1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
17 
18 #include <memory>
19 #include <ostream>
20 #include <string>
21 #include <unordered_map>
22 #include <vector>
23 
24 #include "libspirv.hpp"
25 
26 namespace spvtools {
27 
28 namespace opt {
29 class Pass;
30 }
31 
32 // C++ interface for SPIR-V optimization functionalities. It wraps the context
33 // (including target environment and the corresponding SPIR-V grammar) and
34 // provides methods for registering optimization passes and optimizing.
35 //
36 // Instances of this class provides basic thread-safety guarantee.
37 class Optimizer {
38  public:
39   // The token for an optimization pass. It is returned via one of the
40   // Create*Pass() standalone functions at the end of this header file and
41   // consumed by the RegisterPass() method. Tokens are one-time objects that
42   // only support move; copying is not allowed.
43   struct PassToken {
44     struct Impl;  // Opaque struct for holding inernal data.
45 
46     PassToken(std::unique_ptr<Impl>);
47 
48     // Tokens for built-in passes should be created using Create*Pass functions
49     // below; for out-of-tree passes, use this constructor instead.
50     // Note that this API isn't guaranteed to be stable and may change without
51     // preserving source or binary compatibility in the future.
52     PassToken(std::unique_ptr<opt::Pass>&& pass);
53 
54     // Tokens can only be moved. Copying is disabled.
55     PassToken(const PassToken&) = delete;
56     PassToken(PassToken&&);
57     PassToken& operator=(const PassToken&) = delete;
58     PassToken& operator=(PassToken&&);
59 
60     ~PassToken();
61 
62     std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
63   };
64 
65   // Constructs an instance with the given target |env|, which is used to decode
66   // the binaries to be optimized later.
67   //
68   // The instance will have an empty message consumer, which ignores all
69   // messages from the library. Use SetMessageConsumer() to supply a consumer
70   // if messages are of concern.
71   //
72   // For collections of passes that are meant to transform the input into
73   // another execution environment, then the source environment should be
74   // supplied. e.g. for VulkanToWebGPUPasses the environment should be
75   // SPV_ENV_VULKAN_1_1 not SPV_ENV_WEBGPU_0.
76   explicit Optimizer(spv_target_env env);
77 
78   // Disables copy/move constructor/assignment operations.
79   Optimizer(const Optimizer&) = delete;
80   Optimizer(Optimizer&&) = delete;
81   Optimizer& operator=(const Optimizer&) = delete;
82   Optimizer& operator=(Optimizer&&) = delete;
83 
84   // Destructs this instance.
85   ~Optimizer();
86 
87   // Sets the message consumer to the given |consumer|. The |consumer| will be
88   // invoked once for each message communicated from the library.
89   void SetMessageConsumer(MessageConsumer consumer);
90 
91   // Returns a reference to the registered message consumer.
92   const MessageConsumer& consumer() const;
93 
94   // Registers the given |pass| to this optimizer. Passes will be run in the
95   // exact order of registration. The token passed in will be consumed by this
96   // method.
97   Optimizer& RegisterPass(PassToken&& pass);
98 
99   // Registers passes that attempt to improve performance of generated code.
100   // This sequence of passes is subject to constant review and will change
101   // from time to time.
102   Optimizer& RegisterPerformancePasses();
103 
104   // Registers passes that attempt to improve the size of generated code.
105   // This sequence of passes is subject to constant review and will change
106   // from time to time.
107   Optimizer& RegisterSizePasses();
108 
109   // Registers passes that have been prescribed for converting from Vulkan to
110   // WebGPU. This sequence of passes is subject to constant review and will
111   // change from time to time.
112   Optimizer& RegisterVulkanToWebGPUPasses();
113 
114   // Registers passes that have been prescribed for converting from WebGPU to
115   // Vulkan. This sequence of passes is subject to constant review and will
116   // change from time to time.
117   Optimizer& RegisterWebGPUToVulkanPasses();
118 
119   // Registers passes that attempt to legalize the generated code.
120   //
121   // Note: this recipe is specially designed for legalizing SPIR-V. It should be
122   // used by compilers after translating HLSL source code literally. It should
123   // *not* be used by general workloads for performance or size improvement.
124   //
125   // This sequence of passes is subject to constant review and will change
126   // from time to time.
127   Optimizer& RegisterLegalizationPasses();
128 
129   // Register passes specified in the list of |flags|.  Each flag must be a
130   // string of a form accepted by Optimizer::FlagHasValidForm().
131   //
132   // If the list of flags contains an invalid entry, it returns false and an
133   // error message is emitted to the MessageConsumer object (use
134   // Optimizer::SetMessageConsumer to define a message consumer, if needed).
135   //
136   // If all the passes are registered successfully, it returns true.
