1 /* ELF linking support for BFD.
2    Copyright (C) 1995-2020 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34 
35 /* This struct is used to pass information to routines called via
36    elf_link_hash_traverse which must return failure.  */
37 
38 struct elf_info_failed
39 {
40   struct bfd_link_info *info;
41   bfd_boolean failed;
42 };
43 
44 /* This structure is used to pass information to
45    _bfd_elf_link_find_version_dependencies.  */
46 
47 struct elf_find_verdep_info
48 {
49   /* General link information.  */
50   struct bfd_link_info *info;
51   /* The number of dependencies.  */
52   unsigned int vers;
53   /* Whether we had a failure.  */
54   bfd_boolean failed;
55 };
56 
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58   (struct elf_link_hash_entry *, struct elf_info_failed *);
59 
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 			     unsigned long r_symndx,
63 			     bfd_boolean discard)
64 {
65   if (r_symndx >= cookie->locsymcount
66       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67     {
68       struct elf_link_hash_entry *h;
69 
70       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71 
72       while (h->root.type == bfd_link_hash_indirect
73 	     || h->root.type == bfd_link_hash_warning)
74 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
75 
76       if ((h->root.type == bfd_link_hash_defined
77 	   || h->root.type == bfd_link_hash_defweak)
78 	   && discarded_section (h->root.u.def.section))
79 	return h->root.u.def.section;
80       else
81 	return NULL;
82     }
83   else
84     {
85       /* It's not a relocation against a global symbol,
86 	 but it could be a relocation against a local
87 	 symbol for a discarded section.  */
88       asection *isec;
89       Elf_Internal_Sym *isym;
90 
91       /* Need to: get the symbol; get the section.  */
92       isym = &cookie->locsyms[r_symndx];
93       isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94       if (isec != NULL
95 	  && discard ? discarded_section (isec) : 1)
96 	return isec;
97      }
98   return NULL;
99 }
100 
101 /* Define a symbol in a dynamic linkage section.  */
102 
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 			     struct bfd_link_info *info,
106 			     asection *sec,
107 			     const char *name)
108 {
109   struct elf_link_hash_entry *h;
110   struct bfd_link_hash_entry *bh;
111   const struct elf_backend_data *bed;
112 
113   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114   if (h != NULL)
115     {
116       /* Zap symbol defined in an as-needed lib that wasn't linked.
117 	 This is a symptom of a larger problem:  Absolute symbols
118 	 defined in shared libraries can't be overridden, because we
119 	 lose the link to the bfd which is via the symbol section.  */
120       h->root.type = bfd_link_hash_new;
121       bh = &h->root;
122     }
123   else
124     bh = NULL;
125 
126   bed = get_elf_backend_data (abfd);
127   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 					 sec, 0, NULL, FALSE, bed->collect,
129 					 &bh))
130     return NULL;
131   h = (struct elf_link_hash_entry *) bh;
132   BFD_ASSERT (h != NULL);
133   h->def_regular = 1;
134   h->non_elf = 0;
135   h->root.linker_def = 1;
136   h->type = STT_OBJECT;
137   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139 
140   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141   return h;
142 }
143 
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147   flagword flags;
148   asection *s;
149   struct elf_link_hash_entry *h;
150   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151   struct elf_link_hash_table *htab = elf_hash_table (info);
152 
153   /* This function may be called more than once.  */
154   if (htab->sgot != NULL)
155     return TRUE;
156 
157   flags = bed->dynamic_sec_flags;
158 
159   s = bfd_make_section_anyway_with_flags (abfd,
160 					  (bed->rela_plts_and_copies_p
161 					   ? ".rela.got" : ".rel.got"),
162 					  (bed->dynamic_sec_flags
163 					   | SEC_READONLY));
164   if (s == NULL
165       || !bfd_set_section_alignment (s, bed->s->log_file_align))
166     return FALSE;
167   htab->srelgot = s;
168 
169   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170   if (s == NULL
171       || !bfd_set_section_alignment (s, bed->s->log_file_align))
172     return FALSE;
173   htab->sgot = s;
174 
175   if (bed->want_got_plt)
176     {
177       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178       if (s == NULL
179 	  || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 	return FALSE;
181       htab->sgotplt = s;
182     }
183 
184   /* The first bit of the global offset table is the header.  */
185   s->size += bed->got_header_size;
186 
187   if (bed->want_got_sym)
188     {
189       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 	 (or .got.plt) section.  We don't do this in the linker script
191 	 because we don't want to define the symbol if we are not creating
192 	 a global offset table.  */
193       h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 				       "_GLOBAL_OFFSET_TABLE_");
195       elf_hash_table (info)->hgot = h;
196       if (h == NULL)
197 	return FALSE;
198     }
199 
200   return TRUE;
201 }
202 
203 /* Create a strtab to hold the dynamic symbol names.  */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207   struct elf_link_hash_table *hash_table;
208 
209   hash_table = elf_hash_table (info);
210   if (hash_table->dynobj == NULL)
211     {
212       /* We may not set dynobj, an input file holding linker created
213 	 dynamic sections to abfd, which may be a dynamic object with
214 	 its own dynamic sections.  We need to find a normal input file
215 	 to hold linker created sections if possible.  */
216       if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 	{
218 	  bfd *ibfd;
219 	  asection *s;
220 	  for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 	    if ((ibfd->flags
222 		 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 		&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 		&& elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 		&& !((s = ibfd->sections) != NULL
226 		     && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 	      {
228 		abfd = ibfd;
229 		break;
230 	      }
231 	}
232       hash_table->dynobj = abfd;
233     }
234 
235   if (hash_table->dynstr == NULL)
236     {
237       hash_table->dynstr = _bfd_elf_strtab_init ();
238       if (hash_table->dynstr == NULL)
239 	return FALSE;
240     }
241   return TRUE;
242 }
243 
244 /* Create some sections which will be filled in with dynamic linking
245    information.  ABFD is an input file which requires dynamic sections
246    to be created.  The dynamic sections take up virtual memory space
247    when the final executable is run, so we need to create them before
248    addresses are assigned to the output sections.  We work out the
249    actual contents and size of these sections later.  */
250 
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254   flagword flags;
255   asection *s;
256   const struct elf_backend_data *bed;
257   struct elf_link_hash_entry *h;
258 
259   if (! is_elf_hash_table (info->hash))
260     return FALSE;
261 
262   if (elf_hash_table (info)->dynamic_sections_created)
263     return TRUE;
264 
265   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266     return FALSE;
267 
268   abfd = elf_hash_table (info)->dynobj;
269   bed = get_elf_backend_data (abfd);
270 
271   flags = bed->dynamic_sec_flags;
272 
273   /* A dynamically linked executable has a .interp section, but a
274      shared library does not.  */
275   if (bfd_link_executable (info) && !info->nointerp)
276     {
277       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 					      flags | SEC_READONLY);
279       if (s == NULL)
280 	return FALSE;
281     }
282 
283   /* Create sections to hold version informations.  These are removed
284      if they are not needed.  */
285   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 					  flags | SEC_READONLY);
287   if (s == NULL
288       || !bfd_set_section_alignment (s, bed->s->log_file_align))
289     return FALSE;
290 
291   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 					  flags | SEC_READONLY);
293   if (s == NULL
294       || !bfd_set_section_alignment (s, 1))
295     return FALSE;
296 
297   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 					  flags | SEC_READONLY);
299   if (s == NULL
300       || !bfd_set_section_alignment (s, bed->s->log_file_align))
301     return FALSE;
302 
303   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 					  flags | SEC_READONLY);
305   if (s == NULL
306       || !bfd_set_section_alignment (s, bed->s->log_file_align))
307     return FALSE;
308   elf_hash_table (info)->dynsym = s;
309 
310   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 					  flags | SEC_READONLY);
312   if (s == NULL)
313     return FALSE;
314 
315   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316   if (s == NULL
317       || !bfd_set_section_alignment (s, bed->s->log_file_align))
318     return FALSE;
319 
320   /* The special symbol _DYNAMIC is always set to the start of the
321      .dynamic section.  We could set _DYNAMIC in a linker script, but we
322      only want to define it if we are, in fact, creating a .dynamic
323      section.  We don't want to define it if there is no .dynamic
324      section, since on some ELF platforms the start up code examines it
325      to decide how to initialize the process.  */
326   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327   elf_hash_table (info)->hdynamic = h;
328   if (h == NULL)
329     return FALSE;
330 
331   if (info->emit_hash)
332     {
333       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 					      flags | SEC_READONLY);
335       if (s == NULL
336 	  || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 	return FALSE;
338       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339     }
340 
341   if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342     {
343       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 					      flags | SEC_READONLY);
345       if (s == NULL
346 	  || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 	return FALSE;
348       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 	 4 32-bit words followed by variable count of 64-bit words, then
350 	 variable count of 32-bit words.  */
351       if (bed->s->arch_size == 64)
352 	elf_section_data (s)->this_hdr.sh_entsize = 0;
353       else
354 	elf_section_data (s)->this_hdr.sh_entsize = 4;
355     }
356 
357   /* Let the backend create the rest of the sections.  This lets the
358      backend set the right flags.  The backend will normally create
359      the .got and .plt sections.  */
360   if (bed->elf_backend_create_dynamic_sections == NULL
361       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362     return FALSE;
363 
364   elf_hash_table (info)->dynamic_sections_created = TRUE;
365 
366   return TRUE;
367 }
368 
369 /* Create dynamic sections when linking against a dynamic object.  */
370 
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374   flagword flags, pltflags;
375   struct elf_link_hash_entry *h;
376   asection *s;
377   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378   struct elf_link_hash_table *htab = elf_hash_table (info);
379 
380   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381      .rel[a].bss sections.  */
382   flags = bed->dynamic_sec_flags;
383 
384   pltflags = flags;
385   if (bed->plt_not_loaded)
386     /* We do not clear SEC_ALLOC here because we still want the OS to
387        allocate space for the section; it's just that there's nothing
388        to read in from the object file.  */
389     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390   else
391     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392   if (bed->plt_readonly)
393     pltflags |= SEC_READONLY;
394 
395   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396   if (s == NULL
397       || !bfd_set_section_alignment (s, bed->plt_alignment))
398     return FALSE;
399   htab->splt = s;
400 
401   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402      .plt section.  */
403   if (bed->want_plt_sym)
404     {
405       h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 				       "_PROCEDURE_LINKAGE_TABLE_");
407       elf_hash_table (info)->hplt = h;
408       if (h == NULL)
409 	return FALSE;
410     }
411 
412   s = bfd_make_section_anyway_with_flags (abfd,
413 					  (bed->rela_plts_and_copies_p
414 					   ? ".rela.plt" : ".rel.plt"),
415 					  flags | SEC_READONLY);
416   if (s == NULL
417       || !bfd_set_section_alignment (s, bed->s->log_file_align))
418     return FALSE;
419   htab->srelplt = s;
420 
421   if (! _bfd_elf_create_got_section (abfd, info))
422     return FALSE;
423 
424   if (bed->want_dynbss)
425     {
426       /* The .dynbss section is a place to put symbols which are defined
427 	 by dynamic objects, are referenced by regular objects, and are
428 	 not functions.  We must allocate space for them in the process
429 	 image and use a R_*_COPY reloc to tell the dynamic linker to
430 	 initialize them at run time.  The linker script puts the .dynbss
431 	 section into the .bss section of the final image.  */
432       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 					      SEC_ALLOC | SEC_LINKER_CREATED);
434       if (s == NULL)
435 	return FALSE;
436       htab->sdynbss = s;
437 
438       if (bed->want_dynrelro)
439 	{
440 	  /* Similarly, but for symbols that were originally in read-only
441 	     sections.  This section doesn't really need to have contents,
442 	     but make it like other .data.rel.ro sections.  */
443 	  s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 						  flags);
445 	  if (s == NULL)
446 	    return FALSE;
447 	  htab->sdynrelro = s;
448 	}
449 
450       /* The .rel[a].bss section holds copy relocs.  This section is not
451 	 normally needed.  We need to create it here, though, so that the
452 	 linker will map it to an output section.  We can't just create it
453 	 only if we need it, because we will not know whether we need it
454 	 until we have seen all the input files, and the first time the
455 	 main linker code calls BFD after examining all the input files
456 	 (size_dynamic_sections) the input sections have already been
457 	 mapped to the output sections.  If the section turns out not to
458 	 be needed, we can discard it later.  We will never need this
459 	 section when generating a shared object, since they do not use
460 	 copy relocs.  */
461       if (bfd_link_executable (info))
462 	{
463 	  s = bfd_make_section_anyway_with_flags (abfd,
464 						  (bed->rela_plts_and_copies_p
465 						   ? ".rela.bss" : ".rel.bss"),
466 						  flags | SEC_READONLY);
467 	  if (s == NULL
468 	      || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 	    return FALSE;
470 	  htab->srelbss = s;
471 
472 	  if (bed->want_dynrelro)
473 	    {
474 	      s = (bfd_make_section_anyway_with_flags
475 		   (abfd, (bed->rela_plts_and_copies_p
476 			   ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 		    flags | SEC_READONLY));
478 	      if (s == NULL
479 		  || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 		return FALSE;
481 	      htab->sreldynrelro = s;
482 	    }
483 	}
484     }
485 
486   return TRUE;
487 }
488 
489 /* Record a new dynamic symbol.  We record the dynamic symbols as we
490    read the input files, since we need to have a list of all of them
491    before we can determine the final sizes of the output sections.
