1 // Copyright 2019 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_REGEXP_REGEXP_COMPILER_H_
6 #define V8_REGEXP_REGEXP_COMPILER_H_
7 
8 #include <bitset>
9 
10 #include "src/base/small-vector.h"
11 #include "src/regexp/regexp-nodes.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 class DynamicBitSet;
17 class Isolate;
18 
19 namespace regexp_compiler_constants {
20 
21 // The '2' variant is has inclusive from and exclusive to.
22 // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
23 // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
24 constexpr uc32 kRangeEndMarker = 0x110000;
25 constexpr int kSpaceRanges[] = {
26     '\t',   '\r' + 1, ' ',    ' ' + 1, 0x00A0, 0x00A1, 0x1680,
27     0x1681, 0x2000,   0x200B, 0x2028,  0x202A, 0x202F, 0x2030,
28     0x205F, 0x2060,   0x3000, 0x3001,  0xFEFF, 0xFF00, kRangeEndMarker};
29 constexpr int kSpaceRangeCount = arraysize(kSpaceRanges);
30 
31 constexpr int kWordRanges[] = {'0',     '9' + 1, 'A',     'Z' + 1,        '_',
32                                '_' + 1, 'a',     'z' + 1, kRangeEndMarker};
33 constexpr int kWordRangeCount = arraysize(kWordRanges);
34 constexpr int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
35 constexpr int kDigitRangeCount = arraysize(kDigitRanges);
36 constexpr int kSurrogateRanges[] = {kLeadSurrogateStart,
37                                     kLeadSurrogateStart + 1, kRangeEndMarker};
38 constexpr int kSurrogateRangeCount = arraysize(kSurrogateRanges);
39 constexpr int kLineTerminatorRanges[] = {0x000A, 0x000B, 0x000D,         0x000E,
40                                          0x2028, 0x202A, kRangeEndMarker};
41 constexpr int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
42 
43 // More makes code generation slower, less makes V8 benchmark score lower.
44 constexpr int kMaxLookaheadForBoyerMoore = 8;
45 // In a 3-character pattern you can maximally step forwards 3 characters
46 // at a time, which is not always enough to pay for the extra logic.
47 constexpr int kPatternTooShortForBoyerMoore = 2;
48 
49 }  // namespace regexp_compiler_constants
50 
IgnoreCase(JSRegExp::Flags flags)51 inline bool IgnoreCase(JSRegExp::Flags flags) {
52   return (flags & JSRegExp::kIgnoreCase) != 0;
53 }
54 
IsUnicode(JSRegExp::Flags flags)55 inline bool IsUnicode(JSRegExp::Flags flags) {
56   return (flags & JSRegExp::kUnicode) != 0;
57 }
58 
IsSticky(JSRegExp::Flags flags)59 inline bool IsSticky(JSRegExp::Flags flags) {
60   return (flags & JSRegExp::kSticky) != 0;
61 }
62 
IsGlobal(JSRegExp::Flags flags)63 inline bool IsGlobal(JSRegExp::Flags flags) {
64   return (flags & JSRegExp::kGlobal) != 0;
65 }
66 
DotAll(JSRegExp::Flags flags)67 inline bool DotAll(JSRegExp::Flags flags) {
68   return (flags & JSRegExp::kDotAll) != 0;
69 }
70 
Multiline(JSRegExp::Flags flags)71 inline bool Multiline(JSRegExp::Flags flags) {
72   return (flags & JSRegExp::kMultiline) != 0;
73 }
74 
NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags)75 inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) {
76   // Both unicode and ignore_case flags are set. We need to use ICU to find
77   // the closure over case equivalents.
78   return IsUnicode(flags) && IgnoreCase(flags);
79 }
80 
81 // Details of a quick mask-compare check that can look ahead in the
82 // input stream.
83 class QuickCheckDetails {
84  public:
QuickCheckDetails()85   QuickCheckDetails()
86       : characters_(0), mask_(0), value_(0), cannot_match_(false) {}
QuickCheckDetails(int characters)87   explicit QuickCheckDetails(int characters)
88       : characters_(characters), mask_(0), value_(0), cannot_match_(false) {}
89   bool Rationalize(bool one_byte);
90   // Merge in the information from another branch of an alternation.
