1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM
6 
7 #include "src/regexp/arm/regexp-macro-assembler-arm.h"
8 
9 #include "src/codegen/assembler-inl.h"
10 #include "src/codegen/macro-assembler.h"
11 #include "src/heap/factory.h"
12 #include "src/logging/log.h"
13 #include "src/objects/objects-inl.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/snapshot/embedded/embedded-data.h"
17 #include "src/strings/unicode.h"
18 
19 namespace v8 {
20 namespace internal {
21 
22 /*
23  * This assembler uses the following register assignment convention
24  * - r4 : Temporarily stores the index of capture start after a matching pass
25  *        for a global regexp.
26  * - r5 : Pointer to current Code object including heap object tag.
27  * - r6 : Current position in input, as negative offset from end of string.
28  *        Please notice that this is the byte offset, not the character offset!
29  * - r7 : Currently loaded character. Must be loaded using
30  *        LoadCurrentCharacter before using any of the dispatch methods.
31  * - r8 : Points to tip of backtrack stack
32  * - r9 : Unused, might be used by C code and expected unchanged.
33  * - r10 : End of input (points to byte after last character in input).
34  * - r11 : Frame pointer. Used to access arguments, local variables and
35  *         RegExp registers.
36  * - r12 : IP register, used by assembler. Very volatile.
37  * - r13/sp : Points to tip of C stack.
38  *
39  * The remaining registers are free for computations.
40  * Each call to a public method should retain this convention.
41  *
42  * The stack will have the following structure:
43  *  - fp[56]  Address regexp     (address of the JSRegExp object; unused in
44  *                                native code, passed to match signature of
45  *                                the interpreter)
46  *  - fp[52]  Isolate* isolate   (address of the current isolate)
47  *  - fp[48]  direct_call        (if 1, direct call from JavaScript code,
48  *                                if 0, call through the runtime system).
49  *  - fp[44]  stack_area_base    (high end of the memory area to use as
50  *                                backtracking stack).
51  *  - fp[40]  capture array size (may fit multiple sets of matches)
52  *  - fp[36]  int* capture_array (int[num_saved_registers_], for output).
53  *  --- sp when called ---
54  *  - fp[32]  return address     (lr).
55  *  - fp[28]  old frame pointer  (r11).
56  *  - fp[0..24]  backup of registers r4..r10.
57  *  --- frame pointer ----
58  *  - fp[-4]  end of input       (address of end of string).
59  *  - fp[-8]  start of input     (address of first character in string).
60  *  - fp[-12] start index        (character index of start).
61  *  - fp[-16] void* input_string (location of a handle containing the string).
62  *  - fp[-20] success counter    (only for global regexps to count matches).
63  *  - fp[-24] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-28] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-32] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  * The first num_saved_registers_ registers are initialized to point to
75  * "character -1" in the string (i.e., char_size() bytes before the first
76  * character of the string). The remaining registers start out as garbage.
77  *
78  * The data up to the return address must be placed there by the calling
79  * code and the remaining arguments are passed in registers, e.g. by calling the
80  * code entry as cast to a function with the signature:
81  * int (*match)(String input_string,
82  *              int start_index,
83  *              Address start,
84  *              Address end,
85  *              int* capture_output_array,
86  *              int num_capture_registers,
87  *              byte* stack_area_base,
88  *              bool direct_call = false,
89  *              Isolate* isolate,
90  *              Address regexp);
91  * The call is performed by NativeRegExpMacroAssembler::Execute()
92  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
93  */
94 
95 #define __ ACCESS_MASM(masm_)
96 
97 const int RegExpMacroAssemblerARM::kRegExpCodeSize;
98 
RegExpMacroAssemblerARM(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)99 RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone,
100                                                  Mode mode,
101                                                  int registers_to_save)
102     : NativeRegExpMacroAssembler(isolate, zone),
103       masm_(new MacroAssembler(isolate, CodeObjectRequired::kYes,
104                                NewAssemblerBuffer(kRegExpCodeSize))),
105       mode_(mode),
106       num_registers_(registers_to_save),
107       num_saved_registers_(registers_to_save),
108       entry_label_(),
109       start_label_(),
110       success_label_(),
111       backtrack_label_(),
112       exit_label_() {
113   masm_->set_root_array_available(false);
114 
115   DCHECK_EQ(0, registers_to_save % 2);
116   __ jmp(&entry_label_);   // We'll write the entry code later.
117   __ bind(&start_label_);  // And then continue from here.
118 }
119 
~RegExpMacroAssemblerARM()120 RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
121   delete masm_;
122   // Unuse labels in case we throw away the assembler without calling GetCode.
123   entry_label_.Unuse();
124   start_label_.Unuse();
125   success_label_.Unuse();
126   backtrack_label_.Unuse();
127   exit_label_.Unuse();
128   check_preempt_label_.Unuse();
129   stack_overflow_label_.Unuse();
130 }
131 
132 
stack_limit_slack()133 int RegExpMacroAssemblerARM::stack_limit_slack()  {
134   return RegExpStack::kStackLimitSlack;
135 }
136 
137 
AdvanceCurrentPosition(int by)138 void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
139   if (by != 0) {
140     __ add(current_input_offset(),
141            current_input_offset(), Operand(by * char_size()));
142   }
143 }
144 
145 
AdvanceRegister(int reg,int by)146 void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
147   DCHECK_LE(0, reg);
148   DCHECK_GT(num_registers_, reg);
149   if (by != 0) {
150     __ ldr(r0, register_location(reg));
151     __ add(r0, r0, Operand(by));
152     __ str(r0, register_location(reg));
153   }
154 }
155 
156 
Backtrack()157 void RegExpMacroAssemblerARM::Backtrack() {
158   CheckPreemption();
159   if (has_backtrack_limit()) {
160     Label next;
161     __ ldr(r0, MemOperand(frame_pointer(), kBacktrackCount));
162     __ add(r0, r0, Operand(1));
163     __ str(r0, MemOperand(frame_pointer(), kBacktrackCount));
164     __ cmp(r0, Operand(backtrack_limit()));
165     __ b(ne, &next);
166 
167     // Exceeded limits are treated as a failed match.
