   const SCEV *const OperExprBase = getExprBase(OperExpr);
2924 
2925   // Visit all existing chains. Check if its IVOper can be computed as a
2926   // profitable loop invariant increment from the last link in the Chain.
2927   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2928   const SCEV *LastIncExpr = nullptr;
2929   for (; ChainIdx < NChains; ++ChainIdx) {
2930     IVChain &Chain = IVChainVec[ChainIdx];
2931 
2932     // Prune the solution space aggressively by checking that both IV operands
2933     // are expressions that operate on the same unscaled SCEVUnknown. This
2934     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2935     // first avoids creating extra SCEV expressions.
2936     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2937       continue;
2938 
2939     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2940     if (!isCompatibleIVType(PrevIV, NextIV))
2941       continue;
2942 
2943     // A phi node terminates a chain.
2944     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2945       continue;
2946 
2947     // The increment must be loop-invariant so it can be kept in a register.
2948     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2949     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2950     if (!SE.isLoopInvariant(IncExpr, L))
2951       continue;
2952 
2953     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2954       LastIncExpr = IncExpr;
2955       break;
2956     }
2957   }
2958   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2959   // bother for phi nodes, because they must be last in the chain.
2960   if (ChainIdx == NChains) {
2961     if (isa<PHINode>(UserInst))
2962       return;
2963     if (NChains >= MaxChains && !StressIVChain) {
2964       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2965       return;
2966     }
2967     LastIncExpr = OperExpr;
2968     // IVUsers may have skipped over sign/zero extensions. We don't currently
2969     // attempt to form chains involving extensions unless they can be hoisted
2970     // into this loop's AddRec.
2971     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2972       return;
2973     ++NChains;
2974     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2975                                  OperExprBase));
2976     ChainUsersVec.resize(NChains);
2977     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2978                       << ") IV=" << *LastIncExpr << "\n");
2979   } else {
2980     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2981                       << ") IV+" << *LastIncExpr << "\n");
2982     // Add this IV user to the end of the chain.
2983     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2984   }
2985   IVChain &Chain = IVChainVec[ChainIdx];
2986 
2987   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2988   // This chain's NearUsers become FarUsers.
2989   if (!LastIncExpr->isZero()) {
2990     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2991                                             NearUsers.end());
2992     NearUsers.clear();
2993   }
2994 
2995   // All other uses of IVOperand become near uses of the chain.
2996   // We currently ignore intermediate values within SCEV expressions, assuming
2997   // they will eventually be used be the current chain, or can be computed
2998   // from one of the chain increments. To be more precise we could
2999   // transitively follow its user and only add leaf IV users to the set.
3000   for (User *U : IVOper->users()) {
3001     Instruction *OtherUse = dyn_cast<Instruction>(U);
3002     if (!OtherUse)
3003       continue;
3004     // Uses in the chain will no longer be uses if the chain is formed.
3005     // Include the head of the chain in this iteration (not Chain.begin()).
3006     IVChain::const_iterator IncIter = Chain.Incs.begin();
3007     IVChain::const_iterator IncEnd = Chain.Incs.end();
3008     for( ; IncIter != IncEnd; ++IncIter) {
3009       if (IncIter->UserInst == OtherUse)
3010         break;
3011     }
3012     if (IncIter != IncEnd)
3013       continue;
3014 
3015     if (SE.isSCEVable(OtherUse->getType())
3016         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3017         && IU.isIVUserOrOperand(OtherUse)) {
3018       continue;
3019     }
3020     NearUsers.insert(OtherUse);
3021   }
3022 
3023   // Since this user is part of the chain, it's no longer considered a use
3024   // of the chain.
3025   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3026 }
3027 
3028 /// Populate the vector of Chains.
3029 ///
3030 /// This decreases ILP at the architecture level. Targets with ample registers,
3031 /// multiple memory ports, and no register renaming probably don't want
3032 /// this. However, such targets should probably disable LSR altogether.
3033 ///
3034 /// The job of LSR is to make a reasonable choice of induction variables across
3035 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3036 /// ILP *within the loop* if the target wants it.
3037 ///
3038 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3039 /// will not reorder memory operations, it will recognize this as a chain, but
3040 /// will generate redundant IV increments. Ideally this would be corrected later
3041 /// by a smart scheduler:
3042 ///        = A[i]
3043 ///        = A[i+x]
3044 /// A[i]   =
3045 /// A[i+x] =
3046 ///
3047 /// TODO: Walk the entire domtree within this loop, not just the path to the
3048 /// loop latch. This will discover chains on side paths, but requires
3049 /// maintaining multiple copies of the Chains state.
CollectChains()3050 void LSRInstance::CollectChains() {
3051   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3052   SmallVector<ChainUsers, 8> ChainUsersVec;
3053 
3054   SmallVector<BasicBlock *,8> LatchPath;
3055   BasicBlock *LoopHeader = L->getHeader();
3056   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3057        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3058     LatchPath.push_back(Rung->getBlock());
3059   }
3060   LatchPath.push_back(LoopHeader);
3061 
3062   // Walk the instruction stream from the loop header to the loop latch.
3063   for (BasicBlock *BB : reverse(LatchPath)) {
3064     for (Instruction &I : *BB) {
3065       // Skip instructions that weren't seen by IVUsers analysis.
3066       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3067         continue;
3068 
3069       // Ignore users that are part of a SCEV expression. This way we only
3070       // consider leaf IV Users. This effectively rediscovers a portion of
3071       // IVUsers analysis but in program order this time.
3072       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3073           continue;
3074 
3075       // Remove this instruction from any NearUsers set it may be in.
3076       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3077            ChainIdx < NChains; ++ChainIdx) {
3078         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3079       }
3080       // Search for operands that can be chained.
3081       SmallPtrSet<Instruction*, 4> UniqueOperands;
3082       User::op_iterator IVOpEnd = I.op_end();
3083       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3084       while (IVOpIter != IVOpEnd) {
3085         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3086         if (UniqueOperands.insert(IVOpInst).second)
3087           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3088         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3089       }
3090     } // Continue walking down the instructions.
3091   } // Continue walking down the domtree.
3092   // Visit phi backedges to determine if the chain can generate the IV postinc.
3093   for (PHINode &PN : L->getHeader()->phis()) {
3094     if (!SE.isSCEVable(PN.getType()))
3095       continue;
3096 
3097     Instruction *IncV =
3098         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3099     if (IncV)
3100       ChainInstruction(&PN, IncV, ChainUsersVec);
3101   }
3102   // Remove any unprofitable chains.
3103   unsigned ChainIdx = 0;
3104   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3105        UsersIdx < NChains; ++UsersIdx) {
3106     if (!isProfitableChain(IVChainVec[UsersIdx],
3107                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3108       continue;
3109     // Preserve the chain at UsesIdx.
3110     if (ChainIdx != UsersIdx)
3111       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3112     FinalizeChain(IVChainVec[ChainIdx]);
3113     ++ChainIdx;
3114   }
3115   IVChainVec.resize(ChainIdx);
3116 }
3117 
FinalizeChain(IVChain & Chain)3118 void LSRInstance::FinalizeChain(IVChain &Chain) {
3119   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3120   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3121 
3122   for (const IVInc &Inc : Chain) {
3123     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3124     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3125     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3126     IVIncSet.insert(UseI);
3127   }
3128 }
3129 
3130 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)3131 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3132                              Value *Operand, const TargetTransformInfo &TTI) {
3133   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3134   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3135     return false;
3136 
3137   if (IncConst->getAPInt().getMinSignedBits() > 64)
3138     return false;
3139 
3140   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3141   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3142   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3143                         IncOffset, /*HasBaseReg=*/false))
3144     return false;
3145 
3146   return true;
3147 }
3148 
3149 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3150 /// user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts)3151 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3152                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3153   // Find the new IVOperand for the head of the chain. It may have been replaced
3154   // by LSR.
3155   const IVInc &Head = Chain.Incs[0];
3156   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3157   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3158   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3159                                              IVOpEnd, L, SE);
3160   Value *IVSrc = nullptr;
3161   while (IVOpIter != IVOpEnd) {
3162     IVSrc = getWideOperand(*IVOpIter);
3163 
3164     // If this operand computes the expression that the chain needs, we may use
3165     // it. (Check this after setting IVSrc which is used below.)
3166     //
3167     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3168     // narrow for the chain, so we can no longer use it. We do allow using a
3169     // wider phi, assuming the LSR checked for free truncation. In that case we
3170     // should already have a truncate on this operand such that
3171     // getSCEV(IVSrc) == IncExpr.
3172     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3173         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3174       break;
3175     }
3176     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3177   }
3178   if (IVOpIter == IVOpEnd) {
3179     // Gracefully give up on this chain.
3180     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3181     return;
3182   }
3183   assert(IVSrc && "Failed to find IV chain source");
3184 
3185   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3186   Type *IVTy = IVSrc->getType();
3187   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3188   const SCEV *LeftOverExpr = nullptr;
3189   for (const IVInc &Inc : Chain) {
3190     Instruction *InsertPt = Inc.UserInst;
3191     if (isa<PHINode>(InsertPt))
3192       InsertPt = L->getLoopLatch()->getTerminator();
3193 
3194     // IVOper will replace the current IV User's operand. IVSrc is the IV
3195     // value currently held in a register.
3196     Value *IVOper = IVSrc;
3197     if (!Inc.IncExpr->isZero()) {
3198       // IncExpr was the result of subtraction of two narrow values, so must
3199       // be signed.
3200       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3201       LeftOverExpr = LeftOverExpr ?
3202         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3203     }
3204     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3205       // Expand the IV increment.
3206       Rewriter.clearPostInc();
3207       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3208       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3209                                              SE.getUnknown(IncV));
3210       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3211 
3212       // If an IV increment can't be folded, use it as the next IV value.
3213       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3214         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3215         IVSrc = IVOper;
3216         LeftOverExpr = nullptr;
3217       }
3218     }
3219     Type *OperTy = Inc.IVOperand->getType();
3220     if (IVTy != OperTy) {
3221       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3222              "cannot extend a chained IV");
3223       IRBuilder<> Builder(InsertPt);
3224       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3225     }
3226     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3227     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3228       DeadInsts.emplace_back(OperandIsInstr);
3229   }
3230   // If LSR created a new, wider phi, we may also replace its postinc. We only
3231   // do this if we also found a wide value for the head of the chain.
3232   if (isa<PHINode>(Chain.tailUserInst())) {
3233     for (PHINode &Phi : L->getHeader()->phis()) {
3234       if (!isCompatibleIVType(&Phi, IVSrc))
3235         continue;
3236       Instruction *PostIncV = dyn_cast<Instruction>(
3237           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3238       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3239         continue;
3240       Value *IVOper = IVSrc;
3241       Type *PostIncTy = PostIncV->getType();
3242       if (IVTy != PostIncTy) {
3243         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3244         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3245         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3246         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3247       }
3248       Phi.replaceUsesOfWith(PostIncV, IVOper);
3249       DeadInsts.emplace_back(PostIncV);
3250     }
3251   }
3252 }
3253 
CollectFixupsAndInitialFormulae()3254 void LSRInstance::CollectFixupsAndInitialFormulae() {
3255   BranchInst *ExitBranch = nullptr;
3256   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3257 
3258   for (const IVStrideUse &U : IU) {
3259     Instruction *UserInst = U.getUser();
3260     // Skip IV users that are part of profitable IV Chains.
3261     User::op_iterator UseI =
3262         find(UserInst->operands(), U.getOperandValToReplace());
3263     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3264     if (IVIncSet.count(UseI)) {
3265       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3266       continue;
3267     }
3268 
3269     LSRUse::KindType Kind = LSRUse::Basic;
3270     MemAccessTy AccessTy;
3271     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3272       Kind = LSRUse::Address;
3273       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3274     }
3275 
3276     const SCEV *S = IU.getExpr(U);
3277     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3278 
3279     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3280     // (N - i == 0), and this allows (N - i) to be the expression that we work
3281     // with rather than just N or i, so we can consider the register
3282     // requirements for both N and i at the same time. Limiting this code to
3283     // equality icmps is not a problem because all interesting loops use
3284     // equality icmps, thanks to IndVarSimplify.
3285     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3286       // If CI can be saved in some target, like replaced inside hardware loop
3287       // in PowerPC, no need to generate initial formulae for it.