91   void Merge(QuickCheckDetails* other, int from_index);
92   // Advance the current position by some amount.
93   void Advance(int by, bool one_byte);
94   void Clear();
cannot_match()95   bool cannot_match() { return cannot_match_; }
set_cannot_match()96   void set_cannot_match() { cannot_match_ = true; }
97   struct Position {
PositionPosition98     Position() : mask(0), value(0), determines_perfectly(false) {}
99     uc16 mask;
100     uc16 value;
101     bool determines_perfectly;
102   };
characters()103   int characters() { return characters_; }
set_characters(int characters)104   void set_characters(int characters) { characters_ = characters; }
positions(int index)105   Position* positions(int index) {
106     DCHECK_LE(0, index);
107     DCHECK_GT(characters_, index);
108     return positions_ + index;
109   }
mask()110   uint32_t mask() { return mask_; }
value()111   uint32_t value() { return value_; }
112 
113  private:
114   // How many characters do we have quick check information from.  This is
115   // the same for all branches of a choice node.
116   int characters_;
117   Position positions_[4];
118   // These values are the condensate of the above array after Rationalize().
119   uint32_t mask_;
120   uint32_t value_;
121   // If set to true, there is no way this quick check can match at all.
122   // E.g., if it requires to be at the start of the input, and isn't.
123   bool cannot_match_;
124 };
125 
126 // Improve the speed that we scan for an initial point where a non-anchored
127 // regexp can match by using a Boyer-Moore-like table. This is done by
128 // identifying non-greedy non-capturing loops in the nodes that eat any
129 // character one at a time.  For example in the middle of the regexp
130 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
131 // inserted at the start of any non-anchored regexp.
132 //
133 // When we have found such a loop we look ahead in the nodes to find the set of
134 // characters that can come at given distances. For example for the regexp
135 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
136 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
137 // the lookahead info where the set of characters is reasonably constrained. In
138 // our example this is from index 1 to 2 (0 is not constrained). We can now
139 // look 3 characters ahead and if we don't find one of [f, o] (the union of
140 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
141 //
142 // For Unicode input strings we do the same, but modulo 128.
143 //
144 // We also look at the first string fed to the regexp and use that to get a hint
145 // of the character frequencies in the inputs. This affects the assessment of
146 // whether the set of characters is 'reasonably constrained'.
147 //
148 // We also have another lookahead mechanism (called quick check in the code),
149 // which uses a wide load of multiple characters followed by a mask and compare
150 // to determine whether a match is possible at this point.
151 enum ContainedInLattice {
152   kNotYet = 0,
153   kLatticeIn = 1,
154   kLatticeOut = 2,
155   kLatticeUnknown = 3  // Can also mean both in and out.
156 };
157 
Combine(ContainedInLattice a,ContainedInLattice b)158 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
159   return static_cast<ContainedInLattice>(a | b);
160 }
161 
162 class BoyerMoorePositionInfo : public ZoneObject {
163  public:
at(int i)164   bool at(int i) const { return map_[i]; }
165 
166   static constexpr int kMapSize = 128;
167   static constexpr int kMask = kMapSize - 1;
168 
map_count()169   int map_count() const { return map_count_; }
170 
171   void Set(int character);
172   void SetInterval(const Interval& interval);
173   void SetAll();
174 
is_non_word()175   bool is_non_word() { return w_ == kLatticeOut; }
is_word()176   bool is_word() { return w_ == kLatticeIn; }
177 
178   using Bitset = std::bitset<kMapSize>;
raw_bitset()179   Bitset raw_bitset() const { return map_; }
180 
181  private:
182   Bitset map_;
183   int map_count_ = 0;               // Number of set bits in the map.
