1 /* Copyright 2016 Brian Smith.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/bn.h>
16 
17 #include <assert.h>
18 
19 #include "internal.h"
20 #include "../../internal.h"
21 
22 
23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
24 
25 OPENSSL_STATIC_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
26                       "BN_MONT_CTX_N0_LIMBS value is invalid");
27 OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS ==
28                           sizeof(uint64_t),
29                       "uint64_t is insufficient precision for n0");
30 
31 // LG_LITTLE_R is log_2(r).
32 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
33 
bn_mont_n0(const BIGNUM * n)34 uint64_t bn_mont_n0(const BIGNUM *n) {
35   // These conditions are checked by the caller, |BN_MONT_CTX_set| or
36   // |BN_MONT_CTX_new_consttime|.
37   assert(!BN_is_zero(n));
38   assert(!BN_is_negative(n));
39   assert(BN_is_odd(n));
40 
41   // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
42   // ensures that we can do integer division by |r| by simply ignoring
43   // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
44   // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
45   // what makes Montgomery multiplication efficient.
46   //
47   // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
48   // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
49   // multi-limb Montgomery multiplication of |a * b (mod n)|, given the
50   // unreduced product |t == a * b|, we repeatedly calculate:
51   //
52   //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
53   //    t2 := t1*n0*n
54   //    t3 := t + t2
55   //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
56   //
57   // In the last step, it would only make sense to ignore the lowest limb of
58   // |t3| if it were zero. The middle steps ensure that this is the case:
59   //
60   //                            t3 ==  0 (mod r)
61   //                        t + t2 ==  0 (mod r)
62   //                   t + t1*n0*n ==  0 (mod r)
63   //                       t1*n0*n == -t (mod r)
64   //                        t*n0*n == -t (mod r)
65   //                          n0*n == -1 (mod r)
66   //                            n0 == -1/n (mod r)
67   //
68   // Thus, in each iteration of the loop, we multiply by the constant factor
69   // |n0|, the negative inverse of n (mod r).
70 
71   // n_mod_r = n % r. As explained above, this is done by taking the lowest
72   // |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
73   uint64_t n_mod_r = n->d[0];
74 #if BN_MONT_CTX_N0_LIMBS == 2
75   if (n->width > 1) {
76     n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
77   }
78 #endif
79 
80   return bn_neg_inv_mod_r_u64(n_mod_r);
81 }
82 
83 // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
84 // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
85 // must be odd.
86 //
87 // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
88 // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
89 // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
90 // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
91 // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
92 //
93 // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
94 // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
95 // constant-time with respect to |n|. We assume uint64_t additions,
96 // subtractions, shifts, and bitwise operations are all constant time, which
97 // may be a large leap of faith on 32-bit targets. We avoid division and
98 // multiplication, which tend to be the most problematic in terms of timing
99 // leaks.
100 //
101 // Most GCD implementations return values such that |u*r + v*n == 1|, so the
102 // caller would have to negate the resultant |v| for the purpose of Montgomery
103 // multiplication. This implementation does the negation implicitly by doing
104 // the computations as a difference instead of a sum.
bn_neg_inv_mod_r_u64(uint64_t n)105 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
106   assert(n % 2 == 1);
107 
108   // alpha == 2**(lg r - 1) == r / 2.
109   static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
110 
111   const uint64_t beta = n;
112 
113   uint64_t u = 1;
114   uint64_t v = 0;
115 
116   // The invariant maintained from here on is:
117   // 2**(lg r - i) == u*2*alpha - v*beta.
118   for (size_t i = 0; i < LG_LITTLE_R; ++i) {
119 #if BN_BITS2 == 64 && defined(BN_ULLONG)
120     assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
121            ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
122 #endif
123 
124     // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
125     // |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
126 
127     uint64_t u_is_odd = UINT64_C(0) - (u & 1);  // Either 0xff..ff or 0.
128 
129     // The addition can overflow, so use Dietz's method for it.
130     //
131     // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
132     // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
133     // (embedded in 64 bits to so that overflow can be ignored):
134     //
135     // (declare-fun x () (_ BitVec 64))
136     // (declare-fun y () (_ BitVec 64))
137     // (assert (let (
138     //    (one (_ bv1 64))
139     //    (thirtyTwo (_ bv32 64)))
140     //    (and
141     //      (bvult x (bvshl one thirtyTwo))
142     //      (bvult y (bvshl one thirtyTwo))
143     //      (not (=
144     //        (bvadd (bvlshr (bvxor x y) one) (bvand x y))
145     //        (bvlshr (bvadd x y) one)))
146     // )))
147     // (check-sat)
148     uint64_t beta_if_u_is_odd = beta & u_is_odd;  // Either |beta| or 0.
149     u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
150 
151     uint64_t alpha_if_u_is_odd = alpha & u_is_odd;  // Either |alpha| or 0.
152     v = (v >> 1) + alpha_if_u_is_odd;
153   }
154 
155   // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
156 #if BN_BITS2 == 64 && defined(BN_ULLONG)
157   assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
158 #endif
159 
160   return v;
161 }
162 
bn_mod_exp_base_2_consttime(BIGNUM * r,unsigned p,const BIGNUM * n,BN_CTX * ctx)163 int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n,
164                                 BN_CTX *ctx) {
165   assert(!BN_is_zero(n));
166   assert(!BN_is_negative(n));
167   assert(BN_is_odd(n));
168 
169   BN_zero(r);
170 
171   unsigned n_bits = BN_num_bits(n);
172   assert(n_bits != 0);
173   assert(p > n_bits);
174   if (n_bits == 1) {
175     return 1;
176   }
177 
178   // Set |r| to the larger power of two smaller than |n|, then shift with
179   // reductions the rest of the way.
180   if (!BN_set_bit(r, n_bits - 1) ||
181       !bn_mod_lshift_consttime(r, r, p - (n_bits - 1), n, ctx)) {
182     return 0;
183   }
184 
185   return 1;
186 }
187