3288       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3289         continue;
3290       if (CI->isEquality()) {
3291         // Swap the operands if needed to put the OperandValToReplace on the
3292         // left, for consistency.
3293         Value *NV = CI->getOperand(1);
3294         if (NV == U.getOperandValToReplace()) {
3295           CI->setOperand(1, CI->getOperand(0));
3296           CI->setOperand(0, NV);
3297           NV = CI->getOperand(1);
3298           Changed = true;
3299         }
3300 
3301         // x == y  -->  x - y == 0
3302         const SCEV *N = SE.getSCEV(NV);
3303         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3304           // S is normalized, so normalize N before folding it into S
3305           // to keep the result normalized.
3306           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3307           Kind = LSRUse::ICmpZero;
3308           S = SE.getMinusSCEV(N, S);
3309         }
3310 
3311         // -1 and the negations of all interesting strides (except the negation
3312         // of -1) are now also interesting.
3313         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3314           if (Factors[i] != -1)
3315             Factors.insert(-(uint64_t)Factors[i]);
3316         Factors.insert(-1);
3317       }
3318     }
3319 
3320     // Get or create an LSRUse.
3321     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3322     size_t LUIdx = P.first;
3323     int64_t Offset = P.second;
3324     LSRUse &LU = Uses[LUIdx];
3325 
3326     // Record the fixup.
3327     LSRFixup &LF = LU.getNewFixup();
3328     LF.UserInst = UserInst;
3329     LF.OperandValToReplace = U.getOperandValToReplace();
3330     LF.PostIncLoops = TmpPostIncLoops;
3331     LF.Offset = Offset;
3332     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3333 
3334     if (!LU.WidestFixupType ||
3335         SE.getTypeSizeInBits(LU.WidestFixupType) <
3336         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3337       LU.WidestFixupType = LF.OperandValToReplace->getType();
3338 
3339     // If this is the first use of this LSRUse, give it a formula.
3340     if (LU.Formulae.empty()) {
3341       InsertInitialFormula(S, LU, LUIdx);
3342       CountRegisters(LU.Formulae.back(), LUIdx);
3343     }
3344   }
3345 
3346   LLVM_DEBUG(print_fixups(dbgs()));
3347 }
3348 
3349 /// Insert a formula for the given expression into the given use, separating out
3350 /// loop-variant portions from loop-invariant and loop-computable portions.
3351 void
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3352 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3353   // Mark uses whose expressions cannot be expanded.
3354   if (!isSafeToExpand(S, SE))
3355     LU.RigidFormula = true;
3356 
3357   Formula F;
3358   F.initialMatch(S, L, SE);
3359   bool Inserted = InsertFormula(LU, LUIdx, F);
3360   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3361 }
3362 
3363 /// Insert a simple single-register formula for the given expression into the
3364 /// given use.
3365 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3366 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3367                                        LSRUse &LU, size_t LUIdx) {
3368   Formula F;
3369   F.BaseRegs.push_back(S);
3370   F.HasBaseReg = true;
3371   bool Inserted = InsertFormula(LU, LUIdx, F);
3372   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3373 }
3374 
3375 /// Note which registers are used by the given formula, updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3376 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3377   if (F.ScaledReg)
3378     RegUses.countRegister(F.ScaledReg, LUIdx);
3379   for (const SCEV *BaseReg : F.BaseRegs)
3380     RegUses.countRegister(BaseReg, LUIdx);
3381 }
3382 
3383 /// If the given formula has not yet been inserted, add it to the list, and
3384 /// return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3385 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3386   // Do not insert formula that we will not be able to expand.
3387   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3388          "Formula is illegal");
3389 
3390   if (!LU.InsertFormula(F, *L))
3391     return false;
3392 
3393   CountRegisters(F, LUIdx);
3394   return true;
3395 }
3396 
3397 /// Check for other uses of loop-invariant values which we're tracking. These
3398 /// other uses will pin these values in registers, making them less profitable
3399 /// for elimination.
3400 /// TODO: This currently misses non-constant addrec step registers.
3401 /// TODO: Should this give more weight to users inside the loop?
3402 void
CollectLoopInvariantFixupsAndFormulae()3403 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3404   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3405   SmallPtrSet<const SCEV *, 32> Visited;
3406 
3407   while (!Worklist.empty()) {
3408     const SCEV *S = Worklist.pop_back_val();
3409 
3410     // Don't process the same SCEV twice
3411     if (!Visited.insert(S).second)
3412       continue;
3413 
3414     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3415       Worklist.append(N->op_begin(), N->op_end());
3416     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3417       Worklist.push_back(C->getOperand());
3418     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3419       Worklist.push_back(D->getLHS());
3420       Worklist.push_back(D->getRHS());
3421     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3422       const Value *V = US->getValue();
3423       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3424         // Look for instructions defined outside the loop.
3425         if (L->contains(Inst)) continue;
3426       } else if (isa<UndefValue>(V))
3427         // Undef doesn't have a live range, so it doesn't matter.
3428         continue;
3429       for (const Use &U : V->uses()) {
3430         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3431         // Ignore non-instructions.
3432         if (!UserInst)
3433           continue;
3434         // Ignore instructions in other functions (as can happen with
3435         // Constants).
3436         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3437           continue;
3438         // Ignore instructions not dominated by the loop.
3439         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3440           UserInst->getParent() :
3441           cast<PHINode>(UserInst)->getIncomingBlock(
3442             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3443         if (!DT.dominates(L->getHeader(), UseBB))
3444           continue;
3445         // Don't bother if the instruction is in a BB which ends in an EHPad.
3446         if (UseBB->getTerminator()->isEHPad())
3447           continue;
3448         // Don't bother rewriting PHIs in catchswitch blocks.
3449         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3450           continue;
3451         // Ignore uses which are part of other SCEV expressions, to avoid
3452         // analyzing them multiple times.
3453         if (SE.isSCEVable(UserInst->getType())) {
3454           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3455           // If the user is a no-op, look through to its uses.
3456           if (!isa<SCEVUnknown>(UserS))
3457             continue;
3458           if (UserS == US) {
3459             Worklist.push_back(
3460               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3461             continue;
3462           }
3463         }
3464         // Ignore icmp instructions which are already being analyzed.
3465         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3466           unsigned OtherIdx = !U.getOperandNo();
3467           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3468           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3469             continue;
3470         }
3471 
3472         std::pair<size_t, int64_t> P = getUse(
3473             S, LSRUse::Basic, MemAccessTy());
3474         size_t LUIdx = P.first;
3475         int64_t Offset = P.second;
3476         LSRUse &LU = Uses[LUIdx];
3477         LSRFixup &LF = LU.getNewFixup();
3478         LF.UserInst = const_cast<Instruction *>(UserInst);
3479         LF.OperandValToReplace = U;
3480         LF.Offset = Offset;
3481         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3482         if (!LU.WidestFixupType ||
3483             SE.getTypeSizeInBits(LU.WidestFixupType) <
3484             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3485           LU.WidestFixupType = LF.OperandValToReplace->getType();
3486         InsertSupplementalFormula(US, LU, LUIdx);
3487         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3488         break;
3489       }
3490     }
3491   }
3492 }
3493 
3494 /// Split S into subexpressions which can be pulled out into separate
3495 /// registers. If C is non-null, multiply each subexpression by C.
3496 ///
3497 /// Return remainder expression after factoring the subexpressions captured by
3498 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3499 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3500                                    SmallVectorImpl<const SCEV *> &Ops,
3501                                    const Loop *L,
3502                                    ScalarEvolution &SE,
3503                                    unsigned Depth = 0) {
3504   // Arbitrarily cap recursion to protect compile time.
3505   if (Depth >= 3)
3506     return S;
3507 
3508   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3509     // Break out add operands.
3510     for (const SCEV *S : Add->operands()) {
3511       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3512       if (Remainder)
3513         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3514     }
3515     return nullptr;
3516   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3517     // Split a non-zero base out of an addrec.
3518     if (AR->getStart()->isZero() || !AR->isAffine())
3519       return S;
3520 
3521     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3522                                             C, Ops, L, SE, Depth+1);
3523     // Split the non-zero AddRec unless it is part of a nested recurrence that
3524     // does not pertain to this loop.
3525     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3526       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3527       Remainder = nullptr;
3528     }
3529     if (Remainder != AR->getStart()) {
3530       if (!Remainder)
3531         Remainder = SE.getConstant(AR->getType(), 0);
3532       return SE.getAddRecExpr(Remainder,
3533                               AR->getStepRecurrence(SE),
3534                               AR->getLoop(),
3535                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3536                               SCEV::FlagAnyWrap);
3537     }
3538   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3539     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3540     if (Mul->getNumOperands() != 2)
3541       return S;
3542     if (const SCEVConstant *Op0 =
3543         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3544       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3545       const SCEV *Remainder =
3546         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3547       if (Remainder)
3548         Ops.push_back(SE.getMulExpr(C, Remainder));
3549       return nullptr;
3550     }
3551   }
3552   return S;
3553 }
3554 
3555 /// Return true if the SCEV represents a value that may end up as a
3556 /// post-increment operation.
mayUsePostIncMode(const TargetTransformInfo & TTI,LSRUse & LU,const SCEV * S,const Loop * L,ScalarEvolution & SE)3557 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3558                               LSRUse &LU, const SCEV *S, const Loop *L,
3559                               ScalarEvolution &SE) {
3560   if (LU.Kind != LSRUse::Address ||
3561       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3562     return false;
3563   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3564   if (!AR)
3565     return false;
3566   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3567   if (!isa<SCEVConstant>(LoopStep))
3568     return false;
3569   // Check if a post-indexed load/store can be used.
3570   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3571       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3572     const SCEV *LoopStart = AR->getStart();
3573     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3574       return true;
3575   }
3576   return false;
3577 }
3578 
3579 /// Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3580 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3581                                              const Formula &Base,
3582                                              unsigned Depth, size_t Idx,
3583                                              bool IsScaledReg) {
3584   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3585   // Don't generate reassociations for the base register of a value that
3586   // may generate a post-increment operator. The reason is that the
3587   // reassociations cause extra base+register formula to be created,
3588   // and possibly chosen, but the post-increment is more efficient.
3589   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3590     return;
3591   SmallVector<const SCEV *, 8> AddOps;
3592   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3593   if (Remainder)
3594     AddOps.push_back(Remainder);
3595 
3596   if (AddOps.size() == 1)
3597     return;
3598 
3599   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3600                                                      JE = AddOps.end();
3601        J != JE; ++J) {
3602     // Loop-variant "unknown" values are uninteresting; we won't be able to
3603     // do anything meaningful with them.
3604     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3605       continue;
3606 
3607     // Don't pull a constant into a register if the constant could be folded
3608     // into an immediate field.
3609     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3610                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3611       continue;
3612 
3613     // Collect all operands except *J.
3614     SmallVector<const SCEV *, 8> InnerAddOps(
3615         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3616     InnerAddOps.append(std::next(J),
3617                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3618 
3619     // Don't leave just a constant behind in a register if the constant could
3620     // be folded into an immediate field.
3621     if (InnerAddOps.size() == 1 &&
3622         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3623                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3624       continue;
3625 
3626     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3627     if (InnerSum->isZero())
3628       continue;
3629     Formula F = Base;
3630 
3631     // Add the remaining pieces of the add back into the new formula.
3632     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3633     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3634         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3635                                 InnerSumSC->getValue()->getZExtValue())) {
3636       F.UnfoldedOffset =
3637           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3638       if (IsScaledReg)
3639         F.ScaledReg = nullptr;
3640       else
3641         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3642     } else if (IsScaledReg)
3643       F.ScaledReg = InnerSum;
3644     else
3645       F.BaseRegs[Idx] = InnerSum;
3646 
3647     // Add J as its own register, or an unfolded immediate.
3648     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3649     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3650         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3651                                 SC->getValue()->getZExtValue()))
3652       F.UnfoldedOffset =
3653           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3654     else
3655       F.BaseRegs.push_back(*J);
3656     // We may have changed the number of register in base regs, adjust the
3657     // formula accordingly.
3658     F.canonicalize(*L);
3659 
3660     if (InsertFormula(LU, LUIdx, F))
3661       // If that formula hadn't been seen before, recurse to find more like
3662       // it.