184   ContainedInLattice w_ = kNotYet;  // The \w character class.
185 };
186 
187 class BoyerMooreLookahead : public ZoneObject {
188  public:
189   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
190 
length()191   int length() { return length_; }
max_char()192   int max_char() { return max_char_; }
compiler()193   RegExpCompiler* compiler() { return compiler_; }
194 
Count(int map_number)195   int Count(int map_number) { return bitmaps_->at(map_number)->map_count(); }
196 
at(int i)197   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
198 
Set(int map_number,int character)199   void Set(int map_number, int character) {
200     if (character > max_char_) return;
201     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
202     info->Set(character);
203   }
204 
SetInterval(int map_number,const Interval & interval)205   void SetInterval(int map_number, const Interval& interval) {
206     if (interval.from() > max_char_) return;
207     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
208     if (interval.to() > max_char_) {
209       info->SetInterval(Interval(interval.from(), max_char_));
210     } else {
211       info->SetInterval(interval);
212     }
213   }
214 
SetAll(int map_number)215   void SetAll(int map_number) { bitmaps_->at(map_number)->SetAll(); }
216 
SetRest(int from_map)217   void SetRest(int from_map) {
218     for (int i = from_map; i < length_; i++) SetAll(i);
219   }
220   void EmitSkipInstructions(RegExpMacroAssembler* masm);
221 
222  private:
223   // This is the value obtained by EatsAtLeast.  If we do not have at least this
224   // many characters left in the sample string then the match is bound to fail.
225   // Therefore it is OK to read a character this far ahead of the current match
226   // point.
227   int length_;
228   RegExpCompiler* compiler_;
229   // 0xff for Latin1, 0xffff for UTF-16.
230   int max_char_;
231   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
232 
233   int GetSkipTable(int min_lookahead, int max_lookahead,
234                    Handle<ByteArray> boolean_skip_table);
235   bool FindWorthwhileInterval(int* from, int* to);
236   int FindBestInterval(int max_number_of_chars, int old_biggest_points,
237                        int* from, int* to);
238 };
239 
240 // There are many ways to generate code for a node.  This class encapsulates
241 // the current way we should be generating.  In other words it encapsulates
242 // the current state of the code generator.  The effect of this is that we
243 // generate code for paths that the matcher can take through the regular
244 // expression.  A given node in the regexp can be code-generated several times
245 // as it can be part of several traces.  For example for the regexp:
246 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
247 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
248 // to match foo is generated only once (the traces have a common prefix).  The
249 // code to store the capture is deferred and generated (twice) after the places
250 // where baz has been matched.
251 class Trace {
252  public:
253   // A value for a property that is either known to be true, know to be false,
254   // or not known.
255   enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 };
256 
257   class DeferredAction {
258    public:
DeferredAction(ActionNode::ActionType action_type,int reg)259     DeferredAction(ActionNode::ActionType action_type, int reg)
260         : action_type_(action_type), reg_(reg), next_(nullptr) {}
next()261     DeferredAction* next() { return next_; }
262     bool Mentions(int reg);
reg()263     int reg() { return reg_; }
action_type()264     ActionNode::ActionType action_type() { return action_type_; }
265 
266    private:
267     ActionNode::ActionType action_type_;
268     int reg_;
269     DeferredAction* next_;
270     friend class Trace;
271   };
272 
273   class DeferredCapture : public DeferredAction {
274    public:
DeferredCapture(int reg,bool is_capture,Trace * trace)275     DeferredCapture(int reg, bool is_capture, Trace* trace)
276         : DeferredAction(ActionNode::STORE_POSITION, reg),
277           cp_offset_(trace->cp_offset()),
278           is_capture_(is_capture) {}
cp_offset()279     int cp_offset() { return cp_offset_; }
is_capture()280     bool is_capture() { return is_capture_; }
281 
282    private:
283     int cp_offset_;
284     bool is_capture_;
set_cp_offset(int cp_offset)285     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
286   };
287 
288   class DeferredSetRegisterForLoop : public DeferredAction {
289    public:
DeferredSetRegisterForLoop(int reg,int value)290     DeferredSetRegisterForLoop(int reg, int value)
291         : DeferredAction(ActionNode::SET_REGISTER_FOR_LOOP, reg),
292           value_(value) {}
value()293     int value() { return value_; }
294 
295    private:
296     int value_;
297   };
298 
299   class DeferredClearCaptures : public DeferredAction {
300    public:
DeferredClearCaptures(Interval range)301     explicit DeferredClearCaptures(Interval range)
302         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {}
range()303     Interval range() { return range_; }
304 
305    private:
306     Interval range_;
307   };
308 
309   class DeferredIncrementRegister : public DeferredAction {
310    public:
DeferredIncrementRegister(int reg)311     explicit DeferredIncrementRegister(int reg)
312         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {}
313   };
314 
Trace()315   Trace()
316       : cp_offset_(0),
317         actions_(nullptr),
318         backtrack_(nullptr),
319         stop_node_(nullptr),
320         loop_label_(nullptr),
321         characters_preloaded_(0),
322         bound_checked_up_to_(0),
323         flush_budget_(100),
324         at_start_(UNKNOWN) {}
325 
326   // End the trace.  This involves flushing the deferred actions in the trace
327   // and pushing a backtrack location onto the backtrack stack.  Once this is
328   // done we can start a new trace or go to one that has already been
329   // generated.