137   bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
138 
139   // Registers the optimization pass associated with |flag|.  This only accepts
140   // |flag| values of the form "--pass_name[=pass_args]".  If no such pass
141   // exists, it returns false.  Otherwise, the pass is registered and it returns
142   // true.
143   //
144   // The following flags have special meaning:
145   //
146   // -O: Registers all performance optimization passes
147   //     (Optimizer::RegisterPerformancePasses)
148   //
149   // -Os: Registers all size optimization passes
150   //      (Optimizer::RegisterSizePasses).
151   //
152   // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
153   //                  HLSL front-end.
154   bool RegisterPassFromFlag(const std::string& flag);
155 
156   // Validates that |flag| has a valid format.  Strings accepted:
157   //
158   // --pass_name[=pass_args]
159   // -O
160   // -Os
161   //
162   // If |flag| takes one of the forms above, it returns true.  Otherwise, it
163   // returns false.
164   bool FlagHasValidForm(const std::string& flag) const;
165 
166   // Allows changing, after creation time, the target environment to be
167   // optimized for and validated.  Should be called before calling Run().
168   void SetTargetEnv(const spv_target_env env);
169 
170   // Optimizes the given SPIR-V module |original_binary| and writes the
171   // optimized binary into |optimized_binary|. The optimized binary uses
172   // the same SPIR-V version as the original binary.
173   //
174   // Returns true on successful optimization, whether or not the module is
175   // modified. Returns false if |original_binary| fails to validate or if errors
176   // occur when processing |original_binary| using any of the registered passes.
177   // In that case, no further passes are executed and the contents in
178   // |optimized_binary| may be invalid.
179   //
180   // By default, the binary is validated before any transforms are performed,
181   // and optionally after each transform.  Validation uses SPIR-V spec rules
182   // for the SPIR-V version named in the binary's header (at word offset 1).
183   // Additionally, if the target environment is a client API (such as
184   // Vulkan 1.1), then validate for that client API version, to the extent
185   // that it is verifiable from data in the binary itself.
186   //
187   // It's allowed to alias |original_binary| to the start of |optimized_binary|.
188   bool Run(const uint32_t* original_binary, size_t original_binary_size,
189            std::vector<uint32_t>* optimized_binary) const;
190 
191   // DEPRECATED: Same as above, except passes |options| to the validator when
192   // trying to validate the binary.  If |skip_validation| is true, then the
193   // caller is guaranteeing that |original_binary| is valid, and the validator
194   // will not be run.  The |max_id_bound| is the limit on the max id in the
195   // module.
196   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
197            std::vector<uint32_t>* optimized_binary,
198            const ValidatorOptions& options, bool skip_validation) const;
199 
200   // Same as above, except it takes an options object.  See the documentation
201   // for |OptimizerOptions| to see which options can be set.
202   //
203   // By default, the binary is validated before any transforms are performed,
204   // and optionally after each transform.  Validation uses SPIR-V spec rules
205   // for the SPIR-V version named in the binary's header (at word offset 1).
206   // Additionally, if the target environment is a client API (such as
207   // Vulkan 1.1), then validate for that client API version, to the extent
208   // that it is verifiable from data in the binary itself, or from the
209   // validator options set on the optimizer options.
210   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
211            std::vector<uint32_t>* optimized_binary,
212            const spv_optimizer_options opt_options) const;
213 
214   // Returns a vector of strings with all the pass names added to this
215   // optimizer's pass manager. These strings are valid until the associated
216   // pass manager is destroyed.
217   std::vector<const char*> GetPassNames() const;
218 
219   // Sets the option to print the disassembly before each pass and after the
220   // last pass.  If |out| is null, then no output is generated.  Otherwise,
221   // output is sent to the |out| output stream.
222   Optimizer& SetPrintAll(std::ostream* out);
223 
224   // Sets the option to print the resource utilization of each pass. If |out|
225   // is null, then no output is generated. Otherwise, output is sent to the
226   // |out| output stream.
227   Optimizer& SetTimeReport(std::ostream* out);
228 
229   // Sets the option to validate the module after each pass.
230   Optimizer& SetValidateAfterAll(bool validate);
231 
232  private:
233   struct Impl;                  // Opaque struct for holding internal data.
234   std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
235 };
236 
237 // Creates a null pass.
238 // A null pass does nothing to the SPIR-V module to be optimized.
239 Optimizer::PassToken CreateNullPass();
240 
241 // Creates a strip-atomic-counter-memory pass.
242 // A strip-atomic-counter-memory pass removes all usages of the
243 // AtomicCounterMemory bit in Memory Semantics bitmasks. This bit is a no-op in
244 // Vulkan, so isn't needed in that env. And the related capability is not
245 // allowed in WebGPU, so it is not allowed in that env.
246 Optimizer::PassToken CreateStripAtomicCounterMemoryPass();
247 
248 // Creates a strip-debug-info pass.