168     Fail();
169 
170     __ bind(&next);
171   }
172   // Pop Code offset from backtrack stack, add Code and jump to location.
173   Pop(r0);
174   __ add(pc, r0, Operand(code_pointer()));
175 }
176 
177 
Bind(Label * label)178 void RegExpMacroAssemblerARM::Bind(Label* label) {
179   __ bind(label);
180 }
181 
182 
CheckCharacter(uint32_t c,Label * on_equal)183 void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
184   __ cmp(current_character(), Operand(c));
185   BranchOrBacktrack(eq, on_equal);
186 }
187 
188 
CheckCharacterGT(uc16 limit,Label * on_greater)189 void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
190   __ cmp(current_character(), Operand(limit));
191   BranchOrBacktrack(gt, on_greater);
192 }
193 
CheckAtStart(int cp_offset,Label * on_at_start)194 void RegExpMacroAssemblerARM::CheckAtStart(int cp_offset, Label* on_at_start) {
195   __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
196   __ add(r0, current_input_offset(),
197          Operand(-char_size() + cp_offset * char_size()));
198   __ cmp(r0, r1);
199   BranchOrBacktrack(eq, on_at_start);
200 }
201 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)202 void RegExpMacroAssemblerARM::CheckNotAtStart(int cp_offset,
203                                               Label* on_not_at_start) {
204   __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
205   __ add(r0, current_input_offset(),
206          Operand(-char_size() + cp_offset * char_size()));
207   __ cmp(r0, r1);
208   BranchOrBacktrack(ne, on_not_at_start);
209 }
210 
211 
CheckCharacterLT(uc16 limit,Label * on_less)212 void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
213   __ cmp(current_character(), Operand(limit));
214   BranchOrBacktrack(lt, on_less);
215 }
216 
217 
CheckGreedyLoop(Label * on_equal)218 void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
219   __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
220   __ cmp(current_input_offset(), r0);
221   __ add(backtrack_stackpointer(),
222          backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
223   BranchOrBacktrack(eq, on_equal);
224 }
225 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,Label * on_no_match)226 void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
227     int start_reg, bool read_backward, Label* on_no_match) {
228   Label fallthrough;
229   __ ldr(r0, register_location(start_reg));  // Index of start of capture
230   __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
231   __ sub(r1, r1, r0, SetCC);  // Length of capture.
232 
233   // At this point, the capture registers are either both set or both cleared.
234   // If the capture length is zero, then the capture is either empty or cleared.
235   // Fall through in both cases.
236   __ b(eq, &fallthrough);
237 
238   // Check that there are enough characters left in the input.
239   if (read_backward) {
240     __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
241     __ add(r3, r3, r1);
242     __ cmp(current_input_offset(), r3);
243     BranchOrBacktrack(le, on_no_match);
244   } else {
245     __ cmn(r1, Operand(current_input_offset()));
246     BranchOrBacktrack(gt, on_no_match);
247   }
248 
249   if (mode_ == LATIN1) {
250     Label success;
251     Label fail;
252     Label loop_check;
253 
254     // r0 - offset of start of capture
255     // r1 - length of capture
256     __ add(r0, r0, end_of_input_address());
257     __ add(r2, end_of_input_address(), current_input_offset());
258     if (read_backward) {
259       __ sub(r2, r2, r1);  // Offset by length when matching backwards.
260     }
261     __ add(r1, r0, r1);
262 
263     // r0 - Address of start of capture.
264     // r1 - Address of end of capture
265     // r2 - Address of current input position.
266 
267     Label loop;
268     __ bind(&loop);
269     __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
270     __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
271     __ cmp(r4, r3);
272     __ b(eq, &loop_check);
273 
274     // Mismatch, try case-insensitive match (converting letters to lower-case).
275     __ orr(r3, r3, Operand(0x20));  // Convert capture character to lower-case.
276     __ orr(r4, r4, Operand(0x20));  // Also convert input character.
277     __ cmp(r4, r3);
278     __ b(ne, &fail);
279     __ sub(r3, r3, Operand('a'));
280     __ cmp(r3, Operand('z' - 'a'));  // Is r3 a lowercase letter?
281     __ b(ls, &loop_check);  // In range 'a'-'z'.
282     // Latin-1: Check for values in range [224,254] but not 247.
283     __ sub(r3, r3, Operand(224 - 'a'));
284     __ cmp(r3, Operand(254 - 224));
285     __ b(hi, &fail);  // Weren't Latin-1 letters.
286     __ cmp(r3, Operand(247 - 224));  // Check for 247.
287     __ b(eq, &fail);
288 
289     __ bind(&loop_check);
290     __ cmp(r0, r1);
291     __ b(lt, &loop);
292     __ jmp(&success);
293 
294     __ bind(&fail);
295     BranchOrBacktrack(al, on_no_match);
296 
297     __ bind(&success);
298     // Compute new value of character position after the matched part.