330   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()331   int cp_offset() { return cp_offset_; }
actions()332   DeferredAction* actions() { return actions_; }
333   // A trivial trace is one that has no deferred actions or other state that
334   // affects the assumptions used when generating code.  There is no recorded
335   // backtrack location in a trivial trace, so with a trivial trace we will
336   // generate code that, on a failure to match, gets the backtrack location
337   // from the backtrack stack rather than using a direct jump instruction.  We
338   // always start code generation with a trivial trace and non-trivial traces
339   // are created as we emit code for nodes or add to the list of deferred
340   // actions in the trace.  The location of the code generated for a node using
341   // a trivial trace is recorded in a label in the node so that gotos can be
342   // generated to that code.
is_trivial()343   bool is_trivial() {
344     return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 &&
345            characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
346            quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
347   }
at_start()348   TriBool at_start() { return at_start_; }
set_at_start(TriBool at_start)349   void set_at_start(TriBool at_start) { at_start_ = at_start; }
backtrack()350   Label* backtrack() { return backtrack_; }
loop_label()351   Label* loop_label() { return loop_label_; }
stop_node()352   RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()353   int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()354   int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()355   int flush_budget() { return flush_budget_; }
quick_check_performed()356   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
357   bool mentions_reg(int reg);
358   // Returns true if a deferred position store exists to the specified
359   // register and stores the offset in the out-parameter.  Otherwise
360   // returns false.
361   bool GetStoredPosition(int reg, int* cp_offset);
362   // These set methods and AdvanceCurrentPositionInTrace should be used only on
363   // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)364   void add_action(DeferredAction* new_action) {
365     DCHECK(new_action->next_ == nullptr);
366     new_action->next_ = actions_;
367     actions_ = new_action;
368   }
set_backtrack(Label * backtrack)369   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)370   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)371   void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)372   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)373   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)374   void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)375   void set_quick_check_performed(QuickCheckDetails* d) {
376     quick_check_performed_ = *d;
377   }
378   void InvalidateCurrentCharacter();
379   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
380 
381  private:
382   int FindAffectedRegisters(DynamicBitSet* affected_registers, Zone* zone);
383   void PerformDeferredActions(RegExpMacroAssembler* macro, int max_register,
384                               const DynamicBitSet& affected_registers,
385                               DynamicBitSet* registers_to_pop,
386                               DynamicBitSet* registers_to_clear, Zone* zone);
387   void RestoreAffectedRegisters(RegExpMacroAssembler* macro, int max_register,
388                                 const DynamicBitSet& registers_to_pop,
389                                 const DynamicBitSet& registers_to_clear);
390   int cp_offset_;
391   DeferredAction* actions_;
392   Label* backtrack_;
393   RegExpNode* stop_node_;
394   Label* loop_label_;
395   int characters_preloaded_;
396   int bound_checked_up_to_;
397   QuickCheckDetails quick_check_performed_;
398   int flush_budget_;
399   TriBool at_start_;
400 };
401 
402 class GreedyLoopState {
403  public:
404   explicit GreedyLoopState(bool not_at_start);
405 
label()406   Label* label() { return &label_; }
counter_backtrack_trace()407   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
408 
409  private:
410   Label label_;
411   Trace counter_backtrack_trace_;
412 };
413 
414 struct PreloadState {
415   static const int kEatsAtLeastNotYetInitialized = -1;
416   bool preload_is_current_;
417   bool preload_has_checked_bounds_;
418   int preload_characters_;
419   int eats_at_least_;
initPreloadState420   void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; }
421 };
422 
423 // Analysis performs assertion propagation and computes eats_at_least_ values.
