1 // Copyright 2008 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23 
24 #include <stddef.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28 #include <algorithm>
29 #include <atomic>
30 #include <deque>
31 #include <mutex>
32 #include <new>
33 #include <string>
34 #include <unordered_map>
35 #include <unordered_set>
36 #include <utility>
37 #include <vector>
38 
39 #include "util/logging.h"
40 #include "util/mix.h"
41 #include "util/mutex.h"
42 #include "util/strutil.h"
43 #include "re2/pod_array.h"
44 #include "re2/prog.h"
45 #include "re2/re2.h"
46 #include "re2/sparse_set.h"
47 #include "re2/stringpiece.h"
48 
49 // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
50 #ifdef _MSC_VER
51 #pragma warning(disable: 4200)
52 #endif
53 
54 namespace re2 {
55 
56 #if !defined(__linux__)  /* only Linux seems to have memrchr */
memrchr(const void * s,int c,size_t n)57 static void* memrchr(const void* s, int c, size_t n) {
58   const unsigned char* p = (const unsigned char*)s;
59   for (p += n; n > 0; n--)
60     if (*--p == c)
61       return (void*)p;
62 
63   return NULL;
64 }
65 #endif
66 
67 // Controls whether the DFA should bail out early if the NFA would be faster.
68 static bool dfa_should_bail_when_slow = true;
69 
70 // Changing this to true compiles in prints that trace execution of the DFA.
71 // Generates a lot of output -- only useful for debugging.
72 static const bool ExtraDebug = false;
73 
74 // A DFA implementation of a regular expression program.
75 // Since this is entirely a forward declaration mandated by C++,
76 // some of the comments here are better understood after reading
77 // the comments in the sections that follow the DFA definition.
78 class DFA {
79  public:
80   DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
81   ~DFA();
ok() const82   bool ok() const { return !init_failed_; }
kind()83   Prog::MatchKind kind() { return kind_; }
84 
85   // Searches for the regular expression in text, which is considered
86   // as a subsection of context for the purposes of interpreting flags
87   // like ^ and $ and \A and \z.
88   // Returns whether a match was found.
89   // If a match is found, sets *ep to the end point of the best match in text.
90   // If "anchored", the match must begin at the start of text.
91   // If "want_earliest_match", the match that ends first is used, not
92   //   necessarily the best one.
93   // If "run_forward" is true, the DFA runs from text.begin() to text.end().
94   //   If it is false, the DFA runs from text.end() to text.begin(),
95   //   returning the leftmost end of the match instead of the rightmost one.
96   // If the DFA cannot complete the search (for example, if it is out of
97   //   memory), it sets *failed and returns false.
98   bool Search(const StringPiece& text, const StringPiece& context,
99               bool anchored, bool want_earliest_match, bool run_forward,
100               bool* failed, const char** ep, SparseSet* matches);
101 
102   // Builds out all states for the entire DFA.
103   // If cb is not empty, it receives one callback per state built.
104   // Returns the number of states built.
105   // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
106   int BuildAllStates(const Prog::DFAStateCallback& cb);
107 
108   // Computes min and max for matching strings.  Won't return strings
109   // bigger than maxlen.
110   bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
111 
112   // These data structures are logically private, but C++ makes it too
113   // difficult to mark them as such.
114   class RWLocker;
115   class StateSaver;
116   class Workq;
117 
118   // A single DFA state.  The DFA is represented as a graph of these
119   // States, linked by the next_ pointers.  If in state s and reading
120   // byte c, the next state should be s->next_[c].
121   struct State {
IsMatchre2::DFA::State122     inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
123 
124     int* inst_;         // Instruction pointers in the state.
125     int ninst_;         // # of inst_ pointers.
126     uint32_t flag_;     // Empty string bitfield flags in effect on the way
127                         // into this state, along with kFlagMatch if this
128                         // is a matching state.
129 
130 // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1).
131 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932)
132 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1
133     std::atomic<State*> next_[0];   // Outgoing arrows from State,
134 #else
135     std::atomic<State*> next_[];    // Outgoing arrows from State,
136 #endif
137 
138                         // one per input byte class
139   };
140 
141   enum {
142     kByteEndText = 256,         // imaginary byte at end of text
143 
144     kFlagEmptyMask = 0xFF,      // State.flag_: bits holding kEmptyXXX flags
145     kFlagMatch = 0x0100,        // State.flag_: this is a matching state
146     kFlagLastWord = 0x0200,     // State.flag_: last byte was a word char
147     kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
148   };
149 
150   struct StateHash {
operator ()re2::DFA::StateHash151     size_t operator()(const State* a) const {
152       DCHECK(a != NULL);
153       HashMix mix(a->flag_);
154       for (int i = 0; i < a->ninst_; i++)
155         mix.Mix(a->inst_[i]);
156       mix.Mix(0);
157       return mix.get();
158     }
159   };
160 
161   struct StateEqual {
operator ()re2::DFA::StateEqual162     bool operator()(const State* a, const State* b) const {
163       DCHECK(a != NULL);
164       DCHECK(b != NULL);
165       if (a == b)
166         return true;
167       if (a->flag_ != b->flag_)
168         return false;
169       if (a->ninst_ != b->ninst_)
170         return false;
171       for (int i = 0; i < a->ninst_; i++)
172         if (a->inst_[i] != b->inst_[i])
173           return false;
174       return true;
175     }
176   };
177 
178   typedef std::unordered_set<State*, StateHash, StateEqual> StateSet;
179 
180  private:
181   // Special "first_byte" values for a state.  (Values >= 0 denote actual bytes.)
182   enum {
183     kFbUnknown = -1,   // No analysis has been performed.
184     kFbNone = -2,      // The first-byte trick cannot be used.
185   };
186 
187   enum {
188     // Indices into start_ for unanchored searches.
189     // Add kStartAnchored for anchored searches.
190     kStartBeginText = 0,          // text at beginning of context
191     kStartBeginLine = 2,          // text at beginning of line
192     kStartAfterWordChar = 4,      // text follows a word character
193     kStartAfterNonWordChar = 6,   // text follows non-word character
194     kMaxStart = 8,
195 
196     kStartAnchored = 1,
197   };
198 
199   // Resets the DFA State cache, flushing all saved State* information.
200   // Releases and reacquires cache_mutex_ via cache_lock, so any
201   // State* existing before the call are not valid after the call.
202   // Use a StateSaver to preserve important states across the call.
203   // cache_mutex_.r <= L < mutex_
204   // After: cache_mutex_.w <= L < mutex_
205   void ResetCache(RWLocker* cache_lock);
206 
207   // Looks up and returns the State corresponding to a Workq.
208   // L >= mutex_
209   State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
210 
211   // Looks up and returns a State matching the inst, ninst, and flag.
212   // L >= mutex_
213   State* CachedState(int* inst, int ninst, uint32_t flag);
214 
215   // Clear the cache entirely.
216   // Must hold cache_mutex_.w or be in destructor.
217   void ClearCache();
218 
219   // Converts a State into a Workq: the opposite of WorkqToCachedState.
220   // L >= mutex_
221   void StateToWorkq(State* s, Workq* q);
222 
223   // Runs a State on a given byte, returning the next state.
224   State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
225   State* RunStateOnByte(State*, int);          // L >= mutex_
226 
227   // Runs a Workq on a given byte followed by a set of empty-string flags,
228   // producing a new Workq in nq.  If a match instruction is encountered,
229   // sets *ismatch to true.
230   // L >= mutex_
231   void RunWorkqOnByte(Workq* q, Workq* nq,
232                       int c, uint32_t flag, bool* ismatch);
233 
234   // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
235   // L >= mutex_
236   void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
237 
238   // Adds the instruction id to the Workq, following empty arrows
239   // according to flag.
240   // L >= mutex_
241   void AddToQueue(Workq* q, int id, uint32_t flag);
242 
243   // For debugging, returns a text representation of State.
244   static std::string DumpState(State* state);
245 
246   // For debugging, returns a text representation of a Workq.
247   static std::string DumpWorkq(Workq* q);
248 
249   // Search parameters
250   struct SearchParams {
SearchParamsre2::DFA::SearchParams251     SearchParams(const StringPiece& text, const StringPiece& context,
252                  RWLocker* cache_lock)
253       : text(text), context(context),
254         anchored(false),
255         want_earliest_match(false),
256         run_forward(false),
257         start(NULL),
258         first_byte(kFbUnknown),
259         cache_lock(cache_lock),
260         failed(false),
261         ep(NULL),
262         matches(NULL) { }
263 
264     StringPiece text;
265     StringPiece context;
266     bool anchored;
267     bool want_earliest_match;
268     bool run_forward;
269     State* start;
270     int first_byte;
271     RWLocker *cache_lock;
272     bool failed;     // "out" parameter: whether search gave up
273     const char* ep;  // "out" parameter: end pointer for match
274     SparseSet* matches;
275 
276    private:
277     SearchParams(const SearchParams&) = delete;
278     SearchParams& operator=(const SearchParams&) = delete;
279   };
280 
281   // Before each search, the parameters to Search are analyzed by
282   // AnalyzeSearch to determine the state in which to start and the
283   // "first_byte" for that state, if any.
284   struct StartInfo {
StartInfore2::DFA::StartInfo285     StartInfo() : start(NULL), first_byte(kFbUnknown) {}
286     State* start;
287     std::atomic<int> first_byte;
288   };
289 
290   // Fills in params->start and params->first_byte using
291   // the other search parameters.  Returns true on success,
292   // false on failure.
293   // cache_mutex_.r <= L < mutex_
294   bool AnalyzeSearch(SearchParams* params);
295   bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
296                            uint32_t flags);
297 
298   // The generic search loop, inlined to create specialized versions.
