1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo,
43                                   DebugInfoFinder *DIFinder) {
44   DenseMap<const MDNode *, MDNode *> Cache;
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName())
47     NewBB->setName(BB->getName() + NameSuffix);
48 
49   bool hasCalls = false, hasDynamicAllocas = false;
50   Module *TheModule = F ? F->getParent() : nullptr;
51 
52   // Loop over all instructions, and copy them over.
53   for (const Instruction &I : *BB) {
54     if (DIFinder && TheModule)
55       DIFinder->processInstruction(*TheModule, I);
56 
57     Instruction *NewInst = I.clone();
58     if (I.hasName())
59       NewInst->setName(I.getName() + NameSuffix);
60     NewBB->getInstList().push_back(NewInst);
61     VMap[&I] = NewInst; // Add instruction map to value.
62 
63     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65       if (!AI->isStaticAlloca()) {
66         hasDynamicAllocas = true;
67       }
68     }
69   }
70 
71   if (CodeInfo) {
72     CodeInfo->ContainsCalls          |= hasCalls;
73     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74   }
75   return NewBB;
76 }
77 
78 // Clone OldFunc into NewFunc, transforming the old arguments into references to
79 // VMap values.
80 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82                              ValueToValueMapTy &VMap,
83                              bool ModuleLevelChanges,
84                              SmallVectorImpl<ReturnInst*> &Returns,
85                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86                              ValueMapTypeRemapper *TypeMapper,
87                              ValueMaterializer *Materializer) {
88   assert(NameSuffix && "NameSuffix cannot be null!");
89 
90 #ifndef NDEBUG
91   for (const Argument &I : OldFunc->args())
92     assert(VMap.count(&I) && "No mapping from source argument specified!");
93 #endif
94 
95   // Copy all attributes other than those stored in the AttributeList.  We need
96   // to remap the parameter indices of the AttributeList.
97   AttributeList NewAttrs = NewFunc->getAttributes();
98   NewFunc->copyAttributesFrom(OldFunc);
99   NewFunc->setAttributes(NewAttrs);
100 
101   // Fix up the personality function that got copied over.
102   if (OldFunc->hasPersonalityFn())
103     NewFunc->setPersonalityFn(
104         MapValue(OldFunc->getPersonalityFn(), VMap,
105                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
106                  TypeMapper, Materializer));
107 
108   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
109   AttributeList OldAttrs = OldFunc->getAttributes();
110 
111   // Clone any argument attributes that are present in the VMap.
112   for (const Argument &OldArg : OldFunc->args()) {
113     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
114       NewArgAttrs[NewArg->getArgNo()] =
115           OldAttrs.getParamAttributes(OldArg.getArgNo());
116     }
117   }
118 
119   NewFunc->setAttributes(
120       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
121                          OldAttrs.getRetAttributes(), NewArgAttrs));
122 
123   bool MustCloneSP =
124       OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
125   DISubprogram *SP = OldFunc->getSubprogram();
126   if (SP) {
127     assert(!MustCloneSP || ModuleLevelChanges);
128     // Add mappings for some DebugInfo nodes that we don't want duplicated
129     // even if they're distinct.
130     auto &MD = VMap.MD();
131     MD[SP->getUnit()].reset(SP->getUnit());
132     MD[SP->getType()].reset(SP->getType());
133     MD[SP->getFile()].reset(SP->getFile());
134     // If we're not cloning into the same module, no need to clone the
135     // subprogram
136     if (!MustCloneSP)
137       MD[SP].reset(SP);
138   }
139 
140   // Everything else beyond this point deals with function instructions,
141   // so if we are dealing with a function declaration, we're done.
142   if (OldFunc->isDeclaration())
143     return;
144 
145   // When we remap instructions, we want to avoid duplicating inlined
146   // DISubprograms, so record all subprograms we find as we duplicate
147   // instructions and then freeze them in the MD map.
148   // We also record information about dbg.value and dbg.declare to avoid
149   // duplicating the types.
150   DebugInfoFinder DIFinder;
151 
152   // Loop over all of the basic blocks in the function, cloning them as
153   // appropriate.  Note that we save BE this way in order to handle cloning of
154   // recursive functions into themselves.
