1 /*
2    Unix SMB/Netbios implementation.
3    Version 1.9.
4    SMB Byte handling
5    Copyright (C) Andrew Tridgell 1992-1998
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 
22 #ifndef _BYTEORDER_H
23 #define _BYTEORDER_H
24 
25 /*
26    This file implements macros for machine independent short and
27    int manipulation
28 
29 Here is a description of this file that I emailed to the samba list once:
30 
31 > I am confused about the way that byteorder.h works in Samba. I have
32 > looked at it, and I would have thought that you might make a distinction
33 > between LE and BE machines, but you only seem to distinguish between 386
34 > and all other architectures.
35 >
36 > Can you give me a clue?
37 
38 sure.
39 
40 The distinction between 386 and other architectures is only there as
41 an optimisation. You can take it out completely and it will make no
42 difference. The routines (macros) in byteorder.h are totally byteorder
43 independent. The 386 optimsation just takes advantage of the fact that
44 the x86 processors don't care about alignment, so we don't have to
45 align ints on int boundaries etc. If there are other processors out
46 there that aren't alignment sensitive then you could also define
47 CAREFUL_ALIGNMENT=0 on those processors as well.
48 
49 Ok, now to the macros themselves. I'll take a simple example, say we
50 want to extract a 2 byte integer from a SMB packet and put it into a
51 type called uint16 that is in the local machines byte order, and you
52 want to do it with only the assumption that uint16 is _at_least_ 16
53 bits long (this last condition is very important for architectures
54 that don't have any int types that are 2 bytes long)
55 
56 You do this:
57 
58 #define CVAL(buf,pos) (((unsigned char *)(buf))[pos])
59 #define PVAL(buf,pos) ((unsigned)CVAL(buf,pos))
60 #define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
61 
62 then to extract a uint16 value at offset 25 in a buffer you do this:
63 
64 char *buffer = foo_bar();
65 uint16 xx = SVAL(buffer,25);
66 
67 We are using the byteoder independence of the ANSI C bitshifts to do
68 the work. A good optimising compiler should turn this into efficient
69 code, especially if it happens to have the right byteorder :-)
70 
71 I know these macros can be made a bit tidier by removing some of the
72 casts, but you need to look at byteorder.h as a whole to see the
73 reasoning behind them. byteorder.h defines the following macros:
74 
75 SVAL(buf,pos) - extract a 2 byte SMB value
76 IVAL(buf,pos) - extract a 4 byte SMB value
77 SVALS(buf,pos) signed version of SVAL()
78 IVALS(buf,pos) signed version of IVAL()
79 
80 SSVAL(buf,pos,val) - put a 2 byte SMB value into a buffer
81 SIVAL(buf,pos,val) - put a 4 byte SMB value into a buffer
82 SSVALS(buf,pos,val) - signed version of SSVAL()
83 SIVALS(buf,pos,val) - signed version of SIVAL()
84 
85 RSVAL(buf,pos) - like SVAL() but for NMB byte ordering
86 RSVALS(buf,pos) - like SVALS() but for NMB byte ordering
87 RIVAL(buf,pos) - like IVAL() but for NMB byte ordering
88 RIVALS(buf,pos) - like IVALS() but for NMB byte ordering
89 RSSVAL(buf,pos,val) - like SSVAL() but for NMB ordering
90 RSIVAL(buf,pos,val) - like SIVAL() but for NMB ordering
91 RSIVALS(buf,pos,val) - like SIVALS() but for NMB ordering
92 
93 it also defines lots of intermediate macros, just ignore those :-)
94 
95 */
96 
97 /* some switch macros that do both store and read to and from SMB buffers */
98 
99 #define RW_PCVAL(read,inbuf,outbuf,len) \
100 	{ if (read) { PCVAL (inbuf,0,outbuf,len); } \
101 	else      { PSCVAL(inbuf,0,outbuf,len); } }
102 
103 #define RW_PIVAL(read,big_endian,inbuf,outbuf,len) \
104 	{ if (read) { if (big_endian) { RPIVAL(inbuf,0,outbuf,len); } else { PIVAL(inbuf,0,outbuf,len); } } \
105 	else      { if (big_endian) { RPSIVAL(inbuf,0,outbuf,len); } else { PSIVAL(inbuf,0,outbuf,len); } } }
