1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 // ICU PATCH: Do not include std::locale.
38 
39 #include <climits>
40 // #include <locale>
41 #include <cmath>
42 
43 // ICU PATCH: Customize header file paths for ICU.
44 
45 #include "double-conversion-string-to-double.h"
46 
47 #include "double-conversion-ieee.h"
48 #include "double-conversion-strtod.h"
49 #include "double-conversion-utils.h"
50 
51 // ICU PATCH: Wrap in ICU namespace
52 U_NAMESPACE_BEGIN
53 
54 namespace double_conversion {
55 
56 namespace {
57 
ToLower(char ch)58 inline char ToLower(char ch) {
59 #if 0  // do not include std::locale in ICU
60   static const std::ctype<char>& cType =
61       std::use_facet<std::ctype<char> >(std::locale::classic());
62   return cType.tolower(ch);
63 #else
64   (void)ch;
65   DOUBLE_CONVERSION_UNREACHABLE();
66 #endif
67 }
68 
Pass(char ch)69 inline char Pass(char ch) {
70   return ch;
71 }
72 
73 template <class Iterator, class Converter>
ConsumeSubStringImpl(Iterator * current,Iterator end,const char * substring,Converter converter)74 static inline bool ConsumeSubStringImpl(Iterator* current,
75                                         Iterator end,
76                                         const char* substring,
77                                         Converter converter) {
78   DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
79   for (substring++; *substring != '\0'; substring++) {
80     ++*current;
81     if (*current == end || converter(**current) != *substring) {
82       return false;
83     }
84   }
85   ++*current;
86   return true;
87 }
88 
89 // Consumes the given substring from the iterator.
90 // Returns false, if the substring does not match.
91 template <class Iterator>
ConsumeSubString(Iterator * current,Iterator end,const char * substring,bool allow_case_insensitivity)92 static bool ConsumeSubString(Iterator* current,
93                              Iterator end,
94                              const char* substring,
95                              bool allow_case_insensitivity) {
96   if (allow_case_insensitivity) {
97     return ConsumeSubStringImpl(current, end, substring, ToLower);
98   } else {
99     return ConsumeSubStringImpl(current, end, substring, Pass);
100   }
101 }
102 
103 // Consumes first character of the str is equal to ch
ConsumeFirstCharacter(char ch,const char * str,bool case_insensitivity)104 inline bool ConsumeFirstCharacter(char ch,
105                                          const char* str,
106                                          bool case_insensitivity) {
107   return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
108 }
109 }  // namespace
110 
111 // Maximum number of significant digits in decimal representation.
112 // The longest possible double in decimal representation is
113 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
114 // (768 digits). If we parse a number whose first digits are equal to a
115 // mean of 2 adjacent doubles (that could have up to 769 digits) the result
116 // must be rounded to the bigger one unless the tail consists of zeros, so
117 // we don't need to preserve all the digits.
118 const int kMaxSignificantDigits = 772;
119 
120 
121 static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
122 static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
123 
124 
125 static const uc16 kWhitespaceTable16[] = {
126   160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
127   8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
128 };
129 static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
130 
131 
isWhitespace(int x)132 static bool isWhitespace(int x) {
133   if (x < 128) {
134     for (int i = 0; i < kWhitespaceTable7Length; i++) {
135       if (kWhitespaceTable7[i] == x) return true;
136     }
137   } else {
138     for (int i = 0; i < kWhitespaceTable16Length; i++) {
139       if (kWhitespaceTable16[i] == x) return true;
140     }
141   }
142   return false;
143 }
144 
145 
146 // Returns true if a nonspace found and false if the end has reached.
147 template <class Iterator>
AdvanceToNonspace(Iterator * current,Iterator end)148 static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
149   while (*current != end) {
150     if (!isWhitespace(**current)) return true;
151     ++*current;
152   }
153   return false;
154 }
155 
156 
isDigit(int x,int radix)157 static bool isDigit(int x, int radix) {
158   return (x >= '0' && x <= '9' && x < '0' + radix)
159       || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
160       || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
161 }
162 
163 
SignedZero(bool sign)164 static double SignedZero(bool sign) {
165   return sign ? -0.0 : 0.0;
166 }
167 
168 
169 // Returns true if 'c' is a decimal digit that is valid for the given radix.
