1 /*
2  * Copyright © 2017 Mozilla Foundation
3  *
4  * This program is made available under an ISC-style license.  See the
5  * accompanying file LICENSE for details.
6  */
7 
8  /* libcubeb api/function test. Requests a loopback device and checks that
9     output is being looped back to input. NOTE: Usage of output devices while
10     performing this test will cause flakey results! */
11 #include "gtest/gtest.h"
12 #if !defined(_XOPEN_SOURCE)
13 #define _XOPEN_SOURCE 600
14 #endif
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <math.h>
18 #include <algorithm>
19 #include <memory>
20 #include <mutex>
21 #include <string>
22 #include "cubeb/cubeb.h"
23 //#define ENABLE_NORMAL_LOG
24 //#define ENABLE_VERBOSE_LOG
25 #include "common.h"
26 const uint32_t SAMPLE_FREQUENCY = 48000;
27 const uint32_t TONE_FREQUENCY = 440;
28 const double OUTPUT_AMPLITUDE = 0.25;
29 const int32_t NUM_FRAMES_TO_OUTPUT = SAMPLE_FREQUENCY / 20; /* play ~50ms of samples */
30 
31 template<typename T> T ConvertSampleToOutput(double input);
ConvertSampleToOutput(double input)32 template<> float ConvertSampleToOutput(double input) { return float(input); }
ConvertSampleToOutput(double input)33 template<> short ConvertSampleToOutput(double input) { return short(input * 32767.0f); }
34 
35 template<typename T> double ConvertSampleFromOutput(T sample);
ConvertSampleFromOutput(float sample)36 template<> double ConvertSampleFromOutput(float sample) { return double(sample); }
ConvertSampleFromOutput(short sample)37 template<> double ConvertSampleFromOutput(short sample) { return double(sample / 32767.0); }
38 
39 /* Simple cross correlation to help find phase shift. Not a performant impl */
cross_correlate(std::vector<double> & f,std::vector<double> & g,size_t signal_length)40 std::vector<double> cross_correlate(std::vector<double> & f,
41                                     std::vector<double> & g,
42                                     size_t signal_length)
43 {
44   /* the length we sweep our window through to find the cross correlation */
45   size_t sweep_length = f.size() - signal_length + 1;
46   std::vector<double> correlation;
47   correlation.reserve(sweep_length);
48   for (size_t i = 0; i < sweep_length; i++) {
49     double accumulator = 0.0;
50     for (size_t j = 0; j < signal_length; j++) {
51       accumulator += f.at(j) * g.at(i + j);
52     }
53     correlation.push_back(accumulator);
54   }
55   return correlation;
56 }
57 
58 /* best effort discovery of phase shift between output and (looped) input*/
find_phase(std::vector<double> & output_frames,std::vector<double> & input_frames,size_t signal_length)59 size_t find_phase(std::vector<double> & output_frames,
60                   std::vector<double> & input_frames,
61                   size_t signal_length)
62 {
63   std::vector<double> correlation = cross_correlate(output_frames, input_frames, signal_length);
64   size_t phase = 0;
65   double max_correlation = correlation.at(0);
66   for (size_t i = 1; i < correlation.size(); i++) {
67     if (correlation.at(i) > max_correlation) {
68       max_correlation = correlation.at(i);
69       phase = i;
70     }
71   }
72   return phase;
73 }
74 
normalize_frames(std::vector<double> & frames)75 std::vector<double> normalize_frames(std::vector<double> & frames) {
76   double max = abs(*std::max_element(frames.begin(), frames.end(),
77                                      [](double a, double b) { return abs(a) < abs(b); }));
78   std::vector<double> normalized_frames;
79   normalized_frames.reserve(frames.size());
80   for (const double frame : frames) {
81     normalized_frames.push_back(frame / max);
82   }
83   return normalized_frames;
84 }
85 
86 /* heuristic comparison of aligned output and input signals, gets flaky if TONE_FREQUENCY is too high */
compare_signals(std::vector<double> & output_frames,std::vector<double> & input_frames)87 void compare_signals(std::vector<double> & output_frames,
88                      std::vector<double> & input_frames)
89 {
90   ASSERT_EQ(output_frames.size(), input_frames.size()) << "#Output frames != #input frames";
91   size_t num_frames = output_frames.size();
92   std::vector<double> normalized_output_frames = normalize_frames(output_frames);
93   std::vector<double> normalized_input_frames = normalize_frames(input_frames);
94 
95   /* calculate mean absolute errors */
96   /* mean absolute errors between output and input */
97   double io_mas = 0.0;
98   /* mean absolute errors between output and silence */
99   double output_silence_mas = 0.0;
100   /* mean absolute errors between input and silence */
101   double input_silence_mas = 0.0;
102   for (size_t i = 0; i < num_frames; i++) {
103     io_mas += abs(normalized_output_frames.at(i) - normalized_input_frames.at(i));
104     output_silence_mas += abs(normalized_output_frames.at(i));
105     input_silence_mas += abs(normalized_input_frames.at(i));
106   }
107   io_mas /= num_frames;
108   output_silence_mas /= num_frames;