424 // See the comments on AssertionPropagator and EatsAtLeastPropagator for more
425 // details.
426 RegExpError AnalyzeRegExp(Isolate* isolate, bool is_one_byte, RegExpNode* node);
427 
428 class FrequencyCollator {
429  public:
FrequencyCollator()430   FrequencyCollator() : total_samples_(0) {
431     for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
432       frequencies_[i] = CharacterFrequency(i);
433     }
434   }
435 
CountCharacter(int character)436   void CountCharacter(int character) {
437     int index = (character & RegExpMacroAssembler::kTableMask);
438     frequencies_[index].Increment();
439     total_samples_++;
440   }
441 
442   // Does not measure in percent, but rather per-128 (the table size from the
443   // regexp macro assembler).
Frequency(int in_character)444   int Frequency(int in_character) {
445     DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
446     if (total_samples_ < 1) return 1;  // Division by zero.
447     int freq_in_per128 =
448         (frequencies_[in_character].counter() * 128) / total_samples_;
449     return freq_in_per128;
450   }
451 
452  private:
453   class CharacterFrequency {
454    public:
CharacterFrequency()455     CharacterFrequency() : counter_(0), character_(-1) {}
CharacterFrequency(int character)456     explicit CharacterFrequency(int character)
457         : counter_(0), character_(character) {}
458 
Increment()459     void Increment() { counter_++; }
counter()460     int counter() { return counter_; }
character()461     int character() { return character_; }
462 
463    private:
464     int counter_;
465     int character_;
466   };
467 
468  private:
469   CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
470   int total_samples_;
471 };
472 
473 class RegExpCompiler {
474  public:
475   RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
476                  bool is_one_byte);
477 
AllocateRegister()478   int AllocateRegister() {
479     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
480       reg_exp_too_big_ = true;
481       return next_register_;
482     }
483     return next_register_++;
484   }
485 
486   // Lookarounds to match lone surrogates for unicode character class matches
487   // are never nested. We can therefore reuse registers.
UnicodeLookaroundStackRegister()488   int UnicodeLookaroundStackRegister() {
489     if (unicode_lookaround_stack_register_ == kNoRegister) {
490       unicode_lookaround_stack_register_ = AllocateRegister();
491     }
492     return unicode_lookaround_stack_register_;
493   }
494 
UnicodeLookaroundPositionRegister()495   int UnicodeLookaroundPositionRegister() {
496     if (unicode_lookaround_position_register_ == kNoRegister) {
497       unicode_lookaround_position_register_ = AllocateRegister();
498     }
499     return unicode_lookaround_position_register_;
500   }
501 
502   struct CompilationResult final {
CompilationResultfinal503     explicit CompilationResult(RegExpError err) : error(err) {}
CompilationResultfinal504     CompilationResult(Object code, int registers)
505         : code(code), num_registers(registers) {}
506 
RegExpTooBigfinal507     static CompilationResult RegExpTooBig() {
508       return CompilationResult(RegExpError::kTooLarge);
509     }
510 
Succeededfinal511     bool Succeeded() const { return error == RegExpError::kNone; }
512 
513     const RegExpError error = RegExpError::kNone;
514     Object code;
515     int num_registers = 0;
516   };
517 
518   CompilationResult Assemble(Isolate* isolate, RegExpMacroAssembler* assembler,
519                              RegExpNode* start, int capture_count,
520                              Handle<String> pattern);
521 
522   // If the regexp matching starts within a surrogate pair, step back to the
523   // lead surrogate and start matching from there.