170 //
171 // The function is small and could be inlined, but VS2012 emitted a warning
172 // because it constant-propagated the radix and concluded that the last
173 // condition was always true. By moving it into a separate function the
174 // compiler wouldn't warn anymore.
175 #ifdef _MSC_VER
176 #pragma optimize("",off)
IsDecimalDigitForRadix(int c,int radix)177 static bool IsDecimalDigitForRadix(int c, int radix) {
178   return '0' <= c && c <= '9' && (c - '0') < radix;
179 }
180 #pragma optimize("",on)
181 #else
IsDecimalDigitForRadix(int c,int radix)182 static bool inline IsDecimalDigitForRadix(int c, int radix) {
183   return '0' <= c && c <= '9' && (c - '0') < radix;
184 }
185 #endif
186 // Returns true if 'c' is a character digit that is valid for the given radix.
187 // The 'a_character' should be 'a' or 'A'.
188 //
189 // The function is small and could be inlined, but VS2012 emitted a warning
190 // because it constant-propagated the radix and concluded that the first
191 // condition was always false. By moving it into a separate function the
192 // compiler wouldn't warn anymore.
IsCharacterDigitForRadix(int c,int radix,char a_character)193 static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
194   return radix > 10 && c >= a_character && c < a_character + radix - 10;
195 }
196 
197 // Returns true, when the iterator is equal to end.
198 template<class Iterator>
Advance(Iterator * it,uc16 separator,int base,Iterator & end)199 static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
200   if (separator == StringToDoubleConverter::kNoSeparator) {
201     ++(*it);
202     return *it == end;
203   }
204   if (!isDigit(**it, base)) {
205     ++(*it);
206     return *it == end;
207   }
208   ++(*it);
209   if (*it == end) return true;
210   if (*it + 1 == end) return false;
211   if (**it == separator && isDigit(*(*it + 1), base)) {
212     ++(*it);
213   }
214   return *it == end;
215 }
216 
217 // Checks whether the string in the range start-end is a hex-float string.
218 // This function assumes that the leading '0x'/'0X' is already consumed.
219 //
220 // Hex float strings are of one of the following forms:
221 //   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
222 //   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
223 //   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
224 template<class Iterator>
IsHexFloatString(Iterator start,Iterator end,uc16 separator,bool allow_trailing_junk)225 static bool IsHexFloatString(Iterator start,
226                              Iterator end,
227                              uc16 separator,
228                              bool allow_trailing_junk) {
229   DOUBLE_CONVERSION_ASSERT(start != end);
230 
231   Iterator current = start;
232 
233   bool saw_digit = false;
234   while (isDigit(*current, 16)) {
235     saw_digit = true;
236     if (Advance(&current, separator, 16, end)) return false;
237   }
238   if (*current == '.') {
239     if (Advance(&current, separator, 16, end)) return false;
240     while (isDigit(*current, 16)) {
241       saw_digit = true;
242       if (Advance(&current, separator, 16, end)) return false;
243     }
244   }
245   if (!saw_digit) return false;
246   if (*current != 'p' && *current != 'P') return false;
247   if (Advance(&current, separator, 16, end)) return false;
248   if (*current == '+' || *current == '-') {
249     if (Advance(&current, separator, 16, end)) return false;
250   }
251   if (!isDigit(*current, 10)) return false;
252   if (Advance(&current, separator, 16, end)) return true;
253   while (isDigit(*current, 10)) {
254     if (Advance(&current, separator, 16, end)) return true;
255   }
256   return allow_trailing_junk || !AdvanceToNonspace(&current, end);
257 }
258 
259 
260 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
261 //
262 // If parse_as_hex_float is true, then the string must be a valid
263 // hex-float.