155   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
156        BI != BE; ++BI) {
157     const BasicBlock &BB = *BI;
158 
159     // Create a new basic block and copy instructions into it!
160     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
161                                       ModuleLevelChanges ? &DIFinder : nullptr);
162 
163     // Add basic block mapping.
164     VMap[&BB] = CBB;
165 
166     // It is only legal to clone a function if a block address within that
167     // function is never referenced outside of the function.  Given that, we
168     // want to map block addresses from the old function to block addresses in
169     // the clone. (This is different from the generic ValueMapper
170     // implementation, which generates an invalid blockaddress when
171     // cloning a function.)
172     if (BB.hasAddressTaken()) {
173       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
174                                               const_cast<BasicBlock*>(&BB));
175       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
176     }
177 
178     // Note return instructions for the caller.
179     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
180       Returns.push_back(RI);
181   }
182 
183   for (DISubprogram *ISP : DIFinder.subprograms())
184     if (ISP != SP)
185       VMap.MD()[ISP].reset(ISP);
186 
187   for (DICompileUnit *CU : DIFinder.compile_units())
188     VMap.MD()[CU].reset(CU);
189 
190   for (DIType *Type : DIFinder.types())
191     VMap.MD()[Type].reset(Type);
192 
193   // Duplicate the metadata that is attached to the cloned function.
194   // Subprograms/CUs/types that were already mapped to themselves won't be
195   // duplicated.
196   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
197   OldFunc->getAllMetadata(MDs);
198   for (auto MD : MDs) {
199     NewFunc->addMetadata(
200         MD.first,
201         *MapMetadata(MD.second, VMap,
202                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
203                      TypeMapper, Materializer));
204   }
205 
206   // Loop over all of the instructions in the function, fixing up operand
207   // references as we go.  This uses VMap to do all the hard work.
208   for (Function::iterator BB =
209            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
210                           BE = NewFunc->end();
211        BB != BE; ++BB)
212     // Loop over all instructions, fixing each one as we find it...
213     for (Instruction &II : *BB)
214       RemapInstruction(&II, VMap,
215                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
216                        TypeMapper, Materializer);
217 
218   // Register all DICompileUnits of the old parent module in the new parent module
219   auto* OldModule = OldFunc->getParent();
220   auto* NewModule = NewFunc->getParent();
221   if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
222     auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
223     // Avoid multiple insertions of the same DICompileUnit to NMD.
224     SmallPtrSet<const void*, 8> Visited;
225     for (auto* Operand : NMD->operands())
226       Visited.insert(Operand);
227     for (auto* Unit : DIFinder.compile_units())
228       // VMap.MD()[Unit] == Unit
229       if (Visited.insert(Unit).second)
230         NMD->addOperand(Unit);
231   }
232 }
233 
234 /// Return a copy of the specified function and add it to that function's
235 /// module.  Also, any references specified in the VMap are changed to refer to
236 /// their mapped value instead of the original one.  If any of the arguments to
237 /// the function are in the VMap, the arguments are deleted from the resultant
238 /// function.  The VMap is updated to include mappings from all of the
239 /// instructions and basicblocks in the function from their old to new values.
240 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)241 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
242                               ClonedCodeInfo *CodeInfo) {
243   std::vector<Type*> ArgTypes;
244 
245   // The user might be deleting arguments to the function by specifying them in
246   // the VMap.  If so, we need to not add the arguments to the arg ty vector
247   //
248   for (const Argument &I : F->args())
249     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
250       ArgTypes.push_back(I.getType());
251 
252   // Create a new function type...
253   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
254                                     ArgTypes, F->getFunctionType()->isVarArg());
255 
256   // Create the new function...
257   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
258                                     F->getName(), F->getParent());
259 
260   // Loop over the arguments, copying the names of the mapped arguments over...
261   Function::arg_iterator DestI = NewF->arg_begin();
262   for (const Argument & I : F->args())
263     if (VMap.count(&I) == 0) {     // Is this argument preserved?
264       DestI->setName(I.getName()); // Copy the name over...
265       VMap[&I] = &*DestI++;        // Add mapping to VMap
266     }
267 
268   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
269   CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
270                     CodeInfo);
271 
272   return NewF;
273 }
274 
275 
276 
277 namespace {
278   /// This is a private class used to implement CloneAndPruneFunctionInto.
