1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
9 
10 #include <cstdint>
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
15 
16 U_NAMESPACE_BEGIN namespace number {
17 namespace impl {
18 
19 // Forward-declare (maybe don't want number_utils.h included here):
20 class DecNum;
21 
22 /**
23  * An class for representing a number to be processed by the decimal formatting pipeline. Includes
24  * methods for rounding, plural rules, and decimal digit extraction.
25  *
26  * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27  * object holding state during a pass through the decimal formatting pipeline.
28  *
29  * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30  *
31  * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32  */
33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34   public:
35     /** Copy constructor. */
36     DecimalQuantity(const DecimalQuantity &other);
37 
38     /** Move constructor. */
39     DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT;
40 
41     DecimalQuantity();
42 
43     ~DecimalQuantity() override;
44 
45     /**
46      * Sets this instance to be equal to another instance.
47      *
48      * @param other The instance to copy from.
49      */
50     DecimalQuantity &operator=(const DecimalQuantity &other);
51 
52     /** Move assignment */
53     DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT;
54 
55     /**
56      * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
57      * This method does not perform rounding.
58      *
59      * @param minInt The minimum number of integer digits.
60      */
61     void setMinInteger(int32_t minInt);
62 
63     /**
64      * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
65      * This method does not perform rounding.
66      *
67      * @param minFrac The minimum number of fraction digits.
68      */
69     void setMinFraction(int32_t minFrac);
70 
71     /**
72      * Truncates digits from the upper magnitude of the number in order to satisfy the
73      * specified maximum number of integer digits.
74      *
75      * @param maxInt The maximum number of integer digits.
76      */
77     void applyMaxInteger(int32_t maxInt);
78 
79     /**
80      * Rounds the number to a specified interval, such as 0.05.
81      *
82      * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83      *
84      * @param roundingIncrement The increment to which to round.
85      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
86      */
87     void roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
88                           UErrorCode& status);
89 
90     /** Removes all fraction digits. */
91     void truncate();
92 
93     /**
94      * Rounds the number to the nearest multiple of 5 at the specified magnitude.
95      * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
96      *
97      * @param magnitude The magnitude at which the digit should become either 0 or 5.
98      * @param roundingMode Rounding strategy.
99      */
100     void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
101 
102     /**
103      * Rounds the number to a specified magnitude (power of ten).
104      *
105      * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
106      *     round to 2 decimal places.
107      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
108      */
109     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
110 
111     /**
112      * Rounds the number to an infinite number of decimal points. This has no effect except for
113      * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
114      */
115     void roundToInfinity();
116 
117     /**
118      * Multiply the internal value. Uses decNumber.
119      *
120      * @param multiplicand The value by which to multiply.
121      */
122     void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
123 
124     /**
125      * Divide the internal value. Uses decNumber.
126      *
127      * @param multiplicand The value by which to multiply.
128      */
129     void divideBy(const DecNum& divisor, UErrorCode& status);
130 
131     /** Flips the sign from positive to negative and back. */
132     void negate();
133 
134     /**
135      * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
136      * this method with delta=-3 will change the value to "1.23456".
137      *
138      * @param delta The number of magnitudes of ten to change by.
139      * @return true if integer overflow occured; false otherwise.
140      */
141     bool adjustMagnitude(int32_t delta);
142 
143     /**
144      * @return The power of ten corresponding to the most significant nonzero digit.
145      * The number must not be zero.
146      */
147     int32_t getMagnitude() const;
148 
149     /**
150      * @return Whether the value represented by this {@link DecimalQuantity} is
151      * zero, infinity, or NaN.
152      */
153     bool isZeroish() const;
154 
155     /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
156     bool isNegative() const;
157 
158     /** @return The appropriate value from the Signum enum. */
159     Signum signum() const;
160 
161     /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
162     bool isInfinite() const U_OVERRIDE;
163 
164     /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
165     bool isNaN() const U_OVERRIDE;
166 
167     /** @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. */
168     int64_t toLong(bool truncateIfOverflow = false) const;
169 
170     uint64_t toFractionLong(bool includeTrailingZeros) const;
171 
172     /**
173      * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
174      * @param ignoreFraction if true, silently ignore digits after the decimal place.