492    Note that we may actually call this function even though we are not
493    going to output any dynamic symbols; in some cases we know that a
494    symbol should be in the dynamic symbol table, but only if there is
495    one.  */
496 
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 				    struct elf_link_hash_entry *h)
500 {
501   if (h->dynindx == -1)
502     {
503       struct elf_strtab_hash *dynstr;
504       char *p;
505       const char *name;
506       size_t indx;
507 
508       /* XXX: The ABI draft says the linker must turn hidden and
509 	 internal symbols into STB_LOCAL symbols when producing the
510 	 DSO. However, if ld.so honors st_other in the dynamic table,
511 	 this would not be necessary.  */
512       switch (ELF_ST_VISIBILITY (h->other))
513 	{
514 	case STV_INTERNAL:
515 	case STV_HIDDEN:
516 	  if (h->root.type != bfd_link_hash_undefined
517 	      && h->root.type != bfd_link_hash_undefweak)
518 	    {
519 	      h->forced_local = 1;
520 	      if (!elf_hash_table (info)->is_relocatable_executable)
521 		return TRUE;
522 	    }
523 
524 	default:
525 	  break;
526 	}
527 
528       h->dynindx = elf_hash_table (info)->dynsymcount;
529       ++elf_hash_table (info)->dynsymcount;
530 
531       dynstr = elf_hash_table (info)->dynstr;
532       if (dynstr == NULL)
533 	{
534 	  /* Create a strtab to hold the dynamic symbol names.  */
535 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 	  if (dynstr == NULL)
537 	    return FALSE;
538 	}
539 
540       /* We don't put any version information in the dynamic string
541 	 table.  */
542       name = h->root.root.string;
543       p = strchr (name, ELF_VER_CHR);
544       if (p != NULL)
545 	/* We know that the p points into writable memory.  In fact,
546 	   there are only a few symbols that have read-only names, being
547 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 	   by the backends.  Most symbols will have names pointing into
549 	   an ELF string table read from a file, or to objalloc memory.  */
550 	*p = 0;
551 
552       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553 
554       if (p != NULL)
555 	*p = ELF_VER_CHR;
556 
557       if (indx == (size_t) -1)
558 	return FALSE;
559       h->dynstr_index = indx;
560     }
561 
562   return TRUE;
563 }
564 
565 /* Mark a symbol dynamic.  */
566 
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 				  struct elf_link_hash_entry *h,
570 				  Elf_Internal_Sym *sym)
571 {
572   struct bfd_elf_dynamic_list *d = info->dynamic_list;
573 
574   /* It may be called more than once on the same H.  */
575   if(h->dynamic || bfd_link_relocatable (info))
576     return;
577 
578   if ((info->dynamic_data
579        && (h->type == STT_OBJECT
580 	   || h->type == STT_COMMON
581 	   || (sym != NULL
582 	       && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 		   || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584       || (d != NULL
585 	  && h->non_elf
586 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
587     {
588       h->dynamic = 1;
589       /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 	 non-IR reference.  */
591       h->root.non_ir_ref_dynamic = 1;
592     }
593 }
594 
595 /* Record an assignment to a symbol made by a linker script.  We need
596    this in case some dynamic object refers to this symbol.  */
597 
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 				struct bfd_link_info *info,
601 				const char *name,
602 				bfd_boolean provide,
603 				bfd_boolean hidden)
604 {
605   struct elf_link_hash_entry *h, *hv;
606   struct elf_link_hash_table *htab;
607   const struct elf_backend_data *bed;
608 
609   if (!is_elf_hash_table (info->hash))
610     return TRUE;
611 
612   htab = elf_hash_table (info);
613   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614   if (h == NULL)
615     return provide;
616 
617   if (h->root.type == bfd_link_hash_warning)
618     h = (struct elf_link_hash_entry *) h->root.u.i.link;
619 
620   if (h->versioned == unknown)
621     {
622       /* Set versioned if symbol version is unknown.  */
623       char *version = strrchr (name, ELF_VER_CHR);
624       if (version)
625 	{
626 	  if (version > name && version[-1] != ELF_VER_CHR)
627 	    h->versioned = versioned_hidden;
628 	  else
629 	    h->versioned = versioned;
630 	}
631     }
632 
633   /* Symbols defined in a linker script but not referenced anywhere
634      else will have non_elf set.  */
635   if (h->non_elf)
636     {
637       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638       h->non_elf = 0;
639     }
640 
641   switch (h->root.type)
642     {
643     case bfd_link_hash_defined:
644     case bfd_link_hash_defweak:
645     case bfd_link_hash_common:
646       break;
647     case bfd_link_hash_undefweak:
648     case bfd_link_hash_undefined:
649       /* Since we're defining the symbol, don't let it seem to have not
650 	 been defined.  record_dynamic_symbol and size_dynamic_sections
651 	 may depend on this.  */
652       h->root.type = bfd_link_hash_new;
653       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 	bfd_link_repair_undef_list (&htab->root);
655       break;
656     case bfd_link_hash_new:
657       break;
658     case bfd_link_hash_indirect:
659       /* We had a versioned symbol in a dynamic library.  We make the
660 	 the versioned symbol point to this one.  */
661       bed = get_elf_backend_data (output_bfd);
662       hv = h;
663       while (hv->root.type == bfd_link_hash_indirect
664 	     || hv->root.type == bfd_link_hash_warning)
665 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666       /* We don't need to update h->root.u since linker will set them
667 	 later.  */
668       h->root.type = bfd_link_hash_undefined;
669       hv->root.type = bfd_link_hash_indirect;
670       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672       break;
673     default:
674       BFD_FAIL ();
675       return FALSE;
676     }
677 
678   /* If this symbol is being provided by the linker script, and it is
679      currently defined by a dynamic object, but not by a regular
680      object, then mark it as undefined so that the generic linker will
681      force the correct value.  */
682   if (provide
683       && h->def_dynamic
684       && !h->def_regular)
685     h->root.type = bfd_link_hash_undefined;
686 
687   /* If this symbol is currently defined by a dynamic object, but not
688      by a regular object, then clear out any version information because
689      the symbol will not be associated with the dynamic object any
690      more.  */
691   if (h->def_dynamic && !h->def_regular)
692     h->verinfo.verdef = NULL;
693 
694   /* Make sure this symbol is not garbage collected.  */
695   h->mark = 1;
696 
697   h->def_regular = 1;
698 
699   if (hidden)
700     {
701       bed = get_elf_backend_data (output_bfd);
702       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705     }
706 
707   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708      and executables.  */
709   if (!bfd_link_relocatable (info)
710       && h->dynindx != -1
711       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713     h->forced_local = 1;
714 
715   if ((h->def_dynamic
716        || h->ref_dynamic
717        || bfd_link_dll (info)
718        || elf_hash_table (info)->is_relocatable_executable)
719       && !h->forced_local
720       && h->dynindx == -1)
721     {
722       if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 	return FALSE;
724 
725       /* If this is a weak defined symbol, and we know a corresponding
726 	 real symbol from the same dynamic object, make sure the real
727 	 symbol is also made into a dynamic symbol.  */
728       if (h->is_weakalias)
729 	{
730 	  struct elf_link_hash_entry *def = weakdef (h);
731 
732 	  if (def->dynindx == -1
733 	      && !bfd_elf_link_record_dynamic_symbol (info, def))
734 	    return FALSE;
735 	}
736     }
737 
738   return TRUE;
739 }
740 
741 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
742    success, and 2 on a failure caused by attempting to record a symbol
743    in a discarded section, eg. a discarded link-once section symbol.  */
744 
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 					  bfd *input_bfd,
748 					  long input_indx)
749 {
750   bfd_size_type amt;
751   struct elf_link_local_dynamic_entry *entry;
752   struct elf_link_hash_table *eht;
753   struct elf_strtab_hash *dynstr;
754   size_t dynstr_index;
755   char *name;
756   Elf_External_Sym_Shndx eshndx;
757   char esym[sizeof (Elf64_External_Sym)];
758 
759   if (! is_elf_hash_table (info->hash))
760     return 0;
761 
762   /* See if the entry exists already.  */
763   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765       return 1;
766 
767   amt = sizeof (*entry);
768   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769   if (entry == NULL)
770     return 0;
771 
772   /* Go find the symbol, so that we can find it's name.  */
773   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 			     1, input_indx, &entry->isym, esym, &eshndx))
775     {
776       bfd_release (input_bfd, entry);
777       return 0;
778     }
779 
780   if (entry->isym.st_shndx != SHN_UNDEF
781       && entry->isym.st_shndx < SHN_LORESERVE)
782     {
783       asection *s;
784 
785       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786       if (s == NULL || bfd_is_abs_section (s->output_section))
787 	{
788 	  /* We can still bfd_release here as nothing has done another
789 	     bfd_alloc.  We can't do this later in this function.  */
790 	  bfd_release (input_bfd, entry);
791 	  return 2;
792 	}
793     }
794 
795   name = (bfd_elf_string_from_elf_section
796 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 	   entry->isym.st_name));
798 
799   dynstr = elf_hash_table (info)->dynstr;
800   if (dynstr == NULL)
801     {
802       /* Create a strtab to hold the dynamic symbol names.  */
803       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804       if (dynstr == NULL)
805 	return 0;
806     }
807 
808   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809   if (dynstr_index == (size_t) -1)
810     return 0;
811   entry->isym.st_name = dynstr_index;
812 
813   eht = elf_hash_table (info);
814 
815   entry->next = eht->dynlocal;
816   eht->dynlocal = entry;
817   entry->input_bfd = input_bfd;
818   entry->input_indx = input_indx;
819   eht->dynsymcount++;
820 
821   /* Whatever binding the symbol had before, it's now local.  */
822   entry->isym.st_info
823     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824 
825   /* The dynindx will be set at the end of size_dynamic_sections.  */
826 
827   return 1;
828 }
829 
830 /* Return the dynindex of a local dynamic symbol.  */
831 
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 				    bfd *input_bfd,
835 				    long input_indx)
836 {
837   struct elf_link_local_dynamic_entry *e;
838 
839   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841       return e->dynindx;
842   return -1;
843 }
844 
845 /* This function is used to renumber the dynamic symbols, if some of
846    them are removed because they are marked as local.  This is called
847    via elf_link_hash_traverse.  */
848 
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 				      void *data)
852 {
853   size_t *count = (size_t *) data;
854 
855   if (h->forced_local)
856     return TRUE;
857 