279   struct PruningFunctionCloner {
280     Function *NewFunc;
281     const Function *OldFunc;
282     ValueToValueMapTy &VMap;
283     bool ModuleLevelChanges;
284     const char *NameSuffix;
285     ClonedCodeInfo *CodeInfo;
286 
287   public:
PruningFunctionCloner__anonb05bfebe0111::PruningFunctionCloner288     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
289                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
290                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
291         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
292           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
293           CodeInfo(codeInfo) {}
294 
295     /// The specified block is found to be reachable, clone it and
296     /// anything that it can reach.
297     void CloneBlock(const BasicBlock *BB,
298                     BasicBlock::const_iterator StartingInst,
299                     std::vector<const BasicBlock*> &ToClone);
300   };
301 }
302 
303 /// The specified block is found to be reachable, clone it and
304 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)305 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
306                                        BasicBlock::const_iterator StartingInst,
307                                        std::vector<const BasicBlock*> &ToClone){
308   WeakTrackingVH &BBEntry = VMap[BB];
309 
310   // Have we already cloned this block?
311   if (BBEntry) return;
312 
313   // Nope, clone it now.
314   BasicBlock *NewBB;
315   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
316   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
317 
318   // It is only legal to clone a function if a block address within that
319   // function is never referenced outside of the function.  Given that, we
320   // want to map block addresses from the old function to block addresses in
321   // the clone. (This is different from the generic ValueMapper
322   // implementation, which generates an invalid blockaddress when
323   // cloning a function.)
324   //
325   // Note that we don't need to fix the mapping for unreachable blocks;
326   // the default mapping there is safe.
327   if (BB->hasAddressTaken()) {
328     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
329                                             const_cast<BasicBlock*>(BB));
330     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
331   }
332 
333   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
334 
335   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
336   // loop doesn't include the terminator.
337   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
338        II != IE; ++II) {
339 
340     Instruction *NewInst = II->clone();
341 
342     // Eagerly remap operands to the newly cloned instruction, except for PHI
343     // nodes for which we defer processing until we update the CFG.
344     if (!isa<PHINode>(NewInst)) {
345       RemapInstruction(NewInst, VMap,
346                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
347 
348       // If we can simplify this instruction to some other value, simply add
349       // a mapping to that value rather than inserting a new instruction into
350       // the basic block.
351       if (Value *V =
352               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
353         // On the off-chance that this simplifies to an instruction in the old
354         // function, map it back into the new function.
355         if (NewFunc != OldFunc)
356           if (Value *MappedV = VMap.lookup(V))
357             V = MappedV;
358 
359         if (!NewInst->mayHaveSideEffects()) {
360           VMap[&*II] = V;
361           NewInst->deleteValue();
362           continue;
363         }
364       }
365     }
366 
367     if (II->hasName())
368       NewInst->setName(II->getName()+NameSuffix);
369     VMap[&*II] = NewInst; // Add instruction map to value.
370     NewBB->getInstList().push_back(NewInst);
371     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
372 
373     if (CodeInfo)
374       if (auto *CB = dyn_cast<CallBase>(&*II))
375         if (CB->hasOperandBundles())
376           CodeInfo->OperandBundleCallSites.push_back(NewInst);
377 
378     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
379       if (isa<ConstantInt>(AI->getArraySize()))
380         hasStaticAllocas = true;
381       else
382         hasDynamicAllocas = true;
383     }
384   }
385 
386   // Finally, clone over the terminator.
387   const Instruction *OldTI = BB->getTerminator();
388   bool TerminatorDone = false;
389   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
390     if (BI->isConditional()) {
391       // If the condition was a known constant in the callee...
392       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
393       // Or is a known constant in the caller...
394       if (!Cond) {
395         Value *V = VMap.lookup(BI->getCondition());
396         Cond = dyn_cast_or_null<ConstantInt>(V);
397       }
398 
399       // Constant fold to uncond branch!
400       if (Cond) {
401         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
402         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
403         ToClone.push_back(Dest);
404         TerminatorDone = true;
405       }
406     }
407   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
408     // If switching on a value known constant in the caller.
