1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2012 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
38 #define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-utils.h"
43 
44 // ICU PATCH: Wrap in ICU namespace
45 U_NAMESPACE_BEGIN
46 
47 namespace double_conversion {
48 
49 class DoubleToStringConverter {
50  public:
51 #if 0 // not needed for ICU
52   // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
53   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
54   // function returns false.
55   static const int kMaxFixedDigitsBeforePoint = 60;
56   static const int kMaxFixedDigitsAfterPoint = 60;
57 
58   // When calling ToExponential with a requested_digits
59   // parameter > kMaxExponentialDigits then the function returns false.
60   static const int kMaxExponentialDigits = 120;
61 
62   // When calling ToPrecision with a requested_digits
63   // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
64   // then the function returns false.
65   static const int kMinPrecisionDigits = 1;
66   static const int kMaxPrecisionDigits = 120;
67 
68   enum Flags {
69     NO_FLAGS = 0,
70     EMIT_POSITIVE_EXPONENT_SIGN = 1,
71     EMIT_TRAILING_DECIMAL_POINT = 2,
72     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
73     UNIQUE_ZERO = 8
74   };
75 
76   // Flags should be a bit-or combination of the possible Flags-enum.
77   //  - NO_FLAGS: no special flags.
78   //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
79   //    form, emits a '+' for positive exponents. Example: 1.2e+2.
80   //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
81   //    converted into decimal format then a trailing decimal point is appended.
82   //    Example: 2345.0 is converted to "2345.".
83   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
84   //    emits a trailing '0'-character. This flag requires the
85   //    EXMIT_TRAILING_DECIMAL_POINT flag.
86   //    Example: 2345.0 is converted to "2345.0".
87   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
88   //
89   // Infinity symbol and nan_symbol provide the string representation for these
90   // special values. If the string is NULL and the special value is encountered
91   // then the conversion functions return false.
92   //
93   // The exponent_character is used in exponential representations. It is
94   // usually 'e' or 'E'.
95   //
96   // When converting to the shortest representation the converter will
97   // represent input numbers in decimal format if they are in the interval
98   // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
99   //    (lower boundary included, greater boundary excluded).
100   // Example: with decimal_in_shortest_low = -6 and
101   //               decimal_in_shortest_high = 21:
102   //   ToShortest(0.000001)  -> "0.000001"
103   //   ToShortest(0.0000001) -> "1e-7"
104   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
105   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
106   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
107   //
108   // When converting to precision mode the converter may add
109   // max_leading_padding_zeroes before returning the number in exponential
110   // format.
111   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
112   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
113   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
114   // Similarily the converter may add up to
115   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
116   // returning an exponential representation. A zero added by the
117   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
118   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
119   //   ToPrecision(230.0, 2) -> "230"
120   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
121   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
122   //
123   // The min_exponent_width is used for exponential representations.
124   // The converter adds leading '0's to the exponent until the exponent
125   // is at least min_exponent_width digits long.
126   // The min_exponent_width is clamped to 5.
127   // As such, the exponent may never have more than 5 digits in total.
128   DoubleToStringConverter(int flags,
129                           const char* infinity_symbol,
130                           const char* nan_symbol,
131                           char exponent_character,
132                           int decimal_in_shortest_low,
133                           int decimal_in_shortest_high,
134                           int max_leading_padding_zeroes_in_precision_mode,
135                           int max_trailing_padding_zeroes_in_precision_mode,
136                           int min_exponent_width = 0)
137       : flags_(flags),
138         infinity_symbol_(infinity_symbol),
139         nan_symbol_(nan_symbol),
140         exponent_character_(exponent_character),
141         decimal_in_shortest_low_(decimal_in_shortest_low),
142         decimal_in_shortest_high_(decimal_in_shortest_high),
143         max_leading_padding_zeroes_in_precision_mode_(
144             max_leading_padding_zeroes_in_precision_mode),
145         max_trailing_padding_zeroes_in_precision_mode_(
146             max_trailing_padding_zeroes_in_precision_mode),
147         min_exponent_width_(min_exponent_width) {
148     // When 'trailing zero after the point' is set, then 'trailing point'
149     // must be set too.
150     DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
151         !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
152   }
153 
154   // Returns a converter following the EcmaScript specification.
155   static const DoubleToStringConverter& EcmaScriptConverter();
156 
157   // Computes the shortest string of digits that correctly represent the input
158   // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
159   // (see constructor) it then either returns a decimal representation, or an
160   // exponential representation.
161   // Example with decimal_in_shortest_low = -6,
162   //              decimal_in_shortest_high = 21,
163   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
164   //              EMIT_TRAILING_DECIMAL_POINT deactived:
165   //   ToShortest(0.000001)  -> "0.000001"
166   //   ToShortest(0.0000001) -> "1e-7"
167   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
168   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
169   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
170   //
171   // Note: the conversion may round the output if the returned string
172   // is accurate enough to uniquely identify the input-number.