109   input_silence_mas /= num_frames;
110 
111   ASSERT_LT(io_mas, output_silence_mas)
112     << "Error between output and input should be less than output and silence!";
113   ASSERT_LT(io_mas, input_silence_mas)
114     << "Error between output and input should be less than output and silence!";
115 
116   /* make sure extrema are in (roughly) correct location */
117   /* number of maxima + minama expected in the frames*/
118   const long NUM_EXTREMA = 2 * TONE_FREQUENCY * NUM_FRAMES_TO_OUTPUT / SAMPLE_FREQUENCY;
119   /* expected index of first maxima */
120   const long FIRST_MAXIMUM_INDEX = SAMPLE_FREQUENCY / TONE_FREQUENCY / 4;
121   /* Threshold we expect all maxima and minima to be above or below. Ideally
122      the extrema would be 1 or -1, but particularly at the start of loopback
123      the values seen can be significantly lower. */
124   const double THRESHOLD = 0.5;
125 
126   for (size_t i = 0; i < NUM_EXTREMA; i++) {
127     bool is_maximum = i % 2 == 0;
128     /* expected offset to current extreme: i * stide between extrema */
129     size_t offset = i * SAMPLE_FREQUENCY / TONE_FREQUENCY / 2;
130     if (is_maximum) {
131       ASSERT_GT(normalized_output_frames.at(FIRST_MAXIMUM_INDEX + offset), THRESHOLD)
132         << "Output frames have unexpected missing maximum!";
133       ASSERT_GT(normalized_input_frames.at(FIRST_MAXIMUM_INDEX + offset), THRESHOLD)
134         << "Input frames have unexpected missing maximum!";
135     } else {
136       ASSERT_LT(normalized_output_frames.at(FIRST_MAXIMUM_INDEX + offset), -THRESHOLD)
137         << "Output frames have unexpected missing minimum!";
138       ASSERT_LT(normalized_input_frames.at(FIRST_MAXIMUM_INDEX + offset), -THRESHOLD)
139         << "Input frames have unexpected missing minimum!";
140     }
141   }
142 }
143 
144 struct user_state_loopback {
145   std::mutex user_state_mutex;
146   long position = 0;
147   /* track output */
148   std::vector<double> output_frames;
149   /* track input */
150   std::vector<double> input_frames;
151 };
152 
153 template<typename T>
data_cb_loop_duplex(cubeb_stream * stream,void * user,const void * inputbuffer,void * outputbuffer,long nframes)154 long data_cb_loop_duplex(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
155 {
156   struct user_state_loopback * u = (struct user_state_loopback *) user;
157   T * ib = (T *) inputbuffer;
158   T * ob = (T *) outputbuffer;
159 
160   if (stream == NULL || inputbuffer == NULL || outputbuffer == NULL) {
161     return CUBEB_ERROR;
162   }
163 
164   std::lock_guard<std::mutex> lock(u->user_state_mutex);
165   /* generate our test tone on the fly */
166   for (int i = 0; i < nframes; i++) {
167     double tone = 0.0;
168     if (u->position + i < NUM_FRAMES_TO_OUTPUT) {
169       /* generate sine wave */
170       tone = sin(2 * M_PI*(i + u->position) * TONE_FREQUENCY / SAMPLE_FREQUENCY);
171       tone *= OUTPUT_AMPLITUDE;
172     }
173     ob[i] = ConvertSampleToOutput<T>(tone);
174     u->output_frames.push_back(tone);
175     /* store any looped back output, may be silence */
176     u->input_frames.push_back(ConvertSampleFromOutput(ib[i]));
177   }
178 
179   u->position += nframes;
180 
181   return nframes;
182 }
183 
184 template<typename T>
data_cb_loop_input_only(cubeb_stream * stream,void * user,const void * inputbuffer,void * outputbuffer,long nframes)185 long data_cb_loop_input_only(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
186 {
187   struct user_state_loopback * u = (struct user_state_loopback *) user;
188   T * ib = (T *) inputbuffer;
189 
190   if (outputbuffer != NULL) {
191     // Can't assert as it needs to return, so expect to fail instead
192     EXPECT_EQ(outputbuffer, (void *) NULL) << "outputbuffer should be null in input only callback";
193     return CUBEB_ERROR;
194   }
195 
196   if (stream == NULL || inputbuffer == NULL) {
197     return CUBEB_ERROR;
198   }
199 
200   std::lock_guard<std::mutex> lock(u->user_state_mutex);
201   for (int i = 0; i < nframes; i++) {
202     u->input_frames.push_back(ConvertSampleFromOutput(ib[i]));
203   }
204 
205   return nframes;
206 }
207 
208 template<typename T>
data_cb_playback(cubeb_stream * stream,void * user,const void * inputbuffer,void * outputbuffer,long nframes)209 long data_cb_playback(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
210 {
211   struct user_state_loopback * u = (struct user_state_loopback *) user;
212   T * ob = (T *) outputbuffer;
213 
214   if (stream == NULL || outputbuffer == NULL) {
215     return CUBEB_ERROR;
216   }
217 
218   std::lock_guard<std::mutex> lock(u->user_state_mutex);
219   /* generate our test tone on the fly */
220   for (int i = 0; i < nframes; i++) {
221     double tone = 0.0;
222     if (u->position + i < NUM_FRAMES_TO_OUTPUT) {
223       /* generate sine wave */
224       tone = sin(2 * M_PI*(i + u->position) * TONE_FREQUENCY / SAMPLE_FREQUENCY);
225       tone *= OUTPUT_AMPLITUDE;
