1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
7 
8 #include <stdint.h>
9 
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/boxed-float.h"
13 #include "src/globals.h"
14 
15 // ARM EABI is required.
16 #if defined(__arm__) && !defined(__ARM_EABI__)
17 #error ARM EABI support is required.
18 #endif
19 
20 namespace v8 {
21 namespace internal {
22 
23 // Constant pool marker.
24 // Use UDF, the permanently undefined instruction.
25 const int kConstantPoolMarkerMask = 0xfff000f0;
26 const int kConstantPoolMarker = 0xe7f000f0;
27 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)28 inline int EncodeConstantPoolLength(int length) {
29   DCHECK((length & kConstantPoolLengthMaxMask) == length);
30   return ((length & 0xfff0) << 4) | (length & 0xf);
31 }
DecodeConstantPoolLength(int instr)32 inline int DecodeConstantPoolLength(int instr) {
33   DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
34   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
35 }
36 
37 // Number of registers in normal ARM mode.
38 const int kNumRegisters = 16;
39 
40 // VFP support.
41 const int kNumVFPSingleRegisters = 32;
42 const int kNumVFPDoubleRegisters = 32;
43 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
44 
45 // PC is register 15.
46 const int kPCRegister = 15;
47 const int kNoRegister = -1;
48 
49 // Used in embedded constant pool builder - max reach in bits for
50 // various load instructions (unsigned)
51 const int kLdrMaxReachBits = 12;
52 const int kVldrMaxReachBits = 10;
53 
54 // -----------------------------------------------------------------------------
55 // Conditions.
56 
57 // Defines constants and accessor classes to assemble, disassemble and
58 // simulate ARM instructions.
59 //
60 // Section references in the code refer to the "ARM Architecture Reference
61 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
62 //
63 // Constants for specific fields are defined in their respective named enums.
64 // General constants are in an anonymous enum in class Instr.
65 
66 // Values for the condition field as defined in section A3.2
67 enum Condition {
68   kNoCondition = -1,
69 
70   eq =  0 << 28,                 // Z set            Equal.
71   ne =  1 << 28,                 // Z clear          Not equal.
72   cs =  2 << 28,                 // C set            Unsigned higher or same.
73   cc =  3 << 28,                 // C clear          Unsigned lower.
74   mi =  4 << 28,                 // N set            Negative.
75   pl =  5 << 28,                 // N clear          Positive or zero.
76   vs =  6 << 28,                 // V set            Overflow.
77   vc =  7 << 28,                 // V clear          No overflow.
78   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
79   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
80   ge = 10 << 28,                 // N == V           Greater or equal.
81   lt = 11 << 28,                 // N != V           Less than.
82   gt = 12 << 28,                 // Z clear, N == V  Greater than.
83   le = 13 << 28,                 // Z set or N != V  Less then or equal
84   al = 14 << 28,                 //                  Always.
85 
86   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
87   kNumberOfConditions = 16,
88 
89   // Aliases.
90   hs = cs,                       // C set            Unsigned higher or same.
91   lo = cc                        // C clear          Unsigned lower.
92 };
93 
94 
NegateCondition(Condition cond)95 inline Condition NegateCondition(Condition cond) {
96   DCHECK(cond != al);
97   return static_cast<Condition>(cond ^ ne);
98 }
99 
100 
101 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cond)102 inline Condition CommuteCondition(Condition cond) {
103   switch (cond) {
104     case lo:
105       return hi;
106     case hi:
107       return lo;
108     case hs:
109       return ls;
110     case ls:
111       return hs;
112     case lt:
113       return gt;
114     case gt:
115       return lt;
116     case ge:
117       return le;
118     case le:
119       return ge;
120     default:
121       return cond;
122   }
123 }
124 
125 
126 // -----------------------------------------------------------------------------
127 // Instructions encoding.
128 
129 // Instr is merely used by the Assembler to distinguish 32bit integers
130 // representing instructions from usual 32 bit values.
131 // Instruction objects are pointers to 32bit values, and provide methods to
132 // access the various ISA fields.
