1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 
16 #include "config/aom_config.h"
17 #include "config/aom_dsp_rtcd.h"
18 #include "config/aom_scale_rtcd.h"
19 #include "config/av1_rtcd.h"
20 
21 #include "aom_dsp/aom_dsp_common.h"
22 #include "aom_dsp/aom_filter.h"
23 #if CONFIG_DENOISE
24 #include "aom_dsp/grain_table.h"
25 #include "aom_dsp/noise_util.h"
26 #include "aom_dsp/noise_model.h"
27 #endif
28 #include "aom_dsp/psnr.h"
29 #if CONFIG_INTERNAL_STATS
30 #include "aom_dsp/ssim.h"
31 #endif
32 #include "aom_ports/aom_timer.h"
33 #include "aom_ports/mem.h"
34 #include "aom_ports/system_state.h"
35 #include "aom_scale/aom_scale.h"
36 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
37 #include "aom_util/debug_util.h"
38 #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
39 
40 #include "av1/common/alloccommon.h"
41 #include "av1/common/cdef.h"
42 #include "av1/common/filter.h"
43 #include "av1/common/idct.h"
44 #include "av1/common/reconinter.h"
45 #include "av1/common/reconintra.h"
46 #include "av1/common/resize.h"
47 #include "av1/common/tile_common.h"
48 
49 #include "av1/encoder/aq_complexity.h"
50 #include "av1/encoder/aq_cyclicrefresh.h"
51 #include "av1/encoder/aq_variance.h"
52 #include "av1/encoder/bitstream.h"
53 #include "av1/encoder/context_tree.h"
54 #include "av1/encoder/encodeframe.h"
55 #include "av1/encoder/encodemv.h"
56 #include "av1/encoder/encoder.h"
57 #include "av1/encoder/encodetxb.h"
58 #include "av1/encoder/ethread.h"
59 #include "av1/encoder/firstpass.h"
60 #include "av1/encoder/grain_test_vectors.h"
61 #include "av1/encoder/hash_motion.h"
62 #include "av1/encoder/mbgraph.h"
63 #include "av1/encoder/picklpf.h"
64 #include "av1/encoder/pickrst.h"
65 #include "av1/encoder/random.h"
66 #include "av1/encoder/ratectrl.h"
67 #include "av1/encoder/rd.h"
68 #include "av1/encoder/segmentation.h"
69 #include "av1/encoder/speed_features.h"
70 #include "av1/encoder/temporal_filter.h"
71 
72 #define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7
73 
74 // av1 uses 10,000,000 ticks/second as time stamp
75 #define TICKS_PER_SEC 10000000LL
76 
77 #if CONFIG_ENTROPY_STATS
78 FRAME_COUNTS aggregate_fc;
79 #endif  // CONFIG_ENTROPY_STATS
80 
81 #define AM_SEGMENT_ID_INACTIVE 7
82 #define AM_SEGMENT_ID_ACTIVE 0
83 
84 // Whether to use high precision mv for altref computation.
85 #define ALTREF_HIGH_PRECISION_MV 1
86 
87 // Q threshold for high precision mv. Choose a very high value for now so that
88 // HIGH_PRECISION is always chosen.
89 #define HIGH_PRECISION_MV_QTHRESH 200
90 
91 // #define OUTPUT_YUV_REC
92 #ifdef OUTPUT_YUV_SKINMAP
93 FILE *yuv_skinmap_file = NULL;
94 #endif
95 #ifdef OUTPUT_YUV_REC
96 FILE *yuv_rec_file;
97 #define FILE_NAME_LEN 100
98 #endif
99 
Scale2Ratio(AOM_SCALING mode,int * hr,int * hs)100 static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) {
101   switch (mode) {
102     case NORMAL:
103       *hr = 1;
104       *hs = 1;
105       break;
106     case FOURFIVE:
107       *hr = 4;
108       *hs = 5;
109       break;
110     case THREEFIVE:
111       *hr = 3;
112       *hs = 5;
113       break;
114     case ONETWO:
115       *hr = 1;
116       *hs = 2;
117       break;
118     default:
119       *hr = 1;
120       *hs = 1;
121       assert(0);
122       break;
123   }
124 }
125 
126 // Mark all inactive blocks as active. Other segmentation features may be set
127 // so memset cannot be used, instead only inactive blocks should be reset.
suppress_active_map(AV1_COMP * cpi)128 static void suppress_active_map(AV1_COMP *cpi) {
129   unsigned char *const seg_map = cpi->segmentation_map;
130   int i;
131   if (cpi->active_map.enabled || cpi->active_map.update)
132     for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
133       if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
134         seg_map[i] = AM_SEGMENT_ID_ACTIVE;
135 }
136 
apply_active_map(AV1_COMP * cpi)137 static void apply_active_map(AV1_COMP *cpi) {
138   struct segmentation *const seg = &cpi->common.seg;
139   unsigned char *const seg_map = cpi->segmentation_map;
140   const unsigned char *const active_map = cpi->active_map.map;
141   int i;
142 
143   assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
144 
145   if (frame_is_intra_only(&cpi->common)) {
146     cpi->active_map.enabled = 0;
147     cpi->active_map.update = 1;
148   }
149 
150   if (cpi->active_map.update) {
151     if (cpi->active_map.enabled) {
152       for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
153         if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
154       av1_enable_segmentation(seg);
155       av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
156       av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
157       av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
158       av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
159       av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
160 
161       av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H,
162                       -MAX_LOOP_FILTER);
163       av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V,
164                       -MAX_LOOP_FILTER);
165       av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U,
166                       -MAX_LOOP_FILTER);
167       av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V,
168                       -MAX_LOOP_FILTER);
169     } else {
170       av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
171       av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
172       av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
173       av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
174       av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
175       if (seg->enabled) {
176         seg->update_data = 1;
177         seg->update_map = 1;
178       }
179     }
180     cpi->active_map.update = 0;
181   }
182 }
183 
av1_set_active_map(AV1_COMP * cpi,unsigned char * new_map_16x16,int rows,int cols)184 int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
185                        int cols) {
186   if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
187     unsigned char *const active_map_8x8 = cpi->active_map.map;
188     const int mi_rows = cpi->common.mi_rows;
189     const int mi_cols = cpi->common.mi_cols;
190     const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2;
191     const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2;
192     cpi->active_map.update = 1;
193     if (new_map_16x16) {
194       int r, c;
195       for (r = 0; r < mi_rows; ++r) {
196         for (c = 0; c < mi_cols; ++c) {
197           active_map_8x8[r * mi_cols + c] =
198               new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)]
199                   ? AM_SEGMENT_ID_ACTIVE
200                   : AM_SEGMENT_ID_INACTIVE;
201         }
202       }
203       cpi->active_map.enabled = 1;
204     } else {
205       cpi->active_map.enabled = 0;
206     }
207     return 0;
208   } else {
209     return -1;
210   }
211 }
212 
av1_get_active_map(AV1_COMP * cpi,unsigned char * new_map_16x16,int rows,int cols)213 int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
214                        int cols) {
215   if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
216       new_map_16x16) {
217     unsigned char *const seg_map_8x8 = cpi->segmentation_map;
218     const int mi_rows = cpi->common.mi_rows;
219     const int mi_cols = cpi->common.mi_cols;
220     const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2;
221     const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2;
222 
223     memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
224     if (cpi->active_map.enabled) {
225       int r, c;
226       for (r = 0; r < mi_rows; ++r) {
227         for (c = 0; c < mi_cols; ++c) {
228           // Cyclic refresh segments are considered active despite not having
229           // AM_SEGMENT_ID_ACTIVE
230           new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] |=
231               seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
232         }
233       }
234     }
235     return 0;
236   } else {
237     return -1;
238   }
239 }
240 
set_high_precision_mv(AV1_COMP * cpi,int allow_high_precision_mv,int cur_frame_force_integer_mv)241 static void set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv,
242                                   int cur_frame_force_integer_mv) {
243   MACROBLOCK *const mb = &cpi->td.mb;
244   cpi->common.allow_high_precision_mv =
245       allow_high_precision_mv && cur_frame_force_integer_mv == 0;
246   const int copy_hp =
247       cpi->common.allow_high_precision_mv && cur_frame_force_integer_mv == 0;
248   int *(*src)[2] = copy_hp ? &mb->nmvcost_hp : &mb->nmvcost;
249   mb->mv_cost_stack = *src;
250 }
251 
select_sb_size(const AV1_COMP * const cpi)252 static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) {
253   const AV1_COMMON *const cm = &cpi->common;
254 
255   if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64)
256     return BLOCK_64X64;
257 #if CONFIG_FILEOPTIONS
258   if (cm->options && cm->options->ext_partition)
259 #endif
260     if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128)
261       return BLOCK_128X128;
262 
263   assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC);
264 
265 // TODO(any): Possibly could improve this with a heuristic.
266 #if CONFIG_FILEOPTIONS
267   if (cm->options && !cm->options->ext_partition) return BLOCK_64X64;
268 #endif
269 
270   // When superres / resize is on, 'cm->width / height' can change between
271   // calls, so we don't apply this heuristic there. Also, this heuristic gives
272   // compression gain for speed >= 2 only.
273   if (cpi->oxcf.superres_mode == SUPERRES_NONE &&
274       cpi->oxcf.resize_mode == RESIZE_NONE && cpi->oxcf.speed >= 2) {
275     return (cm->width >= 480 && cm->height >= 360) ? BLOCK_128X128
276                                                    : BLOCK_64X64;
277   }
278 
279   return BLOCK_128X128;
280 }
281 
setup_frame(AV1_COMP * cpi)282 static void setup_frame(AV1_COMP *cpi) {
283   AV1_COMMON *const cm = &cpi->common;
284   // Set up entropy context depending on frame type. The decoder mandates
285   // the use of the default context, index 0, for keyframes and inter
286   // frames where the error_resilient_mode or intra_only flag is set. For
287   // other inter-frames the encoder currently uses only two contexts;
288   // context 1 for ALTREF frames and context 0 for the others.
289 
290   cm->primary_ref_frame = PRIMARY_REF_NONE;
291   if (frame_is_intra_only(cm) || cm->error_resilient_mode ||
292       cm->force_primary_ref_none) {
293     av1_setup_past_independence(cm);
294     for (int i = 0; i < REF_FRAMES; i++) {
295       cm->fb_of_context_type[i] = -1;
296     }
297     cm->fb_of_context_type[REGULAR_FRAME] =
298         cm->show_frame ? get_ref_frame_map_idx(cpi, GOLDEN_FRAME)
299                        : get_ref_frame_map_idx(cpi, ALTREF_FRAME);
300     cm->frame_context_idx = REGULAR_FRAME;
301   } else {
302     const GF_GROUP *gf_group = &cpi->twopass.gf_group;
303     if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE)
304       cm->frame_context_idx = EXT_ARF_FRAME;
305     else if (cpi->refresh_alt_ref_frame)
306       cm->frame_context_idx = ARF_FRAME;
307     else if (cpi->rc.is_src_frame_alt_ref)
308       cm->frame_context_idx = OVERLAY_FRAME;
309     else if (cpi->refresh_golden_frame)
310       cm->frame_context_idx = GLD_FRAME;
311     else if (cpi->refresh_bwd_ref_frame)
312       cm->frame_context_idx = BRF_FRAME;
313     else
314       cm->frame_context_idx = REGULAR_FRAME;
315     int wanted_fb = cm->fb_of_context_type[cm->frame_context_idx];
316     for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
317       int fb = get_ref_frame_map_idx(cpi, ref_frame);
318       if (fb == wanted_fb) {
319         cm->primary_ref_frame = ref_frame - LAST_FRAME;
320       }
321     }
322   }
323 
324   if (cm->frame_type == KEY_FRAME && cm->show_frame) {
325     cpi->refresh_golden_frame = 1;
326     cpi->refresh_alt_ref_frame = 1;
327     av1_zero(cpi->interp_filter_selected);
328     set_sb_size(&cm->seq_params, select_sb_size(cpi));
329     set_use_reference_buffer(cm, 0);
330   } else if (frame_is_sframe(cm)) {
331     cpi->refresh_golden_frame = 1;
332     cpi->refresh_alt_ref_frame = 1;
333     av1_zero(cpi->interp_filter_selected);
334     set_sb_size(&cm->seq_params, select_sb_size(cpi));
335   } else {
336     if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
337         cm->frame_refs[cm->primary_ref_frame].idx < 0) {
338       av1_setup_past_independence(cm);
339       cm->seg.update_map = 1;
340       cm->seg.update_data = 1;
341     } else {
342       *cm->fc = cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx];
343     }
344     av1_zero(cpi->interp_filter_selected[0]);
345   }
346 
347   cm->prev_frame = get_prev_frame(cm);
348   cpi->vaq_refresh = 0;
349 }
350 
enc_setup_mi(AV1_COMMON * cm)351 static void enc_setup_mi(AV1_COMMON *cm) {
352   int i;
353   int mi_rows_sb_aligned = calc_mi_size(cm->mi_rows);
354   cm->mi = cm->mip;
355   memset(cm->mip, 0, cm->mi_stride * mi_rows_sb_aligned * sizeof(*cm->mip));
356   cm->prev_mi = cm->prev_mip;
357   // Clear top border row
358   memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
359   // Clear left border column
360   for (i = 0; i < mi_rows_sb_aligned; ++i)
361     memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
362   cm->mi_grid_visible = cm->mi_grid_base;
363   cm->prev_mi_grid_visible = cm->prev_mi_grid_base;
364 
365   memset(cm->mi_grid_base, 0,
366          cm->mi_stride * mi_rows_sb_aligned * sizeof(*cm->mi_grid_base));
367 }
368 
enc_alloc_mi(AV1_COMMON * cm,int mi_size)369 static int enc_alloc_mi(AV1_COMMON *cm, int mi_size) {
370   cm->mip = aom_calloc(mi_size, sizeof(*cm->mip));
371   if (!cm->mip) return 1;
372   cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip));
373   if (!cm->prev_mip) return 1;
374   cm->mi_alloc_size = mi_size;
375 
376   cm->mi_grid_base =
377       (MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *));
378   if (!cm->mi_grid_base) return 1;
379   cm->prev_mi_grid_base =
380       (MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *));
381   if (!cm->prev_mi_grid_base) return 1;
382 
383   return 0;
384 }
385 
enc_free_mi(AV1_COMMON * cm)386 static void enc_free_mi(AV1_COMMON *cm) {
387   aom_free(cm->mip);
388   cm->mip = NULL;
389   aom_free(cm->prev_mip);
390   cm->prev_mip = NULL;
391   aom_free(cm->mi_grid_base);
392   cm->mi_grid_base = NULL;
393   aom_free(cm->prev_mi_grid_base);
394   cm->prev_mi_grid_base = NULL;
395   cm->mi_alloc_size = 0;
396 }
397 
swap_mi_and_prev_mi(AV1_COMMON * cm)398 static void swap_mi_and_prev_mi(AV1_COMMON *cm) {
399   // Current mip will be the prev_mip for the next frame.
400   MB_MODE_INFO **temp_base = cm->prev_mi_grid_base;
401   MB_MODE_INFO *temp = cm->prev_mip;
402   cm->prev_mip = cm->mip;
403   cm->mip = temp;
404 
405   // Update the upper left visible macroblock ptrs.
406   cm->mi = cm->mip;
407   cm->prev_mi = cm->prev_mip;
408 
409   cm->prev_mi_grid_base = cm->mi_grid_base;
410   cm->mi_grid_base = temp_base;
411   cm->mi_grid_visible = cm->mi_grid_base;
412   cm->prev_mi_grid_visible = cm->prev_mi_grid_base;
413 }
414 
av1_initialize_enc(void)415 void av1_initialize_enc(void) {
416   av1_rtcd();
417   aom_dsp_rtcd();
418   aom_scale_rtcd();
419   av1_init_intra_predictors();
420   av1_init_me_luts();
421   av1_rc_init_minq_luts();
422   av1_init_wedge_masks();
423 }
424 
dealloc_context_buffers_ext(AV1_COMP * cpi)425 static void dealloc_context_buffers_ext(AV1_COMP *cpi) {
426   if (cpi->mbmi_ext_base) {
427     aom_free(cpi->mbmi_ext_base);
428     cpi->mbmi_ext_base = NULL;
429   }
430 }
431 
alloc_context_buffers_ext(AV1_COMP * cpi)432 static void alloc_context_buffers_ext(AV1_COMP *cpi) {
433   AV1_COMMON *cm = &cpi->common;
434   int mi_size = cm->mi_cols * cm->mi_rows;
435 
436   dealloc_context_buffers_ext(cpi);
437   CHECK_MEM_ERROR(cm, cpi->mbmi_ext_base,
438                   aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base)));
439 }
440 
update_film_grain_parameters(struct AV1_COMP * cpi,const AV1EncoderConfig * oxcf)441 static void update_film_grain_parameters(struct AV1_COMP *cpi,
442                                          const AV1EncoderConfig *oxcf) {
443   AV1_COMMON *const cm = &cpi->common;
444   cpi->oxcf = *oxcf;
445 
446   if (cpi->film_grain_table) {
447     aom_film_grain_table_free(cpi->film_grain_table);
448     aom_free(cpi->film_grain_table);
449     cpi->film_grain_table = NULL;
450   }
451 
452   if (oxcf->film_grain_test_vector) {
453     cm->seq_params.film_grain_params_present = 1;
454     if (cm->frame_type == KEY_FRAME) {
455       memcpy(&cm->film_grain_params,
456              film_grain_test_vectors + oxcf->film_grain_test_vector - 1,
457              sizeof(cm->film_grain_params));
458 
459       cm->film_grain_params.bit_depth = cm->seq_params.bit_depth;
460       if (cm->seq_params.color_range == AOM_CR_FULL_RANGE) {
461         cm->film_grain_params.clip_to_restricted_range = 0;
462       }
463     }
464   } else if (oxcf->film_grain_table_filename) {
465     cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table));
466     memset(cpi->film_grain_table, 0, sizeof(aom_film_grain_table_t));
467 
468     aom_film_grain_table_read(cpi->film_grain_table,
469                               oxcf->film_grain_table_filename, &cm->error);
470   } else {
471     cm->seq_params.film_grain_params_present = 0;
472     memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
473   }
474 }
475 
dealloc_compressor_data(AV1_COMP * cpi)476 static void dealloc_compressor_data(AV1_COMP *cpi) {
477   AV1_COMMON *const cm = &cpi->common;
478   const int num_planes = av1_num_planes(cm);
479 
480   dealloc_context_buffers_ext(cpi);
481 
482   aom_free(cpi->tile_data);
483   cpi->tile_data = NULL;
484 
485   // Delete sementation map
486   aom_free(cpi->segmentation_map);
487   cpi->segmentation_map = NULL;
488 
489   av1_cyclic_refresh_free(cpi->cyclic_refresh);
490   cpi->cyclic_refresh = NULL;
491 
492   aom_free(cpi->active_map.map);
493   cpi->active_map.map = NULL;
494 
495   aom_free(cpi->td.mb.above_pred_buf);
496   cpi->td.mb.above_pred_buf = NULL;
497 
498   aom_free(cpi->td.mb.left_pred_buf);
499   cpi->td.mb.left_pred_buf = NULL;
500 
501   aom_free(cpi->td.mb.wsrc_buf);
502   cpi->td.mb.wsrc_buf = NULL;
503 
504   for (int i = 0; i < 2; i++)
505     for (int j = 0; j < 2; j++) {
506       aom_free(cpi->td.mb.hash_value_buffer[i][j]);
507       cpi->td.mb.hash_value_buffer[i][j] = NULL;
508     }
509   aom_free(cpi->td.mb.mask_buf);
510   cpi->td.mb.mask_buf = NULL;
511 
512   aom_free(cm->tpl_mvs);
513   cm->tpl_mvs = NULL;
514 
515   av1_free_ref_frame_buffers(cm->buffer_pool);
516   av1_free_txb_buf(cpi);
517   av1_free_context_buffers(cm);
518 
519   aom_free_frame_buffer(&cpi->last_frame_uf);
520   av1_free_restoration_buffers(cm);
521   aom_free_frame_buffer(&cpi->trial_frame_rst);
522   aom_free_frame_buffer(&cpi->scaled_source);
523   aom_free_frame_buffer(&cpi->scaled_last_source);
524   aom_free_frame_buffer(&cpi->alt_ref_buffer);
525   av1_lookahead_destroy(cpi->lookahead);
526 
527   aom_free(cpi->tile_tok[0][0]);
528   cpi->tile_tok[0][0] = 0;
529 
530   aom_free(cpi->tplist[0][0]);
531   cpi->tplist[0][0] = NULL;
532 
533   av1_free_pc_tree(&cpi->td, num_planes);
534 
535   aom_free(cpi->td.mb.palette_buffer);
536 
537   aom_free(cpi->td.mb.tmp_conv_dst);
538   for (int j = 0; j < 2; ++j) {
539     aom_free(cpi->td.mb.tmp_obmc_bufs[j]);
540   }
541 
542 #if CONFIG_DENOISE
543   if (cpi->denoise_and_model) {
544     aom_denoise_and_model_free(cpi->denoise_and_model);
545     cpi->denoise_and_model = NULL;
546   }
547 #endif
548   if (cpi->film_grain_table) {
549     aom_film_grain_table_free(cpi->film_grain_table);
550     cpi->film_grain_table = NULL;
551   }
552 }
553 
save_coding_context(AV1_COMP * cpi)554 static void save_coding_context(AV1_COMP *cpi) {
555   CODING_CONTEXT *const cc = &cpi->coding_context;
556   AV1_COMMON *cm = &cpi->common;
557 
558   // Stores a snapshot of key state variables which can subsequently be
559   // restored with a call to av1_restore_coding_context. These functions are
560   // intended for use in a re-code loop in av1_compress_frame where the
561   // quantizer value is adjusted between loop iterations.
562   av1_copy(cc->nmv_vec_cost, cpi->td.mb.nmv_vec_cost);
563   av1_copy(cc->nmv_costs, cpi->nmv_costs);
564   av1_copy(cc->nmv_costs_hp, cpi->nmv_costs_hp);
565 
566   cc->fc = *cm->fc;
567 }
568 
restore_coding_context(AV1_COMP * cpi)569 static void restore_coding_context(AV1_COMP *cpi) {
570   CODING_CONTEXT *const cc = &cpi->coding_context;
571   AV1_COMMON *cm = &cpi->common;
572 
573   // Restore key state variables to the snapshot state stored in the
574   // previous call to av1_save_coding_context.
575   av1_copy(cpi->td.mb.nmv_vec_cost, cc->nmv_vec_cost);
576   av1_copy(cpi->nmv_costs, cc->nmv_costs);
577   av1_copy(cpi->nmv_costs_hp, cc->nmv_costs_hp);
578 
579   *cm->fc = cc->fc;
580 }
581 
configure_static_seg_features(AV1_COMP * cpi)582 static void configure_static_seg_features(AV1_COMP *cpi) {
583   AV1_COMMON *const cm = &cpi->common;
584   const RATE_CONTROL *const rc = &cpi->rc;
585   struct segmentation *const seg = &cm->seg;
586 
587   int high_q = (int)(rc->avg_q > 48.0);
588   int qi_delta;
589 
590   // Disable and clear down for KF
591   if (cm->frame_type == KEY_FRAME) {
592     // Clear down the global segmentation map
593     memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
594     seg->update_map = 0;
595     seg->update_data = 0;
596     cpi->static_mb_pct = 0;
597 
598     // Disable segmentation
599     av1_disable_segmentation(seg);
600 
601     // Clear down the segment features.
602     av1_clearall_segfeatures(seg);
603   } else if (cpi->refresh_alt_ref_frame) {
604     // If this is an alt ref frame
605     // Clear down the global segmentation map
606     memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
607     seg->update_map = 0;
608     seg->update_data = 0;
609     cpi->static_mb_pct = 0;
610 
611     // Disable segmentation and individual segment features by default
612     av1_disable_segmentation(seg);
613     av1_clearall_segfeatures(seg);
614 
615     // Scan frames from current to arf frame.
616     // This function re-enables segmentation if appropriate.
617     av1_update_mbgraph_stats(cpi);
618 
619     // If segmentation was enabled set those features needed for the
620     // arf itself.
621     if (seg->enabled) {
622       seg->update_map = 1;
623       seg->update_data = 1;
624 
625       qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875,
626                                     cm->seq_params.bit_depth);
627       av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
628       av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2);
629       av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2);
630       av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2);
631       av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2);
632 
633       av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H);
634       av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V);
635       av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U);
636       av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V);
637 
638       av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
639     }
640   } else if (seg->enabled) {
641     // All other frames if segmentation has been enabled
642 
643     // First normal frame in a valid gf or alt ref group
644     if (rc->frames_since_golden == 0) {
645       // Set up segment features for normal frames in an arf group
646       if (rc->source_alt_ref_active) {
647         seg->update_map = 0;
648         seg->update_data = 1;
649 
650         qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
651                                       cm->seq_params.bit_depth);
652         av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
653         av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
654 
655         av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2);
656         av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2);
657         av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2);
658         av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2);
659 
660         av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H);
661         av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V);
662         av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U);
663         av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V);
664 
665         // Segment coding disabled for compred testing
666         if (high_q || (cpi->static_mb_pct == 100)) {
667           av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
668           av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
669           av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
670         }
671       } else {
672         // Disable segmentation and clear down features if alt ref
673         // is not active for this group
674 
675         av1_disable_segmentation(seg);
676 
677         memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
678 
679         seg->update_map = 0;
680         seg->update_data = 0;
681 
682         av1_clearall_segfeatures(seg);
683       }
684     } else if (rc->is_src_frame_alt_ref) {
685       // Special case where we are coding over the top of a previous
686       // alt ref frame.
687       // Segment coding disabled for compred testing
688 
689       // Enable ref frame features for segment 0 as well
690       av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
691       av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
692 
693       // All mbs should use ALTREF_FRAME
694       av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
695       av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
696       av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
697       av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
698 
699       // Skip all MBs if high Q (0,0 mv and skip coeffs)
700       if (high_q) {
701         av1_enable_segfeature(seg, 0, SEG_LVL_SKIP);
702         av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
703       }
704       // Enable data update
705       seg->update_data = 1;
706     } else {
707       // All other frames.
708 
709       // No updates.. leave things as they are.
710       seg->update_map = 0;
711       seg->update_data = 0;
712     }
713   }
714 }
715 
update_reference_segmentation_map(AV1_COMP * cpi)716 static void update_reference_segmentation_map(AV1_COMP *cpi) {
717   AV1_COMMON *const cm = &cpi->common;
718   MB_MODE_INFO **mi_4x4_ptr = cm->mi_grid_visible;
719   uint8_t *cache_ptr = cm->current_frame_seg_map;
720   int row, col;
721 
722   for (row = 0; row < cm->mi_rows; row++) {
723     MB_MODE_INFO **mi_4x4 = mi_4x4_ptr;
724     uint8_t *cache = cache_ptr;
725     for (col = 0; col < cm->mi_cols; col++, mi_4x4++, cache++)
726       cache[0] = mi_4x4[0]->segment_id;
727     mi_4x4_ptr += cm->mi_stride;
728     cache_ptr += cm->mi_cols;
729   }
730 }
731 
alloc_raw_frame_buffers(AV1_COMP * cpi)732 static void alloc_raw_frame_buffers(AV1_COMP *cpi) {
733   AV1_COMMON *cm = &cpi->common;
734   const SequenceHeader *const seq_params = &cm->seq_params;
735   const AV1EncoderConfig *oxcf = &cpi->oxcf;
736 
737   if (!cpi->lookahead)
738     cpi->lookahead =
739         av1_lookahead_init(oxcf->width, oxcf->height, seq_params->subsampling_x,
740                            seq_params->subsampling_y,
741                            seq_params->use_highbitdepth, oxcf->lag_in_frames);
742   if (!cpi->lookahead)
743     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
744                        "Failed to allocate lag buffers");
745 
746   // TODO(agrange) Check if ARF is enabled and skip allocation if not.
747   if (aom_realloc_frame_buffer(
748           &cpi->alt_ref_buffer, oxcf->width, oxcf->height,
749           seq_params->subsampling_x, seq_params->subsampling_y,
750           seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
751           cm->byte_alignment, NULL, NULL, NULL))
752     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
753                        "Failed to allocate altref buffer");
754 }
755 
alloc_util_frame_buffers(AV1_COMP * cpi)756 static void alloc_util_frame_buffers(AV1_COMP *cpi) {
757   AV1_COMMON *const cm = &cpi->common;
758   const SequenceHeader *const seq_params = &cm->seq_params;
759   if (aom_realloc_frame_buffer(
760           &cpi->last_frame_uf, cm->width, cm->height, seq_params->subsampling_x,
761           seq_params->subsampling_y, seq_params->use_highbitdepth,
762           AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL))
763     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
764                        "Failed to allocate last frame buffer");
765 
766   if (aom_realloc_frame_buffer(
767           &cpi->trial_frame_rst, cm->superres_upscaled_width,
768           cm->superres_upscaled_height, seq_params->subsampling_x,
769           seq_params->subsampling_y, seq_params->use_highbitdepth,
770           AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL))
771     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
772                        "Failed to allocate trial restored frame buffer");
773 
774   if (aom_realloc_frame_buffer(
775           &cpi->scaled_source, cm->width, cm->height, seq_params->subsampling_x,
776           seq_params->subsampling_y, seq_params->use_highbitdepth,
777           AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL))
778     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
779                        "Failed to allocate scaled source buffer");
780 
781   if (aom_realloc_frame_buffer(
782           &cpi->scaled_last_source, cm->width, cm->height,
783           seq_params->subsampling_x, seq_params->subsampling_y,
784           seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
785           cm->byte_alignment, NULL, NULL, NULL))
786     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
787                        "Failed to allocate scaled last source buffer");
788 }
789 
alloc_compressor_data(AV1_COMP * cpi)790 static void alloc_compressor_data(AV1_COMP *cpi) {
791   AV1_COMMON *cm = &cpi->common;
792   const int num_planes = av1_num_planes(cm);
793 
794   av1_alloc_context_buffers(cm, cm->width, cm->height);
795 
796   int mi_rows_aligned_to_sb =
797       ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
798   int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2;
799 
800   av1_alloc_txb_buf(cpi);
801 
802   alloc_context_buffers_ext(cpi);
803 
804   aom_free(cpi->tile_tok[0][0]);
805 
806   {
807     unsigned int tokens =
808         get_token_alloc(cm->mb_rows, cm->mb_cols, MAX_SB_SIZE_LOG2, num_planes);
809     CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
810                     aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
811   }
812   aom_free(cpi->tplist[0][0]);
813 
814   CHECK_MEM_ERROR(cm, cpi->tplist[0][0],
815                   aom_calloc(sb_rows * MAX_TILE_ROWS * MAX_TILE_COLS,
816                              sizeof(*cpi->tplist[0][0])));
817 
818   av1_setup_pc_tree(&cpi->common, &cpi->td);
819 }
820 
av1_new_framerate(AV1_COMP * cpi,double framerate)821 void av1_new_framerate(AV1_COMP *cpi, double framerate) {
822   cpi->framerate = framerate < 0.1 ? 30 : framerate;
823   av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height);
824 }
825 
set_tile_info(AV1_COMP * cpi)826 static void set_tile_info(AV1_COMP *cpi) {
827   AV1_COMMON *const cm = &cpi->common;
828   int i, start_sb;
829 
830   av1_get_tile_limits(cm);
831 
832   // configure tile columns
833   if (cpi->oxcf.tile_width_count == 0 || cpi->oxcf.tile_height_count == 0) {
834     cm->uniform_tile_spacing_flag = 1;
835     cm->log2_tile_cols = AOMMAX(cpi->oxcf.tile_columns, cm->min_log2_tile_cols);
836     cm->log2_tile_cols = AOMMIN(cm->log2_tile_cols, cm->max_log2_tile_cols);
837   } else {
838     int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
839     int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
840     int size_sb, j = 0;
841     cm->uniform_tile_spacing_flag = 0;
842     for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) {
843       cm->tile_col_start_sb[i] = start_sb;
844       size_sb = cpi->oxcf.tile_widths[j++];
845       if (j >= cpi->oxcf.tile_width_count) j = 0;
846       start_sb += AOMMIN(size_sb, cm->max_tile_width_sb);
847     }
848     cm->tile_cols = i;
849     cm->tile_col_start_sb[i] = sb_cols;
850   }
851   av1_calculate_tile_cols(cm);
852 
853   // configure tile rows
854   if (cm->uniform_tile_spacing_flag) {
855     cm->log2_tile_rows = AOMMAX(cpi->oxcf.tile_rows, cm->min_log2_tile_rows);
856     cm->log2_tile_rows = AOMMIN(cm->log2_tile_rows, cm->max_log2_tile_rows);
857   } else {
858     int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
859     int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
860     int size_sb, j = 0;
861     for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) {
862       cm->tile_row_start_sb[i] = start_sb;
863       size_sb = cpi->oxcf.tile_heights[j++];
864       if (j >= cpi->oxcf.tile_height_count) j = 0;
865       start_sb += AOMMIN(size_sb, cm->max_tile_height_sb);
866     }
867     cm->tile_rows = i;
868     cm->tile_row_start_sb[i] = sb_rows;
869   }
870   av1_calculate_tile_rows(cm);
871 }
872 
update_frame_size(AV1_COMP * cpi)873 static void update_frame_size(AV1_COMP *cpi) {
874   AV1_COMMON *const cm = &cpi->common;
875   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
876 
877   av1_set_mb_mi(cm, cm->width, cm->height);
878   av1_init_context_buffers(cm);
879   av1_init_macroblockd(cm, xd, NULL);
880   memset(cpi->mbmi_ext_base, 0,
881          cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
882   set_tile_info(cpi);
883 }
884 
init_buffer_indices(AV1_COMP * cpi)885 static void init_buffer_indices(AV1_COMP *cpi) {
886   int fb_idx;
887   for (fb_idx = 0; fb_idx < REF_FRAMES; ++fb_idx)
888     cpi->ref_fb_idx[fb_idx] = fb_idx;
889   cpi->rate_index = 0;
890   cpi->rate_size = 0;
891   cpi->cur_poc = -1;
892 }
893 
does_level_match(int width,int height,double fps,int lvl_width,int lvl_height,double lvl_fps,int lvl_dim_mult)894 static INLINE int does_level_match(int width, int height, double fps,
895                                    int lvl_width, int lvl_height,
896                                    double lvl_fps, int lvl_dim_mult) {
897   const int64_t lvl_luma_pels = lvl_width * lvl_height;
898   const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps;
899   const int64_t luma_pels = width * height;
900   const double display_sample_rate = luma_pels * fps;
901   return luma_pels <= lvl_luma_pels &&
902          display_sample_rate <= lvl_display_sample_rate &&
903          width <= lvl_width * lvl_dim_mult &&
904          height <= lvl_height * lvl_dim_mult;
905 }
906 
set_bitstream_level_tier(SequenceHeader * seq,AV1_COMMON * cm,const AV1EncoderConfig * oxcf)907 static void set_bitstream_level_tier(SequenceHeader *seq, AV1_COMMON *cm,
908                                      const AV1EncoderConfig *oxcf) {
909   // TODO(any): This is a placeholder function that only addresses dimensions
910   // and max display sample rates.