249 // A strip-debug-info pass removes all debug instructions (as documented in
250 // Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
251 Optimizer::PassToken CreateStripDebugInfoPass();
252 
253 // Creates a strip-reflect-info pass.
254 // A strip-reflect-info pass removes all reflections instructions.
255 // For now, this is limited to removing decorations defined in
256 // SPV_GOOGLE_hlsl_functionality1.  The coverage may expand in
257 // the future.
258 Optimizer::PassToken CreateStripReflectInfoPass();
259 
260 // Creates an eliminate-dead-functions pass.
261 // An eliminate-dead-functions pass will remove all functions that are not in
262 // the call trees rooted at entry points and exported functions.  These
263 // functions are not needed because they will never be called.
264 Optimizer::PassToken CreateEliminateDeadFunctionsPass();
265 
266 // Creates an eliminate-dead-members pass.
267 // An eliminate-dead-members pass will remove all unused members of structures.
268 // This will not affect the data layout of the remaining members.
269 Optimizer::PassToken CreateEliminateDeadMembersPass();
270 
271 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
272 // to the default values in the form of string.
273 // A set-spec-constant-default-value pass sets the default values for the
274 // spec constants that have SpecId decorations (i.e., those defined by
275 // OpSpecConstant{|True|False} instructions).
276 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
277     const std::unordered_map<uint32_t, std::string>& id_value_map);
278 
279 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
280 // to the default values in the form of bit pattern.
281 // A set-spec-constant-default-value pass sets the default values for the
282 // spec constants that have SpecId decorations (i.e., those defined by
283 // OpSpecConstant{|True|False} instructions).
284 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
285     const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
286 
287 // Creates a flatten-decoration pass.
288 // A flatten-decoration pass replaces grouped decorations with equivalent
289 // ungrouped decorations.  That is, it replaces each OpDecorationGroup
290 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
291 // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
292 // The pass does not attempt to preserve debug information for instructions
293 // it removes.
294 Optimizer::PassToken CreateFlattenDecorationPass();
295 
296 // Creates a freeze-spec-constant-value pass.
297 // A freeze-spec-constant pass specializes the value of spec constants to
298 // their default values. This pass only processes the spec constants that have
299 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
300 // OpSpecConstantFalse instructions) and replaces them with their normal
301 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
302 // corresponding SpecId annotation instructions will also be removed. This
303 // pass does not fold the newly added normal constants and does not process
304 // other spec constants defined by OpSpecConstantComposite or
305 // OpSpecConstantOp.
306 Optimizer::PassToken CreateFreezeSpecConstantValuePass();
307 
308 // Creates a fold-spec-constant-op-and-composite pass.
309 // A fold-spec-constant-op-and-composite pass folds spec constants defined by
310 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
311 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
312 // OpConstantComposite instructions. Note that spec constants defined with
313 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
314 // not handled, as these instructions indicate their value are not determined
315 // and can be changed in future. A spec constant is foldable if all of its
316 // value(s) can be determined from the module. E.g., an integer spec constant
317 // defined with OpSpecConstantOp instruction can be folded if its value won't
318 // change later. This pass will replace the original OpSpecContantOp instruction
319 // with an OpConstant instruction. When folding composite spec constants,
320 // new instructions may be inserted to define the components of the composite
321 // constant first, then the original spec constants will be replaced by
322 // OpConstantComposite instructions.
323 //
324 // There are some operations not supported yet:
325 //   OpSConvert, OpFConvert, OpQuantizeToF16 and
326 //   all the operations under Kernel capability.
327 // TODO(qining): Add support for the operations listed above.
328 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
329 
330 // Creates a unify-constant pass.
331 // A unify-constant pass de-duplicates the constants. Constants with the exact
332 // same value and identical form will be unified and only one constant will
333 // be kept for each unique pair of type and value.
334 // There are several cases not handled by this pass:
335 //  1) Constants defined by OpConstantNull instructions (null constants) and
336 //  constants defined by OpConstantFalse, OpConstant or OpConstantComposite
337 //  with value 0 (zero-valued normal constants) are not considered equivalent.
338 //  So null constants won't be used to replace zero-valued normal constants,
339 //  vice versa.
340 //  2) Whenever there are decorations to the constant's result id id, the
341 //  constant won't be handled, which means, it won't be used to replace any
342 //  other constants, neither can other constants replace it.
343 //  3) NaN in float point format with different bit patterns are not unified.
344 Optimizer::PassToken CreateUnifyConstantPass();
345 
346 // Creates a eliminate-dead-constant pass.
347 // A eliminate-dead-constant pass removes dead constants, including normal
348 // contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
349 // OpConstantFalse and spec constants defined by OpSpecConstant,
350 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
351 // OpSpecConstantOp.
