1 //===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file declares the MachineIRBuilder class.
10 /// This is a helper class to build MachineInstr.
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
14 #define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
15 
16 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Types.h"
18 
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugLoc.h"
25 
26 
27 namespace llvm {
28 
29 // Forward declarations.
30 class MachineFunction;
31 class MachineInstr;
32 class TargetInstrInfo;
33 class GISelChangeObserver;
34 
35 /// Class which stores all the state required in a MachineIRBuilder.
36 /// Since MachineIRBuilders will only store state in this object, it allows
37 /// to transfer BuilderState between different kinds of MachineIRBuilders.
38 struct MachineIRBuilderState {
39   /// MachineFunction under construction.
40   MachineFunction *MF;
41   /// Information used to access the description of the opcodes.
42   const TargetInstrInfo *TII;
43   /// Information used to verify types are consistent and to create virtual registers.
44   MachineRegisterInfo *MRI;
45   /// Debug location to be set to any instruction we create.
46   DebugLoc DL;
47 
48   /// \name Fields describing the insertion point.
49   /// @{
50   MachineBasicBlock *MBB;
51   MachineBasicBlock::iterator II;
52   /// @}
53 
54   GISelChangeObserver *Observer;
55 
56   GISelCSEInfo *CSEInfo;
57 };
58 
59 class DstOp {
60   union {
61     LLT LLTTy;
62     Register Reg;
63     const TargetRegisterClass *RC;
64   };
65 
66 public:
67   enum class DstType { Ty_LLT, Ty_Reg, Ty_RC };
DstOp(unsigned R)68   DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(Register R)69   DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(const MachineOperand & Op)70   DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {}
DstOp(const LLT & T)71   DstOp(const LLT &T) : LLTTy(T), Ty(DstType::Ty_LLT) {}
DstOp(const TargetRegisterClass * TRC)72   DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {}
73 
addDefToMIB(MachineRegisterInfo & MRI,MachineInstrBuilder & MIB)74   void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const {
75     switch (Ty) {
76     case DstType::Ty_Reg:
77       MIB.addDef(Reg);
78       break;
79     case DstType::Ty_LLT:
80       MIB.addDef(MRI.createGenericVirtualRegister(LLTTy));
81       break;
82     case DstType::Ty_RC:
83       MIB.addDef(MRI.createVirtualRegister(RC));
84       break;
85     }
86   }
87 
getLLTTy(const MachineRegisterInfo & MRI)88   LLT getLLTTy(const MachineRegisterInfo &MRI) const {
89     switch (Ty) {
90     case DstType::Ty_RC:
91       return LLT{};
92     case DstType::Ty_LLT:
93       return LLTTy;
94     case DstType::Ty_Reg:
95       return MRI.getType(Reg);
96     }
97     llvm_unreachable("Unrecognised DstOp::DstType enum");
98   }
99 
getReg()100   Register getReg() const {
101     assert(Ty == DstType::Ty_Reg && "Not a register");
102     return Reg;
103   }
104 
getRegClass()105   const TargetRegisterClass *getRegClass() const {
106     switch (Ty) {
107     case DstType::Ty_RC:
108       return RC;
109     default:
110       llvm_unreachable("Not a RC Operand");
111     }
112   }
113 
getDstOpKind()114   DstType getDstOpKind() const { return Ty; }
115 
116 private:
117   DstType Ty;
118 };
119 
120 class SrcOp {
121   union {
122     MachineInstrBuilder SrcMIB;
123     Register Reg;
124     CmpInst::Predicate Pred;
125     int64_t Imm;
126   };
127 
128 public:
129   enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm };
SrcOp(Register R)130   SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineOperand & Op)131   SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineInstrBuilder & MIB)132   SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {}
SrcOp(const CmpInst::Predicate P)133   SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {}
134   /// Use of registers held in unsigned integer variables (or more rarely signed
135   /// integers) is no longer permitted to avoid ambiguity with upcoming support
136   /// for immediates.
137   SrcOp(unsigned) = delete;
138   SrcOp(int) = delete;
SrcOp(uint64_t V)139   SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
SrcOp(int64_t V)140   SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
141 
addSrcToMIB(MachineInstrBuilder & MIB)142   void addSrcToMIB(MachineInstrBuilder &MIB) const {
143     switch (Ty) {
144     case SrcType::Ty_Predicate:
145       MIB.addPredicate(Pred);
146       break;
147     case SrcType::Ty_Reg:
148       MIB.addUse(Reg);
149       break;
150     case SrcType::Ty_MIB:
151       MIB.addUse(SrcMIB->getOperand(0).getReg());
152       break;
153     case SrcType::Ty_Imm:
154       MIB.addImm(Imm);
155       break;
156     }
157   }
158 
getLLTTy(const MachineRegisterInfo & MRI)159   LLT getLLTTy(const MachineRegisterInfo &MRI) const {
160     switch (Ty) {
161     case SrcType::Ty_Predicate:
162     case SrcType::Ty_Imm:
163       llvm_unreachable("Not a register operand");
164     case SrcType::Ty_Reg:
165       return MRI.getType(Reg);
166     case SrcType::Ty_MIB:
167       return MRI.getType(SrcMIB->getOperand(0).getReg());
168     }
169     llvm_unreachable("Unrecognised SrcOp::SrcType enum");
170   }
171 
getReg()172   Register getReg() const {
173     switch (Ty) {
174     case SrcType::Ty_Predicate:
175     case SrcType::Ty_Imm:
176       llvm_unreachable("Not a register operand");
177     case SrcType::Ty_Reg:
178       return Reg;
179     case SrcType::Ty_MIB:
180       return SrcMIB->getOperand(0).getReg();
181     }
182     llvm_unreachable("Unrecognised SrcOp::SrcType enum");
183   }
184 
getPredicate()185   CmpInst::Predicate getPredicate() const {
186     switch (Ty) {
187     case SrcType::Ty_Predicate:
188       return Pred;
189     default:
190       llvm_unreachable("Not a register operand");
191     }
192   }
193 
getImm()194   int64_t getImm() const {
195     switch (Ty) {
196     case SrcType::Ty_Imm:
197       return Imm;
198     default:
199       llvm_unreachable("Not an immediate");
200     }
201   }
202 
getSrcOpKind()203   SrcType getSrcOpKind() const { return Ty; }
204 
205 private:
206   SrcType Ty;
207 };
208 
209 class FlagsOp {
210   Optional<unsigned> Flags;
211 
212 public:
FlagsOp(unsigned F)213   explicit FlagsOp(unsigned F) : Flags(F) {}
FlagsOp()214   FlagsOp() : Flags(None) {}
getFlags()215   Optional<unsigned> getFlags() const { return Flags; }
216 };
217 /// Helper class to build MachineInstr.
218 /// It keeps internally the insertion point and debug location for all
219 /// the new instructions we want to create.
220 /// This information can be modify via the related setters.