133 typedef int32_t Instr;
134 
135 
136 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
137 // as defined in section A3.4
138 enum Opcode {
139   AND =  0 << 21,  // Logical AND.
140   EOR =  1 << 21,  // Logical Exclusive OR.
141   SUB =  2 << 21,  // Subtract.
142   RSB =  3 << 21,  // Reverse Subtract.
143   ADD =  4 << 21,  // Add.
144   ADC =  5 << 21,  // Add with Carry.
145   SBC =  6 << 21,  // Subtract with Carry.
146   RSC =  7 << 21,  // Reverse Subtract with Carry.
147   TST =  8 << 21,  // Test.
148   TEQ =  9 << 21,  // Test Equivalence.
149   CMP = 10 << 21,  // Compare.
150   CMN = 11 << 21,  // Compare Negated.
151   ORR = 12 << 21,  // Logical (inclusive) OR.
152   MOV = 13 << 21,  // Move.
153   BIC = 14 << 21,  // Bit Clear.
154   MVN = 15 << 21   // Move Not.
155 };
156 
157 
158 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
159 enum MiscInstructionsBits74 {
160   // With bits 22-21 01.
161   BX   =  1 << 4,
162   BXJ  =  2 << 4,
163   BLX  =  3 << 4,
164   BKPT =  7 << 4,
165 
166   // With bits 22-21 11.
167   CLZ  =  1 << 4
168 };
169 
170 
171 // Instruction encoding bits and masks.
172 enum {
173   H = 1 << 5,   // Halfword (or byte).
174   S6 = 1 << 6,  // Signed (or unsigned).
175   L = 1 << 20,  // Load (or store).
176   S = 1 << 20,  // Set condition code (or leave unchanged).
177   W = 1 << 21,  // Writeback base register (or leave unchanged).
178   A = 1 << 21,  // Accumulate in multiply instruction (or not).
179   B = 1 << 22,  // Unsigned byte (or word).
180   N = 1 << 22,  // Long (or short).
181   U = 1 << 23,  // Positive (or negative) offset/index.
182   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
183   I = 1 << 25,  // Immediate shifter operand (or not).
184   B0 = 1 << 0,
185   B4 = 1 << 4,
186   B5 = 1 << 5,
187   B6 = 1 << 6,
188   B7 = 1 << 7,
189   B8 = 1 << 8,
190   B9 = 1 << 9,
191   B10 = 1 << 10,
192   B12 = 1 << 12,
193   B16 = 1 << 16,
194   B17 = 1 << 17,
195   B18 = 1 << 18,
196   B19 = 1 << 19,
197   B20 = 1 << 20,
198   B21 = 1 << 21,
199   B22 = 1 << 22,
200   B23 = 1 << 23,
201   B24 = 1 << 24,
202   B25 = 1 << 25,
203   B26 = 1 << 26,
204   B27 = 1 << 27,
205   B28 = 1 << 28,
206 
207   // Instruction bit masks.
208   kCondMask = 15 << 28,
209   kALUMask = 0x6f << 21,
210   kRdMask = 15 << 12,  // In str instruction.
211   kCoprocessorMask = 15 << 8,
212   kOpCodeMask = 15 << 21,  // In data-processing instructions.
213   kImm24Mask = (1 << 24) - 1,
214   kImm16Mask = (1 << 16) - 1,
215   kImm8Mask = (1 << 8) - 1,
216   kOff12Mask = (1 << 12) - 1,
217   kOff8Mask = (1 << 8) - 1
218 };
219 
220 enum BarrierOption {
221   OSHLD = 0x1,
222   OSHST = 0x2,
223   OSH = 0x3,
224   NSHLD = 0x5,
225   NSHST = 0x6,
226   NSH = 0x7,
227   ISHLD = 0x9,
228   ISHST = 0xa,
229   ISH = 0xb,
230   LD = 0xd,
231   ST = 0xe,
232   SY = 0xf,
233 };
234 
235 
236 // -----------------------------------------------------------------------------
237 // Addressing modes and instruction variants.
238 
239 // Condition code updating mode.
240 enum SBit {
241   SetCC   = 1 << 20,  // Set condition code.
242   LeaveCC = 0 << 20   // Leave condition code unchanged.
243 };
244 
245 
246 // Status register selection.
247 enum SRegister {
248   CPSR = 0 << 22,
249   SPSR = 1 << 22
250 };
251 
252 
253 // Shifter types for Data-processing operands as defined in section A5.1.2.
254 enum ShiftOp {
255   LSL = 0 << 5,   // Logical shift left.
256   LSR = 1 << 5,   // Logical shift right.
257   ASR = 2 << 5,   // Arithmetic shift right.
258   ROR = 3 << 5,   // Rotate right.
259 
260   // RRX is encoded as ROR with shift_imm == 0.