3663       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3664       // Because just Depth is not enough to bound compile time.
3665       // This means that every time AddOps.size() is greater 16^x we will add
3666       // x to Depth.
3667       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3668                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3669   }
3670 }
3671 
3672 /// Split out subexpressions from adds and the bases of addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3673 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3674                                          Formula Base, unsigned Depth) {
3675   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3676   // Arbitrarily cap recursion to protect compile time.
3677   if (Depth >= 3)
3678     return;
3679 
3680   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3681     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3682 
3683   if (Base.Scale == 1)
3684     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3685                                /* Idx */ -1, /* IsScaledReg */ true);
3686 }
3687 
3688 ///  Generate a formula consisting of all of the loop-dominating registers added
3689 /// into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3690 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3691                                        Formula Base) {
3692   // This method is only interesting on a plurality of registers.
3693   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3694       (Base.UnfoldedOffset != 0) <= 1)
3695     return;
3696 
3697   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3698   // processing the formula.
3699   Base.unscale();
3700   SmallVector<const SCEV *, 4> Ops;
3701   Formula NewBase = Base;
3702   NewBase.BaseRegs.clear();
3703   Type *CombinedIntegerType = nullptr;
3704   for (const SCEV *BaseReg : Base.BaseRegs) {
3705     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3706         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3707       if (!CombinedIntegerType)
3708         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3709       Ops.push_back(BaseReg);
3710     }
3711     else
3712       NewBase.BaseRegs.push_back(BaseReg);
3713   }
3714 
3715   // If no register is relevant, we're done.
3716   if (Ops.size() == 0)
3717     return;
3718 
3719   // Utility function for generating the required variants of the combined
3720   // registers.
3721   auto GenerateFormula = [&](const SCEV *Sum) {
3722     Formula F = NewBase;
3723 
3724     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3725     // opportunity to fold something. For now, just ignore such cases
3726     // rather than proceed with zero in a register.
3727     if (Sum->isZero())
3728       return;
3729 
3730     F.BaseRegs.push_back(Sum);
3731     F.canonicalize(*L);
3732     (void)InsertFormula(LU, LUIdx, F);
3733   };
3734 
3735   // If we collected at least two registers, generate a formula combining them.
3736   if (Ops.size() > 1) {
3737     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3738     GenerateFormula(SE.getAddExpr(OpsCopy));
3739   }
3740 
3741   // If we have an unfolded offset, generate a formula combining it with the
3742   // registers collected.
3743   if (NewBase.UnfoldedOffset) {
3744     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3745     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3746                                  true));
3747     NewBase.UnfoldedOffset = 0;
3748     GenerateFormula(SE.getAddExpr(Ops));
3749   }
3750 }
3751 
3752 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3753 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3754                                               const Formula &Base, size_t Idx,
3755                                               bool IsScaledReg) {
3756   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3757   GlobalValue *GV = ExtractSymbol(G, SE);
3758   if (G->isZero() || !GV)
3759     return;
3760   Formula F = Base;
3761   F.BaseGV = GV;
3762   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3763     return;
3764   if (IsScaledReg)
3765     F.ScaledReg = G;
3766   else
3767     F.BaseRegs[Idx] = G;
3768   (void)InsertFormula(LU, LUIdx, F);
3769 }
3770 
3771 /// Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3772 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3773                                           Formula Base) {
3774   // We can't add a symbolic offset if the address already contains one.
3775   if (Base.BaseGV) return;
3776 
3777   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3778     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3779   if (Base.Scale == 1)
3780     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3781                                 /* IsScaledReg */ true);
3782 }
3783 
3784 /// Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3785 void LSRInstance::GenerateConstantOffsetsImpl(
3786     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3787     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3788 
3789   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3790     Formula F = Base;
3791     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3792 
3793     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3794                    LU.AccessTy, F)) {
3795       // Add the offset to the base register.
3796       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3797       // If it cancelled out, drop the base register, otherwise update it.
3798       if (NewG->isZero()) {
3799         if (IsScaledReg) {
3800           F.Scale = 0;
3801           F.ScaledReg = nullptr;
3802         } else
3803           F.deleteBaseReg(F.BaseRegs[Idx]);
3804         F.canonicalize(*L);
3805       } else if (IsScaledReg)
3806         F.ScaledReg = NewG;
3807       else
3808         F.BaseRegs[Idx] = NewG;
3809 
3810       (void)InsertFormula(LU, LUIdx, F);
3811     }
3812   };
3813 
3814   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3815 
3816   // With constant offsets and constant steps, we can generate pre-inc
3817   // accesses by having the offset equal the step. So, for access #0 with a
3818   // step of 8, we generate a G - 8 base which would require the first access
3819   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3820   // for itself and hopefully becomes the base for other accesses. This means
3821   // means that a single pre-indexed access can be generated to become the new
3822   // base pointer for each iteration of the loop, resulting in no extra add/sub
3823   // instructions for pointer updating.
3824   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3825     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3826       if (auto *StepRec =
3827           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3828         const APInt &StepInt = StepRec->getAPInt();
3829         int64_t Step = StepInt.isNegative() ?
3830           StepInt.getSExtValue() : StepInt.getZExtValue();
3831 
3832         for (int64_t Offset : Worklist) {
3833           Offset -= Step;
3834           GenerateOffset(G, Offset);
3835         }
3836       }
3837     }
3838   }
3839   for (int64_t Offset : Worklist)
3840     GenerateOffset(G, Offset);
3841 
3842   int64_t Imm = ExtractImmediate(G, SE);
3843   if (G->isZero() || Imm == 0)
3844     return;
3845   Formula F = Base;
3846   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3847   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3848     return;
3849   if (IsScaledReg) {
3850     F.ScaledReg = G;
3851   } else {
3852     F.BaseRegs[Idx] = G;
3853     // We may generate non canonical Formula if G is a recurrent expr reg
3854     // related with current loop while F.ScaledReg is not.
3855     F.canonicalize(*L);
3856   }
3857   (void)InsertFormula(LU, LUIdx, F);
3858 }
3859 
3860 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3861 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3862                                           Formula Base) {
3863   // TODO: For now, just add the min and max offset, because it usually isn't
3864   // worthwhile looking at everything inbetween.
3865   SmallVector<int64_t, 2> Worklist;
3866   Worklist.push_back(LU.MinOffset);
3867   if (LU.MaxOffset != LU.MinOffset)
3868     Worklist.push_back(LU.MaxOffset);
3869 
3870   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3871     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3872   if (Base.Scale == 1)
3873     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3874                                 /* IsScaledReg */ true);
3875 }
3876 
3877 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3878 /// == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3879 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3880                                          Formula Base) {
3881   if (LU.Kind != LSRUse::ICmpZero) return;
3882 
3883   // Determine the integer type for the base formula.
3884   Type *IntTy = Base.getType();
3885   if (!IntTy) return;
3886   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3887 
3888   // Don't do this if there is more than one offset.
3889   if (LU.MinOffset != LU.MaxOffset) return;
3890 
3891   // Check if transformation is valid. It is illegal to multiply pointer.
3892   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3893     return;
3894   for (const SCEV *BaseReg : Base.BaseRegs)
3895     if (BaseReg->getType()->isPointerTy())
3896       return;
3897   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3898 
3899   // Check each interesting stride.
3900   for (int64_t Factor : Factors) {
3901     // Check that the multiplication doesn't overflow.
3902     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3903       continue;
3904     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3905     if (NewBaseOffset / Factor != Base.BaseOffset)
3906       continue;
3907     // If the offset will be truncated at this use, check that it is in bounds.
3908     if (!IntTy->isPointerTy() &&
3909         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3910       continue;
3911 
3912     // Check that multiplying with the use offset doesn't overflow.
3913     int64_t Offset = LU.MinOffset;
3914     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3915       continue;
3916     Offset = (uint64_t)Offset * Factor;
3917     if (Offset / Factor != LU.MinOffset)
3918       continue;
3919     // If the offset will be truncated at this use, check that it is in bounds.
3920     if (!IntTy->isPointerTy() &&
3921         !ConstantInt::isValueValidForType(IntTy, Offset))
3922       continue;
3923 
3924     Formula F = Base;
3925     F.BaseOffset = NewBaseOffset;
3926 
3927     // Check that this scale is legal.
3928     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3929       continue;
3930 
3931     // Compensate for the use having MinOffset built into it.
3932     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3933 
3934     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3935 
3936     // Check that multiplying with each base register doesn't overflow.
3937     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3938       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3939       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3940         goto next;
3941     }
3942 
3943     // Check that multiplying with the scaled register doesn't overflow.
3944     if (F.ScaledReg) {
3945       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3946       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3947         continue;
3948     }
3949 
3950     // Check that multiplying with the unfolded offset doesn't overflow.
3951     if (F.UnfoldedOffset != 0) {
3952       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3953           Factor == -1)
3954         continue;
3955       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3956       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3957         continue;
3958       // If the offset will be truncated, check that it is in bounds.
3959       if (!IntTy->isPointerTy() &&
3960           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3961         continue;
3962     }
3963 
3964     // If we make it here and it's legal, add it.
3965     (void)InsertFormula(LU, LUIdx, F);
3966   next:;
3967   }
3968 }
3969 
3970 /// Generate stride factor reuse formulae by making use of scaled-offset address
3971 /// modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)3972 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3973   // Determine the integer type for the base formula.
3974   Type *IntTy = Base.getType();
3975   if (!IntTy) return;
3976 
3977   // If this Formula already has a scaled register, we can't add another one.
3978   // Try to unscale the formula to generate a better scale.
3979   if (Base.Scale != 0 && !Base.unscale())
3980     return;
3981 
3982   assert(Base.Scale == 0 && "unscale did not did its job!");
3983 
3984   // Check each interesting stride.
3985   for (int64_t Factor : Factors) {
3986     Base.Scale = Factor;
3987     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3988     // Check whether this scale is going to be legal.
3989     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3990                     Base)) {
3991       // As a special-case, handle special out-of-loop Basic users specially.
3992       // TODO: Reconsider this special case.
3993       if (LU.Kind == LSRUse::Basic &&
3994           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3995                      LU.AccessTy, Base) &&
3996           LU.AllFixupsOutsideLoop)
3997         LU.Kind = LSRUse::Special;
3998       else
3999         continue;
4000     }
4001     // For an ICmpZero, negating a solitary base register won't lead to
4002     // new solutions.
4003     if (LU.Kind == LSRUse::ICmpZero &&
4004         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4005       continue;
4006     // For each addrec base reg, if its loop is current loop, apply the scale.
4007     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4008       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4009       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4010         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4011         if (FactorS->isZero())
4012           continue;
4013         // Divide out the factor, ignoring high bits, since we'll be
4014         // scaling the value back up in the end.
4015         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4016           // TODO: This could be optimized to avoid all the copying.
4017           Formula F = Base;
4018           F.ScaledReg = Quotient;
4019           F.deleteBaseReg(F.BaseRegs[i]);
4020           // The canonical representation of 1*reg is reg, which is already in
4021           // Base. In that case, do not try to insert the formula, it will be
4022           // rejected anyway.
4023           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4024                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4025             continue;
4026           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4027           // non canonical Formula with ScaledReg's loop not being L.
4028           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4029             F.canonicalize(*L);
4030           (void)InsertFormula(LU, LUIdx, F);
4031         }
4032       }
4033     }
4034   }
4035 }
4036 
4037 /// Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)4038 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4039   // Don't bother truncating symbolic values.
4040   if (Base.BaseGV) return;
4041 
4042   // Determine the integer type for the base formula.
4043   Type *DstTy = Base.getType();
4044   if (!DstTy) return;
4045   DstTy = SE.getEffectiveSCEVType(DstTy);
4046 
4047   for (Type *SrcTy : Types) {
4048     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4049       Formula F = Base;
4050 
4051       // Sometimes SCEV is able to prove zero during ext transform. It may
4052       // happen if SCEV did not do all possible transforms while creating the
4053       // initial node (maybe due to depth limitations), but it can do them while
4054       // taking ext.