221 class MachineIRBuilder {
222 
223   MachineIRBuilderState State;
224 
225 protected:
226   void validateTruncExt(const LLT &Dst, const LLT &Src, bool IsExtend);
227 
228   void validateBinaryOp(const LLT &Res, const LLT &Op0, const LLT &Op1);
229   void validateShiftOp(const LLT &Res, const LLT &Op0, const LLT &Op1);
230 
231   void validateSelectOp(const LLT &ResTy, const LLT &TstTy, const LLT &Op0Ty,
232                         const LLT &Op1Ty);
233   void recordInsertion(MachineInstr *MI) const;
234 
235 public:
236   /// Some constructors for easy use.
237   MachineIRBuilder() = default;
MachineIRBuilder(MachineFunction & MF)238   MachineIRBuilder(MachineFunction &MF) { setMF(MF); }
MachineIRBuilder(MachineInstr & MI)239   MachineIRBuilder(MachineInstr &MI) : MachineIRBuilder(*MI.getMF()) {
240     setInstr(MI);
241   }
242 
243   virtual ~MachineIRBuilder() = default;
244 
MachineIRBuilder(const MachineIRBuilderState & BState)245   MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {}
246 
getTII()247   const TargetInstrInfo &getTII() {
248     assert(State.TII && "TargetInstrInfo is not set");
249     return *State.TII;
250   }
251 
252   /// Getter for the function we currently build.
getMF()253   MachineFunction &getMF() {
254     assert(State.MF && "MachineFunction is not set");
255     return *State.MF;
256   }
257 
getMF()258   const MachineFunction &getMF() const {
259     assert(State.MF && "MachineFunction is not set");
260     return *State.MF;
261   }
262 
getDataLayout()263   const DataLayout &getDataLayout() const {
264     return getMF().getFunction().getParent()->getDataLayout();
265   }
266 
267   /// Getter for DebugLoc
getDL()268   const DebugLoc &getDL() { return State.DL; }
269 
270   /// Getter for MRI
getMRI()271   MachineRegisterInfo *getMRI() { return State.MRI; }
getMRI()272   const MachineRegisterInfo *getMRI() const { return State.MRI; }
273 
274   /// Getter for the State
getState()275   MachineIRBuilderState &getState() { return State; }
276 
277   /// Getter for the basic block we currently build.
getMBB()278   const MachineBasicBlock &getMBB() const {
279     assert(State.MBB && "MachineBasicBlock is not set");
280     return *State.MBB;
281   }
282 
getMBB()283   MachineBasicBlock &getMBB() {
284     return const_cast<MachineBasicBlock &>(
285         const_cast<const MachineIRBuilder *>(this)->getMBB());
286   }
287 
getCSEInfo()288   GISelCSEInfo *getCSEInfo() { return State.CSEInfo; }
getCSEInfo()289   const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; }
290 
291   /// Current insertion point for new instructions.
getInsertPt()292   MachineBasicBlock::iterator getInsertPt() { return State.II; }
293 
294   /// Set the insertion point before the specified position.
295   /// \pre MBB must be in getMF().
296   /// \pre II must be a valid iterator in MBB.
297   void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II);
298   /// @}
299 
300   void setCSEInfo(GISelCSEInfo *Info);
301 
302   /// \name Setters for the insertion point.
303   /// @{
304   /// Set the MachineFunction where to build instructions.
305   void setMF(MachineFunction &MF);
306 
307   /// Set the insertion point to the  end of \p MBB.
308   /// \pre \p MBB must be contained by getMF().
309   void setMBB(MachineBasicBlock &MBB);
310 
311   /// Set the insertion point to before MI.
312   /// \pre MI must be in getMF().
313   void setInstr(MachineInstr &MI);
314   /// @}
315 
316   void setChangeObserver(GISelChangeObserver &Observer);
317   void stopObservingChanges();
318   /// @}
319 
320   /// Set the debug location to \p DL for all the next build instructions.
setDebugLoc(const DebugLoc & DL)321   void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; }
322 
323   /// Get the current instruction's debug location.
getDebugLoc()324   DebugLoc getDebugLoc() { return State.DL; }
325 
326   /// Build and insert <empty> = \p Opcode <empty>.
327   /// The insertion point is the one set by the last call of either
328   /// setBasicBlock or setMI.
329   ///
330   /// \pre setBasicBlock or setMI must have been called.
331   ///
332   /// \return a MachineInstrBuilder for the newly created instruction.
333   MachineInstrBuilder buildInstr(unsigned Opcode);
334 
335   /// Build but don't insert <empty> = \p Opcode <empty>.
336   ///
337   /// \pre setMF, setBasicBlock or setMI  must have been called.
338   ///
339   /// \return a MachineInstrBuilder for the newly created instruction.
340   MachineInstrBuilder buildInstrNoInsert(unsigned Opcode);
341 
342   /// Insert an existing instruction at the insertion point.
343   MachineInstrBuilder insertInstr(MachineInstrBuilder MIB);
344 
345   /// Build and insert a DBG_VALUE instruction expressing the fact that the
346   /// associated \p Variable lives in \p Reg (suitably modified by \p Expr).
347   MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable,
348                                           const MDNode *Expr);
349 
350   /// Build and insert a DBG_VALUE instruction expressing the fact that the
351   /// associated \p Variable lives in memory at \p Reg (suitably modified by \p
352   /// Expr).
353   MachineInstrBuilder buildIndirectDbgValue(Register Reg,
354                                             const MDNode *Variable,
355                                             const MDNode *Expr);
356 
357   /// Build and insert a DBG_VALUE instruction expressing the fact that the
358   /// associated \p Variable lives in the stack slot specified by \p FI
359   /// (suitably modified by \p Expr).
360   MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable,
361                                       const MDNode *Expr);
362 
363   /// Build and insert a DBG_VALUE instructions specifying that \p Variable is
364   /// given by \p C (suitably modified by \p Expr).
365   MachineInstrBuilder buildConstDbgValue(const Constant &C,
366                                          const MDNode *Variable,
367                                          const MDNode *Expr);
368 
369   /// Build and insert a DBG_LABEL instructions specifying that \p Label is
370   /// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label".
371   MachineInstrBuilder buildDbgLabel(const MDNode *Label);
372 
373   /// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align
374   ///
375   /// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of
376   /// the allocated memory into \p Res.
377   /// \pre setBasicBlock or setMI must have been called.
378   /// \pre \p Res must be a generic virtual register with pointer type.
379   ///
380   /// \return a MachineInstrBuilder for the newly created instruction.
381   MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size,
382                                          unsigned Align);
383 
384   /// Build and insert \p Res = G_FRAME_INDEX \p Idx
385   ///
386   /// G_FRAME_INDEX materializes the address of an alloca value or other
387   /// stack-based object.
388   ///
389   /// \pre setBasicBlock or setMI must have been called.
390   /// \pre \p Res must be a generic virtual register with pointer type.
391   ///
392   /// \return a MachineInstrBuilder for the newly created instruction.
393   MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx);
394 
395   /// Build and insert \p Res = G_GLOBAL_VALUE \p GV
396   ///
397   /// G_GLOBAL_VALUE materializes the address of the specified global
398   /// into \p Res.
