1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Windows Timer Primer
7 //
8 // A good article:  http://www.ddj.com/windows/184416651
9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10 //
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
12 // It is only good to ~15.5ms.
13 //
14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
15 // However, it is known to be buggy on some hardware.  Specifically, it can
16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18 // on laptops.  A unittest exists which will show the relative cost of various
19 // timers on any system.
20 //
21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23 // applications on the system.  By default, precision is only 15.5ms.
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
25 // want to affect other applications.  Further, on mobile platforms, use of
26 // faster multimedia timers can hurt battery life.  See the intel
27 // article about this here:
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
29 //
30 // To work around all this, we're going to generally use timeGetTime().  We
31 // will only increase the system-wide timer if we're not running on battery
32 // power.
33 
34 #include "base/time/time.h"
35 
36 #pragma comment(lib, "winmm.lib")
37 #include <windows.h>
38 #include <mmsystem.h>
39 #include <stdint.h>
40 
41 #include "base/bit_cast.h"
42 #include "base/cpu.h"
43 #include "base/lazy_instance.h"
44 #include "base/logging.h"
45 #include "base/synchronization/lock.h"
46 
47 using base::ThreadTicks;
48 using base::Time;
49 using base::TimeDelta;
50 using base::TimeTicks;
51 
52 namespace {
53 
54 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
55 // 100-nanosecond intervals since January 1, 1601 (UTC)."
FileTimeToMicroseconds(const FILETIME & ft)56 int64_t FileTimeToMicroseconds(const FILETIME& ft) {
57   // Need to bit_cast to fix alignment, then divide by 10 to convert
58   // 100-nanoseconds to microseconds. This only works on little-endian
59   // machines.
60   return bit_cast<int64_t, FILETIME>(ft) / 10;
61 }
62 
MicrosecondsToFileTime(int64_t us,FILETIME * ft)63 void MicrosecondsToFileTime(int64_t us, FILETIME* ft) {
64   DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
65       "representable in FILETIME";
66 
67   // Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will
68   // handle alignment problems. This only works on little-endian machines.
69   *ft = bit_cast<FILETIME, int64_t>(us * 10);
70 }
71 
CurrentWallclockMicroseconds()72 int64_t CurrentWallclockMicroseconds() {
73   FILETIME ft;
74   ::GetSystemTimeAsFileTime(&ft);
75   return FileTimeToMicroseconds(ft);
76 }
77 
78 // Time between resampling the un-granular clock for this API.  60 seconds.
79 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
80 
81 int64_t initial_time = 0;
82 TimeTicks initial_ticks;
83 
InitializeClock()84 void InitializeClock() {
85   initial_ticks = TimeTicks::Now();
86   initial_time = CurrentWallclockMicroseconds();
87 }
88 
89 // The two values that ActivateHighResolutionTimer uses to set the systemwide
90 // timer interrupt frequency on Windows. It controls how precise timers are
91 // but also has a big impact on battery life.
92 const int kMinTimerIntervalHighResMs = 1;
93 const int kMinTimerIntervalLowResMs = 4;
94 // Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active.
95 bool g_high_res_timer_enabled = false;
96 // How many times the high resolution timer has been called.
97 uint32_t g_high_res_timer_count = 0;
98 // The lock to control access to the above two variables.
99 base::LazyInstance<base::Lock>::Leaky g_high_res_lock =
100     LAZY_INSTANCE_INITIALIZER;
101 
102 // Returns a pointer to the QueryThreadCycleTime() function from Windows.
103 // Can't statically link to it because it is not available on XP.
104 using QueryThreadCycleTimePtr = decltype(::QueryThreadCycleTime)*;
GetQueryThreadCycleTimeFunction()105 QueryThreadCycleTimePtr GetQueryThreadCycleTimeFunction() {
106   static const QueryThreadCycleTimePtr query_thread_cycle_time_fn =
107       reinterpret_cast<QueryThreadCycleTimePtr>(::GetProcAddress(
108           ::GetModuleHandle(L"kernel32.dll"), "QueryThreadCycleTime"));
109   return query_thread_cycle_time_fn;
110 }
111 
112 // Returns the current value of the performance counter.