175      */
176     bool fitsInLong(bool ignoreFraction = false) const;
177 
178     /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
179     double toDouble() const;
180 
181     /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
182     void toDecNum(DecNum& output, UErrorCode& status) const;
183 
184     DecimalQuantity &setToInt(int32_t n);
185 
186     DecimalQuantity &setToLong(int64_t n);
187 
188     DecimalQuantity &setToDouble(double n);
189 
190     /** decNumber is similar to BigDecimal in Java. */
191     DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
192 
193     /** Internal method if the caller already has a DecNum. */
194     DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
195 
196     /**
197      * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
198      * by this DecimalQuantity.
199      *
200      * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
201      * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
202      *
203      * @param value The digit to append.
204      * @param leadingZeros The number of zeros to append before the digit. For example, if the value
205      *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
206      *     12.304.
207      * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
208      *     new digit. If false, append to the end like a fraction digit. If true, there must not be
209      *     any fraction digits already in the number.
210      * @internal
211      * @deprecated This API is ICU internal only.
212      */
213     void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
214 
215     double getPluralOperand(PluralOperand operand) const U_OVERRIDE;
216 
217     bool hasIntegerValue() const U_OVERRIDE;
218 
219     /**
220      * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
221      * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
222      *
223      * @param magnitude The magnitude of the digit.
224      * @return The digit at the specified magnitude.
225      */
226     int8_t getDigit(int32_t magnitude) const;
227 
228     /**
229      * Gets the largest power of ten that needs to be displayed. The value returned by this function
230      * will be bounded between minInt and maxInt.
231      *
232      * @return The highest-magnitude digit to be displayed.
233      */
234     int32_t getUpperDisplayMagnitude() const;
235 
236     /**
237      * Gets the smallest power of ten that needs to be displayed. The value returned by this function
238      * will be bounded between -minFrac and -maxFrac.
239      *
240      * @return The lowest-magnitude digit to be displayed.
241      */
242     int32_t getLowerDisplayMagnitude() const;
243 
244     int32_t fractionCount() const;
245 
246     int32_t fractionCountWithoutTrailingZeros() const;
247 
248     void clear();
249 
250     /** This method is for internal testing only. */
251     uint64_t getPositionFingerprint() const;
252 
253 //    /**
254 //     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
255 //     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
256 //     * happens.
257 //     *
258 //     * @param fp The {@link UFieldPosition} to populate.
259 //     */
260 //    void populateUFieldPosition(FieldPosition fp);
261 
262     /**
263      * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
264      *
265      * @return An error message if this instance is invalid, or null if this instance is healthy.
266      */
267     const char16_t* checkHealth() const;
268 
269     UnicodeString toString() const;
270 
271     /** Returns the string in standard exponential notation. */
272     UnicodeString toScientificString() const;
273 
274     /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
275     UnicodeString toPlainString() const;
276 
277     /** Visible for testing */
isUsingBytes()278     inline bool isUsingBytes() { return usingBytes; }
279 
280     /** Visible for testing */
isExplicitExactDouble()281     inline bool isExplicitExactDouble() { return explicitExactDouble; }
282 
283     bool operator==(const DecimalQuantity& other) const;
284 
285     inline bool operator!=(const DecimalQuantity& other) const {
286         return !(*this == other);
287     }
288 
289     /**
290      * Bogus flag for when a DecimalQuantity is stored on the stack.
291      */
292     bool bogus = false;
293 
294   private:
295     /**
296      * The power of ten corresponding to the least significant digit in the BCD. For example, if this
297      * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
298      *
299      * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
300      * digits after the decimal place, which is the negative of our definition of scale.
301      */
302     int32_t scale;
303 
304     /**
305      * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
306      * maximum precision is 16 since a long can hold only 16 digits.
307      *
308      * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
309      * #computePrecisionAndCompact()}.
310      */
311     int32_t precision;
312 
313     /**
314      * A bitmask of properties relating to the number represented by this object.
315      *
316      * @see #NEGATIVE_FLAG
317      * @see #INFINITY_FLAG
318      * @see #NAN_FLAG
319      */
320     int8_t flags;
321 
322     // The following three fields relate to the double-to-ascii fast path algorithm.
323     // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
324     // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
325     // of rounding the number ensures that the converted digits are correct, falling back to a slow-
326     // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
327     // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
328     // you don't round, assertions will fail in certain other methods if you try calling them.
329 
330     /**
331      * Whether the value in the BCD comes from the double fast path without having been rounded to
332      * ensure correctness
333      */
334     UBool isApproximate;
335 
336     /**
337      * The original number provided by the user and which is represented in BCD. Used when we need to
338      * re-compute the BCD for an exact double representation.