299   // cache_mutex_.r <= L < mutex_
300   // Might unlock and relock cache_mutex_ via params->cache_lock.
301   inline bool InlinedSearchLoop(SearchParams* params,
302                                 bool have_first_byte,
303                                 bool want_earliest_match,
304                                 bool run_forward);
305 
306   // The specialized versions of InlinedSearchLoop.  The three letters
307   // at the ends of the name denote the true/false values used as the
308   // last three parameters of InlinedSearchLoop.
309   // cache_mutex_.r <= L < mutex_
310   // Might unlock and relock cache_mutex_ via params->cache_lock.
311   bool SearchFFF(SearchParams* params);
312   bool SearchFFT(SearchParams* params);
313   bool SearchFTF(SearchParams* params);
314   bool SearchFTT(SearchParams* params);
315   bool SearchTFF(SearchParams* params);
316   bool SearchTFT(SearchParams* params);
317   bool SearchTTF(SearchParams* params);
318   bool SearchTTT(SearchParams* params);
319 
320   // The main search loop: calls an appropriate specialized version of
321   // InlinedSearchLoop.
322   // cache_mutex_.r <= L < mutex_
323   // Might unlock and relock cache_mutex_ via params->cache_lock.
324   bool FastSearchLoop(SearchParams* params);
325 
326   // For debugging, a slow search loop that calls InlinedSearchLoop
327   // directly -- because the booleans passed are not constants, the
328   // loop is not specialized like the SearchFFF etc. versions, so it
329   // runs much more slowly.  Useful only for debugging.
330   // cache_mutex_.r <= L < mutex_
331   // Might unlock and relock cache_mutex_ via params->cache_lock.
332   bool SlowSearchLoop(SearchParams* params);
333 
334   // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)335   int ByteMap(int c) {
336     if (c == kByteEndText)
337       return prog_->bytemap_range();
338     return prog_->bytemap()[c];
339   }
340 
341   // Constant after initialization.
342   Prog* prog_;              // The regular expression program to run.
343   Prog::MatchKind kind_;    // The kind of DFA.
344   bool init_failed_;        // initialization failed (out of memory)
345 
346   Mutex mutex_;  // mutex_ >= cache_mutex_.r
347 
348   // Scratch areas, protected by mutex_.
349   Workq* q0_;             // Two pre-allocated work queues.
350   Workq* q1_;
351   PODArray<int> stack_;   // Pre-allocated stack for AddToQueue
352 
353   // State* cache.  Many threads use and add to the cache simultaneously,
354   // holding cache_mutex_ for reading and mutex_ (above) when adding.
355   // If the cache fills and needs to be discarded, the discarding is done
356   // while holding cache_mutex_ for writing, to avoid interrupting other
357   // readers.  Any State* pointers are only valid while cache_mutex_
358   // is held.
359   Mutex cache_mutex_;
360   int64_t mem_budget_;     // Total memory budget for all States.
361   int64_t state_budget_;   // Amount of memory remaining for new States.
362   StateSet state_cache_;   // All States computed so far.
363   StartInfo start_[kMaxStart];
364 };
365 
366 // Shorthand for casting to uint8_t*.
BytePtr(const void * v)367 static inline const uint8_t* BytePtr(const void* v) {
368   return reinterpret_cast<const uint8_t*>(v);
369 }
370 
371 // Work queues
372 
373 // Marks separate thread groups of different priority
374 // in the work queue when in leftmost-longest matching mode.
375 #define Mark (-1)
376 
377 // Separates the match IDs from the instructions in inst_.
378 // Used only for "many match" DFA states.
379 #define MatchSep (-2)
380 
381 // Internally, the DFA uses a sparse array of
382 // program instruction pointers as a work queue.
383 // In leftmost longest mode, marks separate sections
384 // of workq that started executing at different
385 // locations in the string (earlier locations first).
386 class DFA::Workq : public SparseSet {
387  public:
388   // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)389   Workq(int n, int maxmark) :
390     SparseSet(n+maxmark),
391     n_(n),
392     maxmark_(maxmark),
393     nextmark_(n),
394     last_was_mark_(true) {
395   }
396 
is_mark(int i)397   bool is_mark(int i) { return i >= n_; }
398 
maxmark()399   int maxmark() { return maxmark_; }
400 
clear()401   void clear() {
402     SparseSet::clear();
403     nextmark_ = n_;
404   }
405 
mark()406   void mark() {
407     if (last_was_mark_)
408       return;
409     last_was_mark_ = false;
410     SparseSet::insert_new(nextmark_++);
411   }
412 
size()413   int size() {
414     return n_ + maxmark_;
415   }
416 
insert(int id)417   void insert(int id) {
418     if (contains(id))
419       return;
420     insert_new(id);
421   }
422 
insert_new(int id)423   void insert_new(int id) {
424     last_was_mark_ = false;
425     SparseSet::insert_new(id);
426   }
427 
428  private:
429   int n_;                // size excluding marks
430   int maxmark_;          // maximum number of marks
431   int nextmark_;         // id of next mark
432   bool last_was_mark_;   // last inserted was mark
433 
434   Workq(const Workq&) = delete;
435   Workq& operator=(const Workq&) = delete;
436 };
437 
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)438 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
439   : prog_(prog),
440     kind_(kind),
441     init_failed_(false),
442     q0_(NULL),
443     q1_(NULL),
444     mem_budget_(max_mem) {
445   if (ExtraDebug)
446     fprintf(stderr, "\nkind %d\n%s\n", kind_, prog_->DumpUnanchored().c_str());
447   int nmark = 0;
448   if (kind_ == Prog::kLongestMatch)
449     nmark = prog_->size();
450   // See DFA::AddToQueue() for why this is so.
451   int nstack = prog_->inst_count(kInstCapture) +
452                prog_->inst_count(kInstEmptyWidth) +
453                prog_->inst_count(kInstNop) +
454                nmark + 1;  // + 1 for start inst
455 
456   // Account for space needed for DFA, q0, q1, stack.
457   mem_budget_ -= sizeof(DFA);
458   mem_budget_ -= (prog_->size() + nmark) *
459                  (sizeof(int)+sizeof(int)) * 2;  // q0, q1
460   mem_budget_ -= nstack * sizeof(int);  // stack
461   if (mem_budget_ < 0) {
462     init_failed_ = true;
463     return;
464   }
465 
466   state_budget_ = mem_budget_;
467 
468   // Make sure there is a reasonable amount of working room left.
469   // At minimum, the search requires room for two states in order
470   // to limp along, restarting frequently.  We'll get better performance
471   // if there is room for a larger number of states, say 20.
472   // Note that a state stores list heads only, so we use the program
473   // list count for the upper bound, not the program size.
474   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
475   int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
476                       (prog_->list_count()+nmark)*sizeof(int);
477   if (state_budget_ < 20*one_state) {
478     init_failed_ = true;
479     return;
480   }
481 
482   q0_ = new Workq(prog_->size(), nmark);
483   q1_ = new Workq(prog_->size(), nmark);
484   stack_ = PODArray<int>(nstack);
485 }
486 
~DFA()487 DFA::~DFA() {
488   delete q0_;
489   delete q1_;
490   ClearCache();
491 }
492 
493 // In the DFA state graph, s->next[c] == NULL means that the
494 // state has not yet been computed and needs to be.  We need
495 // a different special value to signal that s->next[c] is a
496 // state that can never lead to a match (and thus the search
497 // can be called off).  Hence DeadState.
498 #define DeadState reinterpret_cast<State*>(1)
499 
500 // Signals that the rest of the string matches no matter what it is.
501 #define FullMatchState reinterpret_cast<State*>(2)
502 
503 #define SpecialStateMax FullMatchState
504 
505 // Debugging printouts
506 
507 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)508 std::string DFA::DumpWorkq(Workq* q) {
509   std::string s;
510   const char* sep = "";
511   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
512     if (q->is_mark(*it)) {
513       s += "|";
514       sep = "";
515     } else {
516       s += StringPrintf("%s%d", sep, *it);
517       sep = ",";
518     }
519   }
520   return s;
521 }
522 
523 // For debugging, returns a string representation of the state.
DumpState(State * state)524 std::string DFA::DumpState(State* state) {
525   if (state == NULL)
526     return "_";
527   if (state == DeadState)
528     return "X";
529   if (state == FullMatchState)
530     return "*";
531   std::string s;
532   const char* sep = "";
533   s += StringPrintf("(%p)", state);
534   for (int i = 0; i < state->ninst_; i++) {
535     if (state->inst_[i] == Mark) {
536       s += "|";
537       sep = "";
538     } else if (state->inst_[i] == MatchSep) {
539       s += "||";
540       sep = "";
541     } else {
542       s += StringPrintf("%s%d", sep, state->inst_[i]);
543       sep = ",";
544     }
545   }
546   s += StringPrintf(" flag=%#x", state->flag_);
547   return s;
548 }
549 
550 //////////////////////////////////////////////////////////////////////
551 //
552 // DFA state graph construction.
553 //
554 // The DFA state graph is a heavily-linked collection of State* structures.
555 // The state_cache_ is a set of all the State structures ever allocated,
556 // so that if the same state is reached by two different paths,
557 // the same State structure can be used.  This reduces allocation
558 // requirements and also avoids duplication of effort across the two
559 // identical states.
560 //
561 // A State is defined by an ordered list of instruction ids and a flag word.
562 //
563 // The choice of an ordered list of instructions differs from a typical
564 // textbook DFA implementation, which would use an unordered set.