QPCNowRaw()113 uint64_t QPCNowRaw() {
114   LARGE_INTEGER perf_counter_now = {};
115   // According to the MSDN documentation for QueryPerformanceCounter(), this
116   // will never fail on systems that run XP or later.
117   // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
118   ::QueryPerformanceCounter(&perf_counter_now);
119   return perf_counter_now.QuadPart;
120 }
121 
122 }  // namespace
123 
124 // Time -----------------------------------------------------------------------
125 
126 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
127 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
128 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
129 // 1700, 1800, and 1900.
130 // static
131 const int64_t Time::kTimeTToMicrosecondsOffset = INT64_C(11644473600000000);
132 
133 // static
Now()134 Time Time::Now() {
135   if (initial_time == 0)
136     InitializeClock();
137 
138   // We implement time using the high-resolution timers so that we can get
139   // timeouts which are smaller than 10-15ms.  If we just used
140   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
141   //
142   // To make this work, we initialize the clock (initial_time) and the
143   // counter (initial_ctr).  To compute the initial time, we can check
144   // the number of ticks that have elapsed, and compute the delta.
145   //
146   // To avoid any drift, we periodically resync the counters to the system
147   // clock.
148   while (true) {
149     TimeTicks ticks = TimeTicks::Now();
150 
151     // Calculate the time elapsed since we started our timer
152     TimeDelta elapsed = ticks - initial_ticks;
153 
154     // Check if enough time has elapsed that we need to resync the clock.
155     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
156       InitializeClock();
157       continue;
158     }
159 
160     return Time(elapsed + Time(initial_time));
161   }
162 }
163 
164 // static
NowFromSystemTime()165 Time Time::NowFromSystemTime() {
166   // Force resync.
167   InitializeClock();
168   return Time(initial_time);
169 }
170 
171 // static
FromFileTime(FILETIME ft)172 Time Time::FromFileTime(FILETIME ft) {
173   if (bit_cast<int64_t, FILETIME>(ft) == 0)
174     return Time();
175   if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
176       ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
177     return Max();
178   return Time(FileTimeToMicroseconds(ft));
179 }
180 
ToFileTime() const181 FILETIME Time::ToFileTime() const {
182   if (is_null())
183     return bit_cast<FILETIME, int64_t>(0);
184   if (is_max()) {
185     FILETIME result;
186     result.dwHighDateTime = std::numeric_limits<DWORD>::max();
187     result.dwLowDateTime = std::numeric_limits<DWORD>::max();
188     return result;
189   }
190   FILETIME utc_ft;
191   MicrosecondsToFileTime(us_, &utc_ft);
192   return utc_ft;
193 }
194 
195 // static
EnableHighResolutionTimer(bool enable)196 void Time::EnableHighResolutionTimer(bool enable) {
197   base::AutoLock lock(g_high_res_lock.Get());
198   if (g_high_res_timer_enabled == enable)
199     return;
200   g_high_res_timer_enabled = enable;
201   if (!g_high_res_timer_count)
202     return;
203   // Since g_high_res_timer_count != 0, an ActivateHighResolutionTimer(true)
204   // was called which called timeBeginPeriod with g_high_res_timer_enabled
205   // with a value which is the opposite of |enable|. With that information we
206   // call timeEndPeriod with the same value used in timeBeginPeriod and
207   // therefore undo the period effect.
208   if (enable) {
209     timeEndPeriod(kMinTimerIntervalLowResMs);
210     timeBeginPeriod(kMinTimerIntervalHighResMs);
211   } else {
212     timeEndPeriod(kMinTimerIntervalHighResMs);
213     timeBeginPeriod(kMinTimerIntervalLowResMs);
214   }
215 }
216 
217 // static
ActivateHighResolutionTimer(bool activating)218 bool Time::ActivateHighResolutionTimer(bool activating) {
219   // We only do work on the transition from zero to one or one to zero so we
220   // can easily undo the effect (if necessary) when EnableHighResolutionTimer is
221   // called.