911   // Need to add checks for max bit rate, max decoded luma sample rate, header
912   // rate, etc. that are not covered by this function.
913   (void)oxcf;
914   BitstreamLevel bl = { 9, 3 };
915   if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, 512,
916                        288, 30.0, 4)) {
917     bl.major = 2;
918     bl.minor = 0;
919   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
920                               704, 396, 30.0, 4)) {
921     bl.major = 2;
922     bl.minor = 1;
923   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
924                               1088, 612, 30.0, 4)) {
925     bl.major = 3;
926     bl.minor = 0;
927   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
928                               1376, 774, 30.0, 4)) {
929     bl.major = 3;
930     bl.minor = 1;
931   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
932                               2048, 1152, 30.0, 3)) {
933     bl.major = 4;
934     bl.minor = 0;
935   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
936                               2048, 1152, 60.0, 3)) {
937     bl.major = 4;
938     bl.minor = 1;
939   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
940                               4096, 2176, 30.0, 2)) {
941     bl.major = 5;
942     bl.minor = 0;
943   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
944                               4096, 2176, 60.0, 2)) {
945     bl.major = 5;
946     bl.minor = 1;
947   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
948                               4096, 2176, 120.0, 2)) {
949     bl.major = 5;
950     bl.minor = 2;
951   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
952                               8192, 4352, 30.0, 2)) {
953     bl.major = 6;
954     bl.minor = 0;
955   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
956                               8192, 4352, 60.0, 2)) {
957     bl.major = 6;
958     bl.minor = 1;
959   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
960                               8192, 4352, 120.0, 2)) {
961     bl.major = 6;
962     bl.minor = 2;
963   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
964                               16384, 8704, 30.0, 2)) {
965     bl.major = 7;
966     bl.minor = 0;
967   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
968                               16384, 8704, 60.0, 2)) {
969     bl.major = 7;
970     bl.minor = 1;
971   } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
972                               16384, 8704, 120.0, 2)) {
973     bl.major = 7;
974     bl.minor = 2;
975   }
976   for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) {
977     seq->level[i] = bl;
978     seq->tier[i] = 0;  // setting main tier by default
979     // Set the maximum parameters for bitrate and buffer size for this profile,
980     // level, and tier
981     cm->op_params[i].bitrate = max_level_bitrate(
982         cm->seq_params.profile, major_minor_to_seq_level_idx(seq->level[i]),
983         seq->tier[i]);
984     // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass the
985     // check
986     if (cm->op_params[i].bitrate == 0)
987       aom_internal_error(
988           &cm->error, AOM_CODEC_UNSUP_BITSTREAM,
989           "AV1 does not support this combination of profile, level, and tier.");
990     // Buffer size in bits/s is bitrate in bits/s * 1 s
991     cm->op_params[i].buffer_size = cm->op_params[i].bitrate;
992   }
993 }
994 
init_seq_coding_tools(SequenceHeader * seq,AV1_COMMON * cm,const AV1EncoderConfig * oxcf)995 static void init_seq_coding_tools(SequenceHeader *seq, AV1_COMMON *cm,
996                                   const AV1EncoderConfig *oxcf) {
997   seq->still_picture = (oxcf->limit == 1);
998   seq->reduced_still_picture_hdr = seq->still_picture;
999   seq->reduced_still_picture_hdr &= !oxcf->full_still_picture_hdr;
1000   seq->force_screen_content_tools = 2;
1001   seq->force_integer_mv = 2;
1002   seq->enable_order_hint = oxcf->enable_order_hint;
1003   seq->frame_id_numbers_present_flag = oxcf->large_scale_tile;
1004   if (seq->still_picture && seq->reduced_still_picture_hdr) {
1005     seq->enable_order_hint = 0;
1006     seq->frame_id_numbers_present_flag = 0;
1007     seq->force_screen_content_tools = 2;
1008     seq->force_integer_mv = 2;
1009   }
1010   seq->order_hint_bits_minus_1 =
1011       seq->enable_order_hint ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1 : -1;
1012 
1013   seq->enable_dual_filter = oxcf->enable_dual_filter;
1014   seq->enable_jnt_comp = oxcf->enable_jnt_comp;
1015   seq->enable_jnt_comp &= seq->enable_order_hint;
1016   seq->enable_ref_frame_mvs = oxcf->enable_ref_frame_mvs;
1017   seq->enable_ref_frame_mvs &= seq->enable_order_hint;
1018   seq->enable_superres = oxcf->enable_superres;
1019   seq->enable_cdef = oxcf->enable_cdef;
1020   seq->enable_restoration = oxcf->enable_restoration;
1021   seq->enable_warped_motion = oxcf->enable_warped_motion;
1022   seq->enable_interintra_compound = 1;
1023   seq->enable_masked_compound = 1;
1024   seq->enable_intra_edge_filter = 1;
1025   seq->enable_filter_intra = 1;
1026 
1027   set_bitstream_level_tier(seq, cm, oxcf);
1028 
1029   if (seq->operating_points_cnt_minus_1 == 0) {
1030     seq->operating_point_idc[0] = 0;
1031   } else {
1032     // Set operating_point_idc[] such that for the i-th operating point the
1033     // first (operating_points_cnt-i) spatial layers and the first temporal
1034     // layer are decoded Note that highest quality operating point should come
1035     // first
1036     for (int i = 0; i < seq->operating_points_cnt_minus_1 + 1; i++)
1037       seq->operating_point_idc[i] =
1038           (~(~0u << (seq->operating_points_cnt_minus_1 + 1 - i)) << 8) | 1;
1039   }
1040 }
1041 
init_config(struct AV1_COMP * cpi,AV1EncoderConfig * oxcf)1042 static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) {
1043   AV1_COMMON *const cm = &cpi->common;
1044 
1045   cpi->oxcf = *oxcf;
1046   cpi->framerate = oxcf->init_framerate;
1047 
1048   cm->seq_params.profile = oxcf->profile;
1049   cm->seq_params.bit_depth = oxcf->bit_depth;
1050   cm->seq_params.use_highbitdepth = oxcf->use_highbitdepth;
1051   cm->seq_params.color_primaries = oxcf->color_primaries;
1052   cm->seq_params.transfer_characteristics = oxcf->transfer_characteristics;
1053   cm->seq_params.matrix_coefficients = oxcf->matrix_coefficients;
1054   cm->seq_params.monochrome = oxcf->monochrome;
1055   cm->seq_params.chroma_sample_position = oxcf->chroma_sample_position;
1056   cm->seq_params.color_range = oxcf->color_range;
1057   cm->timing_info_present = oxcf->timing_info_present;
1058   cm->timing_info.num_units_in_display_tick =
1059       oxcf->timing_info.num_units_in_display_tick;
1060   cm->timing_info.time_scale = oxcf->timing_info.time_scale;
1061   cm->timing_info.equal_picture_interval =
1062       oxcf->timing_info.equal_picture_interval;
1063   cm->timing_info.num_ticks_per_picture =
1064       oxcf->timing_info.num_ticks_per_picture;
1065 
1066   cm->seq_params.display_model_info_present_flag =
1067       oxcf->display_model_info_present_flag;
1068   cm->seq_params.decoder_model_info_present_flag =
1069       oxcf->decoder_model_info_present_flag;
1070   if (oxcf->decoder_model_info_present_flag) {
1071     // set the decoder model parameters in schedule mode
1072     cm->buffer_model.num_units_in_decoding_tick =
1073         oxcf->buffer_model.num_units_in_decoding_tick;
1074     cm->buffer_removal_time_present = 1;
1075     set_aom_dec_model_info(&cm->buffer_model);
1076     set_dec_model_op_parameters(&cm->op_params[0]);
1077   } else if (cm->timing_info_present &&
1078              cm->timing_info.equal_picture_interval &&
1079              !cm->seq_params.decoder_model_info_present_flag) {
1080     // set the decoder model parameters in resource availability mode
1081     set_resource_availability_parameters(&cm->op_params[0]);
1082   } else {
1083     cm->op_params[0].initial_display_delay =
1084         10;  // Default value (not signaled)
1085   }
1086 
1087   if (cm->seq_params.monochrome) {
1088     cm->seq_params.subsampling_x = 1;
1089     cm->seq_params.subsampling_y = 1;
1090   } else if (cm->seq_params.color_primaries == AOM_CICP_CP_BT_709 &&
1091              cm->seq_params.transfer_characteristics == AOM_CICP_TC_SRGB &&
1092              cm->seq_params.matrix_coefficients == AOM_CICP_MC_IDENTITY) {
1093     cm->seq_params.subsampling_x = 0;
1094     cm->seq_params.subsampling_y = 0;
1095   } else {
1096     if (cm->seq_params.profile == 0) {
1097       cm->seq_params.subsampling_x = 1;
1098       cm->seq_params.subsampling_y = 1;
1099     } else if (cm->seq_params.profile == 1) {
1100       cm->seq_params.subsampling_x = 0;
1101       cm->seq_params.subsampling_y = 0;
1102     } else {
1103       if (cm->seq_params.bit_depth == AOM_BITS_12) {
1104         cm->seq_params.subsampling_x = oxcf->chroma_subsampling_x;
1105         cm->seq_params.subsampling_y = oxcf->chroma_subsampling_y;
1106       } else {
1107         cm->seq_params.subsampling_x = 1;
1108         cm->seq_params.subsampling_y = 0;
1109       }
1110     }
1111   }
1112 
1113   cm->width = oxcf->width;
1114   cm->height = oxcf->height;
1115   set_sb_size(&cm->seq_params,
1116               select_sb_size(cpi));  // set sb size before allocations
1117   alloc_compressor_data(cpi);
1118 
1119   update_film_grain_parameters(cpi, oxcf);
1120 
1121   // Single thread case: use counts in common.
1122   cpi->td.counts = &cpi->counts;
1123 
1124   // change includes all joint functionality
1125   av1_change_config(cpi, oxcf);
1126 
1127   cpi->static_mb_pct = 0;
1128   cpi->ref_frame_flags = 0;
1129 
1130   // Reset resize pending flags
1131   cpi->resize_pending_width = 0;
1132   cpi->resize_pending_height = 0;
1133 
1134   init_buffer_indices(cpi);
1135 }
1136 
set_rc_buffer_sizes(RATE_CONTROL * rc,const AV1EncoderConfig * oxcf)1137 static void set_rc_buffer_sizes(RATE_CONTROL *rc,
1138                                 const AV1EncoderConfig *oxcf) {
1139   const int64_t bandwidth = oxcf->target_bandwidth;
1140   const int64_t starting = oxcf->starting_buffer_level_ms;
1141   const int64_t optimal = oxcf->optimal_buffer_level_ms;
1142   const int64_t maximum = oxcf->maximum_buffer_size_ms;
1143 
1144   rc->starting_buffer_level = starting * bandwidth / 1000;
1145   rc->optimal_buffer_level =
1146       (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
1147   rc->maximum_buffer_size =
1148       (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
1149 }
1150 
1151 #define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \
1152   cpi->fn_ptr[BT].sdf = SDF;                                           \
1153   cpi->fn_ptr[BT].sdaf = SDAF;                                         \
1154   cpi->fn_ptr[BT].vf = VF;                                             \
1155   cpi->fn_ptr[BT].svf = SVF;                                           \
1156   cpi->fn_ptr[BT].svaf = SVAF;                                         \
1157   cpi->fn_ptr[BT].sdx4df = SDX4DF;                                     \
1158   cpi->fn_ptr[BT].jsdaf = JSDAF;                                       \
1159   cpi->fn_ptr[BT].jsvaf = JSVAF;
1160 
1161 #define MAKE_BFP_SAD_WRAPPER(fnname)                                           \
1162   static unsigned int fnname##_bits8(const uint8_t *src_ptr,                   \
1163                                      int source_stride,                        \
1164                                      const uint8_t *ref_ptr, int ref_stride) { \
1165     return fnname(src_ptr, source_stride, ref_ptr, ref_stride);                \
1166   }                                                                            \
1167   static unsigned int fnname##_bits10(                                         \
1168       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
1169       int ref_stride) {                                                        \
1170     return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2;           \
1171   }                                                                            \
1172   static unsigned int fnname##_bits12(                                         \
1173       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
1174       int ref_stride) {                                                        \
1175     return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4;           \
1176   }
1177 
1178 #define MAKE_BFP_SADAVG_WRAPPER(fnname)                                        \
1179   static unsigned int fnname##_bits8(                                          \
1180       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
1181       int ref_stride, const uint8_t *second_pred) {                            \
1182     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred);   \
1183   }                                                                            \
1184   static unsigned int fnname##_bits10(                                         \
1185       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
1186       int ref_stride, const uint8_t *second_pred) {                            \
1187     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
1188            2;                                                                  \
1189   }                                                                            \
1190   static unsigned int fnname##_bits12(                                         \
1191       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
1192       int ref_stride, const uint8_t *second_pred) {                            \
1193     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
1194            4;                                                                  \
1195   }
1196 
1197 #define MAKE_BFP_SAD4D_WRAPPER(fnname)                                        \
1198   static void fnname##_bits8(const uint8_t *src_ptr, int source_stride,       \
1199                              const uint8_t *const ref_ptr[], int ref_stride,  \
1200                              unsigned int *sad_array) {                       \
1201     fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
1202   }                                                                           \
1203   static void fnname##_bits10(const uint8_t *src_ptr, int source_stride,      \
1204                               const uint8_t *const ref_ptr[], int ref_stride, \
1205                               unsigned int *sad_array) {                      \
1206     int i;                                                                    \
1207     fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
1208     for (i = 0; i < 4; i++) sad_array[i] >>= 2;                               \
1209   }                                                                           \
1210   static void fnname##_bits12(const uint8_t *src_ptr, int source_stride,      \
1211                               const uint8_t *const ref_ptr[], int ref_stride, \
1212                               unsigned int *sad_array) {                      \
1213     int i;                                                                    \
1214     fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
1215     for (i = 0; i < 4; i++) sad_array[i] >>= 4;                               \
1216   }
1217 
1218 #define MAKE_BFP_JSADAVG_WRAPPER(fnname)                                    \
1219   static unsigned int fnname##_bits8(                                       \
1220       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,    \
1221       int ref_stride, const uint8_t *second_pred,                           \
1222       const JNT_COMP_PARAMS *jcp_param) {                                   \
1223     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
1224                   jcp_param);                                               \
1225   }                                                                         \
1226   static unsigned int fnname##_bits10(                                      \
1227       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,    \
1228       int ref_stride, const uint8_t *second_pred,                           \
1229       const JNT_COMP_PARAMS *jcp_param) {                                   \
1230     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
1231                   jcp_param) >>                                             \
1232            2;                                                               \
1233   }                                                                         \
1234   static unsigned int fnname##_bits12(                                      \
1235       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,    \
1236       int ref_stride, const uint8_t *second_pred,                           \
1237       const JNT_COMP_PARAMS *jcp_param) {                                   \
1238     return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
1239                   jcp_param) >>                                             \
1240            4;                                                               \
1241   }
1242 
1243 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg)1244 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg)
1245 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d)
1246 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64)
1247 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg)
1248 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d)
1249 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128)
1250 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg)
1251 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d)
1252 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16)
1253 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg)
1254 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d)
1255 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32)
1256 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg)
1257 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d)
1258 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32)
1259 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg)
1260 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d)
1261 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64)
1262 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg)
1263 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d)
1264 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32)
1265 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg)
1266 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d)
1267 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64)
1268 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg)
1269 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d)
1270 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16)
1271 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg)
1272 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d)
1273 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8)
1274 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg)
1275 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d)
1276 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16)
1277 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg)
1278 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d)
1279 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8)
1280 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg)
1281 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d)
1282 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4)
1283 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg)
1284 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d)
1285 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8)
1286 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg)
1287 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d)
1288 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4)
1289 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg)
1290 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d)
1291 
1292 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x16)
1293 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x16_avg)
1294 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x16x4d)
1295 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x4)
1296 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x4_avg)
1297 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x4x4d)
1298 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x32)
1299 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x32_avg)
1300 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x32x4d)
1301 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x8)
1302 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x8_avg)
1303 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x8x4d)
1304 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x64)
1305 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x64_avg)
1306 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x64x4d)
1307 MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x16)
1308 MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x16_avg)
1309 MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x16x4d)
1310 
1311 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x128_avg)
1312 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x64_avg)
1313 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x128_avg)
1314 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x16_avg)
1315 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x32_avg)
1316 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x32_avg)
1317 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x64_avg)
1318 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x32_avg)
1319 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x64_avg)
1320 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x16_avg)
1321 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x8_avg)
1322 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x16_avg)
1323 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x8_avg)
1324 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x4_avg)
1325 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x8_avg)
1326 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x4_avg)
1327 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x16_avg)
1328 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x4_avg)
1329 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x32_avg)
1330 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x8_avg)
1331 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x64_avg)
1332 MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x16_avg)
1333 
1334 #define HIGHBD_MBFP(BT, MCSDF, MCSVF) \
1335   cpi->fn_ptr[BT].msdf = MCSDF;       \
1336   cpi->fn_ptr[BT].msvf = MCSVF;
1337 
1338 #define MAKE_MBFP_COMPOUND_SAD_WRAPPER(fnname)                           \
1339   static unsigned int fnname##_bits8(                                    \
1340       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
1341       int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m,  \
1342       int m_stride, int invert_mask) {                                   \
1343     return fnname(src_ptr, source_stride, ref_ptr, ref_stride,           \
1344                   second_pred_ptr, m, m_stride, invert_mask);            \
1345   }                                                                      \
1346   static unsigned int fnname##_bits10(                                   \
1347       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
1348       int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m,  \
1349       int m_stride, int invert_mask) {                                   \
1350     return fnname(src_ptr, source_stride, ref_ptr, ref_stride,           \
1351                   second_pred_ptr, m, m_stride, invert_mask) >>          \
1352            2;                                                            \
1353   }                                                                      \
1354   static unsigned int fnname##_bits12(                                   \
1355       const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
1356       int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m,  \
1357       int m_stride, int invert_mask) {                                   \
1358     return fnname(src_ptr, source_stride, ref_ptr, ref_stride,           \
1359                   second_pred_ptr, m, m_stride, invert_mask) >>          \
1360            4;                                                            \
1361   }
1362 
1363 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x128)
1364 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x64)
1365 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x128)
1366 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x64)
1367 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x32)
1368 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x64)
1369 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x32)
1370 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x16)
1371 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x32)
1372 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x16)
1373 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x8)
1374 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x16)
1375 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x8)
1376 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x4)
1377 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x8)
1378 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x4)
1379 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x16)
1380 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x4)
1381 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x32)
1382 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x8)
1383 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x64)
1384 MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x16)
1385 
1386 #define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \
1387   cpi->fn_ptr[BT].osdf = OSDF;           \
1388   cpi->fn_ptr[BT].ovf = OVF;             \
1389   cpi->fn_ptr[BT].osvf = OSVF;
1390 
1391 #define MAKE_OBFP_SAD_WRAPPER(fnname)                                     \
1392   static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride,  \
1393                                      const int32_t *wsrc,                 \
1394                                      const int32_t *msk) {                \
1395     return fnname(ref, ref_stride, wsrc, msk);                            \
1396   }                                                                       \
1397   static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \
1398                                       const int32_t *wsrc,                \
1399                                       const int32_t *msk) {               \
1400     return fnname(ref, ref_stride, wsrc, msk) >> 2;                       \
1401   }                                                                       \
1402   static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \
1403                                       const int32_t *wsrc,                \
1404                                       const int32_t *msk) {               \
1405     return fnname(ref, ref_stride, wsrc, msk) >> 4;                       \
1406   }
1407 
1408 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128)
1409 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64)
1410 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128)
1411 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64)
1412 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32)
1413 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64)
1414 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32)
1415 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16)
1416 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32)
1417 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16)
1418 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8)
1419 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16)
1420 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8)
1421 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4)
1422 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8)
1423 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4)
1424 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x16)
1425 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x4)
1426 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x32)
1427 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x8)
1428 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x64)
1429 MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x16)
1430 
1431 static void highbd_set_var_fns(AV1_COMP *const cpi) {
1432   AV1_COMMON *const cm = &cpi->common;
1433   if (cm->seq_params.use_highbitdepth) {
1434     switch (cm->seq_params.bit_depth) {
1435       case AOM_BITS_8:
1436         HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits8,
1437                    aom_highbd_sad64x16_avg_bits8, aom_highbd_8_variance64x16,
1438                    aom_highbd_8_sub_pixel_variance64x16,
1439                    aom_highbd_8_sub_pixel_avg_variance64x16,
1440                    aom_highbd_sad64x16x4d_bits8,
1441                    aom_highbd_jnt_sad64x16_avg_bits8,
1442                    aom_highbd_8_jnt_sub_pixel_avg_variance64x16)
1443 
1444         HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits8,
1445                    aom_highbd_sad16x64_avg_bits8, aom_highbd_8_variance16x64,
1446                    aom_highbd_8_sub_pixel_variance16x64,
1447                    aom_highbd_8_sub_pixel_avg_variance16x64,
1448                    aom_highbd_sad16x64x4d_bits8,
1449                    aom_highbd_jnt_sad16x64_avg_bits8,
1450                    aom_highbd_8_jnt_sub_pixel_avg_variance16x64)
1451 
1452         HIGHBD_BFP(
1453             BLOCK_32X8, aom_highbd_sad32x8_bits8, aom_highbd_sad32x8_avg_bits8,
1454             aom_highbd_8_variance32x8, aom_highbd_8_sub_pixel_variance32x8,
1455             aom_highbd_8_sub_pixel_avg_variance32x8,
1456             aom_highbd_sad32x8x4d_bits8, aom_highbd_jnt_sad32x8_avg_bits8,
1457             aom_highbd_8_jnt_sub_pixel_avg_variance32x8)
1458 
1459         HIGHBD_BFP(
1460             BLOCK_8X32, aom_highbd_sad8x32_bits8, aom_highbd_sad8x32_avg_bits8,
1461             aom_highbd_8_variance8x32, aom_highbd_8_sub_pixel_variance8x32,
1462             aom_highbd_8_sub_pixel_avg_variance8x32,
1463             aom_highbd_sad8x32x4d_bits8, aom_highbd_jnt_sad8x32_avg_bits8,
1464             aom_highbd_8_jnt_sub_pixel_avg_variance8x32)
1465 
1466         HIGHBD_BFP(
1467             BLOCK_16X4, aom_highbd_sad16x4_bits8, aom_highbd_sad16x4_avg_bits8,
1468             aom_highbd_8_variance16x4, aom_highbd_8_sub_pixel_variance16x4,
1469             aom_highbd_8_sub_pixel_avg_variance16x4,
1470             aom_highbd_sad16x4x4d_bits8, aom_highbd_jnt_sad16x4_avg_bits8,
1471             aom_highbd_8_jnt_sub_pixel_avg_variance16x4)
1472 
1473         HIGHBD_BFP(
1474             BLOCK_4X16, aom_highbd_sad4x16_bits8, aom_highbd_sad4x16_avg_bits8,
1475             aom_highbd_8_variance4x16, aom_highbd_8_sub_pixel_variance4x16,
1476             aom_highbd_8_sub_pixel_avg_variance4x16,
1477             aom_highbd_sad4x16x4d_bits8, aom_highbd_jnt_sad4x16_avg_bits8,
1478             aom_highbd_8_jnt_sub_pixel_avg_variance4x16)
1479 
1480         HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8,
1481                    aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16,
1482                    aom_highbd_8_sub_pixel_variance32x16,
1483                    aom_highbd_8_sub_pixel_avg_variance32x16,
1484                    aom_highbd_sad32x16x4d_bits8,
1485                    aom_highbd_jnt_sad32x16_avg_bits8,
1486                    aom_highbd_8_jnt_sub_pixel_avg_variance32x16)
1487 
1488         HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8,
1489                    aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32,
1490                    aom_highbd_8_sub_pixel_variance16x32,
1491                    aom_highbd_8_sub_pixel_avg_variance16x32,
1492                    aom_highbd_sad16x32x4d_bits8,
1493                    aom_highbd_jnt_sad16x32_avg_bits8,
1494                    aom_highbd_8_jnt_sub_pixel_avg_variance16x32)
1495 
1496         HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8,
1497                    aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32,
1498                    aom_highbd_8_sub_pixel_variance64x32,
1499                    aom_highbd_8_sub_pixel_avg_variance64x32,
1500                    aom_highbd_sad64x32x4d_bits8,
1501                    aom_highbd_jnt_sad64x32_avg_bits8,
1502                    aom_highbd_8_jnt_sub_pixel_avg_variance64x32)
1503 
1504         HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8,
1505                    aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64,
1506                    aom_highbd_8_sub_pixel_variance32x64,
1507                    aom_highbd_8_sub_pixel_avg_variance32x64,
1508                    aom_highbd_sad32x64x4d_bits8,
1509                    aom_highbd_jnt_sad32x64_avg_bits8,
1510                    aom_highbd_8_jnt_sub_pixel_avg_variance32x64)
1511 
1512         HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8,
1513                    aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32,
1514                    aom_highbd_8_sub_pixel_variance32x32,
1515                    aom_highbd_8_sub_pixel_avg_variance32x32,
1516                    aom_highbd_sad32x32x4d_bits8,
1517                    aom_highbd_jnt_sad32x32_avg_bits8,
1518                    aom_highbd_8_jnt_sub_pixel_avg_variance32x32)
1519 
1520         HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8,
1521                    aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64,
1522                    aom_highbd_8_sub_pixel_variance64x64,
1523                    aom_highbd_8_sub_pixel_avg_variance64x64,
1524                    aom_highbd_sad64x64x4d_bits8,
1525                    aom_highbd_jnt_sad64x64_avg_bits8,
1526                    aom_highbd_8_jnt_sub_pixel_avg_variance64x64)
1527 
1528         HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8,
1529                    aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16,
1530                    aom_highbd_8_sub_pixel_variance16x16,
1531                    aom_highbd_8_sub_pixel_avg_variance16x16,
1532                    aom_highbd_sad16x16x4d_bits8,
1533                    aom_highbd_jnt_sad16x16_avg_bits8,
1534                    aom_highbd_8_jnt_sub_pixel_avg_variance16x16)
1535 
1536         HIGHBD_BFP(
1537             BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8,
1538             aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8,
1539             aom_highbd_8_sub_pixel_avg_variance16x8,
1540             aom_highbd_sad16x8x4d_bits8, aom_highbd_jnt_sad16x8_avg_bits8,
1541             aom_highbd_8_jnt_sub_pixel_avg_variance16x8)
1542 
1543         HIGHBD_BFP(
1544             BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8,
1545             aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16,
1546             aom_highbd_8_sub_pixel_avg_variance8x16,
1547             aom_highbd_sad8x16x4d_bits8, aom_highbd_jnt_sad8x16_avg_bits8,
1548             aom_highbd_8_jnt_sub_pixel_avg_variance8x16)
1549 
1550         HIGHBD_BFP(BLOCK_8X8, aom_highbd_sad8x8_bits8,
1551                    aom_highbd_sad8x8_avg_bits8, aom_highbd_8_variance8x8,
1552                    aom_highbd_8_sub_pixel_variance8x8,
1553                    aom_highbd_8_sub_pixel_avg_variance8x8,
1554                    aom_highbd_sad8x8x4d_bits8, aom_highbd_jnt_sad8x8_avg_bits8,
1555                    aom_highbd_8_jnt_sub_pixel_avg_variance8x8)
1556 
1557         HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8,
1558                    aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4,
1559                    aom_highbd_8_sub_pixel_variance8x4,
1560                    aom_highbd_8_sub_pixel_avg_variance8x4,
1561                    aom_highbd_sad8x4x4d_bits8, aom_highbd_jnt_sad8x4_avg_bits8,
1562                    aom_highbd_8_jnt_sub_pixel_avg_variance8x4)
1563 
1564         HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8,
1565                    aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8,
1566                    aom_highbd_8_sub_pixel_variance4x8,
1567                    aom_highbd_8_sub_pixel_avg_variance4x8,
1568                    aom_highbd_sad4x8x4d_bits8, aom_highbd_jnt_sad4x8_avg_bits8,
1569                    aom_highbd_8_jnt_sub_pixel_avg_variance4x8)
1570 
1571         HIGHBD_BFP(BLOCK_4X4, aom_highbd_sad4x4_bits8,
1572                    aom_highbd_sad4x4_avg_bits8, aom_highbd_8_variance4x4,
1573                    aom_highbd_8_sub_pixel_variance4x4,
1574                    aom_highbd_8_sub_pixel_avg_variance4x4,
1575                    aom_highbd_sad4x4x4d_bits8, aom_highbd_jnt_sad4x4_avg_bits8,
1576                    aom_highbd_8_jnt_sub_pixel_avg_variance4x4)
1577 
1578         HIGHBD_BFP(
1579             BLOCK_128X128, aom_highbd_sad128x128_bits8,
1580             aom_highbd_sad128x128_avg_bits8, aom_highbd_8_variance128x128,
1581             aom_highbd_8_sub_pixel_variance128x128,
1582             aom_highbd_8_sub_pixel_avg_variance128x128,
1583             aom_highbd_sad128x128x4d_bits8, aom_highbd_jnt_sad128x128_avg_bits8,
1584             aom_highbd_8_jnt_sub_pixel_avg_variance128x128)
1585 
1586         HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8,
1587                    aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64,
1588                    aom_highbd_8_sub_pixel_variance128x64,
1589                    aom_highbd_8_sub_pixel_avg_variance128x64,
1590                    aom_highbd_sad128x64x4d_bits8,
1591                    aom_highbd_jnt_sad128x64_avg_bits8,
1592                    aom_highbd_8_jnt_sub_pixel_avg_variance128x64)
1593 
1594         HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8,
1595                    aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128,
1596                    aom_highbd_8_sub_pixel_variance64x128,
1597                    aom_highbd_8_sub_pixel_avg_variance64x128,
1598                    aom_highbd_sad64x128x4d_bits8,
1599                    aom_highbd_jnt_sad64x128_avg_bits8,
1600                    aom_highbd_8_jnt_sub_pixel_avg_variance64x128)
1601 
1602         HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8,
1603                     aom_highbd_8_masked_sub_pixel_variance128x128)
1604         HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8,
1605                     aom_highbd_8_masked_sub_pixel_variance128x64)
1606         HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8,
1607                     aom_highbd_8_masked_sub_pixel_variance64x128)
1608         HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8,
1609                     aom_highbd_8_masked_sub_pixel_variance64x64)
1610         HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8,
1611                     aom_highbd_8_masked_sub_pixel_variance64x32)
1612         HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8,
1613                     aom_highbd_8_masked_sub_pixel_variance32x64)
1614         HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8,
1615                     aom_highbd_8_masked_sub_pixel_variance32x32)
1616         HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8,
1617                     aom_highbd_8_masked_sub_pixel_variance32x16)
1618         HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8,
1619                     aom_highbd_8_masked_sub_pixel_variance16x32)
1620         HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8,
1621                     aom_highbd_8_masked_sub_pixel_variance16x16)
1622         HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8,
1623                     aom_highbd_8_masked_sub_pixel_variance8x16)
1624         HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8,
1625                     aom_highbd_8_masked_sub_pixel_variance16x8)
1626         HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8,
1627                     aom_highbd_8_masked_sub_pixel_variance8x8)
1628         HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8,
1629                     aom_highbd_8_masked_sub_pixel_variance4x8)
1630         HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8,
1631                     aom_highbd_8_masked_sub_pixel_variance8x4)
1632         HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8,
1633                     aom_highbd_8_masked_sub_pixel_variance4x4)