409     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
410     if (!Cond) { // Or known constant after constant prop in the callee...
411       Value *V = VMap.lookup(SI->getCondition());
412       Cond = dyn_cast_or_null<ConstantInt>(V);
413     }
414     if (Cond) {     // Constant fold to uncond branch!
415       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
416       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
417       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
418       ToClone.push_back(Dest);
419       TerminatorDone = true;
420     }
421   }
422 
423   if (!TerminatorDone) {
424     Instruction *NewInst = OldTI->clone();
425     if (OldTI->hasName())
426       NewInst->setName(OldTI->getName()+NameSuffix);
427     NewBB->getInstList().push_back(NewInst);
428     VMap[OldTI] = NewInst;             // Add instruction map to value.
429 
430     if (CodeInfo)
431       if (auto *CB = dyn_cast<CallBase>(OldTI))
432         if (CB->hasOperandBundles())
433           CodeInfo->OperandBundleCallSites.push_back(NewInst);
434 
435     // Recursively clone any reachable successor blocks.
436     const Instruction *TI = BB->getTerminator();
437     for (const BasicBlock *Succ : successors(TI))
438       ToClone.push_back(Succ);
439   }
440 
441   if (CodeInfo) {
442     CodeInfo->ContainsCalls          |= hasCalls;
443     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
444     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
445       BB != &BB->getParent()->front();
446   }
447 }
448 
449 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
450 /// entire function. Instead it starts at an instruction provided by the caller
451 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)452 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
453                                      const Instruction *StartingInst,
454                                      ValueToValueMapTy &VMap,
455                                      bool ModuleLevelChanges,
456                                      SmallVectorImpl<ReturnInst *> &Returns,
457                                      const char *NameSuffix,
458                                      ClonedCodeInfo *CodeInfo) {
459   assert(NameSuffix && "NameSuffix cannot be null!");
460 
461   ValueMapTypeRemapper *TypeMapper = nullptr;
462   ValueMaterializer *Materializer = nullptr;
463 
464 #ifndef NDEBUG
465   // If the cloning starts at the beginning of the function, verify that
466   // the function arguments are mapped.
467   if (!StartingInst)
468     for (const Argument &II : OldFunc->args())
469       assert(VMap.count(&II) && "No mapping from source argument specified!");
470 #endif
471 
472   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
473                             NameSuffix, CodeInfo);
474   const BasicBlock *StartingBB;
475   if (StartingInst)
476     StartingBB = StartingInst->getParent();
477   else {
478     StartingBB = &OldFunc->getEntryBlock();
479     StartingInst = &StartingBB->front();
480   }
481 
482   // Clone the entry block, and anything recursively reachable from it.
483   std::vector<const BasicBlock*> CloneWorklist;
484   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
485   while (!CloneWorklist.empty()) {
486     const BasicBlock *BB = CloneWorklist.back();
487     CloneWorklist.pop_back();
488     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
489   }
490 
491   // Loop over all of the basic blocks in the old function.  If the block was
492   // reachable, we have cloned it and the old block is now in the value map:
493   // insert it into the new function in the right order.  If not, ignore it.
494   //
495   // Defer PHI resolution until rest of function is resolved.
496   SmallVector<const PHINode*, 16> PHIToResolve;
497   for (const BasicBlock &BI : *OldFunc) {
498     Value *V = VMap.lookup(&BI);
499     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
500     if (!NewBB) continue;  // Dead block.
501 
502     // Add the new block to the new function.
503     NewFunc->getBasicBlockList().push_back(NewBB);
504 
505     // Handle PHI nodes specially, as we have to remove references to dead
506     // blocks.
507     for (const PHINode &PN : BI.phis()) {
508       // PHI nodes may have been remapped to non-PHI nodes by the caller or
509       // during the cloning process.
510       if (isa<PHINode>(VMap[&PN]))
511         PHIToResolve.push_back(&PN);
512       else
513         break;
514     }
515 
516     // Finally, remap the terminator instructions, as those can't be remapped
517     // until all BBs are mapped.
518     RemapInstruction(NewBB->getTerminator(), VMap,
519                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
520                      TypeMapper, Materializer);
521   }
522 
523   // Defer PHI resolution until rest of function is resolved, PHI resolution
524   // requires the CFG to be up-to-date.