222   const uint32_t max = std::numeric_limits<uint32_t>::max();
223 
224   base::AutoLock lock(g_high_res_lock.Get());
225   UINT period = g_high_res_timer_enabled ? kMinTimerIntervalHighResMs
226                                          : kMinTimerIntervalLowResMs;
227   if (activating) {
228     DCHECK_NE(g_high_res_timer_count, max);
229     ++g_high_res_timer_count;
230     if (g_high_res_timer_count == 1)
231       timeBeginPeriod(period);
232   } else {
233     DCHECK_NE(g_high_res_timer_count, 0u);
234     --g_high_res_timer_count;
235     if (g_high_res_timer_count == 0)
236       timeEndPeriod(period);
237   }
238   return (period == kMinTimerIntervalHighResMs);
239 }
240 
241 // static
IsHighResolutionTimerInUse()242 bool Time::IsHighResolutionTimerInUse() {
243   base::AutoLock lock(g_high_res_lock.Get());
244   return g_high_res_timer_enabled && g_high_res_timer_count > 0;
245 }
246 
247 // static
FromExploded(bool is_local,const Exploded & exploded)248 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
249   // Create the system struct representing our exploded time. It will either be
250   // in local time or UTC.
251   SYSTEMTIME st;
252   st.wYear = static_cast<WORD>(exploded.year);
253   st.wMonth = static_cast<WORD>(exploded.month);
254   st.wDayOfWeek = static_cast<WORD>(exploded.day_of_week);
255   st.wDay = static_cast<WORD>(exploded.day_of_month);
256   st.wHour = static_cast<WORD>(exploded.hour);
257   st.wMinute = static_cast<WORD>(exploded.minute);
258   st.wSecond = static_cast<WORD>(exploded.second);
259   st.wMilliseconds = static_cast<WORD>(exploded.millisecond);
260 
261   FILETIME ft;
262   bool success = true;
263   // Ensure that it's in UTC.
264   if (is_local) {
265     SYSTEMTIME utc_st;
266     success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
267               SystemTimeToFileTime(&utc_st, &ft);
268   } else {
269     success = !!SystemTimeToFileTime(&st, &ft);
270   }
271 
272   if (!success) {
273     NOTREACHED() << "Unable to convert time";
274     return Time(0);
275   }
276   return Time(FileTimeToMicroseconds(ft));
277 }
278 
Explode(bool is_local,Exploded * exploded) const279 void Time::Explode(bool is_local, Exploded* exploded) const {
280   if (us_ < 0LL) {
281     // We are not able to convert it to FILETIME.
282     ZeroMemory(exploded, sizeof(*exploded));
283     return;
284   }
285 
286   // FILETIME in UTC.
287   FILETIME utc_ft;
288   MicrosecondsToFileTime(us_, &utc_ft);
289 
290   // FILETIME in local time if necessary.
291   bool success = true;
292   // FILETIME in SYSTEMTIME (exploded).
293   SYSTEMTIME st = {0};
294   if (is_local) {
295     SYSTEMTIME utc_st;
296     // We don't use FileTimeToLocalFileTime here, since it uses the current
297     // settings for the time zone and daylight saving time. Therefore, if it is
298     // daylight saving time, it will take daylight saving time into account,
299     // even if the time you are converting is in standard time.
300     success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
301               SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
302   } else {
303     success = !!FileTimeToSystemTime(&utc_ft, &st);
304   }
305 
306   if (!success) {
307     NOTREACHED() << "Unable to convert time, don't know why";
308     ZeroMemory(exploded, sizeof(*exploded));
309     return;
310   }
311 
312   exploded->year = st.wYear;
313   exploded->month = st.wMonth;
314   exploded->day_of_week = st.wDayOfWeek;
315   exploded->day_of_month = st.wDay;
316   exploded->hour = st.wHour;
317   exploded->minute = st.wMinute;
318   exploded->second = st.wSecond;
319   exploded->millisecond = st.wMilliseconds;
320 }
321 
322 // TimeTicks ------------------------------------------------------------------
323 namespace {
324 
325 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
326 // mock function, and to avoid a static constructor.  Assigning an import to a
327 // function pointer directly would require setup code to fetch from the IAT.
timeGetTimeWrapper()328 DWORD timeGetTimeWrapper() {
329   return timeGetTime();
330 }
331 
332 DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
333 
334 // Accumulation of time lost due to rollover (in milliseconds).