1634         HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits8,
1635                     aom_highbd_8_masked_sub_pixel_variance64x16)
1636         HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits8,
1637                     aom_highbd_8_masked_sub_pixel_variance16x64)
1638         HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits8,
1639                     aom_highbd_8_masked_sub_pixel_variance32x8)
1640         HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits8,
1641                     aom_highbd_8_masked_sub_pixel_variance8x32)
1642         HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits8,
1643                     aom_highbd_8_masked_sub_pixel_variance16x4)
1644         HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits8,
1645                     aom_highbd_8_masked_sub_pixel_variance4x16)
1646         HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8,
1647                     aom_highbd_obmc_variance128x128,
1648                     aom_highbd_obmc_sub_pixel_variance128x128)
1649         HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8,
1650                     aom_highbd_obmc_variance128x64,
1651                     aom_highbd_obmc_sub_pixel_variance128x64)
1652         HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8,
1653                     aom_highbd_obmc_variance64x128,
1654                     aom_highbd_obmc_sub_pixel_variance64x128)
1655         HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8,
1656                     aom_highbd_obmc_variance64x64,
1657                     aom_highbd_obmc_sub_pixel_variance64x64)
1658         HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8,
1659                     aom_highbd_obmc_variance64x32,
1660                     aom_highbd_obmc_sub_pixel_variance64x32)
1661         HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8,
1662                     aom_highbd_obmc_variance32x64,
1663                     aom_highbd_obmc_sub_pixel_variance32x64)
1664         HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8,
1665                     aom_highbd_obmc_variance32x32,
1666                     aom_highbd_obmc_sub_pixel_variance32x32)
1667         HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8,
1668                     aom_highbd_obmc_variance32x16,
1669                     aom_highbd_obmc_sub_pixel_variance32x16)
1670         HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8,
1671                     aom_highbd_obmc_variance16x32,
1672                     aom_highbd_obmc_sub_pixel_variance16x32)
1673         HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8,
1674                     aom_highbd_obmc_variance16x16,
1675                     aom_highbd_obmc_sub_pixel_variance16x16)
1676         HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8,
1677                     aom_highbd_obmc_variance8x16,
1678                     aom_highbd_obmc_sub_pixel_variance8x16)
1679         HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8,
1680                     aom_highbd_obmc_variance16x8,
1681                     aom_highbd_obmc_sub_pixel_variance16x8)
1682         HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8,
1683                     aom_highbd_obmc_variance8x8,
1684                     aom_highbd_obmc_sub_pixel_variance8x8)
1685         HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8,
1686                     aom_highbd_obmc_variance4x8,
1687                     aom_highbd_obmc_sub_pixel_variance4x8)
1688         HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8,
1689                     aom_highbd_obmc_variance8x4,
1690                     aom_highbd_obmc_sub_pixel_variance8x4)
1691         HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8,
1692                     aom_highbd_obmc_variance4x4,
1693                     aom_highbd_obmc_sub_pixel_variance4x4)
1694         HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits8,
1695                     aom_highbd_obmc_variance64x16,
1696                     aom_highbd_obmc_sub_pixel_variance64x16)
1697         HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits8,
1698                     aom_highbd_obmc_variance16x64,
1699                     aom_highbd_obmc_sub_pixel_variance16x64)
1700         HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits8,
1701                     aom_highbd_obmc_variance32x8,
1702                     aom_highbd_obmc_sub_pixel_variance32x8)
1703         HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits8,
1704                     aom_highbd_obmc_variance8x32,
1705                     aom_highbd_obmc_sub_pixel_variance8x32)
1706         HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits8,
1707                     aom_highbd_obmc_variance16x4,
1708                     aom_highbd_obmc_sub_pixel_variance16x4)
1709         HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits8,
1710                     aom_highbd_obmc_variance4x16,
1711                     aom_highbd_obmc_sub_pixel_variance4x16)
1712         break;
1713 
1714       case AOM_BITS_10:
1715         HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits10,
1716                    aom_highbd_sad64x16_avg_bits10, aom_highbd_10_variance64x16,
1717                    aom_highbd_10_sub_pixel_variance64x16,
1718                    aom_highbd_10_sub_pixel_avg_variance64x16,
1719                    aom_highbd_sad64x16x4d_bits10,
1720                    aom_highbd_jnt_sad64x16_avg_bits10,
1721                    aom_highbd_10_jnt_sub_pixel_avg_variance64x16);
1722 
1723         HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits10,
1724                    aom_highbd_sad16x64_avg_bits10, aom_highbd_10_variance16x64,
1725                    aom_highbd_10_sub_pixel_variance16x64,
1726                    aom_highbd_10_sub_pixel_avg_variance16x64,
1727                    aom_highbd_sad16x64x4d_bits10,
1728                    aom_highbd_jnt_sad16x64_avg_bits10,
1729                    aom_highbd_10_jnt_sub_pixel_avg_variance16x64);
1730 
1731         HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits10,
1732                    aom_highbd_sad32x8_avg_bits10, aom_highbd_10_variance32x8,
1733                    aom_highbd_10_sub_pixel_variance32x8,
1734                    aom_highbd_10_sub_pixel_avg_variance32x8,
1735                    aom_highbd_sad32x8x4d_bits10,
1736                    aom_highbd_jnt_sad32x8_avg_bits10,
1737                    aom_highbd_10_jnt_sub_pixel_avg_variance32x8);
1738 
1739         HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits10,
1740                    aom_highbd_sad8x32_avg_bits10, aom_highbd_10_variance8x32,
1741                    aom_highbd_10_sub_pixel_variance8x32,
1742                    aom_highbd_10_sub_pixel_avg_variance8x32,
1743                    aom_highbd_sad8x32x4d_bits10,
1744                    aom_highbd_jnt_sad8x32_avg_bits10,
1745                    aom_highbd_10_jnt_sub_pixel_avg_variance8x32);
1746 
1747         HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits10,
1748                    aom_highbd_sad16x4_avg_bits10, aom_highbd_10_variance16x4,
1749                    aom_highbd_10_sub_pixel_variance16x4,
1750                    aom_highbd_10_sub_pixel_avg_variance16x4,
1751                    aom_highbd_sad16x4x4d_bits10,
1752                    aom_highbd_jnt_sad16x4_avg_bits10,
1753                    aom_highbd_10_jnt_sub_pixel_avg_variance16x4);
1754 
1755         HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits10,
1756                    aom_highbd_sad4x16_avg_bits10, aom_highbd_10_variance4x16,
1757                    aom_highbd_10_sub_pixel_variance4x16,
1758                    aom_highbd_10_sub_pixel_avg_variance4x16,
1759                    aom_highbd_sad4x16x4d_bits10,
1760                    aom_highbd_jnt_sad4x16_avg_bits10,
1761                    aom_highbd_10_jnt_sub_pixel_avg_variance4x16);
1762 
1763         HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10,
1764                    aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16,
1765                    aom_highbd_10_sub_pixel_variance32x16,
1766                    aom_highbd_10_sub_pixel_avg_variance32x16,
1767                    aom_highbd_sad32x16x4d_bits10,
1768                    aom_highbd_jnt_sad32x16_avg_bits10,
1769                    aom_highbd_10_jnt_sub_pixel_avg_variance32x16);
1770 
1771         HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10,
1772                    aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32,
1773                    aom_highbd_10_sub_pixel_variance16x32,
1774                    aom_highbd_10_sub_pixel_avg_variance16x32,
1775                    aom_highbd_sad16x32x4d_bits10,
1776                    aom_highbd_jnt_sad16x32_avg_bits10,
1777                    aom_highbd_10_jnt_sub_pixel_avg_variance16x32);
1778 
1779         HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10,
1780                    aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32,
1781                    aom_highbd_10_sub_pixel_variance64x32,
1782                    aom_highbd_10_sub_pixel_avg_variance64x32,
1783                    aom_highbd_sad64x32x4d_bits10,
1784                    aom_highbd_jnt_sad64x32_avg_bits10,
1785                    aom_highbd_10_jnt_sub_pixel_avg_variance64x32);
1786 
1787         HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10,
1788                    aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64,
1789                    aom_highbd_10_sub_pixel_variance32x64,
1790                    aom_highbd_10_sub_pixel_avg_variance32x64,
1791                    aom_highbd_sad32x64x4d_bits10,
1792                    aom_highbd_jnt_sad32x64_avg_bits10,
1793                    aom_highbd_10_jnt_sub_pixel_avg_variance32x64);
1794 
1795         HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10,
1796                    aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32,
1797                    aom_highbd_10_sub_pixel_variance32x32,
1798                    aom_highbd_10_sub_pixel_avg_variance32x32,
1799                    aom_highbd_sad32x32x4d_bits10,
1800                    aom_highbd_jnt_sad32x32_avg_bits10,
1801                    aom_highbd_10_jnt_sub_pixel_avg_variance32x32);
1802 
1803         HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10,
1804                    aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64,
1805                    aom_highbd_10_sub_pixel_variance64x64,
1806                    aom_highbd_10_sub_pixel_avg_variance64x64,
1807                    aom_highbd_sad64x64x4d_bits10,
1808                    aom_highbd_jnt_sad64x64_avg_bits10,
1809                    aom_highbd_10_jnt_sub_pixel_avg_variance64x64);
1810 
1811         HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10,
1812                    aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16,
1813                    aom_highbd_10_sub_pixel_variance16x16,
1814                    aom_highbd_10_sub_pixel_avg_variance16x16,
1815                    aom_highbd_sad16x16x4d_bits10,
1816                    aom_highbd_jnt_sad16x16_avg_bits10,
1817                    aom_highbd_10_jnt_sub_pixel_avg_variance16x16);
1818 
1819         HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10,
1820                    aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8,
1821                    aom_highbd_10_sub_pixel_variance16x8,
1822                    aom_highbd_10_sub_pixel_avg_variance16x8,
1823                    aom_highbd_sad16x8x4d_bits10,
1824                    aom_highbd_jnt_sad16x8_avg_bits10,
1825                    aom_highbd_10_jnt_sub_pixel_avg_variance16x8);
1826 
1827         HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10,
1828                    aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16,
1829                    aom_highbd_10_sub_pixel_variance8x16,
1830                    aom_highbd_10_sub_pixel_avg_variance8x16,
1831                    aom_highbd_sad8x16x4d_bits10,
1832                    aom_highbd_jnt_sad8x16_avg_bits10,
1833                    aom_highbd_10_jnt_sub_pixel_avg_variance8x16);
1834 
1835         HIGHBD_BFP(
1836             BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10,
1837             aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8,
1838             aom_highbd_10_sub_pixel_avg_variance8x8,
1839             aom_highbd_sad8x8x4d_bits10, aom_highbd_jnt_sad8x8_avg_bits10,
1840             aom_highbd_10_jnt_sub_pixel_avg_variance8x8);
1841 
1842         HIGHBD_BFP(
1843             BLOCK_8X4, aom_highbd_sad8x4_bits10, aom_highbd_sad8x4_avg_bits10,
1844             aom_highbd_10_variance8x4, aom_highbd_10_sub_pixel_variance8x4,
1845             aom_highbd_10_sub_pixel_avg_variance8x4,
1846             aom_highbd_sad8x4x4d_bits10, aom_highbd_jnt_sad8x4_avg_bits10,
1847             aom_highbd_10_jnt_sub_pixel_avg_variance8x4);
1848 
1849         HIGHBD_BFP(
1850             BLOCK_4X8, aom_highbd_sad4x8_bits10, aom_highbd_sad4x8_avg_bits10,
1851             aom_highbd_10_variance4x8, aom_highbd_10_sub_pixel_variance4x8,
1852             aom_highbd_10_sub_pixel_avg_variance4x8,
1853             aom_highbd_sad4x8x4d_bits10, aom_highbd_jnt_sad4x8_avg_bits10,
1854             aom_highbd_10_jnt_sub_pixel_avg_variance4x8);
1855 
1856         HIGHBD_BFP(
1857             BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10,
1858             aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4,
1859             aom_highbd_10_sub_pixel_avg_variance4x4,
1860             aom_highbd_sad4x4x4d_bits10, aom_highbd_jnt_sad4x4_avg_bits10,
1861             aom_highbd_10_jnt_sub_pixel_avg_variance4x4);
1862 
1863         HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits10,
1864                    aom_highbd_sad128x128_avg_bits10,
1865                    aom_highbd_10_variance128x128,
1866                    aom_highbd_10_sub_pixel_variance128x128,
1867                    aom_highbd_10_sub_pixel_avg_variance128x128,
1868                    aom_highbd_sad128x128x4d_bits10,
1869                    aom_highbd_jnt_sad128x128_avg_bits10,
1870                    aom_highbd_10_jnt_sub_pixel_avg_variance128x128);
1871 
1872         HIGHBD_BFP(
1873             BLOCK_128X64, aom_highbd_sad128x64_bits10,
1874             aom_highbd_sad128x64_avg_bits10, aom_highbd_10_variance128x64,
1875             aom_highbd_10_sub_pixel_variance128x64,
1876             aom_highbd_10_sub_pixel_avg_variance128x64,
1877             aom_highbd_sad128x64x4d_bits10, aom_highbd_jnt_sad128x64_avg_bits10,
1878             aom_highbd_10_jnt_sub_pixel_avg_variance128x64);
1879 
1880         HIGHBD_BFP(
1881             BLOCK_64X128, aom_highbd_sad64x128_bits10,
1882             aom_highbd_sad64x128_avg_bits10, aom_highbd_10_variance64x128,
1883             aom_highbd_10_sub_pixel_variance64x128,
1884             aom_highbd_10_sub_pixel_avg_variance64x128,
1885             aom_highbd_sad64x128x4d_bits10, aom_highbd_jnt_sad64x128_avg_bits10,
1886             aom_highbd_10_jnt_sub_pixel_avg_variance64x128);
1887 
1888         HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10,
1889                     aom_highbd_10_masked_sub_pixel_variance128x128)
1890         HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10,
1891                     aom_highbd_10_masked_sub_pixel_variance128x64)
1892         HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10,
1893                     aom_highbd_10_masked_sub_pixel_variance64x128)
1894         HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10,
1895                     aom_highbd_10_masked_sub_pixel_variance64x64)
1896         HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10,
1897                     aom_highbd_10_masked_sub_pixel_variance64x32)
1898         HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10,
1899                     aom_highbd_10_masked_sub_pixel_variance32x64)
1900         HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10,
1901                     aom_highbd_10_masked_sub_pixel_variance32x32)
1902         HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10,
1903                     aom_highbd_10_masked_sub_pixel_variance32x16)
1904         HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10,
1905                     aom_highbd_10_masked_sub_pixel_variance16x32)
1906         HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10,
1907                     aom_highbd_10_masked_sub_pixel_variance16x16)
1908         HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10,
1909                     aom_highbd_10_masked_sub_pixel_variance8x16)
1910         HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10,
1911                     aom_highbd_10_masked_sub_pixel_variance16x8)
1912         HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10,
1913                     aom_highbd_10_masked_sub_pixel_variance8x8)
1914         HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10,
1915                     aom_highbd_10_masked_sub_pixel_variance4x8)
1916         HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10,
1917                     aom_highbd_10_masked_sub_pixel_variance8x4)
1918         HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10,
1919                     aom_highbd_10_masked_sub_pixel_variance4x4)
1920         HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits10,
1921                     aom_highbd_10_masked_sub_pixel_variance64x16)
1922         HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits10,
1923                     aom_highbd_10_masked_sub_pixel_variance16x64)
1924         HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits10,
1925                     aom_highbd_10_masked_sub_pixel_variance32x8)
1926         HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits10,
1927                     aom_highbd_10_masked_sub_pixel_variance8x32)
1928         HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits10,
1929                     aom_highbd_10_masked_sub_pixel_variance16x4)
1930         HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits10,
1931                     aom_highbd_10_masked_sub_pixel_variance4x16)
1932         HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10,
1933                     aom_highbd_10_obmc_variance128x128,
1934                     aom_highbd_10_obmc_sub_pixel_variance128x128)
1935         HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10,
1936                     aom_highbd_10_obmc_variance128x64,
1937                     aom_highbd_10_obmc_sub_pixel_variance128x64)
1938         HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10,
1939                     aom_highbd_10_obmc_variance64x128,
1940                     aom_highbd_10_obmc_sub_pixel_variance64x128)
1941         HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10,
1942                     aom_highbd_10_obmc_variance64x64,
1943                     aom_highbd_10_obmc_sub_pixel_variance64x64)
1944         HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10,
1945                     aom_highbd_10_obmc_variance64x32,
1946                     aom_highbd_10_obmc_sub_pixel_variance64x32)
1947         HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10,
1948                     aom_highbd_10_obmc_variance32x64,
1949                     aom_highbd_10_obmc_sub_pixel_variance32x64)
1950         HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10,
1951                     aom_highbd_10_obmc_variance32x32,
1952                     aom_highbd_10_obmc_sub_pixel_variance32x32)
1953         HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10,
1954                     aom_highbd_10_obmc_variance32x16,
1955                     aom_highbd_10_obmc_sub_pixel_variance32x16)
1956         HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10,
1957                     aom_highbd_10_obmc_variance16x32,
1958                     aom_highbd_10_obmc_sub_pixel_variance16x32)
1959         HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10,
1960                     aom_highbd_10_obmc_variance16x16,
1961                     aom_highbd_10_obmc_sub_pixel_variance16x16)
1962         HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10,
1963                     aom_highbd_10_obmc_variance8x16,
1964                     aom_highbd_10_obmc_sub_pixel_variance8x16)
1965         HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10,
1966                     aom_highbd_10_obmc_variance16x8,
1967                     aom_highbd_10_obmc_sub_pixel_variance16x8)
1968         HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10,
1969                     aom_highbd_10_obmc_variance8x8,
1970                     aom_highbd_10_obmc_sub_pixel_variance8x8)
1971         HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10,
1972                     aom_highbd_10_obmc_variance4x8,
1973                     aom_highbd_10_obmc_sub_pixel_variance4x8)
1974         HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10,
1975                     aom_highbd_10_obmc_variance8x4,
1976                     aom_highbd_10_obmc_sub_pixel_variance8x4)
1977         HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10,
1978                     aom_highbd_10_obmc_variance4x4,
1979                     aom_highbd_10_obmc_sub_pixel_variance4x4)
1980 
1981         HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits10,
1982                     aom_highbd_10_obmc_variance64x16,
1983                     aom_highbd_10_obmc_sub_pixel_variance64x16)
1984 
1985         HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits10,
1986                     aom_highbd_10_obmc_variance16x64,
1987                     aom_highbd_10_obmc_sub_pixel_variance16x64)
1988 
1989         HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits10,
1990                     aom_highbd_10_obmc_variance32x8,
1991                     aom_highbd_10_obmc_sub_pixel_variance32x8)
1992 
1993         HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits10,
1994                     aom_highbd_10_obmc_variance8x32,
1995                     aom_highbd_10_obmc_sub_pixel_variance8x32)
1996 
1997         HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits10,
1998                     aom_highbd_10_obmc_variance16x4,
1999                     aom_highbd_10_obmc_sub_pixel_variance16x4)
2000 
2001         HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits10,
2002                     aom_highbd_10_obmc_variance4x16,
2003                     aom_highbd_10_obmc_sub_pixel_variance4x16)
2004         break;
2005 
2006       case AOM_BITS_12:
2007         HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits12,
2008                    aom_highbd_sad64x16_avg_bits12, aom_highbd_12_variance64x16,
2009                    aom_highbd_12_sub_pixel_variance64x16,
2010                    aom_highbd_12_sub_pixel_avg_variance64x16,
2011                    aom_highbd_sad64x16x4d_bits12,
2012                    aom_highbd_jnt_sad64x16_avg_bits12,
2013                    aom_highbd_12_jnt_sub_pixel_avg_variance64x16);
2014 
2015         HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits12,
2016                    aom_highbd_sad16x64_avg_bits12, aom_highbd_12_variance16x64,
2017                    aom_highbd_12_sub_pixel_variance16x64,
2018                    aom_highbd_12_sub_pixel_avg_variance16x64,
2019                    aom_highbd_sad16x64x4d_bits12,
2020                    aom_highbd_jnt_sad16x64_avg_bits12,
2021                    aom_highbd_12_jnt_sub_pixel_avg_variance16x64);
2022 
2023         HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits12,
2024                    aom_highbd_sad32x8_avg_bits12, aom_highbd_12_variance32x8,
2025                    aom_highbd_12_sub_pixel_variance32x8,
2026                    aom_highbd_12_sub_pixel_avg_variance32x8,
2027                    aom_highbd_sad32x8x4d_bits12,
2028                    aom_highbd_jnt_sad32x8_avg_bits12,
2029                    aom_highbd_12_jnt_sub_pixel_avg_variance32x8);
2030 
2031         HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits12,
2032                    aom_highbd_sad8x32_avg_bits12, aom_highbd_12_variance8x32,
2033                    aom_highbd_12_sub_pixel_variance8x32,
2034                    aom_highbd_12_sub_pixel_avg_variance8x32,
2035                    aom_highbd_sad8x32x4d_bits12,
2036                    aom_highbd_jnt_sad8x32_avg_bits12,
2037                    aom_highbd_12_jnt_sub_pixel_avg_variance8x32);
2038 
2039         HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits12,
2040                    aom_highbd_sad16x4_avg_bits12, aom_highbd_12_variance16x4,
2041                    aom_highbd_12_sub_pixel_variance16x4,
2042                    aom_highbd_12_sub_pixel_avg_variance16x4,
2043                    aom_highbd_sad16x4x4d_bits12,
2044                    aom_highbd_jnt_sad16x4_avg_bits12,
2045                    aom_highbd_12_jnt_sub_pixel_avg_variance16x4);
2046 
2047         HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits12,
2048                    aom_highbd_sad4x16_avg_bits12, aom_highbd_12_variance4x16,
2049                    aom_highbd_12_sub_pixel_variance4x16,
2050                    aom_highbd_12_sub_pixel_avg_variance4x16,
2051                    aom_highbd_sad4x16x4d_bits12,
2052                    aom_highbd_jnt_sad4x16_avg_bits12,
2053                    aom_highbd_12_jnt_sub_pixel_avg_variance4x16);
2054 
2055         HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12,
2056                    aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16,
2057                    aom_highbd_12_sub_pixel_variance32x16,
2058                    aom_highbd_12_sub_pixel_avg_variance32x16,
2059                    aom_highbd_sad32x16x4d_bits12,
2060                    aom_highbd_jnt_sad32x16_avg_bits12,
2061                    aom_highbd_12_jnt_sub_pixel_avg_variance32x16);
2062 
2063         HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12,
2064                    aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32,
2065                    aom_highbd_12_sub_pixel_variance16x32,
2066                    aom_highbd_12_sub_pixel_avg_variance16x32,
2067                    aom_highbd_sad16x32x4d_bits12,
2068                    aom_highbd_jnt_sad16x32_avg_bits12,
2069                    aom_highbd_12_jnt_sub_pixel_avg_variance16x32);
2070 
2071         HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12,
2072                    aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32,
2073                    aom_highbd_12_sub_pixel_variance64x32,
2074                    aom_highbd_12_sub_pixel_avg_variance64x32,
2075                    aom_highbd_sad64x32x4d_bits12,
2076                    aom_highbd_jnt_sad64x32_avg_bits12,
2077                    aom_highbd_12_jnt_sub_pixel_avg_variance64x32);
2078 
2079         HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12,
2080                    aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64,
2081                    aom_highbd_12_sub_pixel_variance32x64,
2082                    aom_highbd_12_sub_pixel_avg_variance32x64,
2083                    aom_highbd_sad32x64x4d_bits12,
2084                    aom_highbd_jnt_sad32x64_avg_bits12,
2085                    aom_highbd_12_jnt_sub_pixel_avg_variance32x64);
2086 
2087         HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12,
2088                    aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32,
2089                    aom_highbd_12_sub_pixel_variance32x32,
2090                    aom_highbd_12_sub_pixel_avg_variance32x32,
2091                    aom_highbd_sad32x32x4d_bits12,
2092                    aom_highbd_jnt_sad32x32_avg_bits12,
2093                    aom_highbd_12_jnt_sub_pixel_avg_variance32x32);
2094 
2095         HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12,
2096                    aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64,
2097                    aom_highbd_12_sub_pixel_variance64x64,
2098                    aom_highbd_12_sub_pixel_avg_variance64x64,
2099                    aom_highbd_sad64x64x4d_bits12,
2100                    aom_highbd_jnt_sad64x64_avg_bits12,
2101                    aom_highbd_12_jnt_sub_pixel_avg_variance64x64);
2102 
2103         HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12,
2104                    aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16,
2105                    aom_highbd_12_sub_pixel_variance16x16,
2106                    aom_highbd_12_sub_pixel_avg_variance16x16,
2107                    aom_highbd_sad16x16x4d_bits12,
2108                    aom_highbd_jnt_sad16x16_avg_bits12,
2109                    aom_highbd_12_jnt_sub_pixel_avg_variance16x16);
2110 
2111         HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12,
2112                    aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8,
2113                    aom_highbd_12_sub_pixel_variance16x8,
2114                    aom_highbd_12_sub_pixel_avg_variance16x8,
2115                    aom_highbd_sad16x8x4d_bits12,
2116                    aom_highbd_jnt_sad16x8_avg_bits12,
2117                    aom_highbd_12_jnt_sub_pixel_avg_variance16x8);
2118 
2119         HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12,
2120                    aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16,
2121                    aom_highbd_12_sub_pixel_variance8x16,
2122                    aom_highbd_12_sub_pixel_avg_variance8x16,
2123                    aom_highbd_sad8x16x4d_bits12,
2124                    aom_highbd_jnt_sad8x16_avg_bits12,
2125                    aom_highbd_12_jnt_sub_pixel_avg_variance8x16);
2126 
2127         HIGHBD_BFP(
2128             BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12,
2129             aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8,
2130             aom_highbd_12_sub_pixel_avg_variance8x8,
2131             aom_highbd_sad8x8x4d_bits12, aom_highbd_jnt_sad8x8_avg_bits12,
2132             aom_highbd_12_jnt_sub_pixel_avg_variance8x8);
2133 
2134         HIGHBD_BFP(
2135             BLOCK_8X4, aom_highbd_sad8x4_bits12, aom_highbd_sad8x4_avg_bits12,
2136             aom_highbd_12_variance8x4, aom_highbd_12_sub_pixel_variance8x4,
2137             aom_highbd_12_sub_pixel_avg_variance8x4,
2138             aom_highbd_sad8x4x4d_bits12, aom_highbd_jnt_sad8x4_avg_bits12,
2139             aom_highbd_12_jnt_sub_pixel_avg_variance8x4);
2140 
2141         HIGHBD_BFP(
2142             BLOCK_4X8, aom_highbd_sad4x8_bits12, aom_highbd_sad4x8_avg_bits12,
2143             aom_highbd_12_variance4x8, aom_highbd_12_sub_pixel_variance4x8,
2144             aom_highbd_12_sub_pixel_avg_variance4x8,
2145             aom_highbd_sad4x8x4d_bits12, aom_highbd_jnt_sad4x8_avg_bits12,
2146             aom_highbd_12_jnt_sub_pixel_avg_variance4x8);
2147 
2148         HIGHBD_BFP(
2149             BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12,
2150             aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4,
2151             aom_highbd_12_sub_pixel_avg_variance4x4,
2152             aom_highbd_sad4x4x4d_bits12, aom_highbd_jnt_sad4x4_avg_bits12,
2153             aom_highbd_12_jnt_sub_pixel_avg_variance4x4);
2154 
2155         HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits12,
2156                    aom_highbd_sad128x128_avg_bits12,
2157                    aom_highbd_12_variance128x128,
2158                    aom_highbd_12_sub_pixel_variance128x128,
2159                    aom_highbd_12_sub_pixel_avg_variance128x128,
2160                    aom_highbd_sad128x128x4d_bits12,
2161                    aom_highbd_jnt_sad128x128_avg_bits12,
2162                    aom_highbd_12_jnt_sub_pixel_avg_variance128x128);
2163 
2164         HIGHBD_BFP(
2165             BLOCK_128X64, aom_highbd_sad128x64_bits12,
2166             aom_highbd_sad128x64_avg_bits12, aom_highbd_12_variance128x64,
2167             aom_highbd_12_sub_pixel_variance128x64,
2168             aom_highbd_12_sub_pixel_avg_variance128x64,
2169             aom_highbd_sad128x64x4d_bits12, aom_highbd_jnt_sad128x64_avg_bits12,
2170             aom_highbd_12_jnt_sub_pixel_avg_variance128x64);
2171 
2172         HIGHBD_BFP(
2173             BLOCK_64X128, aom_highbd_sad64x128_bits12,
2174             aom_highbd_sad64x128_avg_bits12, aom_highbd_12_variance64x128,
2175             aom_highbd_12_sub_pixel_variance64x128,
2176             aom_highbd_12_sub_pixel_avg_variance64x128,
2177             aom_highbd_sad64x128x4d_bits12, aom_highbd_jnt_sad64x128_avg_bits12,
2178             aom_highbd_12_jnt_sub_pixel_avg_variance64x128);
2179 
2180         HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12,
2181                     aom_highbd_12_masked_sub_pixel_variance128x128)
2182         HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12,
2183                     aom_highbd_12_masked_sub_pixel_variance128x64)
2184         HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12,
2185                     aom_highbd_12_masked_sub_pixel_variance64x128)
2186         HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12,
2187                     aom_highbd_12_masked_sub_pixel_variance64x64)
2188         HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12,
2189                     aom_highbd_12_masked_sub_pixel_variance64x32)
2190         HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12,
2191                     aom_highbd_12_masked_sub_pixel_variance32x64)
2192         HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12,
2193                     aom_highbd_12_masked_sub_pixel_variance32x32)
2194         HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12,
2195                     aom_highbd_12_masked_sub_pixel_variance32x16)
2196         HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12,
2197                     aom_highbd_12_masked_sub_pixel_variance16x32)
2198         HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12,
2199                     aom_highbd_12_masked_sub_pixel_variance16x16)
2200         HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12,
2201                     aom_highbd_12_masked_sub_pixel_variance8x16)
2202         HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12,
2203                     aom_highbd_12_masked_sub_pixel_variance16x8)
2204         HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12,
2205                     aom_highbd_12_masked_sub_pixel_variance8x8)
2206         HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12,
2207                     aom_highbd_12_masked_sub_pixel_variance4x8)
2208         HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12,
2209                     aom_highbd_12_masked_sub_pixel_variance8x4)
2210         HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12,
2211                     aom_highbd_12_masked_sub_pixel_variance4x4)
2212         HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits12,
2213                     aom_highbd_12_masked_sub_pixel_variance64x16)
2214         HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits12,
2215                     aom_highbd_12_masked_sub_pixel_variance16x64)
2216         HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits12,
2217                     aom_highbd_12_masked_sub_pixel_variance32x8)
2218         HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits12,
2219                     aom_highbd_12_masked_sub_pixel_variance8x32)
2220         HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits12,
2221                     aom_highbd_12_masked_sub_pixel_variance16x4)
2222         HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits12,
2223                     aom_highbd_12_masked_sub_pixel_variance4x16)
2224         HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12,
2225                     aom_highbd_12_obmc_variance128x128,
2226                     aom_highbd_12_obmc_sub_pixel_variance128x128)
2227         HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12,
2228                     aom_highbd_12_obmc_variance128x64,
2229                     aom_highbd_12_obmc_sub_pixel_variance128x64)
2230         HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12,
2231                     aom_highbd_12_obmc_variance64x128,
2232                     aom_highbd_12_obmc_sub_pixel_variance64x128)
2233         HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12,
2234                     aom_highbd_12_obmc_variance64x64,
2235                     aom_highbd_12_obmc_sub_pixel_variance64x64)
2236         HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12,
2237                     aom_highbd_12_obmc_variance64x32,
2238                     aom_highbd_12_obmc_sub_pixel_variance64x32)
2239         HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12,
2240                     aom_highbd_12_obmc_variance32x64,
2241                     aom_highbd_12_obmc_sub_pixel_variance32x64)
2242         HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12,
2243                     aom_highbd_12_obmc_variance32x32,
2244                     aom_highbd_12_obmc_sub_pixel_variance32x32)
2245         HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12,
2246                     aom_highbd_12_obmc_variance32x16,
2247                     aom_highbd_12_obmc_sub_pixel_variance32x16)
2248         HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12,
2249                     aom_highbd_12_obmc_variance16x32,
2250                     aom_highbd_12_obmc_sub_pixel_variance16x32)
2251         HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12,
2252                     aom_highbd_12_obmc_variance16x16,
2253                     aom_highbd_12_obmc_sub_pixel_variance16x16)
2254         HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12,
2255                     aom_highbd_12_obmc_variance8x16,
2256                     aom_highbd_12_obmc_sub_pixel_variance8x16)
2257         HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12,
2258                     aom_highbd_12_obmc_variance16x8,
2259                     aom_highbd_12_obmc_sub_pixel_variance16x8)
2260         HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12,
2261                     aom_highbd_12_obmc_variance8x8,
2262                     aom_highbd_12_obmc_sub_pixel_variance8x8)
2263         HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12,
2264                     aom_highbd_12_obmc_variance4x8,
2265                     aom_highbd_12_obmc_sub_pixel_variance4x8)
2266         HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12,
2267                     aom_highbd_12_obmc_variance8x4,
2268                     aom_highbd_12_obmc_sub_pixel_variance8x4)
2269         HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12,
2270                     aom_highbd_12_obmc_variance4x4,
2271                     aom_highbd_12_obmc_sub_pixel_variance4x4)
2272         HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits12,
2273                     aom_highbd_12_obmc_variance64x16,
2274                     aom_highbd_12_obmc_sub_pixel_variance64x16)
2275         HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits12,
2276                     aom_highbd_12_obmc_variance16x64,
2277                     aom_highbd_12_obmc_sub_pixel_variance16x64)
2278         HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits12,
2279                     aom_highbd_12_obmc_variance32x8,
2280                     aom_highbd_12_obmc_sub_pixel_variance32x8)
2281         HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits12,
2282                     aom_highbd_12_obmc_variance8x32,
2283                     aom_highbd_12_obmc_sub_pixel_variance8x32)
2284         HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits12,
2285                     aom_highbd_12_obmc_variance16x4,
2286                     aom_highbd_12_obmc_sub_pixel_variance16x4)
2287         HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits12,
2288                     aom_highbd_12_obmc_variance4x16,
2289                     aom_highbd_12_obmc_sub_pixel_variance4x16)
2290         break;
2291 
2292       default:
2293         assert(0 &&
2294                "cm->seq_params.bit_depth should be AOM_BITS_8, "
2295                "AOM_BITS_10 or AOM_BITS_12");
2296     }
2297   }
2298 }
2299 
realloc_segmentation_maps(AV1_COMP * cpi)2300 static void realloc_segmentation_maps(AV1_COMP *cpi) {
2301   AV1_COMMON *const cm = &cpi->common;
2302 
2303   // Create the encoder segmentation map and set all entries to 0
2304   aom_free(cpi->segmentation_map);
2305   CHECK_MEM_ERROR(cm, cpi->segmentation_map,
2306                   aom_calloc(cm->mi_rows * cm->mi_cols, 1));
2307 
2308   // Create a map used for cyclic background refresh.