4055       if (F.ScaledReg) {
4056         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4057         if (NewScaledReg->isZero())
4058          continue;
4059         F.ScaledReg = NewScaledReg;
4060       }
4061       bool HasZeroBaseReg = false;
4062       for (const SCEV *&BaseReg : F.BaseRegs) {
4063         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4064         if (NewBaseReg->isZero()) {
4065           HasZeroBaseReg = true;
4066           break;
4067         }
4068         BaseReg = NewBaseReg;
4069       }
4070       if (HasZeroBaseReg)
4071         continue;
4072 
4073       // TODO: This assumes we've done basic processing on all uses and
4074       // have an idea what the register usage is.
4075       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4076         continue;
4077 
4078       F.canonicalize(*L);
4079       (void)InsertFormula(LU, LUIdx, F);
4080     }
4081   }
4082 }
4083 
4084 namespace {
4085 
4086 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4087 /// modifications so that the search phase doesn't have to worry about the data
4088 /// structures moving underneath it.
4089 struct WorkItem {
4090   size_t LUIdx;
4091   int64_t Imm;
4092   const SCEV *OrigReg;
4093 
WorkItem__anondbe16f4d0d11::WorkItem4094   WorkItem(size_t LI, int64_t I, const SCEV *R)
4095       : LUIdx(LI), Imm(I), OrigReg(R) {}
4096 
4097   void print(raw_ostream &OS) const;
4098   void dump() const;
4099 };
4100 
4101 } // end anonymous namespace
4102 
4103 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const4104 void WorkItem::print(raw_ostream &OS) const {
4105   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4106      << " , add offset " << Imm;
4107 }
4108 
dump() const4109 LLVM_DUMP_METHOD void WorkItem::dump() const {
4110   print(errs()); errs() << '\n';
4111 }
4112 #endif
4113 
4114 /// Look for registers which are a constant distance apart and try to form reuse
4115 /// opportunities between them.
GenerateCrossUseConstantOffsets()4116 void LSRInstance::GenerateCrossUseConstantOffsets() {
4117   // Group the registers by their value without any added constant offset.
4118   using ImmMapTy = std::map<int64_t, const SCEV *>;
4119 
4120   DenseMap<const SCEV *, ImmMapTy> Map;
4121   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4122   SmallVector<const SCEV *, 8> Sequence;
4123   for (const SCEV *Use : RegUses) {
4124     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4125     int64_t Imm = ExtractImmediate(Reg, SE);
4126     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4127     if (Pair.second)
4128       Sequence.push_back(Reg);
4129     Pair.first->second.insert(std::make_pair(Imm, Use));
4130     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4131   }
4132 
4133   // Now examine each set of registers with the same base value. Build up
4134   // a list of work to do and do the work in a separate step so that we're
4135   // not adding formulae and register counts while we're searching.
4136   SmallVector<WorkItem, 32> WorkItems;
4137   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4138   for (const SCEV *Reg : Sequence) {
4139     const ImmMapTy &Imms = Map.find(Reg)->second;
4140 
4141     // It's not worthwhile looking for reuse if there's only one offset.
4142     if (Imms.size() == 1)
4143       continue;
4144 
4145     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4146                for (const auto &Entry
4147                     : Imms) dbgs()
4148                << ' ' << Entry.first;
4149                dbgs() << '\n');
4150 
4151     // Examine each offset.
4152     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4153          J != JE; ++J) {
4154       const SCEV *OrigReg = J->second;
4155 
4156       int64_t JImm = J->first;
4157       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4158 
4159       if (!isa<SCEVConstant>(OrigReg) &&
4160           UsedByIndicesMap[Reg].count() == 1) {
4161         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4162                           << '\n');
4163         continue;
4164       }
4165 
4166       // Conservatively examine offsets between this orig reg a few selected
4167       // other orig regs.
4168       int64_t First = Imms.begin()->first;
4169       int64_t Last = std::prev(Imms.end())->first;
4170       // Compute (First + Last)  / 2 without overflow using the fact that
4171       // First + Last = 2 * (First + Last) + (First ^ Last).
4172       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4173       // If the result is negative and First is odd and Last even (or vice versa),
4174       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4175       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4176       ImmMapTy::const_iterator OtherImms[] = {
4177           Imms.begin(), std::prev(Imms.end()),
4178          Imms.lower_bound(Avg)};
4179       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4180         ImmMapTy::const_iterator M = OtherImms[i];
4181         if (M == J || M == JE) continue;
4182 
4183         // Compute the difference between the two.
4184         int64_t Imm = (uint64_t)JImm - M->first;
4185         for (unsigned LUIdx : UsedByIndices.set_bits())
4186           // Make a memo of this use, offset, and register tuple.
4187           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4188             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4189       }
4190     }
4191   }
4192 
4193   Map.clear();
4194   Sequence.clear();
4195   UsedByIndicesMap.clear();
4196   UniqueItems.clear();
4197 
4198   // Now iterate through the worklist and add new formulae.
4199   for (const WorkItem &WI : WorkItems) {
4200     size_t LUIdx = WI.LUIdx;
4201     LSRUse &LU = Uses[LUIdx];
4202     int64_t Imm = WI.Imm;
4203     const SCEV *OrigReg = WI.OrigReg;
4204 
4205     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4206     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4207     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4208 
4209     // TODO: Use a more targeted data structure.
4210     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4211       Formula F = LU.Formulae[L];
4212       // FIXME: The code for the scaled and unscaled registers looks
4213       // very similar but slightly different. Investigate if they
4214       // could be merged. That way, we would not have to unscale the
4215       // Formula.
4216       F.unscale();
4217       // Use the immediate in the scaled register.
4218       if (F.ScaledReg == OrigReg) {
4219         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4220         // Don't create 50 + reg(-50).
4221         if (F.referencesReg(SE.getSCEV(
4222                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4223           continue;
4224         Formula NewF = F;
4225         NewF.BaseOffset = Offset;
4226         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4227                         NewF))
4228           continue;
4229         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4230 
4231         // If the new scale is a constant in a register, and adding the constant
4232         // value to the immediate would produce a value closer to zero than the
4233         // immediate itself, then the formula isn't worthwhile.
4234         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4235           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4236               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4237                   .ule(std::abs(NewF.BaseOffset)))
4238             continue;
4239 
4240         // OK, looks good.
4241         NewF.canonicalize(*this->L);
4242         (void)InsertFormula(LU, LUIdx, NewF);
4243       } else {
4244         // Use the immediate in a base register.
4245         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4246           const SCEV *BaseReg = F.BaseRegs[N];
4247           if (BaseReg != OrigReg)
4248             continue;
4249           Formula NewF = F;
4250           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4251           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4252                           LU.Kind, LU.AccessTy, NewF)) {
4253             if (TTI.shouldFavorPostInc() &&
4254                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4255               continue;
4256             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4257               continue;
4258             NewF = F;
4259             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4260           }
4261           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4262 
4263           // If the new formula has a constant in a register, and adding the
4264           // constant value to the immediate would produce a value closer to
4265           // zero than the immediate itself, then the formula isn't worthwhile.
4266           for (const SCEV *NewReg : NewF.BaseRegs)
4267             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4268               if ((C->getAPInt() + NewF.BaseOffset)
4269                       .abs()
4270                       .slt(std::abs(NewF.BaseOffset)) &&
4271                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4272                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4273                 goto skip_formula;
4274 
4275           // Ok, looks good.
4276           NewF.canonicalize(*this->L);
4277           (void)InsertFormula(LU, LUIdx, NewF);
4278           break;
4279         skip_formula:;
4280         }
4281       }
4282     }
4283   }
4284 }
4285 
4286 /// Generate formulae for each use.
4287 void
GenerateAllReuseFormulae()4288 LSRInstance::GenerateAllReuseFormulae() {
4289   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4290   // queries are more precise.
4291   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4292     LSRUse &LU = Uses[LUIdx];
4293     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4294       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4295     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4296       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4297   }
4298   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4299     LSRUse &LU = Uses[LUIdx];
4300     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4301       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4302     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4303       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4304     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4305       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4306     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4307       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4308   }
4309   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4310     LSRUse &LU = Uses[LUIdx];
4311     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4312       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4313   }
4314 
4315   GenerateCrossUseConstantOffsets();
4316 
4317   LLVM_DEBUG(dbgs() << "\n"
4318                        "After generating reuse formulae:\n";
4319              print_uses(dbgs()));
4320 }
4321 
4322 /// If there are multiple formulae with the same set of registers used
4323 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()4324 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4325   DenseSet<const SCEV *> VisitedRegs;
4326   SmallPtrSet<const SCEV *, 16> Regs;
4327   SmallPtrSet<const SCEV *, 16> LoserRegs;
4328 #ifndef NDEBUG
4329   bool ChangedFormulae = false;
4330 #endif
4331 
4332   // Collect the best formula for each unique set of shared registers. This
4333   // is reset for each use.
4334   using BestFormulaeTy =
4335       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4336 
4337   BestFormulaeTy BestFormulae;
4338 
4339   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4340     LSRUse &LU = Uses[LUIdx];
4341     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4342                dbgs() << '\n');
4343 
4344     bool Any = false;
4345     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4346          FIdx != NumForms; ++FIdx) {
4347       Formula &F = LU.Formulae[FIdx];
4348 
4349       // Some formulas are instant losers. For example, they may depend on
4350       // nonexistent AddRecs from other loops. These need to be filtered
4351       // immediately, otherwise heuristics could choose them over others leading
4352       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4353       // avoids the need to recompute this information across formulae using the
4354       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4355       // the corresponding bad register from the Regs set.
4356       Cost CostF(L, SE, TTI);
4357       Regs.clear();
4358       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4359       if (CostF.isLoser()) {
4360         // During initial formula generation, undesirable formulae are generated
4361         // by uses within other loops that have some non-trivial address mode or
4362         // use the postinc form of the IV. LSR needs to provide these formulae
4363         // as the basis of rediscovering the desired formula that uses an AddRec
4364         // corresponding to the existing phi. Once all formulae have been
4365         // generated, these initial losers may be pruned.
4366         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4367                    dbgs() << "\n");
4368       }
4369       else {
4370         SmallVector<const SCEV *, 4> Key;
4371         for (const SCEV *Reg : F.BaseRegs) {
4372           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4373             Key.push_back(Reg);
4374         }
4375         if (F.ScaledReg &&
4376             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4377           Key.push_back(F.ScaledReg);
4378         // Unstable sort by host order ok, because this is only used for
4379         // uniquifying.
4380         llvm::sort(Key);
4381 
4382         std::pair<BestFormulaeTy::const_iterator, bool> P =
4383           BestFormulae.insert(std::make_pair(Key, FIdx));
4384         if (P.second)
4385           continue;
4386 
4387         Formula &Best = LU.Formulae[P.first->second];
4388 
4389         Cost CostBest(L, SE, TTI);
4390         Regs.clear();
4391         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4392         if (CostF.isLess(CostBest))
4393           std::swap(F, Best);
4394         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4395                    dbgs() << "\n"
4396                              "    in favor of formula ";
4397                    Best.print(dbgs()); dbgs() << '\n');
4398       }
4399 #ifndef NDEBUG
4400       ChangedFormulae = true;
4401 #endif
4402       LU.DeleteFormula(F);
4403       --FIdx;
4404       --NumForms;
4405       Any = true;
4406     }
4407 
4408     // Now that we've filtered out some formulae, recompute the Regs set.
4409     if (Any)
4410       LU.RecomputeRegs(LUIdx, RegUses);
4411 
4412     // Reset this to prepare for the next use.
4413     BestFormulae.clear();
4414   }
4415 
4416   LLVM_DEBUG(if (ChangedFormulae) {
4417     dbgs() << "\n"
4418               "After filtering out undesirable candidates:\n";
4419     print_uses(dbgs());
4420   });
4421 }
4422 
4423 /// Estimate the worst-case number of solutions the solver might have to
4424 /// consider. It almost never considers this many solutions because it prune the
4425 /// search space, but the pruning isn't always sufficient.
