1 /*
2  * cifra - embedded cryptography library
3  * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
4  *
5  * To the extent possible under law, the author(s) have dedicated all
6  * copyright and related and neighboring rights to this software to the
7  * public domain worldwide. This software is distributed without any
8  * warranty.
9  *
10  * You should have received a copy of the CC0 Public Domain Dedication
11  * along with this software. If not, see
12  * <http://creativecommons.org/publicdomain/zero/1.0/>.
13  */
14 
15 #include <string.h>
16 
17 #include "sha2.h"
18 #include "blockwise.h"
19 #include "bitops.h"
20 #include "handy.h"
21 #include "tassert.h"
22 
23 static const uint64_t K[80] = {
24   UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
25   UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
26   UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
27   UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
28   UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
29   UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
30   UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
31   UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
32   UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
33   UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
34   UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
35   UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
36   UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
37   UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
38   UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
39   UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
40   UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
41   UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
42   UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
43   UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
44   UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
45   UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
46   UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
47   UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
48   UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
49   UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
50   UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
51   UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
52   UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
53   UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
54   UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
55   UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
56   UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
57   UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
58   UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
59   UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
60   UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
61   UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
62   UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
63   UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
64 };
65 
66 # define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
67 # define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
68 # define BSIG0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
69 # define BSIG1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
70 # define SSIG0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
71 # define SSIG1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
72 
cf_sha512_init(cf_sha512_context * ctx)73 void cf_sha512_init(cf_sha512_context *ctx)
74 {
75   memset(ctx, 0, sizeof *ctx);
76   ctx->H[0] = UINT64_C(0x6a09e667f3bcc908);
77   ctx->H[1] = UINT64_C(0xbb67ae8584caa73b);
78   ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b);
79   ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1);
80   ctx->H[4] = UINT64_C(0x510e527fade682d1);
81   ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f);
82   ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b);
83   ctx->H[7] = UINT64_C(0x5be0cd19137e2179);
84 }
85 
cf_sha384_init(cf_sha512_context * ctx)86 void cf_sha384_init(cf_sha512_context *ctx)
87 {
88   memset(ctx, 0, sizeof *ctx);
89   ctx->H[0] = UINT64_C(0xcbbb9d5dc1059ed8);
90   ctx->H[1] = UINT64_C(0x629a292a367cd507);
91   ctx->H[2] = UINT64_C(0x9159015a3070dd17);
92   ctx->H[3] = UINT64_C(0x152fecd8f70e5939);
93   ctx->H[4] = UINT64_C(0x67332667ffc00b31);
94   ctx->H[5] = UINT64_C(0x8eb44a8768581511);
95   ctx->H[6] = UINT64_C(0xdb0c2e0d64f98fa7);
96   ctx->H[7] = UINT64_C(0x47b5481dbefa4fa4);
97 }
98 
sha512_update_block(void * vctx,const uint8_t * inp)99 static void sha512_update_block(void *vctx, const uint8_t *inp)
100 {
101   cf_sha512_context *ctx = vctx;
102 
103   uint64_t W[16];
104 
105   uint64_t a = ctx->H[0],
106            b = ctx->H[1],
107            c = ctx->H[2],
108            d = ctx->H[3],
109            e = ctx->H[4],
110            f = ctx->H[5],
111            g = ctx->H[6],
112            h = ctx->H[7],
113            Wt;
114 
115   size_t t;
116   for (t = 0; t < 80; t++)
117   {
118     if (t < 16)
119     {
120       W[t] = Wt = read64_be(inp);
121       inp += 8;
122     } else {
123       Wt = SSIG1(W[(t - 2) % 16]) +
124            W[(t - 7) % 16] +
125            SSIG0(W[(t - 15) % 16]) +
126            W[(t - 16) % 16];
127       W[t % 16] = Wt;
128     }
129 
130     uint64_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt;
131     uint64_t T2 = BSIG0(a) + MAJ(a, b, c);
132     h = g;
133     g = f;
134     f = e;
135     e = d + T1;
136     d = c;
137     c = b;
138     b = a;
139     a = T1 + T2;
140   }
141 
142   ctx->H[0] += a;
143   ctx->H[1] += b;
144   ctx->H[2] += c;
145   ctx->H[3] += d;
146   ctx->H[4] += e;
147   ctx->H[5] += f;
148   ctx->H[6] += g;
149   ctx->H[7] += h;
150 
151   ctx->blocks++;
152 }
153 
cf_sha512_update(cf_sha512_context * ctx,const void * data,size_t nbytes)154 void cf_sha512_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
155 {
156   cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
157                           data, nbytes,
158                           sha512_update_block, ctx);
159 }
160 
cf_sha384_update(cf_sha512_context * ctx,const void * data,size_t nbytes)161 void cf_sha384_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
162 {
163   cf_sha512_update(ctx, data, nbytes);
164 }
165 
cf_sha512_digest(const cf_sha512_context * ctx,uint8_t hash[CF_SHA512_HASHSZ])166 void cf_sha512_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
167 {
168   /* We copy the context, so the finalisation doesn't effect the caller's
169    * context.  This means the caller can do:
170    *
171    * x = init()
172    * x.update('hello')
173    * h1 = x.digest()
174    * x.update(' world')
175    * h2 = x.digest()
176    *
177    * to get h1 = H('hello') and h2 = H('hello world')
178    *
179    * This wouldn't work if we applied MD-padding to *ctx.
