xref: /dragonfly/contrib/binutils-2.27/gold/dwp.cc (revision a3127495)
1 // dwp.cc -- DWARF packaging utility
2 
3 // Copyright (C) 2012-2016 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5 
6 // This file is part of dwp, the DWARF packaging utility.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "dwp.h"
24 
25 #include <cstdarg>
26 #include <cstddef>
27 #include <cstdio>
28 #include <cstdlib>
29 #include <cstring>
30 #include <cerrno>
31 
32 #include <vector>
33 #include <algorithm>
34 
35 #include "getopt.h"
36 #include "libiberty.h"
37 #include "../bfd/bfdver.h"
38 
39 #include "elfcpp.h"
40 #include "elfcpp_file.h"
41 #include "dwarf.h"
42 #include "dirsearch.h"
43 #include "fileread.h"
44 #include "object.h"
45 #include "compressed_output.h"
46 #include "stringpool.h"
47 #include "dwarf_reader.h"
48 
49 static void
50 usage(FILE* fd, int) ATTRIBUTE_NORETURN;
51 
52 static void
53 print_version() ATTRIBUTE_NORETURN;
54 
55 namespace gold {
56 
57 class Dwp_output_file;
58 
59 template <int size, bool big_endian>
60 class Sized_relobj_dwo;
61 
62 // List of .dwo files to process.
63 struct Dwo_file_entry
64 {
65   Dwo_file_entry(uint64_t id, std::string name)
66     : dwo_id(id), dwo_name(name)
67   { }
68   uint64_t dwo_id;
69   std::string dwo_name;
70 };
71 typedef std::vector<Dwo_file_entry> File_list;
72 
73 // Type to hold the offset and length of an input section
74 // within an output section.
75 
76 struct Section_bounds
77 {
78   section_offset_type offset;
79   section_size_type size;
80 
81   Section_bounds()
82     : offset(0), size(0)
83   { }
84 
85   Section_bounds(section_offset_type o, section_size_type s)
86     : offset(o), size(s)
87   { }
88 };
89 
90 // A set of sections for a compilation unit or type unit.
91 
92 struct Unit_set
93 {
94   uint64_t signature;
95   Section_bounds sections[elfcpp::DW_SECT_MAX + 1];
96 
97   Unit_set()
98     : signature(0), sections()
99   { }
100 };
101 
102 // An input file.
103 // This class may represent a .dwo file, a .dwp file
104 // produced by an earlier run, or an executable file whose
105 // debug section identifies a set of .dwo files to read.
106 
107 class Dwo_file
108 {
109  public:
110   Dwo_file(const char* name)
111     : name_(name), obj_(NULL), input_file_(NULL), is_compressed_(),
112       sect_offsets_(), str_offset_map_()
113   { }
114 
115   ~Dwo_file();
116 
117   // Read the input executable file and extract the list of .dwo files
118   // that it references.
119   void
120   read_executable(File_list* files);
121 
122   // Read the input file and send its contents to OUTPUT_FILE.
123   void
124   read(Dwp_output_file* output_file);
125 
126   // Verify a .dwp file given a list of .dwo files referenced by the
127   // corresponding executable file.  Returns true if no problems
128   // were found.
129   bool
130   verify(const File_list& files);
131 
132  private:
133   // Types for mapping input string offsets to output string offsets.
134   typedef std::pair<section_offset_type, section_offset_type>
135       Str_offset_map_entry;
136   typedef std::vector<Str_offset_map_entry> Str_offset_map;
137 
138   // A less-than comparison routine for Str_offset_map.
139   struct Offset_compare
140   {
141     bool
142     operator()(const Str_offset_map_entry& i1,
143 	       const Str_offset_map_entry& i2) const
144     { return i1.first < i2.first; }
145   };
146 
147   // Create a Sized_relobj_dwo of the given size and endianness,
148   // and record the target info.  P is a pointer to the ELF header
149   // in memory.
150   Relobj*
151   make_object(Dwp_output_file* output_file);
152 
153   template <int size, bool big_endian>
154   Relobj*
155   sized_make_object(const unsigned char* p, Input_file* input_file,
156 		    Dwp_output_file* output_file);
157 
158   // Return the number of sections in the input object file.
159   unsigned int
160   shnum() const
161   { return this->obj_->shnum(); }
162 
163   // Return section type.
164   unsigned int
165   section_type(unsigned int shndx)
166   { return this->obj_->section_type(shndx); }
167 
168   // Get the name of a section.
169   std::string
170   section_name(unsigned int shndx)
171   { return this->obj_->section_name(shndx); }
172 
173   // Return a view of the contents of a section, decompressed if necessary.
174   // Set *PLEN to the size.  Set *IS_NEW to true if the contents need to be
175   // deleted by the caller.
176   const unsigned char*
177   section_contents(unsigned int shndx, section_size_type* plen, bool* is_new)
178   { return this->obj_->decompressed_section_contents(shndx, plen, is_new); }
179 
180   // Read the .debug_cu_index or .debug_tu_index section of a .dwp file,
181   // and process the CU or TU sets.
182   void
183   read_unit_index(unsigned int, unsigned int *, Dwp_output_file*,
184 		  bool is_tu_index);
185 
186   template <bool big_endian>
187   void
188   sized_read_unit_index(unsigned int, unsigned int *, Dwp_output_file*,
189 			bool is_tu_index);
190 
191   // Verify the .debug_cu_index section of a .dwp file, comparing it
192   // against the list of .dwo files referenced by the corresponding
193   // executable file.
194   bool
195   verify_dwo_list(unsigned int, const File_list& files);
196 
197   template <bool big_endian>
198   bool
199   sized_verify_dwo_list(unsigned int, const File_list& files);
200 
201   // Merge the input string table section into the output file.
202   void
203   add_strings(Dwp_output_file*, unsigned int);
204 
205   // Copy a section from the input file to the output file.
206   Section_bounds
207   copy_section(Dwp_output_file* output_file, unsigned int shndx,
208 	       elfcpp::DW_SECT section_id);
209 
210   // Remap the string offsets in the .debug_str_offsets.dwo section.
211   const unsigned char*
212   remap_str_offsets(const unsigned char* contents, section_size_type len);
213 
214   template <bool big_endian>
215   const unsigned char*
216   sized_remap_str_offsets(const unsigned char* contents, section_size_type len);
217 
218   // Remap a single string offsets from an offset in the input string table
219   // to an offset in the output string table.
220   unsigned int
221   remap_str_offset(section_offset_type val);
222 
223   // Add a set of .debug_info.dwo or .debug_types.dwo and related sections
224   // to OUTPUT_FILE.
225   void
226   add_unit_set(Dwp_output_file* output_file, unsigned int *debug_shndx,
227 	       bool is_debug_types);
228 
229   // The filename.
230   const char* name_;
231   // The ELF file, represented as a gold Relobj instance.
232   Relobj* obj_;
233   // The Input_file object.
234   Input_file* input_file_;
235   // Flags indicating which sections are compressed.
236   std::vector<bool> is_compressed_;
237   // Map input section index onto output section offset and size.
238   std::vector<Section_bounds> sect_offsets_;
239   // Map input string offsets to output string offsets.
240   Str_offset_map str_offset_map_;
241 };
242 
243 // An ELF input file.
244 // We derive from Sized_relobj so that we can use interfaces
245 // in libgold to access the file.
246 
247 template <int size, bool big_endian>
248 class Sized_relobj_dwo : public Sized_relobj<size, big_endian>
249 {
250  public:
251   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
252   typedef typename Sized_relobj<size, big_endian>::Symbols Symbols;
253 
254   Sized_relobj_dwo(const char* name, Input_file* input_file,
255 		   const elfcpp::Ehdr<size, big_endian>& ehdr)
256     : Sized_relobj<size, big_endian>(name, input_file),
257       elf_file_(this, ehdr)
258   { }
259 
260   ~Sized_relobj_dwo()
261   { }
262 
263   // Setup the section information.
264   void
265   setup();
266 
267  protected:
268   // Return section type.
269   unsigned int
270   do_section_type(unsigned int shndx)
271   { return this->elf_file_.section_type(shndx); }
272 
273   // Get the name of a section.
274   std::string
275   do_section_name(unsigned int shndx) const
276   { return this->elf_file_.section_name(shndx); }
277 
278   // Get the size of a section.
279   uint64_t
280   do_section_size(unsigned int shndx)
281   { return this->elf_file_.section_size(shndx); }
282 
283   // Return a view of the contents of a section.
284   const unsigned char*
285   do_section_contents(unsigned int, section_size_type*, bool);
286 
287   // The following virtual functions are abstract in the base classes,
288   // but are not used here.
289 
290   // Read the symbols.
291   void
292   do_read_symbols(Read_symbols_data*)
293   { gold_unreachable(); }
294 
295   // Lay out the input sections.
296   void
297   do_layout(Symbol_table*, Layout*, Read_symbols_data*)
298   { gold_unreachable(); }
299 
300   // Layout sections whose layout was deferred while waiting for
301   // input files from a plugin.
302   void
303   do_layout_deferred_sections(Layout*)
304   { gold_unreachable(); }
305 
306   // Add the symbols to the symbol table.
307   void
308   do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*)
309   { gold_unreachable(); }
310 
311   Archive::Should_include
312   do_should_include_member(Symbol_table*, Layout*, Read_symbols_data*,
313                            std::string*)
314   { gold_unreachable(); }
315 
316   // Iterate over global symbols, calling a visitor class V for each.
317   void
318   do_for_all_global_symbols(Read_symbols_data*,
319 			    Library_base::Symbol_visitor_base*)
320   { gold_unreachable(); }
321 
322   // Return section flags.
323   uint64_t
324   do_section_flags(unsigned int)
325   { gold_unreachable(); }
326 
327   // Return section entsize.
328   uint64_t
329   do_section_entsize(unsigned int)
330   { gold_unreachable(); }
331 
332   // Return section address.
333   uint64_t
334   do_section_address(unsigned int)
335   { gold_unreachable(); }
336 
337   // Return the section link field.
338   unsigned int
339   do_section_link(unsigned int)
340   { gold_unreachable(); }
341 
342   // Return the section link field.
343   unsigned int
344   do_section_info(unsigned int)
345   { gold_unreachable(); }
346 
347   // Return the section alignment.
348   uint64_t
349   do_section_addralign(unsigned int)
350   { gold_unreachable(); }
351 
352   // Return the Xindex structure to use.
353   Xindex*
354   do_initialize_xindex()
355   { gold_unreachable(); }
356 
357   // Get symbol counts.
358   void
359   do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const
360   { gold_unreachable(); }
361 
362   // Get global symbols.
363   const Symbols*
364   do_get_global_symbols() const
365   { return NULL; }
366 
367   // Return the value of a local symbol.
368   uint64_t
369   do_local_symbol_value(unsigned int, uint64_t) const
370   { gold_unreachable(); }
371 
372   unsigned int
373   do_local_plt_offset(unsigned int) const
374   { gold_unreachable(); }
375 
376   // Return whether local symbol SYMNDX is a TLS symbol.
377   bool
378   do_local_is_tls(unsigned int) const
379   { gold_unreachable(); }
380 
381   // Return the number of local symbols.