EstimateSearchSpaceComplexity() const4426 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4427   size_t Power = 1;
4428   for (const LSRUse &LU : Uses) {
4429     size_t FSize = LU.Formulae.size();
4430     if (FSize >= ComplexityLimit) {
4431       Power = ComplexityLimit;
4432       break;
4433     }
4434     Power *= FSize;
4435     if (Power >= ComplexityLimit)
4436       break;
4437   }
4438   return Power;
4439 }
4440 
4441 /// When one formula uses a superset of the registers of another formula, it
4442 /// won't help reduce register pressure (though it may not necessarily hurt
4443 /// register pressure); remove it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4444 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4445   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4446     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4447 
4448     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4449                          "which use a superset of registers used by other "
4450                          "formulae.\n");
4451 
4452     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4453       LSRUse &LU = Uses[LUIdx];
4454       bool Any = false;
4455       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4456         Formula &F = LU.Formulae[i];
4457         // Look for a formula with a constant or GV in a register. If the use
4458         // also has a formula with that same value in an immediate field,
4459         // delete the one that uses a register.
4460         for (SmallVectorImpl<const SCEV *>::const_iterator
4461              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4462           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4463             Formula NewF = F;
4464             //FIXME: Formulas should store bitwidth to do wrapping properly.
4465             //       See PR41034.
4466             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4467             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4468                                 (I - F.BaseRegs.begin()));
4469             if (LU.HasFormulaWithSameRegs(NewF)) {
4470               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4471                          dbgs() << '\n');
4472               LU.DeleteFormula(F);
4473               --i;
4474               --e;
4475               Any = true;
4476               break;
4477             }
4478           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4479             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4480               if (!F.BaseGV) {
4481                 Formula NewF = F;
4482                 NewF.BaseGV = GV;
4483                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4484                                     (I - F.BaseRegs.begin()));
4485                 if (LU.HasFormulaWithSameRegs(NewF)) {
4486                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4487                              dbgs() << '\n');
4488                   LU.DeleteFormula(F);
4489                   --i;
4490                   --e;
4491                   Any = true;
4492                   break;
4493                 }
4494               }
4495           }
4496         }
4497       }
4498       if (Any)
4499         LU.RecomputeRegs(LUIdx, RegUses);
4500     }
4501 
4502     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4503   }
4504 }
4505 
4506 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4507 /// allocate a single register for them.
NarrowSearchSpaceByCollapsingUnrolledCode()4508 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4509   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4510     return;
4511 
4512   LLVM_DEBUG(
4513       dbgs() << "The search space is too complex.\n"
4514                 "Narrowing the search space by assuming that uses separated "
4515                 "by a constant offset will use the same registers.\n");
4516 
4517   // This is especially useful for unrolled loops.
4518 
4519   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4520     LSRUse &LU = Uses[LUIdx];
4521     for (const Formula &F : LU.Formulae) {
4522       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4523         continue;
4524 
4525       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4526       if (!LUThatHas)
4527         continue;
4528 
4529       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4530                               LU.Kind, LU.AccessTy))
4531         continue;
4532 
4533       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4534 
4535       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4536 
4537       // Transfer the fixups of LU to LUThatHas.
4538       for (LSRFixup &Fixup : LU.Fixups) {
4539         Fixup.Offset += F.BaseOffset;
4540         LUThatHas->pushFixup(Fixup);
4541         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4542       }
4543 
4544       // Delete formulae from the new use which are no longer legal.
4545       bool Any = false;
4546       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4547         Formula &F = LUThatHas->Formulae[i];
4548         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4549                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4550           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4551           LUThatHas->DeleteFormula(F);
4552           --i;
4553           --e;
4554           Any = true;
4555         }
4556       }
4557 
4558       if (Any)
4559         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4560 
4561       // Delete the old use.
4562       DeleteUse(LU, LUIdx);
4563       --LUIdx;
4564       --NumUses;
4565       break;
4566     }
4567   }
4568 
4569   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4570 }
4571 
4572 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4573 /// we've done more filtering, as it may be able to find more formulae to
4574 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4575 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4576   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4577     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4578 
4579     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4580                          "undesirable dedicated registers.\n");
4581 
4582     FilterOutUndesirableDedicatedRegisters();
4583 
4584     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4585   }
4586 }
4587 
4588 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4589 /// Pick the best one and delete the others.
4590 /// This narrowing heuristic is to keep as many formulae with different
4591 /// Scale and ScaledReg pair as possible while narrowing the search space.
4592 /// The benefit is that it is more likely to find out a better solution
4593 /// from a formulae set with more Scale and ScaledReg variations than
4594 /// a formulae set with the same Scale and ScaledReg. The picking winner
4595 /// reg heuristic will often keep the formulae with the same Scale and
4596 /// ScaledReg and filter others, and we want to avoid that if possible.
NarrowSearchSpaceByFilterFormulaWithSameScaledReg()4597 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4598   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4599     return;
4600 
4601   LLVM_DEBUG(
4602       dbgs() << "The search space is too complex.\n"
4603                 "Narrowing the search space by choosing the best Formula "
4604                 "from the Formulae with the same Scale and ScaledReg.\n");
4605 
4606   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4607   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4608 
4609   BestFormulaeTy BestFormulae;
4610 #ifndef NDEBUG
4611   bool ChangedFormulae = false;
4612 #endif
4613   DenseSet<const SCEV *> VisitedRegs;
4614   SmallPtrSet<const SCEV *, 16> Regs;
4615 
4616   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4617     LSRUse &LU = Uses[LUIdx];
4618     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4619                dbgs() << '\n');
4620 
4621     // Return true if Formula FA is better than Formula FB.
4622     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4623       // First we will try to choose the Formula with fewer new registers.
4624       // For a register used by current Formula, the more the register is
4625       // shared among LSRUses, the less we increase the register number
4626       // counter of the formula.
4627       size_t FARegNum = 0;
4628       for (const SCEV *Reg : FA.BaseRegs) {
4629         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4630         FARegNum += (NumUses - UsedByIndices.count() + 1);
4631       }
4632       size_t FBRegNum = 0;
4633       for (const SCEV *Reg : FB.BaseRegs) {
4634         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4635         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4636       }
4637       if (FARegNum != FBRegNum)
4638         return FARegNum < FBRegNum;
4639 
4640       // If the new register numbers are the same, choose the Formula with
4641       // less Cost.
4642       Cost CostFA(L, SE, TTI);
4643       Cost CostFB(L, SE, TTI);
4644       Regs.clear();
4645       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4646       Regs.clear();
4647       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4648       return CostFA.isLess(CostFB);
4649     };
4650 
4651     bool Any = false;
4652     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4653          ++FIdx) {
4654       Formula &F = LU.Formulae[FIdx];
4655       if (!F.ScaledReg)
4656         continue;
4657       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4658       if (P.second)
4659         continue;
4660 
4661       Formula &Best = LU.Formulae[P.first->second];
4662       if (IsBetterThan(F, Best))
4663         std::swap(F, Best);
4664       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4665                  dbgs() << "\n"
4666                            "    in favor of formula ";
4667                  Best.print(dbgs()); dbgs() << '\n');
4668 #ifndef NDEBUG
4669       ChangedFormulae = true;
4670 #endif
4671       LU.DeleteFormula(F);
4672       --FIdx;
4673       --NumForms;
4674       Any = true;
4675     }
4676     if (Any)
4677       LU.RecomputeRegs(LUIdx, RegUses);
4678 
4679     // Reset this to prepare for the next use.
4680     BestFormulae.clear();
4681   }
4682 
4683   LLVM_DEBUG(if (ChangedFormulae) {
4684     dbgs() << "\n"
4685               "After filtering out undesirable candidates:\n";
4686     print_uses(dbgs());
4687   });
4688 }
4689 
4690 /// If we are over the complexity limit, filter out any post-inc prefering
4691 /// variables to only post-inc values.
NarrowSearchSpaceByFilterPostInc()4692 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4693   if (!TTI.shouldFavorPostInc())
4694     return;
4695   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4696     return;
4697 
4698   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4699                        "Narrowing the search space by choosing the lowest "
4700                        "register Formula for PostInc Uses.\n");
4701 
4702   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4703     LSRUse &LU = Uses[LUIdx];
4704 
4705     if (LU.Kind != LSRUse::Address)
4706       continue;
4707     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4708         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4709       continue;
4710 
4711     size_t MinRegs = std::numeric_limits<size_t>::max();
4712     for (const Formula &F : LU.Formulae)
4713       MinRegs = std::min(F.getNumRegs(), MinRegs);
4714 
4715     bool Any = false;
4716     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4717          ++FIdx) {
4718       Formula &F = LU.Formulae[FIdx];
4719       if (F.getNumRegs() > MinRegs) {
4720         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4721                    dbgs() << "\n");
4722         LU.DeleteFormula(F);
4723         --FIdx;
4724         --NumForms;
4725         Any = true;
4726       }
4727     }
4728     if (Any)
4729       LU.RecomputeRegs(LUIdx, RegUses);
4730 
4731     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4732       break;
4733   }
4734 
4735   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4736 }
4737 
4738 /// The function delete formulas with high registers number expectation.
4739 /// Assuming we don't know the value of each formula (already delete
4740 /// all inefficient), generate probability of not selecting for each
4741 /// register.
4742 /// For example,
4743 /// Use1:
4744 ///  reg(a) + reg({0,+,1})
4745 ///  reg(a) + reg({-1,+,1}) + 1
4746 ///  reg({a,+,1})
4747 /// Use2:
4748 ///  reg(b) + reg({0,+,1})
4749 ///  reg(b) + reg({-1,+,1}) + 1
4750 ///  reg({b,+,1})
4751 /// Use3:
4752 ///  reg(c) + reg(b) + reg({0,+,1})
4753 ///  reg(c) + reg({b,+,1})
4754 ///
4755 /// Probability of not selecting
4756 ///                 Use1   Use2    Use3
4757 /// reg(a)         (1/3) *   1   *   1
4758 /// reg(b)           1   * (1/3) * (1/2)
4759 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4760 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4761 /// reg({a,+,1})   (2/3) *   1   *   1
4762 /// reg({b,+,1})     1   * (2/3) * (2/3)
4763 /// reg(c)           1   *   1   *   0
4764 ///
4765 /// Now count registers number mathematical expectation for each formula:
4766 /// Note that for each use we exclude probability if not selecting for the use.
4767 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4768 /// probabilty 1/3 of not selecting for Use1).
4769 /// Use1:
4770 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4771 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4772 ///  reg({a,+,1})                   1
4773 /// Use2:
4774 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4775 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4776 ///  reg({b,+,1})                   2/3
4777 /// Use3:
4778 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4779 ///  reg(c) + reg({b,+,1})          1 + 2/3
NarrowSearchSpaceByDeletingCostlyFormulas()4780 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4781   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4782     return;
4783   // Ok, we have too many of formulae on our hands to conveniently handle.
4784   // Use a rough heuristic to thin out the list.
4785 
4786   // Set of Regs wich will be 100% used in final solution.
4787   // Used in each formula of a solution (in example above this is reg(c)).
4788   // We can skip them in calculations.
4789   SmallPtrSet<const SCEV *, 4> UniqRegs;
4790   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4791 
4792   // Map each register to probability of not selecting
4793   DenseMap <const SCEV *, float> RegNumMap;
4794   for (const SCEV *Reg : RegUses) {
4795     if (UniqRegs.count(Reg))
4796       continue;
4797     float PNotSel = 1;
4798     for (const LSRUse &LU : Uses) {
4799       if (!LU.Regs.count(Reg))
4800         continue;
4801       float P = LU.getNotSelectedProbability(Reg);
4802       if (P != 0.0)
4803         PNotSel *= P;
4804       else
4805         UniqRegs.insert(Reg);
4806     }
4807     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4808   }
4809 
4810   LLVM_DEBUG(
4811       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4812 
4813   // Delete formulas where registers number expectation is high.
4814   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4815     LSRUse &LU = Uses[LUIdx];
4816     // If nothing to delete - continue.
4817     if (LU.Formulae.size() < 2)
4818       continue;
4819     // This is temporary solution to test performance. Float should be
4820     // replaced with round independent type (based on integers) to avoid
4821     // different results for different target builds.