858   if (h->dynindx != -1)
859     h->dynindx = ++(*count);
860 
861   return TRUE;
862 }
863 
864 
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866    STB_LOCAL binding.  */
867 
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 					    void *data)
871 {
872   size_t *count = (size_t *) data;
873 
874   if (!h->forced_local)
875     return TRUE;
876 
877   if (h->dynindx != -1)
878     h->dynindx = ++(*count);
879 
880   return TRUE;
881 }
882 
883 /* Return true if the dynamic symbol for a given section should be
884    omitted when creating a shared library.  */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 				      struct bfd_link_info *info,
888 				      asection *p)
889 {
890   struct elf_link_hash_table *htab;
891   asection *ip;
892 
893   switch (elf_section_data (p)->this_hdr.sh_type)
894     {
895     case SHT_PROGBITS:
896     case SHT_NOBITS:
897       /* If sh_type is yet undecided, assume it could be
898 	 SHT_PROGBITS/SHT_NOBITS.  */
899     case SHT_NULL:
900       htab = elf_hash_table (info);
901       if (htab->text_index_section != NULL)
902 	return p != htab->text_index_section && p != htab->data_index_section;
903 
904       return (htab->dynobj != NULL
905 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 	      && ip->output_section == p);
907 
908       /* There shouldn't be section relative relocations
909 	 against any other section.  */
910     default:
911       return TRUE;
912     }
913 }
914 
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917     (bfd *output_bfd ATTRIBUTE_UNUSED,
918      struct bfd_link_info *info ATTRIBUTE_UNUSED,
919      asection *p ATTRIBUTE_UNUSED)
920 {
921   return TRUE;
922 }
923 
924 /* Assign dynsym indices.  In a shared library we generate a section
925    symbol for each output section, which come first.  Next come symbols
926    which have been forced to local binding.  Then all of the back-end
927    allocated local dynamic syms, followed by the rest of the global
928    symbols.  If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929    (This prevents the early call before elf_backend_init_index_section
930    and strip_excluded_output_sections setting dynindx for sections
931    that are stripped.)  */
932 
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 				struct bfd_link_info *info,
936 				unsigned long *section_sym_count)
937 {
938   unsigned long dynsymcount = 0;
939   bfd_boolean do_sec = section_sym_count != NULL;
940 
941   if (bfd_link_pic (info)
942       || elf_hash_table (info)->is_relocatable_executable)
943     {
944       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945       asection *p;
946       for (p = output_bfd->sections; p ; p = p->next)
947 	if ((p->flags & SEC_EXCLUDE) == 0
948 	    && (p->flags & SEC_ALLOC) != 0
949 	    && elf_hash_table (info)->dynamic_relocs
950 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 	  {
952 	    ++dynsymcount;
953 	    if (do_sec)
954 	      elf_section_data (p)->dynindx = dynsymcount;
955 	  }
956 	else if (do_sec)
957 	  elf_section_data (p)->dynindx = 0;
958     }
959   if (do_sec)
960     *section_sym_count = dynsymcount;
961 
962   elf_link_hash_traverse (elf_hash_table (info),
963 			  elf_link_renumber_local_hash_table_dynsyms,
964 			  &dynsymcount);
965 
966   if (elf_hash_table (info)->dynlocal)
967     {
968       struct elf_link_local_dynamic_entry *p;
969       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 	p->dynindx = ++dynsymcount;
971     }
972   elf_hash_table (info)->local_dynsymcount = dynsymcount;
973 
974   elf_link_hash_traverse (elf_hash_table (info),
975 			  elf_link_renumber_hash_table_dynsyms,
976 			  &dynsymcount);
977 
978   /* There is an unused NULL entry at the head of the table which we
979      must account for in our count even if the table is empty since it
980      is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981      .dynamic section.  */
982   dynsymcount++;
983 
984   elf_hash_table (info)->dynsymcount = dynsymcount;
985   return dynsymcount;
986 }
987 
988 /* Merge st_other field.  */
989 
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 		    const Elf_Internal_Sym *isym, asection *sec,
993 		    bfd_boolean definition, bfd_boolean dynamic)
994 {
995   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996 
997   /* If st_other has a processor-specific meaning, specific
998      code might be needed here.  */
999   if (bed->elf_backend_merge_symbol_attribute)
1000     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 						dynamic);
1002 
1003   if (!dynamic)
1004     {
1005       unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006       unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007 
1008       /* Keep the most constraining visibility.  Leave the remainder
1009 	 of the st_other field to elf_backend_merge_symbol_attribute.  */
1010       if (symvis - 1 < hvis - 1)
1011 	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012     }
1013   else if (definition
1014 	   && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 	   && (sec->flags & SEC_READONLY) == 0)
1016     h->protected_def = 1;
1017 }
1018 
1019 /* This function is called when we want to merge a new symbol with an
1020    existing symbol.  It handles the various cases which arise when we
1021    find a definition in a dynamic object, or when there is already a
1022    definition in a dynamic object.  The new symbol is described by
1023    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
1024    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
1025    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
1026    of an old common symbol.  We set OVERRIDE if the old symbol is
1027    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
1028    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
1029    to change.  By OK to change, we mean that we shouldn't warn if the
1030    type or size does change.  */
1031 
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 		       struct bfd_link_info *info,
1035 		       const char *name,
1036 		       Elf_Internal_Sym *sym,
1037 		       asection **psec,
1038 		       bfd_vma *pvalue,
1039 		       struct elf_link_hash_entry **sym_hash,
1040 		       bfd **poldbfd,
1041 		       bfd_boolean *pold_weak,
1042 		       unsigned int *pold_alignment,
1043 		       bfd_boolean *skip,
1044 		       bfd_boolean *override,
1045 		       bfd_boolean *type_change_ok,
1046 		       bfd_boolean *size_change_ok,
1047 		       bfd_boolean *matched)
1048 {
1049   asection *sec, *oldsec;
1050   struct elf_link_hash_entry *h;
1051   struct elf_link_hash_entry *hi;
1052   struct elf_link_hash_entry *flip;
1053   int bind;
1054   bfd *oldbfd;
1055   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056   bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057   const struct elf_backend_data *bed;
1058   char *new_version;
1059   bfd_boolean default_sym = *matched;
1060 
1061   *skip = FALSE;
1062   *override = FALSE;
1063 
1064   sec = *psec;
1065   bind = ELF_ST_BIND (sym->st_info);
1066 
1067   if (! bfd_is_und_section (sec))
1068     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069   else
1070     h = ((struct elf_link_hash_entry *)
1071 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072   if (h == NULL)
1073     return FALSE;
1074   *sym_hash = h;
1075 
1076   bed = get_elf_backend_data (abfd);
1077 
1078   /* NEW_VERSION is the symbol version of the new symbol.  */
1079   if (h->versioned != unversioned)
1080     {
1081       /* Symbol version is unknown or versioned.  */
1082       new_version = strrchr (name, ELF_VER_CHR);
1083       if (new_version)
1084 	{
1085 	  if (h->versioned == unknown)
1086 	    {
1087 	      if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 		h->versioned = versioned_hidden;
1089 	      else
1090 		h->versioned = versioned;
1091 	    }
1092 	  new_version += 1;
1093 	  if (new_version[0] == '\0')
1094 	    new_version = NULL;
1095 	}
1096       else
1097 	h->versioned = unversioned;
1098     }
1099   else
1100     new_version = NULL;
1101 
1102   /* For merging, we only care about real symbols.  But we need to make
1103      sure that indirect symbol dynamic flags are updated.  */
1104   hi = h;
1105   while (h->root.type == bfd_link_hash_indirect
1106 	 || h->root.type == bfd_link_hash_warning)
1107     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108 
1109   if (!*matched)
1110     {
1111       if (hi == h || h->root.type == bfd_link_hash_new)
1112 	*matched = TRUE;
1113       else
1114 	{
1115 	  /* OLD_HIDDEN is true if the existing symbol is only visible
1116 	     to the symbol with the same symbol version.  NEW_HIDDEN is
1117 	     true if the new symbol is only visible to the symbol with
1118 	     the same symbol version.  */
1119 	  bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 	  bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 	  if (!old_hidden && !new_hidden)
1122 	    /* The new symbol matches the existing symbol if both
1123 	       aren't hidden.  */
1124 	    *matched = TRUE;
1125 	  else
1126 	    {
1127 	      /* OLD_VERSION is the symbol version of the existing
1128 		 symbol. */
1129 	      char *old_version;
1130 
1131 	      if (h->versioned >= versioned)
1132 		old_version = strrchr (h->root.root.string,
1133 				       ELF_VER_CHR) + 1;
1134 	      else
1135 		 old_version = NULL;
1136 
1137 	      /* The new symbol matches the existing symbol if they
1138 		 have the same symbol version.  */
1139 	      *matched = (old_version == new_version
1140 			  || (old_version != NULL
1141 			      && new_version != NULL
1142 			      && strcmp (old_version, new_version) == 0));
1143 	    }
1144 	}
1145     }
1146 
1147   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148      existing symbol.  */
1149 
1150   oldbfd = NULL;
1151   oldsec = NULL;
1152   switch (h->root.type)
1153     {
1154     default:
1155       break;
1156 
1157     case bfd_link_hash_undefined:
1158     case bfd_link_hash_undefweak:
1159       oldbfd = h->root.u.undef.abfd;
1160       break;
1161 
1162     case bfd_link_hash_defined:
1163     case bfd_link_hash_defweak:
1164       oldbfd = h->root.u.def.section->owner;
1165       oldsec = h->root.u.def.section;
1166       break;
1167 
1168     case bfd_link_hash_common:
1169       oldbfd = h->root.u.c.p->section->owner;
1170       oldsec = h->root.u.c.p->section;
1171       if (pold_alignment)
1172 	*pold_alignment = h->root.u.c.p->alignment_power;
1173       break;
1174     }
1175   if (poldbfd && *poldbfd == NULL)
1176     *poldbfd = oldbfd;
1177 
1178   /* Differentiate strong and weak symbols.  */
1179   newweak = bind == STB_WEAK;
1180   oldweak = (h->root.type == bfd_link_hash_defweak
1181 	     || h->root.type == bfd_link_hash_undefweak);
1182   if (pold_weak)
1183     *pold_weak = oldweak;
1184 
1185   /* We have to check it for every instance since the first few may be
1186      references and not all compilers emit symbol type for undefined
1187      symbols.  */
1188   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189 
1190   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191      respectively, is from a dynamic object.  */
1192 
1193   newdyn = (abfd->flags & DYNAMIC) != 0;
1194 
1195   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196      syms and defined syms in dynamic libraries respectively.