382   unsigned int
383   do_local_symbol_count() const
384   { gold_unreachable(); }
385 
386   // Return the number of local symbols in the output symbol table.
387   unsigned int
388   do_output_local_symbol_count() const
389   { gold_unreachable(); }
390 
391   // Return the file offset for local symbols in the output symbol table.
392   off_t
393   do_local_symbol_offset() const
394   { gold_unreachable(); }
395 
396   // Read the relocs.
397   void
398   do_read_relocs(Read_relocs_data*)
399   { gold_unreachable(); }
400 
401   // Process the relocs to find list of referenced sections. Used only
402   // during garbage collection.
403   void
404   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*)
405   { gold_unreachable(); }
406 
407   // Scan the relocs and adjust the symbol table.
408   void
409   do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*)
410   { gold_unreachable(); }
411 
412   // Count the local symbols.
413   void
414   do_count_local_symbols(Stringpool_template<char>*,
415 			 Stringpool_template<char>*)
416   { gold_unreachable(); }
417 
418   // Finalize the local symbols.
419   unsigned int
420   do_finalize_local_symbols(unsigned int, off_t, Symbol_table*)
421   { gold_unreachable(); }
422 
423   // Set the offset where local dynamic symbol information will be stored.
424   unsigned int
425   do_set_local_dynsym_indexes(unsigned int)
426   { gold_unreachable(); }
427 
428   // Set the offset where local dynamic symbol information will be stored.
429   unsigned int
430   do_set_local_dynsym_offset(off_t)
431   { gold_unreachable(); }
432 
433   // Relocate the input sections and write out the local symbols.
434   void
435   do_relocate(const Symbol_table*, const Layout*, Output_file*)
436   { gold_unreachable(); }
437 
438  private:
439   // General access to the ELF file.
440   elfcpp::Elf_file<size, big_endian, Object> elf_file_;
441 };
442 
443 // The output file.
444 // This class is responsible for collecting the debug index information
445 // and writing the .dwp file in ELF format.
446 
447 class Dwp_output_file
448 {
449  public:
450   Dwp_output_file(const char* name)
451     : name_(name), machine_(0), size_(0), big_endian_(false), osabi_(0),
452       abiversion_(0), fd_(NULL), next_file_offset_(0), shnum_(1), sections_(),
453       section_id_map_(), shoff_(0), shstrndx_(0), have_strings_(false),
454       stringpool_(), shstrtab_(), cu_index_(), tu_index_(), last_type_sig_(0),
455       last_tu_slot_(0)
456   {
457     this->section_id_map_.resize(elfcpp::DW_SECT_MAX + 1);
458     this->stringpool_.set_no_zero_null();
459   }
460 
461   // Record the target info from an input file.
462   void
463   record_target_info(const char* name, int machine, int size, bool big_endian,
464 		     int osabi, int abiversion);
465 
466   // Add a string to the debug strings section.
467   section_offset_type
468   add_string(const char* str, size_t len);
469 
470   // Add a section to the output file, and return the new section offset.
471   section_offset_type
472   add_contribution(elfcpp::DW_SECT section_id, const unsigned char* contents,
473 		   section_size_type len, int align);
474 
475   // Add a set of .debug_info and related sections to the output file.
476   void
477   add_cu_set(Unit_set* cu_set);
478 
479   // Lookup a type signature and return TRUE if we have already seen it.
480   bool
481   lookup_tu(uint64_t type_sig);
482 
483   // Add a set of .debug_types and related sections to the output file.
484   void
485   add_tu_set(Unit_set* tu_set);
486 
487   // Finalize the file, write the string tables and index sections,
488   // and close the file.
489   void
490   finalize();
491 
492  private:
493   // Contributions to output sections.
494   struct Contribution
495   {
496     section_offset_type output_offset;
497     section_size_type size;
498     const unsigned char* contents;
499   };
500 
501   // Sections in the output file.
502   struct Section
503   {
504     const char* name;
505     off_t offset;
506     section_size_type size;
507     int align;
508     std::vector<Contribution> contributions;
509 
510     Section(const char* n, int a)
511       : name(n), offset(0), size(0), align(a), contributions()
512     { }
513   };
514 
515   // The index sections defined by the DWARF Package File Format spec.
516   class Dwp_index
517   {
518    public:
519     // Vector for the section table.
520     typedef std::vector<const Unit_set*> Section_table;
521 
522     Dwp_index()
523       : capacity_(0), used_(0), hash_table_(NULL), section_table_(),
524         section_mask_(0)
525     { }
526 
527     ~Dwp_index()
528     { }
529 
530     // Find a slot in the hash table for SIGNATURE.  Return TRUE
531     // if the entry already exists.
532     bool
533     find_or_add(uint64_t signature, unsigned int* slotp);
534 
535     // Enter a CU or TU set at the given SLOT in the hash table.
536     void
537     enter_set(unsigned int slot, const Unit_set* set);
538 
539     // Return the contents of the given SLOT in the hash table of signatures.
540     uint64_t
541     hash_table(unsigned int slot) const
542     { return this->hash_table_[slot]; }
543 
544     // Return the contents of the given SLOT in the parallel table of
545     // shndx pool indexes.
546     uint32_t
547     index_table(unsigned int slot) const
548     { return this->index_table_[slot]; }
549 
550     // Return the total number of slots in the hash table.
551     unsigned int
552     hash_table_total_slots() const
553     { return this->capacity_; }
554 
555     // Return the number of used slots in the hash table.
556     unsigned int
557     hash_table_used_slots() const
558     { return this->used_; }
559 
560     // Return an iterator into the shndx pool.
561     Section_table::const_iterator
562     section_table() const
563     { return this->section_table_.begin(); }
564 
565     Section_table::const_iterator
566     section_table_end() const
567     { return this->section_table_.end(); }
568 
569     // Return the number of rows in the section table.
570     unsigned int
571     section_table_rows() const
572     { return this->section_table_.size(); }
573 
574     // Return the mask indicating which columns will be used
575     // in the section table.
576     int
577     section_table_cols() const
578     { return this->section_mask_; }
579 
580    private:
581     // Initialize the hash table.
582     void
583     initialize();
584 
585     // Grow the hash table when we reach 2/3 capacity.
586     void
587     grow();
588 
589     // The number of slots in the table, a power of 2 such that
590     // capacity > 3 * size / 2.
591     unsigned int capacity_;
592     // The current number of used slots in the hash table.
593     unsigned int used_;
594     // The storage for the hash table of signatures.
595     uint64_t* hash_table_;
596     // The storage for the parallel table of shndx pool indexes.
597     uint32_t* index_table_;
598     // The table of section offsets and sizes.
599     Section_table section_table_;
600     // Bit mask to indicate which debug sections are present in the file.
601     int section_mask_;
602   };  // End class Dwp_output_file::Dwp_index.
603 
604   // Add a new output section and return the section index.
605   unsigned int
606   add_output_section(const char* section_name, int align);
607 
608   // Write a new section to the output file.
609   void
610   write_new_section(const char* section_name, const unsigned char* contents,
611 		    section_size_type len, int align);
612 
613   // Write the ELF header.
614   void
615   write_ehdr();
616 
617   template<unsigned int size, bool big_endian>
618   void
619   sized_write_ehdr();
620 
621   // Write a section header.
622   void
623   write_shdr(const char* name, unsigned int type, unsigned int flags,
624 	     uint64_t addr, off_t offset, section_size_type sect_size,
625 	     unsigned int link, unsigned int info,
626 	     unsigned int align, unsigned int ent_size);
627 
628   template<unsigned int size, bool big_endian>
629   void
630   sized_write_shdr(const char* name, unsigned int type, unsigned int flags,
631 		   uint64_t addr, off_t offset, section_size_type sect_size,
632 		   unsigned int link, unsigned int info,
633 		   unsigned int align, unsigned int ent_size);
634 
635   // Write the contributions to an output section.
636   void
637   write_contributions(const Section& sect);
638 
639   // Write a CU or TU index section.
640   template<bool big_endian>
641   void
642   write_index(const char* sect_name, const Dwp_index& index);
643 
644   // The output filename.
645   const char* name_;
646   // ELF header parameters.
647   int machine_;
648   int size_;
649   int big_endian_;
650   int osabi_;
651   int abiversion_;
652   // The output file descriptor.
653   FILE* fd_;
654   // Next available file offset.
655   off_t next_file_offset_;
656   // The number of sections.
657   unsigned int shnum_;
658   // Section table. The first entry is shndx 1.
659   std::vector<Section> sections_;
660   // Section id map. This maps a DW_SECT enum to an shndx.
661   std::vector<unsigned int> section_id_map_;
662   // File offset of the section header table.
663   off_t shoff_;
664   // Section index of the section string table.
665   unsigned int shstrndx_;
666   // TRUE if we have added any strings to the string pool.
667   bool have_strings_;
668   // String pool for the output .debug_str.dwo section.
669   Stringpool stringpool_;
670   // String pool for the .shstrtab section.
671   Stringpool shstrtab_;
672   // The compilation unit index.
673   Dwp_index cu_index_;
674   // The type unit index.
675   Dwp_index tu_index_;
676   // Cache of the last type signature looked up.
677   uint64_t last_type_sig_;
678   // Cache of the slot index for the last type signature.
679   unsigned int last_tu_slot_;
680 };
681 
682 // A specialization of Dwarf_info_reader, for reading dwo_names from
683 // DWARF CUs.
684 
685 class Dwo_name_info_reader : public Dwarf_info_reader
686 {
687  public:
688   Dwo_name_info_reader(Relobj* object, unsigned int shndx)
689     : Dwarf_info_reader(false, object, NULL, 0, shndx, 0, 0),
690       files_(NULL)
691   { }
692 
693   ~Dwo_name_info_reader()
694   { }
695 
696   // Get the dwo_names from the DWARF compilation unit DIEs.
697   void
698   get_dwo_names(File_list* files)
699   {
700     this->files_ = files;
701     this->parse();
702   }
703 
704  protected:
705   // Visit a compilation unit.
706   virtual void
707   visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
708 
709  private:
710   // The list of files to populate.
711   File_list* files_;
712 };
713 
714 // A specialization of Dwarf_info_reader, for reading DWARF CUs and TUs
715 // and adding them to the output file.
716 
717 class Unit_reader : public Dwarf_info_reader
718 {
719  public:
720   Unit_reader(bool is_type_unit, Relobj* object, unsigned int shndx)
721     : Dwarf_info_reader(is_type_unit, object, NULL, 0, shndx, 0, 0),
722       output_file_(NULL), sections_(NULL)
723   { }
724 
725   ~Unit_reader()
726   { }
727 
728   // Read the CUs or TUs and add them to the output file.
729   void
730   add_units(Dwp_output_file*, unsigned int debug_abbrev, Section_bounds*);
731 
732  protected:
733   // Visit a compilation unit.
734   virtual void
735   visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
736 
737   // Visit a type unit.
738   virtual void
739   visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
740 		  uint64_t signature, Dwarf_die*);
741 
742  private:
743   Dwp_output_file* output_file_;
744   Section_bounds* sections_;
745 };
746 
747 // Return the name of a DWARF .dwo section.