352 Optimizer::PassToken CreateEliminateDeadConstantPass();
353 
354 // Creates a strength-reduction pass.
355 // A strength-reduction pass will look for opportunities to replace an
356 // instruction with an equivalent and less expensive one.  For example,
357 // multiplying by a power of 2 can be replaced by a bit shift.
358 Optimizer::PassToken CreateStrengthReductionPass();
359 
360 // Creates a block merge pass.
361 // This pass searches for blocks with a single Branch to a block with no
362 // other predecessors and merges the blocks into a single block. Continue
363 // blocks and Merge blocks are not candidates for the second block.
364 //
365 // The pass is most useful after Dead Branch Elimination, which can leave
366 // such sequences of blocks. Merging them makes subsequent passes more
367 // effective, such as single block local store-load elimination.
368 //
369 // While this pass reduces the number of occurrences of this sequence, at
370 // this time it does not guarantee all such sequences are eliminated.
371 //
372 // Presence of phi instructions can inhibit this optimization. Handling
373 // these is left for future improvements.
374 Optimizer::PassToken CreateBlockMergePass();
375 
376 // Creates an exhaustive inline pass.
377 // An exhaustive inline pass attempts to exhaustively inline all function
378 // calls in all functions in an entry point call tree. The intent is to enable,
379 // albeit through brute force, analysis and optimization across function
380 // calls by subsequent optimization passes. As the inlining is exhaustive,
381 // there is no attempt to optimize for size or runtime performance. Functions
382 // that are not in the call tree of an entry point are not changed.
383 Optimizer::PassToken CreateInlineExhaustivePass();
384 
385 // Creates an opaque inline pass.
386 // An opaque inline pass inlines all function calls in all functions in all
387 // entry point call trees where the called function contains an opaque type
388 // in either its parameter types or return type. An opaque type is currently
389 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
390 // through brute force, analysis and optimization across these function calls
391 // by subsequent passes in order to remove the storing of opaque types which is
392 // not legal in Vulkan. Functions that are not in the call tree of an entry
393 // point are not changed.
394 Optimizer::PassToken CreateInlineOpaquePass();
395 
396 // Creates a single-block local variable load/store elimination pass.
397 // For every entry point function, do single block memory optimization of
398 // function variables referenced only with non-access-chain loads and stores.
399 // For each targeted variable load, if previous store to that variable in the
400 // block, replace the load's result id with the value id of the store.
401 // If previous load within the block, replace the current load's result id
402 // with the previous load's result id. In either case, delete the current
403 // load. Finally, check if any remaining stores are useless, and delete store
404 // and variable if possible.
405 //
406 // The presence of access chain references and function calls can inhibit
407 // the above optimization.
408 //
409 // Only modules with relaxed logical addressing (see opt/instruction.h) are
410 // currently processed.
411 //
412 // This pass is most effective if preceeded by Inlining and
413 // LocalAccessChainConvert. This pass will reduce the work needed to be done
414 // by LocalSingleStoreElim and LocalMultiStoreElim.
415 //
416 // Only functions in the call tree of an entry point are processed.
417 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
418 
419 // Create dead branch elimination pass.
420 // For each entry point function, this pass will look for SelectionMerge
421 // BranchConditionals with constant condition and convert to a Branch to
422 // the indicated label. It will delete resulting dead blocks.
423 //
424 // For all phi functions in merge block, replace all uses with the id
425 // corresponding to the living predecessor.
426 //
427 // Note that some branches and blocks may be left to avoid creating invalid
428 // control flow. Improving this is left to future work.
429 //
430 // This pass is most effective when preceeded by passes which eliminate
431 // local loads and stores, effectively propagating constant values where
432 // possible.
433 Optimizer::PassToken CreateDeadBranchElimPass();
434 
435 // Creates an SSA local variable load/store elimination pass.
436 // For every entry point function, eliminate all loads and stores of function
437 // scope variables only referenced with non-access-chain loads and stores.
438 // Eliminate the variables as well.
439 //
440 // The presence of access chain references and function calls can inhibit
441 // the above optimization.
442 //
443 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
444 // are currently processed. Currently modules with any extensions enabled are
445 // not processed. This is left for future work.
446 //
447 // This pass is most effective if preceeded by Inlining and
448 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
449 // will reduce the work that this pass has to do.
450 Optimizer::PassToken CreateLocalMultiStoreElimPass();
451 
452 // Creates a local access chain conversion pass.
453 // A local access chain conversion pass identifies all function scope
454 // variables which are accessed only with loads, stores and access chains
455 // with constant indices. It then converts all loads and stores of such
456 // variables into equivalent sequences of loads, stores, extracts and inserts.
457 //
458 // This pass only processes entry point functions. It currently only converts
459 // non-nested, non-ptr access chains. It does not process modules with
460 // non-32-bit integer types present. Optional memory access options on loads
461 // and stores are ignored as we are only processing function scope variables.