525   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
526     const PHINode *OPN = PHIToResolve[phino];
527     unsigned NumPreds = OPN->getNumIncomingValues();
528     const BasicBlock *OldBB = OPN->getParent();
529     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
530 
531     // Map operands for blocks that are live and remove operands for blocks
532     // that are dead.
533     for (; phino != PHIToResolve.size() &&
534          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
535       OPN = PHIToResolve[phino];
536       PHINode *PN = cast<PHINode>(VMap[OPN]);
537       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
538         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
539         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
540           Value *InVal = MapValue(PN->getIncomingValue(pred),
541                                   VMap,
542                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
543           assert(InVal && "Unknown input value?");
544           PN->setIncomingValue(pred, InVal);
545           PN->setIncomingBlock(pred, MappedBlock);
546         } else {
547           PN->removeIncomingValue(pred, false);
548           --pred;  // Revisit the next entry.
549           --e;
550         }
551       }
552     }
553 
554     // The loop above has removed PHI entries for those blocks that are dead
555     // and has updated others.  However, if a block is live (i.e. copied over)
556     // but its terminator has been changed to not go to this block, then our
557     // phi nodes will have invalid entries.  Update the PHI nodes in this
558     // case.
559     PHINode *PN = cast<PHINode>(NewBB->begin());
560     NumPreds = pred_size(NewBB);
561     if (NumPreds != PN->getNumIncomingValues()) {
562       assert(NumPreds < PN->getNumIncomingValues());
563       // Count how many times each predecessor comes to this block.
564       std::map<BasicBlock*, unsigned> PredCount;
565       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
566            PI != E; ++PI)
567         --PredCount[*PI];
568 
569       // Figure out how many entries to remove from each PHI.
570       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
571         ++PredCount[PN->getIncomingBlock(i)];
572 
573       // At this point, the excess predecessor entries are positive in the
574       // map.  Loop over all of the PHIs and remove excess predecessor
575       // entries.
576       BasicBlock::iterator I = NewBB->begin();
577       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
578         for (const auto &PCI : PredCount) {
579           BasicBlock *Pred = PCI.first;
580           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
581             PN->removeIncomingValue(Pred, false);
582         }
583       }
584     }
585 
586     // If the loops above have made these phi nodes have 0 or 1 operand,
587     // replace them with undef or the input value.  We must do this for
588     // correctness, because 0-operand phis are not valid.
589     PN = cast<PHINode>(NewBB->begin());
590     if (PN->getNumIncomingValues() == 0) {
591       BasicBlock::iterator I = NewBB->begin();
592       BasicBlock::const_iterator OldI = OldBB->begin();
593       while ((PN = dyn_cast<PHINode>(I++))) {
594         Value *NV = UndefValue::get(PN->getType());
595         PN->replaceAllUsesWith(NV);
596         assert(VMap[&*OldI] == PN && "VMap mismatch");
597         VMap[&*OldI] = NV;
598         PN->eraseFromParent();
599         ++OldI;
600       }
601     }
602   }
603 
604   // Make a second pass over the PHINodes now that all of them have been
605   // remapped into the new function, simplifying the PHINode and performing any
606   // recursive simplifications exposed. This will transparently update the
607   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
608   // two PHINodes, the iteration over the old PHIs remains valid, and the
609   // mapping will just map us to the new node (which may not even be a PHI
610   // node).
611   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
612   SmallSetVector<const Value *, 8> Worklist;
613   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
614     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
615       Worklist.insert(PHIToResolve[Idx]);
616 
617   // Note that we must test the size on each iteration, the worklist can grow.
618   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
619     const Value *OrigV = Worklist[Idx];
620     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
621     if (!I)
622       continue;
623 
624     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
625     // the CGSCC.
626     CallBase *CB = dyn_cast<CallBase>(I);
627     if (CB && CB->getCalledFunction() &&
628         !CB->getCalledFunction()->isIntrinsic())
629       continue;
630 
631     // See if this instruction simplifies.
632     Value *SimpleV = SimplifyInstruction(I, DL);
633     if (!SimpleV)
634       continue;
635 
636     // Stash away all the uses of the old instruction so we can check them for
637     // recursive simplifications after a RAUW. This is cheaper than checking all
638     // uses of To on the recursive step in most cases.