748 
749 static const char*
750 get_dwarf_section_name(elfcpp::DW_SECT section_id)
751 {
752   static const char* dwarf_section_names[] = {
753     NULL, // unused
754     ".debug_info.dwo",         // DW_SECT_INFO = 1
755     ".debug_types.dwo",        // DW_SECT_TYPES = 2
756     ".debug_abbrev.dwo",       // DW_SECT_ABBREV = 3
757     ".debug_line.dwo",         // DW_SECT_LINE = 4
758     ".debug_loc.dwo",          // DW_SECT_LOC = 5
759     ".debug_str_offsets.dwo",  // DW_SECT_STR_OFFSETS = 6
760     ".debug_macinfo.dwo",      // DW_SECT_MACINFO = 7
761     ".debug_macro.dwo",        // DW_SECT_MACRO = 8
762   };
763 
764   gold_assert(section_id > 0 && section_id <= elfcpp::DW_SECT_MAX);
765   return dwarf_section_names[section_id];
766 }
767 
768 // Class Sized_relobj_dwo.
769 
770 // Setup the section information.
771 
772 template <int size, bool big_endian>
773 void
774 Sized_relobj_dwo<size, big_endian>::setup()
775 {
776   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
777   const off_t shoff = this->elf_file_.shoff();
778   const unsigned int shnum = this->elf_file_.shnum();
779 
780   this->set_shnum(shnum);
781   this->section_offsets().resize(shnum);
782 
783   // Read the section headers.
784   const unsigned char* const pshdrs = this->get_view(shoff, shnum * shdr_size,
785 						     true, false);
786 
787   // Read the section names.
788   const unsigned char* pshdrnames =
789       pshdrs + this->elf_file_.shstrndx() * shdr_size;
790   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
791   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
792     this->error(_("section name section has wrong type: %u"),
793 		static_cast<unsigned int>(shdrnames.get_sh_type()));
794   section_size_type section_names_size =
795       convert_to_section_size_type(shdrnames.get_sh_size());
796   const unsigned char* namesu = this->get_view(shdrnames.get_sh_offset(),
797 					       section_names_size, false,
798 					       false);
799   const char* names = reinterpret_cast<const char*>(namesu);
800 
801   Compressed_section_map* compressed_sections =
802       build_compressed_section_map<size, big_endian>(
803 	  pshdrs, this->shnum(), names, section_names_size, this, true);
804   if (compressed_sections != NULL && !compressed_sections->empty())
805     this->set_compressed_sections(compressed_sections);
806 }
807 
808 // Return a view of the contents of a section.
809 
810 template <int size, bool big_endian>
811 const unsigned char*
812 Sized_relobj_dwo<size, big_endian>::do_section_contents(
813     unsigned int shndx,
814     section_size_type* plen,
815     bool cache)
816 {
817   Object::Location loc(this->elf_file_.section_contents(shndx));
818   *plen = convert_to_section_size_type(loc.data_size);
819   if (*plen == 0)
820     {
821       static const unsigned char empty[1] = { '\0' };
822       return empty;
823     }
824   return this->get_view(loc.file_offset, *plen, true, cache);
825 }
826 
827 // Class Dwo_file.
828 
829 Dwo_file::~Dwo_file()
830 {
831   if (this->obj_ != NULL)
832     delete this->obj_;
833   if (this->input_file_ != NULL)
834     delete this->input_file_;
835 }
836 
837 // Read the input executable file and extract the list of .dwo files
838 // that it references.
839 
840 void
841 Dwo_file::read_executable(File_list* files)
842 {
843   this->obj_ = this->make_object(NULL);
844 
845   unsigned int shnum = this->shnum();
846   this->is_compressed_.resize(shnum);
847   this->sect_offsets_.resize(shnum);
848 
849   unsigned int debug_info = 0;
850   unsigned int debug_abbrev = 0;
851 
852   // Scan the section table and collect the debug sections we need.
853   // (Section index 0 is a dummy section; skip it.)
854   for (unsigned int i = 1; i < shnum; i++)
855     {
856       if (this->section_type(i) != elfcpp::SHT_PROGBITS)
857 	continue;
858       std::string sect_name = this->section_name(i);
859       const char* suffix = sect_name.c_str();
860       if (is_prefix_of(".debug_", suffix))
861 	suffix += 7;
862       else if (is_prefix_of(".zdebug_", suffix))
863 	{
864 	  this->is_compressed_[i] = true;
865 	  suffix += 8;
866 	}
867       else
868 	continue;
869       if (strcmp(suffix, "info") == 0)
870 	debug_info = i;
871       else if (strcmp(suffix, "abbrev") == 0)
872 	debug_abbrev = i;
873     }
874 
875   if (debug_info > 0)
876     {
877       Dwo_name_info_reader dwarf_reader(this->obj_, debug_info);
878       dwarf_reader.set_abbrev_shndx(debug_abbrev);
879       dwarf_reader.get_dwo_names(files);
880     }
881 }
882 
883 // Read the input file and send its contents to OUTPUT_FILE.
884 
885 void
886 Dwo_file::read(Dwp_output_file* output_file)
887 {
888   this->obj_ = this->make_object(output_file);
889 
890   unsigned int shnum = this->shnum();
891   this->is_compressed_.resize(shnum);
892   this->sect_offsets_.resize(shnum);
893 
894   typedef std::vector<unsigned int> Types_list;
895   Types_list debug_types;
896   unsigned int debug_shndx[elfcpp::DW_SECT_MAX + 1];
897   for (unsigned int i = 0; i <= elfcpp::DW_SECT_MAX; i++)
898     debug_shndx[i] = 0;
899   unsigned int debug_str = 0;
900   unsigned int debug_cu_index = 0;
901   unsigned int debug_tu_index = 0;
902 
903   // Scan the section table and collect debug sections.
904   // (Section index 0 is a dummy section; skip it.)
905   for (unsigned int i = 1; i < shnum; i++)
906     {
907       if (this->section_type(i) != elfcpp::SHT_PROGBITS)
908 	continue;
909       std::string sect_name = this->section_name(i);
910       const char* suffix = sect_name.c_str();
911       if (is_prefix_of(".debug_", suffix))
912 	suffix += 7;
913       else if (is_prefix_of(".zdebug_", suffix))
914 	{
915 	  this->is_compressed_[i] = true;
916 	  suffix += 8;
917 	}
918       else
919 	continue;
920       if (strcmp(suffix, "info.dwo") == 0)
921 	debug_shndx[elfcpp::DW_SECT_INFO] = i;
922       else if (strcmp(suffix, "types.dwo") == 0)
923 	debug_types.push_back(i);
924       else if (strcmp(suffix, "abbrev.dwo") == 0)
925 	debug_shndx[elfcpp::DW_SECT_ABBREV] = i;
926       else if (strcmp(suffix, "line.dwo") == 0)
927 	debug_shndx[elfcpp::DW_SECT_LINE] = i;
928       else if (strcmp(suffix, "loc.dwo") == 0)
929 	debug_shndx[elfcpp::DW_SECT_LOC] = i;
930       else if (strcmp(suffix, "str.dwo") == 0)
931 	debug_str = i;
932       else if (strcmp(suffix, "str_offsets.dwo") == 0)
933 	debug_shndx[elfcpp::DW_SECT_STR_OFFSETS] = i;
934       else if (strcmp(suffix, "macinfo.dwo") == 0)
935 	debug_shndx[elfcpp::DW_SECT_MACINFO] = i;
936       else if (strcmp(suffix, "macro.dwo") == 0)
937 	debug_shndx[elfcpp::DW_SECT_MACRO] = i;
938       else if (strcmp(suffix, "cu_index") == 0)
939 	debug_cu_index = i;
940       else if (strcmp(suffix, "tu_index") == 0)
941 	debug_tu_index = i;
942     }
943 
944   // Merge the input string table into the output string table.
945   this->add_strings(output_file, debug_str);
946 
947   // If we found any .dwp index sections, read those and add the section
948   // sets to the output file.
949   if (debug_cu_index > 0 || debug_tu_index > 0)
950     {
951       if (debug_cu_index > 0)
952 	this->read_unit_index(debug_cu_index, debug_shndx, output_file, false);
953       if (debug_tu_index > 0)
954         {
955 	  if (debug_types.size() > 1)
956 	    gold_fatal(_("%s: .dwp file must have no more than one "
957 			 ".debug_types.dwo section"), this->name_);
958           if (debug_types.size() == 1)
959             debug_shndx[elfcpp::DW_SECT_TYPES] = debug_types[0];
960           else
961             debug_shndx[elfcpp::DW_SECT_TYPES] = 0;
962 	  this->read_unit_index(debug_tu_index, debug_shndx, output_file, true);
963 	}
964       return;
965     }
966 
967   // If we found no index sections, this is a .dwo file.
968   if (debug_shndx[elfcpp::DW_SECT_INFO] > 0)
969     this->add_unit_set(output_file, debug_shndx, false);
970 
971   debug_shndx[elfcpp::DW_SECT_INFO] = 0;
972   for (Types_list::const_iterator tp = debug_types.begin();
973        tp != debug_types.end();
974        ++tp)
975     {
976       debug_shndx[elfcpp::DW_SECT_TYPES] = *tp;
977       this->add_unit_set(output_file, debug_shndx, true);
978     }
979 }
980 
981 // Verify a .dwp file given a list of .dwo files referenced by the
982 // corresponding executable file.  Returns true if no problems
983 // were found.
984 
985 bool
986 Dwo_file::verify(const File_list& files)
987 {
988   this->obj_ = this->make_object(NULL);
989 
990   unsigned int shnum = this->shnum();
991   this->is_compressed_.resize(shnum);
992   this->sect_offsets_.resize(shnum);
993 
994   unsigned int debug_cu_index = 0;
995 
996   // Scan the section table and collect debug sections.
997   // (Section index 0 is a dummy section; skip it.)
998   for (unsigned int i = 1; i < shnum; i++)
999     {
1000       if (this->section_type(i) != elfcpp::SHT_PROGBITS)
1001 	continue;
1002       std::string sect_name = this->section_name(i);
1003       const char* suffix = sect_name.c_str();
1004       if (is_prefix_of(".debug_", suffix))
1005 	suffix += 7;
1006       else if (is_prefix_of(".zdebug_", suffix))
1007 	{
1008 	  this->is_compressed_[i] = true;
1009 	  suffix += 8;
1010 	}
1011       else
1012 	continue;
1013       if (strcmp(suffix, "cu_index") == 0)
1014 	debug_cu_index = i;
1015     }
1016 
1017   if (debug_cu_index == 0)
1018     gold_fatal(_("%s: no .debug_cu_index section found"), this->name_);
1019 
1020   return this->verify_dwo_list(debug_cu_index, files);
1021 }
1022 
1023 // Create a Sized_relobj_dwo of the given size and endianness,
1024 // and record the target info.
1025 
1026 Relobj*
1027 Dwo_file::make_object(Dwp_output_file* output_file)
1028 {
1029   // Open the input file.
1030   Input_file* input_file = new Input_file(this->name_);
1031   this->input_file_ = input_file;
1032   Dirsearch dirpath;
1033   int index;
1034   if (!input_file->open(dirpath, NULL, &index))
1035     gold_fatal(_("%s: can't open"), this->name_);
1036 
1037   // Check that it's an ELF file.