299     __ sub(current_input_offset(), r2, end_of_input_address());
300     if (read_backward) {
301       __ ldr(r0, register_location(start_reg));  // Index of start of capture
302       __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
303       __ add(current_input_offset(), current_input_offset(), r0);
304       __ sub(current_input_offset(), current_input_offset(), r1);
305     }
306   } else {
307     DCHECK(mode_ == UC16);
308     int argument_count = 4;
309     __ PrepareCallCFunction(argument_count);
310 
311     // r0 - offset of start of capture
312     // r1 - length of capture
313 
314     // Put arguments into arguments registers.
315     // Parameters are
316     //   r0: Address byte_offset1 - Address captured substring's start.
317     //   r1: Address byte_offset2 - Address of current character position.
318     //   r2: size_t byte_length - length of capture in bytes(!)
319     //   r3: Isolate* isolate.
320 
321     // Address of start of capture.
322     __ add(r0, r0, Operand(end_of_input_address()));
323     // Length of capture.
324     __ mov(r2, Operand(r1));
325     // Save length in callee-save register for use on return.
326     __ mov(r4, Operand(r1));
327     // Address of current input position.
328     __ add(r1, current_input_offset(), end_of_input_address());
329     if (read_backward) {
330       __ sub(r1, r1, r4);
331     }
332     // Isolate.
333     __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
334 
335     {
336       AllowExternalCallThatCantCauseGC scope(masm_);
337       ExternalReference function =
338           ExternalReference::re_case_insensitive_compare_uc16(isolate());
339       __ CallCFunction(function, argument_count);
340     }
341 
342     // Check if function returned non-zero for success or zero for failure.
343     __ cmp(r0, Operand::Zero());
344     BranchOrBacktrack(eq, on_no_match);
345 
346     // On success, advance position by length of capture.
347     if (read_backward) {
348       __ sub(current_input_offset(), current_input_offset(), r4);
349     } else {
350       __ add(current_input_offset(), current_input_offset(), r4);
351     }
352   }
353 
354   __ bind(&fallthrough);
355 }
356 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)357 void RegExpMacroAssemblerARM::CheckNotBackReference(int start_reg,
358                                                     bool read_backward,
359                                                     Label* on_no_match) {
360   Label fallthrough;
361 
362   // Find length of back-referenced capture.
363   __ ldr(r0, register_location(start_reg));
364   __ ldr(r1, register_location(start_reg + 1));
365   __ sub(r1, r1, r0, SetCC);  // Length to check.
366 
367   // At this point, the capture registers are either both set or both cleared.
368   // If the capture length is zero, then the capture is either empty or cleared.
369   // Fall through in both cases.
370   __ b(eq, &fallthrough);
371 
372   // Check that there are enough characters left in the input.
373   if (read_backward) {
374     __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
375     __ add(r3, r3, r1);
376     __ cmp(current_input_offset(), r3);
377     BranchOrBacktrack(le, on_no_match);
378   } else {
379     __ cmn(r1, Operand(current_input_offset()));
380     BranchOrBacktrack(gt, on_no_match);
381   }
382 
383   // r0 - offset of start of capture
384   // r1 - length of capture
385   __ add(r0, r0, end_of_input_address());
386   __ add(r2, end_of_input_address(), current_input_offset());
387   if (read_backward) {
388     __ sub(r2, r2, r1);  // Offset by length when matching backwards.
389   }
390   __ add(r1, r0, r1);
391 
392   Label loop;
393   __ bind(&loop);
394   if (mode_ == LATIN1) {
395     __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
396     __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
397   } else {
398     DCHECK(mode_ == UC16);
399     __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
400     __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
401   }
402   __ cmp(r3, r4);
403   BranchOrBacktrack(ne, on_no_match);
404   __ cmp(r0, r1);
405   __ b(lt, &loop);
406 
407   // Move current character position to position after match.
408   __ sub(current_input_offset(), r2, end_of_input_address());
409   if (read_backward) {
410     __ ldr(r0, register_location(start_reg));      // Index of start of capture
411     __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
412     __ add(current_input_offset(), current_input_offset(), r0);
413     __ sub(current_input_offset(), current_input_offset(), r1);
414   }
415 
416   __ bind(&fallthrough);
417 }
418 
419 
CheckNotCharacter(unsigned c,Label * on_not_equal)420 void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
421                                                 Label* on_not_equal) {
422   __ cmp(current_character(), Operand(c));
423   BranchOrBacktrack(ne, on_not_equal);
424 }
425 
426 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)427 void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
428                                                      uint32_t mask,
429                                                      Label* on_equal) {
430   if (c == 0) {
431     __ tst(current_character(), Operand(mask));
432   } else {
433     __ and_(r0, current_character(), Operand(mask));
434     __ cmp(r0, Operand(c));
435   }
436   BranchOrBacktrack(eq, on_equal);
437 }
438 
439 
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)440 void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
441                                                         unsigned mask,
442                                                         Label* on_not_equal) {
443   if (c == 0) {
444     __ tst(current_character(), Operand(mask));
445   } else {
446     __ and_(r0, current_character(), Operand(mask));
447     __ cmp(r0, Operand(c));
448   }
449   BranchOrBacktrack(ne, on_not_equal);
450 }
451 
452 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)453 void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
454     uc16 c,
455     uc16 minus,
456     uc16 mask,
457     Label* on_not_equal) {
458   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
459   __ sub(r0, current_character(), Operand(minus));
460   __ and_(r0, r0, Operand(mask));
461   __ cmp(r0, Operand(c));
462   BranchOrBacktrack(ne, on_not_equal);
463 }
464 
465 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)466 void RegExpMacroAssemblerARM::CheckCharacterInRange(
467     uc16 from,
468     uc16 to,
469     Label* on_in_range) {
470   __ sub(r0, current_character(), Operand(from));
471   __ cmp(r0, Operand(to - from));