1197      ref_dynamic on the other hand can be set for a symbol defined in
1198      a dynamic library, and def_dynamic may not be set;  When the
1199      definition in a dynamic lib is overridden by a definition in the
1200      executable use of the symbol in the dynamic lib becomes a
1201      reference to the executable symbol.  */
1202   if (newdyn)
1203     {
1204       if (bfd_is_und_section (sec))
1205 	{
1206 	  if (bind != STB_WEAK)
1207 	    {
1208 	      h->ref_dynamic_nonweak = 1;
1209 	      hi->ref_dynamic_nonweak = 1;
1210 	    }
1211 	}
1212       else
1213 	{
1214 	  /* Update the existing symbol only if they match. */
1215 	  if (*matched)
1216 	    h->dynamic_def = 1;
1217 	  hi->dynamic_def = 1;
1218 	}
1219     }
1220 
1221   /* If we just created the symbol, mark it as being an ELF symbol.
1222      Other than that, there is nothing to do--there is no merge issue
1223      with a newly defined symbol--so we just return.  */
1224 
1225   if (h->root.type == bfd_link_hash_new)
1226     {
1227       h->non_elf = 0;
1228       return TRUE;
1229     }
1230 
1231   /* In cases involving weak versioned symbols, we may wind up trying
1232      to merge a symbol with itself.  Catch that here, to avoid the
1233      confusion that results if we try to override a symbol with
1234      itself.  The additional tests catch cases like
1235      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236      dynamic object, which we do want to handle here.  */
1237   if (abfd == oldbfd
1238       && (newweak || oldweak)
1239       && ((abfd->flags & DYNAMIC) == 0
1240 	  || !h->def_regular))
1241     return TRUE;
1242 
1243   olddyn = FALSE;
1244   if (oldbfd != NULL)
1245     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246   else if (oldsec != NULL)
1247     {
1248       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 	 indices used by MIPS ELF.  */
1250       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251     }
1252 
1253   /* Handle a case where plugin_notice won't be called and thus won't
1254      set the non_ir_ref flags on the first pass over symbols.  */
1255   if (oldbfd != NULL
1256       && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257       && newdyn != olddyn)
1258     {
1259       h->root.non_ir_ref_dynamic = TRUE;
1260       hi->root.non_ir_ref_dynamic = TRUE;
1261     }
1262 
1263   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264      respectively, appear to be a definition rather than reference.  */
1265 
1266   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267 
1268   olddef = (h->root.type != bfd_link_hash_undefined
1269 	    && h->root.type != bfd_link_hash_undefweak
1270 	    && h->root.type != bfd_link_hash_common);
1271 
1272   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273      respectively, appear to be a function.  */
1274 
1275   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277 
1278   oldfunc = (h->type != STT_NOTYPE
1279 	     && bed->is_function_type (h->type));
1280 
1281   if (!(newfunc && oldfunc)
1282       && ELF_ST_TYPE (sym->st_info) != h->type
1283       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284       && h->type != STT_NOTYPE
1285       && (newdef || bfd_is_com_section (sec))
1286       && (olddef || h->root.type == bfd_link_hash_common))
1287     {
1288       /* If creating a default indirect symbol ("foo" or "foo@") from
1289 	 a dynamic versioned definition ("foo@@") skip doing so if
1290 	 there is an existing regular definition with a different
1291 	 type.  We don't want, for example, a "time" variable in the
1292 	 executable overriding a "time" function in a shared library.  */
1293       if (newdyn
1294 	  && !olddyn)
1295 	{
1296 	  *skip = TRUE;
1297 	  return TRUE;
1298 	}
1299 
1300       /* When adding a symbol from a regular object file after we have
1301 	 created indirect symbols, undo the indirection and any
1302 	 dynamic state.  */
1303       if (hi != h
1304 	  && !newdyn
1305 	  && olddyn)
1306 	{
1307 	  h = hi;
1308 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 	  h->forced_local = 0;
1310 	  h->ref_dynamic = 0;
1311 	  h->def_dynamic = 0;
1312 	  h->dynamic_def = 0;
1313 	  if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 	    {
1315 	      h->root.type = bfd_link_hash_undefined;
1316 	      h->root.u.undef.abfd = abfd;
1317 	    }
1318 	  else
1319 	    {
1320 	      h->root.type = bfd_link_hash_new;
1321 	      h->root.u.undef.abfd = NULL;
1322 	    }
1323 	  return TRUE;
1324 	}
1325     }
1326 
1327   /* Check TLS symbols.  We don't check undefined symbols introduced
1328      by "ld -u" which have no type (and oldbfd NULL), and we don't
1329      check symbols from plugins because they also have no type.  */
1330   if (oldbfd != NULL
1331       && (oldbfd->flags & BFD_PLUGIN) == 0
1332       && (abfd->flags & BFD_PLUGIN) == 0
1333       && ELF_ST_TYPE (sym->st_info) != h->type
1334       && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335     {
1336       bfd *ntbfd, *tbfd;
1337       bfd_boolean ntdef, tdef;
1338       asection *ntsec, *tsec;
1339 
1340       if (h->type == STT_TLS)
1341 	{
1342 	  ntbfd = abfd;
1343 	  ntsec = sec;
1344 	  ntdef = newdef;
1345 	  tbfd = oldbfd;
1346 	  tsec = oldsec;
1347 	  tdef = olddef;
1348 	}
1349       else
1350 	{
1351 	  ntbfd = oldbfd;
1352 	  ntsec = oldsec;
1353 	  ntdef = olddef;
1354 	  tbfd = abfd;
1355 	  tsec = sec;
1356 	  tdef = newdef;
1357 	}
1358 
1359       if (tdef && ntdef)
1360 	_bfd_error_handler
1361 	  /* xgettext:c-format */
1362 	  (_("%s: TLS definition in %pB section %pA "
1363 	     "mismatches non-TLS definition in %pB section %pA"),
1364 	   h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365       else if (!tdef && !ntdef)
1366 	_bfd_error_handler
1367 	  /* xgettext:c-format */
1368 	  (_("%s: TLS reference in %pB "
1369 	     "mismatches non-TLS reference in %pB"),
1370 	   h->root.root.string, tbfd, ntbfd);
1371       else if (tdef)
1372 	_bfd_error_handler
1373 	  /* xgettext:c-format */
1374 	  (_("%s: TLS definition in %pB section %pA "
1375 	     "mismatches non-TLS reference in %pB"),
1376 	   h->root.root.string, tbfd, tsec, ntbfd);
1377       else
1378 	_bfd_error_handler
1379 	  /* xgettext:c-format */
1380 	  (_("%s: TLS reference in %pB "
1381 	     "mismatches non-TLS definition in %pB section %pA"),
1382 	   h->root.root.string, tbfd, ntbfd, ntsec);
1383 
1384       bfd_set_error (bfd_error_bad_value);
1385       return FALSE;
1386     }
1387 
1388   /* If the old symbol has non-default visibility, we ignore the new
1389      definition from a dynamic object.  */
1390   if (newdyn
1391       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392       && !bfd_is_und_section (sec))
1393     {
1394       *skip = TRUE;
1395       /* Make sure this symbol is dynamic.  */
1396       h->ref_dynamic = 1;
1397       hi->ref_dynamic = 1;
1398       /* A protected symbol has external availability. Make sure it is
1399 	 recorded as dynamic.