261   // Use a special code to make the distinction. The RRX ShiftOp is only used
262   // as an argument, and will never actually be encoded. The Assembler will
263   // detect it and emit the correct ROR shift operand with shift_imm == 0.
264   RRX = -1,
265   kNumberOfShifts = 4
266 };
267 
268 
269 // Status register fields.
270 enum SRegisterField {
271   CPSR_c = CPSR | 1 << 16,
272   CPSR_x = CPSR | 1 << 17,
273   CPSR_s = CPSR | 1 << 18,
274   CPSR_f = CPSR | 1 << 19,
275   SPSR_c = SPSR | 1 << 16,
276   SPSR_x = SPSR | 1 << 17,
277   SPSR_s = SPSR | 1 << 18,
278   SPSR_f = SPSR | 1 << 19
279 };
280 
281 // Status register field mask (or'ed SRegisterField enum values).
282 typedef uint32_t SRegisterFieldMask;
283 
284 
285 // Memory operand addressing mode.
286 enum AddrMode {
287   // Bit encoding P U W.
288   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
289   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
290   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
291   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
292   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
293   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
294 };
295 
296 
297 // Load/store multiple addressing mode.
298 enum BlockAddrMode {
299   // Bit encoding P U W .
300   da           = (0|0|0) << 21,  // Decrement after.
301   ia           = (0|4|0) << 21,  // Increment after.
302   db           = (8|0|0) << 21,  // Decrement before.
303   ib           = (8|4|0) << 21,  // Increment before.
304   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
305   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
306   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
307   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
308 
309   // Alias modes for comparison when writeback does not matter.
310   da_x         = (0|0|0) << 21,  // Decrement after.
311   ia_x         = (0|4|0) << 21,  // Increment after.
312   db_x         = (8|0|0) << 21,  // Decrement before.
313   ib_x         = (8|4|0) << 21,  // Increment before.
314 
315   kBlockAddrModeMask = (8|4|1) << 21
316 };
317 
318 
319 // Coprocessor load/store operand size.
320 enum LFlag {
321   Long  = 1 << 22,  // Long load/store coprocessor.
322   Short = 0 << 22   // Short load/store coprocessor.
323 };
324 
325 // Neon sizes.
326 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
327 
328 // NEON data type
329 enum NeonDataType {
330   NeonS8 = 0,
331   NeonS16 = 1,
332   NeonS32 = 2,
333   // Gap to make it easier to extract U and size.
334   NeonU8 = 4,
335   NeonU16 = 5,
336   NeonU32 = 6
337 };
338 
NeonU(NeonDataType dt)339 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
NeonSz(NeonDataType dt)340 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
341 
342 // Convert sizes to data types (U bit is clear).
NeonSizeToDataType(NeonSize size)343 inline NeonDataType NeonSizeToDataType(NeonSize size) {
344   DCHECK_NE(Neon64, size);
345   return static_cast<NeonDataType>(size);
346 }
347 
NeonDataTypeToSize(NeonDataType dt)348 inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
349   return static_cast<NeonSize>(NeonSz(dt));
350 }
351 
352 enum NeonListType {
353   nlt_1 = 0x7,
354   nlt_2 = 0xA,
355   nlt_3 = 0x6,
356   nlt_4 = 0x2
357 };
358 
359 // -----------------------------------------------------------------------------
360 // Supervisor Call (svc) specific support.
361 
362 // Special Software Interrupt codes when used in the presence of the ARM
363 // simulator.
364 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
365 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
366 enum SoftwareInterruptCodes {
367   // transition to C code
368   kCallRtRedirected = 0x10,
369   // break point
370   kBreakpoint = 0x20,
371   // stop
372   kStopCode = 1 << 23
373 };
374 const uint32_t kStopCodeMask = kStopCode - 1;
375 const uint32_t kMaxStopCode = kStopCode - 1;
376 const int32_t  kDefaultStopCode = -1;
377 
378 
379 // Type of VFP register. Determines register encoding.
380 enum VFPRegPrecision {
381   kSinglePrecision = 0,
382   kDoublePrecision = 1,
383   kSimd128Precision = 2
384 };
385 
386 // VFP FPSCR constants.