399   ///
400   /// \pre setBasicBlock or setMI must have been called.
401   /// \pre \p Res must be a generic virtual register with pointer type
402   ///      in the same address space as \p GV.
403   ///
404   /// \return a MachineInstrBuilder for the newly created instruction.
405   MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV);
406 
407   /// Build and insert \p Res = G_PTR_ADD \p Op0, \p Op1
408   ///
409   /// G_PTR_ADD adds \p Op1 addressible units to the pointer specified by \p Op0,
410   /// storing the resulting pointer in \p Res. Addressible units are typically
411   /// bytes but this can vary between targets.
412   ///
413   /// \pre setBasicBlock or setMI must have been called.
414   /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
415   ///      type.
416   /// \pre \p Op1 must be a generic virtual register with scalar type.
417   ///
418   /// \return a MachineInstrBuilder for the newly created instruction.
419   MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0,
420                                   const SrcOp &Op1);
421 
422   /// Materialize and insert \p Res = G_PTR_ADD \p Op0, (G_CONSTANT \p Value)
423   ///
424   /// G_PTR_ADD adds \p Value bytes to the pointer specified by \p Op0,
425   /// storing the resulting pointer in \p Res. If \p Value is zero then no
426   /// G_PTR_ADD or G_CONSTANT will be created and \pre Op0 will be assigned to
427   /// \p Res.
428   ///
429   /// \pre setBasicBlock or setMI must have been called.
430   /// \pre \p Op0 must be a generic virtual register with pointer type.
431   /// \pre \p ValueTy must be a scalar type.
432   /// \pre \p Res must be 0. This is to detect confusion between
433   ///      materializePtrAdd() and buildPtrAdd().
434   /// \post \p Res will either be a new generic virtual register of the same
435   ///       type as \p Op0 or \p Op0 itself.
436   ///
437   /// \return a MachineInstrBuilder for the newly created instruction.
438   Optional<MachineInstrBuilder> materializePtrAdd(Register &Res, Register Op0,
439                                                   const LLT &ValueTy,
440                                                   uint64_t Value);
441 
442   /// Build and insert \p Res = G_PTR_MASK \p Op0, \p NumBits
443   ///
444   /// G_PTR_MASK clears the low bits of a pointer operand without destroying its
445   /// pointer properties. This has the effect of rounding the address *down* to
446   /// a specified alignment in bits.
447   ///
448   /// \pre setBasicBlock or setMI must have been called.
449   /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
450   ///      type.
451   /// \pre \p NumBits must be an integer representing the number of low bits to
452   ///      be cleared in \p Op0.
453   ///
454   /// \return a MachineInstrBuilder for the newly created instruction.
455   MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0,
456                                    uint32_t NumBits);
457 
458   /// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1
459   ///
460   /// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and
461   /// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic.
462   ///
463   /// \pre setBasicBlock or setMI must have been called.
464   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the
465   /// same scalar type.
466   ////\pre \p CarryOut must be generic virtual register with scalar type
467   ///(typically s1)
468   ///
469   /// \return The newly created instruction.
470   MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut,
471                                  const SrcOp &Op0, const SrcOp &Op1);
472 
473   /// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0,
474   /// \p Op1, \p CarryIn
475   ///
476   /// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit
477   /// width) and sets \p CarryOut to 1 if the result overflowed in unsigned
478   /// arithmetic.
479   ///
480   /// \pre setBasicBlock or setMI must have been called.
481   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
482   ///      with the same scalar type.
483   /// \pre \p CarryOut and \p CarryIn must be generic virtual
484   ///      registers with the same scalar type (typically s1)
485   ///
486   /// \return The newly created instruction.
487   MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut,
488                                  const SrcOp &Op0, const SrcOp &Op1,
489                                  const SrcOp &CarryIn);
490 
491   /// Build and insert \p Res = G_ANYEXT \p Op0
492   ///
493   /// G_ANYEXT produces a register of the specified width, with bits 0 to
494   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified
495   /// (i.e. this is neither zero nor sign-extension). For a vector register,
496   /// each element is extended individually.
497   ///
498   /// \pre setBasicBlock or setMI must have been called.
499   /// \pre \p Res must be a generic virtual register with scalar or vector type.
500   /// \pre \p Op must be a generic virtual register with scalar or vector type.
501   /// \pre \p Op must be smaller than \p Res
502   ///
503   /// \return The newly created instruction.
504 
505   MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op);
506 
507   /// Build and insert \p Res = G_SEXT \p Op
508   ///
509   /// G_SEXT produces a register of the specified width, with bits 0 to
510   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the
511   /// high bit of \p Op (i.e. 2s-complement sign extended).
512   ///
513   /// \pre setBasicBlock or setMI must have been called.
514   /// \pre \p Res must be a generic virtual register with scalar or vector type.
515   /// \pre \p Op must be a generic virtual register with scalar or vector type.
516   /// \pre \p Op must be smaller than \p Res
517   ///
518   /// \return The newly created instruction.
519   MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op);
520 
521   /// Build and insert \p Res = G_FPEXT \p Op
522   MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op,
523                                  Optional<unsigned> Flags = None) {
524     return buildInstr(TargetOpcode::G_FPEXT, {Res}, {Op}, Flags);
525   }
526 
527 
528   /// Build and insert a G_PTRTOINT instruction.
buildPtrToInt(const DstOp & Dst,const SrcOp & Src)529   MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) {
530     return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src});
531   }
532 
533   /// Build and insert a G_INTTOPTR instruction.
buildIntToPtr(const DstOp & Dst,const SrcOp & Src)534   MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) {
535     return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src});
536   }
537 
538   /// Build and insert \p Dst = G_BITCAST \p Src
buildBitcast(const DstOp & Dst,const SrcOp & Src)539   MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) {
540     return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src});
541   }
542 
543     /// Build and insert \p Dst = G_ADDRSPACE_CAST \p Src
buildAddrSpaceCast(const DstOp & Dst,const SrcOp & Src)544   MachineInstrBuilder buildAddrSpaceCast(const DstOp &Dst, const SrcOp &Src) {
545     return buildInstr(TargetOpcode::G_ADDRSPACE_CAST, {Dst}, {Src});
546   }
547 
548   /// \return The opcode of the extension the target wants to use for boolean
549   /// values.
550   unsigned getBoolExtOp(bool IsVec, bool IsFP) const;
551 
552   // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res
553   // = G_ZEXT \p Op depending on how the target wants to extend boolean values.
554   MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op,
555                                    bool IsFP);
556 
557   /// Build and insert \p Res = G_ZEXT \p Op
558   ///
559   /// G_ZEXT produces a register of the specified width, with bits 0 to
560   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector
561   /// register, each element is extended individually.
562   ///
563   /// \pre setBasicBlock or setMI must have been called.
564   /// \pre \p Res must be a generic virtual register with scalar or vector type.
565   /// \pre \p Op must be a generic virtual register with scalar or vector type.
566   /// \pre \p Op must be smaller than \p Res
567   ///
568   /// \return The newly created instruction.
