1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #include <climits>
38 #include <cstdarg>
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-cached-powers.h"
44 #include "double-conversion-ieee.h"
45 #include "double-conversion-strtod.h"
46 
47 // ICU PATCH: Wrap in ICU namespace
48 U_NAMESPACE_BEGIN
49 
50 namespace double_conversion {
51 
52 // 2^53 = 9007199254740992.
53 // Any integer with at most 15 decimal digits will hence fit into a double
54 // (which has a 53bit significand) without loss of precision.
55 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
56 // 2^64 = 18446744073709551616 > 10^19
57 static const int kMaxUint64DecimalDigits = 19;
58 
59 // Max double: 1.7976931348623157 x 10^308
60 // Min non-zero double: 4.9406564584124654 x 10^-324
61 // Any x >= 10^309 is interpreted as +infinity.
62 // Any x <= 10^-324 is interpreted as 0.
63 // Note that 2.5e-324 (despite being smaller than the min double) will be read
64 // as non-zero (equal to the min non-zero double).
65 static const int kMaxDecimalPower = 309;
66 static const int kMinDecimalPower = -324;
67 
68 // 2^64 = 18446744073709551616
69 static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
70 
71 
72 static const double exact_powers_of_ten[] = {
73   1.0,  // 10^0
74   10.0,
75   100.0,
76   1000.0,
77   10000.0,
78   100000.0,
79   1000000.0,
80   10000000.0,
81   100000000.0,
82   1000000000.0,
83   10000000000.0,  // 10^10
84   100000000000.0,
85   1000000000000.0,
86   10000000000000.0,
87   100000000000000.0,
88   1000000000000000.0,
89   10000000000000000.0,
90   100000000000000000.0,
91   1000000000000000000.0,
92   10000000000000000000.0,
93   100000000000000000000.0,  // 10^20
94   1000000000000000000000.0,
95   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
96   10000000000000000000000.0
97 };
98 static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
99 
100 // Maximum number of significant digits in the decimal representation.
101 // In fact the value is 772 (see conversions.cc), but to give us some margin
102 // we round up to 780.
103 static const int kMaxSignificantDecimalDigits = 780;
104 
TrimLeadingZeros(Vector<const char> buffer)105 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
106   for (int i = 0; i < buffer.length(); i++) {
107     if (buffer[i] != '0') {
108       return buffer.SubVector(i, buffer.length());
109     }
110   }
111   return Vector<const char>(buffer.start(), 0);
112 }
113 
114 
TrimTrailingZeros(Vector<const char> buffer)115 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
116   for (int i = buffer.length() - 1; i >= 0; --i) {
117     if (buffer[i] != '0') {
118       return buffer.SubVector(0, i + 1);
119     }
120   }
121   return Vector<const char>(buffer.start(), 0);
122 }
123 
124 
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)125 static void CutToMaxSignificantDigits(Vector<const char> buffer,
126                                        int exponent,
127                                        char* significant_buffer,
128                                        int* significant_exponent) {
129   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
130     significant_buffer[i] = buffer[i];
131   }
132   // The input buffer has been trimmed. Therefore the last digit must be
133   // different from '0'.
134   DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
135   // Set the last digit to be non-zero. This is sufficient to guarantee
136   // correct rounding.
137   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
138   *significant_exponent =
139       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
140 }
141 
142 
143 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
144 // If possible the input-buffer is reused, but if the buffer needs to be
145 // modified (due to cutting), then the input needs to be copied into the
146 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)147 static void TrimAndCut(Vector<const char> buffer, int exponent,
148                        char* buffer_copy_space, int space_size,
149                        Vector<const char>* trimmed, int* updated_exponent) {
150   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
151   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
152   exponent += left_trimmed.length() - right_trimmed.length();
153   if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
154     (void) space_size;  // Mark variable as used.
155     DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
156     CutToMaxSignificantDigits(right_trimmed, exponent,
157                               buffer_copy_space, updated_exponent);
158     *trimmed = Vector<const char>(buffer_copy_space,
159                                  kMaxSignificantDecimalDigits);
160   } else {
161     *trimmed = right_trimmed;
162     *updated_exponent = exponent;
163   }
164 }
165 
166 
167 // Reads digits from the buffer and converts them to a uint64.
168 // Reads in as many digits as fit into a uint64.
169 // When the string starts with "1844674407370955161" no further digit is read.
170 // Since 2^64 = 18446744073709551616 it would still be possible read another
171 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)172 static uint64_t ReadUint64(Vector<const char> buffer,
173                            int* number_of_read_digits) {
174   uint64_t result = 0;
175   int i = 0;
176   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
177     int digit = buffer[i++] - '0';
178     DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
179     result = 10 * result + digit;
180   }
181   *number_of_read_digits = i;
182   return result;
183 }
184 
185 
186 // Reads a DiyFp from the buffer.