106 
107 #define RW_PSVAL(read,big_endian,inbuf,outbuf,len) \
108 	{ if (read) { if (big_endian) { RPSVAL(inbuf,0,outbuf,len); } else { PSVAL(inbuf,0,outbuf,len); } } \
109 	else      { if (big_endian) { RPSSVAL(inbuf,0,outbuf,len); } else { PSSVAL(inbuf,0,outbuf,len); } } }
110 
111 #define RW_CVAL(read, inbuf, outbuf, offset) \
112 	{ if (read) { (outbuf) = CVAL (inbuf,offset); } \
113 	else      { SCVAL(inbuf,offset,outbuf); } }
114 
115 #define RW_IVAL(read, big_endian, inbuf, outbuf, offset) \
116 	{ if (read) { (outbuf) = ((big_endian) ? RIVAL(inbuf,offset) : IVAL (inbuf,offset)); } \
117 	else      { if (big_endian) { RSIVAL(inbuf,offset,outbuf); } else { SIVAL(inbuf,offset,outbuf); } } }
118 
119 #define RW_SVAL(read, big_endian, inbuf, outbuf, offset) \
120 	{ if (read) { (outbuf) = ((big_endian) ? RSVAL(inbuf,offset) : SVAL (inbuf,offset)); } \
121 	else      { if (big_endian) { RSSVAL(inbuf,offset,outbuf); } else { SSVAL(inbuf,offset,outbuf); } } }
122 
123 #undef CAREFUL_ALIGNMENT
124 
125 /* we know that the 386 can handle misalignment and has the "right"
126    byteorder */
127 #ifdef __i386__
128 #define CAREFUL_ALIGNMENT 0
129 #endif
130 
131 #ifndef CAREFUL_ALIGNMENT
132 #define CAREFUL_ALIGNMENT 1
133 #endif
134 
135 #define CVAL(buf,pos) (((unsigned char *)(buf))[pos])
136 #define PVAL(buf,pos) ((unsigned)CVAL(buf,pos))
137 #define SCVAL(buf,pos,val) (CVAL(buf,pos) = (val))
138 
139 
140 #if CAREFUL_ALIGNMENT
141 
142 #define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
143 #define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
144 #define SSVALX(buf,pos,val) (CVAL(buf,pos)=(val)&0xFF,CVAL(buf,pos+1)=(val)>>8)
145 #define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
146 #define SVALS(buf,pos) ((int16)SVAL(buf,pos))
147 #define IVALS(buf,pos) ((int32)IVAL(buf,pos))
148 #define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16)(val)))
149 #define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32)(val)))
150 #define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16)(val)))
151 #define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32)(val)))
152 
153 #else /* CAREFUL_ALIGNMENT */
154 
155 /* this handles things for architectures like the 386 that can handle
156    alignment errors */
157 /*
158    WARNING: This section is dependent on the length of int16 and int32
159    being correct
160 */
161 
162 /* get single value from an SMB buffer */
163 #define SVAL(buf,pos) (*(uint16 *)((char *)(buf) + (pos)))
164 #define IVAL(buf,pos) (*(uint32 *)((char *)(buf) + (pos)))
165 #define SVALS(buf,pos) (*(int16 *)((char *)(buf) + (pos)))
166 #define IVALS(buf,pos) (*(int32 *)((char *)(buf) + (pos)))
167 
168 /* store single value in an SMB buffer */
169 #define SSVAL(buf,pos,val) SVAL(buf,pos)=((uint16)(val))
170 #define SIVAL(buf,pos,val) IVAL(buf,pos)=((uint32)(val))
171 #define SSVALS(buf,pos,val) SVALS(buf,pos)=((int16)(val))
172 #define SIVALS(buf,pos,val) IVALS(buf,pos)=((int32)(val))
173 
174 #endif /* CAREFUL_ALIGNMENT */
175 
176 /* macros for reading / writing arrays */
177 
178 #define SMBMACRO(macro,buf,pos,val,len,size) \
179 { int l; for (l = 0; l < (len); l++) (val)[l] = macro((buf), (pos) + (size)*l); }
180 
181 #define SSMBMACRO(macro,buf,pos,val,len,size) \
182 { int l; for (l = 0; l < (len); l++) macro((buf), (pos) + (size)*l, (val)[l]); }
183 
184 /* reads multiple data from an SMB buffer */
185 #define PCVAL(buf,pos,val,len) SMBMACRO(CVAL,buf,pos,val,len,1)
186 #define PSVAL(buf,pos,val,len) SMBMACRO(SVAL,buf,pos,val,len,2)
187 #define PIVAL(buf,pos,val,len) SMBMACRO(IVAL,buf,pos,val,len,4)
188 #define PCVALS(buf,pos,val,len) SMBMACRO(CVALS,buf,pos,val,len,1)
189 #define PSVALS(buf,pos,val,len) SMBMACRO(SVALS,buf,pos,val,len,2)