1400 
1401 	 FIXME: Should we check type and size for protected symbol?  */
1402       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 	return bfd_elf_link_record_dynamic_symbol (info, h);
1404       else
1405 	return TRUE;
1406     }
1407   else if (!newdyn
1408 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 	   && h->def_dynamic)
1410     {
1411       /* If the new symbol with non-default visibility comes from a
1412 	 relocatable file and the old definition comes from a dynamic
1413 	 object, we remove the old definition.  */
1414       if (hi->root.type == bfd_link_hash_indirect)
1415 	{
1416 	  /* Handle the case where the old dynamic definition is
1417 	     default versioned.  We need to copy the symbol info from
1418 	     the symbol with default version to the normal one if it
1419 	     was referenced before.  */
1420 	  if (h->ref_regular)
1421 	    {
1422 	      hi->root.type = h->root.type;
1423 	      h->root.type = bfd_link_hash_indirect;
1424 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425 
1426 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 		{
1429 		  /* If the new symbol is hidden or internal, completely undo
1430 		     any dynamic link state.  */
1431 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 		  h->forced_local = 0;
1433 		  h->ref_dynamic = 0;
1434 		}
1435 	      else
1436 		h->ref_dynamic = 1;
1437 
1438 	      h->def_dynamic = 0;
1439 	      /* FIXME: Should we check type and size for protected symbol?  */
1440 	      h->size = 0;
1441 	      h->type = 0;
1442 
1443 	      h = hi;
1444 	    }
1445 	  else
1446 	    h = hi;
1447 	}
1448 
1449       /* If the old symbol was undefined before, then it will still be
1450 	 on the undefs list.  If the new symbol is undefined or
1451 	 common, we can't make it bfd_link_hash_new here, because new
1452 	 undefined or common symbols will be added to the undefs list
1453 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1454 	 added twice to the undefs list.  Also, if the new symbol is
1455 	 undefweak then we don't want to lose the strong undef.  */
1456       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 	{
1458 	  h->root.type = bfd_link_hash_undefined;
1459 	  h->root.u.undef.abfd = abfd;
1460 	}
1461       else
1462 	{
1463 	  h->root.type = bfd_link_hash_new;
1464 	  h->root.u.undef.abfd = NULL;
1465 	}
1466 
1467       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 	{
1469 	  /* If the new symbol is hidden or internal, completely undo
1470 	     any dynamic link state.  */
1471 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 	  h->forced_local = 0;
1473 	  h->ref_dynamic = 0;
1474 	}
1475       else
1476 	h->ref_dynamic = 1;
1477       h->def_dynamic = 0;
1478       /* FIXME: Should we check type and size for protected symbol?  */
1479       h->size = 0;
1480       h->type = 0;
1481       return TRUE;
1482     }
1483 
1484   /* If a new weak symbol definition comes from a regular file and the
1485      old symbol comes from a dynamic library, we treat the new one as
1486      strong.  Similarly, an old weak symbol definition from a regular
1487      file is treated as strong when the new symbol comes from a dynamic
1488      library.  Further, an old weak symbol from a dynamic library is
1489      treated as strong if the new symbol is from a dynamic library.
1490      This reflects the way glibc's ld.so works.
1491 
1492      Also allow a weak symbol to override a linker script symbol
1493      defined by an early pass over the script.  This is done so the
1494      linker knows the symbol is defined in an object file, for the
1495      DEFINED script function.
1496 
1497      Do this before setting *type_change_ok or *size_change_ok so that
1498      we warn properly when dynamic library symbols are overridden.  */
1499 
1500   if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501     newweak = FALSE;
1502   if (olddef && newdyn)
1503     oldweak = FALSE;
1504 
1505   /* Allow changes between different types of function symbol.  */
1506   if (newfunc && oldfunc)
1507     *type_change_ok = TRUE;
1508 
1509   /* It's OK to change the type if either the existing symbol or the
1510      new symbol is weak.  A type change is also OK if the old symbol
1511      is undefined and the new symbol is defined.  */
1512 
1513   if (oldweak
1514       || newweak
1515       || (newdef
1516 	  && h->root.type == bfd_link_hash_undefined))
1517     *type_change_ok = TRUE;
1518 
1519   /* It's OK to change the size if either the existing symbol or the
1520      new symbol is weak, or if the old symbol is undefined.  */
1521 
1522   if (*type_change_ok
1523       || h->root.type == bfd_link_hash_undefined)
1524     *size_change_ok = TRUE;
1525 
1526   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527      symbol, respectively, appears to be a common symbol in a dynamic
1528      object.  If a symbol appears in an uninitialized section, and is
1529      not weak, and is not a function, then it may be a common symbol
1530      which was resolved when the dynamic object was created.  We want
1531      to treat such symbols specially, because they raise special
1532      considerations when setting the symbol size: if the symbol
1533      appears as a common symbol in a regular object, and the size in
1534      the regular object is larger, we must make sure that we use the
1535      larger size.  This problematic case can always be avoided in C,
1536      but it must be handled correctly when using Fortran shared
1537      libraries.
1538 
1539      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540      likewise for OLDDYNCOMMON and OLDDEF.
1541 
1542      Note that this test is just a heuristic, and that it is quite
1543      possible to have an uninitialized symbol in a shared object which
1544      is really a definition, rather than a common symbol.  This could
1545      lead to some minor confusion when the symbol really is a common
1546      symbol in some regular object.  However, I think it will be
1547      harmless.  */
1548 
1549   if (newdyn
1550       && newdef
1551       && !newweak
1552       && (sec->flags & SEC_ALLOC) != 0
1553       && (sec->flags & SEC_LOAD) == 0
1554       && sym->st_size > 0
1555       && !newfunc)
1556     newdyncommon = TRUE;
1557   else
1558     newdyncommon = FALSE;
1559 
1560   if (olddyn
1561       && olddef
1562       && h->root.type == bfd_link_hash_defined
1563       && h->def_dynamic
1564       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566       && h->size > 0
1567       && !oldfunc)
1568     olddyncommon = TRUE;
1569   else
1570     olddyncommon = FALSE;
1571 
1572   /* We now know everything about the old and new symbols.  We ask the
1573      backend to check if we can merge them.  */
1574   if (bed->merge_symbol != NULL)
1575     {
1576       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 	return FALSE;
1578       sec = *psec;
1579     }
1580 
1581   /* There are multiple definitions of a normal symbol.  Skip the
1582      default symbol as well as definition from an IR object.  */
1583   if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584       && !default_sym && h->def_regular
1585       && !(oldbfd != NULL
1586 	   && (oldbfd->flags & BFD_PLUGIN) != 0
1587 	   && (abfd->flags & BFD_PLUGIN) == 0))
1588     {
1589       /* Handle a multiple definition.  */
1590       (*info->callbacks->multiple_definition) (info, &h->root,
1591 					       abfd, sec, *pvalue);
1592       *skip = TRUE;
1593       return TRUE;
1594     }
1595 
1596   /* If both the old and the new symbols look like common symbols in a
1597      dynamic object, set the size of the symbol to the larger of the
1598      two.  */
1599 
1600   if (olddyncommon
1601       && newdyncommon
1602       && sym->st_size != h->size)
1603     {
1604       /* Since we think we have two common symbols, issue a multiple
1605 	 common warning if desired.  Note that we only warn if the
1606 	 size is different.  If the size is the same, we simply let
1607 	 the old symbol override the new one as normally happens with
1608 	 symbols defined in dynamic objects.  */
1609 
1610       (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 					   bfd_link_hash_common, sym->st_size);
1612       if (sym->st_size > h->size)
1613 	h->size = sym->st_size;
1614 
1615       *size_change_ok = TRUE;
1616     }
1617 
1618   /* If we are looking at a dynamic object, and we have found a
1619      definition, we need to see if the symbol was already defined by
1620      some other object.  If so, we want to use the existing
1621      definition, and we do not want to report a multiple symbol
1622      definition error; we do this by clobbering *PSEC to be
1623      bfd_und_section_ptr.
1624 
1625      We treat a common symbol as a definition if the symbol in the
1626      shared library is a function, since common symbols always
1627      represent variables; this can cause confusion in principle, but
1628      any such confusion would seem to indicate an erroneous program or
1629      shared library.  We also permit a common symbol in a regular
1630      object to override a weak symbol in a shared object.  */
1631 
1632   if (newdyn
1633       && newdef
1634       && (olddef
1635 	  || (h->root.type == bfd_link_hash_common
1636 	      && (newweak || newfunc))))
1637     {
1638       *override = TRUE;
1639       newdef = FALSE;
1640       newdyncommon = FALSE;
1641 
1642       *psec = sec = bfd_und_section_ptr;
1643       *size_change_ok = TRUE;
1644 
1645       /* If we get here when the old symbol is a common symbol, then
1646 	 we are explicitly letting it override a weak symbol or
1647 	 function in a dynamic object, and we don't want to warn about
1648 	 a type change.  If the old symbol is a defined symbol, a type
1649 	 change warning may still be appropriate.  */
1650 
1651       if (h->root.type == bfd_link_hash_common)
1652 	*type_change_ok = TRUE;
1653     }
1654 
1655   /* Handle the special case of an old common symbol merging with a
1656      new symbol which looks like a common symbol in a shared object.
1657      We change *PSEC and *PVALUE to make the new symbol look like a
1658      common symbol, and let _bfd_generic_link_add_one_symbol do the
1659      right thing.  */
1660 
1661   if (newdyncommon
1662       && h->root.type == bfd_link_hash_common)
1663     {
1664       *override = TRUE;
1665       newdef = FALSE;
1666       newdyncommon = FALSE;
1667       *pvalue = sym->st_size;
1668       *psec = sec = bed->common_section (oldsec);
1669       *size_change_ok = TRUE;
1670     }
1671 
1672   /* Skip weak definitions of symbols that are already defined.  */
1673   if (newdef && olddef && newweak)
1674     {
1675       /* Don't skip new non-IR weak syms.  */
1676       if (!(oldbfd != NULL
1677 	    && (oldbfd->flags & BFD_PLUGIN) != 0
1678 	    && (abfd->flags & BFD_PLUGIN) == 0))
1679 	{
1680 	  newdef = FALSE;
1681 	  *skip = TRUE;
1682 	}
1683 
1684       /* Merge st_other.  If the symbol already has a dynamic index,
1685 	 but visibility says it should not be visible, turn it into a
1686 	 local symbol.  */
1687       elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688       if (h->dynindx != -1)
1689 	switch (ELF_ST_VISIBILITY (h->other))
1690 	  {
1691 	  case STV_INTERNAL:
1692 	  case STV_HIDDEN:
1693 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 	    break;
1695 	  }
1696     }
1697 
1698   /* If the old symbol is from a dynamic object, and the new symbol is
1699      a definition which is not from a dynamic object, then the new
1700      symbol overrides the old symbol.  Symbols from regular files
1701      always take precedence over symbols from dynamic objects, even if
1702      they are defined after the dynamic object in the link.