187 // The returned DiyFp is not necessarily normalized.
188 // If remaining_decimals is zero then the returned DiyFp is accurate.
189 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)190 static void ReadDiyFp(Vector<const char> buffer,
191                       DiyFp* result,
192                       int* remaining_decimals) {
193   int read_digits;
194   uint64_t significand = ReadUint64(buffer, &read_digits);
195   if (buffer.length() == read_digits) {
196     *result = DiyFp(significand, 0);
197     *remaining_decimals = 0;
198   } else {
199     // Round the significand.
200     if (buffer[read_digits] >= '5') {
201       significand++;
202     }
203     // Compute the binary exponent.
204     int exponent = 0;
205     *result = DiyFp(significand, exponent);
206     *remaining_decimals = buffer.length() - read_digits;
207   }
208 }
209 
210 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)211 static bool DoubleStrtod(Vector<const char> trimmed,
212                          int exponent,
213                          double* result) {
214 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
215   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
216   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
217   // result is not accurate.
218   // We know that Windows32 uses 64 bits and is therefore accurate.
219   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
220   // the same problem.
221   return false;
222 #else
223   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
224     int read_digits;
225     // The trimmed input fits into a double.
226     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
227     // can compute the result-double simply by multiplying (resp. dividing) the
228     // two numbers.
229     // This is possible because IEEE guarantees that floating-point operations
230     // return the best possible approximation.
231     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
232       // 10^-exponent fits into a double.
233       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
234       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
235       *result /= exact_powers_of_ten[-exponent];
236       return true;
237     }
238     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
239       // 10^exponent fits into a double.
240       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
241       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
242       *result *= exact_powers_of_ten[exponent];
243       return true;
244     }
245     int remaining_digits =
246         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
247     if ((0 <= exponent) &&
248         (exponent - remaining_digits < kExactPowersOfTenSize)) {
249       // The trimmed string was short and we can multiply it with
250       // 10^remaining_digits. As a result the remaining exponent now fits
251       // into a double too.
252       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
253       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
254       *result *= exact_powers_of_ten[remaining_digits];
255       *result *= exact_powers_of_ten[exponent - remaining_digits];
256       return true;
257     }
258   }
259   return false;
260 #endif
261 }
262 
263 
264 // Returns 10^exponent as an exact DiyFp.
265 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)266 static DiyFp AdjustmentPowerOfTen(int exponent) {
267   DOUBLE_CONVERSION_ASSERT(0 < exponent);
268   DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
269   // Simply hardcode the remaining powers for the given decimal exponent
270   // distance.
271   DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
272   switch (exponent) {
273     case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
274     case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
275     case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
276     case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
277     case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
278     case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
279     case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
280     default:
281       DOUBLE_CONVERSION_UNREACHABLE();
282   }
283 }
284 
285 
286 // If the function returns true then the result is the correct double.
287 // Otherwise it is either the correct double or the double that is just below
288 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)289 static bool DiyFpStrtod(Vector<const char> buffer,
290                         int exponent,
291                         double* result) {
292   DiyFp input;
293   int remaining_decimals;
294   ReadDiyFp(buffer, &input, &remaining_decimals);
295   // Since we may have dropped some digits the input is not accurate.
296   // If remaining_decimals is different than 0 than the error is at most
297   // .5 ulp (unit in the last place).
298   // We don't want to deal with fractions and therefore keep a common
299   // denominator.
300   const int kDenominatorLog = 3;
301   const int kDenominator = 1 << kDenominatorLog;
302   // Move the remaining decimals into the exponent.
303   exponent += remaining_decimals;
304   uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
305 
306   int old_e = input.e();
307   input.Normalize();
308   error <<= old_e - input.e();
309 
310   DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
311   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
312     *result = 0.0;
313     return true;
314   }
315   DiyFp cached_power;
316   int cached_decimal_exponent;
317   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
318                                                      &cached_power,
319                                                      &cached_decimal_exponent);
320 
321   if (cached_decimal_exponent != exponent) {
322     int adjustment_exponent = exponent - cached_decimal_exponent;
323     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
324     input.Multiply(adjustment_power);
325     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
326       // The product of input with the adjustment power fits into a 64 bit
327       // integer.
328       DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
329     } else {
330       // The adjustment power is exact. There is hence only an error of 0.5.
331       error += kDenominator / 2;
332     }
333   }
334 
335   input.Multiply(cached_power);
336   // The error introduced by a multiplication of a*b equals
337   //   error_a + error_b + error_a*error_b/2^64 + 0.5
338   // Substituting a with 'input' and b with 'cached_power' we have
339   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
340   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
341   int error_b = kDenominator / 2;
342   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
343   int fixed_error = kDenominator / 2;
344   error += error_b + error_ab + fixed_error;
345 
346   old_e = input.e();
347   input.Normalize();
348   error <<= old_e - input.e();
349 
350   // See if the double's significand changes if we add/subtract the error.