472   BranchOrBacktrack(ls, on_in_range);  // Unsigned lower-or-same condition.
473 }
474 
475 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)476 void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
477     uc16 from,
478     uc16 to,
479     Label* on_not_in_range) {
480   __ sub(r0, current_character(), Operand(from));
481   __ cmp(r0, Operand(to - from));
482   BranchOrBacktrack(hi, on_not_in_range);  // Unsigned higher condition.
483 }
484 
485 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)486 void RegExpMacroAssemblerARM::CheckBitInTable(
487     Handle<ByteArray> table,
488     Label* on_bit_set) {
489   __ mov(r0, Operand(table));
490   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
491     __ and_(r1, current_character(), Operand(kTableSize - 1));
492     __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
493   } else {
494     __ add(r1,
495            current_character(),
496            Operand(ByteArray::kHeaderSize - kHeapObjectTag));
497   }
498   __ ldrb(r0, MemOperand(r0, r1));
499   __ cmp(r0, Operand::Zero());
500   BranchOrBacktrack(ne, on_bit_set);
501 }
502 
503 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)504 bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
505                                                          Label* on_no_match) {
506   // Range checks (c in min..max) are generally implemented by an unsigned
507   // (c - min) <= (max - min) check
508   switch (type) {
509   case 's':
510     // Match space-characters
511     if (mode_ == LATIN1) {
512       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
513       Label success;
514       __ cmp(current_character(), Operand(' '));
515       __ b(eq, &success);
516       // Check range 0x09..0x0D
517       __ sub(r0, current_character(), Operand('\t'));
518       __ cmp(r0, Operand('\r' - '\t'));
519       __ b(ls, &success);
520       // \u00a0 (NBSP).
521       __ cmp(r0, Operand(0x00A0 - '\t'));
522       BranchOrBacktrack(ne, on_no_match);
523       __ bind(&success);
524       return true;
525     }
526     return false;
527   case 'S':
528     // The emitted code for generic character classes is good enough.
529     return false;
530   case 'd':
531     // Match ASCII digits ('0'..'9')
532     __ sub(r0, current_character(), Operand('0'));
533     __ cmp(r0, Operand('9' - '0'));
534     BranchOrBacktrack(hi, on_no_match);
535     return true;
536   case 'D':
537     // Match non ASCII-digits
538     __ sub(r0, current_character(), Operand('0'));
539     __ cmp(r0, Operand('9' - '0'));
540     BranchOrBacktrack(ls, on_no_match);
541     return true;
542   case '.': {
543     // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
544     __ eor(r0, current_character(), Operand(0x01));
545     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
546     __ sub(r0, r0, Operand(0x0B));
547     __ cmp(r0, Operand(0x0C - 0x0B));
548     BranchOrBacktrack(ls, on_no_match);
549     if (mode_ == UC16) {
550       // Compare original value to 0x2028 and 0x2029, using the already
551       // computed (current_char ^ 0x01 - 0x0B). I.e., check for
552       // 0x201D (0x2028 - 0x0B) or 0x201E.
553       __ sub(r0, r0, Operand(0x2028 - 0x0B));
554       __ cmp(r0, Operand(1));
555       BranchOrBacktrack(ls, on_no_match);
556     }
557     return true;
558   }
559   case 'n': {
560     // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
561     __ eor(r0, current_character(), Operand(0x01));
562     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
563     __ sub(r0, r0, Operand(0x0B));
564     __ cmp(r0, Operand(0x0C - 0x0B));
565     if (mode_ == LATIN1) {
566       BranchOrBacktrack(hi, on_no_match);
567     } else {
568       Label done;
569       __ b(ls, &done);
570       // Compare original value to 0x2028 and 0x2029, using the already
571       // computed (current_char ^ 0x01 - 0x0B). I.e., check for
572       // 0x201D (0x2028 - 0x0B) or 0x201E.
573       __ sub(r0, r0, Operand(0x2028 - 0x0B));
574       __ cmp(r0, Operand(1));
575       BranchOrBacktrack(hi, on_no_match);
576       __ bind(&done);
577     }
578     return true;
579   }
580   case 'w': {
581     if (mode_ != LATIN1) {
582       // Table is 256 entries, so all Latin1 characters can be tested.
583       __ cmp(current_character(), Operand('z'));
584       BranchOrBacktrack(hi, on_no_match);
585     }
586     ExternalReference map = ExternalReference::re_word_character_map(isolate());
587     __ mov(r0, Operand(map));
588     __ ldrb(r0, MemOperand(r0, current_character()));
589     __ cmp(r0, Operand::Zero());
590     BranchOrBacktrack(eq, on_no_match);
591     return true;
592   }
593   case 'W': {
594     Label done;
595     if (mode_ != LATIN1) {
596       // Table is 256 entries, so all Latin1 characters can be tested.
597       __ cmp(current_character(), Operand('z'));
598       __ b(hi, &done);
599     }
600     ExternalReference map = ExternalReference::re_word_character_map(isolate());
601     __ mov(r0, Operand(map));
602     __ ldrb(r0, MemOperand(r0, current_character()));
603     __ cmp(r0, Operand::Zero());
604     BranchOrBacktrack(ne, on_no_match);
605     if (mode_ != LATIN1) {
606       __ bind(&done);
607     }
608     return true;
609   }
610   case '*':
611     // Match any character.
612     return true;
613   // No custom implementation (yet): s(UC16), S(UC16).
614   default:
615     return false;
616   }
617 }
618 
619 
Fail()620 void RegExpMacroAssemblerARM::Fail() {
621   __ mov(r0, Operand(FAILURE));
622   __ jmp(&exit_label_);
623 }
624 
625 
GetCode(Handle<String> source)626 Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
627   Label return_r0;
628   // Finalize code - write the entry point code now we know how many
629   // registers we need.