1038   off_t filesize = input_file->file().filesize();
1039   int hdrsize = elfcpp::Elf_recognizer::max_header_size;
1040   if (filesize < hdrsize)
1041     hdrsize = filesize;
1042   const unsigned char* elf_header =
1043       input_file->file().get_view(0, 0, hdrsize, true, false);
1044   if (!elfcpp::Elf_recognizer::is_elf_file(elf_header, hdrsize))
1045     gold_fatal(_("%s: not an ELF object file"), this->name_);
1046 
1047   // Get the size, endianness, machine, etc. info from the header,
1048   // make an appropriately-sized Relobj, and pass the target info
1049   // to the output object.
1050   int size;
1051   bool big_endian;
1052   std::string error;
1053   if (!elfcpp::Elf_recognizer::is_valid_header(elf_header, hdrsize, &size,
1054 					       &big_endian, &error))
1055     gold_fatal(_("%s: %s"), this->name_, error.c_str());
1056 
1057   if (size == 32)
1058     {
1059       if (big_endian)
1060 #ifdef HAVE_TARGET_32_BIG
1061 	return this->sized_make_object<32, true>(elf_header, input_file,
1062 						 output_file);
1063 #else
1064 	gold_unreachable();
1065 #endif
1066       else
1067 #ifdef HAVE_TARGET_32_LITTLE
1068 	return this->sized_make_object<32, false>(elf_header, input_file,
1069 						  output_file);
1070 #else
1071 	gold_unreachable();
1072 #endif
1073     }
1074   else if (size == 64)
1075     {
1076       if (big_endian)
1077 #ifdef HAVE_TARGET_64_BIG
1078 	return this->sized_make_object<64, true>(elf_header, input_file,
1079 						 output_file);
1080 #else
1081 	gold_unreachable();
1082 #endif
1083       else
1084 #ifdef HAVE_TARGET_64_LITTLE
1085 	return this->sized_make_object<64, false>(elf_header, input_file,
1086 						  output_file);
1087 #else
1088 	gold_unreachable();
1089 #endif
1090     }
1091   else
1092     gold_unreachable();
1093 }
1094 
1095 // Function template to create a Sized_relobj_dwo and record the target info.
1096 // P is a pointer to the ELF header in memory.
1097 
1098 template <int size, bool big_endian>
1099 Relobj*
1100 Dwo_file::sized_make_object(const unsigned char* p, Input_file* input_file,
1101 			    Dwp_output_file* output_file)
1102 {
1103   elfcpp::Ehdr<size, big_endian> ehdr(p);
1104   Sized_relobj_dwo<size, big_endian>* obj =
1105       new Sized_relobj_dwo<size, big_endian>(this->name_, input_file, ehdr);
1106   obj->setup();
1107   if (output_file != NULL)
1108     output_file->record_target_info(
1109 	this->name_, ehdr.get_e_machine(), size, big_endian,
1110 	ehdr.get_e_ident()[elfcpp::EI_OSABI],
1111 	ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
1112   return obj;
1113 }
1114 
1115 // Read the .debug_cu_index or .debug_tu_index section of a .dwp file,
1116 // and process the CU or TU sets.
1117 
1118 void
1119 Dwo_file::read_unit_index(unsigned int shndx, unsigned int *debug_shndx,
1120 			  Dwp_output_file* output_file, bool is_tu_index)
1121 {
1122   if (this->obj_->is_big_endian())
1123     this->sized_read_unit_index<true>(shndx, debug_shndx, output_file,
1124 				      is_tu_index);
1125   else
1126     this->sized_read_unit_index<false>(shndx, debug_shndx, output_file,
1127 				       is_tu_index);
1128 }
1129 
1130 template <bool big_endian>
1131 void
1132 Dwo_file::sized_read_unit_index(unsigned int shndx,
1133 				unsigned int *debug_shndx,
1134 				Dwp_output_file* output_file,
1135 				bool is_tu_index)
1136 {
1137   elfcpp::DW_SECT info_sect = (is_tu_index
1138 			       ? elfcpp::DW_SECT_TYPES
1139 			       : elfcpp::DW_SECT_INFO);
1140   unsigned int info_shndx = debug_shndx[info_sect];
1141 
1142   gold_assert(shndx > 0);
1143 
1144   section_size_type index_len;
1145   bool index_is_new;
1146   const unsigned char* contents =
1147       this->section_contents(shndx, &index_len, &index_is_new);
1148 
1149   unsigned int version =
1150       elfcpp::Swap_unaligned<32, big_endian>::readval(contents);
1151 
1152   // We don't support version 1 anymore because it was experimental
1153   // and because in normal use, dwp is not expected to read .dwp files
1154   // produced by an earlier version of the tool.
1155   if (version != 2)
1156     gold_fatal(_("%s: section %s has unsupported version number %d"),
1157 	       this->name_, this->section_name(shndx).c_str(), version);
1158 
1159   unsigned int ncols =
1160       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1161 						      + sizeof(uint32_t));
1162   unsigned int nused =
1163       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1164 						      + 2 * sizeof(uint32_t));
1165   if (ncols == 0 || nused == 0)
1166     return;
1167 
1168   gold_assert(info_shndx > 0);
1169 
1170   unsigned int nslots =
1171       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1172 						      + 3 * sizeof(uint32_t));
1173 
1174   const unsigned char* phash = contents + 4 * sizeof(uint32_t);
1175   const unsigned char* pindex = phash + nslots * sizeof(uint64_t);
1176   const unsigned char* pcolhdrs = pindex + nslots * sizeof(uint32_t);
1177   const unsigned char* poffsets = pcolhdrs + ncols * sizeof(uint32_t);
1178   const unsigned char* psizes = poffsets + nused * ncols * sizeof(uint32_t);
1179   const unsigned char* pend = psizes + nused * ncols * sizeof(uint32_t);
1180 
1181   if (pend > contents + index_len)
1182     gold_fatal(_("%s: section %s is corrupt"), this->name_,
1183 	       this->section_name(shndx).c_str());
1184 
1185   // Copy the related sections and track the section offsets and sizes.
1186   Section_bounds sections[elfcpp::DW_SECT_MAX + 1];
1187   for (int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i)
1188     {
1189       if (debug_shndx[i] > 0)
1190 	sections[i] = this->copy_section(output_file, debug_shndx[i],
1191 					 static_cast<elfcpp::DW_SECT>(i));
1192     }
1193 
1194   // Get the contents of the .debug_info.dwo or .debug_types.dwo section.
1195   section_size_type info_len;
1196   bool info_is_new;
1197   const unsigned char* info_contents =
1198       this->section_contents(info_shndx, &info_len, &info_is_new);
1199 
1200   // Loop over the slots of the hash table.
1201   for (unsigned int i = 0; i < nslots; ++i)
1202     {
1203       uint64_t signature =
1204           elfcpp::Swap_unaligned<64, big_endian>::readval(phash);
1205       unsigned int index =
1206 	  elfcpp::Swap_unaligned<32, big_endian>::readval(pindex);
1207       if (index != 0 && (!is_tu_index || !output_file->lookup_tu(signature)))
1208 	{
1209 	  Unit_set* unit_set = new Unit_set();
1210 	  unit_set->signature = signature;
1211 	  const unsigned char* pch = pcolhdrs;
1212 	  const unsigned char* porow =
1213 	      poffsets + (index - 1) * ncols * sizeof(uint32_t);
1214 	  const unsigned char* psrow =
1215 	      psizes + (index - 1) * ncols * sizeof(uint32_t);
1216 
1217 	  // Adjust the offset of each contribution within the input section
1218 	  // by the offset of the input section within the output section.
1219 	  for (unsigned int j = 0; j <= ncols; j++)
1220 	    {
1221 	      unsigned int dw_sect =
1222 		  elfcpp::Swap_unaligned<64, big_endian>::readval(pch);
1223 	      unsigned int offset =
1224 		  elfcpp::Swap_unaligned<64, big_endian>::readval(porow);
1225 	      unsigned int size =
1226 		  elfcpp::Swap_unaligned<64, big_endian>::readval(psrow);
1227 	      unit_set->sections[dw_sect].offset = (sections[dw_sect].offset
1228 						    + offset);
1229 	      unit_set->sections[dw_sect].size = size;
1230 	      pch += sizeof(uint32_t);
1231 	      porow += sizeof(uint32_t);
1232 	      psrow += sizeof(uint32_t);
1233 	    }
1234 
1235 	  const unsigned char* unit_start =
1236 	      info_contents + unit_set->sections[info_sect].offset;
1237 	  section_size_type unit_length = unit_set->sections[info_sect].size;
1238 
1239 	  // Dwp_output_file::add_contribution writes the .debug_info.dwo
1240 	  // section directly to the output file, so we only need to
1241 	  // duplicate contributions for .debug_types.dwo section.
1242 	  if (is_tu_index)
1243 	    {
1244 	      unsigned char *copy = new unsigned char[unit_length];
1245 	      memcpy(copy, unit_start, unit_length);
1246 	      unit_start = copy;
1247 	    }
1248 	  section_offset_type off =
1249 	      output_file->add_contribution(info_sect, unit_start,
1250 					    unit_length, 1);
1251 	  unit_set->sections[info_sect].offset = off;
1252 	  if (is_tu_index)
1253 	    output_file->add_tu_set(unit_set);
1254 	  else
1255 	    output_file->add_cu_set(unit_set);
1256 	}
1257       phash += sizeof(uint64_t);
1258       pindex += sizeof(uint32_t);
1259     }
1260 
1261   if (index_is_new)
1262     delete[] contents;
1263   if (info_is_new)
1264     delete[] info_contents;
1265 }
1266 
1267 // Verify the .debug_cu_index section of a .dwp file, comparing it
1268 // against the list of .dwo files referenced by the corresponding
1269 // executable file.
1270 
1271 bool
1272 Dwo_file::verify_dwo_list(unsigned int shndx, const File_list& files)
1273 {
1274   if (this->obj_->is_big_endian())
1275     return this->sized_verify_dwo_list<true>(shndx, files);
1276   else
1277     return this->sized_verify_dwo_list<false>(shndx, files);
1278 }
1279 
1280 template <bool big_endian>
1281 bool
1282 Dwo_file::sized_verify_dwo_list(unsigned int shndx, const File_list& files)
1283 {
1284   gold_assert(shndx > 0);
1285 
1286   section_size_type index_len;
1287   bool index_is_new;
1288   const unsigned char* contents =
1289       this->section_contents(shndx, &index_len, &index_is_new);
1290 
1291   unsigned int version =
1292       elfcpp::Swap_unaligned<32, big_endian>::readval(contents);
1293 
1294   // We don't support version 1 anymore because it was experimental
1295   // and because in normal use, dwp is not expected to read .dwp files
1296   // produced by an earlier version of the tool.