264 template <int radix_log_2, class Iterator>
RadixStringToIeee(Iterator * current,Iterator end,bool sign,uc16 separator,bool parse_as_hex_float,bool allow_trailing_junk,double junk_string_value,bool read_as_double,bool * result_is_junk)265 static double RadixStringToIeee(Iterator* current,
266                                 Iterator end,
267                                 bool sign,
268                                 uc16 separator,
269                                 bool parse_as_hex_float,
270                                 bool allow_trailing_junk,
271                                 double junk_string_value,
272                                 bool read_as_double,
273                                 bool* result_is_junk) {
274   DOUBLE_CONVERSION_ASSERT(*current != end);
275   DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
276       IsHexFloatString(*current, end, separator, allow_trailing_junk));
277 
278   const int kDoubleSize = Double::kSignificandSize;
279   const int kSingleSize = Single::kSignificandSize;
280   const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
281 
282   *result_is_junk = true;
283 
284   int64_t number = 0;
285   int exponent = 0;
286   const int radix = (1 << radix_log_2);
287   // Whether we have encountered a '.' and are parsing the decimal digits.
288   // Only relevant if parse_as_hex_float is true.
289   bool post_decimal = false;
290 
291   // Skip leading 0s.
292   while (**current == '0') {
293     if (Advance(current, separator, radix, end)) {
294       *result_is_junk = false;
295       return SignedZero(sign);
296     }
297   }
298 
299   while (true) {
300     int digit;
301     if (IsDecimalDigitForRadix(**current, radix)) {
302       digit = static_cast<char>(**current) - '0';
303       if (post_decimal) exponent -= radix_log_2;
304     } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
305       digit = static_cast<char>(**current) - 'a' + 10;
306       if (post_decimal) exponent -= radix_log_2;
307     } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
308       digit = static_cast<char>(**current) - 'A' + 10;
309       if (post_decimal) exponent -= radix_log_2;
310     } else if (parse_as_hex_float && **current == '.') {
311       post_decimal = true;
312       Advance(current, separator, radix, end);
313       DOUBLE_CONVERSION_ASSERT(*current != end);
314       continue;
315     } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
316       break;
317     } else {
318       if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
319         break;
320       } else {
321         return junk_string_value;
322       }
323     }
324 
325     number = number * radix + digit;
326     int overflow = static_cast<int>(number >> kSignificandSize);
327     if (overflow != 0) {
328       // Overflow occurred. Need to determine which direction to round the
329       // result.
330       int overflow_bits_count = 1;
331       while (overflow > 1) {
332         overflow_bits_count++;
333         overflow >>= 1;
334       }
335 
336       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
337       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
338       number >>= overflow_bits_count;
339       exponent += overflow_bits_count;
340 
341       bool zero_tail = true;
342       for (;;) {
343         if (Advance(current, separator, radix, end)) break;
344         if (parse_as_hex_float && **current == '.') {
345           // Just run over the '.'. We are just trying to see whether there is
346           // a non-zero digit somewhere.
347           Advance(current, separator, radix, end);
348           DOUBLE_CONVERSION_ASSERT(*current != end);
349           post_decimal = true;
350         }
351         if (!isDigit(**current, radix)) break;
352         zero_tail = zero_tail && **current == '0';
353         if (!post_decimal) exponent += radix_log_2;
354       }
355 
356       if (!parse_as_hex_float &&
357           !allow_trailing_junk &&
358           AdvanceToNonspace(current, end)) {
359         return junk_string_value;
360       }
361 
362       int middle_value = (1 << (overflow_bits_count - 1));
363       if (dropped_bits > middle_value) {
364         number++;  // Rounding up.
365       } else if (dropped_bits == middle_value) {
366         // Rounding to even to consistency with decimals: half-way case rounds
367         // up if significant part is odd and down otherwise.
368         if ((number & 1) != 0 || !zero_tail) {
369           number++;  // Rounding up.
370         }
371       }
372 
373       // Rounding up may cause overflow.