173   // For example the most precise representation of the double 9e59 equals
174   // "899999999999999918767229449717619953810131273674690656206848", but
175   // the converter will return the shorter (but still correct) "9e59".
176   //
177   // Returns true if the conversion succeeds. The conversion always succeeds
178   // except when the input value is special and no infinity_symbol or
179   // nan_symbol has been given to the constructor.
180   bool ToShortest(double value, StringBuilder* result_builder) const {
181     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
182   }
183 
184   // Same as ToShortest, but for single-precision floats.
185   bool ToShortestSingle(float value, StringBuilder* result_builder) const {
186     return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
187   }
188 
189 
190   // Computes a decimal representation with a fixed number of digits after the
191   // decimal point. The last emitted digit is rounded.
192   //
193   // Examples:
194   //   ToFixed(3.12, 1) -> "3.1"
195   //   ToFixed(3.1415, 3) -> "3.142"
196   //   ToFixed(1234.56789, 4) -> "1234.5679"
197   //   ToFixed(1.23, 5) -> "1.23000"
198   //   ToFixed(0.1, 4) -> "0.1000"
199   //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
200   //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
201   //   ToFixed(0.1, 17) -> "0.10000000000000001"
202   //
203   // If requested_digits equals 0, then the tail of the result depends on
204   // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
205   // Examples, for requested_digits == 0,
206   //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
207   //    - false and false: then 123.45 -> 123
208   //                             0.678 -> 1
209   //    - true and false: then 123.45 -> 123.
210   //                            0.678 -> 1.
211   //    - true and true: then 123.45 -> 123.0
212   //                           0.678 -> 1.0
213   //
214   // Returns true if the conversion succeeds. The conversion always succeeds
215   // except for the following cases:
216   //   - the input value is special and no infinity_symbol or nan_symbol has
217   //     been provided to the constructor,
218   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
219   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
220   // The last two conditions imply that the result will never contain more than
221   // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
222   // (one additional character for the sign, and one for the decimal point).
223   bool ToFixed(double value,
224                int requested_digits,
225                StringBuilder* result_builder) const;
226 
227   // Computes a representation in exponential format with requested_digits
228   // after the decimal point. The last emitted digit is rounded.
229   // If requested_digits equals -1, then the shortest exponential representation
230   // is computed.
231   //
232   // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
233   //               exponent_character set to 'e'.
234   //   ToExponential(3.12, 1) -> "3.1e0"
235   //   ToExponential(5.0, 3) -> "5.000e0"
236   //   ToExponential(0.001, 2) -> "1.00e-3"
237   //   ToExponential(3.1415, -1) -> "3.1415e0"
238   //   ToExponential(3.1415, 4) -> "3.1415e0"
239   //   ToExponential(3.1415, 3) -> "3.142e0"
240   //   ToExponential(123456789000000, 3) -> "1.235e14"
241   //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
242   //   ToExponential(1000000000000000019884624838656.0, 32) ->
243   //                     "1.00000000000000001988462483865600e30"
244   //   ToExponential(1234, 0) -> "1e3"
245   //
246   // Returns true if the conversion succeeds. The conversion always succeeds
247   // except for the following cases:
248   //   - the input value is special and no infinity_symbol or nan_symbol has
249   //     been provided to the constructor,
250   //   - 'requested_digits' > kMaxExponentialDigits.
251   // The last condition implies that the result will never contain more than
252   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
253   // decimal point, the decimal point, the exponent character, the
254   // exponent's sign, and at most 3 exponent digits).
255   bool ToExponential(double value,
256                      int requested_digits,
257                      StringBuilder* result_builder) const;
258 
259   // Computes 'precision' leading digits of the given 'value' and returns them
260   // either in exponential or decimal format, depending on
261   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
262   // constructor).
263   // The last computed digit is rounded.
264   //
265   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
266   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
267   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
268   // Similarily the converter may add up to
269   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
270   // returning an exponential representation. A zero added by the
271   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
272   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
273   //   ToPrecision(230.0, 2) -> "230"
274   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
275   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
276   // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
277   //    EMIT_TRAILING_ZERO_AFTER_POINT:
278   //   ToPrecision(123450.0, 6) -> "123450"
279   //   ToPrecision(123450.0, 5) -> "123450"
280   //   ToPrecision(123450.0, 4) -> "123500"
281   //   ToPrecision(123450.0, 3) -> "123000"
282   //   ToPrecision(123450.0, 2) -> "1.2e5"
283   //
284   // Returns true if the conversion succeeds. The conversion always succeeds
285   // except for the following cases:
286   //   - the input value is special and no infinity_symbol or nan_symbol has
287   //     been provided to the constructor,
288   //   - precision < kMinPericisionDigits
289   //   - precision > kMaxPrecisionDigits
290   // The last condition implies that the result will never contain more than
291   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
292   // exponent character, the exponent's sign, and at most 3 exponent digits).
293   bool ToPrecision(double value,
294                    int precision,
295                    StringBuilder* result_builder) const;
296 #endif // not needed for ICU
297 
298   enum DtoaMode {
299     // Produce the shortest correct representation.