1297   if (version != 2)
1298     gold_fatal(_("%s: section %s has unsupported version number %d"),
1299 	       this->name_, this->section_name(shndx).c_str(), version);
1300 
1301   unsigned int ncols =
1302       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1303 						      + sizeof(uint32_t));
1304   unsigned int nused =
1305       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1306 						      + 2 * sizeof(uint32_t));
1307   if (ncols == 0 || nused == 0)
1308     return true;
1309 
1310   unsigned int nslots =
1311       elfcpp::Swap_unaligned<32, big_endian>::readval(contents
1312 						      + 3 * sizeof(uint32_t));
1313 
1314   const unsigned char* phash = contents + 4 * sizeof(uint32_t);
1315   const unsigned char* pindex = phash + nslots * sizeof(uint64_t);
1316   const unsigned char* pcolhdrs = pindex + nslots * sizeof(uint32_t);
1317   const unsigned char* poffsets = pcolhdrs + ncols * sizeof(uint32_t);
1318   const unsigned char* psizes = poffsets + nused * ncols * sizeof(uint32_t);
1319   const unsigned char* pend = psizes + nused * ncols * sizeof(uint32_t);
1320 
1321   if (pend > contents + index_len)
1322     gold_fatal(_("%s: section %s is corrupt"), this->name_,
1323 	       this->section_name(shndx).c_str());
1324 
1325   int nmissing = 0;
1326   for (File_list::const_iterator f = files.begin(); f != files.end(); ++f)
1327     {
1328       uint64_t dwo_id = f->dwo_id;
1329       unsigned int slot = static_cast<unsigned int>(dwo_id) & (nslots - 1);
1330       const unsigned char* ph = phash + slot * sizeof(uint64_t);
1331       const unsigned char* pi = pindex + slot * sizeof(uint32_t);
1332       uint64_t probe = elfcpp::Swap_unaligned<64, big_endian>::readval(ph);
1333       uint32_t row_index = elfcpp::Swap_unaligned<32, big_endian>::readval(pi);
1334       if (row_index != 0 && probe != dwo_id)
1335 	{
1336 	  unsigned int h2 = ((static_cast<unsigned int>(dwo_id >> 32)
1337 			      & (nslots - 1)) | 1);
1338 	  do
1339 	    {
1340 	      slot = (slot + h2) & (nslots - 1);
1341 	      ph = phash + slot * sizeof(uint64_t);
1342 	      pi = pindex + slot * sizeof(uint32_t);
1343 	      probe = elfcpp::Swap_unaligned<64, big_endian>::readval(ph);
1344 	      row_index = elfcpp::Swap_unaligned<32, big_endian>::readval(pi);
1345 	    } while (row_index != 0 && probe != dwo_id);
1346 	}
1347       if (row_index == 0)
1348 	{
1349 	  printf(_("missing .dwo file: %016llx %s\n"),
1350 		 static_cast<long long>(dwo_id), f->dwo_name.c_str());
1351 	  ++nmissing;
1352 	}
1353     }
1354 
1355   gold_info(_("Found %d missing .dwo files"), nmissing);
1356 
1357   if (index_is_new)
1358     delete[] contents;
1359 
1360   return nmissing == 0;
1361 }
1362 
1363 // Merge the input string table section into the output file.
1364 
1365 void
1366 Dwo_file::add_strings(Dwp_output_file* output_file, unsigned int debug_str)
1367 {
1368   section_size_type len;
1369   bool is_new;
1370   const unsigned char* pdata = this->section_contents(debug_str, &len, &is_new);
1371   const char* p = reinterpret_cast<const char*>(pdata);
1372   const char* pend = p + len;
1373 
1374   // Check that the last string is null terminated.
1375   if (pend[-1] != '\0')
1376     gold_fatal(_("%s: last entry in string section '%s' "
1377 		 "is not null terminated"),
1378 	       this->name_,
1379 	       this->section_name(debug_str).c_str());
1380 
1381   // Count the number of strings in the section, and size the map.
1382   size_t count = 0;
1383   for (const char* pt = p; pt < pend; pt += strlen(pt) + 1)
1384     ++count;
1385   this->str_offset_map_.reserve(count + 1);
1386 
1387   // Add the strings to the output string table, and record the new offsets
1388   // in the map.
1389   section_offset_type i = 0;
1390   section_offset_type new_offset;
1391   while (p < pend)
1392     {
1393       size_t len = strlen(p);
1394       new_offset = output_file->add_string(p, len);
1395       this->str_offset_map_.push_back(std::make_pair(i, new_offset));
1396       p += len + 1;
1397       i += len + 1;
1398     }
1399   new_offset = 0;
1400   this->str_offset_map_.push_back(std::make_pair(i, new_offset));
1401   if (is_new)
1402     delete[] pdata;
1403 }
1404 
1405 // Copy a section from the input file to the output file.
1406 // Return the offset and length of this input section's contribution
1407 // in the output section.  If copying .debug_str_offsets.dwo, remap
1408 // the string offsets for the output string table.
1409 
1410 Section_bounds
1411 Dwo_file::copy_section(Dwp_output_file* output_file, unsigned int shndx,
1412 		       elfcpp::DW_SECT section_id)
1413 {
1414   // Some sections may be referenced from more than one set.
1415   // Don't copy a section more than once.
1416   if (this->sect_offsets_[shndx].size > 0)
1417     return this->sect_offsets_[shndx];
1418 
1419   // Get the section contents. Upon return, if IS_NEW is true, the memory
1420   // has been allocated via new; if false, the memory is part of the mapped
1421   // input file, and we will need to duplicate it so that it will persist
1422   // after we close the input file.
1423   section_size_type len;
1424   bool is_new;
1425   const unsigned char* contents = this->section_contents(shndx, &len, &is_new);
1426 
1427   if (section_id == elfcpp::DW_SECT_STR_OFFSETS)
1428     {
1429       const unsigned char* remapped = this->remap_str_offsets(contents, len);
1430       if (is_new)
1431 	delete[] contents;
1432       contents = remapped;
1433     }
1434   else if (!is_new)
1435     {
1436       unsigned char* copy = new unsigned char[len];
1437       memcpy(copy, contents, len);
1438       contents = copy;
1439     }
1440 
1441   // Add the contents of the input section to the output section.
1442   // The output file takes ownership of the memory pointed to by CONTENTS.
1443   section_offset_type off = output_file->add_contribution(section_id, contents,
1444 							  len, 1);
1445 
1446   // Store the output section bounds.
1447   Section_bounds bounds(off, len);
1448   this->sect_offsets_[shndx] = bounds;
1449 
1450   return bounds;
1451 }
1452 
1453 // Remap the
1454 const unsigned char*
1455 Dwo_file::remap_str_offsets(const unsigned char* contents,
1456 			    section_size_type len)
1457 {
1458   if ((len & 3) != 0)
1459     gold_fatal(_("%s: .debug_str_offsets.dwo section size not a multiple of 4"),
1460 	       this->name_);
1461 
1462   if (this->obj_->is_big_endian())
1463     return this->sized_remap_str_offsets<true>(contents, len);
1464   else
1465     return this->sized_remap_str_offsets<false>(contents, len);
1466 }
1467 
1468 template <bool big_endian>
1469 const unsigned char*
1470 Dwo_file::sized_remap_str_offsets(const unsigned char* contents,
1471 				  section_size_type len)
1472 {
1473   unsigned char* remapped = new unsigned char[len];
1474   const unsigned char* p = contents;
1475   unsigned char* q = remapped;
1476   while (len > 0)
1477     {
1478       unsigned int val = elfcpp::Swap_unaligned<32, big_endian>::readval(p);
1479       val = this->remap_str_offset(val);
1480       elfcpp::Swap_unaligned<32, big_endian>::writeval(q, val);
1481       len -= 4;
1482       p += 4;
1483       q += 4;
1484     }
1485   return remapped;
1486 }
1487 
1488 unsigned int
1489 Dwo_file::remap_str_offset(section_offset_type val)
1490 {
1491   Str_offset_map_entry entry;
1492   entry.first = val;
1493 
1494   Str_offset_map::const_iterator p =
1495       std::lower_bound(this->str_offset_map_.begin(),
1496 		       this->str_offset_map_.end(),
1497 		       entry, Offset_compare());
1498 
1499   if (p == this->str_offset_map_.end() || p->first > val)
1500     {
1501       if (p == this->str_offset_map_.begin())
1502 	return 0;
1503       --p;
1504       gold_assert(p->first <= val);
1505     }
1506 
1507   return p->second + (val - p->first);
1508 }
1509 
1510 // Add a set of .debug_info.dwo or .debug_types.dwo and related sections
1511 // to OUTPUT_FILE.
1512 
1513 void
1514 Dwo_file::add_unit_set(Dwp_output_file* output_file, unsigned int *debug_shndx,
1515 		       bool is_debug_types)
1516 {
1517   unsigned int shndx = (is_debug_types
1518 			? debug_shndx[elfcpp::DW_SECT_TYPES]
1519 			: debug_shndx[elfcpp::DW_SECT_INFO]);
1520 
1521   gold_assert(shndx != 0);
1522 
1523   if (debug_shndx[elfcpp::DW_SECT_ABBREV] == 0)
1524     gold_fatal(_("%s: no .debug_abbrev.dwo section found"), this->name_);
1525 
1526   // Copy the related sections and track the section offsets and sizes.
1527   Section_bounds sections[elfcpp::DW_SECT_MAX + 1];
1528   for (int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i)
1529     {
1530       if (debug_shndx[i] > 0)
1531 	sections[i] = this->copy_section(output_file, debug_shndx[i],
1532 					 static_cast<elfcpp::DW_SECT>(i));
1533     }
1534 
1535   // Parse the .debug_info or .debug_types section and add each compilation
1536   // or type unit to the output file, along with the contributions to the
1537   // related sections.
1538   Unit_reader reader(is_debug_types, this->obj_, shndx);
1539   reader.add_units(output_file, debug_shndx[elfcpp::DW_SECT_ABBREV], sections);
1540 }
1541 
1542 // Class Dwp_output_file.
1543 
1544 // Record the target info from an input file.  On first call, we
1545 // set the ELF header values for the output file.  On subsequent
1546 // calls, we just verify that the values match.
1547 
1548 void
1549 Dwp_output_file::record_target_info(const char*, int machine,
1550 				    int size, bool big_endian,
1551 				    int osabi, int abiversion)
1552 {
1553   // TODO: Check the values on subsequent calls.
1554   if (this->size_ > 0)
1555     return;
1556 
1557   this->machine_ = machine;
1558   this->size_ = size;
1559   this->big_endian_ = big_endian;
1560   this->osabi_ = osabi;
1561   this->abiversion_ = abiversion;
1562 
1563   if (size == 32)
1564     this->next_file_offset_ = elfcpp::Elf_sizes<32>::ehdr_size;
1565   else if (size == 64)
1566     this->next_file_offset_ = elfcpp::Elf_sizes<64>::ehdr_size;
1567   else
1568     gold_unreachable();
1569 
1570   this->fd_ = ::fopen(this->name_, "wb");
1571   if (this->fd_ == NULL)
1572     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
1573 
1574   // Write zeroes for the ELF header initially.  We'll write
1575   // the actual header during finalize().
1576   static const char buf[elfcpp::Elf_sizes<64>::ehdr_size] = { 0 };
1577   if (::fwrite(buf, 1, this->next_file_offset_, this->fd_)
1578       < (size_t) this->next_file_offset_)
1579     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
1580 }
1581 
1582 // Add a string to the debug strings section.