565 // Textbook descriptions, however, only care about whether
566 // the DFA matches, not where it matches in the text.  To decide where the
567 // DFA matches, we need to mimic the behavior of the dominant backtracking
568 // implementations like PCRE, which try one possible regular expression
569 // execution, then another, then another, stopping when one of them succeeds.
570 // The DFA execution tries these many executions in parallel, representing
571 // each by an instruction id.  These pointers are ordered in the State.inst_
572 // list in the same order that the executions would happen in a backtracking
573 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
574 // can be discarded.
575 //
576 // Textbooks also typically do not consider context-aware empty string operators
577 // like ^ or $.  These are handled by the flag word, which specifies the set
578 // of empty-string operators that should be matched when executing at the
579 // current text position.  These flag bits are defined in prog.h.
580 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
581 // is a matching state (one that reached a kInstMatch in the program)
582 // and kFlagLastWord if the last processed byte was a word character, for the
583 // implementation of \B and \b.
584 //
585 // The flag word also contains, shifted up 16 bits, the bits looked for by
586 // any kInstEmptyWidth instructions in the state.  These provide a useful
587 // summary indicating when new flags might be useful.
588 //
589 // The permanent representation of a State's instruction ids is just an array,
590 // but while a state is being analyzed, these instruction ids are represented
591 // as a Workq, which is an array that allows iteration in insertion order.
592 
593 // NOTE(rsc): The choice of State construction determines whether the DFA
594 // mimics backtracking implementations (so-called leftmost first matching) or
595 // traditional DFA implementations (so-called leftmost longest matching as
596 // prescribed by POSIX).  This implementation chooses to mimic the
597 // backtracking implementations, because we want to replace PCRE.  To get
598 // POSIX behavior, the states would need to be considered not as a simple
599 // ordered list of instruction ids, but as a list of unordered sets of instruction
600 // ids.  A match by a state in one set would inhibit the running of sets
601 // farther down the list but not other instruction ids in the same set.  Each
602 // set would correspond to matches beginning at a given point in the string.
603 // This is implemented by separating different sets with Mark pointers.
604 
605 // Looks in the State cache for a State matching q, flag.
606 // If one is found, returns it.  If one is not found, allocates one,
607 // inserts it in the cache, and returns it.
608 // If mq is not null, MatchSep and the match IDs in mq will be appended
609 // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)610 DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
611   //mutex_.AssertHeld();
612 
613   // Construct array of instruction ids for the new state.
614   // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
615   // those are the only operators with any effect in
616   // RunWorkqOnEmptyString or RunWorkqOnByte.
617   int* inst = new int[q->size()];
618   int n = 0;
619   uint32_t needflags = 0;  // flags needed by kInstEmptyWidth instructions
620   bool sawmatch = false;   // whether queue contains guaranteed kInstMatch
621   bool sawmark = false;    // whether queue contains a Mark
622   if (ExtraDebug)
623     fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
624   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
625     int id = *it;
626     if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
627       break;
628     if (q->is_mark(id)) {
629       if (n > 0 && inst[n-1] != Mark) {
630         sawmark = true;
631         inst[n++] = Mark;
632       }
633       continue;
634     }
635     Prog::Inst* ip = prog_->inst(id);
636     switch (ip->opcode()) {
637       case kInstAltMatch:
638         // This state will continue to a match no matter what
639         // the rest of the input is.  If it is the highest priority match
640         // being considered, return the special FullMatchState
641         // to indicate that it's all matches from here out.
642         if (kind_ != Prog::kManyMatch &&
643             (kind_ != Prog::kFirstMatch ||
644              (it == q->begin() && ip->greedy(prog_))) &&
645             (kind_ != Prog::kLongestMatch || !sawmark) &&
646             (flag & kFlagMatch)) {
647           delete[] inst;
648           if (ExtraDebug)
649             fprintf(stderr, " -> FullMatchState\n");
650           return FullMatchState;
651         }
652         FALLTHROUGH_INTENDED;
653       default:
654         // Record iff id is the head of its list, which must
655         // be the case if id-1 is the last of *its* list. :)
656         if (prog_->inst(id-1)->last())
657           inst[n++] = *it;
658         if (ip->opcode() == kInstEmptyWidth)
659           needflags |= ip->empty();
660         if (ip->opcode() == kInstMatch && !prog_->anchor_end())
661           sawmatch = true;
662         break;
663     }
664   }
665   DCHECK_LE(n, q->size());
666   if (n > 0 && inst[n-1] == Mark)
667     n--;
668 
669   // If there are no empty-width instructions waiting to execute,
670   // then the extra flag bits will not be used, so there is no
671   // point in saving them.  (Discarding them reduces the number
672   // of distinct states.)
673   if (needflags == 0)
674     flag &= kFlagMatch;
675 
676   // NOTE(rsc): The code above cannot do flag &= needflags,
677   // because if the right flags were present to pass the current
678   // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
679   // might be reached that in turn need different flags.
680   // The only sure thing is that if there are no kInstEmptyWidth
681   // instructions at all, no flags will be needed.
682   // We could do the extra work to figure out the full set of
683   // possibly needed flags by exploring past the kInstEmptyWidth
684   // instructions, but the check above -- are any flags needed
685   // at all? -- handles the most common case.  More fine-grained
686   // analysis can only be justified by measurements showing that
687   // too many redundant states are being allocated.
688 
689   // If there are no Insts in the list, it's a dead state,
690   // which is useful to signal with a special pointer so that
691   // the execution loop can stop early.  This is only okay
692   // if the state is *not* a matching state.
693   if (n == 0 && flag == 0) {
694     delete[] inst;
695     if (ExtraDebug)
696       fprintf(stderr, " -> DeadState\n");
697     return DeadState;
698   }
699 
700   // If we're in longest match mode, the state is a sequence of
701   // unordered state sets separated by Marks.  Sort each set
702   // to canonicalize, to reduce the number of distinct sets stored.
703   if (kind_ == Prog::kLongestMatch) {
704     int* ip = inst;
705     int* ep = ip + n;
706     while (ip < ep) {
707       int* markp = ip;
708       while (markp < ep && *markp != Mark)
709         markp++;
710       std::sort(ip, markp);
711       if (markp < ep)
712         markp++;
713       ip = markp;
714     }
715   }
716 
717   // If we're in many match mode, canonicalize for similar reasons:
718   // we have an unordered set of states (i.e. we don't have Marks)
719   // and sorting will reduce the number of distinct sets stored.
720   if (kind_ == Prog::kManyMatch) {
721     int* ip = inst;
722     int* ep = ip + n;
723     std::sort(ip, ep);
724   }
725 
726   // Append MatchSep and the match IDs in mq if necessary.
727   if (mq != NULL) {
728     inst[n++] = MatchSep;
729     for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
730       int id = *i;
731       Prog::Inst* ip = prog_->inst(id);
732       if (ip->opcode() == kInstMatch)
733         inst[n++] = ip->match_id();
734     }
735   }
736 
737   // Save the needed empty-width flags in the top bits for use later.
738   flag |= needflags << kFlagNeedShift;
739 
740   State* state = CachedState(inst, n, flag);
741   delete[] inst;
742   return state;
743 }
744 
745 // Looks in the State cache for a State matching inst, ninst, flag.
746 // If one is found, returns it.  If one is not found, allocates one,
747 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)748 DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
749   //mutex_.AssertHeld();
750 
751   // Look in the cache for a pre-existing state.
752   // We have to initialise the struct like this because otherwise
753   // MSVC will complain about the flexible array member. :(
754   State state;
755   state.inst_ = inst;
756   state.ninst_ = ninst;
757   state.flag_ = flag;
758   StateSet::iterator it = state_cache_.find(&state);
759   if (it != state_cache_.end()) {
760     if (ExtraDebug)
761       fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
762     return *it;
763   }
764 
765   // Must have enough memory for new state.
766   // In addition to what we're going to allocate,
767   // the state cache hash table seems to incur about 40 bytes per
768   // State*, empirically.
769   const int kStateCacheOverhead = 40;
770   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
771   int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
772             ninst*sizeof(int);
773   if (mem_budget_ < mem + kStateCacheOverhead) {
774     mem_budget_ = -1;
775     return NULL;
776   }
777   mem_budget_ -= mem + kStateCacheOverhead;
778 
779   // Allocate new state along with room for next_ and inst_.
780   char* space = std::allocator<char>().allocate(mem);
781   State* s = new (space) State;
782   (void) new (s->next_) std::atomic<State*>[nnext];
783   // Work around a unfortunate bug in older versions of libstdc++.
784   // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
785   for (int i = 0; i < nnext; i++)
786     (void) new (s->next_ + i) std::atomic<State*>(NULL);
787   s->inst_ = new (s->next_ + nnext) int[ninst];
788   memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
789   s->ninst_ = ninst;
790   s->flag_ = flag;
791   if (ExtraDebug)
792     fprintf(stderr, " -> %s\n", DumpState(s).c_str());
793 
794   // Put state in cache and return it.
795   state_cache_.insert(s);
796   return s;
797 }
798 
799 // Clear the cache.  Must hold cache_mutex_.w or be in destructor.
ClearCache()800 void DFA::ClearCache() {
801   StateSet::iterator begin = state_cache_.begin();
802   StateSet::iterator end = state_cache_.end();
803   while (begin != end) {
804     StateSet::iterator tmp = begin;
805     ++begin;
806     // Deallocate the blob of memory that we allocated in DFA::CachedState().
807     // We recompute mem in order to benefit from sized delete where possible.