2309   if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh);
2310   CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
2311                   av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
2312 
2313   // Create a map used to mark inactive areas.
2314   aom_free(cpi->active_map.map);
2315   CHECK_MEM_ERROR(cm, cpi->active_map.map,
2316                   aom_calloc(cm->mi_rows * cm->mi_cols, 1));
2317 }
2318 
av1_change_config(struct AV1_COMP * cpi,const AV1EncoderConfig * oxcf)2319 void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) {
2320   AV1_COMMON *const cm = &cpi->common;
2321   SequenceHeader *const seq_params = &cm->seq_params;
2322   const int num_planes = av1_num_planes(cm);
2323   RATE_CONTROL *const rc = &cpi->rc;
2324   MACROBLOCK *const x = &cpi->td.mb;
2325 
2326   if (seq_params->profile != oxcf->profile) seq_params->profile = oxcf->profile;
2327   seq_params->bit_depth = oxcf->bit_depth;
2328   seq_params->color_primaries = oxcf->color_primaries;
2329   seq_params->transfer_characteristics = oxcf->transfer_characteristics;
2330   seq_params->matrix_coefficients = oxcf->matrix_coefficients;
2331   seq_params->monochrome = oxcf->monochrome;
2332   seq_params->chroma_sample_position = oxcf->chroma_sample_position;
2333   seq_params->color_range = oxcf->color_range;
2334 
2335   assert(IMPLIES(seq_params->profile <= PROFILE_1,
2336                  seq_params->bit_depth <= AOM_BITS_10));
2337 
2338   cm->timing_info_present = oxcf->timing_info_present;
2339   cm->timing_info.num_units_in_display_tick =
2340       oxcf->timing_info.num_units_in_display_tick;
2341   cm->timing_info.time_scale = oxcf->timing_info.time_scale;
2342   cm->timing_info.equal_picture_interval =
2343       oxcf->timing_info.equal_picture_interval;
2344   cm->timing_info.num_ticks_per_picture =
2345       oxcf->timing_info.num_ticks_per_picture;
2346 
2347   seq_params->display_model_info_present_flag =
2348       oxcf->display_model_info_present_flag;
2349   seq_params->decoder_model_info_present_flag =
2350       oxcf->decoder_model_info_present_flag;
2351   if (oxcf->decoder_model_info_present_flag) {
2352     // set the decoder model parameters in schedule mode
2353     cm->buffer_model.num_units_in_decoding_tick =
2354         oxcf->buffer_model.num_units_in_decoding_tick;
2355     cm->buffer_removal_time_present = 1;
2356     set_aom_dec_model_info(&cm->buffer_model);
2357     set_dec_model_op_parameters(&cm->op_params[0]);
2358   } else if (cm->timing_info_present &&
2359              cm->timing_info.equal_picture_interval &&
2360              !seq_params->decoder_model_info_present_flag) {
2361     // set the decoder model parameters in resource availability mode
2362     set_resource_availability_parameters(&cm->op_params[0]);
2363   } else {
2364     cm->op_params[0].initial_display_delay =
2365         10;  // Default value (not signaled)
2366   }
2367 
2368   update_film_grain_parameters(cpi, oxcf);
2369 
2370   cpi->oxcf = *oxcf;
2371   cpi->common.options = oxcf->cfg;
2372   cpi->row_mt = oxcf->row_mt;
2373   x->e_mbd.bd = (int)seq_params->bit_depth;
2374   x->e_mbd.global_motion = cm->global_motion;
2375 
2376   if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
2377     rc->baseline_gf_interval = FIXED_GF_INTERVAL;
2378   } else {
2379     rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
2380   }
2381 
2382   cpi->refresh_last_frame = 1;
2383   cpi->refresh_golden_frame = 0;
2384   cpi->refresh_bwd_ref_frame = 0;
2385   cpi->refresh_alt2_ref_frame = 0;
2386 
2387   cm->refresh_frame_context = (oxcf->frame_parallel_decoding_mode)
2388                                   ? REFRESH_FRAME_CONTEXT_DISABLED
2389                                   : REFRESH_FRAME_CONTEXT_BACKWARD;
2390   if (oxcf->large_scale_tile)
2391     cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
2392 
2393   if (x->palette_buffer == NULL) {
2394     CHECK_MEM_ERROR(cm, x->palette_buffer,
2395                     aom_memalign(16, sizeof(*x->palette_buffer)));
2396   }
2397 
2398   if (x->tmp_conv_dst == NULL) {
2399     CHECK_MEM_ERROR(
2400         cm, x->tmp_conv_dst,
2401         aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*x->tmp_conv_dst)));
2402     x->e_mbd.tmp_conv_dst = x->tmp_conv_dst;
2403   }
2404   for (int i = 0; i < 2; ++i) {
2405     if (x->tmp_obmc_bufs[i] == NULL) {
2406       CHECK_MEM_ERROR(cm, x->tmp_obmc_bufs[i],
2407                       aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
2408                                            sizeof(*x->tmp_obmc_bufs[i])));
2409       x->e_mbd.tmp_obmc_bufs[i] = x->tmp_obmc_bufs[i];
2410     }
2411   }
2412 
2413   av1_reset_segment_features(cm);
2414   set_high_precision_mv(cpi, 1, 0);
2415 
2416   set_rc_buffer_sizes(rc, &cpi->oxcf);
2417 
2418   // Under a configuration change, where maximum_buffer_size may change,
2419   // keep buffer level clipped to the maximum allowed buffer size.
2420   rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
2421   rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size);
2422 
2423   // Set up frame rate and related parameters rate control values.
2424   av1_new_framerate(cpi, cpi->framerate);
2425 
2426   // Set absolute upper and lower quality limits
2427   rc->worst_quality = cpi->oxcf.worst_allowed_q;
2428   rc->best_quality = cpi->oxcf.best_allowed_q;
2429 
2430   cm->interp_filter = oxcf->large_scale_tile ? EIGHTTAP_REGULAR : SWITCHABLE;
2431   cm->switchable_motion_mode = 1;
2432 
2433   if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
2434     cm->render_width = cpi->oxcf.render_width;
2435     cm->render_height = cpi->oxcf.render_height;
2436   } else {
2437     cm->render_width = cpi->oxcf.width;
2438     cm->render_height = cpi->oxcf.height;
2439   }
2440   cm->width = cpi->oxcf.width;
2441   cm->height = cpi->oxcf.height;
2442 
2443   int sb_size = seq_params->sb_size;
2444   // Superblock size should not be updated after the first key frame.
2445   if (!cpi->seq_params_locked) {
2446     set_sb_size(&cm->seq_params, select_sb_size(cpi));
2447   }
2448 
2449   if (cpi->initial_width || sb_size != seq_params->sb_size) {
2450     if (cm->width > cpi->initial_width || cm->height > cpi->initial_height ||
2451         seq_params->sb_size != sb_size) {
2452       av1_free_context_buffers(cm);
2453       av1_free_pc_tree(&cpi->td, num_planes);
2454       alloc_compressor_data(cpi);
2455       realloc_segmentation_maps(cpi);
2456       cpi->initial_width = cpi->initial_height = 0;
2457     }
2458   }
2459   update_frame_size(cpi);
2460 
2461   cpi->alt_ref_source = NULL;
2462   rc->is_src_frame_alt_ref = 0;
2463 
2464   rc->is_bwd_ref_frame = 0;
2465   rc->is_last_bipred_frame = 0;
2466   rc->is_bipred_frame = 0;
2467 
2468   set_tile_info(cpi);
2469 
2470   cpi->ext_refresh_frame_flags_pending = 0;
2471   cpi->ext_refresh_frame_context_pending = 0;
2472 
2473   highbd_set_var_fns(cpi);
2474 
2475   // Init sequence level coding tools
2476   // This should not be called after the first key frame.
2477   if (!cpi->seq_params_locked) {
2478     seq_params->operating_points_cnt_minus_1 =
2479         cm->number_spatial_layers > 1 ? cm->number_spatial_layers - 1 : 0;
2480     init_seq_coding_tools(&cm->seq_params, cm, oxcf);
2481   }
2482 }
2483 
av1_create_compressor(AV1EncoderConfig * oxcf,BufferPool * const pool)2484 AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
2485                                 BufferPool *const pool) {
2486   unsigned int i;
2487   AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP));
2488   AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
2489 
2490   if (!cm) return NULL;
2491 
2492   av1_zero(*cpi);
2493 
2494   // The jmp_buf is valid only for the duration of the function that calls
2495   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2496   // before it returns.
2497   if (setjmp(cm->error.jmp)) {
2498     cm->error.setjmp = 0;
2499     av1_remove_compressor(cpi);
2500     return 0;
2501   }
2502 
2503   cm->error.setjmp = 1;
2504   cm->alloc_mi = enc_alloc_mi;
2505   cm->free_mi = enc_free_mi;
2506   cm->setup_mi = enc_setup_mi;
2507 
2508   CHECK_MEM_ERROR(cm, cm->fc,
2509                   (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc)));
2510   CHECK_MEM_ERROR(cm, cm->frame_contexts,
2511                   (FRAME_CONTEXT *)aom_memalign(
2512                       32, FRAME_CONTEXTS * sizeof(*cm->frame_contexts)));
2513   memset(cm->fc, 0, sizeof(*cm->fc));
2514   memset(cm->frame_contexts, 0, FRAME_CONTEXTS * sizeof(*cm->frame_contexts));
2515 
2516   cpi->resize_state = 0;
2517   cpi->resize_avg_qp = 0;
2518   cpi->resize_buffer_underflow = 0;
2519 
2520   cpi->common.buffer_pool = pool;
2521 
2522   init_config(cpi, oxcf);
2523   av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
2524 
2525   cm->current_video_frame = 0;
2526   cpi->seq_params_locked = 0;
2527   cpi->partition_search_skippable_frame = 0;
2528   cpi->tile_data = NULL;
2529   cpi->last_show_frame_buf_idx = INVALID_IDX;
2530 
2531   realloc_segmentation_maps(cpi);
2532 
2533   memset(cpi->nmv_costs, 0, sizeof(cpi->nmv_costs));
2534   memset(cpi->nmv_costs_hp, 0, sizeof(cpi->nmv_costs_hp));
2535 
2536   for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
2537        i++) {
2538     CHECK_MEM_ERROR(
2539         cm, cpi->mbgraph_stats[i].mb_stats,
2540         aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
2541   }
2542 
2543 #if CONFIG_FP_MB_STATS
2544   cpi->use_fp_mb_stats = 0;
2545   if (cpi->use_fp_mb_stats) {
2546     // a place holder used to store the first pass mb stats in the first pass
2547     CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
2548                     aom_calloc(cm->MBs * sizeof(uint8_t), 1));
2549   } else {
2550     cpi->twopass.frame_mb_stats_buf = NULL;
2551   }
2552 #endif
2553 
2554   cpi->refresh_alt_ref_frame = 0;
2555 
2556   cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
2557 #if CONFIG_INTERNAL_STATS
2558   cpi->b_calculate_blockiness = 1;
2559   cpi->b_calculate_consistency = 1;
2560   cpi->total_inconsistency = 0;
2561   cpi->psnr.worst = 100.0;
2562   cpi->worst_ssim = 100.0;
2563 
2564   cpi->count = 0;
2565   cpi->bytes = 0;
2566 
2567   if (cpi->b_calculate_psnr) {
2568     cpi->total_sq_error = 0;
2569     cpi->total_samples = 0;
2570     cpi->tot_recode_hits = 0;
2571     cpi->summed_quality = 0;
2572     cpi->summed_weights = 0;
2573   }
2574 
2575   cpi->fastssim.worst = 100.0;
2576   cpi->psnrhvs.worst = 100.0;
2577 
2578   if (cpi->b_calculate_blockiness) {
2579     cpi->total_blockiness = 0;
2580     cpi->worst_blockiness = 0.0;
2581   }
2582 
2583   if (cpi->b_calculate_consistency) {
2584     CHECK_MEM_ERROR(cm, cpi->ssim_vars,
2585                     aom_malloc(sizeof(*cpi->ssim_vars) * 4 *
2586                                cpi->common.mi_rows * cpi->common.mi_cols));
2587     cpi->worst_consistency = 100.0;
2588   }
2589 #endif
2590 #if CONFIG_ENTROPY_STATS
2591   av1_zero(aggregate_fc);
2592 #endif  // CONFIG_ENTROPY_STATS
2593 
2594   cpi->first_time_stamp_ever = INT64_MAX;
2595 
2596   cpi->td.mb.nmvcost[0] = &cpi->nmv_costs[0][MV_MAX];
2597   cpi->td.mb.nmvcost[1] = &cpi->nmv_costs[1][MV_MAX];
2598   cpi->td.mb.nmvcost_hp[0] = &cpi->nmv_costs_hp[0][MV_MAX];
2599   cpi->td.mb.nmvcost_hp[1] = &cpi->nmv_costs_hp[1][MV_MAX];
2600 
2601 #ifdef OUTPUT_YUV_SKINMAP
2602   yuv_skinmap_file = fopen("skinmap.yuv", "ab");
2603 #endif
2604 #ifdef OUTPUT_YUV_REC
2605   yuv_rec_file = fopen("rec.yuv", "wb");
2606 #endif
2607 
2608   if (oxcf->pass == 1) {
2609     av1_init_first_pass(cpi);
2610   } else if (oxcf->pass == 2) {
2611     const size_t packet_sz = sizeof(FIRSTPASS_STATS);
2612     const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
2613 
2614 #if CONFIG_FP_MB_STATS
2615     if (cpi->use_fp_mb_stats) {
2616       const size_t psz = cpi->common.MBs * sizeof(uint8_t);
2617       const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
2618 
2619       cpi->twopass.firstpass_mb_stats.mb_stats_start =
2620           oxcf->firstpass_mb_stats_in.buf;
2621       cpi->twopass.firstpass_mb_stats.mb_stats_end =
2622           cpi->twopass.firstpass_mb_stats.mb_stats_start +
2623           (ps - 1) * cpi->common.MBs * sizeof(uint8_t);
2624     }
2625 #endif
2626 
2627     cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
2628     cpi->twopass.stats_in = cpi->twopass.stats_in_start;
2629     cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
2630 
2631     av1_init_second_pass(cpi);
2632   }
2633 
2634   CHECK_MEM_ERROR(
2635       cm, cpi->td.mb.above_pred_buf,
2636       (uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE *
2637                                       sizeof(*cpi->td.mb.above_pred_buf)));
2638   CHECK_MEM_ERROR(
2639       cm, cpi->td.mb.left_pred_buf,
2640       (uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE *
2641                                       sizeof(*cpi->td.mb.left_pred_buf)));
2642 
2643   CHECK_MEM_ERROR(cm, cpi->td.mb.wsrc_buf,
2644                   (int32_t *)aom_memalign(
2645                       16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.wsrc_buf)));
2646 
2647   for (int x = 0; x < 2; x++)
2648     for (int y = 0; y < 2; y++)
2649       CHECK_MEM_ERROR(
2650           cm, cpi->td.mb.hash_value_buffer[x][y],
2651           (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
2652                                  sizeof(*cpi->td.mb.hash_value_buffer[0][0])));
2653 
2654   cpi->td.mb.g_crc_initialized = 0;
2655 
2656   CHECK_MEM_ERROR(cm, cpi->td.mb.mask_buf,
2657                   (int32_t *)aom_memalign(
2658                       16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.mask_buf)));
2659 
2660   av1_set_speed_features_framesize_independent(cpi);
2661   av1_set_speed_features_framesize_dependent(cpi);
2662 
2663 #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \
2664   cpi->fn_ptr[BT].sdf = SDF;                                    \
2665   cpi->fn_ptr[BT].sdaf = SDAF;                                  \
2666   cpi->fn_ptr[BT].vf = VF;                                      \
2667   cpi->fn_ptr[BT].svf = SVF;                                    \
2668   cpi->fn_ptr[BT].svaf = SVAF;                                  \
2669   cpi->fn_ptr[BT].sdx4df = SDX4DF;                              \
2670   cpi->fn_ptr[BT].jsdaf = JSDAF;                                \
2671   cpi->fn_ptr[BT].jsvaf = JSVAF;
2672 
2673   BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16,
2674       aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16,
2675       aom_sad4x16x4d, aom_jnt_sad4x16_avg, aom_jnt_sub_pixel_avg_variance4x16)
2676 
2677   BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4,
2678       aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4,
2679       aom_sad16x4x4d, aom_jnt_sad16x4_avg, aom_jnt_sub_pixel_avg_variance16x4)
2680 
2681   BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32,
2682       aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32,
2683       aom_sad8x32x4d, aom_jnt_sad8x32_avg, aom_jnt_sub_pixel_avg_variance8x32)
2684 
2685   BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8,
2686       aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8,
2687       aom_sad32x8x4d, aom_jnt_sad32x8_avg, aom_jnt_sub_pixel_avg_variance32x8)
2688 
2689   BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64,
2690       aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64,
2691       aom_sad16x64x4d, aom_jnt_sad16x64_avg,
2692       aom_jnt_sub_pixel_avg_variance16x64)
2693 
2694   BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16,
2695       aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16,
2696       aom_sad64x16x4d, aom_jnt_sad64x16_avg,
2697       aom_jnt_sub_pixel_avg_variance64x16)
2698 
2699   BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128,
2700       aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128,
2701       aom_sad128x128x4d, aom_jnt_sad128x128_avg,
2702       aom_jnt_sub_pixel_avg_variance128x128)
2703 
2704   BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64,
2705       aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64,
2706       aom_sad128x64x4d, aom_jnt_sad128x64_avg,
2707       aom_jnt_sub_pixel_avg_variance128x64)
2708 
2709   BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128,
2710       aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128,
2711       aom_sad64x128x4d, aom_jnt_sad64x128_avg,
2712       aom_jnt_sub_pixel_avg_variance64x128)
2713 
2714   BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16,
2715       aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16,
2716       aom_sad32x16x4d, aom_jnt_sad32x16_avg,
2717       aom_jnt_sub_pixel_avg_variance32x16)
2718 
2719   BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32,
2720       aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32,
2721       aom_sad16x32x4d, aom_jnt_sad16x32_avg,
2722       aom_jnt_sub_pixel_avg_variance16x32)
2723 
2724   BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32,
2725       aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32,
2726       aom_sad64x32x4d, aom_jnt_sad64x32_avg,
2727       aom_jnt_sub_pixel_avg_variance64x32)
2728 
2729   BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64,
2730       aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64,
2731       aom_sad32x64x4d, aom_jnt_sad32x64_avg,
2732       aom_jnt_sub_pixel_avg_variance32x64)
2733 
2734   BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32,
2735       aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32,
2736       aom_sad32x32x4d, aom_jnt_sad32x32_avg,
2737       aom_jnt_sub_pixel_avg_variance32x32)
2738 
2739   BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64,
2740       aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64,
2741       aom_sad64x64x4d, aom_jnt_sad64x64_avg,
2742       aom_jnt_sub_pixel_avg_variance64x64)
2743 
2744   BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16,
2745       aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16,
2746       aom_sad16x16x4d, aom_jnt_sad16x16_avg,
2747       aom_jnt_sub_pixel_avg_variance16x16)
2748 
2749   BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8,
2750       aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8,
2751       aom_sad16x8x4d, aom_jnt_sad16x8_avg, aom_jnt_sub_pixel_avg_variance16x8)
2752 
2753   BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16,
2754       aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16,
2755       aom_sad8x16x4d, aom_jnt_sad8x16_avg, aom_jnt_sub_pixel_avg_variance8x16)
2756 
2757   BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8,
2758       aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d,
2759       aom_jnt_sad8x8_avg, aom_jnt_sub_pixel_avg_variance8x8)
2760 
2761   BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4,
2762       aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d,
2763       aom_jnt_sad8x4_avg, aom_jnt_sub_pixel_avg_variance8x4)
2764 
2765   BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8,
2766       aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d,
2767       aom_jnt_sad4x8_avg, aom_jnt_sub_pixel_avg_variance4x8)
2768 
2769   BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4,
2770       aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d,
2771       aom_jnt_sad4x4_avg, aom_jnt_sub_pixel_avg_variance4x4)
2772 
2773 #define OBFP(BT, OSDF, OVF, OSVF) \
2774   cpi->fn_ptr[BT].osdf = OSDF;    \
2775   cpi->fn_ptr[BT].ovf = OVF;      \
2776   cpi->fn_ptr[BT].osvf = OSVF;
2777 
2778   OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128,
2779        aom_obmc_sub_pixel_variance128x128)
2780   OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64,
2781        aom_obmc_sub_pixel_variance128x64)
2782   OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128,
2783        aom_obmc_sub_pixel_variance64x128)
2784   OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64,
2785        aom_obmc_sub_pixel_variance64x64)
2786   OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32,
2787        aom_obmc_sub_pixel_variance64x32)
2788   OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64,
2789        aom_obmc_sub_pixel_variance32x64)
2790   OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32,
2791        aom_obmc_sub_pixel_variance32x32)
2792   OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16,
2793        aom_obmc_sub_pixel_variance32x16)
2794   OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32,
2795        aom_obmc_sub_pixel_variance16x32)
2796   OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16,
2797        aom_obmc_sub_pixel_variance16x16)
2798   OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8,
2799        aom_obmc_sub_pixel_variance16x8)
2800   OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16,
2801        aom_obmc_sub_pixel_variance8x16)
2802   OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8,
2803        aom_obmc_sub_pixel_variance8x8)
2804   OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8,
2805        aom_obmc_sub_pixel_variance4x8)
2806   OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4,
2807        aom_obmc_sub_pixel_variance8x4)
2808   OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4,
2809        aom_obmc_sub_pixel_variance4x4)
2810   OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16,
2811        aom_obmc_sub_pixel_variance4x16)
2812   OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4,
2813        aom_obmc_sub_pixel_variance16x4)
2814   OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32,
2815        aom_obmc_sub_pixel_variance8x32)
2816   OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8,
2817        aom_obmc_sub_pixel_variance32x8)
2818   OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64,
2819        aom_obmc_sub_pixel_variance16x64)
2820   OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16,
2821        aom_obmc_sub_pixel_variance64x16)
2822 
2823 #define MBFP(BT, MCSDF, MCSVF)  \
2824   cpi->fn_ptr[BT].msdf = MCSDF; \
2825   cpi->fn_ptr[BT].msvf = MCSVF;
2826 
2827   MBFP(BLOCK_128X128, aom_masked_sad128x128,
2828        aom_masked_sub_pixel_variance128x128)
2829   MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64)
2830   MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128)
2831   MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64)
2832   MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32)
2833   MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64)
2834   MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32)
2835   MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16)
2836   MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32)
2837   MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16)
2838   MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8)
2839   MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16)
2840   MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8)
2841   MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8)
2842   MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4)
2843   MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4)
2844 
2845   MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16)
2846 
2847   MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4)
2848 
2849   MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32)
2850 
2851   MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8)
2852 
2853   MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64)
2854 
2855   MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16)
2856 
2857   highbd_set_var_fns(cpi);
2858 
2859   /* av1_init_quantizer() is first called here. Add check in
2860    * av1_frame_init_quantizer() so that av1_init_quantizer is only
2861    * called later when needed. This will avoid unnecessary calls of
2862    * av1_init_quantizer() for every frame.
2863    */
2864   av1_init_quantizer(cpi);
2865   av1_qm_init(cm);
2866 
2867   av1_loop_filter_init(cm);
2868   cm->superres_scale_denominator = SCALE_NUMERATOR;
2869   cm->superres_upscaled_width = oxcf->width;
2870   cm->superres_upscaled_height = oxcf->height;
2871   av1_loop_restoration_precal();
2872 
2873   cm->error.setjmp = 0;
2874 
2875   return cpi;
2876 }
2877 
2878 #if CONFIG_INTERNAL_STATS
2879 #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
2880 
2881 #define SNPRINT2(H, T, V) \
2882   snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
2883 #endif  // CONFIG_INTERNAL_STATS
2884 
av1_remove_compressor(AV1_COMP * cpi)2885 void av1_remove_compressor(AV1_COMP *cpi) {
2886   AV1_COMMON *cm;
2887   unsigned int i;
2888   int t;
2889 
2890   if (!cpi) return;
2891 
2892   cm = &cpi->common;
2893   const int num_planes = av1_num_planes(cm);
2894 
2895   if (cm->current_video_frame > 0) {
2896 #if CONFIG_ENTROPY_STATS
2897     if (cpi->oxcf.pass != 1) {
2898       fprintf(stderr, "Writing counts.stt\n");
2899       FILE *f = fopen("counts.stt", "wb");
2900       fwrite(&aggregate_fc, sizeof(aggregate_fc), 1, f);
2901       fclose(f);
2902     }
2903 #endif  // CONFIG_ENTROPY_STATS
2904 #if CONFIG_INTERNAL_STATS
2905     aom_clear_system_state();
2906 
2907     if (cpi->oxcf.pass != 1) {
2908       char headings[512] = { 0 };
2909       char results[512] = { 0 };
2910       FILE *f = fopen("opsnr.stt", "a");
2911       double time_encoded =
2912           (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
2913           10000000.000;
2914       double total_encode_time =
2915           (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
2916       const double dr =
2917           (double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
2918       const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
2919       const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
2920       const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
2921 
2922       if (cpi->b_calculate_psnr) {
2923         const double total_psnr = aom_sse_to_psnr(
2924             (double)cpi->total_samples, peak, (double)cpi->total_sq_error);
2925         const double total_ssim =
2926             100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
2927         snprintf(headings, sizeof(headings),
2928                  "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
2929                  "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
2930                  "WstPsnr\tWstSsim\tWstFast\tWstHVS\t"
2931                  "AVPsrnY\tAPsnrCb\tAPsnrCr");
2932         snprintf(results, sizeof(results),
2933                  "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
2934                  "%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
2935                  "%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
2936                  "%7.3f\t%7.3f\t%7.3f",
2937                  dr, cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr,
2938                  cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr, total_ssim,
2939                  total_ssim, cpi->fastssim.stat[STAT_ALL] / cpi->count,
2940                  cpi->psnrhvs.stat[STAT_ALL] / cpi->count, cpi->psnr.worst,
2941                  cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst,
2942                  cpi->psnr.stat[STAT_Y] / cpi->count,
2943                  cpi->psnr.stat[STAT_U] / cpi->count,
2944                  cpi->psnr.stat[STAT_V] / cpi->count);
2945 
2946         if (cpi->b_calculate_blockiness) {
2947           SNPRINT(headings, "\t  Block\tWstBlck");
2948           SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
2949           SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
2950         }
2951 
2952         if (cpi->b_calculate_consistency) {
2953           double consistency =
2954               aom_sse_to_psnr((double)cpi->total_samples, peak,
2955                               (double)cpi->total_inconsistency);
2956 
2957           SNPRINT(headings, "\tConsist\tWstCons");
2958           SNPRINT2(results, "\t%7.3f", consistency);
2959           SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
2960         }
2961         fprintf(f, "%s\t    Time\tRcErr\tAbsErr\n", headings);
2962         fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time,
2963                 rate_err, fabs(rate_err));
2964       }
2965 
2966       fclose(f);
2967     }
2968 #endif  // CONFIG_INTERNAL_STATS
2969   }
2970 
2971   for (t = 0; t < cpi->num_workers; ++t) {
2972     AVxWorker *const worker = &cpi->workers[t];
2973     EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
2974 
2975     // Deallocate allocated threads.
2976     aom_get_worker_interface()->end(worker);
2977 
2978     // Deallocate allocated thread data.
2979     if (t < cpi->num_workers - 1) {
2980       aom_free(thread_data->td->palette_buffer);
2981       aom_free(thread_data->td->tmp_conv_dst);
2982       for (int j = 0; j < 2; ++j) {
2983         aom_free(thread_data->td->tmp_obmc_bufs[j]);
2984       }
2985       aom_free(thread_data->td->above_pred_buf);
2986       aom_free(thread_data->td->left_pred_buf);
2987       aom_free(thread_data->td->wsrc_buf);
2988       for (int x = 0; x < 2; x++) {
2989         for (int y = 0; y < 2; y++) {
2990           aom_free(thread_data->td->hash_value_buffer[x][y]);
2991           thread_data->td->hash_value_buffer[x][y] = NULL;
2992         }
2993       }
2994       aom_free(thread_data->td->mask_buf);
2995       aom_free(thread_data->td->counts);
2996       av1_free_pc_tree(thread_data->td, num_planes);
2997       aom_free(thread_data->td);
2998     }
2999   }
3000   aom_free(cpi->tile_thr_data);
3001   aom_free(cpi->workers);
3002 
3003   if (cpi->num_workers > 1) {
3004     av1_loop_filter_dealloc(&cpi->lf_row_sync);
3005     av1_loop_restoration_dealloc(&cpi->lr_row_sync, cpi->num_workers);
3006   }
3007 
3008   dealloc_compressor_data(cpi);
3009 
3010   for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
3011        ++i) {
3012     aom_free(cpi->mbgraph_stats[i].mb_stats);
3013   }
3014 
3015 #if CONFIG_FP_MB_STATS
3016   if (cpi->use_fp_mb_stats) {
3017     aom_free(cpi->twopass.frame_mb_stats_buf);
3018     cpi->twopass.frame_mb_stats_buf = NULL;
3019   }
3020 #endif
3021 #if CONFIG_INTERNAL_STATS
3022   aom_free(cpi->ssim_vars);
3023   cpi->ssim_vars = NULL;
3024 #endif  // CONFIG_INTERNAL_STATS
3025 
3026   av1_remove_common(cm);
3027   for (i = 0; i < FRAME_BUFFERS; ++i) {
3028     av1_hash_table_destroy(&cm->buffer_pool->frame_bufs[i].hash_table);
3029   }
3030   if (cpi->sf.use_hash_based_trellis) hbt_destroy();
3031   av1_free_ref_frame_buffers(cm->buffer_pool);
3032   aom_free(cpi);
3033 
3034 #ifdef OUTPUT_YUV_SKINMAP
3035   fclose(yuv_skinmap_file);
3036 #endif
3037 #ifdef OUTPUT_YUV_REC
3038   fclose(yuv_rec_file);
3039 #endif
3040 }
3041 
generate_psnr_packet(AV1_COMP * cpi)3042 static void generate_psnr_packet(AV1_COMP *cpi) {
3043   struct aom_codec_cx_pkt pkt;
3044   int i;
3045   PSNR_STATS psnr;
3046   aom_calc_highbd_psnr(cpi->source, cpi->common.frame_to_show, &psnr,
3047                        cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
3048 
3049   for (i = 0; i < 4; ++i) {
3050     pkt.data.psnr.samples[i] = psnr.samples[i];
3051     pkt.data.psnr.sse[i] = psnr.sse[i];
3052     pkt.data.psnr.psnr[i] = psnr.psnr[i];
3053   }
3054   pkt.kind = AOM_CODEC_PSNR_PKT;
3055   aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
3056 }
3057 
av1_use_as_reference(AV1_COMP * cpi,int ref_frame_flags)3058 int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) {
3059   if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1;
3060 
3061   cpi->ext_ref_frame_flags = ref_frame_flags;
3062   return 0;
3063 }
3064 
av1_update_reference(AV1_COMP * cpi,int ref_frame_upd_flags)3065 void av1_update_reference(AV1_COMP *cpi, int ref_frame_upd_flags) {
3066   cpi->ext_refresh_last_frame = (ref_frame_upd_flags & AOM_LAST_FLAG) != 0;
3067   cpi->ext_refresh_golden_frame = (ref_frame_upd_flags & AOM_GOLD_FLAG) != 0;
3068   cpi->ext_refresh_alt_ref_frame = (ref_frame_upd_flags & AOM_ALT_FLAG) != 0;
3069   cpi->ext_refresh_bwd_ref_frame = (ref_frame_upd_flags & AOM_BWD_FLAG) != 0;
3070   cpi->ext_refresh_alt2_ref_frame = (ref_frame_upd_flags & AOM_ALT2_FLAG) != 0;
3071   cpi->ext_refresh_frame_flags_pending = 1;
3072 }
3073 
av1_copy_reference_enc(AV1_COMP * cpi,int idx,YV12_BUFFER_CONFIG * sd)3074 int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
3075   AV1_COMMON *const cm = &cpi->common;
3076   const int num_planes = av1_num_planes(cm);
3077   YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
3078   if (cfg) {
3079     aom_yv12_copy_frame(cfg, sd, num_planes);
3080     return 0;
3081   } else {
3082     return -1;
3083   }
3084 }
3085 
av1_set_reference_enc(AV1_COMP * cpi,int idx,YV12_BUFFER_CONFIG * sd)3086 int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
3087   AV1_COMMON *const cm = &cpi->common;
3088   const int num_planes = av1_num_planes(cm);
3089   YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
3090   if (cfg) {
3091     aom_yv12_copy_frame(sd, cfg, num_planes);
3092     return 0;
3093   } else {
3094     return -1;
3095   }
3096 }
3097 
av1_update_entropy(AV1_COMP * cpi,int update)3098 int av1_update_entropy(AV1_COMP *cpi, int update) {
3099   cpi->ext_refresh_frame_context = update;
3100   cpi->ext_refresh_frame_context_pending = 1;
3101   return 0;
3102 }
3103 
3104 #if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
3105 // The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
3106 // as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
3107 // not denoise the UV channels at this time. If ever we implement UV channel
3108 // denoising we will have to modify this.
aom_write_yuv_frame_420(YV12_BUFFER_CONFIG * s,FILE * f)3109 void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
3110   uint8_t *src = s->y_buffer;
3111   int h = s->y_height;
3112 
3113   do {
3114     fwrite(src, s->y_width, 1, f);
3115     src += s->y_stride;
3116   } while (--h);
3117 
3118   src = s->u_buffer;
3119   h = s->uv_height;
3120 
3121   do {
3122     fwrite(src, s->uv_width, 1, f);
3123     src += s->uv_stride;
3124   } while (--h);
3125 
3126   src = s->v_buffer;
3127   h = s->uv_height;
3128 
3129   do {
3130     fwrite(src, s->uv_width, 1, f);
3131     src += s->uv_stride;
3132   } while (--h);
3133 }
3134 #endif
3135 
check_show_existing_frame(AV1_COMP * cpi)3136 static void check_show_existing_frame(AV1_COMP *cpi) {
3137   const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
3138   AV1_COMMON *const cm = &cpi->common;
3139   const FRAME_UPDATE_TYPE next_frame_update_type =
3140       gf_group->update_type[gf_group->index];
3141 #if USE_SYMM_MULTI_LAYER
3142   const int which_arf = (cpi->new_bwdref_update_rule == 1)
3143                             ? gf_group->arf_update_idx[gf_group->index] > 0
3144                             : gf_group->arf_update_idx[gf_group->index];
3145 #else
3146   const int which_arf = gf_group->arf_update_idx[gf_group->index];
3147 #endif
3148 
3149   if (cm->show_existing_frame == 1) {
3150     cm->show_existing_frame = 0;
3151   } else if (cpi->rc.is_last_bipred_frame) {
3152 #if USE_SYMM_MULTI_LAYER
3153     // NOTE: When new structure is used, every bwdref will have one overlay
3154     //       frame. Therefore, there is no need to find out which frame to
3155     //       show in advance.