462 //
463 // This pass unifies access to these variables to a single mode and simplifies
464 // subsequent analysis and elimination of these variables along with their
465 // loads and stores allowing values to propagate to their points of use where
466 // possible.
467 Optimizer::PassToken CreateLocalAccessChainConvertPass();
468 
469 // Creates a local single store elimination pass.
470 // For each entry point function, this pass eliminates loads and stores for
471 // function scope variable that are stored to only once, where possible. Only
472 // whole variable loads and stores are eliminated; access-chain references are
473 // not optimized. Replace all loads of such variables with the value that is
474 // stored and eliminate any resulting dead code.
475 //
476 // Currently, the presence of access chains and function calls can inhibit this
477 // pass, however the Inlining and LocalAccessChainConvert passes can make it
478 // more effective. In additional, many non-load/store memory operations are
479 // not supported and will prohibit optimization of a function. Support of
480 // these operations are future work.
481 //
482 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
483 // are currently processed.
484 //
485 // This pass will reduce the work needed to be done by LocalSingleBlockElim
486 // and LocalMultiStoreElim and can improve the effectiveness of other passes
487 // such as DeadBranchElimination which depend on values for their analysis.
488 Optimizer::PassToken CreateLocalSingleStoreElimPass();
489 
490 // Creates an insert/extract elimination pass.
491 // This pass processes each entry point function in the module, searching for
492 // extracts on a sequence of inserts. It further searches the sequence for an
493 // insert with indices identical to the extract. If such an insert can be
494 // found before hitting a conflicting insert, the extract's result id is
495 // replaced with the id of the values from the insert.
496 //
497 // Besides removing extracts this pass enables subsequent dead code elimination
498 // passes to delete the inserts. This pass performs best after access chains are
499 // converted to inserts and extracts and local loads and stores are eliminated.
500 Optimizer::PassToken CreateInsertExtractElimPass();
501 
502 // Creates a dead insert elimination pass.
503 // This pass processes each entry point function in the module, searching for
504 // unreferenced inserts into composite types. These are most often unused
505 // stores to vector components. They are unused because they are never
506 // referenced, or because there is another insert to the same component between
507 // the insert and the reference. After removing the inserts, dead code
508 // elimination is attempted on the inserted values.
509 //
510 // This pass performs best after access chains are converted to inserts and
511 // extracts and local loads and stores are eliminated. While executing this
512 // pass can be advantageous on its own, it is also advantageous to execute
513 // this pass after CreateInsertExtractPass() as it will remove any unused
514 // inserts created by that pass.
515 Optimizer::PassToken CreateDeadInsertElimPass();
516 
517 // Create aggressive dead code elimination pass
518 // This pass eliminates unused code from the module. In addition,
519 // it detects and eliminates code which may have spurious uses but which do
520 // not contribute to the output of the function. The most common cause of
521 // such code sequences is summations in loops whose result is no longer used
522 // due to dead code elimination. This optimization has additional compile
523 // time cost over standard dead code elimination.
524 //
525 // This pass only processes entry point functions. It also only processes
526 // shaders with relaxed logical addressing (see opt/instruction.h). It
527 // currently will not process functions with function calls. Unreachable
528 // functions are deleted.
529 //
530 // This pass will be made more effective by first running passes that remove
531 // dead control flow and inlines function calls.
532 //
533 // This pass can be especially useful after running Local Access Chain
534 // Conversion, which tends to cause cycles of dead code to be left after
535 // Store/Load elimination passes are completed. These cycles cannot be
536 // eliminated with standard dead code elimination.
537 Optimizer::PassToken CreateAggressiveDCEPass();
538 
539 // Creates an empty pass.
540 // This is deprecated and will be removed.
541 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
542 //                https://github.com/KhronosGroup/glslang/pull/2440
543 Optimizer::PassToken CreatePropagateLineInfoPass();
544 
545 // Creates an empty pass.
546 // This is deprecated and will be removed.
547 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
548 //                https://github.com/KhronosGroup/glslang/pull/2440
549 Optimizer::PassToken CreateRedundantLineInfoElimPass();
550 
551 // Creates a compact ids pass.
552 // The pass remaps result ids to a compact and gapless range starting from %1.
553 Optimizer::PassToken CreateCompactIdsPass();
554 
555 // Creates a remove duplicate pass.
556 // This pass removes various duplicates:
557 // * duplicate capabilities;
558 // * duplicate extended instruction imports;
559 // * duplicate types;
560 // * duplicate decorations.
561 Optimizer::PassToken CreateRemoveDuplicatesPass();
562 
563 // Creates a CFG cleanup pass.
564 // This pass removes cruft from the control flow graph of functions that are
565 // reachable from entry points and exported functions. It currently includes the
566 // following functionality:
567 //
568 // - Removal of unreachable basic blocks.