4822     float FMinRegNum = LU.Formulae[0].getNumRegs();
4823     float FMinARegNum = LU.Formulae[0].getNumRegs();
4824     size_t MinIdx = 0;
4825     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4826       Formula &F = LU.Formulae[i];
4827       float FRegNum = 0;
4828       float FARegNum = 0;
4829       for (const SCEV *BaseReg : F.BaseRegs) {
4830         if (UniqRegs.count(BaseReg))
4831           continue;
4832         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4833         if (isa<SCEVAddRecExpr>(BaseReg))
4834           FARegNum +=
4835               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4836       }
4837       if (const SCEV *ScaledReg = F.ScaledReg) {
4838         if (!UniqRegs.count(ScaledReg)) {
4839           FRegNum +=
4840               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4841           if (isa<SCEVAddRecExpr>(ScaledReg))
4842             FARegNum +=
4843                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4844         }
4845       }
4846       if (FMinRegNum > FRegNum ||
4847           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4848         FMinRegNum = FRegNum;
4849         FMinARegNum = FARegNum;
4850         MinIdx = i;
4851       }
4852     }
4853     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4854                dbgs() << " with min reg num " << FMinRegNum << '\n');
4855     if (MinIdx != 0)
4856       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4857     while (LU.Formulae.size() != 1) {
4858       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4859                  dbgs() << '\n');
4860       LU.Formulae.pop_back();
4861     }
4862     LU.RecomputeRegs(LUIdx, RegUses);
4863     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4864     Formula &F = LU.Formulae[0];
4865     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4866     // When we choose the formula, the regs become unique.
4867     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4868     if (F.ScaledReg)
4869       UniqRegs.insert(F.ScaledReg);
4870   }
4871   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4872 }
4873 
4874 /// Pick a register which seems likely to be profitable, and then in any use
4875 /// which has any reference to that register, delete all formulae which do not
4876 /// reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4877 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4878   // With all other options exhausted, loop until the system is simple
4879   // enough to handle.
4880   SmallPtrSet<const SCEV *, 4> Taken;
4881   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4882     // Ok, we have too many of formulae on our hands to conveniently handle.
4883     // Use a rough heuristic to thin out the list.
4884     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4885 
4886     // Pick the register which is used by the most LSRUses, which is likely
4887     // to be a good reuse register candidate.
4888     const SCEV *Best = nullptr;
4889     unsigned BestNum = 0;
4890     for (const SCEV *Reg : RegUses) {
4891       if (Taken.count(Reg))
4892         continue;
4893       if (!Best) {
4894         Best = Reg;
4895         BestNum = RegUses.getUsedByIndices(Reg).count();
4896       } else {
4897         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4898         if (Count > BestNum) {
4899           Best = Reg;
4900           BestNum = Count;
4901         }
4902       }
4903     }
4904     assert(Best && "Failed to find best LSRUse candidate");
4905 
4906     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4907                       << " will yield profitable reuse.\n");
4908     Taken.insert(Best);
4909 
4910     // In any use with formulae which references this register, delete formulae
4911     // which don't reference it.
4912     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4913       LSRUse &LU = Uses[LUIdx];
4914       if (!LU.Regs.count(Best)) continue;
4915 
4916       bool Any = false;
4917       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4918         Formula &F = LU.Formulae[i];
4919         if (!F.referencesReg(Best)) {
4920           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4921           LU.DeleteFormula(F);
4922           --e;
4923           --i;
4924           Any = true;
4925           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4926           continue;
4927         }
4928       }
4929 
4930       if (Any)
4931         LU.RecomputeRegs(LUIdx, RegUses);
4932     }
4933 
4934     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4935   }
4936 }
4937 
4938 /// If there are an extraordinary number of formulae to choose from, use some
4939 /// rough heuristics to prune down the number of formulae. This keeps the main
4940 /// solver from taking an extraordinary amount of time in some worst-case
4941 /// scenarios.
NarrowSearchSpaceUsingHeuristics()4942 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4943   NarrowSearchSpaceByDetectingSupersets();
4944   NarrowSearchSpaceByCollapsingUnrolledCode();
4945   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4946   if (FilterSameScaledReg)
4947     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4948   NarrowSearchSpaceByFilterPostInc();
4949   if (LSRExpNarrow)
4950     NarrowSearchSpaceByDeletingCostlyFormulas();
4951   else
4952     NarrowSearchSpaceByPickingWinnerRegs();
4953 }
4954 
4955 /// This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const4956 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4957                                Cost &SolutionCost,
4958                                SmallVectorImpl<const Formula *> &Workspace,
4959                                const Cost &CurCost,
4960                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4961                                DenseSet<const SCEV *> &VisitedRegs) const {
4962   // Some ideas:
4963   //  - prune more:
4964   //    - use more aggressive filtering
4965   //    - sort the formula so that the most profitable solutions are found first
4966   //    - sort the uses too
4967   //  - search faster:
4968   //    - don't compute a cost, and then compare. compare while computing a cost
4969   //      and bail early.
4970   //    - track register sets with SmallBitVector
4971 
4972   const LSRUse &LU = Uses[Workspace.size()];
4973 
4974   // If this use references any register that's already a part of the
4975   // in-progress solution, consider it a requirement that a formula must
4976   // reference that register in order to be considered. This prunes out
4977   // unprofitable searching.
4978   SmallSetVector<const SCEV *, 4> ReqRegs;
4979   for (const SCEV *S : CurRegs)
4980     if (LU.Regs.count(S))
4981       ReqRegs.insert(S);
4982 
4983   SmallPtrSet<const SCEV *, 16> NewRegs;
4984   Cost NewCost(L, SE, TTI);
4985   for (const Formula &F : LU.Formulae) {
4986     // Ignore formulae which may not be ideal in terms of register reuse of
4987     // ReqRegs.  The formula should use all required registers before
4988     // introducing new ones.
4989     // This can sometimes (notably when trying to favour postinc) lead to
4990     // sub-optimial decisions. There it is best left to the cost modelling to
4991     // get correct.
4992     if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4993       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4994       for (const SCEV *Reg : ReqRegs) {
4995         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4996             is_contained(F.BaseRegs, Reg)) {
4997           --NumReqRegsToFind;
4998           if (NumReqRegsToFind == 0)
4999             break;
5000         }
5001       }
5002       if (NumReqRegsToFind != 0) {
5003         // If none of the formulae satisfied the required registers, then we could
5004         // clear ReqRegs and try again. Currently, we simply give up in this case.
5005         continue;
5006       }
5007     }
5008 
5009     // Evaluate the cost of the current formula. If it's already worse than
5010     // the current best, prune the search at that point.
5011     NewCost = CurCost;
5012     NewRegs = CurRegs;
5013     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5014     if (NewCost.isLess(SolutionCost)) {
5015       Workspace.push_back(&F);
5016       if (Workspace.size() != Uses.size()) {
5017         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5018                      NewRegs, VisitedRegs);
5019         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5020           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5021       } else {
5022         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5023                    dbgs() << ".\nRegs:\n";
5024                    for (const SCEV *S : NewRegs) dbgs()
5025                       << "- " << *S << "\n";
5026                    dbgs() << '\n');
5027 
5028         SolutionCost = NewCost;
5029         Solution = Workspace;
5030       }
5031       Workspace.pop_back();
5032     }
5033   }
5034 }
5035 
5036 /// Choose one formula from each use. Return the results in the given Solution
5037 /// vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const5038 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5039   SmallVector<const Formula *, 8> Workspace;
5040   Cost SolutionCost(L, SE, TTI);
5041   SolutionCost.Lose();
5042   Cost CurCost(L, SE, TTI);
5043   SmallPtrSet<const SCEV *, 16> CurRegs;
5044   DenseSet<const SCEV *> VisitedRegs;
5045   Workspace.reserve(Uses.size());
5046 
5047   // SolveRecurse does all the work.
5048   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5049                CurRegs, VisitedRegs);
5050   if (Solution.empty()) {
5051     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5052     return;
5053   }
5054 
5055   // Ok, we've now made all our decisions.
5056   LLVM_DEBUG(dbgs() << "\n"
5057                        "The chosen solution requires ";
5058              SolutionCost.print(dbgs()); dbgs() << ":\n";
5059              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5060                dbgs() << "  ";
5061                Uses[i].print(dbgs());
5062                dbgs() << "\n"
5063                          "    ";
5064                Solution[i]->print(dbgs());
5065                dbgs() << '\n';
5066              });
5067 
5068   assert(Solution.size() == Uses.size() && "Malformed solution!");
5069 }
5070 
5071 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5072 /// we can go while still being dominated by the input positions. This helps
5073 /// canonicalize the insert position, which encourages sharing.
5074 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const5075 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5076                                  const SmallVectorImpl<Instruction *> &Inputs)
5077                                                                          const {
5078   Instruction *Tentative = &*IP;
5079   while (true) {
5080     bool AllDominate = true;
5081     Instruction *BetterPos = nullptr;
5082     // Don't bother attempting to insert before a catchswitch, their basic block
5083     // cannot have other non-PHI instructions.
5084     if (isa<CatchSwitchInst>(Tentative))
5085       return IP;
5086 
5087     for (Instruction *Inst : Inputs) {
5088       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5089         AllDominate = false;
5090         break;
5091       }
5092       // Attempt to find an insert position in the middle of the block,
5093       // instead of at the end, so that it can be used for other expansions.
5094       if (Tentative->getParent() == Inst->getParent() &&
5095           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5096         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5097     }
5098     if (!AllDominate)
5099       break;
5100     if (BetterPos)
5101       IP = BetterPos->getIterator();
5102     else
5103       IP = Tentative->getIterator();
5104 
5105     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5106     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5107 
5108     BasicBlock *IDom;
5109     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5110       if (!Rung) return IP;
5111       Rung = Rung->getIDom();
5112       if (!Rung) return IP;
5113       IDom = Rung->getBlock();
5114 
5115       // Don't climb into a loop though.
5116       const Loop *IDomLoop = LI.getLoopFor(IDom);
5117       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5118       if (IDomDepth <= IPLoopDepth &&
5119           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5120         break;
5121     }
5122 
5123     Tentative = IDom->getTerminator();
5124   }
5125 
5126   return IP;
5127 }
5128 
5129 /// Determine an input position which will be dominated by the operands and
5130 /// which will dominate the result.
5131 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU,SCEVExpander & Rewriter) const5132 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5133                                            const LSRFixup &LF,
5134                                            const LSRUse &LU,
5135                                            SCEVExpander &Rewriter) const {
5136   // Collect some instructions which must be dominated by the
5137   // expanding replacement. These must be dominated by any operands that
5138   // will be required in the expansion.
5139   SmallVector<Instruction *, 4> Inputs;
5140   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5141     Inputs.push_back(I);
5142   if (LU.Kind == LSRUse::ICmpZero)
5143     if (Instruction *I =
5144           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5145       Inputs.push_back(I);
5146   if (LF.PostIncLoops.count(L)) {
5147     if (LF.isUseFullyOutsideLoop(L))
5148       Inputs.push_back(L->getLoopLatch()->getTerminator());
5149     else
5150       Inputs.push_back(IVIncInsertPos);
5151   }
5152   // The expansion must also be dominated by the increment positions of any
5153   // loops it for which it is using post-inc mode.
5154   for (const Loop *PIL : LF.PostIncLoops) {
5155     if (PIL == L) continue;
5156 
5157     // Be dominated by the loop exit.
5158     SmallVector<BasicBlock *, 4> ExitingBlocks;
5159     PIL->getExitingBlocks(ExitingBlocks);
5160     if (!ExitingBlocks.empty()) {
5161       BasicBlock *BB = ExitingBlocks[0];
5162       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5163         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5164       Inputs.push_back(BB->getTerminator());
5165     }
5166   }
5167 
5168   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5169          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5170          "Insertion point must be a normal instruction");
5171 
5172   // Then, climb up the immediate dominator tree as far as we can go while
5173   // still being dominated by the input positions.
5174   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5175 
5176   // Don't insert instructions before PHI nodes.
5177   while (isa<PHINode>(IP)) ++IP;
5178 
5179   // Ignore landingpad instructions.
5180   while (IP->isEHPad()) ++IP;
5181 
5182   // Ignore debug intrinsics.
5183   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5184 
5185   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5186   // IP consistent across expansions and allows the previously inserted
5187   // instructions to be reused by subsequent expansion.
5188   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5189     ++IP;
5190 
5191   return IP;
5192 }
5193 
5194 /// Emit instructions for the leading candidate expression for this LSRUse (this
5195 /// is called "expanding").
Expand(const LSRUse & LU,const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5196 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5197                            const Formula &F, BasicBlock::iterator IP,
5198                            SCEVExpander &Rewriter,
5199                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5200   if (LU.RigidFormula)
5201     return LF.OperandValToReplace;
5202 
5203   // Determine an input position which will be dominated by the operands and
5204   // which will dominate the result.