226     }
227     ob[i] = ConvertSampleToOutput<T>(tone);
228     u->output_frames.push_back(tone);
229   }
230 
231   u->position += nframes;
232 
233   return nframes;
234 }
235 
state_cb_loop(cubeb_stream * stream,void *,cubeb_state state)236 void state_cb_loop(cubeb_stream * stream, void * /*user*/, cubeb_state state)
237 {
238   if (stream == NULL)
239     return;
240 
241   switch (state) {
242   case CUBEB_STATE_STARTED:
243     fprintf(stderr, "stream started\n"); break;
244   case CUBEB_STATE_STOPPED:
245     fprintf(stderr, "stream stopped\n"); break;
246   case CUBEB_STATE_DRAINED:
247     fprintf(stderr, "stream drained\n"); break;
248   default:
249     fprintf(stderr, "unknown stream state %d\n", state);
250   }
251 
252   return;
253 }
254 
run_loopback_duplex_test(bool is_float)255 void run_loopback_duplex_test(bool is_float)
256 {
257   cubeb * ctx;
258   cubeb_stream * stream;
259   cubeb_stream_params input_params;
260   cubeb_stream_params output_params;
261   int r;
262   uint32_t latency_frames = 0;
263 
264   r = common_init(&ctx, "Cubeb loopback example: duplex stream");
265   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";
266 
267   std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
268     cleanup_cubeb_at_exit(ctx, cubeb_destroy);
269 
270   input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
271   input_params.rate = SAMPLE_FREQUENCY;
272   input_params.channels = 1;
273   input_params.layout = CUBEB_LAYOUT_MONO;
274   input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
275   output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
276   output_params.rate = SAMPLE_FREQUENCY;
277   output_params.channels = 1;
278   output_params.layout = CUBEB_LAYOUT_MONO;
279   output_params.prefs = CUBEB_STREAM_PREF_NONE;
280 
281   std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
282   ASSERT_TRUE(!!user_data) << "Error allocating user data";
283 
284   r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
285   ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";
286 
287   /* setup a duplex stream with loopback */
288   r = cubeb_stream_init(ctx, &stream, "Cubeb loopback",
289                         NULL, &input_params, NULL, &output_params, latency_frames,
290                         is_float ? data_cb_loop_duplex<float> : data_cb_loop_duplex<short>,
291                         state_cb_loop, user_data.get());
292   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
293 
294   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
295     cleanup_stream_at_exit(stream, cubeb_stream_destroy);
296 
297   cubeb_stream_start(stream);
298   delay(300);
299   cubeb_stream_stop(stream);
300 
301   /* access after stop should not happen, but lock just in case and to appease sanitization tools */
302   std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
303   std::vector<double> & output_frames = user_data->output_frames;
304   std::vector<double> & input_frames = user_data->input_frames;
305   ASSERT_EQ(output_frames.size(), input_frames.size())
306     << "#Output frames != #input frames";
307 
308   size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);
309 
310   /* extract vectors of just the relevant signal from output and input */
311   auto output_frames_signal_start = output_frames.begin();
312   auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
313   std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
314   auto input_frames_signal_start = input_frames.begin() + phase;
315   auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
316   std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);
317 
318   compare_signals(trimmed_output_frames, trimmed_input_frames);
319 }
320 
TEST(cubeb,loopback_duplex)321 TEST(cubeb, loopback_duplex)
322 {
323   run_loopback_duplex_test(true);
324   run_loopback_duplex_test(false);
325 }
326 
run_loopback_separate_streams_test(bool is_float)327 void run_loopback_separate_streams_test(bool is_float)
328 {
329   cubeb * ctx;
330   cubeb_stream * input_stream;
331   cubeb_stream * output_stream;
332   cubeb_stream_params input_params;
333   cubeb_stream_params output_params;
334   int r;
335   uint32_t latency_frames = 0;
336 
337   r = common_init(&ctx, "Cubeb loopback example: separate streams");
338   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";
339 
340   std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
341     cleanup_cubeb_at_exit(ctx, cubeb_destroy);
342 
343   input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
344   input_params.rate = SAMPLE_FREQUENCY;
345   input_params.channels = 1;
346   input_params.layout = CUBEB_LAYOUT_MONO;
347   input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
348   output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
349   output_params.rate = SAMPLE_FREQUENCY;
350   output_params.channels = 1;
351   output_params.layout = CUBEB_LAYOUT_MONO;
352   output_params.prefs = CUBEB_STREAM_PREF_NONE;