3156     if (cpi->new_bwdref_update_rule == 0) {
3157 #endif
3158       // NOTE: If the current frame is a last bi-predictive frame, it is
3159       //       needed next to show the BWDREF_FRAME, which is pointed by
3160       //       the last_fb_idxes[0] after reference frame buffer update
3161       cpi->rc.is_last_bipred_frame = 0;
3162       cm->show_existing_frame = 1;
3163       cpi->existing_fb_idx_to_show = cpi->ref_fb_idx[0];
3164 #if USE_SYMM_MULTI_LAYER
3165     }
3166 #endif
3167   } else if (cpi->is_arf_filter_off[which_arf] &&
3168              (next_frame_update_type == OVERLAY_UPDATE ||
3169               next_frame_update_type == INTNL_OVERLAY_UPDATE)) {
3170 #if USE_SYMM_MULTI_LAYER
3171     const int bwdref_to_show =
3172         (cpi->new_bwdref_update_rule == 1) ? BWDREF_FRAME : ALTREF2_FRAME;
3173 #else
3174     const int bwdref_to_show = ALTREF2_FRAME;
3175 #endif
3176     // Other parameters related to OVERLAY_UPDATE will be taken care of
3177     // in av1_rc_get_second_pass_params(cpi)
3178     cm->show_existing_frame = 1;
3179     cpi->rc.is_src_frame_alt_ref = 1;
3180     cpi->existing_fb_idx_to_show = (next_frame_update_type == OVERLAY_UPDATE)
3181                                        ? cpi->ref_fb_idx[ALTREF_FRAME - 1]
3182                                        : cpi->ref_fb_idx[bwdref_to_show - 1];
3183 #if USE_SYMM_MULTI_LAYER
3184     if (cpi->new_bwdref_update_rule == 0)
3185 #endif
3186       cpi->is_arf_filter_off[which_arf] = 0;
3187   }
3188   cpi->rc.is_src_frame_ext_arf = 0;
3189 }
3190 
3191 #ifdef OUTPUT_YUV_REC
aom_write_one_yuv_frame(AV1_COMMON * cm,YV12_BUFFER_CONFIG * s)3192 void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) {
3193   uint8_t *src = s->y_buffer;
3194   int h = cm->height;
3195   if (yuv_rec_file == NULL) return;
3196   if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
3197     uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
3198 
3199     do {
3200       fwrite(src16, s->y_width, 2, yuv_rec_file);
3201       src16 += s->y_stride;
3202     } while (--h);
3203 
3204     src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
3205     h = s->uv_height;
3206 
3207     do {
3208       fwrite(src16, s->uv_width, 2, yuv_rec_file);
3209       src16 += s->uv_stride;
3210     } while (--h);
3211 
3212     src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
3213     h = s->uv_height;
3214 
3215     do {
3216       fwrite(src16, s->uv_width, 2, yuv_rec_file);
3217       src16 += s->uv_stride;
3218     } while (--h);
3219 
3220     fflush(yuv_rec_file);
3221     return;
3222   }
3223 
3224   do {
3225     fwrite(src, s->y_width, 1, yuv_rec_file);
3226     src += s->y_stride;
3227   } while (--h);
3228 
3229   src = s->u_buffer;
3230   h = s->uv_height;
3231 
3232   do {
3233     fwrite(src, s->uv_width, 1, yuv_rec_file);
3234     src += s->uv_stride;
3235   } while (--h);
3236 
3237   src = s->v_buffer;
3238   h = s->uv_height;
3239 
3240   do {
3241     fwrite(src, s->uv_width, 1, yuv_rec_file);
3242     src += s->uv_stride;
3243   } while (--h);
3244 
3245   fflush(yuv_rec_file);
3246 }
3247 #endif  // OUTPUT_YUV_REC
3248 
3249 #define GM_RECODE_LOOP_NUM4X4_FACTOR 192
recode_loop_test_global_motion(AV1_COMP * cpi)3250 static int recode_loop_test_global_motion(AV1_COMP *cpi) {
3251   int i;
3252   int recode = 0;
3253   RD_COUNTS *const rdc = &cpi->td.rd_counts;
3254   AV1_COMMON *const cm = &cpi->common;
3255   for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
3256     if (cm->global_motion[i].wmtype != IDENTITY &&
3257         rdc->global_motion_used[i] * GM_RECODE_LOOP_NUM4X4_FACTOR <
3258             cpi->gmparams_cost[i]) {
3259       cm->global_motion[i] = default_warp_params;
3260       assert(cm->global_motion[i].wmtype == IDENTITY);
3261       cpi->gmparams_cost[i] = 0;
3262       recode = 1;
3263       // TODO(sarahparker): The earlier condition for recoding here was:
3264       // "recode |= (rdc->global_motion_used[i] > 0);". Can we bring something
3265       // similar to that back to speed up global motion?
3266     }
3267   }
3268   return recode;
3269 }
3270 
3271 // Function to test for conditions that indicate we should loop
3272 // back and recode a frame.
recode_loop_test(AV1_COMP * cpi,int high_limit,int low_limit,int q,int maxq,int minq)3273 static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q,
3274                             int maxq, int minq) {
3275   const RATE_CONTROL *const rc = &cpi->rc;
3276   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3277   const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
3278   int force_recode = 0;
3279 
3280   if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
3281       (cpi->sf.recode_loop == ALLOW_RECODE) ||
3282       (frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
3283     // TODO(agrange) high_limit could be greater than the scale-down threshold.
3284     if ((rc->projected_frame_size > high_limit && q < maxq) ||
3285         (rc->projected_frame_size < low_limit && q > minq)) {
3286       force_recode = 1;
3287     } else if (cpi->oxcf.rc_mode == AOM_CQ) {
3288       // Deal with frame undershoot and whether or not we are
3289       // below the automatically set cq level.
3290       if (q > oxcf->cq_level &&
3291           rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
3292         force_recode = 1;
3293       }
3294     }
3295   }
3296   return force_recode;
3297 }
3298 
3299 #define DUMP_REF_FRAME_IMAGES 0
3300 
3301 #if DUMP_REF_FRAME_IMAGES == 1
dump_one_image(AV1_COMMON * cm,const YV12_BUFFER_CONFIG * const ref_buf,char * file_name)3302 static int dump_one_image(AV1_COMMON *cm,
3303                           const YV12_BUFFER_CONFIG *const ref_buf,
3304                           char *file_name) {
3305   int h;
3306   FILE *f_ref = NULL;
3307 
3308   if (ref_buf == NULL) {
3309     printf("Frame data buffer is NULL.\n");
3310     return AOM_CODEC_MEM_ERROR;
3311   }
3312 
3313   if ((f_ref = fopen(file_name, "wb")) == NULL) {
3314     printf("Unable to open file %s to write.\n", file_name);
3315     return AOM_CODEC_MEM_ERROR;
3316   }
3317 
3318   // --- Y ---
3319   for (h = 0; h < cm->height; ++h) {
3320     fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
3321   }
3322   // --- U ---
3323   for (h = 0; h < (cm->height >> 1); ++h) {
3324     fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
3325            f_ref);
3326   }
3327   // --- V ---
3328   for (h = 0; h < (cm->height >> 1); ++h) {
3329     fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
3330            f_ref);
3331   }
3332 
3333   fclose(f_ref);
3334 
3335   return AOM_CODEC_OK;
3336 }
3337 
dump_ref_frame_images(AV1_COMP * cpi)3338 static void dump_ref_frame_images(AV1_COMP *cpi) {
3339   AV1_COMMON *const cm = &cpi->common;
3340   MV_REFERENCE_FRAME ref_frame;
3341 
3342   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3343     char file_name[256] = "";
3344     snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
3345              cm->current_video_frame, ref_frame);
3346     dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name);
3347   }
3348 }
3349 #endif  // DUMP_REF_FRAME_IMAGES == 1
3350 
3351 // This function is used to shift the virtual indices of last reference frames
3352 // as follows:
3353 // LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
3354 // when the LAST_FRAME is updated.
shift_last_ref_frames(AV1_COMP * cpi)3355 static INLINE void shift_last_ref_frames(AV1_COMP *cpi) {
3356   // TODO(isbs): shift the scaled indices as well
3357   int ref_frame;
3358   for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) {
3359     cpi->ref_fb_idx[ref_frame] = cpi->ref_fb_idx[ref_frame - 1];
3360 
3361     // [0] is allocated to the current coded frame. The statistics for the
3362     // reference frames start at [LAST_FRAME], i.e. [1].
3363     if (!cpi->rc.is_src_frame_alt_ref) {
3364       memcpy(cpi->interp_filter_selected[ref_frame + LAST_FRAME],
3365              cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME],
3366              sizeof(cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME]));
3367     }
3368   }
3369 }
3370 
3371 #if USE_SYMM_MULTI_LAYER
3372 // This function is used to shift the virtual indices of bwd reference
3373 // frames as follows:
3374 // BWD_REF -> ALT2_REF -> EXT_REF
3375 // to clear a space to store the closest bwdref
rshift_bwd_ref_frames(AV1_COMP * cpi)3376 static INLINE void rshift_bwd_ref_frames(AV1_COMP *cpi) {
3377   // TODO(isbs): shift the scaled indices as well
3378   static const int ordered_bwd[3] = { BWDREF_FRAME - 1, ALTREF2_FRAME - 1,
3379                                       EXTREF_FRAME - 1 };
3380 
3381   for (int i = 2; i > 0; --i) {
3382     // [0] is allocated to the current coded frame, i.e. bwdref
3383     memcpy(
3384         cpi->interp_filter_selected[ordered_bwd[i] + LAST_FRAME],
3385         cpi->interp_filter_selected[ordered_bwd[i - 1] + LAST_FRAME],
3386         sizeof(cpi->interp_filter_selected[ordered_bwd[i - 1] + LAST_FRAME]));
3387 
3388     cpi->ref_fb_idx[ordered_bwd[i]] = cpi->ref_fb_idx[ordered_bwd[i - 1]];
3389   }
3390 }
3391 
3392 // This function is used to shift the virtual indices of bwd reference
3393 // frames as follows:
3394 // BWD_REF <- ALT2_REF <- EXT_REF
3395 // to update the bwd reference frame for coding the next frame.
lshift_bwd_ref_frames(AV1_COMP * cpi)3396 static INLINE void lshift_bwd_ref_frames(AV1_COMP *cpi) {
3397   // TODO(isbs): shift the scaled indices as well
3398   static const int ordered_bwd[3] = { BWDREF_FRAME - 1, ALTREF2_FRAME - 1,
3399                                       EXTREF_FRAME - 1 };
3400 
3401   for (int i = 0; i < 2; ++i) {
3402     // [0] is allocated to the current coded frame, i.e. bwdref
3403     memcpy(
3404         cpi->interp_filter_selected[ordered_bwd[i] + LAST_FRAME],
3405         cpi->interp_filter_selected[ordered_bwd[i + 1] + LAST_FRAME],
3406         sizeof(cpi->interp_filter_selected[ordered_bwd[i + 1] + LAST_FRAME]));
3407 
3408     cpi->ref_fb_idx[ordered_bwd[i]] = cpi->ref_fb_idx[ordered_bwd[i + 1]];
3409   }
3410 }
3411 #endif  // USE_SYMM_MULTI_LAYER
3412 
update_reference_frames(AV1_COMP * cpi)3413 static void update_reference_frames(AV1_COMP *cpi) {
3414   AV1_COMMON *const cm = &cpi->common;
3415 
3416   // NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
3417   //       for the purpose to verify no mismatch between encoder and decoder.
3418   if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx;
3419 
3420   // In the case of show_existing frame, we will not send fresh flag
3421   // to decoder. Any change in the reference frame buffer can be done by
3422   // switching the virtual indices.
3423   if (cm->show_existing_frame) {
3424     cpi->refresh_last_frame = 0;
3425     cpi->refresh_golden_frame = 0;
3426     cpi->refresh_bwd_ref_frame = 0;
3427     cpi->refresh_alt2_ref_frame = 0;
3428     cpi->refresh_alt_ref_frame = 0;
3429 
3430     cpi->rc.is_bwd_ref_frame = 0;
3431     cpi->rc.is_last_bipred_frame = 0;
3432     cpi->rc.is_bipred_frame = 0;
3433   }
3434 
3435   BufferPool *const pool = cm->buffer_pool;
3436 
3437   // At this point the new frame has been encoded.
3438   // If any buffer copy / swapping is signaled it should be done here.
3439 
3440   // Only update all of the reference buffers if a KEY_FRAME is also a
3441   // show_frame. This ensures a fwd keyframe does not update all of the buffers
3442   if ((cm->frame_type == KEY_FRAME && cm->show_frame) || frame_is_sframe(cm)) {
3443     for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
3444       ref_cnt_fb(pool->frame_bufs,
3445                  &cm->ref_frame_map[cpi->ref_fb_idx[ref_frame]],
3446                  cm->new_fb_idx);
3447     }
3448     return;
3449   }
3450 
3451   if (av1_preserve_existing_gf(cpi)) {
3452     // We have decided to preserve the previously existing golden frame as our
3453     // new ARF frame. However, in the short term in function
3454     // av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
3455     // we're updating the GF with the current decoded frame, we save it to the
3456     // ARF slot instead.
3457     // We now have to update the ARF with the current frame and swap gld_fb_idx
3458     // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
3459     // slot and, if we're updating the GF, the current frame becomes the new GF.
3460     int tmp;
3461 
3462     // ARF in general is a better reference than overlay. We shouldkeep ARF as
3463     // reference instead of replacing it with overlay.
3464 
3465     if (!cpi->preserve_arf_as_gld) {
3466       ref_cnt_fb(pool->frame_bufs,
3467                  &cm->ref_frame_map[cpi->ref_fb_idx[ALTREF_FRAME - 1]],
3468                  cm->new_fb_idx);
3469     }
3470 
3471     tmp = cpi->ref_fb_idx[ALTREF_FRAME - 1];
3472     cpi->ref_fb_idx[ALTREF_FRAME - 1] = cpi->ref_fb_idx[GOLDEN_FRAME - 1];
3473     cpi->ref_fb_idx[GOLDEN_FRAME - 1] = tmp;
3474 
3475     // TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to
3476     // cpi->interp_filter_selected[GOLDEN_FRAME]?
3477   } else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) {
3478 #if CONFIG_DEBUG
3479     const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
3480     assert(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE);
3481 #endif
3482 #if USE_SYMM_MULTI_LAYER
3483     const int bwdref_to_show =
3484         (cpi->new_bwdref_update_rule == 1) ? BWDREF_FRAME : ALTREF2_FRAME;
3485 #else
3486     const int bwdref_to_show = ALTREF2_FRAME;
3487 #endif
3488     // Deal with the special case for showing existing internal ALTREF_FRAME
3489     // Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME
3490     // by updating the virtual indices.
3491     const int tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
3492     shift_last_ref_frames(cpi);
3493 
3494     cpi->ref_fb_idx[LAST_FRAME - 1] = cpi->ref_fb_idx[bwdref_to_show - 1];
3495 
3496     memcpy(cpi->interp_filter_selected[LAST_FRAME],
3497            cpi->interp_filter_selected[bwdref_to_show],
3498            sizeof(cpi->interp_filter_selected[bwdref_to_show]));
3499 #if USE_SYMM_MULTI_LAYER
3500     if (cpi->new_bwdref_update_rule == 1) {
3501       lshift_bwd_ref_frames(cpi);
3502       // pass outdated forward reference frame (previous LAST3) to the
3503       // spared space
3504       cpi->ref_fb_idx[EXTREF_FRAME - 1] = tmp;
3505     } else {
3506 #endif
3507       cpi->ref_fb_idx[bwdref_to_show - 1] = tmp;
3508 #if USE_SYMM_MULTI_LAYER
3509     }
3510 #endif
3511   } else { /* For non key/golden frames */
3512     // === ALTREF_FRAME ===
3513     if (cpi->refresh_alt_ref_frame) {
3514       int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1];
3515       ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
3516 
3517       memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
3518              cpi->interp_filter_selected[0],
3519              sizeof(cpi->interp_filter_selected[0]));
3520     }
3521 
3522     // === GOLDEN_FRAME ===
3523     if (cpi->refresh_golden_frame) {
3524       ref_cnt_fb(pool->frame_bufs,
3525                  &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
3526                  cm->new_fb_idx);
3527 
3528       memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
3529              cpi->interp_filter_selected[0],
3530              sizeof(cpi->interp_filter_selected[0]));
3531     }
3532 
3533     // === BWDREF_FRAME ===
3534     if (cpi->refresh_bwd_ref_frame) {
3535 #if USE_SYMM_MULTI_LAYER
3536       if (cpi->new_bwdref_update_rule) {
3537         // We shift the backward reference frame as follows:
3538         // BWDREF -> ALTREF2 -> EXTREF
3539         // and assign the newly coded frame to BWDREF so that it always
3540         // keeps the nearest future frame
3541         int tmp = cpi->ref_fb_idx[EXTREF_FRAME - 1];
3542         ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[tmp], cm->new_fb_idx);
3543 
3544         rshift_bwd_ref_frames(cpi);
3545         cpi->ref_fb_idx[BWDREF_FRAME - 1] = tmp;
3546       } else {
3547 #endif  // USE_SYMM_MULTI_LAYER
3548         ref_cnt_fb(pool->frame_bufs,
3549                    &cm->ref_frame_map[cpi->ref_fb_idx[BWDREF_FRAME - 1]],
3550                    cm->new_fb_idx);
3551 #if USE_SYMM_MULTI_LAYER
3552       }
3553 #endif
3554       memcpy(cpi->interp_filter_selected[BWDREF_FRAME],
3555              cpi->interp_filter_selected[0],
3556              sizeof(cpi->interp_filter_selected[0]));
3557     }
3558 
3559     // === ALTREF2_FRAME ===
3560     if (cpi->refresh_alt2_ref_frame) {
3561       ref_cnt_fb(pool->frame_bufs,
3562                  &cm->ref_frame_map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]],
3563                  cm->new_fb_idx);
3564 
3565       memcpy(cpi->interp_filter_selected[ALTREF2_FRAME],
3566              cpi->interp_filter_selected[0],
3567              sizeof(cpi->interp_filter_selected[0]));
3568     }
3569   }
3570 
3571   if (cpi->refresh_last_frame) {
3572     // NOTE(zoeliu): We have two layers of mapping (1) from the per-frame
3573     // reference to the reference frame buffer virtual index; and then (2) from
3574     // the virtual index to the reference frame buffer physical index:
3575     //
3576     // LAST_FRAME,      ..., LAST3_FRAME,     ..., ALTREF_FRAME
3577     //      |                     |                     |
3578     //      v                     v                     v
3579     // ref_fb_idx[0],   ..., ref_fb_idx[2],   ..., ref_fb_idx[ALTREF_FRAME-1]
3580     //      |                     |                     |
3581     //      v                     v                     v
3582     // ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[]
3583     //
3584     // When refresh_last_frame is set, it is intended to retire LAST3_FRAME,
3585     // have the other 2 LAST reference frames shifted as follows:
3586     // LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
3587     // , and then have LAST_FRAME refreshed by the newly coded frame.
3588     //
3589     // To fulfill it, the decoder will be notified to execute following 2 steps:
3590     //
3591     // (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME
3592     //     to point to the newly coded frame, i.e.
3593     //     ref_frame_map[lst_fb_idexes[2]] => new_fb_idx;
3594     //
3595     // (b) To change the 1st layer mapping to have LAST_FRAME mapped to the
3596     //     original virtual index of LAST3_FRAME and have the other mappings
3597     //     shifted as follows:
3598     // LAST_FRAME,      LAST2_FRAME,     LAST3_FRAME
3599     //      |                |                |
3600     //      v                v                v
3601     // ref_fb_idx[2],   ref_fb_idx[0],   ref_fb_idx[1]
3602     int tmp;
3603 
3604     ref_cnt_fb(pool->frame_bufs,
3605                &cm->ref_frame_map[cpi->ref_fb_idx[LAST_REF_FRAMES - 1]],
3606                cm->new_fb_idx);
3607 
3608     tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
3609 
3610     shift_last_ref_frames(cpi);
3611     cpi->ref_fb_idx[0] = tmp;
3612 
3613     assert(cm->show_existing_frame == 0);
3614     memcpy(cpi->interp_filter_selected[LAST_FRAME],
3615            cpi->interp_filter_selected[0],
3616            sizeof(cpi->interp_filter_selected[0]));
3617 
3618     // If the new structure is used, we will always have overlay frames coupled
3619     // with bwdref frames. Therefore, we won't have to perform this update
3620     // in advance (we do this update when the overlay frame shows up).
3621 #if USE_SYMM_MULTI_LAYER
3622     if (cpi->new_bwdref_update_rule == 0 && cpi->rc.is_last_bipred_frame) {
3623 #else
3624     if (cpi->rc.is_last_bipred_frame) {
3625 #endif
3626       // Refresh the LAST_FRAME with the BWDREF_FRAME and retire the
3627       // LAST3_FRAME by updating the virtual indices.
3628       //
3629       // NOTE: The source frame for BWDREF does not have a holding position as
3630       //       the OVERLAY frame for ALTREF's. Hence, to resolve the reference
3631       //       virtual index reshuffling for BWDREF, the encoder always
3632       //       specifies a LAST_BIPRED right before BWDREF and completes the
3633       //       reshuffling job accordingly.
3634       tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
3635 
3636       shift_last_ref_frames(cpi);
3637       cpi->ref_fb_idx[0] = cpi->ref_fb_idx[BWDREF_FRAME - 1];
3638       cpi->ref_fb_idx[BWDREF_FRAME - 1] = tmp;
3639 
3640       memcpy(cpi->interp_filter_selected[LAST_FRAME],
3641              cpi->interp_filter_selected[BWDREF_FRAME],
3642              sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
3643     }
3644   }
3645 
3646 #if DUMP_REF_FRAME_IMAGES == 1
3647   // Dump out all reference frame images.
3648   dump_ref_frame_images(cpi);
3649 #endif  // DUMP_REF_FRAME_IMAGES
3650 }
3651 
3652 static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) {
3653   assert(buffer_idx != INVALID_IDX);
3654   RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
3655   ensure_mv_buffer(new_fb_ptr, cm);
3656   new_fb_ptr->width = cm->width;
3657   new_fb_ptr->height = cm->height;
3658 }
3659 
3660 static void scale_references(AV1_COMP *cpi) {
3661   AV1_COMMON *cm = &cpi->common;
3662   const int num_planes = av1_num_planes(cm);
3663   MV_REFERENCE_FRAME ref_frame;
3664   const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = {
3665     AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG,
3666     AOM_BWD_FLAG,  AOM_ALT2_FLAG,  AOM_ALT_FLAG
3667   };
3668 
3669   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3670     // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
3671     if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
3672       BufferPool *const pool = cm->buffer_pool;
3673       const YV12_BUFFER_CONFIG *const ref =
3674           get_ref_frame_buffer(cpi, ref_frame);
3675 
3676       if (ref == NULL) {
3677         cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
3678         continue;
3679       }
3680 
3681       if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
3682         RefCntBuffer *new_fb_ptr = NULL;
3683         int force_scaling = 0;
3684         int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
3685         if (new_fb == INVALID_IDX) {
3686           new_fb = get_free_fb(cm);
3687           force_scaling = 1;
3688         }
3689         if (new_fb == INVALID_IDX) return;
3690         new_fb_ptr = &pool->frame_bufs[new_fb];
3691         if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
3692             new_fb_ptr->buf.y_crop_height != cm->height) {
3693           if (aom_realloc_frame_buffer(
3694                   &new_fb_ptr->buf, cm->width, cm->height,
3695                   cm->seq_params.subsampling_x, cm->seq_params.subsampling_y,
3696                   cm->seq_params.use_highbitdepth, AOM_BORDER_IN_PIXELS,
3697                   cm->byte_alignment, NULL, NULL, NULL))
3698             aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
3699                                "Failed to allocate frame buffer");
3700           av1_resize_and_extend_frame(
3701               ref, &new_fb_ptr->buf, (int)cm->seq_params.bit_depth, num_planes);
3702           cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
3703           alloc_frame_mvs(cm, new_fb);
3704         }
3705       } else {
3706         const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
3707         RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
3708         buf->buf.y_crop_width = ref->y_crop_width;
3709         buf->buf.y_crop_height = ref->y_crop_height;
3710         cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
3711         ++buf->ref_count;
3712       }
3713     } else {
3714       if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
3715     }
3716   }
3717 }
3718 
3719 static void release_scaled_references(AV1_COMP *cpi) {
3720   AV1_COMMON *cm = &cpi->common;
3721   int i;
3722   // TODO(isbs): only refresh the necessary frames, rather than all of them
3723   for (i = 0; i < REF_FRAMES; ++i) {
3724     const int idx = cpi->scaled_ref_idx[i];
3725     RefCntBuffer *const buf =
3726         idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
3727     if (buf != NULL) {
3728       --buf->ref_count;
3729       cpi->scaled_ref_idx[i] = INVALID_IDX;
3730     }
3731   }
3732 }
3733 
3734 static void set_mv_search_params(AV1_COMP *cpi) {
3735   const AV1_COMMON *const cm = &cpi->common;
3736   const unsigned int max_mv_def = AOMMIN(cm->width, cm->height);
3737 
3738   // Default based on max resolution.
3739   cpi->mv_step_param = av1_init_search_range(max_mv_def);
3740 
3741   if (cpi->sf.mv.auto_mv_step_size) {
3742     if (frame_is_intra_only(cm)) {
3743       // Initialize max_mv_magnitude for use in the first INTER frame
3744       // after a key/intra-only frame.
3745       cpi->max_mv_magnitude = max_mv_def;
3746     } else {
3747       if (cm->show_frame) {
3748         // Allow mv_steps to correspond to twice the max mv magnitude found
3749         // in the previous frame, capped by the default max_mv_magnitude based
3750         // on resolution.
3751         cpi->mv_step_param = av1_init_search_range(
3752             AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
3753       }
3754       cpi->max_mv_magnitude = 0;
3755     }
3756   }
3757 }
3758 
3759 static void set_size_independent_vars(AV1_COMP *cpi) {
3760   int i;
3761   for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
3762     cpi->common.global_motion[i] = default_warp_params;
3763   }
3764   cpi->global_motion_search_done = 0;
3765   av1_set_speed_features_framesize_independent(cpi);
3766   av1_set_rd_speed_thresholds(cpi);
3767   av1_set_rd_speed_thresholds_sub8x8(cpi);
3768   cpi->common.interp_filter = SWITCHABLE;
3769   cpi->common.switchable_motion_mode = 1;
3770 }
3771 
3772 static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index,
3773                                     int *top_index) {
3774   AV1_COMMON *const cm = &cpi->common;
3775   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3776 
3777   // Setup variables that depend on the dimensions of the frame.
3778   av1_set_speed_features_framesize_dependent(cpi);
3779 
3780   // Decide q and q bounds.
3781   *q = av1_rc_pick_q_and_bounds(cpi, cm->width, cm->height, bottom_index,
3782                                 top_index);
3783 
3784   if (!frame_is_intra_only(cm)) {
3785     set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH,
3786                           cpi->common.cur_frame_force_integer_mv);
3787   }
3788 
3789   // Configure experimental use of segmentation for enhanced coding of
3790   // static regions if indicated.
3791   // Only allowed in the second pass of a two pass encode, as it requires
3792   // lagged coding, and if the relevant speed feature flag is set.
3793   if (oxcf->pass == 2 && cpi->sf.static_segmentation)
3794     configure_static_seg_features(cpi);
3795 }
3796 
3797 static void init_motion_estimation(AV1_COMP *cpi) {
3798   int y_stride = cpi->scaled_source.y_stride;
3799 
3800   if (cpi->sf.mv.search_method == NSTEP) {
3801     av1_init3smotion_compensation(&cpi->ss_cfg, y_stride);
3802   } else if (cpi->sf.mv.search_method == DIAMOND) {
3803     av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
3804   }
3805 }
3806 
3807 #define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
3808 static void set_restoration_unit_size(int width, int height, int sx, int sy,
3809                                       RestorationInfo *rst) {
3810   (void)width;
3811   (void)height;
3812   (void)sx;
3813   (void)sy;
3814 #if COUPLED_CHROMA_FROM_LUMA_RESTORATION
3815   int s = AOMMIN(sx, sy);
3816 #else
3817   int s = 0;
3818 #endif  // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
3819 
3820   if (width * height > 352 * 288)
3821     rst[0].restoration_unit_size = RESTORATION_UNITSIZE_MAX;
3822   else
3823     rst[0].restoration_unit_size = (RESTORATION_UNITSIZE_MAX >> 1);
3824   rst[1].restoration_unit_size = rst[0].restoration_unit_size >> s;
3825   rst[2].restoration_unit_size = rst[1].restoration_unit_size;
3826 }
3827 
3828 static void init_ref_frame_bufs(AV1_COMP *cpi) {
3829   AV1_COMMON *const cm = &cpi->common;
3830   int i;
3831   BufferPool *const pool = cm->buffer_pool;
3832   cm->new_fb_idx = INVALID_IDX;
3833   for (i = 0; i < REF_FRAMES; ++i) {
3834     cm->ref_frame_map[i] = INVALID_IDX;
3835     pool->frame_bufs[i].ref_count = 0;
3836   }
3837   if (cm->seq_params.force_screen_content_tools) {
3838     for (i = 0; i < FRAME_BUFFERS; ++i) {
3839       av1_hash_table_init(&pool->frame_bufs[i].hash_table, &cpi->td.mb);
3840     }
3841   }
3842 }
3843 
3844 static void check_initial_width(AV1_COMP *cpi, int use_highbitdepth,
3845                                 int subsampling_x, int subsampling_y) {
3846   AV1_COMMON *const cm = &cpi->common;
3847   SequenceHeader *const seq_params = &cm->seq_params;
3848 
3849   if (!cpi->initial_width || seq_params->use_highbitdepth != use_highbitdepth ||
3850       seq_params->subsampling_x != subsampling_x ||
3851       seq_params->subsampling_y != subsampling_y) {
3852     seq_params->subsampling_x = subsampling_x;
3853     seq_params->subsampling_y = subsampling_y;
3854     seq_params->use_highbitdepth = use_highbitdepth;
3855 
3856     alloc_raw_frame_buffers(cpi);
3857     init_ref_frame_bufs(cpi);
3858     alloc_util_frame_buffers(cpi);
3859 
3860     init_motion_estimation(cpi);  // TODO(agrange) This can be removed.