1703 
1704      As above, we again permit a common symbol in a regular object to
1705      override a definition in a shared object if the shared object
1706      symbol is a function or is weak.  */
1707 
1708   flip = NULL;
1709   if (!newdyn
1710       && (newdef
1711 	  || (bfd_is_com_section (sec)
1712 	      && (oldweak || oldfunc)))
1713       && olddyn
1714       && olddef
1715       && h->def_dynamic)
1716     {
1717       /* Change the hash table entry to undefined, and let
1718 	 _bfd_generic_link_add_one_symbol do the right thing with the
1719 	 new definition.  */
1720 
1721       h->root.type = bfd_link_hash_undefined;
1722       h->root.u.undef.abfd = h->root.u.def.section->owner;
1723       *size_change_ok = TRUE;
1724 
1725       olddef = FALSE;
1726       olddyncommon = FALSE;
1727 
1728       /* We again permit a type change when a common symbol may be
1729 	 overriding a function.  */
1730 
1731       if (bfd_is_com_section (sec))
1732 	{
1733 	  if (oldfunc)
1734 	    {
1735 	      /* If a common symbol overrides a function, make sure
1736 		 that it isn't defined dynamically nor has type
1737 		 function.  */
1738 	      h->def_dynamic = 0;
1739 	      h->type = STT_NOTYPE;
1740 	    }
1741 	  *type_change_ok = TRUE;
1742 	}
1743 
1744       if (hi->root.type == bfd_link_hash_indirect)
1745 	flip = hi;
1746       else
1747 	/* This union may have been set to be non-NULL when this symbol
1748 	   was seen in a dynamic object.  We must force the union to be
1749 	   NULL, so that it is correct for a regular symbol.  */
1750 	h->verinfo.vertree = NULL;
1751     }
1752 
1753   /* Handle the special case of a new common symbol merging with an
1754      old symbol that looks like it might be a common symbol defined in
1755      a shared object.  Note that we have already handled the case in
1756      which a new common symbol should simply override the definition
1757      in the shared library.  */
1758 
1759   if (! newdyn
1760       && bfd_is_com_section (sec)
1761       && olddyncommon)
1762     {
1763       /* It would be best if we could set the hash table entry to a
1764 	 common symbol, but we don't know what to use for the section
1765 	 or the alignment.  */
1766       (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 					   bfd_link_hash_common, sym->st_size);
1768 
1769       /* If the presumed common symbol in the dynamic object is
1770 	 larger, pretend that the new symbol has its size.  */
1771 
1772       if (h->size > *pvalue)
1773 	*pvalue = h->size;
1774 
1775       /* We need to remember the alignment required by the symbol
1776 	 in the dynamic object.  */
1777       BFD_ASSERT (pold_alignment);
1778       *pold_alignment = h->root.u.def.section->alignment_power;
1779 
1780       olddef = FALSE;
1781       olddyncommon = FALSE;
1782 
1783       h->root.type = bfd_link_hash_undefined;
1784       h->root.u.undef.abfd = h->root.u.def.section->owner;
1785 
1786       *size_change_ok = TRUE;
1787       *type_change_ok = TRUE;
1788 
1789       if (hi->root.type == bfd_link_hash_indirect)
1790 	flip = hi;
1791       else
1792 	h->verinfo.vertree = NULL;
1793     }
1794 
1795   if (flip != NULL)
1796     {
1797       /* Handle the case where we had a versioned symbol in a dynamic
1798 	 library and now find a definition in a normal object.  In this
1799 	 case, we make the versioned symbol point to the normal one.  */
1800       flip->root.type = h->root.type;
1801       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802       h->root.type = bfd_link_hash_indirect;
1803       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805       if (h->def_dynamic)
1806 	{
1807 	  h->def_dynamic = 0;
1808 	  flip->ref_dynamic = 1;
1809 	}
1810     }
1811 
1812   return TRUE;
1813 }
1814 
1815 /* This function is called to create an indirect symbol from the
1816    default for the symbol with the default version if needed. The
1817    symbol is described by H, NAME, SYM, SEC, and VALUE.  We
1818    set DYNSYM if the new indirect symbol is dynamic.  */
1819 
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 			     struct bfd_link_info *info,
1823 			     struct elf_link_hash_entry *h,
1824 			     const char *name,
1825 			     Elf_Internal_Sym *sym,
1826 			     asection *sec,
1827 			     bfd_vma value,
1828 			     bfd **poldbfd,
1829 			     bfd_boolean *dynsym)
1830 {
1831   bfd_boolean type_change_ok;
1832   bfd_boolean size_change_ok;
1833   bfd_boolean skip;
1834   char *shortname;
1835   struct elf_link_hash_entry *hi;
1836   struct bfd_link_hash_entry *bh;
1837   const struct elf_backend_data *bed;
1838   bfd_boolean collect;
1839   bfd_boolean dynamic;
1840   bfd_boolean override;
1841   char *p;
1842   size_t len, shortlen;
1843   asection *tmp_sec;
1844   bfd_boolean matched;
1845 
1846   if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847     return TRUE;
1848 
1849   /* If this symbol has a version, and it is the default version, we
1850      create an indirect symbol from the default name to the fully
1851      decorated name.  This will cause external references which do not
1852      specify a version to be bound to this version of the symbol.  */
1853   p = strchr (name, ELF_VER_CHR);
1854   if (h->versioned == unknown)
1855     {
1856       if (p == NULL)
1857 	{
1858 	  h->versioned = unversioned;
1859 	  return TRUE;
1860 	}
1861       else
1862 	{
1863 	  if (p[1] != ELF_VER_CHR)
1864 	    {
1865 	      h->versioned = versioned_hidden;
1866 	      return TRUE;
1867 	    }
1868 	  else
1869 	    h->versioned = versioned;
1870 	}
1871     }
1872   else
1873     {
1874       /* PR ld/19073: We may see an unversioned definition after the
1875 	 default version.  */
1876       if (p == NULL)
1877 	return TRUE;
1878     }
1879 
1880   bed = get_elf_backend_data (abfd);
1881   collect = bed->collect;
1882   dynamic = (abfd->flags & DYNAMIC) != 0;
1883 
1884   shortlen = p - name;
1885   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886   if (shortname == NULL)
1887     return FALSE;
1888   memcpy (shortname, name, shortlen);
1889   shortname[shortlen] = '\0';
1890 
1891   /* We are going to create a new symbol.  Merge it with any existing
1892      symbol with this name.  For the purposes of the merge, act as
1893      though we were defining the symbol we just defined, although we
1894      actually going to define an indirect symbol.  */
1895   type_change_ok = FALSE;
1896   size_change_ok = FALSE;
1897   matched = TRUE;
1898   tmp_sec = sec;
1899   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1901 			      &type_change_ok, &size_change_ok, &matched))
1902     return FALSE;
1903 
1904   if (skip)
1905     goto nondefault;
1906 
1907   if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908     {
1909       /* If the undecorated symbol will have a version added by a
1910 	 script different to H, then don't indirect to/from the
1911 	 undecorated symbol.  This isn't ideal because we may not yet
1912 	 have seen symbol versions, if given by a script on the
1913 	 command line rather than via --version-script.  */
1914       if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 	{
1916 	  bfd_boolean hide;
1917 
1918 	  hi->verinfo.vertree
1919 	    = bfd_find_version_for_sym (info->version_info,
1920 					hi->root.root.string, &hide);
1921 	  if (hi->verinfo.vertree != NULL && hide)
1922 	    {
1923 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 	      goto nondefault;
1925 	    }
1926 	}
1927       if (hi->verinfo.vertree != NULL
1928 	  && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 	goto nondefault;
1930     }
1931 
1932   if (! override)
1933     {
1934       /* Add the default symbol if not performing a relocatable link.  */
1935       if (! bfd_link_relocatable (info))
1936 	{
1937 	  bh = &hi->root;
1938 	  if (bh->type == bfd_link_hash_defined
1939 	      && bh->u.def.section->owner != NULL
1940 	      && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 	    {
1942 	      /* Mark the previous definition from IR object as
1943 		 undefined so that the generic linker will override
1944 		 it.  */
1945 	      bh->type = bfd_link_hash_undefined;
1946 	      bh->u.undef.abfd = bh->u.def.section->owner;
1947 	    }
1948 	  if (! (_bfd_generic_link_add_one_symbol
1949 		 (info, abfd, shortname, BSF_INDIRECT,
1950 		  bfd_ind_section_ptr,
1951 		  0, name, FALSE, collect, &bh)))
1952 	    return FALSE;
1953 	  hi = (struct elf_link_hash_entry *) bh;
1954 	}
1955     }
1956   else
1957     {
1958       /* In this case the symbol named SHORTNAME is overriding the
1959 	 indirect symbol we want to add.  We were planning on making
1960 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1961 	 is the name without a version.  NAME is the fully versioned
1962 	 name, and it is the default version.
1963 
1964 	 Overriding means that we already saw a definition for the
1965 	 symbol SHORTNAME in a regular object, and it is overriding
1966 	 the symbol defined in the dynamic object.
1967 
1968 	 When this happens, we actually want to change NAME, the
1969 	 symbol we just added, to refer to SHORTNAME.  This will cause
1970 	 references to NAME in the shared object to become references
1971 	 to SHORTNAME in the regular object.  This is what we expect
1972 	 when we override a function in a shared object: that the
1973 	 references in the shared object will be mapped to the
1974 	 definition in the regular object.  */
1975 
1976       while (hi->root.type == bfd_link_hash_indirect
1977 	     || hi->root.type == bfd_link_hash_warning)
1978 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979 
1980       h->root.type = bfd_link_hash_indirect;
1981       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982       if (h->def_dynamic)
1983 	{
1984 	  h->def_dynamic = 0;
1985 	  hi->ref_dynamic = 1;
1986 	  if (hi->ref_regular
1987 	      || hi->def_regular)
1988 	    {
1989 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 		return FALSE;
1991 	    }
1992 	}
1993 
1994       /* Now set HI to H, so that the following code will set the
1995 	 other fields correctly.  */
1996       hi = h;
1997     }
1998 
1999   /* Check if HI is a warning symbol.  */
2000   if (hi->root.type == bfd_link_hash_warning)
2001     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002 
2003   /* If there is a duplicate definition somewhere, then HI may not
2004      point to an indirect symbol.  We will have reported an error to
2005      the user in that case.  */
2006 
2007   if (hi->root.type == bfd_link_hash_indirect)
2008     {
2009       struct elf_link_hash_entry *ht;
2010 
2011       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013 
2014       /* A reference to the SHORTNAME symbol from a dynamic library
2015 	 will be satisfied by the versioned symbol at runtime.  In
2016 	 effect, we have a reference to the versioned symbol.  */
2017       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018       hi->dynamic_def |= ht->dynamic_def;
2019 
2020       /* See if the new flags lead us to realize that the symbol must
2021 	 be dynamic.  */
2022       if (! *dynsym)
2023 	{
2024 	  if (! dynamic)
2025 	    {
2026 	      if (! bfd_link_executable (info)
2027 		  || hi->def_dynamic
2028 		  || hi->ref_dynamic)
2029 		*dynsym = TRUE;
2030 	    }
2031 	  else
2032 	    {
2033 	      if (hi->ref_regular)
2034 		*dynsym = TRUE;
2035 	    }
2036 	}
2037     }
2038 
2039   /* We also need to define an indirection from the nondefault version
2040      of the symbol.  */
2041 
2042 nondefault:
2043   len = strlen (name);
2044   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045   if (shortname == NULL)
2046     return FALSE;
2047   memcpy (shortname, name, shortlen);
2048   memcpy (shortname + shortlen, p + 1, len - shortlen);
2049 
2050   /* Once again, merge with any existing symbol.  */
2051   type_change_ok = FALSE;
2052   size_change_ok = FALSE;
2053   tmp_sec = sec;
2054   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 			      &hi, poldbfd, NULL, NULL, &skip, &override,
2056 			      &type_change_ok, &size_change_ok, &matched))
2057     return FALSE;
2058 
2059   if (skip)
2060     return TRUE;
2061 
2062   if (override)
2063     {
2064       /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 	 the type of override we do in the case above unless it is
2066 	 overridden by a versioned definition.  */
2067       if (hi->root.type != bfd_link_hash_defined
2068 	  && hi->root.type != bfd_link_hash_defweak)
2069 	_bfd_error_handler
2070 	  /* xgettext:c-format */
2071 	  (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 	   abfd, shortname);
2073     }
2074   else
2075     {
2076       bh = &hi->root;
2077       if (! (_bfd_generic_link_add_one_symbol
2078 	     (info, abfd, shortname, BSF_INDIRECT,
2079 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 	return FALSE;
2081       hi = (struct elf_link_hash_entry *) bh;
2082 
2083       /* If there is a duplicate definition somewhere, then HI may not
2084 	 point to an indirect symbol.  We will have reported an error
2085 	 to the user in that case.  */
2086 
2087       if (hi->root.type == bfd_link_hash_indirect)
2088 	{
2089 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 	  hi->dynamic_def |= h->dynamic_def;
2092 
2093 	  /* See if the new flags lead us to realize that the symbol
2094 	     must be dynamic.  */
2095 	  if (! *dynsym)
2096 	    {
2097 	      if (! dynamic)
2098 		{
2099 		  if (! bfd_link_executable (info)
2100 		      || hi->ref_dynamic)
2101 		    *dynsym = TRUE;
2102 		}
2103 	      else
2104 		{
2105 		  if (hi->ref_regular)
2106 		    *dynsym = TRUE;
2107 		}
2108 	    }
2109 	}
2110     }
2111 
2112   return TRUE;
2113 }
2114 
2115 /* This routine is used to export all defined symbols into the dynamic
2116    symbol table.  It is called via elf_link_hash_traverse.  */
2117 
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122 
2123   /* Ignore indirect symbols.  These are added by the versioning code.  */
2124   if (h->root.type == bfd_link_hash_indirect)
2125     return TRUE;
2126 
2127   /* Ignore this if we won't export it.  */
2128   if (!eif->info->export_dynamic && !h->dynamic)
2129     return TRUE;
2130 
2131   if (h->dynindx == -1
2132       && (h->def_regular || h->ref_regular)
2133       && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 				    h->root.root.string))
2135     {
2136       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 	{
2138 	  eif->failed = TRUE;
2139 	  return FALSE;
2140 	}
2141     }
2142 
2143   return TRUE;
2144 }
2145 
2146 /* Look through the symbols which are defined in other shared
2147    libraries and referenced here.  Update the list of version
2148    dependencies.  This will be put into the .gnu.version_r section.