353 
354   std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
355   ASSERT_TRUE(!!user_data) << "Error allocating user data";
356 
357   r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
358   ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";
359 
360   /* setup an input stream with loopback */
361   r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
362                         NULL, &input_params, NULL, NULL, latency_frames,
363                         is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
364                         state_cb_loop, user_data.get());
365   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
366 
367   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
368     cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);
369 
370   /* setup an output stream */
371   r = cubeb_stream_init(ctx, &output_stream, "Cubeb loopback output only",
372                         NULL, NULL, NULL, &output_params, latency_frames,
373                         is_float ? data_cb_playback<float> : data_cb_playback<short>,
374                         state_cb_loop, user_data.get());
375   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
376 
377   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
378     cleanup_output_stream_at_exit(output_stream, cubeb_stream_destroy);
379 
380   cubeb_stream_start(input_stream);
381   cubeb_stream_start(output_stream);
382   delay(300);
383   cubeb_stream_stop(output_stream);
384   cubeb_stream_stop(input_stream);
385 
386   /* access after stop should not happen, but lock just in case and to appease sanitization tools */
387   std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
388   std::vector<double> & output_frames = user_data->output_frames;
389   std::vector<double> & input_frames = user_data->input_frames;
390   ASSERT_LE(output_frames.size(), input_frames.size())
391     << "#Output frames should be less or equal to #input frames";
392 
393   size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);
394 
395   /* extract vectors of just the relevant signal from output and input */
396   auto output_frames_signal_start = output_frames.begin();
397   auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
398   std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
399   auto input_frames_signal_start = input_frames.begin() + phase;
400   auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
401   std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);
402 
403   compare_signals(trimmed_output_frames, trimmed_input_frames);
404 }
405 
TEST(cubeb,loopback_separate_streams)406 TEST(cubeb, loopback_separate_streams)
407 {
408   run_loopback_separate_streams_test(true);
409   run_loopback_separate_streams_test(false);
410 }
411 
run_loopback_silence_test(bool is_float)412 void run_loopback_silence_test(bool is_float)
413 {
414   cubeb * ctx;
415   cubeb_stream * input_stream;
416   cubeb_stream_params input_params;
417   int r;
418   uint32_t latency_frames = 0;
419 
420   r = common_init(&ctx, "Cubeb loopback example: record silence");
421   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";
422 
423   std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
424     cleanup_cubeb_at_exit(ctx, cubeb_destroy);
425 
426   input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
427   input_params.rate = SAMPLE_FREQUENCY;
428   input_params.channels = 1;
429   input_params.layout = CUBEB_LAYOUT_MONO;
430   input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
431 
432   std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
433   ASSERT_TRUE(!!user_data) << "Error allocating user data";
434 
435   r = cubeb_get_min_latency(ctx, &input_params, &latency_frames);
436   ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";
437 
438   /* setup an input stream with loopback */
439   r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
440                         NULL, &input_params, NULL, NULL, latency_frames,
441                         is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
442                         state_cb_loop, user_data.get());
443   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
444 
445   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
446     cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);
447 
448   cubeb_stream_start(input_stream);
449   delay(300);
450   cubeb_stream_stop(input_stream);
451 
452   /* access after stop should not happen, but lock just in case and to appease sanitization tools */
453   std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
454   std::vector<double> & input_frames = user_data->input_frames;
455 
456   /* expect to have at least ~50ms of frames */
457   ASSERT_GE(input_frames.size(), SAMPLE_FREQUENCY / 20);
458   double EPISILON = 0.0001;
459   /* frames should be 0.0, but use epsilon to avoid possible issues with impls
460   that may use ~0.0 silence values. */
461   for (double frame : input_frames) {