569 Optimizer::PassToken CreateCFGCleanupPass();
570 
571 // Create dead variable elimination pass.
572 // This pass will delete module scope variables, along with their decorations,
573 // that are not referenced.
574 Optimizer::PassToken CreateDeadVariableEliminationPass();
575 
576 // create merge return pass.
577 // changes functions that have multiple return statements so they have a single
578 // return statement.
579 //
580 // for structured control flow it is assumed that the only unreachable blocks in
581 // the function are trivial merge and continue blocks.
582 //
583 // a trivial merge block contains the label and an opunreachable instructions,
584 // nothing else.  a trivial continue block contain a label and an opbranch to
585 // the header, nothing else.
586 //
587 // these conditions are guaranteed to be met after running dead-branch
588 // elimination.
589 Optimizer::PassToken CreateMergeReturnPass();
590 
591 // Create value numbering pass.
592 // This pass will look for instructions in the same basic block that compute the
593 // same value, and remove the redundant ones.
594 Optimizer::PassToken CreateLocalRedundancyEliminationPass();
595 
596 // Create LICM pass.
597 // This pass will look for invariant instructions inside loops and hoist them to
598 // the loops preheader.
599 Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
600 
601 // Creates a loop fission pass.
602 // This pass will split all top level loops whose register pressure exceedes the
603 // given |threshold|.
604 Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
605 
606 // Creates a loop fusion pass.
607 // This pass will look for adjacent loops that are compatible and legal to be
608 // fused. The fuse all such loops as long as the register usage for the fused
609 // loop stays under the threshold defined by |max_registers_per_loop|.
610 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
611 
612 // Creates a loop peeling pass.
613 // This pass will look for conditions inside a loop that are true or false only
614 // for the N first or last iteration. For loop with such condition, those N
615 // iterations of the loop will be executed outside of the main loop.
616 // To limit code size explosion, the loop peeling can only happen if the code
617 // size growth for each loop is under |code_growth_threshold|.
618 Optimizer::PassToken CreateLoopPeelingPass();
619 
620 // Creates a loop unswitch pass.
621 // This pass will look for loop independent branch conditions and move the
622 // condition out of the loop and version the loop based on the taken branch.
623 // Works best after LICM and local multi store elimination pass.
624 Optimizer::PassToken CreateLoopUnswitchPass();
625 
626 // Create global value numbering pass.
627 // This pass will look for instructions where the same value is computed on all
628 // paths leading to the instruction.  Those instructions are deleted.
629 Optimizer::PassToken CreateRedundancyEliminationPass();
630 
631 // Create scalar replacement pass.
632 // This pass replaces composite function scope variables with variables for each
633 // element if those elements are accessed individually.  The parameter is a
634 // limit on the number of members in the composite variable that the pass will
635 // consider replacing.
636 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100);
637 
638 // Create a private to local pass.
639 // This pass looks for variables delcared in the private storage class that are
640 // used in only one function.  Those variables are moved to the function storage
641 // class in the function that they are used.
642 Optimizer::PassToken CreatePrivateToLocalPass();
643 
644 // Creates a conditional constant propagation (CCP) pass.
645 // This pass implements the SSA-CCP algorithm in
646 //
647 //      Constant propagation with conditional branches,
648 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
649 //
650 // Constant values in expressions and conditional jumps are folded and
651 // simplified. This may reduce code size by removing never executed jump targets
652 // and computations with constant operands.
653 Optimizer::PassToken CreateCCPPass();
654 
655 // Creates a workaround driver bugs pass.  This pass attempts to work around
656 // a known driver bug (issue #1209) by identifying the bad code sequences and
657 // rewriting them.
658 //
659 // Current workaround: Avoid OpUnreachable instructions in loops.
660 Optimizer::PassToken CreateWorkaround1209Pass();
661 
662 // Creates a pass that converts if-then-else like assignments into OpSelect.
663 Optimizer::PassToken CreateIfConversionPass();
664 
665 // Creates a pass that will replace instructions that are not valid for the
666 // current shader stage by constants.  Has no effect on non-shader modules.
667 Optimizer::PassToken CreateReplaceInvalidOpcodePass();
668 
669 // Creates a pass that simplifies instructions using the instruction folder.
670 Optimizer::PassToken CreateSimplificationPass();
671 
672 // Create loop unroller pass.
673 // Creates a pass to unroll loops which have the "Unroll" loop control
674 // mask set. The loops must meet a specific criteria in order to be unrolled
675 // safely this criteria is checked before doing the unroll by the
676 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
677 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
678 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
679 
680 // Create the SSA rewrite pass.
681 // This pass converts load/store operations on function local variables into
682 // operations on SSA IDs.  This allows SSA optimizers to act on these variables.