808     int ninst = (*tmp)->ninst_;
809     int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
810     int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
811               ninst*sizeof(int);
812     std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
813   }
814   state_cache_.clear();
815 }
816 
817 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)818 void DFA::StateToWorkq(State* s, Workq* q) {
819   q->clear();
820   for (int i = 0; i < s->ninst_; i++) {
821     if (s->inst_[i] == Mark) {
822       q->mark();
823     } else if (s->inst_[i] == MatchSep) {
824       // Nothing after this is an instruction!
825       break;
826     } else {
827       // Explore from the head of the list.
828       AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
829     }
830   }
831 }
832 
833 // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)834 void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
835 
836   // Use stack_ to hold our stack of instructions yet to process.
837   // It was preallocated as follows:
838   //   one entry per Capture;
839   //   one entry per EmptyWidth; and
840   //   one entry per Nop.
841   // This reflects the maximum number of stack pushes that each can
842   // perform. (Each instruction can be processed at most once.)
843   // When using marks, we also added nmark == prog_->size().
844   // (Otherwise, nmark == 0.)
845   int* stk = stack_.data();
846   int nstk = 0;
847 
848   stk[nstk++] = id;
849   while (nstk > 0) {
850     DCHECK_LE(nstk, stack_.size());
851     id = stk[--nstk];
852 
853   Loop:
854     if (id == Mark) {
855       q->mark();
856       continue;
857     }
858 
859     if (id == 0)
860       continue;
861 
862     // If ip is already on the queue, nothing to do.
863     // Otherwise add it.  We don't actually keep all the
864     // ones that get added, but adding all of them here
865     // increases the likelihood of q->contains(id),
866     // reducing the amount of duplicated work.
867     if (q->contains(id))
868       continue;
869     q->insert_new(id);
870 
871     // Process instruction.
872     Prog::Inst* ip = prog_->inst(id);
873     switch (ip->opcode()) {
874       default:
875         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
876         break;
877 
878       case kInstByteRange:  // just save these on the queue
879       case kInstMatch:
880         if (ip->last())
881           break;
882         id = id+1;
883         goto Loop;
884 
885       case kInstCapture:    // DFA treats captures as no-ops.
886       case kInstNop:
887         if (!ip->last())
888           stk[nstk++] = id+1;
889 
890         // If this instruction is the [00-FF]* loop at the beginning of
891         // a leftmost-longest unanchored search, separate with a Mark so
892         // that future threads (which will start farther to the right in
893         // the input string) are lower priority than current threads.
894         if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
895             id == prog_->start_unanchored() && id != prog_->start())
896           stk[nstk++] = Mark;
897         id = ip->out();
898         goto Loop;
899 
900       case kInstAltMatch:
901         DCHECK(!ip->last());
902         id = id+1;
903         goto Loop;
904 
905       case kInstEmptyWidth:
906         if (!ip->last())
907           stk[nstk++] = id+1;
908 
909         // Continue on if we have all the right flag bits.
910         if (ip->empty() & ~flag)
911           break;
912         id = ip->out();
913         goto Loop;
914     }
915   }
916 }
917 
918 // Running of work queues.  In the work queue, order matters:
919 // the queue is sorted in priority order.  If instruction i comes before j,
920 // then the instructions that i produces during the run must come before
921 // the ones that j produces.  In order to keep this invariant, all the
922 // work queue runners have to take an old queue to process and then
923 // also a new queue to fill in.  It's not acceptable to add to the end of
924 // an existing queue, because new instructions will not end up in the
925 // correct position.
926 
927 // Runs the work queue, processing the empty strings indicated by flag.
928 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
929 // both ^ and $.  It is important that callers pass all flags at once:
930 // processing both ^ and $ is not the same as first processing only ^
931 // and then processing only $.  Doing the two-step sequence won't match
932 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
933 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)934 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
935   newq->clear();
936   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
937     if (oldq->is_mark(*i))
938       AddToQueue(newq, Mark, flag);
939     else
940       AddToQueue(newq, *i, flag);
941   }
942 }
943 
944 // Runs the work queue, processing the single byte c followed by any empty
945 // strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
946 // means to match c$.  Sets the bool *ismatch to true if the end of the
947 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)948 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
949                          int c, uint32_t flag, bool* ismatch) {
950   //mutex_.AssertHeld();
951 
952   newq->clear();
953   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
954     if (oldq->is_mark(*i)) {
955       if (*ismatch)
956         return;
957       newq->mark();
958       continue;
959     }
960     int id = *i;
961     Prog::Inst* ip = prog_->inst(id);
962     switch (ip->opcode()) {
963       default:
964         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
965         break;
966 
967       case kInstFail:        // never succeeds
968       case kInstCapture:     // already followed
969       case kInstNop:         // already followed
970       case kInstAltMatch:    // already followed
971       case kInstEmptyWidth:  // already followed
972         break;
973 
974       case kInstByteRange:   // can follow if c is in range
975         if (!ip->Matches(c))
976           break;
977         AddToQueue(newq, ip->out(), flag);
978         if (ip->hint() != 0) {
979           // We have a hint, but we must cancel out the
980           // increment that will occur after the break.
981           i += ip->hint() - 1;
982         } else {
983           // We have no hint, so we must find the end
984           // of the current list and then skip to it.
985           Prog::Inst* ip0 = ip;
986           while (!ip->last())
987             ++ip;
988           i += ip - ip0;
989         }
990         break;
991 
992       case kInstMatch:
993         if (prog_->anchor_end() && c != kByteEndText &&
994             kind_ != Prog::kManyMatch)
995           break;
996         *ismatch = true;
997         if (kind_ == Prog::kFirstMatch) {
998           // Can stop processing work queue since we found a match.
999           return;
1000         }
1001         break;
1002     }
1003   }
1004 
1005   if (ExtraDebug)
1006     fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n",
1007             DumpWorkq(oldq).c_str(), c, flag, DumpWorkq(newq).c_str(), *ismatch);
1008 }
1009 
1010 // Processes input byte c in state, returning new state.
1011 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)1012 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
1013   // Keep only one RunStateOnByte going
1014   // even if the DFA is being run by multiple threads.
1015   MutexLock l(&mutex_);
1016   return RunStateOnByte(state, c);
1017 }
1018 
1019 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)1020 DFA::State* DFA::RunStateOnByte(State* state, int c) {
1021   //mutex_.AssertHeld();
1022 
1023   if (state <= SpecialStateMax) {
1024     if (state == FullMatchState) {
1025       // It is convenient for routines like PossibleMatchRange
1026       // if we implement RunStateOnByte for FullMatchState:
1027       // once you get into this state you never get out,
1028       // so it's pretty easy.
1029       return FullMatchState;
1030     }
1031     if (state == DeadState) {
1032       LOG(DFATAL) << "DeadState in RunStateOnByte";
1033       return NULL;
1034     }
1035     if (state == NULL) {
1036       LOG(DFATAL) << "NULL state in RunStateOnByte";
1037       return NULL;
1038     }
1039     LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1040     return NULL;
1041   }
1042 
1043   // If someone else already computed this, return it.
1044   State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1045   if (ns != NULL)
1046     return ns;
1047 
1048   // Convert state into Workq.
1049   StateToWorkq(state, q0_);
1050 
1051   // Flags marking the kinds of empty-width things (^ $ etc)
1052   // around this byte.  Before the byte we have the flags recorded
1053   // in the State structure itself.  After the byte we have
1054   // nothing yet (but that will change: read on).
1055   uint32_t needflag = state->flag_ >> kFlagNeedShift;
1056   uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1057   uint32_t oldbeforeflag = beforeflag;
1058   uint32_t afterflag = 0;
1059 
1060   if (c == '\n') {
1061     // Insert implicit $ and ^ around \n
1062     beforeflag |= kEmptyEndLine;
1063     afterflag |= kEmptyBeginLine;
1064   }
1065 
1066   if (c == kByteEndText) {
1067     // Insert implicit $ and \z before the fake "end text" byte.
1068     beforeflag |= kEmptyEndLine | kEmptyEndText;
1069   }
1070 
1071   // The state flag kFlagLastWord says whether the last
1072   // byte processed was a word character.  Use that info to
1073   // insert empty-width (non-)word boundaries.
1074   bool islastword = (state->flag_ & kFlagLastWord) != 0;
1075   bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1076   if (isword == islastword)
1077     beforeflag |= kEmptyNonWordBoundary;
1078   else
1079     beforeflag |= kEmptyWordBoundary;
1080 
1081   // Okay, finally ready to run.
1082   // Only useful to rerun on empty string if there are new, useful flags.
1083   if (beforeflag & ~oldbeforeflag & needflag) {
1084     RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1085     using std::swap;
1086     swap(q0_, q1_);
1087   }
1088   bool ismatch = false;
1089   RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1090   using std::swap;
1091   swap(q0_, q1_);
1092 
1093   // Save afterflag along with ismatch and isword in new state.
1094   uint32_t flag = afterflag;
1095   if (ismatch)
1096     flag |= kFlagMatch;
1097   if (isword)
1098     flag |= kFlagLastWord;
1099 
1100   if (ismatch && kind_ == Prog::kManyMatch)
1101     ns = WorkqToCachedState(q0_, q1_, flag);
1102   else
1103     ns = WorkqToCachedState(q0_, NULL, flag);
1104 
1105   // Flush ns before linking to it.
1106   // Write barrier before updating state->next_ so that the
1107   // main search loop can proceed without any locking, for speed.
1108   // (Otherwise it would need one mutex operation per input byte.)
1109   state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1110   return ns;
1111 }
1112 
1113 
1114 //////////////////////////////////////////////////////////////////////
1115 // DFA cache reset.
1116 
1117 // Reader-writer lock helper.
1118 //
1119 // The DFA uses a reader-writer mutex to protect the state graph itself.