462     ASSERT_LT(abs(frame), EPISILON);
463   }
464 }
465 
TEST(cubeb,loopback_silence)466 TEST(cubeb, loopback_silence)
467 {
468   run_loopback_silence_test(true);
469   run_loopback_silence_test(false);
470 }
471 
run_loopback_device_selection_test(bool is_float)472 void run_loopback_device_selection_test(bool is_float)
473 {
474   cubeb * ctx;
475   cubeb_device_collection collection;
476   cubeb_stream * input_stream;
477   cubeb_stream * output_stream;
478   cubeb_stream_params input_params;
479   cubeb_stream_params output_params;
480   int r;
481   uint32_t latency_frames = 0;
482 
483   r = common_init(&ctx, "Cubeb loopback example: device selection, separate streams");
484   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";
485 
486   std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
487     cleanup_cubeb_at_exit(ctx, cubeb_destroy);
488 
489   r = cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection);
490   if (r == CUBEB_ERROR_NOT_SUPPORTED) {
491     fprintf(stderr, "Device enumeration not supported"
492             " for this backend, skipping this test.\n");
493     return;
494   }
495 
496   ASSERT_EQ(r, CUBEB_OK) << "Error enumerating devices " << r;
497   /* get first preferred output device id */
498   std::string device_id;
499   for (size_t i = 0; i < collection.count; i++) {
500     if (collection.device[i].preferred) {
501       device_id = collection.device[i].device_id;
502       break;
503     }
504   }
505   cubeb_device_collection_destroy(ctx, &collection);
506   if (device_id.empty()) {
507     fprintf(stderr, "Could not find preferred device, aborting test.\n");
508     return;
509   }
510 
511   input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
512   input_params.rate = SAMPLE_FREQUENCY;
513   input_params.channels = 1;
514   input_params.layout = CUBEB_LAYOUT_MONO;
515   input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
516   output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
517   output_params.rate = SAMPLE_FREQUENCY;
518   output_params.channels = 1;
519   output_params.layout = CUBEB_LAYOUT_MONO;
520   output_params.prefs = CUBEB_STREAM_PREF_NONE;
521 
522   std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
523   ASSERT_TRUE(!!user_data) << "Error allocating user data";
524 
525   r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
526   ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";
527 
528   /* setup an input stream with loopback */
529   r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
530                         device_id.c_str(), &input_params, NULL, NULL, latency_frames,
531                         is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
532                         state_cb_loop, user_data.get());
533   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
534 
535   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
536     cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);
537 
538   /* setup an output stream */
539   r = cubeb_stream_init(ctx, &output_stream, "Cubeb loopback output only",
540                         NULL, NULL, device_id.c_str(), &output_params, latency_frames,
541                         is_float ? data_cb_playback<float> : data_cb_playback<short>,
542                         state_cb_loop, user_data.get());
543   ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";
544 
545   std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
546     cleanup_output_stream_at_exit(output_stream, cubeb_stream_destroy);
547 
548   cubeb_stream_start(input_stream);
549   cubeb_stream_start(output_stream);
550   delay(300);
551   cubeb_stream_stop(output_stream);
552   cubeb_stream_stop(input_stream);
553 
554   /* access after stop should not happen, but lock just in case and to appease sanitization tools */
555   std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
556   std::vector<double> & output_frames = user_data->output_frames;
557   std::vector<double> & input_frames = user_data->input_frames;
558   ASSERT_LE(output_frames.size(), input_frames.size())
559     << "#Output frames should be less or equal to #input frames";
560 
561   size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);
562 
563   /* extract vectors of just the relevant signal from output and input */
564   auto output_frames_signal_start = output_frames.begin();
565   auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
566   std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
567   auto input_frames_signal_start = input_frames.begin() + phase;
568   auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
569   std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);
570 
571   compare_signals(trimmed_output_frames, trimmed_input_frames);
572 }
573 
TEST(cubeb,loopback_device_selection)574 TEST(cubeb, loopback_device_selection)
575 {
576   run_loopback_device_selection_test(true);
577   run_loopback_device_selection_test(false);
578 }
579