569   MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op);
570 
571   /// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or
572   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
573   ///  ///
574   /// \pre setBasicBlock or setMI must have been called.
575   /// \pre \p Res must be a generic virtual register with scalar or vector type.
576   /// \pre \p Op must be a generic virtual register with scalar or vector type.
577   ///
578   /// \return The newly created instruction.
579   MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op);
580 
581   /// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or
582   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
583   ///  ///
584   /// \pre setBasicBlock or setMI must have been called.
585   /// \pre \p Res must be a generic virtual register with scalar or vector type.
586   /// \pre \p Op must be a generic virtual register with scalar or vector type.
587   ///
588   /// \return The newly created instruction.
589   MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op);
590 
591   // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or
592   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
593   ///  ///
594   /// \pre setBasicBlock or setMI must have been called.
595   /// \pre \p Res must be a generic virtual register with scalar or vector type.
596   /// \pre \p Op must be a generic virtual register with scalar or vector type.
597   ///
598   /// \return The newly created instruction.
599   MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op);
600 
601   /// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p
602   /// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and
603   /// \p Op.
604   ///  ///
605   /// \pre setBasicBlock or setMI must have been called.
606   /// \pre \p Res must be a generic virtual register with scalar or vector type.
607   /// \pre \p Op must be a generic virtual register with scalar or vector type.
608   ///
609   /// \return The newly created instruction.
610   MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res,
611                                       const SrcOp &Op);
612 
613   /// Build and insert an appropriate cast between two registers of equal size.
614   MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src);
615 
616   /// Build and insert G_BR \p Dest
617   ///
618   /// G_BR is an unconditional branch to \p Dest.
619   ///
620   /// \pre setBasicBlock or setMI must have been called.
621   ///
622   /// \return a MachineInstrBuilder for the newly created instruction.
623   MachineInstrBuilder buildBr(MachineBasicBlock &Dest);
624 
625   /// Build and insert G_BRCOND \p Tst, \p Dest
626   ///
627   /// G_BRCOND is a conditional branch to \p Dest.
628   ///
629   /// \pre setBasicBlock or setMI must have been called.
630   /// \pre \p Tst must be a generic virtual register with scalar
631   ///      type. At the beginning of legalization, this will be a single
632   ///      bit (s1). Targets with interesting flags registers may change
633   ///      this. For a wider type, whether the branch is taken must only
634   ///      depend on bit 0 (for now).
635   ///
636   /// \return The newly created instruction.
637   MachineInstrBuilder buildBrCond(Register Tst, MachineBasicBlock &Dest);
638 
639   /// Build and insert G_BRINDIRECT \p Tgt
640   ///
641   /// G_BRINDIRECT is an indirect branch to \p Tgt.
642   ///
643   /// \pre setBasicBlock or setMI must have been called.
644   /// \pre \p Tgt must be a generic virtual register with pointer type.
645   ///
646   /// \return a MachineInstrBuilder for the newly created instruction.
647   MachineInstrBuilder buildBrIndirect(Register Tgt);
648 
649   /// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg
650   ///
651   /// G_BRJT is a jump table branch using a table base pointer \p TablePtr,
652   /// jump table index \p JTI and index \p IndexReg
653   ///
654   /// \pre setBasicBlock or setMI must have been called.
655   /// \pre \p TablePtr must be a generic virtual register with pointer type.
656   /// \pre \p JTI must be be a jump table index.
657   /// \pre \p IndexReg must be a generic virtual register with pointer type.
658   ///
659   /// \return a MachineInstrBuilder for the newly created instruction.
660   MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI,
661                                 Register IndexReg);
662 
663   /// Build and insert \p Res = G_CONSTANT \p Val
664   ///
665   /// G_CONSTANT is an integer constant with the specified size and value. \p
666   /// Val will be extended or truncated to the size of \p Reg.
667   ///
668   /// \pre setBasicBlock or setMI must have been called.
669   /// \pre \p Res must be a generic virtual register with scalar or pointer
670   ///      type.
671   ///
672   /// \return The newly created instruction.
673   virtual MachineInstrBuilder buildConstant(const DstOp &Res,
674                                             const ConstantInt &Val);
675 
676   /// Build and insert \p Res = G_CONSTANT \p Val
677   ///
678   /// G_CONSTANT is an integer constant with the specified size and value.
679   ///
680   /// \pre setBasicBlock or setMI must have been called.
681   /// \pre \p Res must be a generic virtual register with scalar type.
682   ///
683   /// \return The newly created instruction.
684   MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val);
685   MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val);
686 
687   /// Build and insert \p Res = G_FCONSTANT \p Val
688   ///
689   /// G_FCONSTANT is a floating-point constant with the specified size and
690   /// value.
691   ///
692   /// \pre setBasicBlock or setMI must have been called.
693   /// \pre \p Res must be a generic virtual register with scalar type.
694   ///
695   /// \return The newly created instruction.
696   virtual MachineInstrBuilder buildFConstant(const DstOp &Res,
697                                              const ConstantFP &Val);
698 
699   MachineInstrBuilder buildFConstant(const DstOp &Res, double Val);
700   MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val);
701 
702   /// Build and insert \p Res = COPY Op
703   ///
704   /// Register-to-register COPY sets \p Res to \p Op.
705   ///
706   /// \pre setBasicBlock or setMI must have been called.
707   ///
708   /// \return a MachineInstrBuilder for the newly created instruction.
709   MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op);
710 
711   /// Build and insert `Res = G_LOAD Addr, MMO`.
712   ///
713   /// Loads the value stored at \p Addr. Puts the result in \p Res.
714   ///
715   /// \pre setBasicBlock or setMI must have been called.
716   /// \pre \p Res must be a generic virtual register.
717   /// \pre \p Addr must be a generic virtual register with pointer type.
718   ///
719   /// \return a MachineInstrBuilder for the newly created instruction.
720   MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr,
721                                 MachineMemOperand &MMO);
722 
723   /// Build and insert `Res = <opcode> Addr, MMO`.
724   ///
725   /// Loads the value stored at \p Addr. Puts the result in \p Res.
726   ///
727   /// \pre setBasicBlock or setMI must have been called.
728   /// \pre \p Res must be a generic virtual register.
729   /// \pre \p Addr must be a generic virtual register with pointer type.
730   ///
731   /// \return a MachineInstrBuilder for the newly created instruction.
732   MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res,
733                                      const SrcOp &Addr, MachineMemOperand &MMO);
734 
735   /// Build and insert `G_STORE Val, Addr, MMO`.
736   ///
737   /// Stores the value \p Val to \p Addr.
738   ///
739   /// \pre setBasicBlock or setMI must have been called.
740   /// \pre \p Val must be a generic virtual register.
741   /// \pre \p Addr must be a generic virtual register with pointer type.
742   ///
743   /// \return a MachineInstrBuilder for the newly created instruction.
744   MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr,
745                                  MachineMemOperand &MMO);
746 
747   /// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`.
748   ///
749   /// \pre setBasicBlock or setMI must have been called.
750   /// \pre \p Res and \p Src must be generic virtual registers.