335 int64_t g_rollover_ms = 0;
336 
337 // The last timeGetTime value we saw, to detect rollover.
338 DWORD g_last_seen_now = 0;
339 
340 // Lock protecting rollover_ms and last_seen_now.
341 // Note: this is a global object, and we usually avoid these. However, the time
342 // code is low-level, and we don't want to use Singletons here (it would be too
343 // easy to use a Singleton without even knowing it, and that may lead to many
344 // gotchas). Its impact on startup time should be negligible due to low-level
345 // nature of time code.
346 base::Lock g_rollover_lock;
347 
348 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
349 // because it returns the number of milliseconds since Windows has started,
350 // which will roll over the 32-bit value every ~49 days.  We try to track
351 // rollover ourselves, which works if TimeTicks::Now() is called at least every
352 // 49 days.
RolloverProtectedNow()353 TimeDelta RolloverProtectedNow() {
354   base::AutoLock locked(g_rollover_lock);
355   // We should hold the lock while calling tick_function to make sure that
356   // we keep last_seen_now stay correctly in sync.
357   DWORD now = g_tick_function();
358   if (now < g_last_seen_now)
359     g_rollover_ms += 0x100000000I64;  // ~49.7 days.
360   g_last_seen_now = now;
361   return TimeDelta::FromMilliseconds(now + g_rollover_ms);
362 }
363 
364 // Discussion of tick counter options on Windows:
365 //
366 // (1) CPU cycle counter. (Retrieved via RDTSC)
367 // The CPU counter provides the highest resolution time stamp and is the least
368 // expensive to retrieve. However, on older CPUs, two issues can affect its
369 // reliability: First it is maintained per processor and not synchronized
370 // between processors. Also, the counters will change frequency due to thermal
371 // and power changes, and stop in some states.
372 //
373 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
374 // resolution (<1 microsecond) time stamp. On most hardware running today, it
375 // auto-detects and uses the constant-rate RDTSC counter to provide extremely
376 // efficient and reliable time stamps.
377 //
378 // On older CPUs where RDTSC is unreliable, it falls back to using more
379 // expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
380 // PM timer, and can involve system calls; and all this is up to the HAL (with
381 // some help from ACPI). According to
382 // http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
383 // worst case, it gets the counter from the rollover interrupt on the
384 // programmable interrupt timer. In best cases, the HAL may conclude that the
385 // RDTSC counter runs at a constant frequency, then it uses that instead. On
386 // multiprocessor machines, it will try to verify the values returned from
387 // RDTSC on each processor are consistent with each other, and apply a handful
388 // of workarounds for known buggy hardware. In other words, QPC is supposed to
389 // give consistent results on a multiprocessor computer, but for older CPUs it
390 // can be unreliable due bugs in BIOS or HAL.
391 //
392 // (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
393 // milliseconds) time stamp but is comparatively less expensive to retrieve and
394 // more reliable. Time::EnableHighResolutionTimer() and
395 // Time::ActivateHighResolutionTimer() can be called to alter the resolution of
396 // this timer; and also other Windows applications can alter it, affecting this
397 // one.
398 
399 using NowFunction = TimeDelta (*)(void);
400 
401 TimeDelta InitialNowFunction();
402 
403 // See "threading notes" in InitializeNowFunctionPointer() for details on how
404 // concurrent reads/writes to these globals has been made safe.