630 
631   // Entry code:
632   __ bind(&entry_label_);
633 
634   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
635   // is generated.
636   FrameScope scope(masm_, StackFrame::MANUAL);
637 
638   // Actually emit code to start a new stack frame.
639   // Push arguments
640   // Save callee-save registers.
641   // Start new stack frame.
642   // Store link register in existing stack-cell.
643   // Order here should correspond to order of offset constants in header file.
644   RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
645       r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
646   RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
647   __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
648   // Set frame pointer in space for it if this is not a direct call
649   // from generated code.
650   __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
651 
652   STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize);
653   __ mov(r0, Operand::Zero());
654   __ push(r0);  // Make room for success counter and initialize it to 0.
655   STATIC_ASSERT(kStringStartMinusOne ==
656                 kSuccessfulCaptures - kSystemPointerSize);
657   __ push(r0);  // Make room for "string start - 1" constant.
658   STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
659   __ push(r0);  // The backtrack counter.
660 
661   // Check if we have space on the stack for registers.
662   Label stack_limit_hit;
663   Label stack_ok;
664 
665   ExternalReference stack_limit =
666       ExternalReference::address_of_jslimit(isolate());
667   __ mov(r0, Operand(stack_limit));
668   __ ldr(r0, MemOperand(r0));
669   __ sub(r0, sp, r0, SetCC);
670   // Handle it if the stack pointer is already below the stack limit.
671   __ b(ls, &stack_limit_hit);
672   // Check if there is room for the variable number of registers above
673   // the stack limit.
674   __ cmp(r0, Operand(num_registers_ * kPointerSize));
675   __ b(hs, &stack_ok);
676   // Exit with OutOfMemory exception. There is not enough space on the stack
677   // for our working registers.
678   __ mov(r0, Operand(EXCEPTION));
679   __ jmp(&return_r0);
680 
681   __ bind(&stack_limit_hit);
682   CallCheckStackGuardState();
683   __ cmp(r0, Operand::Zero());
684   // If returned value is non-zero, we exit with the returned value as result.
685   __ b(ne, &return_r0);
686 
687   __ bind(&stack_ok);
688 
689   // Allocate space on stack for registers.
690   __ AllocateStackSpace(num_registers_ * kPointerSize);
691   // Load string end.
692   __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
693   // Load input start.
694   __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
695   // Find negative length (offset of start relative to end).
696   __ sub(current_input_offset(), r0, end_of_input_address());
697   // Set r0 to address of char before start of the input string
698   // (effectively string position -1).
699   __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
700   __ sub(r0, current_input_offset(), Operand(char_size()));
701   __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
702   // Store this value in a local variable, for use when clearing
703   // position registers.
704   __ str(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
705 
706   // Initialize code pointer register
707   __ mov(code_pointer(), Operand(masm_->CodeObject()));
708 
709   Label load_char_start_regexp, start_regexp;
710   // Load newline if index is at start, previous character otherwise.
711   __ cmp(r1, Operand::Zero());
712   __ b(ne, &load_char_start_regexp);
713   __ mov(current_character(), Operand('\n'), LeaveCC, eq);
714   __ jmp(&start_regexp);
715 
716   // Global regexp restarts matching here.
717   __ bind(&load_char_start_regexp);
718   // Load previous char as initial value of current character register.
719   LoadCurrentCharacterUnchecked(-1, 1);
720   __ bind(&start_regexp);
721 
722   // Initialize on-stack registers.
723   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
724     // Fill saved registers with initial value = start offset - 1
725     if (num_saved_registers_ > 8) {
726       // Address of register 0.
727       __ add(r1, frame_pointer(), Operand(kRegisterZero));
728       __ mov(r2, Operand(num_saved_registers_));
729       Label init_loop;
730       __ bind(&init_loop);
731       __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
732       __ sub(r2, r2, Operand(1), SetCC);
733       __ b(ne, &init_loop);
734     } else {
735       for (int i = 0; i < num_saved_registers_; i++) {
736         __ str(r0, register_location(i));
737       }
738     }
739   }
740 
741   // Initialize backtrack stack pointer.
742   __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
743 
744   __ jmp(&start_label_);
745 
746   // Exit code:
747   if (success_label_.is_linked()) {
748     // Save captures when successful.
749     __ bind(&success_label_);
750     if (num_saved_registers_ > 0) {
751       // copy captures to output
752       __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
753       __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
754       __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
755       __ sub(r1, end_of_input_address(), r1);
756       // r1 is length of input in bytes.
757       if (mode_ == UC16) {
758         __ mov(r1, Operand(r1, LSR, 1));
759       }
760       // r1 is length of input in characters.
761       __ add(r1, r1, Operand(r2));
762       // r1 is length of string in characters.
763 
764       DCHECK_EQ(0, num_saved_registers_ % 2);
765       // Always an even number of capture registers. This allows us to
766       // unroll the loop once to add an operation between a load of a register
767       // and the following use of that register.
768       for (int i = 0; i < num_saved_registers_; i += 2) {
769         __ ldr(r2, register_location(i));
770         __ ldr(r3, register_location(i + 1));
771         if (i == 0 && global_with_zero_length_check()) {
772           // Keep capture start in r4 for the zero-length check later.
773           __ mov(r4, r2);
774         }
775         if (mode_ == UC16) {
776           __ add(r2, r1, Operand(r2, ASR, 1));
777           __ add(r3, r1, Operand(r3, ASR, 1));
778         } else {
779           __ add(r2, r1, Operand(r2));
780           __ add(r3, r1, Operand(r3));
781         }
782         __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
783         __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
784       }
785     }
786 
787     if (global()) {
788       // Restart matching if the regular expression is flagged as global.