1120 // Traversing the state graph requires holding the mutex for reading,
1121 // and discarding the state graph and starting over requires holding the
1122 // lock for writing.  If a search needs to expand the graph but is out
1123 // of memory, it will need to drop its read lock and then acquire the
1124 // write lock.  Since it cannot then atomically downgrade from write lock
1125 // to read lock, it runs the rest of the search holding the write lock.
1126 // (This probably helps avoid repeated contention, but really the decision
1127 // is forced by the Mutex interface.)  It's a bit complicated to keep
1128 // track of whether the lock is held for reading or writing and thread
1129 // that through the search, so instead we encapsulate it in the RWLocker
1130 // and pass that around.
1131 
1132 class DFA::RWLocker {
1133  public:
1134   explicit RWLocker(Mutex* mu);
1135   ~RWLocker();
1136 
1137   // If the lock is only held for reading right now,
1138   // drop the read lock and re-acquire for writing.
1139   // Subsequent calls to LockForWriting are no-ops.
1140   // Notice that the lock is *released* temporarily.
1141   void LockForWriting();
1142 
1143  private:
1144   Mutex* mu_;
1145   bool writing_;
1146 
1147   RWLocker(const RWLocker&) = delete;
1148   RWLocker& operator=(const RWLocker&) = delete;
1149 };
1150 
RWLocker(Mutex * mu)1151 DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) {
1152   mu_->ReaderLock();
1153 }
1154 
1155 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because
1156 // the annotations don't support lock upgrade.
LockForWriting()1157 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1158   if (!writing_) {
1159     mu_->ReaderUnlock();
1160     mu_->WriterLock();
1161     writing_ = true;
1162   }
1163 }
1164 
~RWLocker()1165 DFA::RWLocker::~RWLocker() {
1166   if (!writing_)
1167     mu_->ReaderUnlock();
1168   else
1169     mu_->WriterUnlock();
1170 }
1171 
1172 
1173 // When the DFA's State cache fills, we discard all the states in the
1174 // cache and start over.  Many threads can be using and adding to the
1175 // cache at the same time, so we synchronize using the cache_mutex_
1176 // to keep from stepping on other threads.  Specifically, all the
1177 // threads using the current cache hold cache_mutex_ for reading.
1178 // When a thread decides to flush the cache, it drops cache_mutex_
1179 // and then re-acquires it for writing.  That ensures there are no
1180 // other threads accessing the cache anymore.  The rest of the search
1181 // runs holding cache_mutex_ for writing, avoiding any contention
1182 // with or cache pollution caused by other threads.
1183 
ResetCache(RWLocker * cache_lock)1184 void DFA::ResetCache(RWLocker* cache_lock) {
1185   // Re-acquire the cache_mutex_ for writing (exclusive use).
1186   cache_lock->LockForWriting();
1187 
1188   hooks::GetDFAStateCacheResetHook()({
1189       state_budget_,
1190       state_cache_.size(),
1191   });
1192 
1193   // Clear the cache, reset the memory budget.
1194   for (int i = 0; i < kMaxStart; i++) {
1195     start_[i].start = NULL;
1196     start_[i].first_byte.store(kFbUnknown, std::memory_order_relaxed);
1197   }
1198   ClearCache();
1199   mem_budget_ = state_budget_;
1200 }
1201 
1202 // Typically, a couple States do need to be preserved across a cache
1203 // reset, like the State at the current point in the search.
1204 // The StateSaver class helps keep States across cache resets.
1205 // It makes a copy of the state's guts outside the cache (before the reset)
1206 // and then can be asked, after the reset, to recreate the State
1207 // in the new cache.  For example, in a DFA method ("this" is a DFA):
1208 //
1209 //   StateSaver saver(this, s);
1210 //   ResetCache(cache_lock);
1211 //   s = saver.Restore();
1212 //
1213 // The saver should always have room in the cache to re-create the state,
1214 // because resetting the cache locks out all other threads, and the cache
1215 // is known to have room for at least a couple states (otherwise the DFA
1216 // constructor fails).
1217 
1218 class DFA::StateSaver {
1219  public:
1220   explicit StateSaver(DFA* dfa, State* state);
1221   ~StateSaver();
1222 
1223   // Recreates and returns a state equivalent to the
1224   // original state passed to the constructor.
1225   // Returns NULL if the cache has filled, but
1226   // since the DFA guarantees to have room in the cache
1227   // for a couple states, should never return NULL
1228   // if used right after ResetCache.
1229   State* Restore();
1230 
1231  private:
1232   DFA* dfa_;         // the DFA to use
1233   int* inst_;        // saved info from State
1234   int ninst_;
1235   uint32_t flag_;
1236   bool is_special_;  // whether original state was special
1237   State* special_;   // if is_special_, the original state
1238 
1239   StateSaver(const StateSaver&) = delete;
1240   StateSaver& operator=(const StateSaver&) = delete;
1241 };
1242 
StateSaver(DFA * dfa,State * state)1243 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1244   dfa_ = dfa;
1245   if (state <= SpecialStateMax) {
1246     inst_ = NULL;
1247     ninst_ = 0;
1248     flag_ = 0;
1249     is_special_ = true;
1250     special_ = state;
1251     return;
1252   }
1253   is_special_ = false;
1254   special_ = NULL;
1255   flag_ = state->flag_;
1256   ninst_ = state->ninst_;
1257   inst_ = new int[ninst_];
1258   memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1259 }
1260 
~StateSaver()1261 DFA::StateSaver::~StateSaver() {
1262   if (!is_special_)
1263     delete[] inst_;
1264 }
1265 
Restore()1266 DFA::State* DFA::StateSaver::Restore() {
1267   if (is_special_)
1268     return special_;
1269   MutexLock l(&dfa_->mutex_);
1270   State* s = dfa_->CachedState(inst_, ninst_, flag_);
1271   if (s == NULL)
1272     LOG(DFATAL) << "StateSaver failed to restore state.";
1273   return s;
1274 }
1275 
1276 
1277 //////////////////////////////////////////////////////////////////////
1278 //
1279 // DFA execution.
1280 //
1281 // The basic search loop is easy: start in a state s and then for each
1282 // byte c in the input, s = s->next[c].
1283 //
1284 // This simple description omits a few efficiency-driven complications.
1285 //
1286 // First, the State graph is constructed incrementally: it is possible
1287 // that s->next[c] is null, indicating that that state has not been
1288 // fully explored.  In this case, RunStateOnByte must be invoked to
1289 // determine the next state, which is cached in s->next[c] to save
1290 // future effort.  An alternative reason for s->next[c] to be null is
1291 // that the DFA has reached a so-called "dead state", in which any match
1292 // is no longer possible.  In this case RunStateOnByte will return NULL
1293 // and the processing of the string can stop early.
1294 //
1295 // Second, a 256-element pointer array for s->next_ makes each State
1296 // quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1297 // maps from bytes to "byte classes" and then next_ only needs to have
1298 // as many pointers as there are byte classes.  A byte class is simply a
1299 // range of bytes that the regexp never distinguishes between.
1300 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1301 // 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1302 // but in exchange we typically cut the size of a State (and thus our
1303 // memory footprint) by about 5-10x.  The comments still refer to
1304 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1305 //
1306 // Third, it is common for a DFA for an unanchored match to begin in a
1307 // state in which only one particular byte value can take the DFA to a
1308 // different state.  That is, s->next[c] != s for only one c.  In this
1309 // situation, the DFA can do better than executing the simple loop.
1310 // Instead, it can call memchr to search very quickly for the byte c.
1311 // Whether the start state has this property is determined during a
1312 // pre-compilation pass, and if so, the byte b is passed to the search
1313 // loop as the "first_byte" argument, along with a boolean "have_first_byte".
1314 //
1315 // Fourth, the desired behavior is to search for the leftmost-best match
1316 // (approximately, the same one that Perl would find), which is not
1317 // necessarily the match ending earliest in the string.  Each time a
1318 // match is found, it must be noted, but the DFA must continue on in
1319 // hope of finding a higher-priority match.  In some cases, the caller only
1320 // cares whether there is any match at all, not which one is found.
1321 // The "want_earliest_match" flag causes the search to stop at the first
1322 // match found.
1323 //
1324 // Fifth, one algorithm that uses the DFA needs it to run over the
1325 // input string backward, beginning at the end and ending at the beginning.
1326 // Passing false for the "run_forward" flag causes the DFA to run backward.
1327 //
1328 // The checks for these last three cases, which in a naive implementation
1329 // would be performed once per input byte, slow the general loop enough
1330 // to merit specialized versions of the search loop for each of the
1331 // eight possible settings of the three booleans.  Rather than write
1332 // eight different functions, we write one general implementation and then
1333 // inline it to create the specialized ones.
1334 //
1335 // Note that matches are delayed by one byte, to make it easier to
1336 // accomodate match conditions depending on the next input byte (like $ and \b).
1337 // When s->next[c]->IsMatch(), it means that there is a match ending just
1338 // *before* byte c.
1339 
1340 // The generic search loop.  Searches text for a match, returning
1341 // the pointer to the end of the chosen match, or NULL if no match.