2149    This function is called via elf_link_hash_traverse.  */
2150 
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 					 void *data)
2154 {
2155   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156   Elf_Internal_Verneed *t;
2157   Elf_Internal_Vernaux *a;
2158   bfd_size_type amt;
2159 
2160   /* We only care about symbols defined in shared objects with version
2161      information.  */
2162   if (!h->def_dynamic
2163       || h->def_regular
2164       || h->dynindx == -1
2165       || h->verinfo.verdef == NULL
2166       || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 	  & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168     return TRUE;
2169 
2170   /* See if we already know about this version.  */
2171   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172        t != NULL;
2173        t = t->vn_nextref)
2174     {
2175       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 	continue;
2177 
2178       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 	  return TRUE;
2181 
2182       break;
2183     }
2184 
2185   /* This is a new version.  Add it to tree we are building.  */
2186 
2187   if (t == NULL)
2188     {
2189       amt = sizeof *t;
2190       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191       if (t == NULL)
2192 	{
2193 	  rinfo->failed = TRUE;
2194 	  return FALSE;
2195 	}
2196 
2197       t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199       elf_tdata (rinfo->info->output_bfd)->verref = t;
2200     }
2201 
2202   amt = sizeof *a;
2203   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204   if (a == NULL)
2205     {
2206       rinfo->failed = TRUE;
2207       return FALSE;
2208     }
2209 
2210   /* Note that we are copying a string pointer here, and testing it
2211      above.  If bfd_elf_string_from_elf_section is ever changed to
2212      discard the string data when low in memory, this will have to be
2213      fixed.  */
2214   a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215 
2216   a->vna_flags = h->verinfo.verdef->vd_flags;
2217   a->vna_nextptr = t->vn_auxptr;
2218 
2219   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220   ++rinfo->vers;
2221 
2222   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223 
2224   t->vn_auxptr = a;
2225 
2226   return TRUE;
2227 }
2228 
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230    hidden.  Set *T_P to NULL if there is no match.  */
2231 
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 				     struct elf_link_hash_entry *h,
2235 				     const char *version_p,
2236 				     struct bfd_elf_version_tree **t_p,
2237 				     bfd_boolean *hide)
2238 {
2239   struct bfd_elf_version_tree *t;
2240 
2241   /* Look for the version.  If we find it, it is no longer weak.  */
2242   for (t = info->version_info; t != NULL; t = t->next)
2243     {
2244       if (strcmp (t->name, version_p) == 0)
2245 	{
2246 	  size_t len;
2247 	  char *alc;
2248 	  struct bfd_elf_version_expr *d;
2249 
2250 	  len = version_p - h->root.root.string;
2251 	  alc = (char *) bfd_malloc (len);
2252 	  if (alc == NULL)
2253 	    return FALSE;
2254 	  memcpy (alc, h->root.root.string, len - 1);
2255 	  alc[len - 1] = '\0';
2256 	  if (alc[len - 2] == ELF_VER_CHR)
2257 	    alc[len - 2] = '\0';
2258 
2259 	  h->verinfo.vertree = t;
2260 	  t->used = TRUE;
2261 	  d = NULL;
2262 
2263 	  if (t->globals.list != NULL)
2264 	    d = (*t->match) (&t->globals, NULL, alc);
2265 
2266 	  /* See if there is anything to force this symbol to
2267 	     local scope.  */
2268 	  if (d == NULL && t->locals.list != NULL)
2269 	    {
2270 	      d = (*t->match) (&t->locals, NULL, alc);
2271 	      if (d != NULL
2272 		  && h->dynindx != -1
2273 		  && ! info->export_dynamic)
2274 		*hide = TRUE;
2275 	    }
2276 
2277 	  free (alc);
2278 	  break;
2279 	}
2280     }
2281 
2282   *t_p = t;
2283 
2284   return TRUE;
2285 }
2286 
2287 /* Return TRUE if the symbol H is hidden by version script.  */
2288 
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 				   struct elf_link_hash_entry *h)
2292 {
2293   const char *p;
2294   bfd_boolean hide = FALSE;
2295   const struct elf_backend_data *bed
2296     = get_elf_backend_data (info->output_bfd);
2297 
2298   /* Version script only hides symbols defined in regular objects.  */
2299   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300     return TRUE;
2301 
2302   p = strchr (h->root.root.string, ELF_VER_CHR);
2303   if (p != NULL && h->verinfo.vertree == NULL)
2304     {
2305       struct bfd_elf_version_tree *t;
2306 
2307       ++p;
2308       if (*p == ELF_VER_CHR)
2309 	++p;
2310 
2311       if (*p != '\0'
2312 	  && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 	  && hide)
2314 	{
2315 	  if (hide)
2316 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 	  return TRUE;
2318 	}
2319     }
2320 
2321   /* If we don't have a version for this symbol, see if we can find
2322      something.  */
2323   if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324     {
2325       h->verinfo.vertree
2326 	= bfd_find_version_for_sym (info->version_info,
2327 				    h->root.root.string, &hide);
2328       if (h->verinfo.vertree != NULL && hide)
2329 	{
2330 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 	  return TRUE;
2332 	}
2333     }
2334 
2335   return FALSE;
2336 }
2337 
2338 /* Figure out appropriate versions for all the symbols.  We may not
2339    have the version number script until we have read all of the input
2340    files, so until that point we don't know which symbols should be
2341    local.  This function is called via elf_link_hash_traverse.  */
2342 
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346   struct elf_info_failed *sinfo;
2347   struct bfd_link_info *info;
2348   const struct elf_backend_data *bed;
2349   struct elf_info_failed eif;
2350   char *p;
2351   bfd_boolean hide;
2352 
2353   sinfo = (struct elf_info_failed *) data;
2354   info = sinfo->info;
2355 
2356   /* Fix the symbol flags.  */
2357   eif.failed = FALSE;
2358   eif.info = info;
2359   if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360     {
2361       if (eif.failed)
2362 	sinfo->failed = TRUE;
2363       return FALSE;
2364     }
2365 
2366   bed = get_elf_backend_data (info->output_bfd);
2367 
2368   /* We only need version numbers for symbols defined in regular
2369      objects.  */
2370   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371     {
2372       /* Hide symbols defined in discarded input sections.  */
2373       if ((h->root.type == bfd_link_hash_defined
2374 	   || h->root.type == bfd_link_hash_defweak)
2375 	  && discarded_section (h->root.u.def.section))
2376 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377       return TRUE;
2378     }
2379 
2380   hide = FALSE;
2381   p = strchr (h->root.root.string, ELF_VER_CHR);
2382   if (p != NULL && h->verinfo.vertree == NULL)
2383     {
2384       struct bfd_elf_version_tree *t;
2385 
2386       ++p;
2387       if (*p == ELF_VER_CHR)
2388 	++p;
2389 
2390       /* If there is no version string, we can just return out.  */
2391       if (*p == '\0')
2392 	return TRUE;
2393 
2394       if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 	{
2396 	  sinfo->failed = TRUE;
2397 	  return FALSE;
2398 	}
2399 
2400       if (hide)
2401 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402 
2403       /* If we are building an application, we need to create a
2404 	 version node for this version.  */
2405       if (t == NULL && bfd_link_executable (info))
2406 	{
2407 	  struct bfd_elf_version_tree **pp;
2408 	  int version_index;
2409 
2410 	  /* If we aren't going to export this symbol, we don't need
2411 	     to worry about it.  */
2412 	  if (h->dynindx == -1)
2413 	    return TRUE;
2414 
2415 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 							  sizeof *t);
2417 	  if (t == NULL)
2418 	    {
2419 	      sinfo->failed = TRUE;
2420 	      return FALSE;
2421 	    }
2422 
2423 	  t->name = p;
2424 	  t->name_indx = (unsigned int) -1;
2425 	  t->used = TRUE;
2426 
2427 	  version_index = 1;
2428 	  /* Don't count anonymous version tag.  */
2429 	  if (sinfo->info->version_info != NULL
2430 	      && sinfo->info->version_info->vernum == 0)
2431 	    version_index = 0;
2432 	  for (pp = &sinfo->info->version_info;
2433 	       *pp != NULL;
2434 	       pp = &(*pp)->next)
2435 	    ++version_index;
2436 	  t->vernum = version_index;
2437 
2438 	  *pp = t;
2439 
2440 	  h->verinfo.vertree = t;
2441 	}
2442       else if (t == NULL)
2443 	{
2444 	  /* We could not find the version for a symbol when
2445 	     generating a shared archive.  Return an error.  */
2446 	  _bfd_error_handler
2447 	    /* xgettext:c-format */
2448 	    (_("%pB: version node not found for symbol %s"),
2449 	     info->output_bfd, h->root.root.string);
2450 	  bfd_set_error (bfd_error_bad_value);
2451 	  sinfo->failed = TRUE;
2452 	  return FALSE;
2453 	}
2454     }
2455 
2456   /* If we don't have a version for this symbol, see if we can find
2457      something.  */
2458   if (!hide
2459       && h->verinfo.vertree == NULL
2460       && sinfo->info->version_info != NULL)
2461     {
2462       h->verinfo.vertree
2463 	= bfd_find_version_for_sym (sinfo->info->version_info,
2464 				    h->root.root.string, &hide);
2465       if (h->verinfo.vertree != NULL && hide)
2466 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467     }
2468 
2469   return TRUE;
2470 }
2471 
2472 /* Read and swap the relocs from the section indicated by SHDR.  This
2473    may be either a REL or a RELA section.  The relocations are
2474    translated into RELA relocations and stored in INTERNAL_RELOCS,
2475    which should have already been allocated to contain enough space.