180    */
181 
182   cf_sha512_context ours = *ctx;
183   cf_sha512_digest_final(&ours, hash);
184 }
185 
cf_sha512_digest_final(cf_sha512_context * ctx,uint8_t hash[CF_SHA512_HASHSZ])186 void cf_sha512_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
187 {
188   uint64_t digested_bytes = ctx->blocks;
189   digested_bytes = digested_bytes * CF_SHA512_BLOCKSZ + ctx->npartial;
190   uint64_t digested_bits = digested_bytes * 8;
191 
192   size_t padbytes = CF_SHA512_BLOCKSZ - ((digested_bytes + 16) % CF_SHA512_BLOCKSZ);
193 
194   /* Hash 0x80 00 ... block first. */
195   cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
196                        0x80, 0x00, 0x00, padbytes,
197                        sha512_update_block, ctx);
198 
199   /* Now hash length (this is 128 bits long). */
200   uint8_t buf[8];
201   write64_be(0, buf);
202   cf_sha512_update(ctx, buf, 8);
203   write64_be(digested_bits, buf);
204   cf_sha512_update(ctx, buf, 8);
205 
206   /* We ought to have got our padding calculation right! */
207   assert(ctx->npartial == 0);
208 
209   write64_be(ctx->H[0], hash + 0);
210   write64_be(ctx->H[1], hash + 8);
211   write64_be(ctx->H[2], hash + 16);
212   write64_be(ctx->H[3], hash + 24);
213   write64_be(ctx->H[4], hash + 32);
214   write64_be(ctx->H[5], hash + 40);
215   write64_be(ctx->H[6], hash + 48);
216   write64_be(ctx->H[7], hash + 56);
217   memset(ctx, 0, sizeof *ctx);
218 }
219 
cf_sha384_digest(const cf_sha512_context * ctx,uint8_t hash[CF_SHA384_HASHSZ])220 void cf_sha384_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
221 {
222   uint8_t full[CF_SHA512_HASHSZ];
223   cf_sha512_digest(ctx, full);
224   memcpy(hash, full, CF_SHA384_HASHSZ);
225 }
226 
cf_sha384_digest_final(cf_sha512_context * ctx,uint8_t hash[CF_SHA384_HASHSZ])227 void cf_sha384_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
228 {
229   uint8_t full[CF_SHA512_HASHSZ];
230   cf_sha512_digest_final(ctx, full);
231   memcpy(hash, full, CF_SHA384_HASHSZ);
232 }
233 
234 const cf_chash cf_sha384 = {
235   .hashsz = CF_SHA384_HASHSZ,
236   .blocksz = CF_SHA384_BLOCKSZ,
237   .init = (cf_chash_init) cf_sha384_init,
238   .update = (cf_chash_update) cf_sha384_update,
239   .digest = (cf_chash_digest) cf_sha384_digest
240 };
241 
242 const cf_chash cf_sha512 = {
243   .hashsz = CF_SHA512_HASHSZ,
244   .blocksz = CF_SHA512_BLOCKSZ,
245   .init = (cf_chash_init) cf_sha512_init,
246   .update = (cf_chash_update) cf_sha512_update,
247   .digest = (cf_chash_digest) cf_sha512_digest
248 };
249 
250