5205   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5206   Rewriter.setInsertPoint(&*IP);
5207 
5208   // Inform the Rewriter if we have a post-increment use, so that it can
5209   // perform an advantageous expansion.
5210   Rewriter.setPostInc(LF.PostIncLoops);
5211 
5212   // This is the type that the user actually needs.
5213   Type *OpTy = LF.OperandValToReplace->getType();
5214   // This will be the type that we'll initially expand to.
5215   Type *Ty = F.getType();
5216   if (!Ty)
5217     // No type known; just expand directly to the ultimate type.
5218     Ty = OpTy;
5219   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5220     // Expand directly to the ultimate type if it's the right size.
5221     Ty = OpTy;
5222   // This is the type to do integer arithmetic in.
5223   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5224 
5225   // Build up a list of operands to add together to form the full base.
5226   SmallVector<const SCEV *, 8> Ops;
5227 
5228   // Expand the BaseRegs portion.
5229   for (const SCEV *Reg : F.BaseRegs) {
5230     assert(!Reg->isZero() && "Zero allocated in a base register!");
5231 
5232     // If we're expanding for a post-inc user, make the post-inc adjustment.
5233     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5234     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5235   }
5236 
5237   // Expand the ScaledReg portion.
5238   Value *ICmpScaledV = nullptr;
5239   if (F.Scale != 0) {
5240     const SCEV *ScaledS = F.ScaledReg;
5241 
5242     // If we're expanding for a post-inc user, make the post-inc adjustment.
5243     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5244     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5245 
5246     if (LU.Kind == LSRUse::ICmpZero) {
5247       // Expand ScaleReg as if it was part of the base regs.
5248       if (F.Scale == 1)
5249         Ops.push_back(
5250             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5251       else {
5252         // An interesting way of "folding" with an icmp is to use a negated
5253         // scale, which we'll implement by inserting it into the other operand
5254         // of the icmp.
5255         assert(F.Scale == -1 &&
5256                "The only scale supported by ICmpZero uses is -1!");
5257         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5258       }
5259     } else {
5260       // Otherwise just expand the scaled register and an explicit scale,
5261       // which is expected to be matched as part of the address.
5262 
5263       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5264       // Unless the addressing mode will not be folded.
5265       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5266           isAMCompletelyFolded(TTI, LU, F)) {
5267         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5268         Ops.clear();
5269         Ops.push_back(SE.getUnknown(FullV));
5270       }
5271       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5272       if (F.Scale != 1)
5273         ScaledS =
5274             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5275       Ops.push_back(ScaledS);
5276     }
5277   }
5278 
5279   // Expand the GV portion.
5280   if (F.BaseGV) {
5281     // Flush the operand list to suppress SCEVExpander hoisting.
5282     if (!Ops.empty()) {
5283       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5284       Ops.clear();
5285       Ops.push_back(SE.getUnknown(FullV));
5286     }
5287     Ops.push_back(SE.getUnknown(F.BaseGV));
5288   }
5289 
5290   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5291   // unfolded offsets. LSR assumes they both live next to their uses.
5292   if (!Ops.empty()) {
5293     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5294     Ops.clear();
5295     Ops.push_back(SE.getUnknown(FullV));
5296   }
5297 
5298   // Expand the immediate portion.
5299   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5300   if (Offset != 0) {
5301     if (LU.Kind == LSRUse::ICmpZero) {
5302       // The other interesting way of "folding" with an ICmpZero is to use a
5303       // negated immediate.
5304       if (!ICmpScaledV)
5305         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5306       else {
5307         Ops.push_back(SE.getUnknown(ICmpScaledV));
5308         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5309       }
5310     } else {
5311       // Just add the immediate values. These again are expected to be matched
5312       // as part of the address.
5313       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5314     }
5315   }
5316 
5317   // Expand the unfolded offset portion.
5318   int64_t UnfoldedOffset = F.UnfoldedOffset;
5319   if (UnfoldedOffset != 0) {
5320     // Just add the immediate values.
5321     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5322                                                        UnfoldedOffset)));
5323   }
5324 
5325   // Emit instructions summing all the operands.
5326   const SCEV *FullS = Ops.empty() ?
5327                       SE.getConstant(IntTy, 0) :
5328                       SE.getAddExpr(Ops);
5329   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5330 
5331   // We're done expanding now, so reset the rewriter.
5332   Rewriter.clearPostInc();
5333 
5334   // An ICmpZero Formula represents an ICmp which we're handling as a
5335   // comparison against zero. Now that we've expanded an expression for that
5336   // form, update the ICmp's other operand.
5337   if (LU.Kind == LSRUse::ICmpZero) {
5338     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5339     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5340       DeadInsts.emplace_back(OperandIsInstr);
5341     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5342                            "a scale at the same time!");
5343     if (F.Scale == -1) {
5344       if (ICmpScaledV->getType() != OpTy) {
5345         Instruction *Cast =
5346           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5347                                                    OpTy, false),
5348                            ICmpScaledV, OpTy, "tmp", CI);
5349         ICmpScaledV = Cast;
5350       }
5351       CI->setOperand(1, ICmpScaledV);
5352     } else {
5353       // A scale of 1 means that the scale has been expanded as part of the
5354       // base regs.
5355       assert((F.Scale == 0 || F.Scale == 1) &&
5356              "ICmp does not support folding a global value and "
5357              "a scale at the same time!");
5358       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5359                                            -(uint64_t)Offset);
5360       if (C->getType() != OpTy)
5361         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5362                                                           OpTy, false),
5363                                   C, OpTy);
5364 
5365       CI->setOperand(1, C);
5366     }
5367   }
5368 
5369   return FullV;
5370 }
5371 
5372 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5373 /// effectively happens in their predecessor blocks, so the expression may need
5374 /// to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRUse & LU,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5375 void LSRInstance::RewriteForPHI(
5376     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5377     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5378   DenseMap<BasicBlock *, Value *> Inserted;
5379   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5380     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5381       bool needUpdateFixups = false;
5382       BasicBlock *BB = PN->getIncomingBlock(i);
5383 
5384       // If this is a critical edge, split the edge so that we do not insert
5385       // the code on all predecessor/successor paths.  We do this unless this
5386       // is the canonical backedge for this loop, which complicates post-inc
5387       // users.
5388       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5389           !isa<IndirectBrInst>(BB->getTerminator()) &&
5390           !isa<CatchSwitchInst>(BB->getTerminator())) {
5391         BasicBlock *Parent = PN->getParent();
5392         Loop *PNLoop = LI.getLoopFor(Parent);
5393         if (!PNLoop || Parent != PNLoop->getHeader()) {
5394           // Split the critical edge.
5395           BasicBlock *NewBB = nullptr;
5396           if (!Parent->isLandingPad()) {
5397             NewBB =
5398                 SplitCriticalEdge(BB, Parent,
5399                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5400                                       .setMergeIdenticalEdges()
5401                                       .setKeepOneInputPHIs());
5402           } else {
5403             SmallVector<BasicBlock*, 2> NewBBs;
5404             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5405             NewBB = NewBBs[0];
5406           }
5407           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5408           // phi predecessors are identical. The simple thing to do is skip
5409           // splitting in this case rather than complicate the API.
5410           if (NewBB) {
5411             // If PN is outside of the loop and BB is in the loop, we want to
5412             // move the block to be immediately before the PHI block, not
5413             // immediately after BB.
5414             if (L->contains(BB) && !L->contains(PN))
5415               NewBB->moveBefore(PN->getParent());
5416 
5417             // Splitting the edge can reduce the number of PHI entries we have.
5418             e = PN->getNumIncomingValues();
5419             BB = NewBB;
5420             i = PN->getBasicBlockIndex(BB);
5421 
5422             needUpdateFixups = true;
5423           }
5424         }
5425       }
5426 
5427       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5428         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5429       if (!Pair.second)
5430         PN->setIncomingValue(i, Pair.first->second);
5431       else {
5432         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5433                               Rewriter, DeadInsts);
5434 
5435         // If this is reuse-by-noop-cast, insert the noop cast.
5436         Type *OpTy = LF.OperandValToReplace->getType();
5437         if (FullV->getType() != OpTy)
5438           FullV =
5439             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5440                                                      OpTy, false),
5441                              FullV, LF.OperandValToReplace->getType(),
5442                              "tmp", BB->getTerminator());
5443 
5444         PN->setIncomingValue(i, FullV);
5445         Pair.first->second = FullV;
5446       }
5447 
5448       // If LSR splits critical edge and phi node has other pending
5449       // fixup operands, we need to update those pending fixups. Otherwise
5450       // formulae will not be implemented completely and some instructions
5451       // will not be eliminated.
5452       if (needUpdateFixups) {
5453         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5454           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5455             // If fixup is supposed to rewrite some operand in the phi
5456             // that was just updated, it may be already moved to
5457             // another phi node. Such fixup requires update.
5458             if (Fixup.UserInst == PN) {
5459               // Check if the operand we try to replace still exists in the
5460               // original phi.
5461               bool foundInOriginalPHI = false;
5462               for (const auto &val : PN->incoming_values())
5463                 if (val == Fixup.OperandValToReplace) {
5464                   foundInOriginalPHI = true;
5465                   break;
5466                 }
5467 
5468               // If fixup operand found in original PHI - nothing to do.
5469               if (foundInOriginalPHI)
5470                 continue;
5471 
5472               // Otherwise it might be moved to another PHI and requires update.
5473               // If fixup operand not found in any of the incoming blocks that
5474               // means we have already rewritten it - nothing to do.
5475               for (const auto &Block : PN->blocks())
5476                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5477                      ++I) {
5478                   PHINode *NewPN = cast<PHINode>(I);
5479                   for (const auto &val : NewPN->incoming_values())
5480                     if (val == Fixup.OperandValToReplace)
5481                       Fixup.UserInst = NewPN;
5482                 }
5483             }
5484       }
5485     }
5486 }
5487 
5488 /// Emit instructions for the leading candidate expression for this LSRUse (this
5489 /// is called "expanding"), and update the UserInst to reference the newly
5490 /// expanded value.
Rewrite(const LSRUse & LU,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5491 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5492                           const Formula &F, SCEVExpander &Rewriter,
5493                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5494   // First, find an insertion point that dominates UserInst. For PHI nodes,
5495   // find the nearest block which dominates all the relevant uses.
5496   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5497     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5498   } else {
5499     Value *FullV =
5500       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5501 
5502     // If this is reuse-by-noop-cast, insert the noop cast.
5503     Type *OpTy = LF.OperandValToReplace->getType();
5504     if (FullV->getType() != OpTy) {
5505       Instruction *Cast =
5506         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5507                          FullV, OpTy, "tmp", LF.UserInst);
5508       FullV = Cast;
5509     }
5510 
5511     // Update the user. ICmpZero is handled specially here (for now) because
5512     // Expand may have updated one of the operands of the icmp already, and
5513     // its new value may happen to be equal to LF.OperandValToReplace, in
5514     // which case doing replaceUsesOfWith leads to replacing both operands
5515     // with the same value. TODO: Reorganize this.
5516     if (LU.Kind == LSRUse::ICmpZero)
5517       LF.UserInst->setOperand(0, FullV);
5518     else
5519       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5520   }
5521 
5522   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5523     DeadInsts.emplace_back(OperandIsInstr);
5524 }
5525 
5526 /// Rewrite all the fixup locations with new values, following the chosen
5527 /// solution.
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution)5528 void LSRInstance::ImplementSolution(
5529     const SmallVectorImpl<const Formula *> &Solution) {
5530   // Keep track of instructions we may have made dead, so that
5531   // we can remove them after we are done working.
5532   SmallVector<WeakTrackingVH, 16> DeadInsts;
5533 
5534   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5535                         false);
5536 #ifndef NDEBUG
5537   Rewriter.setDebugType(DEBUG_TYPE);
5538 #endif
5539   Rewriter.disableCanonicalMode();
5540   Rewriter.enableLSRMode();
5541   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5542 
5543   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5544   for (const IVChain &Chain : IVChainVec) {
5545     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5546       Rewriter.setChainedPhi(PN);
5547   }
5548 
5549   // Expand the new value definitions and update the users.