1583 
1584 section_offset_type
1585 Dwp_output_file::add_string(const char* str, size_t len)
1586 {
1587   Stringpool::Key key;
1588   this->stringpool_.add_with_length(str, len, true, &key);
1589   this->have_strings_ = true;
1590   // We aren't supposed to call get_offset() until after
1591   // calling set_string_offsets(), but the offsets will
1592   // not change unless optimizing the string pool.
1593   return this->stringpool_.get_offset_from_key(key);
1594 }
1595 
1596 // Align the file offset to the given boundary.
1597 
1598 static inline off_t
1599 align_offset(off_t off, int align)
1600 {
1601   return (off + align - 1) & ~(align - 1);
1602 }
1603 
1604 // Add a new output section and return the section index.
1605 
1606 unsigned int
1607 Dwp_output_file::add_output_section(const char* section_name, int align)
1608 {
1609   Section sect(section_name, align);
1610   this->sections_.push_back(sect);
1611   return this->shnum_++;
1612 }
1613 
1614 // Add a contribution to a section in the output file, and return the offset
1615 // of the contribution within the output section.  The .debug_info.dwo section
1616 // is expected to be the largest one, so we will write the contents of this
1617 // section directly to the output file as we receive contributions, allowing
1618 // us to free that memory as soon as possible. We will save the remaining
1619 // contributions until we finalize the layout of the output file.
1620 
1621 section_offset_type
1622 Dwp_output_file::add_contribution(elfcpp::DW_SECT section_id,
1623 				  const unsigned char* contents,
1624 				  section_size_type len,
1625 				  int align)
1626 {
1627   const char* section_name = get_dwarf_section_name(section_id);
1628   gold_assert(static_cast<size_t>(section_id) < this->section_id_map_.size());
1629   unsigned int shndx = this->section_id_map_[section_id];
1630 
1631   // Create the section if necessary.
1632   if (shndx == 0)
1633     {
1634       section_name = this->shstrtab_.add_with_length(section_name,
1635 						     strlen(section_name),
1636 						     false, NULL);
1637       shndx = this->add_output_section(section_name, align);
1638       this->section_id_map_[section_id] = shndx;
1639     }
1640 
1641   Section& section = this->sections_[shndx - 1];
1642 
1643   section_offset_type section_offset;
1644 
1645   if (section_id == elfcpp::DW_SECT_INFO)
1646     {
1647       // Write the .debug_info.dwo section directly.
1648       // We do not need to free the memory in this case.
1649       off_t file_offset = this->next_file_offset_;
1650       gold_assert(this->size_ > 0 && file_offset > 0);
1651 
1652       file_offset = align_offset(file_offset, align);
1653       if (section.offset == 0)
1654 	section.offset = file_offset;
1655 
1656       if (align > section.align)
1657 	{
1658 	  // Since we've already committed to the layout for this
1659 	  // section, an unexpected large alignment boundary may
1660 	  // be impossible to honor.
1661 	  if (align_offset(section.offset, align) != section.offset)
1662 	    gold_fatal(_("%s: alignment (%d) for section '%s' "
1663 			 "cannot be honored"),
1664 		       this->name_, align, section_name);
1665 	  section.align = align;
1666 	}
1667 
1668       section_offset = file_offset - section.offset;
1669       section.size = file_offset + len - section.offset;
1670 
1671       ::fseek(this->fd_, file_offset, SEEK_SET);
1672       if (::fwrite(contents, 1, len, this->fd_) < len)
1673 	gold_fatal(_("%s: error writing section '%s'"), this->name_,
1674 		   section_name);
1675       this->next_file_offset_ = file_offset + len;
1676     }
1677   else
1678     {
1679       // Collect the contributions and keep track of the total size.
1680       if (align > section.align)
1681 	section.align = align;
1682       section_offset = align_offset(section.size, align);
1683       section.size = section_offset + len;
1684       Contribution contrib = { section_offset, len, contents };
1685       section.contributions.push_back(contrib);
1686     }
1687 
1688   return section_offset;
1689 }
1690 
1691 // Add a set of .debug_info and related sections to the output file.
1692 
1693 void
1694 Dwp_output_file::add_cu_set(Unit_set* cu_set)
1695 {
1696   uint64_t dwo_id = cu_set->signature;
1697   unsigned int slot;
1698   if (!this->cu_index_.find_or_add(dwo_id, &slot))
1699     this->cu_index_.enter_set(slot, cu_set);
1700   else
1701     gold_warning(_("%s: duplicate entry for CU (dwo_id 0x%llx)"),
1702 		 this->name_, (unsigned long long)dwo_id);
1703 }
1704 
1705 // Lookup a type signature and return TRUE if we have already seen it.
1706 bool
1707 Dwp_output_file::lookup_tu(uint64_t type_sig)
1708 {
1709   this->last_type_sig_ = type_sig;
1710   return this->tu_index_.find_or_add(type_sig, &this->last_tu_slot_);
1711 }
1712 
1713 // Add a set of .debug_types and related sections to the output file.
1714 
1715 void
1716 Dwp_output_file::add_tu_set(Unit_set* tu_set)
1717 {
1718   uint64_t type_sig = tu_set->signature;
1719   unsigned int slot;
1720   if (type_sig == this->last_type_sig_)
1721     slot = this->last_tu_slot_;
1722   else
1723     this->tu_index_.find_or_add(type_sig, &slot);
1724   this->tu_index_.enter_set(slot, tu_set);
1725 }
1726 
1727 // Find a slot in the hash table for SIGNATURE.  Return TRUE
1728 // if the entry already exists.
1729 
1730 bool
1731 Dwp_output_file::Dwp_index::find_or_add(uint64_t signature,
1732 					unsigned int* slotp)
1733 {
1734   if (this->capacity_ == 0)
1735     this->initialize();
1736   unsigned int slot =
1737       static_cast<unsigned int>(signature) & (this->capacity_ - 1);
1738   unsigned int secondary_hash;
1739   uint64_t probe = this->hash_table_[slot];
1740   uint32_t row_index = this->index_table_[slot];
1741   if (row_index != 0 && probe != signature)
1742     {
1743       secondary_hash = (static_cast<unsigned int>(signature >> 32)
1744 			& (this->capacity_ - 1)) | 1;
1745       do
1746 	{
1747 	  slot = (slot + secondary_hash) & (this->capacity_ - 1);
1748 	  probe = this->hash_table_[slot];
1749 	  row_index = this->index_table_[slot];
1750 	} while (row_index != 0 && probe != signature);
1751     }
1752   *slotp = slot;
1753   return (row_index != 0);
1754 }
1755 
1756 // Enter a CU or TU set at the given SLOT in the hash table.
1757 
1758 void
1759 Dwp_output_file::Dwp_index::enter_set(unsigned int slot,
1760 				      const Unit_set* set)
1761 {
1762   gold_assert(slot < this->capacity_);
1763 
1764   // Add a row to the offsets and sizes tables.
1765   this->section_table_.push_back(set);
1766   uint32_t row_index = this->section_table_rows();
1767 
1768   // Mark the sections used in this set.
1769   for (unsigned int i = 1; i <= elfcpp::DW_SECT_MAX; i++)
1770     if (set->sections[i].size > 0)
1771       this->section_mask_ |= 1 << i;
1772 
1773   // Enter the signature and pool index into the hash table.
1774   gold_assert(this->hash_table_[slot] == 0);
1775   this->hash_table_[slot] = set->signature;
1776   this->index_table_[slot] = row_index;
1777   ++this->used_;
1778 
1779   // Grow the hash table when we exceed 2/3 capacity.
1780   if (this->used_ * 3 > this->capacity_ * 2)
1781     this->grow();
1782 }
1783 
1784 // Initialize the hash table.
1785 
1786 void
1787 Dwp_output_file::Dwp_index::initialize()
1788 {
1789   this->capacity_ = 16;
1790   this->hash_table_ = new uint64_t[this->capacity_];
1791   memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t));
1792   this->index_table_ = new uint32_t[this->capacity_];
1793   memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t));
1794 }
1795 
1796 // Grow the hash table when we reach 2/3 capacity.
1797 
1798 void
1799 Dwp_output_file::Dwp_index::grow()
1800 {
1801   unsigned int old_capacity = this->capacity_;
1802   uint64_t* old_hash_table = this->hash_table_;
1803   uint32_t* old_index_table = this->index_table_;
1804   unsigned int old_used = this->used_;
1805 
1806   this->capacity_ = old_capacity * 2;
1807   this->hash_table_ = new uint64_t[this->capacity_];
1808   memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t));
1809   this->index_table_ = new uint32_t[this->capacity_];
1810   memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t));
1811   this->used_ = 0;
1812 
1813   for (unsigned int i = 0; i < old_capacity; ++i)
1814     {
1815       uint64_t signature = old_hash_table[i];
1816       uint32_t row_index = old_index_table[i];
1817       if (row_index != 0)
1818         {
1819 	  unsigned int slot;
1820 	  bool found = this->find_or_add(signature, &slot);
1821 	  gold_assert(!found);
1822 	  this->hash_table_[slot] = signature;
1823 	  this->index_table_[slot] = row_index;
1824 	  ++this->used_;
1825         }
1826     }
1827   gold_assert(this->used_ == old_used);
1828 
1829   delete[] old_hash_table;
1830   delete[] old_index_table;
1831 }
1832 
1833 // Finalize the file, write the string tables and index sections,
1834 // and close the file.
1835 
1836 void
1837 Dwp_output_file::finalize()
1838 {
1839   unsigned char* buf;
1840 
1841   // Write the accumulated output sections.
1842   for (unsigned int i = 0; i < this->sections_.size(); i++)
1843     {
1844       Section& sect = this->sections_[i];
1845       // If the offset has already been assigned, the section has been written.
1846       if (sect.offset > 0 || sect.size == 0)
1847 	continue;
1848       off_t file_offset = this->next_file_offset_;
1849       file_offset = align_offset(file_offset, sect.align);
1850       sect.offset = file_offset;
1851       this->write_contributions(sect);
1852       this->next_file_offset_ = file_offset + sect.size;
1853     }
1854 
1855   // Write the debug string table.
1856   if (this->have_strings_)
1857     {
1858       this->stringpool_.set_string_offsets();
1859       section_size_type len = this->stringpool_.get_strtab_size();
1860       buf = new unsigned char[len];
1861       this->stringpool_.write_to_buffer(buf, len);
1862       this->write_new_section(".debug_str.dwo", buf, len, 1);
1863       delete[] buf;
1864     }
1865 
1866   // Write the CU and TU indexes.
1867   if (this->big_endian_)
1868     {
1869       this->write_index<true>(".debug_cu_index", this->cu_index_);
1870       this->write_index<true>(".debug_tu_index", this->tu_index_);
1871     }
1872   else
1873     {
1874       this->write_index<false>(".debug_cu_index", this->cu_index_);
1875       this->write_index<false>(".debug_tu_index", this->tu_index_);
1876     }
1877 
1878   off_t file_offset = this->next_file_offset_;
1879 
1880   // Write the section string table.