3861 
3862     cpi->initial_width = cm->width;
3863     cpi->initial_height = cm->height;
3864     cpi->initial_mbs = cm->MBs;
3865   }
3866 }
3867 
3868 // Returns 1 if the assigned width or height was <= 0.
3869 static int set_size_literal(AV1_COMP *cpi, int width, int height) {
3870   AV1_COMMON *cm = &cpi->common;
3871   const int num_planes = av1_num_planes(cm);
3872   check_initial_width(cpi, cm->seq_params.use_highbitdepth,
3873                       cm->seq_params.subsampling_x,
3874                       cm->seq_params.subsampling_y);
3875 
3876   if (width <= 0 || height <= 0) return 1;
3877 
3878   cm->width = width;
3879   cm->height = height;
3880 
3881   if (cpi->initial_width && cpi->initial_height &&
3882       (cm->width > cpi->initial_width || cm->height > cpi->initial_height)) {
3883     av1_free_context_buffers(cm);
3884     av1_free_pc_tree(&cpi->td, num_planes);
3885     alloc_compressor_data(cpi);
3886     realloc_segmentation_maps(cpi);
3887     cpi->initial_width = cpi->initial_height = 0;
3888   }
3889   update_frame_size(cpi);
3890 
3891   return 0;
3892 }
3893 
3894 static void set_frame_size(AV1_COMP *cpi, int width, int height) {
3895   AV1_COMMON *const cm = &cpi->common;
3896   const SequenceHeader *const seq_params = &cm->seq_params;
3897   const int num_planes = av1_num_planes(cm);
3898   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3899   int ref_frame;
3900 
3901   if (width != cm->width || height != cm->height) {
3902     // There has been a change in the encoded frame size
3903     set_size_literal(cpi, width, height);
3904     set_mv_search_params(cpi);
3905     // Recalculate 'all_lossless' in case super-resolution was (un)selected.
3906     cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm);
3907   }
3908 
3909   if (cpi->oxcf.pass == 2) {
3910     av1_set_target_rate(cpi, cm->width, cm->height);
3911   }
3912 
3913   alloc_frame_mvs(cm, cm->new_fb_idx);
3914 
3915   // Allocate above context buffers
3916   if (cm->num_allocated_above_context_planes < av1_num_planes(cm) ||
3917       cm->num_allocated_above_context_mi_col < cm->mi_cols ||
3918       cm->num_allocated_above_contexts < cm->tile_rows) {
3919     av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts);
3920     if (av1_alloc_above_context_buffers(cm, cm->tile_rows))
3921       aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
3922                          "Failed to allocate context buffers");
3923   }
3924 
3925   // Reset the frame pointers to the current frame size.
3926   if (aom_realloc_frame_buffer(
3927           get_frame_new_buffer(cm), cm->width, cm->height,
3928           seq_params->subsampling_x, seq_params->subsampling_y,
3929           seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
3930           cm->byte_alignment, NULL, NULL, NULL))
3931     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
3932                        "Failed to allocate frame buffer");
3933 
3934   const int frame_width = cm->superres_upscaled_width;
3935   const int frame_height = cm->superres_upscaled_height;
3936   set_restoration_unit_size(frame_width, frame_height,
3937                             seq_params->subsampling_x,
3938                             seq_params->subsampling_y, cm->rst_info);
3939   for (int i = 0; i < num_planes; ++i)
3940     cm->rst_info[i].frame_restoration_type = RESTORE_NONE;
3941 
3942   av1_alloc_restoration_buffers(cm);
3943   alloc_util_frame_buffers(cpi);  // TODO(afergs): Remove? Gets called anyways.
3944   init_motion_estimation(cpi);
3945 
3946   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3947     RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME];
3948     const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
3949 
3950     ref_buf->idx = buf_idx;
3951 
3952     if (buf_idx != INVALID_IDX) {
3953       YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
3954       ref_buf->buf = buf;
3955       av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
3956                                         buf->y_crop_height, cm->width,
3957                                         cm->height);
3958       if (av1_is_scaled(&ref_buf->sf))
3959         aom_extend_frame_borders(buf, num_planes);
3960     } else {
3961       ref_buf->buf = NULL;
3962     }
3963   }
3964 
3965   av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
3966                                     cm->width, cm->height);
3967 
3968   set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
3969 }
3970 
3971 static uint8_t calculate_next_resize_scale(const AV1_COMP *cpi) {
3972   // Choose an arbitrary random number
3973   static unsigned int seed = 56789;
3974   const AV1EncoderConfig *oxcf = &cpi->oxcf;
3975   if (oxcf->pass == 1) return SCALE_NUMERATOR;
3976   uint8_t new_denom = SCALE_NUMERATOR;
3977 
3978   if (cpi->common.seq_params.reduced_still_picture_hdr) return SCALE_NUMERATOR;
3979   switch (oxcf->resize_mode) {
3980     case RESIZE_NONE: new_denom = SCALE_NUMERATOR; break;
3981     case RESIZE_FIXED:
3982       if (cpi->common.frame_type == KEY_FRAME)
3983         new_denom = oxcf->resize_kf_scale_denominator;
3984       else
3985         new_denom = oxcf->resize_scale_denominator;
3986       break;
3987     case RESIZE_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break;
3988     default: assert(0);
3989   }
3990   return new_denom;
3991 }
3992 
3993 static uint8_t calculate_next_superres_scale(AV1_COMP *cpi) {
3994   // Choose an arbitrary random number
3995   static unsigned int seed = 34567;
3996   const AV1EncoderConfig *oxcf = &cpi->oxcf;
3997   if (oxcf->pass == 1) return SCALE_NUMERATOR;
3998   uint8_t new_denom = SCALE_NUMERATOR;
3999 
4000   // Make sure that superres mode of the frame is consistent with the
4001   // sequence-level flag.
4002   assert(IMPLIES(oxcf->superres_mode != SUPERRES_NONE,
4003                  cpi->common.seq_params.enable_superres));
4004   assert(IMPLIES(!cpi->common.seq_params.enable_superres,
4005                  oxcf->superres_mode == SUPERRES_NONE));
4006 
4007   switch (oxcf->superres_mode) {
4008     case SUPERRES_NONE: new_denom = SCALE_NUMERATOR; break;
4009     case SUPERRES_FIXED:
4010       if (cpi->common.frame_type == KEY_FRAME)
4011         new_denom = oxcf->superres_kf_scale_denominator;
4012       else
4013         new_denom = oxcf->superres_scale_denominator;
4014       break;
4015     case SUPERRES_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break;
4016     case SUPERRES_QTHRESH: {
4017       const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
4018       const RATE_FACTOR_LEVEL rf_level = gf_group->rf_level[gf_group->index];
4019       const double rate_factor_delta = rate_factor_deltas[rf_level];
4020       const int qthresh = (rate_factor_delta <= 1.0)
4021                               ? oxcf->superres_qthresh
4022                               : oxcf->superres_kf_qthresh;
4023       av1_set_target_rate(cpi, cpi->oxcf.width, cpi->oxcf.height);
4024       int bottom_index, top_index;
4025       const int q = av1_rc_pick_q_and_bounds(
4026           cpi, cpi->oxcf.width, cpi->oxcf.height, &bottom_index, &top_index);
4027       if (q < qthresh) {
4028         new_denom = SCALE_NUMERATOR;
4029       } else {
4030         const uint8_t min_denom = SCALE_NUMERATOR + 1;
4031         const uint8_t denom_step = (MAXQ - qthresh + 1) >> 3;
4032 
4033         if (q == qthresh) {
4034           new_denom = min_denom;
4035         } else if (denom_step == 0) {
4036           new_denom = SCALE_NUMERATOR << 1;
4037         } else {
4038           const uint8_t additional_denom = (q - qthresh) / denom_step;
4039           new_denom =
4040               AOMMIN(min_denom + additional_denom, SCALE_NUMERATOR << 1);
4041         }
4042       }
4043       break;
4044     }
4045     default: assert(0);
4046   }
4047   return new_denom;
4048 }
4049 
4050 static int dimension_is_ok(int orig_dim, int resized_dim, int denom) {
4051   return (resized_dim * SCALE_NUMERATOR >= orig_dim * denom / 2);
4052 }
4053 
4054 static int dimensions_are_ok(int owidth, int oheight, size_params_type *rsz) {
4055   // Only need to check the width, as scaling is horizontal only.
4056   (void)oheight;
4057   return dimension_is_ok(owidth, rsz->resize_width, rsz->superres_denom);
4058 }
4059 
4060 static int validate_size_scales(RESIZE_MODE resize_mode,
4061                                 SUPERRES_MODE superres_mode, int owidth,
4062                                 int oheight, size_params_type *rsz) {
4063   if (dimensions_are_ok(owidth, oheight, rsz)) {  // Nothing to do.
4064     return 1;
4065   }
4066 
4067   // Calculate current resize scale.
4068   int resize_denom =
4069       AOMMAX(DIVIDE_AND_ROUND(owidth * SCALE_NUMERATOR, rsz->resize_width),
4070              DIVIDE_AND_ROUND(oheight * SCALE_NUMERATOR, rsz->resize_height));
4071 
4072   if (resize_mode != RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) {
4073     // Alter superres scale as needed to enforce conformity.
4074     rsz->superres_denom =
4075         (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / resize_denom;
4076     if (!dimensions_are_ok(owidth, oheight, rsz)) {
4077       if (rsz->superres_denom > SCALE_NUMERATOR) --rsz->superres_denom;
4078     }
4079   } else if (resize_mode == RESIZE_RANDOM && superres_mode != SUPERRES_RANDOM) {
4080     // Alter resize scale as needed to enforce conformity.
4081     resize_denom =
4082         (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / rsz->superres_denom;
4083     rsz->resize_width = owidth;
4084     rsz->resize_height = oheight;
4085     av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
4086                               resize_denom);
4087     if (!dimensions_are_ok(owidth, oheight, rsz)) {
4088       if (resize_denom > SCALE_NUMERATOR) {
4089         --resize_denom;
4090         rsz->resize_width = owidth;
4091         rsz->resize_height = oheight;
4092         av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
4093                                   resize_denom);
4094       }
4095     }
4096   } else if (resize_mode == RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) {
4097     // Alter both resize and superres scales as needed to enforce conformity.
4098     do {
4099       if (resize_denom > rsz->superres_denom)
4100         --resize_denom;
4101       else
4102         --rsz->superres_denom;
4103       rsz->resize_width = owidth;
4104       rsz->resize_height = oheight;
4105       av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
4106                                 resize_denom);
4107     } while (!dimensions_are_ok(owidth, oheight, rsz) &&
4108              (resize_denom > SCALE_NUMERATOR ||
4109               rsz->superres_denom > SCALE_NUMERATOR));
4110   } else {  // We are allowed to alter neither resize scale nor superres
4111             // scale.
4112     return 0;
4113   }
4114   return dimensions_are_ok(owidth, oheight, rsz);
4115 }
4116 
4117 // Calculates resize and superres params for next frame
4118 size_params_type av1_calculate_next_size_params(AV1_COMP *cpi) {
4119   const AV1EncoderConfig *oxcf = &cpi->oxcf;
4120   size_params_type rsz = { oxcf->width, oxcf->height, SCALE_NUMERATOR };
4121   int resize_denom;
4122   if (oxcf->pass == 1) return rsz;
4123   if (cpi->resize_pending_width && cpi->resize_pending_height) {
4124     rsz.resize_width = cpi->resize_pending_width;
4125     rsz.resize_height = cpi->resize_pending_height;
4126     cpi->resize_pending_width = cpi->resize_pending_height = 0;
4127   } else {
4128     resize_denom = calculate_next_resize_scale(cpi);
4129     rsz.resize_width = cpi->oxcf.width;
4130     rsz.resize_height = cpi->oxcf.height;
4131     av1_calculate_scaled_size(&rsz.resize_width, &rsz.resize_height,
4132                               resize_denom);
4133   }
4134   rsz.superres_denom = calculate_next_superres_scale(cpi);
4135   if (!validate_size_scales(oxcf->resize_mode, oxcf->superres_mode, oxcf->width,
4136                             oxcf->height, &rsz))
4137     assert(0 && "Invalid scale parameters");
4138   return rsz;
4139 }
4140 
4141 static void setup_frame_size_from_params(AV1_COMP *cpi, size_params_type *rsz) {
4142   int encode_width = rsz->resize_width;
4143   int encode_height = rsz->resize_height;
4144 
4145   AV1_COMMON *cm = &cpi->common;
4146   cm->superres_upscaled_width = encode_width;
4147   cm->superres_upscaled_height = encode_height;
4148   cm->superres_scale_denominator = rsz->superres_denom;
4149   av1_calculate_scaled_superres_size(&encode_width, &encode_height,
4150                                      rsz->superres_denom);
4151   set_frame_size(cpi, encode_width, encode_height);
4152 }
4153 
4154 static void setup_frame_size(AV1_COMP *cpi) {
4155   size_params_type rsz = av1_calculate_next_size_params(cpi);
4156   setup_frame_size_from_params(cpi, &rsz);
4157 }
4158 
4159 static void superres_post_encode(AV1_COMP *cpi) {
4160   AV1_COMMON *cm = &cpi->common;
4161   const int num_planes = av1_num_planes(cm);
4162 
4163   if (!av1_superres_scaled(cm)) return;
4164 
4165   assert(cpi->oxcf.enable_superres);
4166   assert(!is_lossless_requested(&cpi->oxcf));
4167   assert(!cm->all_lossless);
4168 
4169   av1_superres_upscale(cm, NULL);
4170 
4171   // If regular resizing is occurring the source will need to be downscaled to
4172   // match the upscaled superres resolution. Otherwise the original source is
4173   // used.
4174   if (!av1_resize_scaled(cm)) {
4175     cpi->source = cpi->unscaled_source;
4176     if (cpi->last_source != NULL) cpi->last_source = cpi->unscaled_last_source;
4177   } else {
4178     assert(cpi->unscaled_source->y_crop_width != cm->superres_upscaled_width);
4179     assert(cpi->unscaled_source->y_crop_height != cm->superres_upscaled_height);
4180     // Do downscale. cm->(width|height) has been updated by
4181     // av1_superres_upscale
4182     if (aom_realloc_frame_buffer(
4183             &cpi->scaled_source, cm->superres_upscaled_width,
4184             cm->superres_upscaled_height, cm->seq_params.subsampling_x,
4185             cm->seq_params.subsampling_y, cm->seq_params.use_highbitdepth,
4186             AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL))
4187       aom_internal_error(
4188           &cm->error, AOM_CODEC_MEM_ERROR,
4189           "Failed to reallocate scaled source buffer for superres");
4190     assert(cpi->scaled_source.y_crop_width == cm->superres_upscaled_width);
4191     assert(cpi->scaled_source.y_crop_height == cm->superres_upscaled_height);
4192     av1_resize_and_extend_frame(cpi->unscaled_source, &cpi->scaled_source,
4193                                 (int)cm->seq_params.bit_depth, num_planes);
4194     cpi->source = &cpi->scaled_source;
4195   }
4196 }
4197 
4198 static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
4199   const int num_planes = av1_num_planes(cm);
4200   MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
4201 
4202   assert(IMPLIES(is_lossless_requested(&cpi->oxcf),
4203                  cm->coded_lossless && cm->all_lossless));
4204 
4205   const int no_loopfilter = cm->coded_lossless || cm->large_scale_tile;
4206   const int no_cdef =
4207       !cm->seq_params.enable_cdef || cm->coded_lossless || cm->large_scale_tile;
4208   const int no_restoration = !cm->seq_params.enable_restoration ||
4209                              cm->all_lossless || cm->large_scale_tile;
4210 
4211   struct loopfilter *lf = &cm->lf;
4212 
4213   if (no_loopfilter) {
4214     lf->filter_level[0] = 0;
4215     lf->filter_level[1] = 0;
4216   } else {
4217     struct aom_usec_timer timer;
4218 
4219     aom_clear_system_state();
4220 
4221     aom_usec_timer_start(&timer);
4222 
4223     av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_pick);
4224 
4225     aom_usec_timer_mark(&timer);
4226     cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer);
4227   }
4228 
4229   if (lf->filter_level[0] || lf->filter_level[1]) {
4230 #if LOOP_FILTER_BITMASK
4231     av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, 0, num_planes, 0);
4232 #else
4233     if (cpi->num_workers > 1)
4234       av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd, 0, num_planes, 0,
4235                                cpi->workers, cpi->num_workers,
4236                                &cpi->lf_row_sync);
4237     else
4238       av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, num_planes, 0);
4239 #endif
4240   }
4241 
4242   if (!no_restoration)
4243     av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 0);
4244 
4245   if (no_cdef) {
4246     cm->cdef_bits = 0;
4247     cm->cdef_strengths[0] = 0;
4248     cm->nb_cdef_strengths = 1;
4249     cm->cdef_uv_strengths[0] = 0;
4250   } else {
4251     // Find CDEF parameters
4252     av1_cdef_search(cm->frame_to_show, cpi->source, cm, xd,
4253                     cpi->sf.fast_cdef_search);
4254 
4255     // Apply the filter
4256     av1_cdef_frame(cm->frame_to_show, cm, xd);
4257   }
4258 
4259   superres_post_encode(cpi);
4260 
4261   if (no_restoration) {
4262     cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
4263     cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
4264     cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
4265   } else {
4266     av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 1);
4267     av1_pick_filter_restoration(cpi->source, cpi);
4268     if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
4269         cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
4270         cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
4271       if (cpi->num_workers > 1)
4272         av1_loop_restoration_filter_frame_mt(cm->frame_to_show, cm, 0,
4273                                              cpi->workers, cpi->num_workers,
4274                                              &cpi->lr_row_sync, &cpi->lr_ctxt);
4275       else
4276         av1_loop_restoration_filter_frame(cm->frame_to_show, cm, 0,
4277                                           &cpi->lr_ctxt);
4278     }
4279   }
4280 }
4281 
4282 static int encode_without_recode_loop(AV1_COMP *cpi) {
4283   AV1_COMMON *const cm = &cpi->common;
4284   int q = 0, bottom_index = 0, top_index = 0;  // Dummy variables.
4285 
4286   aom_clear_system_state();
4287 
4288   set_size_independent_vars(cpi);
4289 
4290   setup_frame_size(cpi);
4291 
4292   assert(cm->width == cpi->scaled_source.y_crop_width);
4293   assert(cm->height == cpi->scaled_source.y_crop_height);
4294 
4295   set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
4296 
4297   cpi->source =
4298       av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source);
4299   if (cpi->unscaled_last_source != NULL)
4300     cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source,
4301                                              &cpi->scaled_last_source);
4302   cpi->source->buf_8bit_valid = 0;
4303   if (frame_is_intra_only(cm) == 0) {
4304     scale_references(cpi);
4305   }
4306 
4307   av1_set_quantizer(cm, q);
4308   setup_frame(cpi);
4309   suppress_active_map(cpi);
4310 
4311   // Variance adaptive and in frame q adjustment experiments are mutually
4312   // exclusive.
4313   if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
4314     av1_vaq_frame_setup(cpi);
4315   } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
4316     av1_setup_in_frame_q_adj(cpi);
4317   } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
4318     av1_cyclic_refresh_setup(cpi);
4319   }
4320   apply_active_map(cpi);
4321   if (cm->seg.enabled) {
4322     if (!cm->seg.update_data && cm->prev_frame) {
4323       segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
4324     } else {
4325       calculate_segdata(&cm->seg);
4326     }
4327   } else {
4328     memset(&cm->seg, 0, sizeof(cm->seg));
4329   }
4330   segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
4331 
4332   // transform / motion compensation build reconstruction frame
4333   av1_encode_frame(cpi);
4334 
4335   // Update some stats from cyclic refresh, and check if we should not update
4336   // golden reference, for 1 pass CBR.
4337   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME &&
4338       (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR))
4339     av1_cyclic_refresh_check_golden_update(cpi);
4340 
4341   // Update the skip mb flag probabilities based on the distribution
4342   // seen in the last encoder iteration.
4343   // update_base_skip_probs(cpi);
4344   aom_clear_system_state();
4345   return AOM_CODEC_OK;
4346 }
4347 
4348 static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) {
4349   AV1_COMMON *const cm = &cpi->common;
4350   RATE_CONTROL *const rc = &cpi->rc;
4351   int bottom_index, top_index;
4352   int loop_count = 0;
4353   int loop_at_this_size = 0;
4354   int loop = 0;
4355   int overshoot_seen = 0;
4356   int undershoot_seen = 0;
4357   int frame_over_shoot_limit;
4358   int frame_under_shoot_limit;
4359   int q = 0, q_low = 0, q_high = 0;
4360 
4361   set_size_independent_vars(cpi);
4362 
4363   cpi->source->buf_8bit_valid = 0;
4364 
4365   aom_clear_system_state();
4366   setup_frame_size(cpi);
4367   set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
4368 
4369   do {
4370     aom_clear_system_state();
4371 
4372     if (loop_count == 0) {
4373       // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
4374       set_mv_search_params(cpi);
4375 
4376       // Reset the loop state for new frame size.
4377       overshoot_seen = 0;
4378       undershoot_seen = 0;
4379 
4380       q_low = bottom_index;
4381       q_high = top_index;
4382 
4383       loop_at_this_size = 0;
4384 
4385       // Decide frame size bounds first time through.
4386       av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
4387                                        &frame_under_shoot_limit,
4388                                        &frame_over_shoot_limit);
4389     }
4390 
4391     // if frame was scaled calculate global_motion_search again if already
4392     // done
4393     if (loop_count > 0 && cpi->source && cpi->global_motion_search_done)
4394       if (cpi->source->y_crop_width != cm->width ||
4395           cpi->source->y_crop_height != cm->height)
4396         cpi->global_motion_search_done = 0;
4397     cpi->source =
4398         av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source);
4399     if (cpi->unscaled_last_source != NULL)
4400       cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source,
4401                                                &cpi->scaled_last_source);
4402 
4403     if (frame_is_intra_only(cm) == 0) {
4404       if (loop_count > 0) {
4405         release_scaled_references(cpi);
4406       }
4407       scale_references(cpi);
4408     }
4409     av1_set_quantizer(cm, q);
4410     // printf("Frame %d/%d: q = %d, frame_type = %d\n", cm->current_video_frame,
4411     //        cm->show_frame, q, cm->frame_type);
4412 
4413     if (loop_count == 0) setup_frame(cpi);
4414 
4415     // Base q-index may have changed, so we need to assign proper default coef
4416     // probs before every iteration.
4417     if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
4418         cm->frame_refs[cm->primary_ref_frame].idx < 0) {
4419       av1_default_coef_probs(cm);
4420       av1_setup_frame_contexts(cm);
4421     }
4422 
4423     // Variance adaptive and in frame q adjustment experiments are mutually
4424     // exclusive.
4425     if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
4426       av1_vaq_frame_setup(cpi);
4427     } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
4428       av1_setup_in_frame_q_adj(cpi);
4429     }
4430     if (cm->seg.enabled) {
4431       if (!cm->seg.update_data && cm->prev_frame) {
4432         segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
4433       } else {
4434         calculate_segdata(&cm->seg);
4435       }
4436     } else {
4437       memset(&cm->seg, 0, sizeof(cm->seg));
4438     }
4439     segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
4440 
4441     // transform / motion compensation build reconstruction frame
4442     save_coding_context(cpi);
4443     av1_encode_frame(cpi);
4444 
4445     // Update the skip mb flag probabilities based on the distribution
4446     // seen in the last encoder iteration.
4447     // update_base_skip_probs(cpi);
4448 
4449     aom_clear_system_state();
4450 
4451     // Dummy pack of the bitstream using up to date stats to get an
4452     // accurate estimate of output frame size to determine if we need
4453     // to recode.
4454     if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
4455       restore_coding_context(cpi);
4456 
4457       if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
4458         return AOM_CODEC_ERROR;
4459 
4460       rc->projected_frame_size = (int)(*size) << 3;
4461       restore_coding_context(cpi);
4462 
4463       if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
4464     }
4465 
4466     if (cpi->oxcf.rc_mode == AOM_Q) {
4467       loop = 0;
4468     } else {
4469       if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
4470           (rc->projected_frame_size < rc->max_frame_bandwidth)) {
4471         int last_q = q;
4472         int64_t kf_err;
4473 
4474         int64_t high_err_target = cpi->ambient_err;
4475         int64_t low_err_target = cpi->ambient_err >> 1;
4476 
4477         if (cm->seq_params.use_highbitdepth) {
4478           kf_err = aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm));
4479         } else {
4480           kf_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm));
4481         }
4482         // Prevent possible divide by zero error below for perfect KF
4483         kf_err += !kf_err;
4484 
4485         // The key frame is not good enough or we can afford
4486         // to make it better without undue risk of popping.
4487         if ((kf_err > high_err_target &&
4488              rc->projected_frame_size <= frame_over_shoot_limit) ||
4489             (kf_err > low_err_target &&
4490              rc->projected_frame_size <= frame_under_shoot_limit)) {
4491           // Lower q_high
4492           q_high = q > q_low ? q - 1 : q_low;
4493 
4494           // Adjust Q
4495           q = (int)((q * high_err_target) / kf_err);
4496           q = AOMMIN(q, (q_high + q_low) >> 1);
4497         } else if (kf_err < low_err_target &&
4498                    rc->projected_frame_size >= frame_under_shoot_limit) {
4499           // The key frame is much better than the previous frame
4500           // Raise q_low
4501           q_low = q < q_high ? q + 1 : q_high;
4502 
4503           // Adjust Q
4504           q = (int)((q * low_err_target) / kf_err);
4505           q = AOMMIN(q, (q_high + q_low + 1) >> 1);
4506         }
4507 
4508         // Clamp Q to upper and lower limits:
4509         q = clamp(q, q_low, q_high);
4510 
4511         loop = q != last_q;
4512       } else if (recode_loop_test(cpi, frame_over_shoot_limit,
4513                                   frame_under_shoot_limit, q,
4514                                   AOMMAX(q_high, top_index), bottom_index)) {
4515         // Is the projected frame size out of range and are we allowed
4516         // to attempt to recode.
4517         int last_q = q;
4518         int retries = 0;
4519 
4520         // Frame size out of permitted range:
4521         // Update correction factor & compute new Q to try...
4522         // Frame is too large
4523         if (rc->projected_frame_size > rc->this_frame_target) {
4524           // Special case if the projected size is > the max allowed.
4525           if (rc->projected_frame_size >= rc->max_frame_bandwidth)
4526             q_high = rc->worst_quality;
4527 
4528           // Raise Qlow as to at least the current value
4529           q_low = q < q_high ? q + 1 : q_high;
4530 
4531           if (undershoot_seen || loop_at_this_size > 1) {
4532             // Update rate_correction_factor unless
4533             av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4534 
4535             q = (q_high + q_low + 1) / 2;
4536           } else {
4537             // Update rate_correction_factor unless
4538             av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4539 
4540             q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
4541                                   AOMMAX(q_high, top_index), cm->width,
4542                                   cm->height);
4543 
4544             while (q < q_low && retries < 10) {
4545               av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4546               q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
4547                                     AOMMAX(q_high, top_index), cm->width,
4548                                     cm->height);
4549               retries++;
4550             }
4551           }
4552 
4553           overshoot_seen = 1;
4554         } else {
4555           // Frame is too small
4556           q_high = q > q_low ? q - 1 : q_low;
4557 
4558           if (overshoot_seen || loop_at_this_size > 1) {
4559             av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4560             q = (q_high + q_low) / 2;
4561           } else {
4562             av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4563             q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
4564                                   top_index, cm->width, cm->height);
4565             // Special case reset for qlow for constrained quality.
4566             // This should only trigger where there is very substantial
4567             // undershoot on a frame and the auto cq level is above
4568             // the user passsed in value.
4569             if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) {
4570               q_low = q;
4571             }
4572 
4573             while (q > q_high && retries < 10) {
4574               av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
4575               q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
4576                                     top_index, cm->width, cm->height);
4577               retries++;
4578             }
4579           }
4580 
4581           undershoot_seen = 1;
4582         }
4583 
4584         // Clamp Q to upper and lower limits:
4585         q = clamp(q, q_low, q_high);
4586 
4587         loop = (q != last_q);
4588       } else {
4589         loop = 0;
4590       }
4591     }
4592 
4593     // Special case for overlay frame.
4594     if (rc->is_src_frame_alt_ref &&
4595         rc->projected_frame_size < rc->max_frame_bandwidth)
4596       loop = 0;
4597 
4598     if (!cpi->sf.gm_disable_recode) {
4599       if (recode_loop_test_global_motion(cpi)) loop = 1;
4600     }
4601 
4602     if (loop) {
4603       ++loop_count;
4604       ++loop_at_this_size;
4605 
4606 #if CONFIG_INTERNAL_STATS
4607       ++cpi->tot_recode_hits;
4608 #endif
4609     }
4610   } while (loop);
4611 
4612   return AOM_CODEC_OK;
4613 }
4614 
4615 static int get_ref_frame_flags(const AV1_COMP *cpi) {
4616   const int *const map = cpi->common.ref_frame_map;
4617 
4618   // No.1 Priority: LAST_FRAME
4619   const int last2_is_last = map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[0]];
4620   const int last3_is_last = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[0]];
4621   const int gld_is_last =
4622       map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
4623   const int bwd_is_last =
4624       map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
4625   const int alt2_is_last =
4626       map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
4627   const int alt_is_last =
4628       map[cpi->ref_fb_idx[ALTREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
4629 
4630   // No.2 Priority: ALTREF_FRAME
4631   const int last2_is_alt =
4632       map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
4633   const int last3_is_alt =
4634       map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
4635   const int gld_is_alt = map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] ==
4636                          map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
4637   const int bwd_is_alt = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] ==
4638                          map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
4639   const int alt2_is_alt = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
4640                           map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
4641 
4642   // No.3 Priority: LAST2_FRAME
4643   const int last3_is_last2 = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[1]];
4644   const int gld_is_last2 =
4645       map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
4646   const int bwd_is_last2 =
4647       map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
4648   const int alt2_is_last2 =
4649       map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
4650 
4651   // No.4 Priority: LAST3_FRAME
4652   const int gld_is_last3 =
4653       map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
4654   const int bwd_is_last3 =
4655       map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
4656   const int alt2_is_last3 =
4657       map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
4658 
4659   // No.5 Priority: GOLDEN_FRAME
4660   const int bwd_is_gld = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] ==
4661                          map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]];
4662   const int alt2_is_gld = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
4663                           map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]];
4664 
4665   // No.6 Priority: BWDREF_FRAME
4666   const int alt2_is_bwd = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
4667                           map[cpi->ref_fb_idx[BWDREF_FRAME - 1]];
4668 
4669   // No.7 Priority: ALTREF2_FRAME
4670 
4671   // After av1_apply_encoding_flags() is called, cpi->ref_frame_flags might be
4672   // adjusted according to external encoder flags.
4673   int flags = cpi->ext_ref_frame_flags;
4674 
4675   if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG;
4676 
4677   if (alt_is_last) flags &= ~AOM_ALT_FLAG;
4678 
4679   if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG;
4680 
4681   if (last3_is_last || last3_is_alt || last3_is_last2) flags &= ~AOM_LAST3_FLAG;
4682 
4683   if (gld_is_last || gld_is_alt || gld_is_last2 || gld_is_last3)
4684     flags &= ~AOM_GOLD_FLAG;
4685 
4686   if ((bwd_is_last || bwd_is_alt || bwd_is_last2 || bwd_is_last3 ||
4687        bwd_is_gld) &&
4688       (flags & AOM_BWD_FLAG))
4689     flags &= ~AOM_BWD_FLAG;
4690 
4691   if ((alt2_is_last || alt2_is_alt || alt2_is_last2 || alt2_is_last3 ||
4692        alt2_is_gld || alt2_is_bwd) &&
4693       (flags & AOM_ALT2_FLAG))
4694     flags &= ~AOM_ALT2_FLAG;
4695 
4696   return flags;
4697 }
4698 
4699 static void set_ext_overrides(AV1_COMP *cpi) {
4700   // Overrides the defaults with the externally supplied values with
4701   // av1_update_reference() and av1_update_entropy() calls
4702   // Note: The overrides are valid only for the next frame passed
4703   // to encode_frame_to_data_rate() function
4704   if (cpi->ext_use_s_frame) cpi->common.frame_type = S_FRAME;
4705   cpi->common.force_primary_ref_none = cpi->ext_use_primary_ref_none;
4706 
4707   if (cpi->ext_refresh_frame_context_pending) {
4708     cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
4709     cpi->ext_refresh_frame_context_pending = 0;
4710   }
4711   if (cpi->ext_refresh_frame_flags_pending) {
4712     cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
4713     cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
4714     cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
4715     cpi->refresh_bwd_ref_frame = cpi->ext_refresh_bwd_ref_frame;
4716     cpi->refresh_alt2_ref_frame = cpi->ext_refresh_alt2_ref_frame;
4717     cpi->ext_refresh_frame_flags_pending = 0;
4718   }
4719   cpi->common.allow_ref_frame_mvs = cpi->ext_use_ref_frame_mvs;
4720   // A keyframe is already error resilient and keyframes with
4721   // error_resilient_mode interferes with the use of show_existing_frame
4722   // when forward reference keyframes are enabled.