190 #define PIVALS(buf,pos,val,len) SMBMACRO(IVALS,buf,pos,val,len,4)
191 
192 /* stores multiple data in an SMB buffer */
193 #define PSCVAL(buf,pos,val,len) SSMBMACRO(SCVAL,buf,pos,val,len,1)
194 #define PSSVAL(buf,pos,val,len) SSMBMACRO(SSVAL,buf,pos,val,len,2)
195 #define PSIVAL(buf,pos,val,len) SSMBMACRO(SIVAL,buf,pos,val,len,4)
196 #define PSCVALS(buf,pos,val,len) SSMBMACRO(SCVALS,buf,pos,val,len,1)
197 #define PSSVALS(buf,pos,val,len) SSMBMACRO(SSVALS,buf,pos,val,len,2)
198 #define PSIVALS(buf,pos,val,len) SSMBMACRO(SIVALS,buf,pos,val,len,4)
199 
200 
201 /* now the reverse routines - these are used in nmb packets (mostly) */
202 #define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
203 #define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
204 
205 #define RSVAL(buf,pos) SREV(SVAL(buf,pos))
206 #define RSVALS(buf,pos) SREV(SVALS(buf,pos))
207 #define RIVAL(buf,pos) IREV(IVAL(buf,pos))
208 #define RIVALS(buf,pos) IREV(IVALS(buf,pos))
209 #define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
210 #define RSSVALS(buf,pos,val) SSVALS(buf,pos,SREV(val))
211 #define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
212 #define RSIVALS(buf,pos,val) SIVALS(buf,pos,IREV(val))
213 
214 /* reads multiple data from an SMB buffer (big-endian) */
215 #define RPSVAL(buf,pos,val,len) SMBMACRO(RSVAL,buf,pos,val,len,2)
216 #define RPIVAL(buf,pos,val,len) SMBMACRO(RIVAL,buf,pos,val,len,4)
217 #define RPSVALS(buf,pos,val,len) SMBMACRO(RSVALS,buf,pos,val,len,2)
218 #define RPIVALS(buf,pos,val,len) SMBMACRO(RIVALS,buf,pos,val,len,4)
219 
220 /* stores multiple data in an SMB buffer (big-endian) */
221 #define RPSSVAL(buf,pos,val,len) SSMBMACRO(RSSVAL,buf,pos,val,len,2)
222 #define RPSIVAL(buf,pos,val,len) SSMBMACRO(RSIVAL,buf,pos,val,len,4)
223 #define RPSSVALS(buf,pos,val,len) SSMBMACRO(RSSVALS,buf,pos,val,len,2)
224 #define RPSIVALS(buf,pos,val,len) SSMBMACRO(RSIVALS,buf,pos,val,len,4)
225 
226 #define DBG_RW_PCVAL(charmode,string,depth,base,read,inbuf,outbuf,len) \
227 	{ RW_PCVAL(read,inbuf,outbuf,len) \
228 	DEBUG(5,("%s%04x %s: ", \
229              tab_depth(depth), base,string)); \
230     if (charmode) print_asc(5, (unsigned char*)(outbuf), (len)); else \
231 	{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%02x ", (outbuf)[idx])); } } \
232 	DEBUG(5,("\n")); }
233 
234 #define DBG_RW_PSVAL(charmode,string,depth,base,read,big_endian,inbuf,outbuf,len) \
235 	{ RW_PSVAL(read,big_endian,inbuf,outbuf,len) \
236 	DEBUG(5,("%s%04x %s: ", \
237              tab_depth(depth), base,string)); \
238     if (charmode) print_asc(5, (unsigned char*)(outbuf), 2*(len)); else \
239 	{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%04x ", (outbuf)[idx])); } } \
240 	DEBUG(5,("\n")); }
241 
242 #define DBG_RW_PIVAL(charmode,string,depth,base,read,big_endian,inbuf,outbuf,len) \
243 	{ RW_PIVAL(read,big_endian,inbuf,outbuf,len) \
244 	DEBUG(5,("%s%04x %s: ", \
245              tab_depth(depth), base,string)); \
246     if (charmode) print_asc(5, (unsigned char*)(outbuf), 4*(len)); else \
247 	{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%08x ", (outbuf)[idx])); } } \
248 	DEBUG(5,("\n")); }
249 
250 #define DBG_RW_CVAL(string,depth,base,read,inbuf,outbuf) \
251 	{ RW_CVAL(read,inbuf,outbuf,0) \
252 	DEBUG(5,("%s%04x %s: %02x\n", \
253              tab_depth(depth), base, string, outbuf)); }
254 
255 #define DBG_RW_SVAL(string,depth,base,read,big_endian,inbuf,outbuf) \
256 	{ RW_SVAL(read,big_endian,inbuf,outbuf,0) \
257 	DEBUG(5,("%s%04x %s: %04x\n", \
258              tab_depth(depth), base, string, outbuf)); }
259 
260 #define DBG_RW_IVAL(string,depth,base,read,big_endian,inbuf,outbuf) \
261 	{ RW_IVAL(read,big_endian,inbuf,outbuf,0) \
262 	DEBUG(5,("%s%04x %s: %08x\n", \
263              tab_depth(depth), base, string, outbuf)); }
264 
265 #endif /* _BYTEORDER_H */
266