639     for (const User *U : OrigV->users())
640       Worklist.insert(cast<Instruction>(U));
641 
642     // Replace the instruction with its simplified value.
643     I->replaceAllUsesWith(SimpleV);
644 
645     // If the original instruction had no side effects, remove it.
646     if (isInstructionTriviallyDead(I))
647       I->eraseFromParent();
648     else
649       VMap[OrigV] = I;
650   }
651 
652   // Now that the inlined function body has been fully constructed, go through
653   // and zap unconditional fall-through branches. This happens all the time when
654   // specializing code: code specialization turns conditional branches into
655   // uncond branches, and this code folds them.
656   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
657   Function::iterator I = Begin;
658   while (I != NewFunc->end()) {
659     // We need to simplify conditional branches and switches with a constant
660     // operand. We try to prune these out when cloning, but if the
661     // simplification required looking through PHI nodes, those are only
662     // available after forming the full basic block. That may leave some here,
663     // and we still want to prune the dead code as early as possible.
664     //
665     // Do the folding before we check if the block is dead since we want code
666     // like
667     //  bb:
668     //    br i1 undef, label %bb, label %bb
669     // to be simplified to
670     //  bb:
671     //    br label %bb
672     // before we call I->getSinglePredecessor().
673     ConstantFoldTerminator(&*I);
674 
675     // Check if this block has become dead during inlining or other
676     // simplifications. Note that the first block will appear dead, as it has
677     // not yet been wired up properly.
678     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
679                        I->getSinglePredecessor() == &*I)) {
680       BasicBlock *DeadBB = &*I++;
681       DeleteDeadBlock(DeadBB);
682       continue;
683     }
684 
685     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
686     if (!BI || BI->isConditional()) { ++I; continue; }
687 
688     BasicBlock *Dest = BI->getSuccessor(0);
689     if (!Dest->getSinglePredecessor()) {
690       ++I; continue;
691     }
692 
693     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
694     // above should have zapped all of them..
695     assert(!isa<PHINode>(Dest->begin()));
696 
697     // We know all single-entry PHI nodes in the inlined function have been
698     // removed, so we just need to splice the blocks.
699     BI->eraseFromParent();
700 
701     // Make all PHI nodes that referred to Dest now refer to I as their source.
702     Dest->replaceAllUsesWith(&*I);
703 
704     // Move all the instructions in the succ to the pred.
705     I->getInstList().splice(I->end(), Dest->getInstList());
706 
707     // Remove the dest block.
708     Dest->eraseFromParent();
709 
710     // Do not increment I, iteratively merge all things this block branches to.
711   }
712 
713   // Make a final pass over the basic blocks from the old function to gather
714   // any return instructions which survived folding. We have to do this here
715   // because we can iteratively remove and merge returns above.
716   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
717                           E = NewFunc->end();
718        I != E; ++I)
719     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
720       Returns.push_back(RI);
721 }
722 
723 
724 /// This works exactly like CloneFunctionInto,
725 /// except that it does some simple constant prop and DCE on the fly.  The
726 /// effect of this is to copy significantly less code in cases where (for
727 /// example) a function call with constant arguments is inlined, and those
728 /// constant arguments cause a significant amount of code in the callee to be
729 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
730 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)731 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
732                                      ValueToValueMapTy &VMap,
733                                      bool ModuleLevelChanges,
734                                      SmallVectorImpl<ReturnInst*> &Returns,
735                                      const char *NameSuffix,
736                                      ClonedCodeInfo *CodeInfo,
737                                      Instruction *TheCall) {
738   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
739                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
740 }
741 
742 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)743 void llvm::remapInstructionsInBlocks(
744     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
745   // Rewrite the code to refer to itself.
746   for (auto *BB : Blocks)
747     for (auto &Inst : *BB)
748       RemapInstruction(&Inst, VMap,
749                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
750 }
751 
752 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
753 /// Blocks.