751   ///
752   /// \return a MachineInstrBuilder for the newly created instruction.
753   MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index);
754 
755   /// Build and insert \p Res = IMPLICIT_DEF.
756   MachineInstrBuilder buildUndef(const DstOp &Res);
757 
758   /// Build and insert instructions to put \p Ops together at the specified p
759   /// Indices to form a larger register.
760   ///
761   /// If the types of the input registers are uniform and cover the entirity of
762   /// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF
763   /// followed by a sequence of G_INSERT instructions.
764   ///
765   /// \pre setBasicBlock or setMI must have been called.
766   /// \pre The final element of the sequence must not extend past the end of the
767   ///      destination register.
768   /// \pre The bits defined by each Op (derived from index and scalar size) must
769   ///      not overlap.
770   /// \pre \p Indices must be in ascending order of bit position.
771   void buildSequence(Register Res, ArrayRef<Register> Ops,
772                      ArrayRef<uint64_t> Indices);
773 
774   /// Build and insert \p Res = G_MERGE_VALUES \p Op0, ...
775   ///
776   /// G_MERGE_VALUES combines the input elements contiguously into a larger
777   /// register.
778   ///
779   /// \pre setBasicBlock or setMI must have been called.
780   /// \pre The entire register \p Res (and no more) must be covered by the input
781   ///      registers.
782   /// \pre The type of all \p Ops registers must be identical.
783   ///
784   /// \return a MachineInstrBuilder for the newly created instruction.
785   MachineInstrBuilder buildMerge(const DstOp &Res, ArrayRef<Register> Ops);
786 
787   /// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op
788   ///
789   /// G_UNMERGE_VALUES splits contiguous bits of the input into multiple
790   ///
791   /// \pre setBasicBlock or setMI must have been called.
792   /// \pre The entire register \p Res (and no more) must be covered by the input
793   ///      registers.
794   /// \pre The type of all \p Res registers must be identical.
795   ///
796   /// \return a MachineInstrBuilder for the newly created instruction.
797   MachineInstrBuilder buildUnmerge(ArrayRef<LLT> Res, const SrcOp &Op);
798   MachineInstrBuilder buildUnmerge(ArrayRef<Register> Res, const SrcOp &Op);
799 
800   /// Build and insert an unmerge of \p Res sized pieces to cover \p Op
801   MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op);
802 
803   /// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ...
804   ///
805   /// G_BUILD_VECTOR creates a vector value from multiple scalar registers.
806   /// \pre setBasicBlock or setMI must have been called.
807   /// \pre The entire register \p Res (and no more) must be covered by the
808   ///      input scalar registers.
809   /// \pre The type of all \p Ops registers must be identical.
810   ///
811   /// \return a MachineInstrBuilder for the newly created instruction.
812   MachineInstrBuilder buildBuildVector(const DstOp &Res,
813                                        ArrayRef<Register> Ops);
814 
815   /// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill
816   /// the number of elements
817   MachineInstrBuilder buildSplatVector(const DstOp &Res,
818                                        const SrcOp &Src);
819 
820   /// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ...
821   ///
822   /// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers
823   /// which have types larger than the destination vector element type, and
824   /// truncates the values to fit.
825   ///
826   /// If the operands given are already the same size as the vector elt type,
827   /// then this method will instead create a G_BUILD_VECTOR instruction.
828   ///
829   /// \pre setBasicBlock or setMI must have been called.
830   /// \pre The type of all \p Ops registers must be identical.
831   ///
832   /// \return a MachineInstrBuilder for the newly created instruction.
833   MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res,
834                                             ArrayRef<Register> Ops);
835 
836   /// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ...
837   ///
838   /// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more
839   /// vectors.
840   ///
841   /// \pre setBasicBlock or setMI must have been called.
842   /// \pre The entire register \p Res (and no more) must be covered by the input
843   ///      registers.
844   /// \pre The type of all source operands must be identical.
845   ///
846   /// \return a MachineInstrBuilder for the newly created instruction.
847   MachineInstrBuilder buildConcatVectors(const DstOp &Res,
848                                          ArrayRef<Register> Ops);
849 
850   MachineInstrBuilder buildInsert(Register Res, Register Src,
851                                   Register Op, unsigned Index);
852 
853   /// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or
854   /// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the
855   /// result register definition unless \p Reg is NoReg (== 0). The second
856   /// operand will be the intrinsic's ID.
857   ///
858   /// Callers are expected to add the required definitions and uses afterwards.
859   ///
860   /// \pre setBasicBlock or setMI must have been called.
861   ///
862   /// \return a MachineInstrBuilder for the newly created instruction.
863   MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<Register> Res,
864                                      bool HasSideEffects);
865   MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<DstOp> Res,
866                                      bool HasSideEffects);
867 
868   /// Build and insert \p Res = G_FPTRUNC \p Op
869   ///
870   /// G_FPTRUNC converts a floating-point value into one with a smaller type.
871   ///
872   /// \pre setBasicBlock or setMI must have been called.
873   /// \pre \p Res must be a generic virtual register with scalar or vector type.
874   /// \pre \p Op must be a generic virtual register with scalar or vector type.
875   /// \pre \p Res must be smaller than \p Op
876   ///
877   /// \return The newly created instruction.
878   MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op,
879                                    Optional<unsigned> FLags = None);
880 
881   /// Build and insert \p Res = G_TRUNC \p Op
882   ///
883   /// G_TRUNC extracts the low bits of a type. For a vector type each element is
884   /// truncated independently before being packed into the destination.
885   ///
886   /// \pre setBasicBlock or setMI must have been called.
887   /// \pre \p Res must be a generic virtual register with scalar or vector type.
888   /// \pre \p Op must be a generic virtual register with scalar or vector type.
889   /// \pre \p Res must be smaller than \p Op
890   ///
891   /// \return The newly created instruction.
892   MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op);
893 
894   /// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1
895   ///
896   /// \pre setBasicBlock or setMI must have been called.
897 
898   /// \pre \p Res must be a generic virtual register with scalar or
899   ///      vector type. Typically this starts as s1 or <N x s1>.
900   /// \pre \p Op0 and Op1 must be generic virtual registers with the
901   ///      same number of elements as \p Res. If \p Res is a scalar,
902   ///      \p Op0 must be either a scalar or pointer.
903   /// \pre \p Pred must be an integer predicate.
904   ///
905   /// \return a MachineInstrBuilder for the newly created instruction.
906   MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res,
907                                 const SrcOp &Op0, const SrcOp &Op1);
908 
909   /// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1
910   ///
911   /// \pre setBasicBlock or setMI must have been called.
912 
913   /// \pre \p Res must be a generic virtual register with scalar or
914   ///      vector type. Typically this starts as s1 or <N x s1>.
915   /// \pre \p Op0 and Op1 must be generic virtual registers with the
916   ///      same number of elements as \p Res (or scalar, if \p Res is
917   ///      scalar).
918   /// \pre \p Pred must be a floating-point predicate.
919   ///
920   /// \return a MachineInstrBuilder for the newly created instruction.