1342 // The bools are equal to the same-named variables in params, but
1343 // making them function arguments lets the inliner specialize
1344 // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool have_first_byte,bool want_earliest_match,bool run_forward)1345 inline bool DFA::InlinedSearchLoop(SearchParams* params,
1346                                    bool have_first_byte,
1347                                    bool want_earliest_match,
1348                                    bool run_forward) {
1349   State* start = params->start;
1350   const uint8_t* bp = BytePtr(params->text.data());  // start of text
1351   const uint8_t* p = bp;                             // text scanning point
1352   const uint8_t* ep = BytePtr(params->text.data() +
1353                               params->text.size());  // end of text
1354   const uint8_t* resetp = NULL;                      // p at last cache reset
1355   if (!run_forward) {
1356     using std::swap;
1357     swap(p, ep);
1358   }
1359 
1360   const uint8_t* bytemap = prog_->bytemap();
1361   const uint8_t* lastmatch = NULL;   // most recent matching position in text
1362   bool matched = false;
1363 
1364   State* s = start;
1365   if (ExtraDebug)
1366     fprintf(stderr, "@stx: %s\n", DumpState(s).c_str());
1367 
1368   if (s->IsMatch()) {
1369     matched = true;
1370     lastmatch = p;
1371     if (ExtraDebug)
1372       fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str());
1373     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1374       for (int i = s->ninst_ - 1; i >= 0; i--) {
1375         int id = s->inst_[i];
1376         if (id == MatchSep)
1377           break;
1378         params->matches->insert(id);
1379       }
1380     }
1381     if (want_earliest_match) {
1382       params->ep = reinterpret_cast<const char*>(lastmatch);
1383       return true;
1384     }
1385   }
1386 
1387   while (p != ep) {
1388     if (ExtraDebug)
1389       fprintf(stderr, "@%td: %s\n", p - bp, DumpState(s).c_str());
1390 
1391     if (have_first_byte && s == start) {
1392       // In start state, only way out is to find first_byte,
1393       // so use optimized assembly in memchr to skip ahead.
1394       // If first_byte isn't found, we can skip to the end
1395       // of the string.
1396       if (run_forward) {
1397         if ((p = BytePtr(memchr(p, params->first_byte, ep - p))) == NULL) {
1398           p = ep;
1399           break;
1400         }
1401       } else {
1402         if ((p = BytePtr(memrchr(ep, params->first_byte, p - ep))) == NULL) {
1403           p = ep;
1404           break;
1405         }
1406         p++;
1407       }
1408     }
1409 
1410     int c;
1411     if (run_forward)
1412       c = *p++;
1413     else
1414       c = *--p;
1415 
1416     // Note that multiple threads might be consulting
1417     // s->next_[bytemap[c]] simultaneously.
1418     // RunStateOnByte takes care of the appropriate locking,
1419     // including a memory barrier so that the unlocked access
1420     // (sometimes known as "double-checked locking") is safe.
1421     // The alternative would be either one DFA per thread
1422     // or one mutex operation per input byte.
1423     //
1424     // ns == DeadState means the state is known to be dead
1425     // (no more matches are possible).
1426     // ns == NULL means the state has not yet been computed
1427     // (need to call RunStateOnByteUnlocked).
1428     // RunStateOnByte returns ns == NULL if it is out of memory.
1429     // ns == FullMatchState means the rest of the string matches.
1430     //
1431     // Okay to use bytemap[] not ByteMap() here, because
1432     // c is known to be an actual byte and not kByteEndText.
1433 
1434     State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1435     if (ns == NULL) {
1436       ns = RunStateOnByteUnlocked(s, c);
1437       if (ns == NULL) {
1438         // After we reset the cache, we hold cache_mutex exclusively,
1439         // so if resetp != NULL, it means we filled the DFA state
1440         // cache with this search alone (without any other threads).
1441         // Benchmarks show that doing a state computation on every
1442         // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1443         // same at about 2 MB/s.  Unless we're processing an average
1444         // of 10 bytes per state computation, fail so that RE2 can
1445         // fall back to the NFA.  However, RE2::Set cannot fall back,
1446         // so we just have to keep on keeping on in that case.
1447         if (dfa_should_bail_when_slow && resetp != NULL &&
1448             static_cast<size_t>(p - resetp) < 10*state_cache_.size() &&
1449             kind_ != Prog::kManyMatch) {
1450           params->failed = true;
1451           return false;
1452         }
1453         resetp = p;
1454 
1455         // Prepare to save start and s across the reset.
1456         StateSaver save_start(this, start);
1457         StateSaver save_s(this, s);
1458 
1459         // Discard all the States in the cache.
1460         ResetCache(params->cache_lock);
1461 
1462         // Restore start and s so we can continue.
1463         if ((start = save_start.Restore()) == NULL ||
1464             (s = save_s.Restore()) == NULL) {
1465           // Restore already did LOG(DFATAL).
1466           params->failed = true;
1467           return false;
1468         }
1469         ns = RunStateOnByteUnlocked(s, c);
1470         if (ns == NULL) {
1471           LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1472           params->failed = true;
1473           return false;
1474         }
1475       }
1476     }
1477     if (ns <= SpecialStateMax) {
1478       if (ns == DeadState) {
1479         params->ep = reinterpret_cast<const char*>(lastmatch);
1480         return matched;
1481       }
1482       // FullMatchState
1483       params->ep = reinterpret_cast<const char*>(ep);
1484       return true;
1485     }
1486 
1487     s = ns;
1488     if (s->IsMatch()) {
1489       matched = true;
1490       // The DFA notices the match one byte late,
1491       // so adjust p before using it in the match.
1492       if (run_forward)
1493         lastmatch = p - 1;
1494       else
1495         lastmatch = p + 1;
1496       if (ExtraDebug)
1497         fprintf(stderr, "match @%td! [%s]\n", lastmatch - bp, DumpState(s).c_str());
1498       if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1499         for (int i = s->ninst_ - 1; i >= 0; i--) {
1500           int id = s->inst_[i];
1501           if (id == MatchSep)
1502             break;
1503           params->matches->insert(id);
1504         }
1505       }
1506       if (want_earliest_match) {
1507         params->ep = reinterpret_cast<const char*>(lastmatch);
1508         return true;
1509       }
1510     }
1511   }
1512 
1513   // Process one more byte to see if it triggers a match.
1514   // (Remember, matches are delayed one byte.)
1515   if (ExtraDebug)
1516     fprintf(stderr, "@etx: %s\n", DumpState(s).c_str());
1517 
1518   int lastbyte;
1519   if (run_forward) {
1520     if (params->text.end() == params->context.end())
1521       lastbyte = kByteEndText;
1522     else
1523       lastbyte = params->text.end()[0] & 0xFF;
1524   } else {
1525     if (params->text.begin() == params->context.begin())
1526       lastbyte = kByteEndText;
1527     else
1528       lastbyte = params->text.begin()[-1] & 0xFF;
1529   }
1530 
1531   State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1532   if (ns == NULL) {
1533     ns = RunStateOnByteUnlocked(s, lastbyte);
1534     if (ns == NULL) {
1535       StateSaver save_s(this, s);
1536       ResetCache(params->cache_lock);
1537       if ((s = save_s.Restore()) == NULL) {
1538         params->failed = true;
1539         return false;
1540       }
1541       ns = RunStateOnByteUnlocked(s, lastbyte);
1542       if (ns == NULL) {
1543         LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1544         params->failed = true;
1545         return false;
1546       }
1547     }
1548   }
1549   if (ns <= SpecialStateMax) {
1550     if (ns == DeadState) {
1551       params->ep = reinterpret_cast<const char*>(lastmatch);
1552       return matched;
1553     }
1554     // FullMatchState
1555     params->ep = reinterpret_cast<const char*>(ep);
1556     return true;
1557   }
1558 
1559   s = ns;
1560   if (s->IsMatch()) {
1561     matched = true;
1562     lastmatch = p;
1563     if (ExtraDebug)
1564       fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str());
1565     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1566       for (int i = s->ninst_ - 1; i >= 0; i--) {
1567         int id = s->inst_[i];
1568         if (id == MatchSep)
1569           break;
1570         params->matches->insert(id);
1571       }
1572     }
1573   }
1574 
1575   params->ep = reinterpret_cast<const char*>(lastmatch);
1576   return matched;
1577 }
1578 
1579 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1580 bool DFA::SearchFFF(SearchParams* params) {
1581   return InlinedSearchLoop(params, 0, 0, 0);
1582 }
SearchFFT(SearchParams * params)1583 bool DFA::SearchFFT(SearchParams* params) {
1584   return InlinedSearchLoop(params, 0, 0, 1);
1585 }
SearchFTF(SearchParams * params)1586 bool DFA::SearchFTF(SearchParams* params) {
1587   return InlinedSearchLoop(params, 0, 1, 0);
1588 }
SearchFTT(SearchParams * params)1589 bool DFA::SearchFTT(SearchParams* params) {
1590   return InlinedSearchLoop(params, 0, 1, 1);
1591 }
SearchTFF(SearchParams * params)1592 bool DFA::SearchTFF(SearchParams* params) {
1593   return InlinedSearchLoop(params, 1, 0, 0);
1594 }
SearchTFT(SearchParams * params)1595 bool DFA::SearchTFT(SearchParams* params) {
1596   return InlinedSearchLoop(params, 1, 0, 1);
1597 }
SearchTTF(SearchParams * params)1598 bool DFA::SearchTTF(SearchParams* params) {
1599   return InlinedSearchLoop(params, 1, 1, 0);
1600 }
SearchTTT(SearchParams * params)1601 bool DFA::SearchTTT(SearchParams* params) {
1602   return InlinedSearchLoop(params, 1, 1, 1);
1603 }
1604 
1605 // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1606 bool DFA::SlowSearchLoop(SearchParams* params) {
1607   return InlinedSearchLoop(params,
1608                            params->first_byte >= 0,
1609                            params->want_earliest_match,
1610                            params->run_forward);
1611 }
1612 
1613 // For performance, calls the appropriate specialized version
1614 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1615 bool DFA::FastSearchLoop(SearchParams* params) {
1616   // Because the methods are private, the Searches array
1617   // cannot be declared at top level.