1881   this->shstrndx_ = this->shnum_++;
1882   const char* shstrtab_name =
1883       this->shstrtab_.add_with_length(".shstrtab", sizeof(".shstrtab") - 1,
1884 				      false, NULL);
1885   this->shstrtab_.set_string_offsets();
1886   section_size_type shstrtab_len = this->shstrtab_.get_strtab_size();
1887   buf = new unsigned char[shstrtab_len];
1888   this->shstrtab_.write_to_buffer(buf, shstrtab_len);
1889   off_t shstrtab_off = file_offset;
1890   ::fseek(this->fd_, file_offset, 0);
1891   if (::fwrite(buf, 1, shstrtab_len, this->fd_) < shstrtab_len)
1892     gold_fatal(_("%s: error writing section '.shstrtab'"), this->name_);
1893   delete[] buf;
1894   file_offset += shstrtab_len;
1895 
1896   // Write the section header table.  The first entry is a NULL entry.
1897   // This is followed by the debug sections, and finally we write the
1898   // .shstrtab section header.
1899   file_offset = align_offset(file_offset, this->size_ == 32 ? 4 : 8);
1900   this->shoff_ = file_offset;
1901   ::fseek(this->fd_, file_offset, 0);
1902   section_size_type sh0_size = 0;
1903   unsigned int sh0_link = 0;
1904   if (this->shnum_ >= elfcpp::SHN_LORESERVE)
1905     sh0_size = this->shnum_;
1906   if (this->shstrndx_ >= elfcpp::SHN_LORESERVE)
1907     sh0_link = this->shstrndx_;
1908   this->write_shdr(NULL, 0, 0, 0, 0, sh0_size, sh0_link, 0, 0, 0);
1909   for (unsigned int i = 0; i < this->sections_.size(); ++i)
1910     {
1911       Section& sect = this->sections_[i];
1912       this->write_shdr(sect.name, elfcpp::SHT_PROGBITS, 0, 0, sect.offset,
1913 		       sect.size, 0, 0, sect.align, 0);
1914     }
1915   this->write_shdr(shstrtab_name, elfcpp::SHT_STRTAB, 0, 0,
1916 		   shstrtab_off, shstrtab_len, 0, 0, 1, 0);
1917 
1918   // Write the ELF header.
1919   this->write_ehdr();
1920 
1921   // Close the file.
1922   if (this->fd_ != NULL)
1923     {
1924       if (::fclose(this->fd_) != 0)
1925 	gold_fatal(_("%s: %s"), this->name_, strerror(errno));
1926     }
1927   this->fd_ = NULL;
1928 }
1929 
1930 // Write the contributions to an output section.
1931 
1932 void
1933 Dwp_output_file::write_contributions(const Section& sect)
1934 {
1935   for (unsigned int i = 0; i < sect.contributions.size(); ++i)
1936     {
1937       const Contribution& c = sect.contributions[i];
1938       ::fseek(this->fd_, sect.offset + c.output_offset, SEEK_SET);
1939       if (::fwrite(c.contents, 1, c.size, this->fd_) < c.size)
1940 	gold_fatal(_("%s: error writing section '%s'"), this->name_, sect.name);
1941       delete[] c.contents;
1942     }
1943 }
1944 
1945 // Write a new section to the output file.
1946 
1947 void
1948 Dwp_output_file::write_new_section(const char* section_name,
1949 				   const unsigned char* contents,
1950 				   section_size_type len, int align)
1951 {
1952   section_name = this->shstrtab_.add_with_length(section_name,
1953 						 strlen(section_name),
1954 						 false, NULL);
1955   unsigned int shndx = this->add_output_section(section_name, align);
1956   Section& section = this->sections_[shndx - 1];
1957   off_t file_offset = this->next_file_offset_;
1958   file_offset = align_offset(file_offset, align);
1959   section.offset = file_offset;
1960   section.size = len;
1961   ::fseek(this->fd_, file_offset, SEEK_SET);
1962   if (::fwrite(contents, 1, len, this->fd_) < len)
1963     gold_fatal(_("%s: error writing section '%s'"), this->name_, section_name);
1964   this->next_file_offset_ = file_offset + len;
1965 }
1966 
1967 // Write a CU or TU index section.
1968 
1969 template<bool big_endian>
1970 void
1971 Dwp_output_file::write_index(const char* sect_name, const Dwp_index& index)
1972 {
1973   const unsigned int nslots = index.hash_table_total_slots();
1974   const unsigned int nused = index.hash_table_used_slots();
1975   const unsigned int nrows = index.section_table_rows();
1976 
1977   int column_mask = index.section_table_cols();
1978   unsigned int ncols = 0;
1979   for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c)
1980     if (column_mask & (1 << c))
1981       ncols++;
1982   const unsigned int ntable = (nrows * 2 + 1) * ncols;
1983 
1984   const section_size_type index_size = (4 * sizeof(uint32_t)
1985 					+ nslots * sizeof(uint64_t)
1986 					+ nslots * sizeof(uint32_t)
1987 					+ ntable * sizeof(uint32_t));
1988 
1989   // Allocate a buffer for the section contents.
1990   unsigned char* buf = new unsigned char[index_size];
1991   unsigned char* p = buf;
1992 
1993   // Write the section header: version number, padding,
1994   // number of used slots and total number of slots.
1995   elfcpp::Swap_unaligned<32, big_endian>::writeval(p, 2);
1996   p += sizeof(uint32_t);
1997   elfcpp::Swap_unaligned<32, big_endian>::writeval(p, ncols);
1998   p += sizeof(uint32_t);
1999   elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nused);
2000   p += sizeof(uint32_t);
2001   elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nslots);
2002   p += sizeof(uint32_t);
2003 
2004   // Write the hash table.
2005   for (unsigned int i = 0; i < nslots; ++i)
2006     {
2007       elfcpp::Swap_unaligned<64, big_endian>::writeval(p, index.hash_table(i));
2008       p += sizeof(uint64_t);
2009     }
2010 
2011   // Write the parallel index table.
2012   for (unsigned int i = 0; i < nslots; ++i)
2013     {
2014       elfcpp::Swap_unaligned<32, big_endian>::writeval(p, index.index_table(i));
2015       p += sizeof(uint32_t);
2016     }
2017 
2018   // Write the first row of the table of section offsets.
2019   for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c)
2020     {
2021       if (column_mask & (1 << c))
2022 	{
2023 	  elfcpp::Swap_unaligned<32, big_endian>::writeval(p, c);
2024 	  p += sizeof(uint32_t);
2025 	}
2026     }
2027 
2028   // Write the table of section offsets.
2029   Dwp_index::Section_table::const_iterator tbl = index.section_table();
2030   for (unsigned int r = 0; r < nrows; ++r)
2031     {
2032       gold_assert(tbl != index.section_table_end());
2033       const Section_bounds* sects = (*tbl)->sections;
2034       for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c)
2035 	{
2036 	  if (column_mask & (1 << c))
2037 	    {
2038 	      section_offset_type offset = sects[c].offset;
2039 	      elfcpp::Swap_unaligned<32, big_endian>::writeval(p, offset);
2040 	      p += sizeof(uint32_t);
2041 	    }
2042 	  else
2043 	    gold_assert(sects[c].size == 0);
2044 	}
2045       ++tbl;
2046     }
2047 
2048   // Write the table of section sizes.
2049   tbl = index.section_table();
2050   for (unsigned int r = 0; r < nrows; ++r)
2051     {
2052       gold_assert(tbl != index.section_table_end());
2053       const Section_bounds* sects = (*tbl)->sections;
2054       for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c)
2055 	{
2056 	  if (column_mask & (1 << c))
2057 	    {
2058 	      section_size_type size = sects[c].size;
2059 	      elfcpp::Swap_unaligned<32, big_endian>::writeval(p, size);
2060 	      p += sizeof(uint32_t);
2061 	    }
2062 	  else
2063 	    gold_assert(sects[c].size == 0);
2064 	}
2065       ++tbl;
2066     }
2067 
2068   gold_assert(p == buf + index_size);
2069 
2070   this->write_new_section(sect_name, buf, index_size, sizeof(uint64_t));
2071 
2072   delete[] buf;
2073 }
2074 
2075 // Write the ELF header.
2076 
2077 void
2078 Dwp_output_file::write_ehdr()
2079 {
2080   if (this->size_ == 32)
2081     {
2082       if (this->big_endian_)
2083 	return this->sized_write_ehdr<32, true>();
2084       else
2085 	return this->sized_write_ehdr<32, false>();
2086     }
2087   else if (this->size_ == 64)
2088     {
2089       if (this->big_endian_)
2090 	return this->sized_write_ehdr<64, true>();
2091       else
2092 	return this->sized_write_ehdr<64, false>();
2093     }
2094   else
2095     gold_unreachable();
2096 }
2097 
2098 template<unsigned int size, bool big_endian>
2099 void
2100 Dwp_output_file::sized_write_ehdr()
2101 {
2102   const unsigned int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
2103   unsigned char buf[ehdr_size];
2104   elfcpp::Ehdr_write<size, big_endian> ehdr(buf);
2105 
2106   unsigned char e_ident[elfcpp::EI_NIDENT];
2107   memset(e_ident, 0, elfcpp::EI_NIDENT);
2108   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
2109   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
2110   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
2111   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
2112   if (size == 32)
2113     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
2114   else if (size == 64)
2115     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
2116   else
2117     gold_unreachable();
2118   e_ident[elfcpp::EI_DATA] = (big_endian
2119 			      ? elfcpp::ELFDATA2MSB
2120 			      : elfcpp::ELFDATA2LSB);
2121   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
2122   ehdr.put_e_ident(e_ident);
2123 
2124   ehdr.put_e_type(elfcpp::ET_REL);
2125   ehdr.put_e_machine(this->machine_);
2126   ehdr.put_e_version(elfcpp::EV_CURRENT);
2127   ehdr.put_e_entry(0);
2128   ehdr.put_e_phoff(0);
2129   ehdr.put_e_shoff(this->shoff_);
2130   ehdr.put_e_flags(0);
2131   ehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
2132   ehdr.put_e_phentsize(0);
2133   ehdr.put_e_phnum(0);
2134   ehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
2135   ehdr.put_e_shnum(this->shnum_ < elfcpp::SHN_LORESERVE ? this->shnum_ : 0);
2136   ehdr.put_e_shstrndx(this->shstrndx_ < elfcpp::SHN_LORESERVE
2137 		      ? this->shstrndx_
2138 		      : static_cast<unsigned int>(elfcpp::SHN_XINDEX));
2139 
2140   ::fseek(this->fd_, 0, 0);
2141   if (::fwrite(buf, 1, ehdr_size, this->fd_) < ehdr_size)
2142     gold_fatal(_("%s: error writing ELF header"), this->name_);
2143 }
2144 
2145 // Write a section header.