387 enum VFPConversionMode {
388   kFPSCRRounding = 0,
389   kDefaultRoundToZero = 1
390 };
391 
392 // This mask does not include the "inexact" or "input denormal" cumulative
393 // exceptions flags, because we usually don't want to check for it.
394 const uint32_t kVFPExceptionMask = 0xf;
395 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
396 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
397 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
398 const uint32_t kVFPInexactExceptionBit = 1 << 4;
399 const uint32_t kVFPFlushToZeroMask = 1 << 24;
400 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
401 
402 const uint32_t kVFPNConditionFlagBit = 1 << 31;
403 const uint32_t kVFPZConditionFlagBit = 1 << 30;
404 const uint32_t kVFPCConditionFlagBit = 1 << 29;
405 const uint32_t kVFPVConditionFlagBit = 1 << 28;
406 
407 
408 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
409 enum VFPRoundingMode {
410   RN = 0 << 22,   // Round to Nearest.
411   RP = 1 << 22,   // Round towards Plus Infinity.
412   RM = 2 << 22,   // Round towards Minus Infinity.
413   RZ = 3 << 22,   // Round towards zero.
414 
415   // Aliases.
416   kRoundToNearest = RN,
417   kRoundToPlusInf = RP,
418   kRoundToMinusInf = RM,
419   kRoundToZero = RZ
420 };
421 
422 const uint32_t kVFPRoundingModeMask = 3 << 22;
423 
424 enum CheckForInexactConversion {
425   kCheckForInexactConversion,
426   kDontCheckForInexactConversion
427 };
428 
429 // -----------------------------------------------------------------------------
430 // Hints.
431 
432 // Branch hints are not used on the ARM.  They are defined so that they can
433 // appear in shared function signatures, but will be ignored in ARM
434 // implementations.
435 enum Hint { no_hint };
436 
437 // Hints are not used on the arm.  Negating is trivial.
NegateHint(Hint ignored)438 inline Hint NegateHint(Hint ignored) { return no_hint; }
439 
440 
441 // -----------------------------------------------------------------------------
442 // Instruction abstraction.
443 
444 // The class Instruction enables access to individual fields defined in the ARM
445 // architecture instruction set encoding as described in figure A3-1.
446 // Note that the Assembler uses typedef int32_t Instr.
447 //
448 // Example: Test whether the instruction at ptr does set the condition code
449 // bits.
450 //
451 // bool InstructionSetsConditionCodes(byte* ptr) {
452 //   Instruction* instr = Instruction::At(ptr);
453 //   int type = instr->TypeValue();
454 //   return ((type == 0) || (type == 1)) && instr->HasS();
455 // }
456 //
457 class Instruction {
458  public:
459   enum {
460     kInstrSize = 4,
461     kInstrSizeLog2 = 2,
462     kPCReadOffset = 8
463   };
464 
465   // Helper macro to define static accessors.
466   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
467   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
468     static inline return_type Name(Instr instr) {                              \
469       char* temp = reinterpret_cast<char*>(&instr);                            \
470       return reinterpret_cast<Instruction*>(temp)->Name();                     \
471     }
472 
473   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
474 
475   // Get the raw instruction bits.
InstructionBits()476   inline Instr InstructionBits() const {
477     return *reinterpret_cast<const Instr*>(this);
478   }
479 
480   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)481   inline void SetInstructionBits(Instr value) {
482     *reinterpret_cast<Instr*>(this) = value;
483   }
484 
485   // Extract a single bit from the instruction bits and return it as bit 0 in
486   // the result.
Bit(int nr)487   inline int Bit(int nr) const {
488     return (InstructionBits() >> nr) & 1;
489   }
490 
491   // Extract a bit field <hi:lo> from the instruction bits and return it in the
492   // least-significant bits of the result.
Bits(int hi,int lo)493   inline int Bits(int hi, int lo) const {
494     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
495   }
496 
497   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)498   inline int BitField(int hi, int lo) const {
499     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
500   }
501 
502   // Static support.
503 
504   // Extract a single bit from the instruction bits and return it as bit 0 in
505   // the result.
Bit(Instr instr,int nr)506   static inline int Bit(Instr instr, int nr) {
507     return (instr >> nr) & 1;
508   }
509 
510   // Extract a bit field <hi:lo> from the instruction bits and return it in the
511   // least-significant bits of the result.