789       __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
790       __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
791       __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
792       // Increment success counter.
793       __ add(r0, r0, Operand(1));
794       __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
795       // Capture results have been stored, so the number of remaining global
796       // output registers is reduced by the number of stored captures.
797       __ sub(r1, r1, Operand(num_saved_registers_));
798       // Check whether we have enough room for another set of capture results.
799       __ cmp(r1, Operand(num_saved_registers_));
800       __ b(lt, &return_r0);
801 
802       __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
803       // Advance the location for output.
804       __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
805       __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
806 
807       // Prepare r0 to initialize registers with its value in the next run.
808       __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
809 
810       if (global_with_zero_length_check()) {
811         // Special case for zero-length matches.
812         // r4: capture start index
813         __ cmp(current_input_offset(), r4);
814         // Not a zero-length match, restart.
815         __ b(ne, &load_char_start_regexp);
816         // Offset from the end is zero if we already reached the end.
817         __ cmp(current_input_offset(), Operand::Zero());
818         __ b(eq, &exit_label_);
819         // Advance current position after a zero-length match.
820         Label advance;
821         __ bind(&advance);
822         __ add(current_input_offset(),
823                current_input_offset(),
824                Operand((mode_ == UC16) ? 2 : 1));
825         if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
826       }
827 
828       __ b(&load_char_start_regexp);
829     } else {
830       __ mov(r0, Operand(SUCCESS));
831     }
832   }
833 
834   // Exit and return r0
835   __ bind(&exit_label_);
836   if (global()) {
837     __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
838   }
839 
840   __ bind(&return_r0);
841   // Skip sp past regexp registers and local variables..
842   __ mov(sp, frame_pointer());
843   // Restore registers r4..r11 and return (restoring lr to pc).
844   __ ldm(ia_w, sp, registers_to_retain | pc.bit());
845 
846   // Backtrack code (branch target for conditional backtracks).
847   if (backtrack_label_.is_linked()) {
848     __ bind(&backtrack_label_);
849     Backtrack();
850   }
851 
852   Label exit_with_exception;
853 
854   // Preempt-code
855   if (check_preempt_label_.is_linked()) {
856     SafeCallTarget(&check_preempt_label_);
857 
858     CallCheckStackGuardState();
859     __ cmp(r0, Operand::Zero());
860     // If returning non-zero, we should end execution with the given
861     // result as return value.
862     __ b(ne, &return_r0);
863 
864     // String might have moved: Reload end of string from frame.
865     __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
866     SafeReturn();
867   }
868 
869   // Backtrack stack overflow code.
870   if (stack_overflow_label_.is_linked()) {
871     SafeCallTarget(&stack_overflow_label_);
872     // Reached if the backtrack-stack limit has been hit.
873 
874     // Call GrowStack(backtrack_stackpointer(), &stack_base)
875     static const int num_arguments = 3;
876     __ PrepareCallCFunction(num_arguments);
877     __ mov(r0, backtrack_stackpointer());
878     __ add(r1, frame_pointer(), Operand(kStackHighEnd));
879     __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
880     ExternalReference grow_stack =
881         ExternalReference::re_grow_stack(isolate());
882     __ CallCFunction(grow_stack, num_arguments);
883     // If return nullptr, we have failed to grow the stack, and
884     // must exit with a stack-overflow exception.
885     __ cmp(r0, Operand::Zero());
886     __ b(eq, &exit_with_exception);
887     // Otherwise use return value as new stack pointer.
888     __ mov(backtrack_stackpointer(), r0);
889     // Restore saved registers and continue.
890     SafeReturn();
891   }
892 
893   if (exit_with_exception.is_linked()) {
894     // If any of the code above needed to exit with an exception.
895     __ bind(&exit_with_exception);
896     // Exit with Result EXCEPTION(-1) to signal thrown exception.
897     __ mov(r0, Operand(EXCEPTION));
898     __ jmp(&return_r0);
899   }
900 
901   CodeDesc code_desc;
902   masm_->GetCode(isolate(), &code_desc);
903   Handle<Code> code = Factory::CodeBuilder(isolate(), code_desc, Code::REGEXP)
904                           .set_self_reference(masm_->CodeObject())
905                           .Build();
906   PROFILE(masm_->isolate(),
907           RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
908   return Handle<HeapObject>::cast(code);
909 }
910 
911 
GoTo(Label * to)912 void RegExpMacroAssemblerARM::GoTo(Label* to) {
913   BranchOrBacktrack(al, to);
914 }
915 
916 
IfRegisterGE(int reg,int comparand,Label * if_ge)917 void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
918                                            int comparand,
919                                            Label* if_ge) {
920   __ ldr(r0, register_location(reg));
921   __ cmp(r0, Operand(comparand));
922   BranchOrBacktrack(ge, if_ge);
923 }
924 
925 
IfRegisterLT(int reg,int comparand,Label * if_lt)926 void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
927                                            int comparand,
928                                            Label* if_lt) {
929   __ ldr(r0, register_location(reg));
930   __ cmp(r0, Operand(comparand));
931   BranchOrBacktrack(lt, if_lt);
932 }
933 
934 
IfRegisterEqPos(int reg,Label * if_eq)935 void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
936                                               Label* if_eq) {
937   __ ldr(r0, register_location(reg));
938   __ cmp(r0, Operand(current_input_offset()));
939   BranchOrBacktrack(eq, if_eq);
940 }
941 
942 
943 RegExpMacroAssembler::IrregexpImplementation
Implementation()944     RegExpMacroAssemblerARM::Implementation() {
945   return kARMImplementation;
946 }
947 
LoadCurrentCharacterImpl(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters,int eats_at_least)948 void RegExpMacroAssemblerARM::LoadCurrentCharacterImpl(int cp_offset,
949                                                        Label* on_end_of_input,
950                                                        bool check_bounds,
951                                                        int characters,
952                                                        int eats_at_least) {
953   // It's possible to preload a small number of characters when each success
954   // path requires a large number of characters, but not the reverse.