339      */
340     double origDouble;
341 
342     /**
343      * The change in magnitude relative to the original double. Used when we need to re-compute the
344      * BCD for an exact double representation.
345      */
346     int32_t origDelta;
347 
348     // Positions to keep track of leading and trailing zeros.
349     // lReqPos is the magnitude of the first required leading zero.
350     // rReqPos is the magnitude of the last required trailing zero.
351     int32_t lReqPos = 0;
352     int32_t rReqPos = 0;
353 
354     /**
355      * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
356      * to one digit. For example, the number "12345" in BCD is "0x12345".
357      *
358      * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
359      * like setting the digit to zero.
360      */
361     union {
362         struct {
363             int8_t *ptr;
364             int32_t len;
365         } bcdBytes;
366         uint64_t bcdLong;
367     } fBCD;
368 
369     bool usingBytes = false;
370 
371     /**
372      * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
373      * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
374      * Used for testing.
375      */
376     bool explicitExactDouble = false;
377 
378     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
379 
380     /**
381      * Returns a single digit from the BCD list. No internal state is changed by calling this method.
382      *
383      * @param position The position of the digit to pop, counted in BCD units from the least
384      *     significant digit. If outside the range supported by the implementation, zero is returned.
385      * @return The digit at the specified location.
386      */
387     int8_t getDigitPos(int32_t position) const;
388 
389     /**
390      * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
391      * responsibility to call {@link #compact} after setting the digit.
392      *
393      * @param position The position of the digit to pop, counted in BCD units from the least
394      *     significant digit. If outside the range supported by the implementation, an AssertionError
395      *     is thrown.
396      * @param value The digit to set at the specified location.
397      */
398     void setDigitPos(int32_t position, int8_t value);
399 
400     /**
401      * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
402      * the caller's responsibility to do further manipulation and then call {@link #compact}.
403      *
404      * @param numDigits The number of zeros to add.
405      */
406     void shiftLeft(int32_t numDigits);
407 
408     /**
409      * Directly removes digits from the end of the BCD list.
410      * Updates the scale and precision.
411      *
412      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
413      */
414     void shiftRight(int32_t numDigits);
415 
416     /**
417      * Directly removes digits from the front of the BCD list.
418      * Updates precision.
419      *
420      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
421      */
422     void popFromLeft(int32_t numDigits);
423 
424     /**
425      * Sets the internal representation to zero. Clears any values stored in scale, precision,
426      * hasDouble, origDouble, origDelta, and BCD data.
427      */
428     void setBcdToZero();
429 
430     /**
431      * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
432      * be either positive. The internal state is guaranteed to be empty when this method is called.
433      *
434      * @param n The value to consume.
435      */
436     void readIntToBcd(int32_t n);
437 
438     /**
439      * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
440      * be either positive. The internal state is guaranteed to be empty when this method is called.
441      *
442      * @param n The value to consume.
443      */
444     void readLongToBcd(int64_t n);
445 
446     void readDecNumberToBcd(const DecNum& dn);
447 
448     void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
449 
450     void copyFieldsFrom(const DecimalQuantity& other);
451 
452     void copyBcdFrom(const DecimalQuantity &other);
453 
454     void moveBcdFrom(DecimalQuantity& src);
455 
456     /**
457      * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
458      * precision. The precision is the number of digits in the number up through the greatest nonzero
459      * digit.
460      *
461      * <p>This method must always be called when bcd changes in order for assumptions to be correct in
462      * methods like {@link #fractionCount()}.
463      */
464     void compact();
465 
466     void _setToInt(int32_t n);
467 
468     void _setToLong(int64_t n);
469 
470     void _setToDoubleFast(double n);
471 
472     void _setToDecNum(const DecNum& dn, UErrorCode& status);
473 
474     void convertToAccurateDouble();
475 
476     /** Ensure that a byte array of at least 40 digits is allocated. */
477     void ensureCapacity();
478 
479     void ensureCapacity(int32_t capacity);
480 
481     /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
482     void switchStorage();
483 };
484 
485 } // namespace impl
486 } // namespace number
487 U_NAMESPACE_END
488 
489 
490 #endif //__NUMBER_DECIMALQUANTITY_H__
491 
492 #endif /* #if !UCONFIG_NO_FORMATTING */
493