Bits(Instr instr,int hi,int lo)512   static inline int Bits(Instr instr, int hi, int lo) {
513     return (instr >> lo) & ((2 << (hi - lo)) - 1);
514   }
515 
516   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(Instr instr,int hi,int lo)517   static inline int BitField(Instr instr, int hi, int lo) {
518     return instr & (((2 << (hi - lo)) - 1) << lo);
519   }
520 
521   // Accessors for the different named fields used in the ARM encoding.
522   // The naming of these accessor corresponds to figure A3-1.
523   //
524   // Two kind of accessors are declared:
525   // - <Name>Field() will return the raw field, i.e. the field's bits at their
526   //   original place in the instruction encoding.
527   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
528   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
529   // - <Name>Value() will return the field value, shifted back to bit 0.
530   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
531   //   0xC0810002 ConditionField(instr) will return 0xC.
532 
533 
534   // Generally applicable fields
ConditionValue()535   inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()536   inline Condition ConditionField() const {
537     return static_cast<Condition>(BitField(31, 28));
538   }
539   DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
540   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
541 
TypeValue()542   inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()543   inline int SpecialValue() const { return Bits(27, 23); }
544 
RnValue()545   inline int RnValue() const { return Bits(19, 16); }
546   DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()547   inline int RdValue() const { return Bits(15, 12); }
548   DECLARE_STATIC_ACCESSOR(RdValue);
549 
CoprocessorValue()550   inline int CoprocessorValue() const { return Bits(11, 8); }
551   // Support for VFP.
552   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
VnValue()553   inline int VnValue() const { return Bits(19, 16); }
VmValue()554   inline int VmValue() const { return Bits(3, 0); }
VdValue()555   inline int VdValue() const { return Bits(15, 12); }
NValue()556   inline int NValue() const { return Bit(7); }
MValue()557   inline int MValue() const { return Bit(5); }
DValue()558   inline int DValue() const { return Bit(22); }
RtValue()559   inline int RtValue() const { return Bits(15, 12); }
PValue()560   inline int PValue() const { return Bit(24); }
UValue()561   inline int UValue() const { return Bit(23); }
Opc1Value()562   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()563   inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()564   inline int Opc3Value() const { return Bits(7, 6); }
SzValue()565   inline int SzValue() const { return Bit(8); }
VLValue()566   inline int VLValue() const { return Bit(20); }
VCValue()567   inline int VCValue() const { return Bit(8); }
VAValue()568   inline int VAValue() const { return Bits(23, 21); }
VBValue()569   inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)570   inline int VFPNRegValue(VFPRegPrecision pre) {
571     return VFPGlueRegValue(pre, 16, 7);
572   }
VFPMRegValue(VFPRegPrecision pre)573   inline int VFPMRegValue(VFPRegPrecision pre) {
574     return VFPGlueRegValue(pre, 0, 5);
575   }
VFPDRegValue(VFPRegPrecision pre)576   inline int VFPDRegValue(VFPRegPrecision pre) {
577     return VFPGlueRegValue(pre, 12, 22);
578   }
579 
580   // Fields used in Data processing instructions
OpcodeValue()581   inline int OpcodeValue() const {
582     return static_cast<Opcode>(Bits(24, 21));
583   }
OpcodeField()584   inline Opcode OpcodeField() const {
585     return static_cast<Opcode>(BitField(24, 21));
586   }
SValue()587   inline int SValue() const { return Bit(20); }
588     // with register
RmValue()589   inline int RmValue() const { return Bits(3, 0); }
590   DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()591   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()592   inline ShiftOp ShiftField() const {
593     return static_cast<ShiftOp>(BitField(6, 5));
594   }
RegShiftValue()595   inline int RegShiftValue() const { return Bit(4); }
RsValue()596   inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()597   inline int ShiftAmountValue() const { return Bits(11, 7); }
598     // with immediate
RotateValue()599   inline int RotateValue() const { return Bits(11, 8); }
600   DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()601   inline int Immed8Value() const { return Bits(7, 0); }
602   DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()603   inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()604   inline int ImmedMovwMovtValue() const {
605       return Immed4Value() << 12 | Offset12Value(); }
606   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
607 
608   // Fields used in Load/Store instructions
PUValue()609   inline int PUValue() const { return Bits(24, 23); }
PUField()610   inline int PUField() const { return BitField(24, 23); }
BValue()611   inline int  BValue() const { return Bit(22); }
WValue()612   inline int  WValue() const { return Bit(21); }
LValue()613   inline int  LValue() const { return Bit(20); }
614     // with register uses same fields as Data processing instructions above
615     // with immediate
Offset12Value()616   inline int Offset12Value() const { return Bits(11, 0); }
617     // multiple
RlistValue()618   inline int RlistValue() const { return Bits(15, 0); }
619     // extra loads and stores
SignValue()620   inline int SignValue() const { return Bit(6); }
HValue()621   inline int HValue() const { return Bit(5); }
ImmedHValue()622   inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()623   inline int ImmedLValue() const { return Bits(3, 0); }
624 
625   // Fields used in Branch instructions
LinkValue()626   inline int LinkValue() const { return Bit(24); }
SImmed24Value()627   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
628 
629   // Fields used in Software interrupt instructions
SvcValue()630   inline SoftwareInterruptCodes SvcValue() const {
631     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
632   }
633 
634   // Test for special encodings of type 0 instructions (extra loads and stores,
635   // as well as multiplications).