5550   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5551     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5552       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5553       Changed = true;
5554     }
5555 
5556   for (const IVChain &Chain : IVChainVec) {
5557     GenerateIVChain(Chain, Rewriter, DeadInsts);
5558     Changed = true;
5559   }
5560   // Clean up after ourselves. This must be done before deleting any
5561   // instructions.
5562   Rewriter.clear();
5563 
5564   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5565                                                                   &TLI, MSSAU);
5566 }
5567 
LSRInstance(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSAUpdater * MSSAU)5568 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5569                          DominatorTree &DT, LoopInfo &LI,
5570                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5571                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5572     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5573       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5574                                        TTI.shouldFavorBackedgeIndex(L)) {
5575   // If LoopSimplify form is not available, stay out of trouble.
5576   if (!L->isLoopSimplifyForm())
5577     return;
5578 
5579   // If there's no interesting work to be done, bail early.
5580   if (IU.empty()) return;
5581 
5582   // If there's too much analysis to be done, bail early. We won't be able to
5583   // model the problem anyway.
5584   unsigned NumUsers = 0;
5585   for (const IVStrideUse &U : IU) {
5586     if (++NumUsers > MaxIVUsers) {
5587       (void)U;
5588       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5589                         << "\n");
5590       return;
5591     }
5592     // Bail out if we have a PHI on an EHPad that gets a value from a
5593     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5594     // no good place to stick any instructions.
5595     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5596        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5597        if (isa<FuncletPadInst>(FirstNonPHI) ||
5598            isa<CatchSwitchInst>(FirstNonPHI))
5599          for (BasicBlock *PredBB : PN->blocks())
5600            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5601              return;
5602     }
5603   }
5604 
5605 #ifndef NDEBUG
5606   // All dominating loops must have preheaders, or SCEVExpander may not be able
5607   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5608   //
5609   // IVUsers analysis should only create users that are dominated by simple loop
5610   // headers. Since this loop should dominate all of its users, its user list
5611   // should be empty if this loop itself is not within a simple loop nest.
5612   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5613        Rung; Rung = Rung->getIDom()) {
5614     BasicBlock *BB = Rung->getBlock();
5615     const Loop *DomLoop = LI.getLoopFor(BB);
5616     if (DomLoop && DomLoop->getHeader() == BB) {
5617       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5618     }
5619   }
5620 #endif // DEBUG
5621 
5622   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5623              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5624              dbgs() << ":\n");
5625 
5626   // First, perform some low-level loop optimizations.
5627   OptimizeShadowIV();
5628   OptimizeLoopTermCond();
5629 
5630   // If loop preparation eliminates all interesting IV users, bail.
5631   if (IU.empty()) return;
5632 
5633   // Skip nested loops until we can model them better with formulae.
5634   if (!L->isInnermost()) {
5635     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5636     return;
5637   }
5638 
5639   // Start collecting data and preparing for the solver.
5640   CollectChains();
5641   CollectInterestingTypesAndFactors();
5642   CollectFixupsAndInitialFormulae();
5643   CollectLoopInvariantFixupsAndFormulae();
5644 
5645   if (Uses.empty())
5646     return;
5647 
5648   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5649              print_uses(dbgs()));
5650 
5651   // Now use the reuse data to generate a bunch of interesting ways
5652   // to formulate the values needed for the uses.
5653   GenerateAllReuseFormulae();
5654 
5655   FilterOutUndesirableDedicatedRegisters();
5656   NarrowSearchSpaceUsingHeuristics();
5657 
5658   SmallVector<const Formula *, 8> Solution;
5659   Solve(Solution);
5660 
5661   // Release memory that is no longer needed.
5662   Factors.clear();
5663   Types.clear();
5664   RegUses.clear();
5665 
5666   if (Solution.empty())
5667     return;
5668 
5669 #ifndef NDEBUG
5670   // Formulae should be legal.
5671   for (const LSRUse &LU : Uses) {
5672     for (const Formula &F : LU.Formulae)
5673       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5674                         F) && "Illegal formula generated!");
5675   };
5676 #endif
5677 
5678   // Now that we've decided what we want, make it so.
5679   ImplementSolution(Solution);
5680 }
5681 
5682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print_factors_and_types(raw_ostream & OS) const5683 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5684   if (Factors.empty() && Types.empty()) return;
5685 
5686   OS << "LSR has identified the following interesting factors and types: ";
5687   bool First = true;
5688 
5689   for (int64_t Factor : Factors) {
5690     if (!First) OS << ", ";
5691     First = false;
5692     OS << '*' << Factor;
5693   }
5694 
5695   for (Type *Ty : Types) {
5696     if (!First) OS << ", ";
5697     First = false;
5698     OS << '(' << *Ty << ')';
5699   }
5700   OS << '\n';
5701 }
5702 
print_fixups(raw_ostream & OS) const5703 void LSRInstance::print_fixups(raw_ostream &OS) const {
5704   OS << "LSR is examining the following fixup sites:\n";
5705   for (const LSRUse &LU : Uses)
5706     for (const LSRFixup &LF : LU.Fixups) {
5707       dbgs() << "  ";
5708       LF.print(OS);
5709       OS << '\n';
5710     }
5711 }
5712 
print_uses(raw_ostream & OS) const5713 void LSRInstance::print_uses(raw_ostream &OS) const {
5714   OS << "LSR is examining the following uses:\n";
5715   for (const LSRUse &LU : Uses) {
5716     dbgs() << "  ";
5717     LU.print(OS);
5718     OS << '\n';
5719     for (const Formula &F : LU.Formulae) {
5720       OS << "    ";
5721       F.print(OS);
5722       OS << '\n';
5723     }
5724   }
5725 }
5726 
print(raw_ostream & OS) const5727 void LSRInstance::print(raw_ostream &OS) const {
5728   print_factors_and_types(OS);
5729   print_fixups(OS);
5730   print_uses(OS);
5731 }
5732 
dump() const5733 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5734   print(errs()); errs() << '\n';
5735 }
5736 #endif
5737 
5738 namespace {
5739 
5740 class LoopStrengthReduce : public LoopPass {
5741 public:
5742   static char ID; // Pass ID, replacement for typeid
5743 
5744   LoopStrengthReduce();
5745 
5746 private:
5747   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5748   void getAnalysisUsage(AnalysisUsage &AU) const override;
5749 };
5750 
5751 } // end anonymous namespace
5752 
LoopStrengthReduce()5753 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5754   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5755 }
5756 
getAnalysisUsage(AnalysisUsage & AU) const5757 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5758   // We split critical edges, so we change the CFG.  However, we do update
5759   // many analyses if they are around.
5760   AU.addPreservedID(LoopSimplifyID);
5761 
5762   AU.addRequired<LoopInfoWrapperPass>();
5763   AU.addPreserved<LoopInfoWrapperPass>();
5764   AU.addRequiredID(LoopSimplifyID);
5765   AU.addRequired<DominatorTreeWrapperPass>();
5766   AU.addPreserved<DominatorTreeWrapperPass>();
5767   AU.addRequired<ScalarEvolutionWrapperPass>();
5768   AU.addPreserved<ScalarEvolutionWrapperPass>();
5769   AU.addRequired<AssumptionCacheTracker>();
5770   AU.addRequired<TargetLibraryInfoWrapperPass>();
5771   // Requiring LoopSimplify a second time here prevents IVUsers from running
5772   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5773   AU.addRequiredID(LoopSimplifyID);
5774   AU.addRequired<IVUsersWrapperPass>();
5775   AU.addPreserved<IVUsersWrapperPass>();
5776   AU.addRequired<TargetTransformInfoWrapperPass>();
5777   AU.addPreserved<MemorySSAWrapperPass>();
5778 }
5779 
ReduceLoopStrength(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSA * MSSA)5780 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5781                                DominatorTree &DT, LoopInfo &LI,
5782                                const TargetTransformInfo &TTI,
5783                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5784                                MemorySSA *MSSA) {
5785 
5786   bool Changed = false;
5787   std::unique_ptr<MemorySSAUpdater> MSSAU;
5788   if (MSSA)
5789     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5790 
5791   // Debug preservation - record all llvm.dbg.value from the loop as well as
5792   // the SCEV of their variable location. Since salvageDebugInfo may change the
5793   // DIExpression we need to store the original here as well (i.e. it needs to
5794   // be in sync with the SCEV).
5795   SmallVector<
5796       std::tuple<DbgValueInst *, const Type *, const SCEV *, DIExpression *>,
5797       32>
5798       DbgValues;
5799   for (auto &B : L->getBlocks()) {
5800     for (auto &I : *B) {
5801       if (DbgValueInst *D = dyn_cast<DbgValueInst>(&I)) {
5802         auto V = D->getVariableLocation();
5803         if (!V || !SE.isSCEVable(V->getType()))
5804           continue;
5805         auto DS = SE.getSCEV(V);
5806         DbgValues.push_back(
5807             std::make_tuple(D, V->getType(), DS, D->getExpression()));
5808       }
5809     }
5810   }
5811 
5812   // Run the main LSR transformation.
5813   Changed |=
5814       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5815 
5816   // Remove any extra phis created by processing inner loops.
5817   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5818   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5819     SmallVector<WeakTrackingVH, 16> DeadInsts;
5820     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5821     SCEVExpander Rewriter(SE, DL, "lsr", false);
5822 #ifndef NDEBUG
5823     Rewriter.setDebugType(DEBUG_TYPE);
5824 #endif
5825     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5826     if (numFolded) {
5827       Changed = true;
5828       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5829                                                            MSSAU.get());
5830       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5831     }
5832   }
5833   // Debug preservation - go through all recorded llvm.dbg.value and for those
5834   // that now have an undef variable location use the recorded SCEV to try and
5835   // update it. Compare with SCEV of Phi-nodes of loop header to find a
5836   // suitable update candidate. SCEV match with constant offset is allowed and
5837   // will be compensated for in the DIExpression.
5838   if (Changed) {
5839     for (auto &D : DbgValues) {
5840       auto DbgValue = std::get<DbgValueInst *>(D);
5841       auto DbgValueType = std::get<const Type *>(D);
5842       auto DbgValueSCEV = std::get<const SCEV *>(D);
5843       auto DbgDIExpr = std::get<DIExpression *>(D);
5844       if (!isa<UndefValue>(DbgValue->getVariableLocation()))
5845         continue;
5846       for (PHINode &Phi : L->getHeader()->phis()) {
5847         if (DbgValueType != Phi.getType())
5848           continue;
5849         if (!SE.isSCEVable(Phi.getType()))
5850           continue;
5851         auto PhiSCEV = SE.getSCEV(&Phi);
5852         if (Optional<APInt> Offset =
5853                 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV)) {
5854           auto &Ctx = DbgValue->getContext();
5855           DbgValue->setOperand(
5856               0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(&Phi)));
5857           if (Offset.getValue().getSExtValue()) {
5858             SmallVector<uint64_t, 8> Ops;
5859             DIExpression::appendOffset(Ops, Offset.getValue().getSExtValue());
5860             DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true);
5861           }
5862           DbgValue->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr));
5863         }
5864       }
5865     }
5866   }
5867   return Changed;
5868 }
5869 
runOnLoop(Loop * L,LPPassManager &)5870 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5871   if (skipLoop(L))
5872     return false;
5873 
5874   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5875   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5876   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5877   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5878   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5879       *L->getHeader()->getParent());
5880   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5881       *L->getHeader()->getParent());
5882   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5883       *L->getHeader()->getParent());
5884   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5885   MemorySSA *MSSA = nullptr;
5886   if (MSSAAnalysis)
5887     MSSA = &MSSAAnalysis->getMSSA();
5888   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5889 }
5890 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)5891 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5892                                               LoopStandardAnalysisResults &AR,
5893                                               LPMUpdater &) {
5894   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5895                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5896     return PreservedAnalyses::all();
5897 
5898   auto PA = getLoopPassPreservedAnalyses();
5899   if (AR.MSSA)
5900     PA.preserve<MemorySSAAnalysis>();
5901   return PA;
5902 }
5903 
5904 char LoopStrengthReduce::ID = 0;
5905 
5906 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5907                       "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)5908 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5909 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5910 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5911 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5912 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5913 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5914 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5915                     "Loop Strength Reduction", false, false)
5916 
5917 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5918