921   MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res,
922                                 const SrcOp &Op0, const SrcOp &Op1,
923                                 Optional<unsigned> Flags = None);
924 
925   /// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1
926   ///
927   /// \pre setBasicBlock or setMI must have been called.
928   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
929   ///      with the same type.
930   /// \pre \p Tst must be a generic virtual register with scalar, pointer or
931   ///      vector type. If vector then it must have the same number of
932   ///      elements as the other parameters.
933   ///
934   /// \return a MachineInstrBuilder for the newly created instruction.
935   MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst,
936                                   const SrcOp &Op0, const SrcOp &Op1,
937                                   Optional<unsigned> Flags = None);
938 
939   /// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val,
940   /// \p Elt, \p Idx
941   ///
942   /// \pre setBasicBlock or setMI must have been called.
943   /// \pre \p Res and \p Val must be a generic virtual register
944   //       with the same vector type.
945   /// \pre \p Elt and \p Idx must be a generic virtual register
946   ///      with scalar type.
947   ///
948   /// \return The newly created instruction.
949   MachineInstrBuilder buildInsertVectorElement(const DstOp &Res,
950                                                const SrcOp &Val,
951                                                const SrcOp &Elt,
952                                                const SrcOp &Idx);
953 
954   /// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx
955   ///
956   /// \pre setBasicBlock or setMI must have been called.
957   /// \pre \p Res must be a generic virtual register with scalar type.
958   /// \pre \p Val must be a generic virtual register with vector type.
959   /// \pre \p Idx must be a generic virtual register with scalar type.
960   ///
961   /// \return The newly created instruction.
962   MachineInstrBuilder buildExtractVectorElement(const DstOp &Res,
963                                                 const SrcOp &Val,
964                                                 const SrcOp &Idx);
965 
966   /// Build and insert `OldValRes<def>, SuccessRes<def> =
967   /// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`.
968   ///
969   /// Atomically replace the value at \p Addr with \p NewVal if it is currently
970   /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
971   /// Addr in \p Res, along with an s1 indicating whether it was replaced.
972   ///
973   /// \pre setBasicBlock or setMI must have been called.
974   /// \pre \p OldValRes must be a generic virtual register of scalar type.
975   /// \pre \p SuccessRes must be a generic virtual register of scalar type. It
976   ///      will be assigned 0 on failure and 1 on success.
977   /// \pre \p Addr must be a generic virtual register with pointer type.
978   /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
979   ///      registers of the same type.
980   ///
981   /// \return a MachineInstrBuilder for the newly created instruction.
982   MachineInstrBuilder
983   buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes,
984                                 Register Addr, Register CmpVal, Register NewVal,
985                                 MachineMemOperand &MMO);
986 
987   /// Build and insert `OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal,
988   /// MMO`.
989   ///
990   /// Atomically replace the value at \p Addr with \p NewVal if it is currently
991   /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
992   /// Addr in \p Res.
993   ///
994   /// \pre setBasicBlock or setMI must have been called.
995   /// \pre \p OldValRes must be a generic virtual register of scalar type.
996   /// \pre \p Addr must be a generic virtual register with pointer type.
997   /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
998   ///      registers of the same type.
999   ///
1000   /// \return a MachineInstrBuilder for the newly created instruction.
1001   MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr,
1002                                          Register CmpVal, Register NewVal,
1003                                          MachineMemOperand &MMO);
1004 
1005   /// Build and insert `OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO`.
1006   ///
1007   /// Atomically read-modify-update the value at \p Addr with \p Val. Puts the
1008   /// original value from \p Addr in \p OldValRes. The modification is
1009   /// determined by the opcode.
1010   ///
1011   /// \pre setBasicBlock or setMI must have been called.
1012   /// \pre \p OldValRes must be a generic virtual register.
1013   /// \pre \p Addr must be a generic virtual register with pointer type.
1014   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1015   ///      same type.
1016   ///
1017   /// \return a MachineInstrBuilder for the newly created instruction.
1018   MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes,
1019                                      const SrcOp &Addr, const SrcOp &Val,
1020                                      MachineMemOperand &MMO);
1021 
1022   /// Build and insert `OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO`.
1023   ///
1024   /// Atomically replace the value at \p Addr with \p Val. Puts the original
1025   /// value from \p Addr in \p OldValRes.
1026   ///
1027   /// \pre setBasicBlock or setMI must have been called.
1028   /// \pre \p OldValRes must be a generic virtual register.
1029   /// \pre \p Addr must be a generic virtual register with pointer type.
1030   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1031   ///      same type.
1032   ///
1033   /// \return a MachineInstrBuilder for the newly created instruction.
1034   MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr,
1035                                          Register Val, MachineMemOperand &MMO);
1036 
1037   /// Build and insert `OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO`.
1038   ///
1039   /// Atomically replace the value at \p Addr with the addition of \p Val and
1040   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1041   ///
1042   /// \pre setBasicBlock or setMI must have been called.
1043   /// \pre \p OldValRes must be a generic virtual register.
1044   /// \pre \p Addr must be a generic virtual register with pointer type.
1045   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1046   ///      same type.
1047   ///
1048   /// \return a MachineInstrBuilder for the newly created instruction.
1049   MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr,
1050                                         Register Val, MachineMemOperand &MMO);
1051 
1052   /// Build and insert `OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO`.
1053   ///
1054   /// Atomically replace the value at \p Addr with the subtraction of \p Val and
1055   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1056   ///
1057   /// \pre setBasicBlock or setMI must have been called.
1058   /// \pre \p OldValRes must be a generic virtual register.
1059   /// \pre \p Addr must be a generic virtual register with pointer type.
1060   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1061   ///      same type.
1062   ///
1063   /// \return a MachineInstrBuilder for the newly created instruction.
1064   MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr,
1065                                         Register Val, MachineMemOperand &MMO);
1066 
1067   /// Build and insert `OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO`.
1068   ///
1069   /// Atomically replace the value at \p Addr with the bitwise and of \p Val and
1070   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1071   ///
1072   /// \pre setBasicBlock or setMI must have been called.
1073   /// \pre \p OldValRes must be a generic virtual register.
1074   /// \pre \p Addr must be a generic virtual register with pointer type.
1075   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1076   ///      same type.
1077   ///
1078   /// \return a MachineInstrBuilder for the newly created instruction.
1079   MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr,
1080                                         Register Val, MachineMemOperand &MMO);
1081 
1082   /// Build and insert `OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO`.
1083   ///
1084   /// Atomically replace the value at \p Addr with the bitwise nand of \p Val
1085   /// and the original value. Puts the original value from \p Addr in \p
1086   /// OldValRes.
1087   ///
1088   /// \pre setBasicBlock or setMI must have been called.
1089   /// \pre \p OldValRes must be a generic virtual register.
1090   /// \pre \p Addr must be a generic virtual register with pointer type.
1091   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1092   ///      same type.
1093   ///
1094   /// \return a MachineInstrBuilder for the newly created instruction.
1095   MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr,
1096                                          Register Val, MachineMemOperand &MMO);
1097 
1098   /// Build and insert `OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO`.