683 // Only variables that are local to the function and of supported types are
684 // processed (see IsSSATargetVar for details).
685 Optimizer::PassToken CreateSSARewritePass();
686 
687 // Create pass to convert relaxed precision instructions to half precision.
688 // This pass converts as many relaxed float32 arithmetic operations to half as
689 // possible. It converts any float32 operands to half if needed. It converts
690 // any resulting half precision values back to float32 as needed. No variables
691 // are changed. No image operations are changed.
692 //
693 // Best if run after function scope store/load and composite operation
694 // eliminations are run. Also best if followed by instruction simplification,
695 // redundancy elimination and DCE.
696 Optimizer::PassToken CreateConvertRelaxedToHalfPass();
697 
698 // Create relax float ops pass.
699 // This pass decorates all float32 result instructions with RelaxedPrecision
700 // if not already so decorated.
701 Optimizer::PassToken CreateRelaxFloatOpsPass();
702 
703 // Create copy propagate arrays pass.
704 // This pass looks to copy propagate memory references for arrays.  It looks
705 // for specific code patterns to recognize array copies.
706 Optimizer::PassToken CreateCopyPropagateArraysPass();
707 
708 // Create a vector dce pass.
709 // This pass looks for components of vectors that are unused, and removes them
710 // from the vector.  Note this would still leave around lots of dead code that
711 // a pass of ADCE will be able to remove.
712 Optimizer::PassToken CreateVectorDCEPass();
713 
714 // Create a pass to reduce the size of loads.
715 // This pass looks for loads of structures where only a few of its members are
716 // used.  It replaces the loads feeding an OpExtract with an OpAccessChain and
717 // a load of the specific elements.
718 Optimizer::PassToken CreateReduceLoadSizePass();
719 
720 // Create a pass to combine chained access chains.
721 // This pass looks for access chains fed by other access chains and combines
722 // them into a single instruction where possible.
723 Optimizer::PassToken CreateCombineAccessChainsPass();
724 
725 // Create a pass to instrument bindless descriptor checking
726 // This pass instruments all bindless references to check that descriptor
727 // array indices are inbounds, and if the descriptor indexing extension is
728 // enabled, that the descriptor has been initialized. If the reference is
729 // invalid, a record is written to the debug output buffer (if space allows)
730 // and a null value is returned. This pass is designed to support bindless
731 // validation in the Vulkan validation layers.
732 //
733 // TODO(greg-lunarg): Add support for buffer references. Currently only does
734 // checking for image references.
735 //
736 // Dead code elimination should be run after this pass as the original,
737 // potentially invalid code is not removed and could cause undefined behavior,
738 // including crashes. It may also be beneficial to run Simplification
739 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to
740 // optimize instrument code involving the testing of compile-time constants.
741 // It is also generally recommended that this pass (and all
742 // instrumentation passes) be run after any legalization and optimization
743 // passes. This will give better analysis for the instrumentation and avoid
744 // potentially de-optimizing the instrument code, for example, inlining
745 // the debug record output function throughout the module.
746 //
747 // The instrumentation will read and write buffers in debug
748 // descriptor set |desc_set|. It will write |shader_id| in each output record
749 // to identify the shader module which generated the record.
750 // |input_length_enable| controls instrumentation of runtime descriptor array
751 // references, and |input_init_enable| controls instrumentation of descriptor
752 // initialization checking, both of which require input buffer support.
753 Optimizer::PassToken CreateInstBindlessCheckPass(
754     uint32_t desc_set, uint32_t shader_id, bool input_length_enable = false,
755     bool input_init_enable = false, bool input_buff_oob_enable = false);
756 
757 // Create a pass to instrument physical buffer address checking
758 // This pass instruments all physical buffer address references to check that
759 // all referenced bytes fall in a valid buffer. If the reference is
760 // invalid, a record is written to the debug output buffer (if space allows)
761 // and a null value is returned. This pass is designed to support buffer
762 // address validation in the Vulkan validation layers.
763 //
764 // Dead code elimination should be run after this pass as the original,
765 // potentially invalid code is not removed and could cause undefined behavior,
766 // including crashes. Instruction simplification would likely also be
767 // beneficial. It is also generally recommended that this pass (and all
768 // instrumentation passes) be run after any legalization and optimization
769 // passes. This will give better analysis for the instrumentation and avoid
770 // potentially de-optimizing the instrument code, for example, inlining
771 // the debug record output function throughout the module.
772 //
773 // The instrumentation will read and write buffers in debug
774 // descriptor set |desc_set|. It will write |shader_id| in each output record
775 // to identify the shader module which generated the record.
776 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set,
777                                                  uint32_t shader_id);
778 
779 // Create a pass to instrument OpDebugPrintf instructions.
780 // This pass replaces all OpDebugPrintf instructions with instructions to write
781 // a record containing the string id and the all specified values into a special
782 // printf output buffer (if space allows). This pass is designed to support
783 // the printf validation in the Vulkan validation layers.