754 ///
755 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
756 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)757 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
758                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
759                                    const Twine &NameSuffix, LoopInfo *LI,
760                                    DominatorTree *DT,
761                                    SmallVectorImpl<BasicBlock *> &Blocks) {
762   Function *F = OrigLoop->getHeader()->getParent();
763   Loop *ParentLoop = OrigLoop->getParentLoop();
764   DenseMap<Loop *, Loop *> LMap;
765 
766   Loop *NewLoop = LI->AllocateLoop();
767   LMap[OrigLoop] = NewLoop;
768   if (ParentLoop)
769     ParentLoop->addChildLoop(NewLoop);
770   else
771     LI->addTopLevelLoop(NewLoop);
772 
773   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
774   assert(OrigPH && "No preheader");
775   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
776   // To rename the loop PHIs.
777   VMap[OrigPH] = NewPH;
778   Blocks.push_back(NewPH);
779 
780   // Update LoopInfo.
781   if (ParentLoop)
782     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
783 
784   // Update DominatorTree.
785   DT->addNewBlock(NewPH, LoopDomBB);
786 
787   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
788     Loop *&NewLoop = LMap[CurLoop];
789     if (!NewLoop) {
790       NewLoop = LI->AllocateLoop();
791 
792       // Establish the parent/child relationship.
793       Loop *OrigParent = CurLoop->getParentLoop();
794       assert(OrigParent && "Could not find the original parent loop");
795       Loop *NewParentLoop = LMap[OrigParent];
796       assert(NewParentLoop && "Could not find the new parent loop");
797 
798       NewParentLoop->addChildLoop(NewLoop);
799     }
800   }
801 
802   for (BasicBlock *BB : OrigLoop->getBlocks()) {
803     Loop *CurLoop = LI->getLoopFor(BB);
804     Loop *&NewLoop = LMap[CurLoop];
805     assert(NewLoop && "Expecting new loop to be allocated");
806 
807     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
808     VMap[BB] = NewBB;
809 
810     // Update LoopInfo.
811     NewLoop->addBasicBlockToLoop(NewBB, *LI);
812 
813     // Add DominatorTree node. After seeing all blocks, update to correct
814     // IDom.
815     DT->addNewBlock(NewBB, NewPH);
816 
817     Blocks.push_back(NewBB);
818   }
819 
820   for (BasicBlock *BB : OrigLoop->getBlocks()) {
821     // Update loop headers.
822     Loop *CurLoop = LI->getLoopFor(BB);
823     if (BB == CurLoop->getHeader())
824       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
825 
826     // Update DominatorTree.
827     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
828     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
829                                  cast<BasicBlock>(VMap[IDomBB]));
830   }
831 
832   // Move them physically from the end of the block list.
833   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
834                                 NewPH);
835   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
836                                 NewLoop->getHeader()->getIterator(), F->end());
837 
838   return NewLoop;
839 }
840 
841 /// Duplicate non-Phi instructions from the beginning of block up to
842 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)843 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
844     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
845     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
846 
847   assert(count(successors(PredBB), BB) == 1 &&
848          "There must be a single edge between PredBB and BB!");
849   // We are going to have to map operands from the original BB block to the new
850   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
851   // account for entry from PredBB.
852   BasicBlock::iterator BI = BB->begin();
853   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
854     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
855 
856   BasicBlock *NewBB = SplitEdge(PredBB, BB);
857   NewBB->setName(PredBB->getName() + ".split");
858   Instruction *NewTerm = NewBB->getTerminator();
859 
860   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
861   //        in the update set here.
862   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
863                     {DominatorTree::Insert, PredBB, NewBB},
864                     {DominatorTree::Insert, NewBB, BB}});
865 
866   // Clone the non-phi instructions of BB into NewBB, keeping track of the
867   // mapping and using it to remap operands in the cloned instructions.
868   // Stop once we see the terminator too. This covers the case where BB's
869   // terminator gets replaced and StopAt == BB's terminator.
870   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
871     Instruction *New = BI->clone();
872     New->setName(BI->getName());
873     New->insertBefore(NewTerm);
874     ValueMapping[&*BI] = New;
875 
876     // Remap operands to patch up intra-block references.
877     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
878       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
879         auto I = ValueMapping.find(Inst);
880         if (I != ValueMapping.end())
881           New->setOperand(i, I->second);
882       }
883   }
884 
885   return NewBB;
886 }
887