1618   static bool (DFA::*Searches[])(SearchParams*) = {
1619     &DFA::SearchFFF,
1620     &DFA::SearchFFT,
1621     &DFA::SearchFTF,
1622     &DFA::SearchFTT,
1623     &DFA::SearchTFF,
1624     &DFA::SearchTFT,
1625     &DFA::SearchTTF,
1626     &DFA::SearchTTT,
1627   };
1628 
1629   bool have_first_byte = params->first_byte >= 0;
1630   int index = 4 * have_first_byte +
1631               2 * params->want_earliest_match +
1632               1 * params->run_forward;
1633   return (this->*Searches[index])(params);
1634 }
1635 
1636 
1637 // The discussion of DFA execution above ignored the question of how
1638 // to determine the initial state for the search loop.  There are two
1639 // factors that influence the choice of start state.
1640 //
1641 // The first factor is whether the search is anchored or not.
1642 // The regexp program (Prog*) itself has
1643 // two different entry points: one for anchored searches and one for
1644 // unanchored searches.  (The unanchored version starts with a leading ".*?"
1645 // and then jumps to the anchored one.)
1646 //
1647 // The second factor is where text appears in the larger context, which
1648 // determines which empty-string operators can be matched at the beginning
1649 // of execution.  If text is at the very beginning of context, \A and ^ match.
1650 // Otherwise if text is at the beginning of a line, then ^ matches.
1651 // Otherwise it matters whether the character before text is a word character
1652 // or a non-word character.
1653 //
1654 // The two cases (unanchored vs not) and four cases (empty-string flags)
1655 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1656 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1657 // StartInfos.  The start state for each is filled in the first time it
1658 // is used for an actual search.
1659 
1660 // Examines text, context, and anchored to determine the right start
1661 // state for the DFA search loop.  Fills in params and returns true on success.
1662 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1663 bool DFA::AnalyzeSearch(SearchParams* params) {
1664   const StringPiece& text = params->text;
1665   const StringPiece& context = params->context;
1666 
1667   // Sanity check: make sure that text lies within context.
1668   if (text.begin() < context.begin() || text.end() > context.end()) {
1669     LOG(DFATAL) << "context does not contain text";
1670     params->start = DeadState;
1671     return true;
1672   }
1673 
1674   // Determine correct search type.
1675   int start;
1676   uint32_t flags;
1677   if (params->run_forward) {
1678     if (text.begin() == context.begin()) {
1679       start = kStartBeginText;
1680       flags = kEmptyBeginText|kEmptyBeginLine;
1681     } else if (text.begin()[-1] == '\n') {
1682       start = kStartBeginLine;
1683       flags = kEmptyBeginLine;
1684     } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1685       start = kStartAfterWordChar;
1686       flags = kFlagLastWord;
1687     } else {
1688       start = kStartAfterNonWordChar;
1689       flags = 0;
1690     }
1691   } else {
1692     if (text.end() == context.end()) {
1693       start = kStartBeginText;
1694       flags = kEmptyBeginText|kEmptyBeginLine;
1695     } else if (text.end()[0] == '\n') {
1696       start = kStartBeginLine;
1697       flags = kEmptyBeginLine;
1698     } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1699       start = kStartAfterWordChar;
1700       flags = kFlagLastWord;
1701     } else {
1702       start = kStartAfterNonWordChar;
1703       flags = 0;
1704     }
1705   }
1706   if (params->anchored)
1707     start |= kStartAnchored;
1708   StartInfo* info = &start_[start];
1709 
1710   // Try once without cache_lock for writing.
1711   // Try again after resetting the cache
1712   // (ResetCache will relock cache_lock for writing).
1713   if (!AnalyzeSearchHelper(params, info, flags)) {
1714     ResetCache(params->cache_lock);
1715     if (!AnalyzeSearchHelper(params, info, flags)) {
1716       LOG(DFATAL) << "Failed to analyze start state.";
1717       params->failed = true;
1718       return false;
1719     }
1720   }
1721 
1722   if (ExtraDebug)
1723     fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s first_byte=%d\n",
1724             params->anchored, params->run_forward, flags,
1725             DumpState(info->start).c_str(), info->first_byte.load());
1726 
1727   params->start = info->start;
1728   params->first_byte = info->first_byte.load(std::memory_order_acquire);
1729 
1730   return true;
1731 }
1732 
1733 // Fills in info if needed.  Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1734 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1735                               uint32_t flags) {
1736   // Quick check.
1737   int fb = info->first_byte.load(std::memory_order_acquire);
1738   if (fb != kFbUnknown)
1739     return true;
1740 
1741   MutexLock l(&mutex_);
1742   fb = info->first_byte.load(std::memory_order_relaxed);
1743   if (fb != kFbUnknown)
1744     return true;
1745 
1746   q0_->clear();
1747   AddToQueue(q0_,
1748              params->anchored ? prog_->start() : prog_->start_unanchored(),
1749              flags);
1750   info->start = WorkqToCachedState(q0_, NULL, flags);
1751   if (info->start == NULL)
1752     return false;
1753 
1754   if (info->start == DeadState) {
1755     // Synchronize with "quick check" above.
1756     info->first_byte.store(kFbNone, std::memory_order_release);
1757     return true;
1758   }
1759 
1760   if (info->start == FullMatchState) {
1761     // Synchronize with "quick check" above.
1762     info->first_byte.store(kFbNone, std::memory_order_release);  // will be ignored
1763     return true;
1764   }
1765 
1766   // Even if we have a first_byte, we cannot use it when anchored and,
1767   // less obviously, we cannot use it when we are going to need flags.
1768   // This trick works only when there is a single byte that leads to a
1769   // different state!
1770   int first_byte = prog_->first_byte();
1771   if (first_byte == -1 ||
1772       params->anchored ||
1773       info->start->flag_ >> kFlagNeedShift != 0)
1774     first_byte = kFbNone;
1775 
1776   // Synchronize with "quick check" above.
1777   info->first_byte.store(first_byte, std::memory_order_release);
1778   return true;
1779 }
1780 
1781 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1782 bool DFA::Search(const StringPiece& text,
1783                  const StringPiece& context,
1784                  bool anchored,
1785                  bool want_earliest_match,
1786                  bool run_forward,
1787                  bool* failed,
1788                  const char** epp,
1789                  SparseSet* matches) {
1790   *epp = NULL;
1791   if (!ok()) {
1792     *failed = true;
1793     return false;
1794   }
1795   *failed = false;
1796 
1797   if (ExtraDebug) {
1798     fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1799     fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1800             std::string(text).c_str(), anchored, want_earliest_match, run_forward, kind_);
1801   }
1802 
1803   RWLocker l(&cache_mutex_);
1804   SearchParams params(text, context, &l);
1805   params.anchored = anchored;
1806   params.want_earliest_match = want_earliest_match;
1807   params.run_forward = run_forward;
1808   params.matches = matches;
1809 
1810   if (!AnalyzeSearch(&params)) {
1811     *failed = true;
1812     return false;
1813   }
1814   if (params.start == DeadState)
1815     return false;
1816   if (params.start == FullMatchState) {
1817     if (run_forward == want_earliest_match)
1818       *epp = text.data();
1819     else
1820       *epp = text.data() + text.size();
1821     return true;
1822   }
1823   if (ExtraDebug)
1824     fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1825   bool ret = FastSearchLoop(&params);
1826   if (params.failed) {
1827     *failed = true;
1828     return false;
1829   }
1830   *epp = params.ep;
1831   return ret;
1832 }
1833 
GetDFA(MatchKind kind)1834 DFA* Prog::GetDFA(MatchKind kind) {
1835   // For a forward DFA, half the memory goes to each DFA.
1836   // However, if it is a "many match" DFA, then there is
1837   // no counterpart with which the memory must be shared.
1838   //
1839   // For a reverse DFA, all the memory goes to the
1840   // "longest match" DFA, because RE2 never does reverse
1841   // "first match" searches.
1842   if (kind == kFirstMatch) {
1843     std::call_once(dfa_first_once_, [](Prog* prog) {
1844       prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1845     }, this);
1846     return dfa_first_;
1847   } else if (kind == kManyMatch) {
1848     std::call_once(dfa_first_once_, [](Prog* prog) {
1849       prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1850     }, this);
1851     return dfa_first_;
1852   } else {
1853     std::call_once(dfa_longest_once_, [](Prog* prog) {
1854       if (!prog->reversed_)
1855         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1856       else
1857         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1858     }, this);
1859     return dfa_longest_;
1860   }
1861 }
1862 
DeleteDFA(DFA * dfa)1863 void Prog::DeleteDFA(DFA* dfa) {
1864   delete dfa;
1865 }
1866 
1867 // Executes the regexp program to search in text,
1868 // which itself is inside the larger context.  (As a convenience,
1869 // passing a NULL context is equivalent to passing text.)
1870 // Returns true if a match is found, false if not.
1871 // If a match is found, fills in match0->end() to point at the end of the match
1872 // and sets match0->begin() to text.begin(), since the DFA can't track
1873 // where the match actually began.
1874 //
1875 // This is the only external interface (class DFA only exists in this file).
1876 //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,SparseSet * matches)1877 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1878                      Anchor anchor, MatchKind kind, StringPiece* match0,
1879                      bool* failed, SparseSet* matches) {
1880   *failed = false;
1881 
1882   StringPiece context = const_context;
1883   if (context.data() == NULL)
1884     context = text;
1885   bool carat = anchor_start();
1886   bool dollar = anchor_end();
1887   if (reversed_) {
1888     using std::swap;
1889     swap(carat, dollar);
1890   }
1891   if (carat && context.begin() != text.begin())
1892     return false;
1893   if (dollar && context.end() != text.end())
1894     return false;
1895 
1896   // Handle full match by running an anchored longest match
1897   // and then checking if it covers all of text.