4723   cpi->common.error_resilient_mode =
4724       cpi->ext_use_error_resilient && cpi->common.frame_type != KEY_FRAME;
4725 }
4726 
4727 #define DUMP_RECON_FRAMES 0
4728 
4729 #if DUMP_RECON_FRAMES == 1
4730 // NOTE(zoeliu): For debug - Output the filtered reconstructed video.
4731 static void dump_filtered_recon_frames(AV1_COMP *cpi) {
4732   AV1_COMMON *const cm = &cpi->common;
4733   const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show;
4734 
4735   if (recon_buf == NULL) {
4736     printf("Frame %d is not ready.\n", cm->current_video_frame);
4737     return;
4738   }
4739 
4740   static const int flag_list[REF_FRAMES] = { 0,
4741                                              AOM_LAST_FLAG,
4742                                              AOM_LAST2_FLAG,
4743                                              AOM_LAST3_FLAG,
4744                                              AOM_GOLD_FLAG,
4745                                              AOM_BWD_FLAG,
4746                                              AOM_ALT2_FLAG,
4747                                              AOM_ALT_FLAG };
4748   printf(
4749       "\n***Frame=%d (frame_offset=%d, show_frame=%d, "
4750       "show_existing_frame=%d) "
4751       "[LAST LAST2 LAST3 GOLDEN BWD ALT2 ALT]=[",
4752       cm->current_video_frame, cm->frame_offset, cm->show_frame,
4753       cm->show_existing_frame);
4754   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
4755     const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx;
4756     const int ref_offset =
4757         (buf_idx >= 0)
4758             ? (int)cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset
4759             : -1;
4760     printf(
4761         " %d(%c-%d-%4.2f)", ref_offset,
4762         (cpi->ref_frame_flags & flag_list[ref_frame]) ? 'Y' : 'N',
4763         (buf_idx >= 0) ? (int)cpi->frame_rf_level[buf_idx] : -1,
4764         (buf_idx >= 0) ? rate_factor_deltas[cpi->frame_rf_level[buf_idx]] : -1);
4765   }
4766   printf(" ]\n");
4767 
4768   if (!cm->show_frame) {
4769     printf("Frame %d is a no show frame, so no image dump.\n",
4770            cm->current_video_frame);
4771     return;
4772   }
4773 
4774   int h;
4775   char file_name[256] = "/tmp/enc_filtered_recon.yuv";
4776   FILE *f_recon = NULL;
4777 
4778   if (cm->current_video_frame == 0) {
4779     if ((f_recon = fopen(file_name, "wb")) == NULL) {
4780       printf("Unable to open file %s to write.\n", file_name);
4781       return;
4782     }
4783   } else {
4784     if ((f_recon = fopen(file_name, "ab")) == NULL) {
4785       printf("Unable to open file %s to append.\n", file_name);
4786       return;
4787     }
4788   }
4789   printf(
4790       "\nFrame=%5d, encode_update_type[%5d]=%1d, frame_offset=%d, "
4791       "show_frame=%d, show_existing_frame=%d, source_alt_ref_active=%d, "
4792       "refresh_alt_ref_frame=%d, rf_level=%d, "
4793       "y_stride=%4d, uv_stride=%4d, cm->width=%4d, cm->height=%4d\n\n",
4794       cm->current_video_frame, cpi->twopass.gf_group.index,
4795       cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index],
4796       cm->frame_offset, cm->show_frame, cm->show_existing_frame,
4797       cpi->rc.source_alt_ref_active, cpi->refresh_alt_ref_frame,
4798       cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index],
4799       recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height);
4800 #if 0
4801   int ref_frame;
4802   printf("get_ref_frame_map_idx: [");
4803   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
4804     printf(" %d", get_ref_frame_map_idx(cpi, ref_frame));
4805   printf(" ]\n");
4806   printf("cm->new_fb_idx = %d\n", cm->new_fb_idx);
4807   printf("cm->ref_frame_map = [");
4808   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
4809     printf(" %d", cm->ref_frame_map[ref_frame - LAST_FRAME]);
4810   }
4811   printf(" ]\n");
4812 #endif  // 0
4813 
4814   // --- Y ---
4815   for (h = 0; h < cm->height; ++h) {
4816     fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width,
4817            f_recon);
4818   }
4819   // --- U ---
4820   for (h = 0; h < (cm->height >> 1); ++h) {
4821     fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
4822            f_recon);
4823   }
4824   // --- V ---
4825   for (h = 0; h < (cm->height >> 1); ++h) {
4826     fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
4827            f_recon);
4828   }
4829 
4830   fclose(f_recon);
4831 }
4832 #endif  // DUMP_RECON_FRAMES
4833 
4834 static INLINE int is_frame_droppable(AV1_COMP *cpi) {
4835   return !(cpi->refresh_alt_ref_frame || cpi->refresh_alt2_ref_frame ||
4836            cpi->refresh_bwd_ref_frame || cpi->refresh_golden_frame ||
4837            cpi->refresh_last_frame);
4838 }
4839 
4840 static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest,
4841                                      int skip_adapt,
4842                                      unsigned int *frame_flags) {
4843   AV1_COMMON *const cm = &cpi->common;
4844   SequenceHeader *const seq_params = &cm->seq_params;
4845   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
4846   struct segmentation *const seg = &cm->seg;
4847 
4848   set_ext_overrides(cpi);
4849   aom_clear_system_state();
4850 
4851   // frame type has been decided outside of this function call
4852   cm->cur_frame->intra_only = frame_is_intra_only(cm);
4853   cm->cur_frame->frame_type = cm->frame_type;
4854 
4855   // S_FRAMEs are always error resilient
4856   cm->error_resilient_mode |= frame_is_sframe(cm);
4857 
4858   cm->large_scale_tile = cpi->oxcf.large_scale_tile;
4859   cm->single_tile_decoding = cpi->oxcf.single_tile_decoding;
4860   if (cm->large_scale_tile) seq_params->frame_id_numbers_present_flag = 0;
4861 
4862   cm->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm);
4863   // cm->allow_ref_frame_mvs needs to be written into the frame header while
4864   // cm->large_scale_tile is 1, therefore, "cm->large_scale_tile=1" case is
4865   // separated from frame_might_allow_ref_frame_mvs().
4866   cm->allow_ref_frame_mvs &= !cm->large_scale_tile;
4867 
4868   cm->allow_warped_motion =
4869       cpi->oxcf.allow_warped_motion && frame_might_allow_warped_motion(cm);
4870 
4871   // Reset the frame packet stamp index.
4872   if (cm->frame_type == KEY_FRAME && cm->show_frame)
4873     cm->current_video_frame = 0;
4874 
4875   // NOTE:
4876   // (1) Move the setup of the ref_frame_flags upfront as it would be
4877   //     determined by the current frame properties;
4878   // (2) The setup of the ref_frame_flags applies to both
4879   // show_existing_frame's
4880   //     and the other cases.
4881   if (cm->current_video_frame > 0)
4882     cpi->ref_frame_flags = get_ref_frame_flags(cpi);
4883 
4884   if (encode_show_existing_frame(cm)) {
4885     // NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current
4886     //               BWDREF_FRAME in the reference frame buffer.
4887     if (cm->frame_type == KEY_FRAME) {
4888       cm->reset_decoder_state = 1;
4889     } else {
4890       cm->frame_type = INTER_FRAME;
4891     }
4892     cm->show_frame = 1;
4893     cpi->frame_flags = *frame_flags;
4894 
4895     restore_coding_context(cpi);
4896 
4897     // Build the bitstream
4898     if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
4899       return AOM_CODEC_ERROR;
4900 
4901     cpi->seq_params_locked = 1;
4902 
4903     // Set up frame to show to get ready for stats collection.
4904     cm->frame_to_show = get_frame_new_buffer(cm);
4905 
4906     // Update current frame offset.
4907     cm->frame_offset =
4908         cm->buffer_pool->frame_bufs[cm->new_fb_idx].cur_frame_offset;
4909 
4910 #if DUMP_RECON_FRAMES == 1
4911     // NOTE(zoeliu): For debug - Output the filtered reconstructed video.
4912     dump_filtered_recon_frames(cpi);
4913 #endif  // DUMP_RECON_FRAMES
4914 
4915     // Update the LAST_FRAME in the reference frame buffer.
4916     // NOTE:
4917     // (1) For BWDREF_FRAME as the show_existing_frame, the reference frame
4918     //     update has been done previously when handling the LAST_BIPRED_FRAME
4919     //     right before BWDREF_FRAME (in the display order);
4920     // (2) For INTNL_OVERLAY as the show_existing_frame, the reference frame
4921     //     update will be done when the following is called, which will
4922     //     exchange
4923     //     the virtual indexes between LAST_FRAME and ALTREF2_FRAME, so that
4924     //     LAST3 will get retired, LAST2 becomes LAST3, LAST becomes LAST2,
4925     //     and
4926     //     ALTREF2_FRAME will serve as the new LAST_FRAME.
4927     update_reference_frames(cpi);
4928 
4929     // Update frame flags
4930     cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
4931     cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
4932     cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
4933 
4934     *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
4935 
4936     // Update the frame type
4937     cm->last_frame_type = cm->frame_type;
4938 
4939     // Since we allocate a spot for the OVERLAY frame in the gf group, we need
4940     // to do post-encoding update accordingly.
4941     if (cpi->rc.is_src_frame_alt_ref) {
4942       av1_set_target_rate(cpi, cm->width, cm->height);
4943       av1_rc_postencode_update(cpi, *size);
4944     }
4945 
4946     ++cm->current_video_frame;
4947 
4948     return AOM_CODEC_OK;
4949   }
4950 
4951   // Set default state for segment based loop filter update flags.
4952   cm->lf.mode_ref_delta_update = 0;
4953 
4954   // Set various flags etc to special state if it is a key frame.
4955   if (frame_is_intra_only(cm) || frame_is_sframe(cm)) {
4956     // Reset the loop filter deltas and segmentation map.
4957     av1_reset_segment_features(cm);
4958 
4959     // If segmentation is enabled force a map update for key frames.
4960     if (seg->enabled) {
4961       seg->update_map = 1;
4962       seg->update_data = 1;
4963     }
4964 
4965     // The alternate reference frame cannot be active for a key frame.
4966     cpi->rc.source_alt_ref_active = 0;
4967   }
4968   if (cpi->oxcf.mtu == 0) {
4969     cm->num_tg = cpi->oxcf.num_tile_groups;
4970   } else {
4971     // Use a default value for the purposes of weighting costs in probability
4972     // updates
4973     cm->num_tg = DEFAULT_MAX_NUM_TG;
4974   }
4975 
4976   // For 1 pass CBR, check if we are dropping this frame.
4977   // Never drop on key frame.
4978   if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
4979       cm->frame_type != KEY_FRAME) {
4980     if (av1_rc_drop_frame(cpi)) {
4981       av1_rc_postencode_update_drop_frame(cpi);
4982       return AOM_CODEC_OK;
4983     }
4984   }
4985 
4986   aom_clear_system_state();
4987 
4988 #if CONFIG_INTERNAL_STATS
4989   memset(cpi->mode_chosen_counts, 0,
4990          MAX_MODES * sizeof(*cpi->mode_chosen_counts));
4991 #endif
4992 
4993   if (seq_params->frame_id_numbers_present_flag) {
4994     /* Non-normative definition of current_frame_id ("frame counter" with
4995      * wraparound) */
4996     const int frame_id_length = FRAME_ID_LENGTH;
4997     if (cm->current_frame_id == -1) {
4998       int lsb, msb;
4999       /* quasi-random initialization of current_frame_id for a key frame */
5000       if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) {
5001         lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff;
5002         msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff;
5003       } else {
5004         lsb = cpi->source->y_buffer[0] & 0xff;
5005         msb = cpi->source->y_buffer[1] & 0xff;
5006       }
5007       cm->current_frame_id = ((msb << 8) + lsb) % (1 << frame_id_length);
5008 
5009       // S_frame is meant for stitching different streams of different
5010       // resolutions together, so current_frame_id must be the
5011       // same across different streams of the same content current_frame_id
5012       // should be the same and not random. 0x37 is a chosen number as start
5013       // point
5014       if (cpi->oxcf.sframe_enabled) cm->current_frame_id = 0x37;
5015     } else {
5016       cm->current_frame_id =
5017           (cm->current_frame_id + 1 + (1 << frame_id_length)) %
5018           (1 << frame_id_length);
5019     }
5020   }
5021 
5022   switch (cpi->oxcf.cdf_update_mode) {
5023     case 0:  // No CDF update for any frames(4~6% compression loss).
5024       cm->disable_cdf_update = 1;
5025       break;
5026     case 1:  // Enable CDF update for all frames.
5027       cm->disable_cdf_update = 0;
5028       break;
5029     case 2:
5030       // Strategically determine at which frames to do CDF update.
5031       // Currently only enable CDF update for all-intra and no-show frames(1.5%
5032       // compression loss).
5033       // TODO(huisu@google.com): design schemes for various trade-offs between
5034       // compression quality and decoding speed.
5035       cm->disable_cdf_update =
5036           (frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1;
5037       break;
5038   }
5039   cm->timing_info_present &= !seq_params->reduced_still_picture_hdr;
5040 
5041   if (cpi->sf.recode_loop == DISALLOW_RECODE) {
5042     if (encode_without_recode_loop(cpi) != AOM_CODEC_OK) return AOM_CODEC_ERROR;
5043   } else {
5044     if (encode_with_recode_loop(cpi, size, dest) != AOM_CODEC_OK)
5045       return AOM_CODEC_ERROR;
5046   }
5047 
5048   cm->last_tile_cols = cm->tile_cols;
5049   cm->last_tile_rows = cm->tile_rows;
5050 
5051 #ifdef OUTPUT_YUV_SKINMAP
5052   if (cpi->common.current_video_frame > 1) {
5053     av1_compute_skin_map(cpi, yuv_skinmap_file);
5054   }
5055 #endif  // OUTPUT_YUV_SKINMAP
5056 
5057   // Special case code to reduce pulsing when key frames are forced at a
5058   // fixed interval. Note the reconstruction error if it is the frame before
5059   // the force key frame
5060   if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
5061     if (seq_params->use_highbitdepth) {
5062       cpi->ambient_err =
5063           aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm));
5064     } else {
5065       cpi->ambient_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm));
5066     }
5067   }
5068 
5069   // If the encoder forced a KEY_FRAME decision or if frame is an S_FRAME
5070   if ((cm->frame_type == KEY_FRAME && cm->show_frame) || frame_is_sframe(cm)) {
5071     cpi->refresh_last_frame = 1;
5072   }
5073 
5074   cm->frame_to_show = get_frame_new_buffer(cm);
5075   cm->frame_to_show->color_primaries = seq_params->color_primaries;
5076   cm->frame_to_show->transfer_characteristics =
5077       seq_params->transfer_characteristics;
5078   cm->frame_to_show->matrix_coefficients = seq_params->matrix_coefficients;
5079   cm->frame_to_show->monochrome = seq_params->monochrome;
5080   cm->frame_to_show->chroma_sample_position =
5081       seq_params->chroma_sample_position;
5082   cm->frame_to_show->color_range = seq_params->color_range;
5083   cm->frame_to_show->render_width = cm->render_width;
5084   cm->frame_to_show->render_height = cm->render_height;
5085 
5086   // TODO(zoeliu): For non-ref frames, loop filtering may need to be turned
5087   // off.
5088 
5089   // Pick the loop filter level for the frame.
5090   if (!cm->allow_intrabc) {
5091     loopfilter_frame(cpi, cm);
5092   } else {
5093     cm->lf.filter_level[0] = 0;
5094     cm->lf.filter_level[1] = 0;
5095     cm->cdef_bits = 0;
5096     cm->cdef_strengths[0] = 0;
5097     cm->nb_cdef_strengths = 1;
5098     cm->cdef_uv_strengths[0] = 0;
5099     cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
5100     cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
5101     cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
5102   }
5103 
5104   // TODO(debargha): Fix mv search range on encoder side
5105   // aom_extend_frame_inner_borders(cm->frame_to_show, av1_num_planes(cm));
5106   aom_extend_frame_borders(cm->frame_to_show, av1_num_planes(cm));
5107 
5108 #ifdef OUTPUT_YUV_REC
5109   aom_write_one_yuv_frame(cm, cm->frame_to_show);
5110 #endif
5111 
5112   // Build the bitstream
5113   if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
5114     return AOM_CODEC_ERROR;
5115 
5116   cpi->seq_params_locked = 1;
5117 
5118   if (skip_adapt) return AOM_CODEC_OK;
5119 
5120   if (seq_params->frame_id_numbers_present_flag) {
5121     int i;
5122     // Update reference frame id values based on the value of refresh_frame_mask
5123     for (i = 0; i < REF_FRAMES; i++) {
5124       if ((cpi->refresh_frame_mask >> i) & 1) {
5125         cm->ref_frame_id[i] = cm->current_frame_id;
5126       }
5127     }
5128   }
5129 
5130 #if DUMP_RECON_FRAMES == 1
5131   // NOTE(zoeliu): For debug - Output the filtered reconstructed video.
5132   dump_filtered_recon_frames(cpi);
5133 #endif  // DUMP_RECON_FRAMES
5134 
5135   if (cm->seg.enabled) {
5136     if (cm->seg.update_map) {
5137       update_reference_segmentation_map(cpi);
5138     } else if (cm->last_frame_seg_map) {
5139       memcpy(cm->current_frame_seg_map, cm->last_frame_seg_map,
5140              cm->mi_cols * cm->mi_rows * sizeof(uint8_t));
5141     }
5142   }
5143 
5144   if (frame_is_intra_only(cm) == 0) {
5145     release_scaled_references(cpi);
5146   }
5147 
5148   update_reference_frames(cpi);
5149 
5150 #if CONFIG_ENTROPY_STATS
5151   av1_accumulate_frame_counts(&aggregate_fc, &cpi->counts);
5152 #endif  // CONFIG_ENTROPY_STATS
5153 
5154   if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
5155     *cm->fc = cpi->tile_data[cm->largest_tile_id].tctx;
5156     av1_reset_cdf_symbol_counters(cm->fc);
5157   }
5158 
5159   if (cpi->refresh_golden_frame == 1)
5160     cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
5161   else
5162     cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
5163 
5164   if (cpi->refresh_alt_ref_frame == 1)
5165     cpi->frame_flags |= FRAMEFLAGS_ALTREF;
5166   else
5167     cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
5168 
5169   if (cpi->refresh_bwd_ref_frame == 1)
5170     cpi->frame_flags |= FRAMEFLAGS_BWDREF;
5171   else
5172     cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
5173 
5174   cm->last_frame_type = cm->frame_type;
5175 
5176   av1_rc_postencode_update(cpi, *size);
5177 
5178   if (cm->frame_type == KEY_FRAME) {
5179     // Tell the caller that the frame was coded as a key frame
5180     *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
5181   } else {
5182     *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
5183   }
5184 
5185   // Clear the one shot update flags for segmentation map and mode/ref loop
5186   // filter deltas.
5187   cm->seg.update_map = 0;
5188   cm->seg.update_data = 0;
5189   cm->lf.mode_ref_delta_update = 0;
5190 
5191   // A droppable frame might not be shown but it always
5192   // takes a space in the gf group. Therefore, even when
5193   // it is not shown, we still need update the count down.
5194 
5195   if (cm->show_frame) {
5196     // TODO(zoeliu): We may only swamp mi and prev_mi for those frames that
5197     // are
5198     // being used as reference.
5199     swap_mi_and_prev_mi(cm);
5200     // Don't increment frame counters if this was an altref buffer
5201     // update not a real frame
5202 
5203     ++cm->current_video_frame;
5204   }
5205 
5206   // NOTE: Shall not refer to any frame not used as reference.
5207   if (cm->is_reference_frame) {
5208     // keep track of the last coded dimensions
5209     cm->last_width = cm->width;
5210     cm->last_height = cm->height;
5211 
5212     // reset to normal state now that we are done.
5213     cm->last_show_frame = cm->show_frame;
5214   }
5215 
5216   return AOM_CODEC_OK;
5217 }
5218 
5219 static INLINE void update_keyframe_counters(AV1_COMP *cpi) {
5220   // TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME
5221   //               differently here for rc->avg_frame_bandwidth.
5222   if (cpi->common.show_frame || cpi->rc.is_bwd_ref_frame) {
5223     if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref ||
5224         cpi->common.frame_type == KEY_FRAME) {
5225       // If this is a show_existing_frame with a source other than altref,
5226       // or if it is not a displayed forward keyframe, the keyframe update
5227       // counters were incremented when it was originally encoded.
5228       cpi->rc.frames_since_key++;
5229       cpi->rc.frames_to_key--;
5230     }
5231   }
5232 }
5233 
5234 static INLINE void update_frames_till_gf_update(AV1_COMP *cpi) {
5235   // TODO(weitinglin): Updating this counter for is_frame_droppable
5236   // is a work-around to handle the condition when a frame is drop.
5237   // We should fix the cpi->common.show_frame flag
5238   // instead of checking the other condition to update the counter properly.
5239   if (cpi->common.show_frame || is_frame_droppable(cpi)) {
5240     // Decrement count down till next gf
5241     if (cpi->rc.frames_till_gf_update_due > 0)
5242       cpi->rc.frames_till_gf_update_due--;
5243   }
5244 }
5245 
5246 static INLINE void update_twopass_gf_group_index(AV1_COMP *cpi) {
5247   // Increment the gf group index ready for the next frame. If this is
5248   // a show_existing_frame with a source other than altref, or if it is not
5249   // a displayed forward keyframe, the index was incremented when it was
5250   // originally encoded.
5251   if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref ||
5252       cpi->common.frame_type == KEY_FRAME) {
5253     ++cpi->twopass.gf_group.index;
5254   }
5255 }
5256 
5257 static void update_rc_counts(AV1_COMP *cpi) {
5258   update_keyframe_counters(cpi);
5259   update_frames_till_gf_update(cpi);
5260   if (cpi->oxcf.pass == 2) update_twopass_gf_group_index(cpi);
5261 }
5262 
5263 static int Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
5264                        int skip_adapt, unsigned int *frame_flags) {
5265   if (cpi->oxcf.rc_mode == AOM_CBR) {
5266     av1_rc_get_one_pass_cbr_params(cpi);
5267   } else {
5268     av1_rc_get_one_pass_vbr_params(cpi);
5269   }
5270   if (encode_frame_to_data_rate(cpi, size, dest, skip_adapt, frame_flags) !=
5271       AOM_CODEC_OK) {
5272     return AOM_CODEC_ERROR;
5273   }
5274   update_rc_counts(cpi);
5275   check_show_existing_frame(cpi);
5276   return AOM_CODEC_OK;
5277 }
5278 
5279 static int Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
5280                        unsigned int *frame_flags) {
5281 #if CONFIG_MISMATCH_DEBUG
5282   mismatch_move_frame_idx_w();
5283 #endif
5284 #if TXCOEFF_COST_TIMER
5285   AV1_COMMON *cm = &cpi->common;
5286   cm->txcoeff_cost_timer = 0;
5287   cm->txcoeff_cost_count = 0;
5288 #endif
5289 
5290   if (encode_frame_to_data_rate(cpi, size, dest, 0, frame_flags) !=
5291       AOM_CODEC_OK) {
5292     return AOM_CODEC_ERROR;
5293   }
5294 
5295 #if TXCOEFF_COST_TIMER
5296   cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer;
5297   fprintf(stderr,
5298           "\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld "
5299           "in us\n",
5300           cm->txcoeff_cost_count, cm->txcoeff_cost_timer,
5301           cm->cum_txcoeff_cost_timer);
5302 #endif
5303 
5304   av1_twopass_postencode_update(cpi);
5305   update_rc_counts(cpi);
5306   check_show_existing_frame(cpi);
5307   return AOM_CODEC_OK;
5308 }
5309 
5310 #if CONFIG_DENOISE
5311 static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd,
5312                             int block_size, float noise_level,
5313                             int64_t time_stamp, int64_t end_time) {
5314   AV1_COMMON *const cm = &cpi->common;
5315   if (!cpi->denoise_and_model) {
5316     cpi->denoise_and_model = aom_denoise_and_model_alloc(
5317         cm->seq_params.bit_depth, block_size, noise_level);
5318     if (!cpi->denoise_and_model) {
5319       aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
5320                          "Error allocating denoise and model");
5321       return -1;
5322     }
5323   }
5324   if (!cpi->film_grain_table) {
5325     cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table));
5326     if (!cpi->film_grain_table) {
5327       aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
5328                          "Error allocating grain table");
5329       return -1;
5330     }
5331     memset(cpi->film_grain_table, 0, sizeof(*cpi->film_grain_table));
5332   }
5333   if (aom_denoise_and_model_run(cpi->denoise_and_model, sd,
5334                                 &cm->film_grain_params)) {
5335     if (cm->film_grain_params.apply_grain) {
5336       aom_film_grain_table_append(cpi->film_grain_table, time_stamp, end_time,
5337                                   &cm->film_grain_params);
5338     }
5339   }
5340   return 0;
5341 }
5342 #endif
5343 
5344 int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
5345                           YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
5346                           int64_t end_time) {
5347   AV1_COMMON *const cm = &cpi->common;
5348   const SequenceHeader *const seq_params = &cm->seq_params;
5349   struct aom_usec_timer timer;
5350   int res = 0;
5351   const int subsampling_x = sd->subsampling_x;
5352   const int subsampling_y = sd->subsampling_y;
5353   const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
5354 
5355   check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
5356 
5357   aom_usec_timer_start(&timer);
5358 
5359 #if CONFIG_DENOISE
5360   if (cpi->oxcf.noise_level > 0)
5361     if (apply_denoise_2d(cpi, sd, cpi->oxcf.noise_block_size,
5362                          cpi->oxcf.noise_level, time_stamp, end_time) < 0)
5363       res = -1;
5364 #endif  //  CONFIG_DENOISE
5365 
5366   if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
5367                          use_highbitdepth, frame_flags))
5368     res = -1;
5369   aom_usec_timer_mark(&timer);
5370   cpi->time_receive_data += aom_usec_timer_elapsed(&timer);
5371 
5372   if ((seq_params->profile == PROFILE_0) && !seq_params->monochrome &&
5373       (subsampling_x != 1 || subsampling_y != 1)) {
5374     aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
5375                        "Non-4:2:0 color format requires profile 1 or 2");
5376     res = -1;
5377   }
5378   if ((seq_params->profile == PROFILE_1) &&
5379       !(subsampling_x == 0 && subsampling_y == 0)) {
5380     aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
5381                        "Profile 1 requires 4:4:4 color format");
5382     res = -1;
5383   }
5384   if ((seq_params->profile == PROFILE_2) &&
5385       (seq_params->bit_depth <= AOM_BITS_10) &&
5386       !(subsampling_x == 1 && subsampling_y == 0)) {
5387     aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
5388                        "Profile 2 bit-depth < 10 requires 4:2:2 color format");
5389     res = -1;
5390   }
5391 
5392   return res;
5393 }
5394 
5395 static int frame_is_reference(const AV1_COMP *cpi) {
5396   const AV1_COMMON *cm = &cpi->common;
5397 
5398   return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
5399          cpi->refresh_golden_frame || cpi->refresh_bwd_ref_frame ||
5400          cpi->refresh_alt2_ref_frame || cpi->refresh_alt_ref_frame ||
5401          !cm->error_resilient_mode || cm->lf.mode_ref_delta_update ||
5402          cm->seg.update_map || cm->seg.update_data;
5403 }
5404 
5405 static void adjust_frame_rate(AV1_COMP *cpi,
5406                               const struct lookahead_entry *source) {
5407   int64_t this_duration;
5408   int step = 0;
5409 
5410   if (source->ts_start == cpi->first_time_stamp_ever) {
5411     this_duration = source->ts_end - source->ts_start;
5412     step = 1;
5413   } else {
5414     int64_t last_duration =
5415         cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
5416 
5417     this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
5418 
5419     // do a step update if the duration changes by 10%
5420     if (last_duration)
5421       step = (int)((this_duration - last_duration) * 10 / last_duration);
5422   }
5423 
5424   if (this_duration) {
5425     if (step) {
5426       av1_new_framerate(cpi, 10000000.0 / this_duration);
5427     } else {
5428       // Average this frame's rate into the last second's average
5429       // frame rate. If we haven't seen 1 second yet, then average
5430       // over the whole interval seen.
5431       const double interval = AOMMIN(
5432           (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
5433       double avg_duration = 10000000.0 / cpi->framerate;
5434       avg_duration *= (interval - avg_duration + this_duration);
5435       avg_duration /= interval;
5436 
5437       av1_new_framerate(cpi, 10000000.0 / avg_duration);
5438     }
5439   }
5440   cpi->last_time_stamp_seen = source->ts_start;
5441   cpi->last_end_time_stamp_seen = source->ts_end;
5442 }
5443 
5444 // Returns 0 if this is not an alt ref else the offset of the source frame
5445 // used as the arf midpoint.
5446 static int get_arf_src_index(AV1_COMP *cpi) {
5447   RATE_CONTROL *const rc = &cpi->rc;
5448   int arf_src_index = 0;
5449   if (is_altref_enabled(cpi)) {
5450     if (cpi->oxcf.pass == 2) {
5451       const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
5452       if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
5453         arf_src_index = gf_group->arf_src_offset[gf_group->index];
5454       }
5455     } else if (rc->source_alt_ref_pending) {
5456       arf_src_index = rc->frames_till_gf_update_due;
5457     }
5458   }
5459   return arf_src_index;
5460 }
5461 
5462 static int get_brf_src_index(AV1_COMP *cpi) {
5463   int brf_src_index = 0;
5464   const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
5465 
5466   // TODO(zoeliu): We need to add the check on the -bwd_ref command line setup
5467   //               flag.
5468   if (gf_group->bidir_pred_enabled[gf_group->index]) {
5469     if (cpi->oxcf.pass == 2) {
5470       if (gf_group->update_type[gf_group->index] == BRF_UPDATE)
5471         brf_src_index = gf_group->brf_src_offset[gf_group->index];
5472     } else {
5473       // TODO(zoeliu): To re-visit the setup for this scenario
5474       brf_src_index = cpi->rc.bipred_group_interval - 1;
5475     }
5476   }
5477 
5478   return brf_src_index;
5479 }
5480 
5481 // Returns 0 if this is not an alt ref else the offset of the source frame
5482 // used as the arf midpoint.
5483 static int get_arf2_src_index(AV1_COMP *cpi) {
5484   int arf2_src_index = 0;
5485   if (is_altref_enabled(cpi) && cpi->num_extra_arfs) {
5486     if (cpi->oxcf.pass == 2) {
5487       const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
5488       if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
5489         arf2_src_index = gf_group->arf_src_offset[gf_group->index];
5490       }
5491     }
5492   }
5493   return arf2_src_index;
5494 }
5495 
5496 static void check_src_altref(AV1_COMP *cpi,
5497                              const struct lookahead_entry *source) {
5498   RATE_CONTROL *const rc = &cpi->rc;
5499 
5500   // If pass == 2, the parameters set here will be reset in
5501   // av1_rc_get_second_pass_params()
5502 
5503   if (cpi->oxcf.pass == 2) {
5504     const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
5505     rc->is_src_frame_alt_ref =
5506         (gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) ||
5507         (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
5508     rc->is_src_frame_ext_arf =
5509         gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE;
5510   } else {
5511     rc->is_src_frame_alt_ref =
5512         cpi->alt_ref_source && (source == cpi->alt_ref_source);
5513   }
5514 
5515   if (rc->is_src_frame_alt_ref) {
5516     // Current frame is an ARF overlay frame.
5517     cpi->alt_ref_source = NULL;
5518 
5519     if (rc->is_src_frame_ext_arf && !cpi->common.show_existing_frame) {
5520       // For INTNL_OVERLAY, when show_existing_frame == 0, they do need to
5521       // refresh the LAST_FRAME, i.e. LAST3 gets retired, LAST2 becomes LAST3,
5522       // LAST becomes LAST2, and INTNL_OVERLAY becomes LAST.
5523       cpi->refresh_last_frame = 1;
5524     } else {
5525       // Don't refresh the last buffer for an ARF overlay frame. It will
5526       // become the GF so preserve last as an alternative prediction option.