374       if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
375         exponent++;
376         number >>= 1;
377       }
378       break;
379     }
380     if (Advance(current, separator, radix, end)) break;
381   }
382 
383   DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
384   DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
385 
386   *result_is_junk = false;
387 
388   if (parse_as_hex_float) {
389     DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
390     Advance(current, separator, radix, end);
391     DOUBLE_CONVERSION_ASSERT(*current != end);
392     bool is_negative = false;
393     if (**current == '+') {
394       Advance(current, separator, radix, end);
395       DOUBLE_CONVERSION_ASSERT(*current != end);
396     } else if (**current == '-') {
397       is_negative = true;
398       Advance(current, separator, radix, end);
399       DOUBLE_CONVERSION_ASSERT(*current != end);
400     }
401     int written_exponent = 0;
402     while (IsDecimalDigitForRadix(**current, 10)) {
403       // No need to read exponents if they are too big. That could potentially overflow
404       // the `written_exponent` variable.
405       if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
406         written_exponent = 10 * written_exponent + **current - '0';
407       }
408       if (Advance(current, separator, radix, end)) break;
409     }
410     if (is_negative) written_exponent = -written_exponent;
411     exponent += written_exponent;
412   }
413 
414   if (exponent == 0 || number == 0) {
415     if (sign) {
416       if (number == 0) return -0.0;
417       number = -number;
418     }
419     return static_cast<double>(number);
420   }
421 
422   DOUBLE_CONVERSION_ASSERT(number != 0);
423   double result = Double(DiyFp(number, exponent)).value();
424   return sign ? -result : result;
425 }
426 
427 template <class Iterator>
StringToIeee(Iterator input,int length,bool read_as_double,int * processed_characters_count) const428 double StringToDoubleConverter::StringToIeee(
429     Iterator input,
430     int length,
431     bool read_as_double,
432     int* processed_characters_count) const {
433   Iterator current = input;
434   Iterator end = input + length;
435 
436   *processed_characters_count = 0;
437 
438   const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
439   const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
440   const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
441   const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
442   const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
443 
444   // To make sure that iterator dereferencing is valid the following
445   // convention is used:
446   // 1. Each '++current' statement is followed by check for equality to 'end'.
447   // 2. If AdvanceToNonspace returned false then current == end.
448   // 3. If 'current' becomes equal to 'end' the function returns or goes to
449   // 'parsing_done'.
450   // 4. 'current' is not dereferenced after the 'parsing_done' label.
451   // 5. Code before 'parsing_done' may rely on 'current != end'.
452   if (current == end) return empty_string_value_;
453 
454   if (allow_leading_spaces || allow_trailing_spaces) {
455     if (!AdvanceToNonspace(&current, end)) {
456       *processed_characters_count = static_cast<int>(current - input);
457       return empty_string_value_;
458     }
459     if (!allow_leading_spaces && (input != current)) {
460       // No leading spaces allowed, but AdvanceToNonspace moved forward.
461       return junk_string_value_;
462     }
463   }
464 
465   // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
466   const int kBufferSize = kMaxSignificantDigits + 10;
467   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
468   int buffer_pos = 0;
469 
470   // Exponent will be adjusted if insignificant digits of the integer part
471   // or insignificant leading zeros of the fractional part are dropped.
472   int exponent = 0;
473   int significant_digits = 0;
474   int insignificant_digits = 0;
475   bool nonzero_digit_dropped = false;
476 
477   bool sign = false;
478 
479   if (*current == '+' || *current == '-') {
480     sign = (*current == '-');
481     ++current;
482     Iterator next_non_space = current;
483     // Skip following spaces (if allowed).
484     if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
485     if (!allow_spaces_after_sign && (current != next_non_space)) {
486       return junk_string_value_;
487     }
488     current = next_non_space;
489   }
490 
491   if (infinity_symbol_ != NULL) {
492     if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
493       if (!ConsumeSubString(&current, end, infinity_symbol_, allow_case_insensitivity)) {
494         return junk_string_value_;
495       }
496 
497       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
498         return junk_string_value_;
499       }
500       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
501         return junk_string_value_;
502       }
503 
504       DOUBLE_CONVERSION_ASSERT(buffer_pos == 0);
505       *processed_characters_count = static_cast<int>(current - input);
506       return sign ? -Double::Infinity() : Double::Infinity();
507     }
508   }
509 
510   if (nan_symbol_ != NULL) {
511     if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
512       if (!ConsumeSubString(&current, end, nan_symbol_, allow_case_insensitivity)) {
513         return junk_string_value_;
514       }
515 
516       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
517         return junk_string_value_;
518       }
519       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
520         return junk_string_value_;
521       }
522 
523       DOUBLE_CONVERSION_ASSERT(buffer_pos == 0);
524       *processed_characters_count = static_cast<int>(current - input);
525       return sign ? -Double::NaN() : Double::NaN();
526     }
527   }
528 
529   bool leading_zero = false;
530   if (*current == '0') {
531     if (Advance(&current, separator_, 10, end)) {
532       *processed_characters_count = static_cast<int>(current - input);
533       return SignedZero(sign);
534     }
535 
536     leading_zero = true;
537 
538     // It could be hexadecimal value.