2146 
2147 void
2148 Dwp_output_file::write_shdr(const char* name, unsigned int type,
2149 			    unsigned int flags, uint64_t addr, off_t offset,
2150 			    section_size_type sect_size, unsigned int link,
2151 			    unsigned int info, unsigned int align,
2152 			    unsigned int ent_size)
2153 {
2154   if (this->size_ == 32)
2155     {
2156       if (this->big_endian_)
2157 	return this->sized_write_shdr<32, true>(name, type, flags, addr,
2158 						offset, sect_size, link, info,
2159 						align, ent_size);
2160       else
2161 	return this->sized_write_shdr<32, false>(name, type, flags, addr,
2162 						 offset, sect_size, link, info,
2163 						 align, ent_size);
2164     }
2165   else if (this->size_ == 64)
2166     {
2167       if (this->big_endian_)
2168 	return this->sized_write_shdr<64, true>(name, type, flags, addr,
2169 						offset, sect_size, link, info,
2170 						align, ent_size);
2171       else
2172 	return this->sized_write_shdr<64, false>(name, type, flags, addr,
2173 						 offset, sect_size, link, info,
2174 						 align, ent_size);
2175     }
2176   else
2177     gold_unreachable();
2178 }
2179 
2180 template<unsigned int size, bool big_endian>
2181 void
2182 Dwp_output_file::sized_write_shdr(const char* name, unsigned int type,
2183 				  unsigned int flags, uint64_t addr,
2184 				  off_t offset, section_size_type sect_size,
2185 				  unsigned int link, unsigned int info,
2186 				  unsigned int align, unsigned int ent_size)
2187 {
2188   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2189   unsigned char buf[shdr_size];
2190   elfcpp::Shdr_write<size, big_endian> shdr(buf);
2191 
2192   shdr.put_sh_name(name == NULL ? 0 : this->shstrtab_.get_offset(name));
2193   shdr.put_sh_type(type);
2194   shdr.put_sh_flags(flags);
2195   shdr.put_sh_addr(addr);
2196   shdr.put_sh_offset(offset);
2197   shdr.put_sh_size(sect_size);
2198   shdr.put_sh_link(link);
2199   shdr.put_sh_info(info);
2200   shdr.put_sh_addralign(align);
2201   shdr.put_sh_entsize(ent_size);
2202   if (::fwrite(buf, 1, shdr_size, this->fd_) < shdr_size)
2203     gold_fatal(_("%s: error writing section header table"), this->name_);
2204 }
2205 
2206 // Class Dwo_name_info_reader.
2207 
2208 // Visit a compilation unit.
2209 
2210 void
2211 Dwo_name_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die* die)
2212 {
2213   const char* dwo_name = die->string_attribute(elfcpp::DW_AT_GNU_dwo_name);
2214   if (dwo_name != NULL)
2215     {
2216       uint64_t dwo_id = die->uint_attribute(elfcpp::DW_AT_GNU_dwo_id);
2217       this->files_->push_back(Dwo_file_entry(dwo_id, dwo_name));
2218     }
2219 }
2220 
2221 // Class Unit_reader.
2222 
2223 // Read the CUs or TUs and add them to the output file.
2224 
2225 void
2226 Unit_reader::add_units(Dwp_output_file* output_file,
2227 		       unsigned int debug_abbrev,
2228 		       Section_bounds* sections)
2229 {
2230   this->output_file_ = output_file;
2231   this->sections_ = sections;
2232   this->set_abbrev_shndx(debug_abbrev);
2233   this->parse();
2234 }
2235 
2236 // Visit a compilation unit.
2237 
2238 void
2239 Unit_reader::visit_compilation_unit(off_t, off_t cu_length, Dwarf_die* die)
2240 {
2241   if (cu_length == 0)
2242     return;
2243 
2244   Unit_set* unit_set = new Unit_set();
2245   unit_set->signature = die->uint_attribute(elfcpp::DW_AT_GNU_dwo_id);
2246   for (unsigned int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i)
2247     unit_set->sections[i] = this->sections_[i];
2248 
2249   // Dwp_output_file::add_contribution writes the .debug_info.dwo section
2250   // directly to the output file, so we do not need to duplicate the
2251   // section contents, and add_contribution does not need to free the memory.
2252   section_offset_type off =
2253       this->output_file_->add_contribution(elfcpp::DW_SECT_INFO,
2254 					   this->buffer_at_offset(0),
2255 					   cu_length, 1);
2256   Section_bounds bounds(off, cu_length);
2257   unit_set->sections[elfcpp::DW_SECT_INFO] = bounds;
2258   this->output_file_->add_cu_set(unit_set);
2259 }
2260 
2261 // Visit a type unit.
2262 
2263 void
2264 Unit_reader::visit_type_unit(off_t, off_t tu_length, off_t,
2265 			     uint64_t signature, Dwarf_die*)
2266 {
2267   if (tu_length == 0)
2268     return;
2269   if (this->output_file_->lookup_tu(signature))
2270     return;
2271 
2272   Unit_set* unit_set = new Unit_set();
2273   unit_set->signature = signature;
2274   for (unsigned int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i)
2275     unit_set->sections[i] = this->sections_[i];
2276 
2277   unsigned char* contents = new unsigned char[tu_length];
2278   memcpy(contents, this->buffer_at_offset(0), tu_length);
2279   section_offset_type off =
2280       this->output_file_->add_contribution(elfcpp::DW_SECT_TYPES, contents,
2281 					   tu_length, 1);
2282   Section_bounds bounds(off, tu_length);
2283   unit_set->sections[elfcpp::DW_SECT_TYPES] = bounds;
2284   this->output_file_->add_tu_set(unit_set);
2285 }
2286 
2287 }; // End namespace gold
2288 
2289 using namespace gold;
2290 
2291 // Options.
2292 
2293 enum Dwp_options {
2294   VERIFY_ONLY = 0x101,
2295 };
2296 
2297 struct option dwp_options[] =
2298   {
2299     { "exec", required_argument, NULL, 'e' },
2300     { "help", no_argument, NULL, 'h' },
2301     { "output", required_argument, NULL, 'o' },
2302     { "verbose", no_argument, NULL, 'v' },
2303     { "verify-only", no_argument, NULL, VERIFY_ONLY },
2304     { "version", no_argument, NULL, 'V' },
2305     { NULL, 0, NULL, 0 }
2306   };
2307 
2308 // Print usage message and exit.
2309 
2310 static void
2311 usage(FILE* fd, int exit_status)
2312 {
2313   fprintf(fd, _("Usage: %s [options] [file...]\n"), program_name);
2314   fprintf(fd, _("  -h, --help               Print this help message\n"));
2315   fprintf(fd, _("  -e EXE, --exec EXE       Get list of dwo files from EXE"
2316 					   " (defaults output to EXE.dwp)\n"));
2317   fprintf(fd, _("  -o FILE, --output FILE   Set output dwp file name\n"));
2318   fprintf(fd, _("  -v, --verbose            Verbose output\n"));
2319   fprintf(fd, _("  --verify-only            Verify output file against"
2320 					   " exec file\n"));
2321   fprintf(fd, _("  -V, --version            Print version number\n"));
2322 
2323   // REPORT_BUGS_TO is defined in bfd/bfdver.h.
2324   const char* report = REPORT_BUGS_TO;
2325   if (*report != '\0')
2326     fprintf(fd, _("\nReport bugs to %s\n"), report);
2327   exit(exit_status);
2328 }
2329 
2330 // Report version information.
2331 
2332 static void
2333 print_version()
2334 {
2335   // This output is intended to follow the GNU standards.
2336   printf("GNU dwp %s\n", BFD_VERSION_STRING);
2337   printf(_("Copyright (C) 2016 Free Software Foundation, Inc.\n"));
2338   printf(_("\
2339 This program is free software; you may redistribute it under the terms of\n\
2340 the GNU General Public License version 3 or (at your option) any later version.\n\
2341 This program has absolutely no warranty.\n"));
2342   exit(EXIT_SUCCESS);
2343 }
2344 
2345 // Main program.
2346 
2347 int
2348 main(int argc, char** argv)
2349 {
2350 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
2351   setlocale(LC_MESSAGES, "");
2352 #endif
2353 #if defined (HAVE_SETLOCALE)
2354   setlocale(LC_CTYPE, "");
2355 #endif
2356   bindtextdomain(PACKAGE, LOCALEDIR);
2357   textdomain(PACKAGE);
2358 
2359   program_name = argv[0];
2360 
2361   // Initialize the global parameters, to let random code get to the
2362   // errors object.
2363   Errors errors(program_name);
2364   set_parameters_errors(&errors);
2365 
2366   // Initialize gold's global options.  We don't use these in
2367   // this program, but they need to be initialized so that
2368   // functions we call from libgold work properly.
2369   General_options options;
2370   set_parameters_options(&options);
2371 
2372   // In libiberty; expands @filename to the args in "filename".
2373   expandargv(&argc, &argv);
2374 
2375   // Collect file names and options.
2376   File_list files;
2377   std::string output_filename;
2378   const char* exe_filename = NULL;
2379   bool verbose = false;
2380   bool verify_only = false;
2381   int c;
2382   while ((c = getopt_long(argc, argv, "e:ho:vV", dwp_options, NULL)) != -1)
2383     {
2384       switch (c)
2385         {
2386 	  case 'h':
2387 	    usage(stdout, EXIT_SUCCESS);
2388 	  case 'e':
2389 	    exe_filename = optarg;
2390 	    break;
2391 	  case 'o':
2392 	    output_filename.assign(optarg);
2393 	    break;
2394 	  case 'v':
2395 	    verbose = true;
2396 	    break;
2397 	  case VERIFY_ONLY:
2398 	    verify_only = true;
2399 	    break;
2400 	  case 'V':
2401 	    print_version();
2402 	  case '?':
2403 	  default:
2404 	    usage(stderr, EXIT_FAILURE);
2405 	}
2406     }
2407 
2408   if (output_filename.empty())
2409     {
2410       if (exe_filename == NULL)
2411 	gold_fatal(_("no output file specified"));
2412       output_filename.assign(exe_filename);
2413       output_filename.append(".dwp");
2414     }
2415 
2416   // Get list of .dwo files from the executable.
2417   if (exe_filename != NULL)
2418     {
2419       Dwo_file exe_file(exe_filename);
2420       exe_file.read_executable(&files);
2421     }
2422 
2423   // Add any additional files listed on command line.
2424   for (int i = optind; i < argc; ++i)
2425     files.push_back(Dwo_file_entry(0, argv[i]));
2426 
2427   if (exe_filename == NULL && files.empty())
2428     gold_fatal(_("no input files and no executable specified"));
2429 
2430   if (verify_only)
2431     {
2432       // Get list of DWO files in the DWP file and compare with
2433       // references found in the EXE file.
2434       Dwo_file dwp_file(output_filename.c_str());
2435       bool ok = dwp_file.verify(files);
2436       return ok ? EXIT_SUCCESS : EXIT_FAILURE;
2437     }
2438 
2439   // Process each file, adding its contents to the output file.
2440   Dwp_output_file output_file(output_filename.c_str());
2441   for (File_list::const_iterator f = files.begin(); f != files.end(); ++f)
2442     {
2443       if (verbose)
2444 	fprintf(stderr, "%s\n", f->dwo_name.c_str());
2445       Dwo_file dwo_file(f->dwo_name.c_str());
2446       dwo_file.read(&output_file);
2447     }
2448   output_file.finalize();
2449 
2450   return EXIT_SUCCESS;
2451 }
2452