300     // For example the output of 0.299999999999999988897 is (the less accurate
301     // but correct) 0.3.
302     SHORTEST,
303     // Same as SHORTEST, but for single-precision floats.
304     SHORTEST_SINGLE,
305     // Produce a fixed number of digits after the decimal point.
306     // For instance fixed(0.1, 4) becomes 0.1000
307     // If the input number is big, the output will be big.
308     FIXED,
309     // Fixed number of digits (independent of the decimal point).
310     PRECISION
311   };
312 
313   // The maximal number of digits that are needed to emit a double in base 10.
314   // A higher precision can be achieved by using more digits, but the shortest
315   // accurate representation of any double will never use more digits than
316   // kBase10MaximalLength.
317   // Note that DoubleToAscii null-terminates its input. So the given buffer
318   // should be at least kBase10MaximalLength + 1 characters long.
319   static const int kBase10MaximalLength = 17;
320 
321   // Converts the given double 'v' to digit characters. 'v' must not be NaN,
322   // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
323   // applies to 'v' after it has been casted to a single-precision float. That
324   // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
325   // -Infinity.
326   //
327   // The result should be interpreted as buffer * 10^(point-length).
328   //
329   // The digits are written to the buffer in the platform's charset, which is
330   // often UTF-8 (with ASCII-range digits) but may be another charset, such
331   // as EBCDIC.
332   //
333   // The output depends on the given mode:
334   //  - SHORTEST: produce the least amount of digits for which the internal
335   //   identity requirement is still satisfied. If the digits are printed
336   //   (together with the correct exponent) then reading this number will give
337   //   'v' again. The buffer will choose the representation that is closest to
338   //   'v'. If there are two at the same distance, than the one farther away
339   //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
340   //   In this mode the 'requested_digits' parameter is ignored.
341   //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
342   //  - FIXED: produces digits necessary to print a given number with
343   //   'requested_digits' digits after the decimal point. The produced digits
344   //   might be too short in which case the caller has to fill the remainder
345   //   with '0's.
346   //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
347   //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
348   //   toFixed(0.15, 2) thus returns buffer="2", point=0.
349   //   The returned buffer may contain digits that would be truncated from the
350   //   shortest representation of the input.
351   //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
352   //   Even though the length of produced digits usually equals
353   //   'requested_digits', the function is allowed to return fewer digits, in
354   //   which case the caller has to fill the missing digits with '0's.
355   //   Halfway cases are again rounded away from 0.
356   // DoubleToAscii expects the given buffer to be big enough to hold all
357   // digits and a terminating null-character. In SHORTEST-mode it expects a
358   // buffer of at least kBase10MaximalLength + 1. In all other modes the
359   // requested_digits parameter and the padding-zeroes limit the size of the
360   // output. Don't forget the decimal point, the exponent character and the
361   // terminating null-character when computing the maximal output size.
362   // The given length is only used in debug mode to ensure the buffer is big
363   // enough.
364   // ICU PATCH: Export this as U_I18N_API for unit tests.
365   static void U_I18N_API DoubleToAscii(double v,
366                             DtoaMode mode,
367                             int requested_digits,
368                             char* buffer,
369                             int buffer_length,
370                             bool* sign,
371                             int* length,
372                             int* point);
373 
374 #if 0 // not needed for ICU
375  private:
376   // Implementation for ToShortest and ToShortestSingle.
377   bool ToShortestIeeeNumber(double value,
378                             StringBuilder* result_builder,
379                             DtoaMode mode) const;
380 
381   // If the value is a special value (NaN or Infinity) constructs the
382   // corresponding string using the configured infinity/nan-symbol.
383   // If either of them is NULL or the value is not special then the
384   // function returns false.
385   bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
386   // Constructs an exponential representation (i.e. 1.234e56).
387   // The given exponent assumes a decimal point after the first decimal digit.
388   void CreateExponentialRepresentation(const char* decimal_digits,
389                                        int length,
390                                        int exponent,
391                                        StringBuilder* result_builder) const;
392   // Creates a decimal representation (i.e 1234.5678).
393   void CreateDecimalRepresentation(const char* decimal_digits,
394                                    int length,
395                                    int decimal_point,
396                                    int digits_after_point,
397                                    StringBuilder* result_builder) const;
398 
399   const int flags_;
400   const char* const infinity_symbol_;
401   const char* const nan_symbol_;
402   const char exponent_character_;
403   const int decimal_in_shortest_low_;
404   const int decimal_in_shortest_high_;
405   const int max_leading_padding_zeroes_in_precision_mode_;
406   const int max_trailing_padding_zeroes_in_precision_mode_;
407   const int min_exponent_width_;
408 #endif // not needed for ICU
409 
410   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
411 };
412 
413 }  // namespace double_conversion
414 
415 // ICU PATCH: Close ICU namespace
416 U_NAMESPACE_END
417 
418 #endif  // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
419 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
420