524   static RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler,
525                                                        RegExpNode* on_success,
526                                                        JSRegExp::Flags flags);
527 
AddWork(RegExpNode * node)528   inline void AddWork(RegExpNode* node) {
529     if (!node->on_work_list() && !node->label()->is_bound()) {
530       node->set_on_work_list(true);
531       work_list_->push_back(node);
532     }
533   }
534 
535   static const int kImplementationOffset = 0;
536   static const int kNumberOfRegistersOffset = 0;
537   static const int kCodeOffset = 1;
538 
macro_assembler()539   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
accept()540   EndNode* accept() { return accept_; }
541 
542   static const int kMaxRecursion = 100;
recursion_depth()543   inline int recursion_depth() { return recursion_depth_; }
IncrementRecursionDepth()544   inline void IncrementRecursionDepth() { recursion_depth_++; }
DecrementRecursionDepth()545   inline void DecrementRecursionDepth() { recursion_depth_--; }
546 
SetRegExpTooBig()547   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
548 
one_byte()549   inline bool one_byte() { return one_byte_; }
optimize()550   inline bool optimize() { return optimize_; }
set_optimize(bool value)551   inline void set_optimize(bool value) { optimize_ = value; }
limiting_recursion()552   inline bool limiting_recursion() { return limiting_recursion_; }
set_limiting_recursion(bool value)553   inline void set_limiting_recursion(bool value) {
554     limiting_recursion_ = value;
555   }
read_backward()556   bool read_backward() { return read_backward_; }
set_read_backward(bool value)557   void set_read_backward(bool value) { read_backward_ = value; }
frequency_collator()558   FrequencyCollator* frequency_collator() { return &frequency_collator_; }
559 
current_expansion_factor()560   int current_expansion_factor() { return current_expansion_factor_; }
set_current_expansion_factor(int value)561   void set_current_expansion_factor(int value) {
562     current_expansion_factor_ = value;
563   }
564 
isolate()565   Isolate* isolate() const { return isolate_; }
zone()566   Zone* zone() const { return zone_; }
567 
568   static const int kNoRegister = -1;
569 
570  private:
571   EndNode* accept_;
572   int next_register_;
573   int unicode_lookaround_stack_register_;
574   int unicode_lookaround_position_register_;
575   ZoneVector<RegExpNode*>* work_list_;
576   int recursion_depth_;
577   RegExpMacroAssembler* macro_assembler_;
578   bool one_byte_;
579   bool reg_exp_too_big_;
580   bool limiting_recursion_;
581   bool optimize_;
582   bool read_backward_;
583   int current_expansion_factor_;
584   FrequencyCollator frequency_collator_;
585   Isolate* isolate_;
586   Zone* zone_;
587 };
588 
589 // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
590 class UnicodeRangeSplitter {
591  public:
592   V8_EXPORT_PRIVATE UnicodeRangeSplitter(ZoneList<CharacterRange>* base);
593 
594   static constexpr int kInitialSize = 8;
595   using CharacterRangeVector = base::SmallVector<CharacterRange, kInitialSize>;
596 
bmp()597   const CharacterRangeVector* bmp() const { return &bmp_; }
lead_surrogates()598   const CharacterRangeVector* lead_surrogates() const {
599     return &lead_surrogates_;
600   }
trail_surrogates()601   const CharacterRangeVector* trail_surrogates() const {
602     return &trail_surrogates_;
603   }
non_bmp()604   const CharacterRangeVector* non_bmp() const { return &non_bmp_; }
605 
606  private:
607   void AddRange(CharacterRange range);
608 
609   CharacterRangeVector bmp_;
610   CharacterRangeVector lead_surrogates_;
611   CharacterRangeVector trail_surrogates_;
612   CharacterRangeVector non_bmp_;
613 };
614 
615 // We need to check for the following characters: 0x39C 0x3BC 0x178.
616 // TODO(jgruber): Move to CharacterRange.
617 bool RangeContainsLatin1Equivalents(CharacterRange range);
618 
619 }  // namespace internal
620 }  // namespace v8
621 
622 #endif  // V8_REGEXP_REGEXP_COMPILER_H_
623