405 NowFunction g_now_function = &InitialNowFunction;
406 int64_t g_qpc_ticks_per_second = 0;
407 
408 // As of January 2015, use of <atomic> is forbidden in Chromium code. This is
409 // what std::atomic_thread_fence does on Windows on all Intel architectures when
410 // the memory_order argument is anything but std::memory_order_seq_cst:
411 #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier();
412 
QPCValueToTimeDelta(LONGLONG qpc_value)413 TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
414   // Ensure that the assignment to |g_qpc_ticks_per_second|, made in
415   // InitializeNowFunctionPointer(), has happened by this point.
416   ATOMIC_THREAD_FENCE(memory_order_acquire);
417 
418   DCHECK_GT(g_qpc_ticks_per_second, 0);
419 
420   // If the QPC Value is below the overflow threshold, we proceed with
421   // simple multiply and divide.
422   if (qpc_value < Time::kQPCOverflowThreshold) {
423     return TimeDelta::FromMicroseconds(
424         qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second);
425   }
426   // Otherwise, calculate microseconds in a round about manner to avoid
427   // overflow and precision issues.
428   int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
429   int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
430   return TimeDelta::FromMicroseconds(
431       (whole_seconds * Time::kMicrosecondsPerSecond) +
432       ((leftover_ticks * Time::kMicrosecondsPerSecond) /
433        g_qpc_ticks_per_second));
434 }
435 
QPCNow()436 TimeDelta QPCNow() {
437   return QPCValueToTimeDelta(QPCNowRaw());
438 }
439 
IsBuggyAthlon(const base::CPU & cpu)440 bool IsBuggyAthlon(const base::CPU& cpu) {
441   // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable.
442   return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15;
443 }
444 
InitializeNowFunctionPointer()445 void InitializeNowFunctionPointer() {
446   LARGE_INTEGER ticks_per_sec = {};
447   if (!QueryPerformanceFrequency(&ticks_per_sec))
448     ticks_per_sec.QuadPart = 0;
449 
450   // If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
451   // the low-resolution clock.
452   //
453   // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
454   // will still use the low-resolution clock. A CPU lacking a non-stop time
455   // counter will cause Windows to provide an alternate QPC implementation that
456   // works, but is expensive to use. Certain Athlon CPUs are known to make the
457   // QPC implementation unreliable.
458   //
459   // Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015,
460   // ~72% of users fall within this category.
461   NowFunction now_function;
462   base::CPU cpu;
463   if (ticks_per_sec.QuadPart <= 0 ||
464       !cpu.has_non_stop_time_stamp_counter() || IsBuggyAthlon(cpu)) {
465     now_function = &RolloverProtectedNow;
466   } else {
467     now_function = &QPCNow;
468   }
469 
470   // Threading note 1: In an unlikely race condition, it's possible for two or
471   // more threads to enter InitializeNowFunctionPointer() in parallel. This is
472   // not a problem since all threads should end up writing out the same values
473   // to the global variables.
474   //
475   // Threading note 2: A release fence is placed here to ensure, from the
476   // perspective of other threads using the function pointers, that the
477   // assignment to |g_qpc_ticks_per_second| happens before the function pointers
478   // are changed.
479   g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
480   ATOMIC_THREAD_FENCE(memory_order_release);
481   g_now_function = now_function;
482 }
483 
InitialNowFunction()484 TimeDelta InitialNowFunction() {
485   InitializeNowFunctionPointer();
486   return g_now_function();
487 }
488 
489 }  // namespace
490 
491 // static
SetMockTickFunction(TickFunctionType ticker)492 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
493     TickFunctionType ticker) {
494   base::AutoLock locked(g_rollover_lock);
495   TickFunctionType old = g_tick_function;
496   g_tick_function = ticker;
497   g_rollover_ms = 0;
498   g_last_seen_now = 0;
499   return old;
500 }
501 
502 // static
Now()503 TimeTicks TimeTicks::Now() {
504   return TimeTicks() + g_now_function();
505 }
506 
507 // static
IsHighResolution()508 bool TimeTicks::IsHighResolution() {
509   if (g_now_function == &InitialNowFunction)
510     InitializeNowFunctionPointer();
511   return g_now_function == &QPCNow;
512 }
513 
514 // static
Now()515 ThreadTicks ThreadTicks::Now() {
516   DCHECK(IsSupported());
517 
518   // Get the number of TSC ticks used by the current thread.