1898   bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1899   bool endmatch = false;
1900   if (kind == kManyMatch) {
1901     // This is split out in order to avoid clobbering kind.
1902   } else if (kind == kFullMatch || anchor_end()) {
1903     endmatch = true;
1904     kind = kLongestMatch;
1905   }
1906 
1907   // If the caller doesn't care where the match is (just whether one exists),
1908   // then we can stop at the very first match we find, the so-called
1909   // "earliest match".
1910   bool want_earliest_match = false;
1911   if (kind == kManyMatch) {
1912     // This is split out in order to avoid clobbering kind.
1913     if (matches == NULL) {
1914       want_earliest_match = true;
1915     }
1916   } else if (match0 == NULL && !endmatch) {
1917     want_earliest_match = true;
1918     kind = kLongestMatch;
1919   }
1920 
1921   DFA* dfa = GetDFA(kind);
1922   const char* ep;
1923   bool matched = dfa->Search(text, context, anchored,
1924                              want_earliest_match, !reversed_,
1925                              failed, &ep, matches);
1926   if (*failed) {
1927     hooks::GetDFASearchFailureHook()({
1928         // Nothing yet...
1929     });
1930     return false;
1931   }
1932   if (!matched)
1933     return false;
1934   if (endmatch && ep != (reversed_ ? text.data() : text.data() + text.size()))
1935     return false;
1936 
1937   // If caller cares, record the boundary of the match.
1938   // We only know where it ends, so use the boundary of text
1939   // as the beginning.
1940   if (match0) {
1941     if (reversed_)
1942       *match0 =
1943           StringPiece(ep, static_cast<size_t>(text.data() + text.size() - ep));
1944     else
1945       *match0 =
1946           StringPiece(text.data(), static_cast<size_t>(ep - text.data()));
1947   }
1948   return true;
1949 }
1950 
1951 // Build out all states in DFA.  Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1952 int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1953   if (!ok())
1954     return 0;
1955 
1956   // Pick out start state for unanchored search
1957   // at beginning of text.
1958   RWLocker l(&cache_mutex_);
1959   SearchParams params(StringPiece(), StringPiece(), &l);
1960   params.anchored = false;
1961   if (!AnalyzeSearch(&params) ||
1962       params.start == NULL ||
1963       params.start == DeadState)
1964     return 0;
1965 
1966   // Add start state to work queue.
1967   // Note that any State* that we handle here must point into the cache,
1968   // so we can simply depend on pointer-as-a-number hashing and equality.
1969   std::unordered_map<State*, int> m;
1970   std::deque<State*> q;
1971   m.emplace(params.start, static_cast<int>(m.size()));
1972   q.push_back(params.start);
1973 
1974   // Compute the input bytes needed to cover all of the next pointers.
1975   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
1976   std::vector<int> input(nnext);
1977   for (int c = 0; c < 256; c++) {
1978     int b = prog_->bytemap()[c];
1979     while (c < 256-1 && prog_->bytemap()[c+1] == b)
1980       c++;
1981     input[b] = c;
1982   }
1983   input[prog_->bytemap_range()] = kByteEndText;
1984 
1985   // Scratch space for the output.
1986   std::vector<int> output(nnext);
1987 
1988   // Flood to expand every state.
1989   bool oom = false;
1990   while (!q.empty()) {
1991     State* s = q.front();
1992     q.pop_front();
1993     for (int c : input) {
1994       State* ns = RunStateOnByteUnlocked(s, c);
1995       if (ns == NULL) {
1996         oom = true;
1997         break;
1998       }
1999       if (ns == DeadState) {
2000         output[ByteMap(c)] = -1;
2001         continue;
2002       }
2003       if (m.find(ns) == m.end()) {
2004         m.emplace(ns, static_cast<int>(m.size()));
2005         q.push_back(ns);
2006       }
2007       output[ByteMap(c)] = m[ns];
2008     }
2009     if (cb)
2010       cb(oom ? NULL : output.data(),
2011          s == FullMatchState || s->IsMatch());
2012     if (oom)
2013       break;
2014   }
2015 
2016   return static_cast<int>(m.size());
2017 }
2018 
2019 // Build out all states in DFA for kind.  Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)2020 int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
2021   return GetDFA(kind)->BuildAllStates(cb);
2022 }
2023 
TEST_dfa_should_bail_when_slow(bool b)2024 void Prog::TEST_dfa_should_bail_when_slow(bool b) {
2025   dfa_should_bail_when_slow = b;
2026 }
2027 
2028 // Computes min and max for matching string.
2029 // Won't return strings bigger than maxlen.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2030 bool DFA::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2031   if (!ok())
2032     return false;
2033 
2034   // NOTE: if future users of PossibleMatchRange want more precision when
2035   // presented with infinitely repeated elements, consider making this a
2036   // parameter to PossibleMatchRange.
2037   static int kMaxEltRepetitions = 0;
2038 
2039   // Keep track of the number of times we've visited states previously. We only
2040   // revisit a given state if it's part of a repeated group, so if the value
2041   // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
2042   // |*max| to |PrefixSuccessor(*max)|.
2043   //
2044   // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2045   // tradition, implicitly insert a '0' value at first use. We take advantage
2046   // of that property below.
2047   std::unordered_map<State*, int> previously_visited_states;
2048 
2049   // Pick out start state for anchored search at beginning of text.
2050   RWLocker l(&cache_mutex_);
2051   SearchParams params(StringPiece(), StringPiece(), &l);
2052   params.anchored = true;
2053   if (!AnalyzeSearch(&params))
2054     return false;
2055   if (params.start == DeadState) {  // No matching strings
2056     *min = "";
2057     *max = "";
2058     return true;
2059   }
2060   if (params.start == FullMatchState)  // Every string matches: no max
2061     return false;
2062 
2063   // The DFA is essentially a big graph rooted at params.start,
2064   // and paths in the graph correspond to accepted strings.
2065   // Each node in the graph has potentially 256+1 arrows
2066   // coming out, one for each byte plus the magic end of
2067   // text character kByteEndText.
2068 
2069   // To find the smallest possible prefix of an accepted
2070   // string, we just walk the graph preferring to follow
2071   // arrows with the lowest bytes possible.  To find the
2072   // largest possible prefix, we follow the largest bytes
2073   // possible.
2074 
2075   // The test for whether there is an arrow from s on byte j is
2076   //    ns = RunStateOnByteUnlocked(s, j);
2077   //    if (ns == NULL)
2078   //      return false;
2079   //    if (ns != DeadState && ns->ninst > 0)
2080   // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2081   // It returns NULL only if the DFA has run out of memory,
2082   // in which case we can't be sure of anything.
2083   // The second check sees whether there was graph built
2084   // and whether it is interesting graph.  Nodes might have
2085   // ns->ninst == 0 if they exist only to represent the fact
2086   // that a match was found on the previous byte.
2087 
2088   // Build minimum prefix.
2089   State* s = params.start;
2090   min->clear();
2091   MutexLock lock(&mutex_);
2092   for (int i = 0; i < maxlen; i++) {
2093     if (previously_visited_states[s] > kMaxEltRepetitions)
2094       break;
2095     previously_visited_states[s]++;
2096 
2097     // Stop if min is a match.
2098     State* ns = RunStateOnByte(s, kByteEndText);
2099     if (ns == NULL)  // DFA out of memory
2100       return false;
2101     if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2102       break;
2103 
2104     // Try to extend the string with low bytes.
2105     bool extended = false;
2106     for (int j = 0; j < 256; j++) {
2107       ns = RunStateOnByte(s, j);
2108       if (ns == NULL)  // DFA out of memory
2109         return false;
2110       if (ns == FullMatchState ||
2111           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2112         extended = true;
2113         min->append(1, static_cast<char>(j));
2114         s = ns;
2115         break;
2116       }
2117     }
2118     if (!extended)
2119       break;
2120   }
2121 
2122   // Build maximum prefix.
2123   previously_visited_states.clear();
2124   s = params.start;
2125   max->clear();
2126   for (int i = 0; i < maxlen; i++) {
2127     if (previously_visited_states[s] > kMaxEltRepetitions)
2128       break;
2129     previously_visited_states[s] += 1;
2130 
2131     // Try to extend the string with high bytes.
2132     bool extended = false;
2133     for (int j = 255; j >= 0; j--) {
2134       State* ns = RunStateOnByte(s, j);
2135       if (ns == NULL)
2136         return false;
2137       if (ns == FullMatchState ||
2138           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2139         extended = true;
2140         max->append(1, static_cast<char>(j));
2141         s = ns;
2142         break;
2143       }
2144     }
2145     if (!extended) {
2146       // Done, no need for PrefixSuccessor.
2147       return true;
2148     }
2149   }
2150 
2151   // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2152   PrefixSuccessor(max);
2153 
2154   // If there are no bytes left, we have no way to say "there is no maximum
2155   // string".  We could make the interface more complicated and be able to
2156   // return "there is no maximum but here is a minimum", but that seems like
2157   // overkill -- the most common no-max case is all possible strings, so not
2158   // telling the caller that the empty string is the minimum match isn't a
2159   // great loss.
2160   if (max->empty())
2161     return false;
2162 
2163   return true;
2164 }
2165 
2166 // PossibleMatchRange for a Prog.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2167 bool Prog::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2168   // Have to use dfa_longest_ to get all strings for full matches.
2169   // For example, (a|aa) never matches aa in first-match mode.
2170   return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2171 }
2172 
2173 }  // namespace re2
2174