784 //
785 // The instrumentation will write buffers in debug descriptor set |desc_set|.
786 // It will write |shader_id| in each output record to identify the shader
787 // module which generated the record.
788 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set,
789                                                uint32_t shader_id);
790 
791 // Create a pass to upgrade to the VulkanKHR memory model.
792 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
793 // Additionally, it modifies memory, image, atomic and barrier operations to
794 // conform to that model's requirements.
795 Optimizer::PassToken CreateUpgradeMemoryModelPass();
796 
797 // Create a pass to do code sinking.  Code sinking is a transformation
798 // where an instruction is moved into a more deeply nested construct.
799 Optimizer::PassToken CreateCodeSinkingPass();
800 
801 // Create a pass to adds initializers for OpVariable calls that require them
802 // in WebGPU. Currently this pass naively initializes variables that are
803 // missing an initializer with a null value. In the future it may initialize
804 // variables to the first value stored in them, if that is a constant.
805 Optimizer::PassToken CreateGenerateWebGPUInitializersPass();
806 
807 // Create a pass to fix incorrect storage classes.  In order to make code
808 // generation simpler, DXC may generate code where the storage classes do not
809 // match up correctly.  This pass will fix the errors that it can.
810 Optimizer::PassToken CreateFixStorageClassPass();
811 
812 // Create a pass to legalize OpVectorShuffle operands going into WebGPU. WebGPU
813 // forbids using 0xFFFFFFFF, which indicates an undefined result, so this pass
814 // converts those literals to 0.
815 Optimizer::PassToken CreateLegalizeVectorShufflePass();
816 
817 // Create a pass to decompose initialized variables into a seperate variable
818 // declaration and an initial store.
819 Optimizer::PassToken CreateDecomposeInitializedVariablesPass();
820 
821 // Create a pass to attempt to split up invalid unreachable merge-blocks and
822 // continue-targets to legalize for WebGPU.
823 Optimizer::PassToken CreateSplitInvalidUnreachablePass();
824 
825 // Creates a graphics robust access pass.
826 //
827 // This pass injects code to clamp indexed accesses to buffers and internal
828 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
829 //
830 // TODO(dneto): Clamps coordinates and sample index for pointer calculations
831 // into storage images (OpImageTexelPointer).  For an cube array image, it
832 // assumes the maximum layer count times 6 is at most 0xffffffff.
833 //
834 // NOTE: This pass will fail with a message if:
835 // - The module is not a Shader module.
836 // - The module declares VariablePointers, VariablePointersStorageBuffer, or
837 //   RuntimeDescriptorArrayEXT capabilities.
838 // - The module uses an addressing model other than Logical
839 // - Access chain indices are wider than 64 bits.
840 // - Access chain index for a struct is not an OpConstant integer or is out
841 //   of range. (The module is already invalid if that is the case.)
842 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
843 // wide.
844 //
845 // NOTE: Access chain indices are always treated as signed integers.  So
846 //   if an array has a fixed size of more than 2^31 elements, then elements
847 //   from 2^31 and above are never accessible with a 32-bit index,
848 //   signed or unsigned.  For this case, this pass will clamp the index
849 //   between 0 and at 2^31-1, inclusive.
850 //   Similarly, if an array has more then 2^15 element and is accessed with
851 //   a 16-bit index, then elements from 2^15 and above are not accessible.
852 //   In this case, the pass will clamp the index between 0 and 2^15-1
853 //   inclusive.
854 Optimizer::PassToken CreateGraphicsRobustAccessPass();
855 
856 // Create descriptor scalar replacement pass.
857 // This pass replaces every array variable |desc| that has a DescriptorSet and
858 // Binding decorations with a new variable for each element of the array.
859 // Suppose |desc| was bound at binding |b|.  Then the variable corresponding to
860 // |desc[i]| will have binding |b+i|.  The descriptor set will be the same.  It
861 // is assumed that no other variable already has a binding that will used by one
862 // of the new variables.  If not, the pass will generate invalid Spir-V.  All
863 // accesses to |desc| must be OpAccessChain instructions with a literal index
864 // for the first index.
865 Optimizer::PassToken CreateDescriptorScalarReplacementPass();
866 
867 // Create a pass to replace each OpKill instruction with a function call to a
868 // function that has a single OpKill.  Also replace each OpTerminateInvocation
869 // instruction  with a function call to a function that has a single
870 // OpTerminateInvocation.  This allows more code to be inlined.
871 Optimizer::PassToken CreateWrapOpKillPass();
872 
873 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
874 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
875 // capabilities.
876 Optimizer::PassToken CreateAmdExtToKhrPass();
877 
878 }  // namespace spvtools
879 
880 #endif  // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
881