519   ULONG64 thread_cycle_time = 0;
520   GetQueryThreadCycleTimeFunction()(::GetCurrentThread(), &thread_cycle_time);
521 
522   // Get the frequency of the TSC.
523   double tsc_ticks_per_second = TSCTicksPerSecond();
524   if (tsc_ticks_per_second == 0)
525     return ThreadTicks();
526 
527   // Return the CPU time of the current thread.
528   double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
529   return ThreadTicks(
530       static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond));
531 }
532 
533 // static
IsSupportedWin()534 bool ThreadTicks::IsSupportedWin() {
535   static bool is_supported = GetQueryThreadCycleTimeFunction() &&
536                              base::CPU().has_non_stop_time_stamp_counter() &&
537                              !IsBuggyAthlon(base::CPU());
538   return is_supported;
539 }
540 
541 // static
WaitUntilInitializedWin()542 void ThreadTicks::WaitUntilInitializedWin() {
543   while (TSCTicksPerSecond() == 0)
544     ::Sleep(10);
545 }
546 
TSCTicksPerSecond()547 double ThreadTicks::TSCTicksPerSecond() {
548   DCHECK(IsSupported());
549 
550   // The value returned by QueryPerformanceFrequency() cannot be used as the TSC
551   // frequency, because there is no guarantee that the TSC frequency is equal to
552   // the performance counter frequency.
553 
554   // The TSC frequency is cached in a static variable because it takes some time
555   // to compute it.
556   static double tsc_ticks_per_second = 0;
557   if (tsc_ticks_per_second != 0)
558     return tsc_ticks_per_second;
559 
560   // Increase the thread priority to reduces the chances of having a context
561   // switch during a reading of the TSC and the performance counter.
562   int previous_priority = ::GetThreadPriority(::GetCurrentThread());
563   ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
564 
565   // The first time that this function is called, make an initial reading of the
566   // TSC and the performance counter.
567   static const uint64_t tsc_initial = __rdtsc();
568   static const uint64_t perf_counter_initial = QPCNowRaw();
569 
570   // Make a another reading of the TSC and the performance counter every time
571   // that this function is called.
572   uint64_t tsc_now = __rdtsc();
573   uint64_t perf_counter_now = QPCNowRaw();
574 
575   // Reset the thread priority.
576   ::SetThreadPriority(::GetCurrentThread(), previous_priority);
577 
578   // Make sure that at least 50 ms elapsed between the 2 readings. The first
579   // time that this function is called, we don't expect this to be the case.
580   // Note: The longer the elapsed time between the 2 readings is, the more
581   //   accurate the computed TSC frequency will be. The 50 ms value was
582   //   chosen because local benchmarks show that it allows us to get a
583   //   stddev of less than 1 tick/us between multiple runs.
584   // Note: According to the MSDN documentation for QueryPerformanceFrequency(),
585   //   this will never fail on systems that run XP or later.
586   //   https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx
587   LARGE_INTEGER perf_counter_frequency = {};
588   ::QueryPerformanceFrequency(&perf_counter_frequency);
589   DCHECK_GE(perf_counter_now, perf_counter_initial);
590   uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
591   double elapsed_time_seconds =
592       perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart);
593 
594   const double kMinimumEvaluationPeriodSeconds = 0.05;
595   if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
596     return 0;
597 
598   // Compute the frequency of the TSC.
599   DCHECK_GE(tsc_now, tsc_initial);
600   uint64_t tsc_ticks = tsc_now - tsc_initial;
601   tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
602 
603   return tsc_ticks_per_second;
604 }
605 
606 // static
FromQPCValue(LONGLONG qpc_value)607 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
608   return TimeTicks() + QPCValueToTimeDelta(qpc_value);
609 }
610 
611 // TimeDelta ------------------------------------------------------------------
612 
613 // static
FromQPCValue(LONGLONG qpc_value)614 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
615   return QPCValueToTimeDelta(qpc_value);
616 }
617