539     if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
540         (*current == 'x' || *current == 'X')) {
541       ++current;
542 
543       if (current == end) return junk_string_value_;  // "0x"
544 
545       bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
546                 IsHexFloatString(current, end, separator_, allow_trailing_junk);
547 
548       if (!parse_as_hex_float && !isDigit(*current, 16)) {
549         return junk_string_value_;
550       }
551 
552       bool result_is_junk;
553       double result = RadixStringToIeee<4>(&current,
554                                            end,
555                                            sign,
556                                            separator_,
557                                            parse_as_hex_float,
558                                            allow_trailing_junk,
559                                            junk_string_value_,
560                                            read_as_double,
561                                            &result_is_junk);
562       if (!result_is_junk) {
563         if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
564         *processed_characters_count = static_cast<int>(current - input);
565       }
566       return result;
567     }
568 
569     // Ignore leading zeros in the integer part.
570     while (*current == '0') {
571       if (Advance(&current, separator_, 10, end)) {
572         *processed_characters_count = static_cast<int>(current - input);
573         return SignedZero(sign);
574       }
575     }
576   }
577 
578   bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
579 
580   // Copy significant digits of the integer part (if any) to the buffer.
581   while (*current >= '0' && *current <= '9') {
582     if (significant_digits < kMaxSignificantDigits) {
583       DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
584       buffer[buffer_pos++] = static_cast<char>(*current);
585       significant_digits++;
586       // Will later check if it's an octal in the buffer.
587     } else {
588       insignificant_digits++;  // Move the digit into the exponential part.
589       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
590     }
591     octal = octal && *current < '8';
592     if (Advance(&current, separator_, 10, end)) goto parsing_done;
593   }
594 
595   if (significant_digits == 0) {
596     octal = false;
597   }
598 
599   if (*current == '.') {
600     if (octal && !allow_trailing_junk) return junk_string_value_;
601     if (octal) goto parsing_done;
602 
603     if (Advance(&current, separator_, 10, end)) {
604       if (significant_digits == 0 && !leading_zero) {
605         return junk_string_value_;
606       } else {
607         goto parsing_done;
608       }
609     }
610 
611     if (significant_digits == 0) {
612       // octal = false;
613       // Integer part consists of 0 or is absent. Significant digits start after
614       // leading zeros (if any).
615       while (*current == '0') {
616         if (Advance(&current, separator_, 10, end)) {
617           *processed_characters_count = static_cast<int>(current - input);
618           return SignedZero(sign);
619         }
620         exponent--;  // Move this 0 into the exponent.
621       }
622     }
623 
624     // There is a fractional part.
625     // We don't emit a '.', but adjust the exponent instead.
626     while (*current >= '0' && *current <= '9') {
627       if (significant_digits < kMaxSignificantDigits) {
628         DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
629         buffer[buffer_pos++] = static_cast<char>(*current);
630         significant_digits++;
631         exponent--;
632       } else {
633         // Ignore insignificant digits in the fractional part.
634         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
635       }
636       if (Advance(&current, separator_, 10, end)) goto parsing_done;
637     }
638   }
639 
640   if (!leading_zero && exponent == 0 && significant_digits == 0) {
641     // If leading_zeros is true then the string contains zeros.
642     // If exponent < 0 then string was [+-]\.0*...
643     // If significant_digits != 0 the string is not equal to 0.
644     // Otherwise there are no digits in the string.
645     return junk_string_value_;
646   }
647 
648   // Parse exponential part.