955   DCHECK_GE(eats_at_least, characters);
956 
957   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
958   if (check_bounds) {
959     if (cp_offset >= 0) {
960       CheckPosition(cp_offset + eats_at_least - 1, on_end_of_input);
961     } else {
962       CheckPosition(cp_offset, on_end_of_input);
963     }
964   }
965   LoadCurrentCharacterUnchecked(cp_offset, characters);
966 }
967 
PopCurrentPosition()968 void RegExpMacroAssemblerARM::PopCurrentPosition() {
969   Pop(current_input_offset());
970 }
971 
972 
PopRegister(int register_index)973 void RegExpMacroAssemblerARM::PopRegister(int register_index) {
974   Pop(r0);
975   __ str(r0, register_location(register_index));
976 }
977 
978 
PushBacktrack(Label * label)979 void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
980   __ mov_label_offset(r0, label);
981   Push(r0);
982   CheckStackLimit();
983 }
984 
985 
PushCurrentPosition()986 void RegExpMacroAssemblerARM::PushCurrentPosition() {
987   Push(current_input_offset());
988 }
989 
990 
PushRegister(int register_index,StackCheckFlag check_stack_limit)991 void RegExpMacroAssemblerARM::PushRegister(int register_index,
992                                            StackCheckFlag check_stack_limit) {
993   __ ldr(r0, register_location(register_index));
994   Push(r0);
995   if (check_stack_limit) CheckStackLimit();
996 }
997 
998 
ReadCurrentPositionFromRegister(int reg)999 void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
1000   __ ldr(current_input_offset(), register_location(reg));
1001 }
1002 
1003 
ReadStackPointerFromRegister(int reg)1004 void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
1005   __ ldr(backtrack_stackpointer(), register_location(reg));
1006   __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
1007   __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
1008 }
1009 
1010 
SetCurrentPositionFromEnd(int by)1011 void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
1012   Label after_position;
1013   __ cmp(current_input_offset(), Operand(-by * char_size()));
1014   __ b(ge, &after_position);
1015   __ mov(current_input_offset(), Operand(-by * char_size()));
1016   // On RegExp code entry (where this operation is used), the character before
1017   // the current position is expected to be already loaded.
1018   // We have advanced the position, so it's safe to read backwards.
1019   LoadCurrentCharacterUnchecked(-1, 1);
1020   __ bind(&after_position);
1021 }
1022 
1023 
SetRegister(int register_index,int to)1024 void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
1025   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1026   __ mov(r0, Operand(to));
1027   __ str(r0, register_location(register_index));
1028 }
1029 
1030 
Succeed()1031 bool RegExpMacroAssemblerARM::Succeed() {
1032   __ jmp(&success_label_);
1033   return global();
1034 }
1035 
1036 
WriteCurrentPositionToRegister(int reg,int cp_offset)1037 void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
1038                                                              int cp_offset) {
1039   if (cp_offset == 0) {
1040     __ str(current_input_offset(), register_location(reg));
1041   } else {
1042     __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
1043     __ str(r0, register_location(reg));
1044   }
1045 }
1046 
1047 
ClearRegisters(int reg_from,int reg_to)1048 void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
1049   DCHECK(reg_from <= reg_to);
1050   __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne));
1051   for (int reg = reg_from; reg <= reg_to; reg++) {
1052     __ str(r0, register_location(reg));
1053   }
1054 }
1055 
1056 
WriteStackPointerToRegister(int reg)1057 void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
1058   __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
1059   __ sub(r0, backtrack_stackpointer(), r1);
1060   __ str(r0, register_location(reg));
1061 }
1062 
1063 
1064 // Private methods:
1065 
CallCheckStackGuardState()1066 void RegExpMacroAssemblerARM::CallCheckStackGuardState() {
1067   DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins());
1068   DCHECK(!masm_->options().isolate_independent_code);
1069 
1070   __ PrepareCallCFunction(3);
1071 
1072   // RegExp code frame pointer.
1073   __ mov(r2, frame_pointer());
1074   // Code of self.
1075   __ mov(r1, Operand(masm_->CodeObject()));
1076 
1077   // We need to make room for the return address on the stack.
1078   int stack_alignment = base::OS::ActivationFrameAlignment();
1079   DCHECK(IsAligned(stack_alignment, kPointerSize));
1080   __ AllocateStackSpace(stack_alignment);
1081 
1082   // r0 will point to the return address, placed by DirectCEntry.
1083   __ mov(r0, sp);
1084 
1085   ExternalReference stack_guard_check =
1086       ExternalReference::re_check_stack_guard_state(isolate());
1087   __ mov(ip, Operand(stack_guard_check));
1088 
1089   EmbeddedData d = EmbeddedData::FromBlob();
1090   CHECK(Builtins::IsIsolateIndependent(Builtins::kDirectCEntry));
1091   Address entry = d.InstructionStartOfBuiltin(Builtins::kDirectCEntry);
1092   __ mov(lr, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1093   __ Call(lr);
1094 
1095   // Drop the return address from the stack.