351   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
352   int effective_significand_size =
353       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
354   int precision_digits_count =
355       DiyFp::kSignificandSize - effective_significand_size;
356   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
357     // This can only happen for very small denormals. In this case the
358     // half-way multiplied by the denominator exceeds the range of an uint64.
359     // Simply shift everything to the right.
360     int shift_amount = (precision_digits_count + kDenominatorLog) -
361         DiyFp::kSignificandSize + 1;
362     input.set_f(input.f() >> shift_amount);
363     input.set_e(input.e() + shift_amount);
364     // We add 1 for the lost precision of error, and kDenominator for
365     // the lost precision of input.f().
366     error = (error >> shift_amount) + 1 + kDenominator;
367     precision_digits_count -= shift_amount;
368   }
369   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
370   DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
371   DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
372   uint64_t one64 = 1;
373   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
374   uint64_t precision_bits = input.f() & precision_bits_mask;
375   uint64_t half_way = one64 << (precision_digits_count - 1);
376   precision_bits *= kDenominator;
377   half_way *= kDenominator;
378   DiyFp rounded_input(input.f() >> precision_digits_count,
379                       input.e() + precision_digits_count);
380   if (precision_bits >= half_way + error) {
381     rounded_input.set_f(rounded_input.f() + 1);
382   }
383   // If the last_bits are too close to the half-way case than we are too
384   // inaccurate and round down. In this case we return false so that we can
385   // fall back to a more precise algorithm.
386 
387   *result = Double(rounded_input).value();
388   if (half_way - error < precision_bits && precision_bits < half_way + error) {
389     // Too imprecise. The caller will have to fall back to a slower version.
390     // However the returned number is guaranteed to be either the correct
391     // double, or the next-lower double.
392     return false;
393   } else {
394     return true;
395   }
396 }
397 
398 
399 // Returns
400 //   - -1 if buffer*10^exponent < diy_fp.
401 //   -  0 if buffer*10^exponent == diy_fp.
402 //   - +1 if buffer*10^exponent > diy_fp.
403 // Preconditions:
404 //   buffer.length() + exponent <= kMaxDecimalPower + 1
405 //   buffer.length() + exponent > kMinDecimalPower
406 //   buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)407 static int CompareBufferWithDiyFp(Vector<const char> buffer,
408                                   int exponent,
409                                   DiyFp diy_fp) {
410   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
411   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
412   DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
413   // Make sure that the Bignum will be able to hold all our numbers.
414   // Our Bignum implementation has a separate field for exponents. Shifts will
415   // consume at most one bigit (< 64 bits).
416   // ln(10) == 3.3219...
417   DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
418   Bignum buffer_bignum;
419   Bignum diy_fp_bignum;
420   buffer_bignum.AssignDecimalString(buffer);
421   diy_fp_bignum.AssignUInt64(diy_fp.f());
422   if (exponent >= 0) {
423     buffer_bignum.MultiplyByPowerOfTen(exponent);
424   } else {
425     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
426   }
427   if (diy_fp.e() > 0) {
428     diy_fp_bignum.ShiftLeft(diy_fp.e());
429   } else {
430     buffer_bignum.ShiftLeft(-diy_fp.e());
431   }
432   return Bignum::Compare(buffer_bignum, diy_fp_bignum);
433 }
434 
435 
436 // Returns true if the guess is the correct double.
437 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)438 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
439                          double* guess) {
440   if (trimmed.length() == 0) {
441     *guess = 0.0;
442     return true;
443   }
444   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
445     *guess = Double::Infinity();
446     return true;
447   }
448   if (exponent + trimmed.length() <= kMinDecimalPower) {
449     *guess = 0.0;
450     return true;
451   }
452 
453   if (DoubleStrtod(trimmed, exponent, guess) ||
454       DiyFpStrtod(trimmed, exponent, guess)) {
455     return true;
456   }
457   if (*guess == Double::Infinity()) {
458     return true;
459   }
460   return false;
461 }
462 
463 #if U_DEBUG // needed for ICU only in debug mode
IsDigit(const char d)464 static bool IsDigit(const char d) {
465   return ('0' <= d) && (d <= '9');
466 }
467 
IsNonZeroDigit(const char d)468 static bool IsNonZeroDigit(const char d) {
469   return ('1' <= d) && (d <= '9');
470 }
471 
AssertTrimmedDigits(const Vector<const char> & buffer)472 static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
473   for(int i = 0; i < buffer.length(); ++i) {
474     if(!IsDigit(buffer[i])) {
475       return false;
476     }
477   }
478   return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
479 }
480 #endif // needed for ICU only in debug mode
481 
StrtodTrimmed(Vector<const char> trimmed,int exponent)482 double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
483   DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
484   DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
485   double guess;
486   const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
487   if (is_correct) {
488     return guess;
489   }
490   DiyFp upper_boundary = Double(guess).UpperBoundary();
491   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
492   if (comparison < 0) {
493     return guess;
494   } else if (comparison > 0) {
495     return Double(guess).NextDouble();
496   } else if ((Double(guess).Significand() & 1) == 0) {
497     // Round towards even.