1099   ///
1100   /// Atomically replace the value at \p Addr with the bitwise or of \p Val and
1101   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1102   ///
1103   /// \pre setBasicBlock or setMI must have been called.
1104   /// \pre \p OldValRes must be a generic virtual register.
1105   /// \pre \p Addr must be a generic virtual register with pointer type.
1106   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1107   ///      same type.
1108   ///
1109   /// \return a MachineInstrBuilder for the newly created instruction.
1110   MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr,
1111                                        Register Val, MachineMemOperand &MMO);
1112 
1113   /// Build and insert `OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO`.
1114   ///
1115   /// Atomically replace the value at \p Addr with the bitwise xor of \p Val and
1116   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1117   ///
1118   /// \pre setBasicBlock or setMI must have been called.
1119   /// \pre \p OldValRes must be a generic virtual register.
1120   /// \pre \p Addr must be a generic virtual register with pointer type.
1121   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1122   ///      same type.
1123   ///
1124   /// \return a MachineInstrBuilder for the newly created instruction.
1125   MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr,
1126                                         Register Val, MachineMemOperand &MMO);
1127 
1128   /// Build and insert `OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO`.
1129   ///
1130   /// Atomically replace the value at \p Addr with the signed maximum of \p
1131   /// Val and the original value. Puts the original value from \p Addr in \p
1132   /// OldValRes.
1133   ///
1134   /// \pre setBasicBlock or setMI must have been called.
1135   /// \pre \p OldValRes must be a generic virtual register.
1136   /// \pre \p Addr must be a generic virtual register with pointer type.
1137   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1138   ///      same type.
1139   ///
1140   /// \return a MachineInstrBuilder for the newly created instruction.
1141   MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr,
1142                                         Register Val, MachineMemOperand &MMO);
1143 
1144   /// Build and insert `OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO`.
1145   ///
1146   /// Atomically replace the value at \p Addr with the signed minimum of \p
1147   /// Val and the original value. Puts the original value from \p Addr in \p
1148   /// OldValRes.
1149   ///
1150   /// \pre setBasicBlock or setMI must have been called.
1151   /// \pre \p OldValRes must be a generic virtual register.
1152   /// \pre \p Addr must be a generic virtual register with pointer type.
1153   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1154   ///      same type.
1155   ///
1156   /// \return a MachineInstrBuilder for the newly created instruction.
1157   MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr,
1158                                         Register Val, MachineMemOperand &MMO);
1159 
1160   /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO`.
1161   ///
1162   /// Atomically replace the value at \p Addr with the unsigned maximum of \p
1163   /// Val and the original value. Puts the original value from \p Addr in \p
1164   /// OldValRes.
1165   ///
1166   /// \pre setBasicBlock or setMI must have been called.
1167   /// \pre \p OldValRes must be a generic virtual register.
1168   /// \pre \p Addr must be a generic virtual register with pointer type.
1169   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1170   ///      same type.
1171   ///
1172   /// \return a MachineInstrBuilder for the newly created instruction.
1173   MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr,
1174                                          Register Val, MachineMemOperand &MMO);
1175 
1176   /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO`.
1177   ///
1178   /// Atomically replace the value at \p Addr with the unsigned minimum of \p
1179   /// Val and the original value. Puts the original value from \p Addr in \p
1180   /// OldValRes.
1181   ///
1182   /// \pre setBasicBlock or setMI must have been called.
1183   /// \pre \p OldValRes must be a generic virtual register.
1184   /// \pre \p Addr must be a generic virtual register with pointer type.
1185   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1186   ///      same type.
1187   ///
1188   /// \return a MachineInstrBuilder for the newly created instruction.
1189   MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr,
1190                                          Register Val, MachineMemOperand &MMO);
1191 
1192   /// Build and insert `OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO`.
1193   MachineInstrBuilder buildAtomicRMWFAdd(
1194     const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1195     MachineMemOperand &MMO);
1196 
1197   /// Build and insert `OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO`.
1198   MachineInstrBuilder buildAtomicRMWFSub(
1199         const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1200         MachineMemOperand &MMO);
1201 
1202   /// Build and insert `G_FENCE Ordering, Scope`.
1203   MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope);
1204 
1205   /// Build and insert \p Res = G_BLOCK_ADDR \p BA
1206   ///
1207   /// G_BLOCK_ADDR computes the address of a basic block.
1208   ///
1209   /// \pre setBasicBlock or setMI must have been called.
1210   /// \pre \p Res must be a generic virtual register of a pointer type.
1211   ///
1212   /// \return The newly created instruction.
1213   MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA);
1214 
1215   /// Build and insert \p Res = G_ADD \p Op0, \p Op1
1216   ///
1217   /// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1218   /// truncated to their width.
1219   ///
1220   /// \pre setBasicBlock or setMI must have been called.
1221   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1222   ///      with the same (scalar or vector) type).
1223   ///
1224   /// \return a MachineInstrBuilder for the newly created instruction.
1225 
1226   MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0,
1227                                const SrcOp &Src1,
1228                                Optional<unsigned> Flags = None) {
1229     return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags);
1230   }
1231 
1232   /// Build and insert \p Res = G_SUB \p Op0, \p Op1
1233   ///
1234   /// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1235   /// truncated to their width.
1236   ///
1237   /// \pre setBasicBlock or setMI must have been called.
1238   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1239   ///      with the same (scalar or vector) type).
1240   ///
1241   /// \return a MachineInstrBuilder for the newly created instruction.
1242 
1243   MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0,
1244                                const SrcOp &Src1,
1245                                Optional<unsigned> Flags = None) {
1246     return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags);
1247   }
1248 
1249   /// Build and insert \p Res = G_MUL \p Op0, \p Op1
1250   ///
1251   /// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1252   /// truncated to their width.
1253   ///
1254   /// \pre setBasicBlock or setMI must have been called.
1255   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1256   ///      with the same (scalar or vector) type).
1257   ///
1258   /// \return a MachineInstrBuilder for the newly created instruction.
1259   MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0,
1260                                const SrcOp &Src1,
1261                                Optional<unsigned> Flags = None) {
1262     return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags);
1263   }
1264 
1265   MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0,
1266                                  const SrcOp &Src1,
1267                                  Optional<unsigned> Flags = None) {
1268     return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags);
1269   }
1270 
1271   MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0,
1272                                  const SrcOp &Src1,
1273                                  Optional<unsigned> Flags = None) {
1274     return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags);
1275   }
1276 
1277   MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0,
1278                                 const SrcOp &Src1,
1279                                 Optional<unsigned> Flags = None) {
1280     return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags);
1281   }
1282 
1283   MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0,
1284                                const SrcOp &Src1,
1285                                Optional<unsigned> Flags = None) {
1286     return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags);
1287   }
1288 
1289   MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0,
1290                                 const SrcOp &Src1,
1291                                 Optional<unsigned> Flags = None) {
1292     return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags);
1293   }
1294 
1295   MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0,
1296                                 const SrcOp &Src1,
1297                                 Optional<unsigned> Flags = None) {
1298     return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags);
1299   }
1300 
1301   /// Build and insert \p Res = G_AND \p Op0, \p Op1
1302   ///
1303   /// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p
1304   /// Op1.