1096   __ add(sp, sp, Operand(stack_alignment));
1097 
1098   DCHECK_NE(0, stack_alignment);
1099   __ ldr(sp, MemOperand(sp, 0));
1100 
1101   __ mov(code_pointer(), Operand(masm_->CodeObject()));
1102 }
1103 
1104 
1105 // Helper function for reading a value out of a stack frame.
1106 template <typename T>
frame_entry(Address re_frame,int frame_offset)1107 static T& frame_entry(Address re_frame, int frame_offset) {
1108   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1109 }
1110 
1111 
1112 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1113 static T* frame_entry_address(Address re_frame, int frame_offset) {
1114   return reinterpret_cast<T*>(re_frame + frame_offset);
1115 }
1116 
CheckStackGuardState(Address * return_address,Address raw_code,Address re_frame)1117 int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
1118                                                   Address raw_code,
1119                                                   Address re_frame) {
1120   Code re_code = Code::cast(Object(raw_code));
1121   return NativeRegExpMacroAssembler::CheckStackGuardState(
1122       frame_entry<Isolate*>(re_frame, kIsolate),
1123       frame_entry<int>(re_frame, kStartIndex),
1124       static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)),
1125       return_address, re_code,
1126       frame_entry_address<Address>(re_frame, kInputString),
1127       frame_entry_address<const byte*>(re_frame, kInputStart),
1128       frame_entry_address<const byte*>(re_frame, kInputEnd));
1129 }
1130 
1131 
register_location(int register_index)1132 MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
1133   DCHECK(register_index < (1<<30));
1134   if (num_registers_ <= register_index) {
1135     num_registers_ = register_index + 1;
1136   }
1137   return MemOperand(frame_pointer(),
1138                     kRegisterZero - register_index * kPointerSize);
1139 }
1140 
1141 
CheckPosition(int cp_offset,Label * on_outside_input)1142 void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
1143                                             Label* on_outside_input) {
1144   if (cp_offset >= 0) {
1145     __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
1146     BranchOrBacktrack(ge, on_outside_input);
1147   } else {
1148     __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
1149     __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
1150     __ cmp(r0, r1);
1151     BranchOrBacktrack(le, on_outside_input);
1152   }
1153 }
1154 
1155 
BranchOrBacktrack(Condition condition,Label * to)1156 void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
1157                                                 Label* to) {
1158   if (condition == al) {  // Unconditional.
1159     if (to == nullptr) {
1160       Backtrack();
1161       return;
1162     }
1163     __ jmp(to);
1164     return;
1165   }
1166   if (to == nullptr) {
1167     __ b(condition, &backtrack_label_);
1168     return;
1169   }
1170   __ b(condition, to);
1171 }
1172 
1173 
SafeCall(Label * to,Condition cond)1174 void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
1175   __ bl(to, cond);
1176 }
1177 
1178 
SafeReturn()1179 void RegExpMacroAssemblerARM::SafeReturn() {
1180   __ pop(lr);
1181   __ add(pc, lr, Operand(masm_->CodeObject()));
1182 }
1183 
1184 
SafeCallTarget(Label * name)1185 void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
1186   __ bind(name);
1187   __ sub(lr, lr, Operand(masm_->CodeObject()));
1188   __ push(lr);
1189 }
1190 
1191 
Push(Register source)1192 void RegExpMacroAssemblerARM::Push(Register source) {
1193   DCHECK(source != backtrack_stackpointer());
1194   __ str(source,
1195          MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
1196 }
1197 
1198 
Pop(Register target)1199 void RegExpMacroAssemblerARM::Pop(Register target) {
1200   DCHECK(target != backtrack_stackpointer());
1201   __ ldr(target,
1202          MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
1203 }
1204 
1205 
CheckPreemption()1206 void RegExpMacroAssemblerARM::CheckPreemption() {
1207   // Check for preemption.
1208   ExternalReference stack_limit =
1209       ExternalReference::address_of_jslimit(isolate());
1210   __ mov(r0, Operand(stack_limit));
1211   __ ldr(r0, MemOperand(r0));
1212   __ cmp(sp, r0);
1213   SafeCall(&check_preempt_label_, ls);
1214 }
1215 
1216 
CheckStackLimit()1217 void RegExpMacroAssemblerARM::CheckStackLimit() {
1218   ExternalReference stack_limit =
1219       ExternalReference::address_of_regexp_stack_limit_address(isolate());
1220   __ mov(r0, Operand(stack_limit));
1221   __ ldr(r0, MemOperand(r0));
1222   __ cmp(backtrack_stackpointer(), Operand(r0));
1223   SafeCall(&stack_overflow_label_, ls);
1224 }
1225 
1226 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1227 void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
1228                                                             int characters) {
1229   Register offset = current_input_offset();
1230   if (cp_offset != 0) {
1231     // r4 is not being used to store the capture start index at this point.
1232     __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
1233     offset = r4;
1234   }
1235   // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
1236   // and the operating system running on the target allow it.
1237   // If unaligned load/stores are not supported then this function must only
1238   // be used to load a single character at a time.
1239   if (!CanReadUnaligned()) {
1240     DCHECK_EQ(1, characters);
1241   }
1242 
1243   if (mode_ == LATIN1) {
1244     if (characters == 4) {
1245       __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1246     } else if (characters == 2) {
1247       __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1248     } else {
1249       DCHECK_EQ(1, characters);
1250       __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
1251     }
1252   } else {
1253     DCHECK(mode_ == UC16);
1254     if (characters == 2) {
1255       __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1256     } else {
1257       DCHECK_EQ(1, characters);
1258       __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1259     }
1260   }
1261 }
1262 
1263 
1264 #undef __
1265 
1266 }  // namespace internal
1267 }  // namespace v8
1268 
1269 #endif  // V8_TARGET_ARCH_ARM
1270