IsSpecialType0()636   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
637 
638   // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()639   inline bool IsMiscType0() const { return (Bit(24) == 1)
640                                            && (Bit(23) == 0)
641                                            && (Bit(20) == 0)
642                                            && ((Bit(7) == 0)); }
643 
644   // Test for nop-like instructions which fall under type 1.
IsNopLikeType1()645   inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
646 
647   // Test for a stop instruction.
IsStop()648   inline bool IsStop() const {
649     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
650   }
651 
652   // Special accessors that test for existence of a value.
HasS()653   inline bool HasS()    const { return SValue() == 1; }
HasB()654   inline bool HasB()    const { return BValue() == 1; }
HasW()655   inline bool HasW()    const { return WValue() == 1; }
HasL()656   inline bool HasL()    const { return LValue() == 1; }
HasU()657   inline bool HasU()    const { return UValue() == 1; }
HasSign()658   inline bool HasSign() const { return SignValue() == 1; }
HasH()659   inline bool HasH()    const { return HValue() == 1; }
HasLink()660   inline bool HasLink() const { return LinkValue() == 1; }
661 
662   // Decode the double immediate from a vmov instruction.
663   Float64 DoubleImmedVmov() const;
664 
665   // Instructions are read of out a code stream. The only way to get a
666   // reference to an instruction is to convert a pointer. There is no way
667   // to allocate or create instances of class Instruction.
668   // Use the At(pc) function to create references to Instruction.
At(Address pc)669   static Instruction* At(Address pc) {
670     return reinterpret_cast<Instruction*>(pc);
671   }
672 
673 
674  private:
675   // Join split register codes, depending on register precision.
676   // four_bit is the position of the least-significant bit of the four
677   // bit specifier. one_bit is the position of the additional single bit
678   // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)679   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
680     if (pre == kSinglePrecision) {
681       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
682     } else {
683       int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
684       if (pre == kDoublePrecision) {
685         return reg_num;
686       }
687       DCHECK_EQ(kSimd128Precision, pre);
688       DCHECK_EQ(reg_num & 1, 0);
689       return reg_num / 2;
690     }
691   }
692 
693   // We need to prevent the creation of instances of class Instruction.
694   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
695 };
696 
697 
698 // Helper functions for converting between register numbers and names.
699 class Registers {
700  public:
701   // Return the name of the register.
702   static const char* Name(int reg);
703 
704   // Lookup the register number for the name provided.
705   static int Number(const char* name);
706 
707   struct RegisterAlias {
708     int reg;
709     const char* name;
710   };
711 
712  private:
713   static const char* names_[kNumRegisters];
714   static const RegisterAlias aliases_[];
715 };
716 
717 // Helper functions for converting between VFP register numbers and names.
718 class VFPRegisters {
719  public:
720   // Return the name of the register.
721   static const char* Name(int reg, bool is_double);
722 
723   // Lookup the register number for the name provided.
724   // Set flag pointed by is_double to true if register
725   // is double-precision.
726   static int Number(const char* name, bool* is_double);
727 
728  private:
729   static const char* names_[kNumVFPRegisters];
730 };
731 
732 
733 }  // namespace internal
734 }  // namespace v8
735 
736 #endif  // V8_ARM_CONSTANTS_ARM_H_
737