1305   ///
1306   /// \pre setBasicBlock or setMI must have been called.
1307   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1308   ///      with the same (scalar or vector) type).
1309   ///
1310   /// \return a MachineInstrBuilder for the newly created instruction.
1311 
buildAnd(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1312   MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0,
1313                                const SrcOp &Src1) {
1314     return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1});
1315   }
1316 
1317   /// Build and insert \p Res = G_OR \p Op0, \p Op1
1318   ///
1319   /// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p
1320   /// Op1.
1321   ///
1322   /// \pre setBasicBlock or setMI must have been called.
1323   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1324   ///      with the same (scalar or vector) type).
1325   ///
1326   /// \return a MachineInstrBuilder for the newly created instruction.
buildOr(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1327   MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0,
1328                               const SrcOp &Src1) {
1329     return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1});
1330   }
1331 
1332   /// Build and insert \p Res = G_XOR \p Op0, \p Op1
buildXor(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1333   MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0,
1334                                const SrcOp &Src1) {
1335     return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1});
1336   }
1337 
1338   /// Build and insert a bitwise not,
1339   /// \p NegOne = G_CONSTANT -1
1340   /// \p Res = G_OR \p Op0, NegOne
buildNot(const DstOp & Dst,const SrcOp & Src0)1341   MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) {
1342     auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1);
1343     return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne});
1344   }
1345 
1346   /// Build and insert \p Res = G_CTPOP \p Op0, \p Src0
buildCTPOP(const DstOp & Dst,const SrcOp & Src0)1347   MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) {
1348     return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0});
1349   }
1350 
1351   /// Build and insert \p Res = G_CTLZ \p Op0, \p Src0
buildCTLZ(const DstOp & Dst,const SrcOp & Src0)1352   MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) {
1353     return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0});
1354   }
1355 
1356   /// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0
buildCTLZ_ZERO_UNDEF(const DstOp & Dst,const SrcOp & Src0)1357   MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1358     return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0});
1359   }
1360 
1361   /// Build and insert \p Res = G_CTTZ \p Op0, \p Src0
buildCTTZ(const DstOp & Dst,const SrcOp & Src0)1362   MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) {
1363     return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0});
1364   }
1365 
1366   /// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0
buildCTTZ_ZERO_UNDEF(const DstOp & Dst,const SrcOp & Src0)1367   MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1368     return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0});
1369   }
1370 
1371   /// Build and insert \p Res = G_FADD \p Op0, \p Op1
1372   MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0,
1373                                 const SrcOp &Src1,
1374                                 Optional<unsigned> Flags = None) {
1375     return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1}, Flags);
1376   }
1377 
1378   /// Build and insert \p Res = G_FSUB \p Op0, \p Op1
buildFSub(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1379   MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0,
1380                                 const SrcOp &Src1) {
1381     return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1});
1382   }
1383 
1384   /// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2
1385   MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0,
1386                                const SrcOp &Src1, const SrcOp &Src2,
1387                                Optional<unsigned> Flags = None) {
1388     return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2}, Flags);
1389   }
1390 
1391   /// Build and insert \p Res = G_FMAD \p Op0, \p Op1, \p Op2
1392   MachineInstrBuilder buildFMAD(const DstOp &Dst, const SrcOp &Src0,
1393                                 const SrcOp &Src1, const SrcOp &Src2,
1394                                 Optional<unsigned> Flags = None) {
1395     return buildInstr(TargetOpcode::G_FMAD, {Dst}, {Src0, Src1, Src2}, Flags);
1396   }
1397 
1398   /// Build and insert \p Res = G_FNEG \p Op0
1399   MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0,
1400                                 Optional<unsigned> Flags = None) {
1401     return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0}, Flags);
1402   }
1403 
1404   /// Build and insert \p Res = G_FABS \p Op0
1405   MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0,
1406                                 Optional<unsigned> Flags = None) {
1407     return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags);
1408   }
1409 
1410   /// Build and insert \p Dst = G_FCANONICALIZE \p Src0
1411   MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0,
1412                                          Optional<unsigned> Flags = None) {
1413     return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags);
1414   }
1415 
1416   /// Build and insert \p Dst = G_INTRINSIC_TRUNC \p Src0
1417   MachineInstrBuilder buildIntrinsicTrunc(const DstOp &Dst, const SrcOp &Src0,
1418                                          Optional<unsigned> Flags = None) {
1419     return buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {Dst}, {Src0}, Flags);
1420   }
1421 
1422   /// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1
buildFCopysign(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1423   MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0,
1424                                      const SrcOp &Src1) {
1425     return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1});
1426   }
1427 
1428   /// Build and insert \p Res = G_UITOFP \p Src0
buildUITOFP(const DstOp & Dst,const SrcOp & Src0)1429   MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) {
1430     return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0});
1431   }
1432 
1433   /// Build and insert \p Res = G_SITOFP \p Src0
buildSITOFP(const DstOp & Dst,const SrcOp & Src0)1434   MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) {
1435     return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0});
1436   }
1437 
1438   /// Build and insert \p Res = G_FPTOUI \p Src0
buildFPTOUI(const DstOp & Dst,const SrcOp & Src0)1439   MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) {
1440     return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0});
1441   }
1442 
1443   /// Build and insert \p Res = G_FPTOSI \p Src0
buildFPTOSI(const DstOp & Dst,const SrcOp & Src0)1444   MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) {
1445     return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0});
1446   }
1447 
1448   /// Build and insert \p Res = G_SMIN \p Op0, \p Op1
buildSMin(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1449   MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0,
1450                                 const SrcOp &Src1) {
1451     return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1});
1452   }
1453 
1454   /// Build and insert \p Res = G_SMAX \p Op0, \p Op1
buildSMax(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1455   MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0,
1456                                 const SrcOp &Src1) {
1457     return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1});
1458   }
1459 
1460   /// Build and insert \p Res = G_UMIN \p Op0, \p Op1
buildUMin(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1461   MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0,
1462                                 const SrcOp &Src1) {
1463     return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1});
1464   }
1465 
1466   /// Build and insert \p Res = G_UMAX \p Op0, \p Op1
buildUMax(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1467   MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0,
1468                                 const SrcOp &Src1) {
1469     return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1});
1470   }
1471 
1472   /// Build and insert \p Res = G_JUMP_TABLE \p JTI
1473   ///
1474   /// G_JUMP_TABLE sets \p Res to the address of the jump table specified by
1475   /// the jump table index \p JTI.
1476   ///
1477   /// \return a MachineInstrBuilder for the newly created instruction.
1478   MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI);
1479 
1480   virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef<DstOp> DstOps,
1481                                          ArrayRef<SrcOp> SrcOps,
1482                                          Optional<unsigned> Flags = None);
1483 };
1484 
1485 } // End namespace llvm.
1486 #endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
1487