498     return guess;
499   } else {
500     return Double(guess).NextDouble();
501   }
502 }
503 
Strtod(Vector<const char> buffer,int exponent)504 double Strtod(Vector<const char> buffer, int exponent) {
505   char copy_buffer[kMaxSignificantDecimalDigits];
506   Vector<const char> trimmed;
507   int updated_exponent;
508   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
509              &trimmed, &updated_exponent);
510   return StrtodTrimmed(trimmed, updated_exponent);
511 }
512 
SanitizedDoubletof(double d)513 static float SanitizedDoubletof(double d) {
514   DOUBLE_CONVERSION_ASSERT(d >= 0.0);
515   // ASAN has a sanitize check that disallows casting doubles to floats if
516   // they are too big.
517   // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
518   // The behavior should be covered by IEEE 754, but some projects use this
519   // flag, so work around it.
520   float max_finite = 3.4028234663852885981170418348451692544e+38;
521   // The half-way point between the max-finite and infinity value.
522   // Since infinity has an even significand everything equal or greater than
523   // this value should become infinity.
524   double half_max_finite_infinity =
525       3.40282356779733661637539395458142568448e+38;
526   if (d >= max_finite) {
527     if (d >= half_max_finite_infinity) {
528       return Single::Infinity();
529     } else {
530       return max_finite;
531     }
532   } else {
533     return static_cast<float>(d);
534   }
535 }
536 
Strtof(Vector<const char> buffer,int exponent)537 float Strtof(Vector<const char> buffer, int exponent) {
538   char copy_buffer[kMaxSignificantDecimalDigits];
539   Vector<const char> trimmed;
540   int updated_exponent;
541   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
542              &trimmed, &updated_exponent);
543   exponent = updated_exponent;
544 
545   double double_guess;
546   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
547 
548   float float_guess = SanitizedDoubletof(double_guess);
549   if (float_guess == double_guess) {
550     // This shortcut triggers for integer values.
551     return float_guess;
552   }
553 
554   // We must catch double-rounding. Say the double has been rounded up, and is
555   // now a boundary of a float, and rounds up again. This is why we have to
556   // look at previous too.
557   // Example (in decimal numbers):
558   //    input: 12349
559   //    high-precision (4 digits): 1235
560   //    low-precision (3 digits):
561   //       when read from input: 123
562   //       when rounded from high precision: 124.
563   // To do this we simply look at the neigbors of the correct result and see
564   // if they would round to the same float. If the guess is not correct we have
565   // to look at four values (since two different doubles could be the correct
566   // double).
567 
568   double double_next = Double(double_guess).NextDouble();
569   double double_previous = Double(double_guess).PreviousDouble();
570 
571   float f1 = SanitizedDoubletof(double_previous);
572   float f2 = float_guess;
573   float f3 = SanitizedDoubletof(double_next);
574   float f4;
575   if (is_correct) {
576     f4 = f3;
577   } else {
578     double double_next2 = Double(double_next).NextDouble();
579     f4 = SanitizedDoubletof(double_next2);
580   }
581   (void) f2;  // Mark variable as used.
582   DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
583 
584   // If the guess doesn't lie near a single-precision boundary we can simply
585   // return its float-value.
586   if (f1 == f4) {
587     return float_guess;
588   }
589 
590   DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
591          (f1 == f2 && f2 != f3 && f3 == f4) ||
592          (f1 == f2 && f2 == f3 && f3 != f4));
593 
594   // guess and next are the two possible candidates (in the same way that
595   // double_guess was the lower candidate for a double-precision guess).
596   float guess = f1;
597   float next = f4;
598   DiyFp upper_boundary;
599   if (guess == 0.0f) {
600     float min_float = 1e-45f;
601     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
602   } else {
603     upper_boundary = Single(guess).UpperBoundary();
604   }
605   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
606   if (comparison < 0) {
607     return guess;
608   } else if (comparison > 0) {
609     return next;
610   } else if ((Single(guess).Significand() & 1) == 0) {
611     // Round towards even.
612     return guess;
613   } else {
614     return next;
615   }
616 }
617 
618 }  // namespace double_conversion
619 
620 // ICU PATCH: Close ICU namespace
621 U_NAMESPACE_END
622 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
623