649   if (*current == 'e' || *current == 'E') {
650     if (octal && !allow_trailing_junk) return junk_string_value_;
651     if (octal) goto parsing_done;
652     Iterator junk_begin = current;
653     ++current;
654     if (current == end) {
655       if (allow_trailing_junk) {
656         current = junk_begin;
657         goto parsing_done;
658       } else {
659         return junk_string_value_;
660       }
661     }
662     char exponen_sign = '+';
663     if (*current == '+' || *current == '-') {
664       exponen_sign = static_cast<char>(*current);
665       ++current;
666       if (current == end) {
667         if (allow_trailing_junk) {
668           current = junk_begin;
669           goto parsing_done;
670         } else {
671           return junk_string_value_;
672         }
673       }
674     }
675 
676     if (current == end || *current < '0' || *current > '9') {
677       if (allow_trailing_junk) {
678         current = junk_begin;
679         goto parsing_done;
680       } else {
681         return junk_string_value_;
682       }
683     }
684 
685     const int max_exponent = INT_MAX / 2;
686     DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
687     int num = 0;
688     do {
689       // Check overflow.
690       int digit = *current - '0';
691       if (num >= max_exponent / 10
692           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
693         num = max_exponent;
694       } else {
695         num = num * 10 + digit;
696       }
697       ++current;
698     } while (current != end && *current >= '0' && *current <= '9');
699 
700     exponent += (exponen_sign == '-' ? -num : num);
701   }
702 
703   if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
704     return junk_string_value_;
705   }
706   if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
707     return junk_string_value_;
708   }
709   if (allow_trailing_spaces) {
710     AdvanceToNonspace(&current, end);
711   }
712 
713   parsing_done:
714   exponent += insignificant_digits;
715 
716   if (octal) {
717     double result;
718     bool result_is_junk;
719     char* start = buffer;
720     result = RadixStringToIeee<3>(&start,
721                                   buffer + buffer_pos,
722                                   sign,
723                                   separator_,
724                                   false, // Don't parse as hex_float.
725                                   allow_trailing_junk,
726                                   junk_string_value_,
727                                   read_as_double,
728                                   &result_is_junk);
729     DOUBLE_CONVERSION_ASSERT(!result_is_junk);
730     *processed_characters_count = static_cast<int>(current - input);
731     return result;
732   }
733 
734   if (nonzero_digit_dropped) {
735     buffer[buffer_pos++] = '1';
736     exponent--;
737   }
738 
739   DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
740   buffer[buffer_pos] = '\0';
741 
742   double converted;
743   if (read_as_double) {
744     converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
745   } else {
746     converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
747   }
748   *processed_characters_count = static_cast<int>(current - input);
749   return sign? -converted: converted;
750 }
751 
752 
StringToDouble(const char * buffer,int length,int * processed_characters_count) const753 double StringToDoubleConverter::StringToDouble(
754     const char* buffer,
755     int length,
756     int* processed_characters_count) const {
757   return StringToIeee(buffer, length, true, processed_characters_count);
758 }
759 
760 
StringToDouble(const uc16 * buffer,int length,int * processed_characters_count) const761 double StringToDoubleConverter::StringToDouble(
762     const uc16* buffer,
763     int length,
764     int* processed_characters_count) const {
765   return StringToIeee(buffer, length, true, processed_characters_count);
766 }
767 
768 
StringToFloat(const char * buffer,int length,int * processed_characters_count) const769 float StringToDoubleConverter::StringToFloat(
770     const char* buffer,
771     int length,
772     int* processed_characters_count) const {
773   return static_cast<float>(StringToIeee(buffer, length, false,
774                                          processed_characters_count));
775 }
776 
777 
StringToFloat(const uc16 * buffer,int length,int * processed_characters_count) const778 float StringToDoubleConverter::StringToFloat(
779     const uc16* buffer,
780     int length,
781     int* processed_characters_count) const {
782   return static_cast<float>(StringToIeee(buffer, length, false,
783                                          processed_characters_count));
784 }
785 
786 }  // namespace double_conversion
787 
788 // ICU PATCH: Close ICU namespace
789 U_NAMESPACE_END
790 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
791