5527       cpi->refresh_last_frame = 0;
5528     }
5529   }
5530 }
5531 
5532 #if CONFIG_INTERNAL_STATS
5533 extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch,
5534                                  const unsigned char *img2, int img2_pitch,
5535                                  int width, int height);
5536 
5537 static void adjust_image_stat(double y, double u, double v, double all,
5538                               ImageStat *s) {
5539   s->stat[STAT_Y] += y;
5540   s->stat[STAT_U] += u;
5541   s->stat[STAT_V] += v;
5542   s->stat[STAT_ALL] += all;
5543   s->worst = AOMMIN(s->worst, all);
5544 }
5545 
5546 static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) {
5547   AV1_COMMON *const cm = &cpi->common;
5548   double samples = 0.0;
5549   uint32_t in_bit_depth = 8;
5550   uint32_t bit_depth = 8;
5551 
5552 #if CONFIG_INTER_STATS_ONLY
5553   if (cm->frame_type == KEY_FRAME) return;  // skip key frame
5554 #endif
5555   cpi->bytes += frame_bytes;
5556 
5557   if (cm->seq_params.use_highbitdepth) {
5558     in_bit_depth = cpi->oxcf.input_bit_depth;
5559     bit_depth = cm->seq_params.bit_depth;
5560   }
5561   if (cm->show_frame) {
5562     const YV12_BUFFER_CONFIG *orig = cpi->source;
5563     const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
5564     double y, u, v, frame_all;
5565 
5566     cpi->count++;
5567     if (cpi->b_calculate_psnr) {
5568       PSNR_STATS psnr;
5569       double frame_ssim2 = 0.0, weight = 0.0;
5570       aom_clear_system_state();
5571       // TODO(yaowu): unify these two versions into one.
5572       aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
5573 
5574       adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0],
5575                         &cpi->psnr);
5576       cpi->total_sq_error += psnr.sse[0];
5577       cpi->total_samples += psnr.samples[0];
5578       samples = psnr.samples[0];
5579       // TODO(yaowu): unify these two versions into one.
5580       if (cm->seq_params.use_highbitdepth)
5581         frame_ssim2 =
5582             aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth);
5583       else
5584         frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
5585 
5586       cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2);
5587       cpi->summed_quality += frame_ssim2 * weight;
5588       cpi->summed_weights += weight;
5589 
5590 #if 0
5591       {
5592         FILE *f = fopen("q_used.stt", "a");
5593         double y2 = psnr.psnr[1];
5594         double u2 = psnr.psnr[2];
5595         double v2 = psnr.psnr[3];
5596         double frame_psnr2 = psnr.psnr[0];
5597         fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
5598                 cm->current_video_frame, y2, u2, v2,
5599                 frame_psnr2, frame_ssim2);
5600         fclose(f);
5601       }
5602 #endif
5603     }
5604     if (cpi->b_calculate_blockiness) {
5605       if (!cm->seq_params.use_highbitdepth) {
5606         const double frame_blockiness =
5607             av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer,
5608                                recon->y_stride, orig->y_width, orig->y_height);
5609         cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness);
5610         cpi->total_blockiness += frame_blockiness;
5611       }
5612 
5613       if (cpi->b_calculate_consistency) {
5614         if (!cm->seq_params.use_highbitdepth) {
5615           const double this_inconsistency = aom_get_ssim_metrics(
5616               orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
5617               orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1);
5618 
5619           const double peak = (double)((1 << in_bit_depth) - 1);
5620           const double consistency =
5621               aom_sse_to_psnr(samples, peak, cpi->total_inconsistency);
5622           if (consistency > 0.0)
5623             cpi->worst_consistency =
5624                 AOMMIN(cpi->worst_consistency, consistency);
5625           cpi->total_inconsistency += this_inconsistency;
5626         }
5627       }
5628     }
5629 
5630     frame_all =
5631         aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
5632     adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
5633     frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
5634     adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
5635   }
5636 }
5637 #endif  // CONFIG_INTERNAL_STATS
5638 
5639 static int is_integer_mv(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *cur_picture,
5640                          const YV12_BUFFER_CONFIG *last_picture,
5641                          hash_table *last_hash_table) {
5642   aom_clear_system_state();
5643   // check use hash ME
5644   int k;
5645   uint32_t hash_value_1;
5646   uint32_t hash_value_2;
5647 
5648   const int block_size = 8;
5649   const double threshold_current = 0.8;
5650   const double threshold_average = 0.95;
5651   const int max_history_size = 32;
5652   int T = 0;  // total block
5653   int C = 0;  // match with collocated block
5654   int S = 0;  // smooth region but not match with collocated block
5655   int M = 0;  // match with other block
5656 
5657   const int pic_width = cur_picture->y_width;
5658   const int pic_height = cur_picture->y_height;
5659   for (int i = 0; i + block_size <= pic_height; i += block_size) {
5660     for (int j = 0; j + block_size <= pic_width; j += block_size) {
5661       const int x_pos = j;
5662       const int y_pos = i;
5663       int match = 1;
5664       T++;
5665 
5666       // check whether collocated block match with current
5667       uint8_t *p_cur = cur_picture->y_buffer;
5668       uint8_t *p_ref = last_picture->y_buffer;
5669       int stride_cur = cur_picture->y_stride;
5670       int stride_ref = last_picture->y_stride;
5671       p_cur += (y_pos * stride_cur + x_pos);
5672       p_ref += (y_pos * stride_ref + x_pos);
5673 
5674       if (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH) {
5675         uint16_t *p16_cur = CONVERT_TO_SHORTPTR(p_cur);
5676         uint16_t *p16_ref = CONVERT_TO_SHORTPTR(p_ref);
5677         for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
5678           for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
5679             if (p16_cur[tmpX] != p16_ref[tmpX]) {
5680               match = 0;
5681             }
5682           }
5683           p16_cur += stride_cur;
5684           p16_ref += stride_ref;
5685         }
5686       } else {
5687         for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
5688           for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
5689             if (p_cur[tmpX] != p_ref[tmpX]) {
5690               match = 0;
5691             }
5692           }
5693           p_cur += stride_cur;
5694           p_ref += stride_ref;
5695         }
5696       }
5697 
5698       if (match) {
5699         C++;
5700         continue;
5701       }
5702 
5703       if (av1_hash_is_horizontal_perfect(cur_picture, block_size, x_pos,
5704                                          y_pos) ||
5705           av1_hash_is_vertical_perfect(cur_picture, block_size, x_pos, y_pos)) {
5706         S++;
5707         continue;
5708       }
5709 
5710       av1_get_block_hash_value(
5711           cur_picture->y_buffer + y_pos * stride_cur + x_pos, stride_cur,
5712           block_size, &hash_value_1, &hash_value_2,
5713           (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH), &cpi->td.mb);
5714       // Hashing does not work for highbitdepth currently.
5715       // TODO(Roger): Make it work for highbitdepth.
5716       if (av1_use_hash_me(&cpi->common)) {
5717         if (av1_has_exact_match(last_hash_table, hash_value_1, hash_value_2)) {
5718           M++;
5719         }
5720       }
5721     }
5722   }
5723 
5724   assert(T > 0);
5725   double csm_rate = ((double)(C + S + M)) / ((double)(T));
5726   double m_rate = ((double)(M)) / ((double)(T));
5727 
5728   cpi->csm_rate_array[cpi->rate_index] = csm_rate;
5729   cpi->m_rate_array[cpi->rate_index] = m_rate;
5730 
5731   cpi->rate_index = (cpi->rate_index + 1) % max_history_size;
5732   cpi->rate_size++;
5733   cpi->rate_size = AOMMIN(cpi->rate_size, max_history_size);
5734 
5735   if (csm_rate < threshold_current) {
5736     return 0;
5737   }
5738 
5739   if (C == T) {
5740     return 1;
5741   }
5742 
5743   double csm_average = 0.0;
5744   double m_average = 0.0;
5745 
5746   for (k = 0; k < cpi->rate_size; k++) {
5747     csm_average += cpi->csm_rate_array[k];
5748     m_average += cpi->m_rate_array[k];
5749   }
5750   csm_average /= cpi->rate_size;
5751   m_average /= cpi->rate_size;
5752 
5753   if (csm_average < threshold_average) {
5754     return 0;
5755   }
5756 
5757   if (M > (T - C - S) / 3) {
5758     return 1;
5759   }
5760 
5761   if (csm_rate > 0.99 && m_rate > 0.01) {
5762     return 1;
5763   }
5764 
5765   if (csm_average + m_average > 1.01) {
5766     return 1;
5767   }
5768 
5769   return 0;
5770 }
5771 
5772 int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
5773                             size_t *size, uint8_t *dest, int64_t *time_stamp,
5774                             int64_t *time_end, int flush,
5775                             const aom_rational_t *timebase) {
5776   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
5777   AV1_COMMON *const cm = &cpi->common;
5778   const int num_planes = av1_num_planes(cm);
5779   BufferPool *const pool = cm->buffer_pool;
5780   RATE_CONTROL *const rc = &cpi->rc;
5781   struct aom_usec_timer cmptimer;
5782   YV12_BUFFER_CONFIG *force_src_buffer = NULL;
5783   struct lookahead_entry *last_source = NULL;
5784   struct lookahead_entry *source = NULL;
5785   int arf_src_index;
5786   int brf_src_index;
5787   int i;
5788 
5789 #if CONFIG_BITSTREAM_DEBUG
5790   assert(cpi->oxcf.max_threads == 0 &&
5791          "bitstream debug tool does not support multithreading");
5792   bitstream_queue_record_write();
5793   bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame);
5794 #endif
5795 
5796   cm->showable_frame = 0;
5797   aom_usec_timer_start(&cmptimer);
5798 
5799   set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV, 0);
5800 
5801   // Normal defaults
5802   cm->refresh_frame_context = oxcf->frame_parallel_decoding_mode
5803                                   ? REFRESH_FRAME_CONTEXT_DISABLED
5804                                   : REFRESH_FRAME_CONTEXT_BACKWARD;
5805   if (oxcf->large_scale_tile)
5806     cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
5807 
5808   // default reference buffers update config
5809   av1_configure_buffer_updates_firstpass(cpi, LF_UPDATE);
5810 
5811   // Initialize fields related to forward keyframes
5812   cpi->no_show_kf = 0;
5813   cm->reset_decoder_state = 0;
5814 
5815   // Don't allow a show_existing_frame to coincide with an error resilient or
5816   // S-Frame. An exception can be made in the case of a keyframe, since it
5817   // does not depend on any previous frames. We must make this exception here
5818   // because of the use of show_existing_frame with forward coded keyframes.
5819   struct lookahead_entry *lookahead_src = NULL;
5820   if (cm->current_video_frame > 0)
5821     lookahead_src = av1_lookahead_peek(cpi->lookahead, 0);
5822 
5823   int use_show_existing = 1;
5824   if (lookahead_src != NULL) {
5825     const int is_error_resilient =
5826         cpi->oxcf.error_resilient_mode ||
5827         (lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT);
5828     const int is_s_frame = cpi->oxcf.s_frame_mode ||
5829                            (lookahead_src->flags & AOM_EFLAG_SET_S_FRAME);
5830     const int is_key_frame =
5831         (rc->frames_to_key == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY);
5832     use_show_existing = !(is_error_resilient || is_s_frame) || is_key_frame;
5833   }
5834 
5835   if (oxcf->pass == 2 && cm->show_existing_frame && use_show_existing) {
5836     // Manage the source buffer and flush out the source frame that has been
5837     // coded already; Also get prepared for PSNR calculation if needed.
5838     if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) {
5839       *size = 0;
5840       return -1;
5841     }
5842     av1_apply_encoding_flags(cpi, source->flags);
5843     cpi->source = &source->img;
5844     // TODO(zoeliu): To track down to determine whether it's needed to adjust
5845     // the frame rate.
5846     *time_stamp = source->ts_start;
5847     *time_end = source->ts_end;
5848 
5849     // We need to adjust frame rate for an overlay frame
5850     if (cpi->rc.is_src_frame_alt_ref) adjust_frame_rate(cpi, source);
5851 
5852     // Find a free buffer for the new frame, releasing the reference
5853     // previously
5854     // held.
5855     if (cm->new_fb_idx != INVALID_IDX) {
5856       --pool->frame_bufs[cm->new_fb_idx].ref_count;
5857     }
5858     cm->new_fb_idx = get_free_fb(cm);
5859 
5860     if (cm->new_fb_idx == INVALID_IDX) return -1;
5861 
5862     // Clear down mmx registers
5863     aom_clear_system_state();
5864 
5865     // Start with a 0 size frame.
5866     *size = 0;
5867 
5868     // We need to update the gf_group for show_existing overlay frame
5869     if (cpi->rc.is_src_frame_alt_ref) av1_rc_get_second_pass_params(cpi);
5870 
5871     if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK)
5872       return AOM_CODEC_ERROR;
5873 
5874     if (cpi->b_calculate_psnr) generate_psnr_packet(cpi);
5875 
5876 #if CONFIG_INTERNAL_STATS
5877     compute_internal_stats(cpi, (int)(*size));
5878 #endif  // CONFIG_INTERNAL_STATS
5879 
5880     // Clear down mmx registers
5881     aom_clear_system_state();
5882 
5883     cm->show_existing_frame = 0;
5884     return 0;
5885   }
5886 
5887   // Should we encode an arf frame.
5888   arf_src_index = get_arf_src_index(cpi);
5889   if (arf_src_index) {
5890     for (i = 0; i <= arf_src_index; ++i) {
5891       struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
5892       // Avoid creating an alt-ref if there's a forced keyframe pending.
5893       if (e == NULL) {
5894         break;
5895       } else if (e->flags == AOM_EFLAG_FORCE_KF) {
5896         arf_src_index = 0;
5897         flush = 1;
5898         break;
5899       }
5900     }
5901   }
5902 
5903   if (arf_src_index) {
5904     assert(arf_src_index <= rc->frames_to_key);
5905 
5906     if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
5907       cm->showable_frame = 1;
5908       cpi->alt_ref_source = source;
5909       // When arf_src_index == rc->frames_to_key, it indicates a fwd_kf
5910       if (arf_src_index == rc->frames_to_key) {
5911         // Skip temporal filtering and mark as intra_only if we have a fwd_kf
5912         const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
5913         int which_arf = gf_group->arf_update_idx[gf_group->index];
5914         cpi->is_arf_filter_off[which_arf] = 1;
5915         cpi->no_show_kf = 1;
5916       } else {
5917         if (oxcf->arnr_max_frames > 0) {
5918           // Produce the filtered ARF frame.
5919           av1_temporal_filter(cpi, arf_src_index);
5920           aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes);
5921           force_src_buffer = &cpi->alt_ref_buffer;
5922         }
5923       }
5924       cm->show_frame = 0;
5925       cm->intra_only = 0;
5926 
5927       if (oxcf->pass < 2) {
5928         // In second pass, the buffer updates configure will be set
5929         // in the function av1_rc_get_second_pass_params
5930         av1_configure_buffer_updates_firstpass(cpi, ARF_UPDATE);
5931       }
5932     }
5933     rc->source_alt_ref_pending = 0;
5934   }
5935 
5936   // Should we encode an arf2 frame.
5937   arf_src_index = get_arf2_src_index(cpi);
5938   if (arf_src_index) {
5939     for (i = 0; i <= arf_src_index; ++i) {
5940       struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
5941       // Avoid creating an alt-ref if there's a forced keyframe pending.
5942       if (e == NULL) {
5943         break;
5944       } else if (e->flags == AOM_EFLAG_FORCE_KF) {
5945         arf_src_index = 0;
5946         flush = 1;
5947         break;
5948       }
5949     }
5950   }
5951 
5952   if (arf_src_index) {
5953     assert(arf_src_index <= rc->frames_to_key);
5954 
5955     if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
5956       cm->showable_frame = 1;
5957       cpi->alt_ref_source = source;
5958 
5959       if (oxcf->arnr_max_frames > 0) {
5960         // Produce the filtered ARF frame.
5961         av1_temporal_filter(cpi, arf_src_index);
5962         aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes);
5963         force_src_buffer = &cpi->alt_ref_buffer;
5964       }
5965 
5966       cm->show_frame = 0;
5967       cm->intra_only = 0;
5968 
5969       if (oxcf->pass < 2) {
5970         // In second pass, the buffer updates configure will be set
5971         // in the function av1_rc_get_second_pass_params
5972         av1_configure_buffer_updates_firstpass(cpi, INTNL_ARF_UPDATE);
5973       }
5974     }
5975     rc->source_alt_ref_pending = 0;
5976   }
5977 
5978   rc->is_bwd_ref_frame = 0;
5979   brf_src_index = get_brf_src_index(cpi);
5980   if (brf_src_index) {
5981     assert(brf_src_index <= rc->frames_to_key);
5982     if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) {
5983       cm->showable_frame = 1;
5984       cm->show_frame = 0;
5985       cm->intra_only = 0;
5986 
5987       if (oxcf->pass < 2) {
5988         // In second pass, the buffer updates configure will be set
5989         // in the function av1_rc_get_second_pass_params
5990         av1_configure_buffer_updates_firstpass(cpi, BIPRED_UPDATE);
5991       }
5992     }
5993   }
5994 
5995   if (!source) {
5996     // Get last frame source.
5997     if (cm->current_video_frame > 0) {
5998       if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL)
5999         return -1;
6000     }
6001     if (cm->current_video_frame > 0) assert(last_source != NULL);
6002     // Read in the source frame.
6003     source = av1_lookahead_pop(cpi->lookahead, flush);
6004 
6005     if (source != NULL) {
6006       cm->show_frame = 1;
6007       cm->intra_only = 0;
6008 
6009       // Check to see if the frame should be encoded as an arf overlay.
6010       check_src_altref(cpi, source);
6011     }
6012   }
6013   if (source) {
6014     cpi->unscaled_source = cpi->source =
6015         force_src_buffer ? force_src_buffer : &source->img;
6016     cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
6017 
6018     *time_stamp = source->ts_start;
6019     *time_end = source->ts_end;
6020     av1_apply_encoding_flags(cpi, source->flags);
6021     *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
6022 
6023   } else {
6024     *size = 0;
6025     if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
6026       av1_end_first_pass(cpi); /* get last stats packet */
6027       cpi->twopass.first_pass_done = 1;
6028     }
6029     return -1;
6030   }
6031 
6032   if (source->ts_start < cpi->first_time_stamp_ever) {
6033     cpi->first_time_stamp_ever = source->ts_start;
6034     cpi->last_end_time_stamp_seen = source->ts_start;
6035   }
6036 
6037   // Clear down mmx registers
6038   aom_clear_system_state();
6039 
6040   // adjust frame rates based on timestamps given
6041   if (cm->show_frame) adjust_frame_rate(cpi, source);
6042 
6043   // Find a free buffer for the new frame, releasing the reference previously
6044   // held.
6045   if (cm->new_fb_idx != INVALID_IDX) {
6046     --pool->frame_bufs[cm->new_fb_idx].ref_count;
6047   }
6048   cm->new_fb_idx = get_free_fb(cm);
6049 
6050   if (cm->new_fb_idx == INVALID_IDX) return -1;
6051 
6052   // Retain the RF_LEVEL for the current newly coded frame.
6053   cpi->frame_rf_level[cm->new_fb_idx] =
6054       cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
6055 
6056   cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
6057   cm->cur_frame->buf.buf_8bit_valid = 0;
6058 
6059   if (cpi->film_grain_table) {
6060     cm->seq_params.film_grain_params_present = aom_film_grain_table_lookup(
6061         cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */,
6062         &cm->film_grain_params);
6063   }
6064   cm->cur_frame->film_grain_params_present =
6065       cm->seq_params.film_grain_params_present;
6066 
6067   // only one operating point supported now
6068   const int64_t pts64 = ticks_to_timebase_units(timebase, *time_stamp);
6069   if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR;
6070   cpi->common.frame_presentation_time = (uint32_t)pts64;
6071 
6072   // Start with a 0 size frame.
6073   *size = 0;
6074 
6075   cpi->frame_flags = *frame_flags;
6076 
6077   if (oxcf->pass == 2) {
6078     av1_rc_get_second_pass_params(cpi);
6079   } else if (oxcf->pass == 1) {
6080     setup_frame_size(cpi);
6081   }
6082 
6083   if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
6084     for (i = 0; i < REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX;
6085   }
6086 
6087   cm->using_qmatrix = cpi->oxcf.using_qm;
6088   cm->min_qmlevel = cpi->oxcf.qm_minlevel;
6089   cm->max_qmlevel = cpi->oxcf.qm_maxlevel;
6090 
6091   if (cm->seq_params.frame_id_numbers_present_flag) {
6092     if (*time_stamp == 0) {
6093       cpi->common.current_frame_id = -1;
6094     }
6095   }
6096 
6097   cpi->cur_poc++;
6098   if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools &&
6099       !frame_is_intra_only(cm)) {
6100     if (cpi->common.seq_params.force_integer_mv == 2) {
6101       struct lookahead_entry *previous_entry =
6102           av1_lookahead_peek(cpi->lookahead, cpi->previous_index);
6103       if (!previous_entry)
6104         cpi->common.cur_frame_force_integer_mv = 0;
6105       else
6106         cpi->common.cur_frame_force_integer_mv = is_integer_mv(
6107             cpi, cpi->source, &previous_entry->img, cpi->previous_hash_table);
6108     } else {
6109       cpi->common.cur_frame_force_integer_mv =
6110           cpi->common.seq_params.force_integer_mv;
6111     }
6112   } else {
6113     cpi->common.cur_frame_force_integer_mv = 0;
6114   }
6115 
6116   if (oxcf->pass == 1) {
6117     cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
6118     av1_first_pass(cpi, source);
6119   } else if (oxcf->pass == 2) {
6120     if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK)
6121       return AOM_CODEC_ERROR;
6122   } else {
6123     // One pass encode
6124     if (Pass0Encode(cpi, size, dest, 0, frame_flags) != AOM_CODEC_OK)
6125       return AOM_CODEC_ERROR;
6126   }
6127   if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools) {
6128     cpi->previous_hash_table = &cm->cur_frame->hash_table;
6129     {
6130       int l;
6131       for (l = -MAX_PRE_FRAMES; l < cpi->lookahead->max_sz; l++) {
6132         if ((cpi->lookahead->buf + l) == source) {
6133           cpi->previous_index = l;
6134           break;
6135         }
6136       }
6137 
6138       if (l == cpi->lookahead->max_sz) {
6139         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
6140                            "Failed to find last frame original buffer");
6141       }
6142     }
6143   }
6144 
6145   if (!cm->large_scale_tile) {
6146     cm->frame_contexts[cm->new_fb_idx] = *cm->fc;
6147   }
6148 
6149 #define EXT_TILE_DEBUG 0
6150 #if EXT_TILE_DEBUG
6151   if (cm->large_scale_tile && oxcf->pass == 2) {
6152     char fn[20] = "./fc";
6153     fn[4] = cm->current_video_frame / 100 + '0';
6154     fn[5] = (cm->current_video_frame % 100) / 10 + '0';
6155     fn[6] = (cm->current_video_frame % 10) + '0';
6156     fn[7] = '\0';
6157     av1_print_frame_contexts(cm->fc, fn);
6158   }
6159 #endif  // EXT_TILE_DEBUG
6160 #undef EXT_TILE_DEBUG
6161 
6162   cm->showable_frame = !cm->show_frame && cm->showable_frame;
6163 
6164   // No frame encoded, or frame was dropped, release scaled references.
6165   if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
6166     release_scaled_references(cpi);
6167   }
6168 
6169   if (*size > 0) {
6170     cpi->droppable = !frame_is_reference(cpi);
6171   }
6172 
6173   aom_usec_timer_mark(&cmptimer);
6174   cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer);
6175 
6176   if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
6177     generate_psnr_packet(cpi);
6178 
6179 #if CONFIG_INTERNAL_STATS
6180   if (oxcf->pass != 1) {
6181     compute_internal_stats(cpi, (int)(*size));
6182   }
6183 #endif  // CONFIG_INTERNAL_STATS
6184 
6185   aom_clear_system_state();
6186 
6187   return 0;
6188 }
6189 
6190 int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
6191   AV1_COMMON *cm = &cpi->common;
6192   if (!cm->show_frame) {
6193     return -1;
6194   } else {
6195     int ret;
6196     if (cm->frame_to_show) {
6197       *dest = *cm->frame_to_show;
6198       dest->y_width = cm->width;
6199       dest->y_height = cm->height;
6200       dest->uv_width = cm->width >> cm->seq_params.subsampling_x;
6201       dest->uv_height = cm->height >> cm->seq_params.subsampling_y;
6202       ret = 0;
6203     } else {
6204       ret = -1;
6205     }
6206     aom_clear_system_state();
6207     return ret;
6208   }
6209 }
6210 
6211 int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
6212   if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1;
6213 
6214   *frame =
6215       cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf;
6216   return 0;
6217 }
6218 
6219 static int equal_dimensions_and_border(const YV12_BUFFER_CONFIG *a,
6220                                        const YV12_BUFFER_CONFIG *b) {
6221   return a->y_height == b->y_height && a->y_width == b->y_width &&
6222          a->uv_height == b->uv_height && a->uv_width == b->uv_width &&
6223          a->y_stride == b->y_stride && a->uv_stride == b->uv_stride &&
6224          a->border == b->border &&
6225          (a->flags & YV12_FLAG_HIGHBITDEPTH) ==
6226              (b->flags & YV12_FLAG_HIGHBITDEPTH);
6227 }
6228 
6229 aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm,
6230                                        YV12_BUFFER_CONFIG *new_frame,
6231                                        YV12_BUFFER_CONFIG *sd) {
6232   const int num_planes = av1_num_planes(cm);
6233   if (!equal_dimensions_and_border(new_frame, sd))
6234     aom_internal_error(&cm->error, AOM_CODEC_ERROR,
6235                        "Incorrect buffer dimensions");
6236   else
6237     aom_yv12_copy_frame(new_frame, sd, num_planes);
6238 
6239   return cm->error.error_code;
6240 }
6241 
6242 int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode,
6243                           AOM_SCALING vert_mode) {
6244   int hr = 0, hs = 0, vr = 0, vs = 0;
6245 
6246   if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
6247 
6248   Scale2Ratio(horiz_mode, &hr, &hs);
6249   Scale2Ratio(vert_mode, &vr, &vs);
6250 
6251   // always go to the next whole number
6252   cpi->resize_pending_width = (hs - 1 + cpi->oxcf.width * hr) / hs;
6253   cpi->resize_pending_height = (vs - 1 + cpi->oxcf.height * vr) / vs;
6254 
6255   return 0;
6256 }
6257 
6258 int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; }
6259 
6260 int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *frame_size) {
6261   size_t output_size = 0;
6262   size_t total_bytes_read = 0;
6263   size_t remaining_size = *frame_size;
6264   uint8_t *buff_ptr = buffer;
6265 
6266   // go through each OBUs
6267   while (total_bytes_read < *frame_size) {
6268     uint8_t saved_obu_header[2];
6269     uint64_t obu_payload_size;
6270     size_t length_of_payload_size;
6271     size_t length_of_obu_size;
6272     uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1;
6273     size_t obu_bytes_read = obu_header_size;  // bytes read for current obu
6274 
6275     // save the obu header (1 or 2 bytes)
6276     memmove(saved_obu_header, buff_ptr, obu_header_size);
6277     // clear the obu_has_size_field
6278     saved_obu_header[0] = saved_obu_header[0] & (~0x2);
6279 
6280     // get the payload_size and length of payload_size
6281     if (aom_uleb_decode(buff_ptr + obu_header_size, remaining_size,
6282                         &obu_payload_size, &length_of_payload_size) != 0) {
6283       return AOM_CODEC_ERROR;
6284     }
6285     obu_bytes_read += length_of_payload_size;
6286 
6287     // calculate the length of size of the obu header plus payload
6288     length_of_obu_size =
6289         aom_uleb_size_in_bytes((uint64_t)(obu_header_size + obu_payload_size));
6290 
6291     // move the rest of data to new location
6292     memmove(buff_ptr + length_of_obu_size + obu_header_size,
6293             buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read);
6294     obu_bytes_read += (size_t)obu_payload_size;
6295 
6296     // write the new obu size
6297     const uint64_t obu_size = obu_header_size + obu_payload_size;
6298     size_t coded_obu_size;
6299     if (aom_uleb_encode(obu_size, sizeof(obu_size), buff_ptr,
6300                         &coded_obu_size) != 0) {
6301       return AOM_CODEC_ERROR;
6302     }
6303 
6304     // write the saved (modified) obu_header following obu size
6305     memmove(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size);
6306 
6307     total_bytes_read += obu_bytes_read;
6308     remaining_size -= obu_bytes_read;
6309     buff_ptr += length_of_obu_size + obu_size;
6310     output_size += length_of_obu_size + (size_t)obu_size;
6311   }
6312 
6313   *frame_size = output_size;
6314   return AOM_CODEC_OK;
6315 }
6316 
6317 void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) {
6318   // TODO(yunqingwang): For what references to use, external encoding flags
6319   // should be consistent with internal reference frame selection. Need to
6320   // ensure that there is not conflict between the two. In AV1 encoder, the
6321   // priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3,
6322   // GOLDEN, BWDREF, ALTREF2. If only one reference frame is used, it must be
6323   // LAST.
6324   cpi->ext_ref_frame_flags = AOM_REFFRAME_ALL;
6325   if (flags &
6326       (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
6327        AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD |
6328        AOM_EFLAG_NO_REF_ARF2)) {
6329     if (flags & AOM_EFLAG_NO_REF_LAST) {
6330       cpi->ext_ref_frame_flags = 0;
6331     } else {
6332       int ref = AOM_REFFRAME_ALL;
6333 
6334       if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG;
6335       if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG;
6336 
6337       if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG;
6338 
6339       if (flags & AOM_EFLAG_NO_REF_ARF) {
6340         ref ^= AOM_ALT_FLAG;
6341         ref ^= AOM_BWD_FLAG;
6342         ref ^= AOM_ALT2_FLAG;
6343       } else {
6344         if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG;
6345         if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG;
6346       }
6347 
6348       av1_use_as_reference(cpi, ref);
6349     }
6350   }
6351 
6352   if (flags &
6353       (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) {
6354     int upd = AOM_REFFRAME_ALL;
6355 
6356     // Refreshing LAST/LAST2/LAST3 is handled by 1 common flag.
6357     if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG;
6358 
6359     if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG;
6360 
6361     if (flags & AOM_EFLAG_NO_UPD_ARF) {
6362       upd ^= AOM_ALT_FLAG;
6363       upd ^= AOM_BWD_FLAG;
6364       upd ^= AOM_ALT2_FLAG;
6365     }
6366 
6367     av1_update_reference(cpi, upd);
6368   }
6369 
6370   cpi->ext_use_ref_frame_mvs = cpi->oxcf.allow_ref_frame_mvs &
6371                                ((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0);
6372   cpi->ext_use_error_resilient = cpi->oxcf.error_resilient_mode |
6373                                  ((flags & AOM_EFLAG_ERROR_RESILIENT) != 0);
6374   cpi->ext_use_s_frame =
6375       cpi->oxcf.s_frame_mode | ((flags & AOM_EFLAG_SET_S_FRAME) != 0);
6376   cpi->ext_use_primary_ref_none = (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0;
6377 
6378   if (flags & AOM_EFLAG_NO_UPD_ENTROPY) {
6379     av1_update_entropy(cpi, 0);
6380   }
6381 }
6382 
6383 int64_t timebase_units_to_ticks(const aom_rational_t *timebase, int64_t n) {
6384   return n * TICKS_PER_SEC * timebase->num / timebase->den;
6385 }
6386 
6387 int64_t ticks_to_timebase_units(const aom_rational_t *timebase, int64_t n) {
6388   const int64_t round = TICKS_PER_SEC * timebase->num / 2 - 1;
6389   return (n * timebase->den + round) / timebase->num / TICKS_PER_SEC;
6390 }
6391 
6392 aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi) {
6393   if (!cpi) return NULL;
6394 
6395   uint8_t header_buf[512] = { 0 };
6396   const uint32_t sequence_header_size =
6397       write_sequence_header_obu(cpi, &header_buf[0]);
6398   assert(sequence_header_size <= sizeof(header_buf));
6399   if (sequence_header_size == 0) return NULL;
6400 
6401   const size_t obu_header_size = 1;
6402   const size_t size_field_size = aom_uleb_size_in_bytes(sequence_header_size);
6403   const size_t payload_offset = obu_header_size + size_field_size;
6404 
6405   if (payload_offset + sequence_header_size > sizeof(header_buf)) return NULL;
6406   memmove(&header_buf[payload_offset], &header_buf[0], sequence_header_size);
6407 
6408   if (write_obu_header(OBU_SEQUENCE_HEADER, 0, &header_buf[0]) !=
6409       obu_header_size) {
6410     return NULL;
6411   }
6412 
6413   size_t coded_size_field_size = 0;
6414   if (aom_uleb_encode(sequence_header_size, size_field_size,
6415                       &header_buf[obu_header_size],
6416                       &coded_size_field_size) != 0) {
6417     return NULL;
6418   }
6419   assert(coded_size_field_size == size_field_size);
6420 
6421   aom_fixed_buf_t *global_headers =
6422       (aom_fixed_buf_t *)malloc(sizeof(*global_headers));
6423   if (!global_headers) return NULL;
6424 
6425   const size_t global_header_buf_size =
6426       obu_header_size + size_field_size + sequence_header_size;
6427 
6428   global_headers->buf = malloc(global_header_buf_size);
6429   if (!global_headers->buf) {
6430     free(global_headers);
6431     return NULL;
6432   }
6433 
6434   memcpy(global_headers->buf, &header_buf[0], global_header_buf_size);
6435   global_headers->sz = global_header_buf_size;
6436   return global_headers;
6437 }
6438