2476    The EXTERNAL_RELOCS are a buffer where the external form of the
2477    relocations should be stored.
2478 
2479    Returns FALSE if something goes wrong.  */
2480 
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 				   asection *sec,
2484 				   Elf_Internal_Shdr *shdr,
2485 				   void *external_relocs,
2486 				   Elf_Internal_Rela *internal_relocs)
2487 {
2488   const struct elf_backend_data *bed;
2489   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490   const bfd_byte *erela;
2491   const bfd_byte *erelaend;
2492   Elf_Internal_Rela *irela;
2493   Elf_Internal_Shdr *symtab_hdr;
2494   size_t nsyms;
2495 
2496   /* Position ourselves at the start of the section.  */
2497   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498     return FALSE;
2499 
2500   /* Read the relocations.  */
2501   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502     return FALSE;
2503 
2504   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506 
2507   bed = get_elf_backend_data (abfd);
2508 
2509   /* Convert the external relocations to the internal format.  */
2510   if (shdr->sh_entsize == bed->s->sizeof_rel)
2511     swap_in = bed->s->swap_reloc_in;
2512   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513     swap_in = bed->s->swap_reloca_in;
2514   else
2515     {
2516       bfd_set_error (bfd_error_wrong_format);
2517       return FALSE;
2518     }
2519 
2520   erela = (const bfd_byte *) external_relocs;
2521   /* Setting erelaend like this and comparing with <= handles case of
2522      a fuzzed object with sh_size not a multiple of sh_entsize.  */
2523   erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524   irela = internal_relocs;
2525   while (erela <= erelaend)
2526     {
2527       bfd_vma r_symndx;
2528 
2529       (*swap_in) (abfd, erela, irela);
2530       r_symndx = ELF32_R_SYM (irela->r_info);
2531       if (bed->s->arch_size == 64)
2532 	r_symndx >>= 24;
2533       if (nsyms > 0)
2534 	{
2535 	  if ((size_t) r_symndx >= nsyms)
2536 	    {
2537 	      _bfd_error_handler
2538 		/* xgettext:c-format */
2539 		(_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 		   " for offset %#" PRIx64 " in section `%pA'"),
2541 		 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 		 (uint64_t) irela->r_offset, sec);
2543 	      bfd_set_error (bfd_error_bad_value);
2544 	      return FALSE;
2545 	    }
2546 	}
2547       else if (r_symndx != STN_UNDEF)
2548 	{
2549 	  _bfd_error_handler
2550 	    /* xgettext:c-format */
2551 	    (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 	       " for offset %#" PRIx64 " in section `%pA'"
2553 	       " when the object file has no symbol table"),
2554 	     abfd, (uint64_t) r_symndx,
2555 	     (uint64_t) irela->r_offset, sec);
2556 	  bfd_set_error (bfd_error_bad_value);
2557 	  return FALSE;
2558 	}
2559       irela += bed->s->int_rels_per_ext_rel;
2560       erela += shdr->sh_entsize;
2561     }
2562 
2563   return TRUE;
2564 }
2565 
2566 /* Read and swap the relocs for a section O.  They may have been
2567    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568    not NULL, they are used as buffers to read into.  They are known to
2569    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2570    the return value is allocated using either malloc or bfd_alloc,
2571    according to the KEEP_MEMORY argument.  If O has two relocation
2572    sections (both REL and RELA relocations), then the REL_HDR
2573    relocations will appear first in INTERNAL_RELOCS, followed by the
2574    RELA_HDR relocations.  */
2575 
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 			   asection *o,
2579 			   void *external_relocs,
2580 			   Elf_Internal_Rela *internal_relocs,
2581 			   bfd_boolean keep_memory)
2582 {
2583   void *alloc1 = NULL;
2584   Elf_Internal_Rela *alloc2 = NULL;
2585   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586   struct bfd_elf_section_data *esdo = elf_section_data (o);
2587   Elf_Internal_Rela *internal_rela_relocs;
2588 
2589   if (esdo->relocs != NULL)
2590     return esdo->relocs;
2591 
2592   if (o->reloc_count == 0)
2593     return NULL;
2594 
2595   if (internal_relocs == NULL)
2596     {
2597       bfd_size_type size;
2598 
2599       size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600       if (keep_memory)
2601 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602       else
2603 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604       if (internal_relocs == NULL)
2605 	goto error_return;
2606     }
2607 
2608   if (external_relocs == NULL)
2609     {
2610       bfd_size_type size = 0;
2611 
2612       if (esdo->rel.hdr)
2613 	size += esdo->rel.hdr->sh_size;
2614       if (esdo->rela.hdr)
2615 	size += esdo->rela.hdr->sh_size;
2616 
2617       alloc1 = bfd_malloc (size);
2618       if (alloc1 == NULL)
2619 	goto error_return;
2620       external_relocs = alloc1;
2621     }
2622 
2623   internal_rela_relocs = internal_relocs;
2624   if (esdo->rel.hdr)
2625     {
2626       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 					      external_relocs,
2628 					      internal_relocs))
2629 	goto error_return;
2630       external_relocs = (((bfd_byte *) external_relocs)
2631 			 + esdo->rel.hdr->sh_size);
2632       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 			       * bed->s->int_rels_per_ext_rel);
2634     }
2635 
2636   if (esdo->rela.hdr
2637       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 					      external_relocs,
2639 					      internal_rela_relocs)))
2640     goto error_return;
2641 
2642   /* Cache the results for next time, if we can.  */
2643   if (keep_memory)
2644     esdo->relocs = internal_relocs;
2645 
2646   if (alloc1 != NULL)
2647     free (alloc1);
2648 
2649   /* Don't free alloc2, since if it was allocated we are passing it
2650      back (under the name of internal_relocs).  */
2651 
2652   return internal_relocs;
2653 
2654  error_return:
2655   if (alloc1 != NULL)
2656     free (alloc1);
2657   if (alloc2 != NULL)
2658     {
2659       if (keep_memory)
2660 	bfd_release (abfd, alloc2);
2661       else
2662 	free (alloc2);
2663     }
2664   return NULL;
2665 }
2666 
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668    section header for a section containing relocations for O.  */
2669 
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 				  struct bfd_elf_section_reloc_data *reldata)
2673 {
2674   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675 
2676   /* That allows us to calculate the size of the section.  */
2677   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678 
2679   /* The contents field must last into write_object_contents, so we
2680      allocate it with bfd_alloc rather than malloc.  Also since we
2681      cannot be sure that the contents will actually be filled in,
2682      we zero the allocated space.  */
2683   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685     return FALSE;
2686 
2687   if (reldata->hashes == NULL && reldata->count)
2688     {
2689       struct elf_link_hash_entry **p;
2690 
2691       p = ((struct elf_link_hash_entry **)
2692 	   bfd_zmalloc (reldata->count * sizeof (*p)));
2693       if (p == NULL)
2694 	return FALSE;
2695 
2696       reldata->hashes = p;
2697     }
2698 
2699   return TRUE;
2700 }
2701 
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703    originated from the section given by INPUT_REL_HDR) to the
2704    OUTPUT_BFD.  */
2705 
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 			     asection *input_section,
2709 			     Elf_Internal_Shdr *input_rel_hdr,
2710 			     Elf_Internal_Rela *internal_relocs,
2711 			     struct elf_link_hash_entry **rel_hash
2712 			       ATTRIBUTE_UNUSED)
2713 {
2714   Elf_Internal_Rela *irela;
2715   Elf_Internal_Rela *irelaend;
2716   bfd_byte *erel;
2717   struct bfd_elf_section_reloc_data *output_reldata;
2718   asection *output_section;
2719   const struct elf_backend_data *bed;
2720   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721   struct bfd_elf_section_data *esdo;
2722 
2723   output_section = input_section->output_section;
2724 
2725   bed = get_elf_backend_data (output_bfd);
2726   esdo = elf_section_data (output_section);
2727   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728     {
2729       output_reldata = &esdo->rel;
2730       swap_out = bed->s->swap_reloc_out;
2731     }
2732   else if (esdo->rela.hdr
2733 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734     {
2735       output_reldata = &esdo->rela;
2736       swap_out = bed->s->swap_reloca_out;
2737     }
2738   else
2739     {
2740       _bfd_error_handler
2741 	/* xgettext:c-format */
2742 	(_("%pB: relocation size mismatch in %pB section %pA"),
2743 	 output_bfd, input_section->owner, input_section);
2744       bfd_set_error (bfd_error_wrong_format);
2745       return FALSE;
2746     }
2747 
2748   erel = output_reldata->hdr->contents;
2749   erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750   irela = internal_relocs;
2751   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 		      * bed->s->int_rels_per_ext_rel);
2753   while (irela < irelaend)
2754     {
2755       (*swap_out) (output_bfd, irela, erel);
2756       irela += bed->s->int_rels_per_ext_rel;
2757       erel += input_rel_hdr->sh_entsize;
2758     }
2759 
2760   /* Bump the counter, so that we know where to add the next set of
2761      relocations.  */
2762   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763 
2764   return TRUE;
2765 }
2766 
2767 /* Make weak undefined symbols in PIE dynamic.  */
2768 
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 				 struct elf_link_hash_entry *h)
2772 {
2773   if (bfd_link_pie (info)
2774       && h->dynindx == -1
2775       && h->root.type == bfd_link_hash_undefweak)
2776     return bfd_elf_link_record_dynamic_symbol (info, h);
2777 
2778   return TRUE;
2779 }
2780 
2781 /* Fix up the flags for a symbol.  This handles various cases which
2782    can only be fixed after all the input files are seen.  This is
2783    currently called by both adjust_dynamic_symbol and
2784    assign_sym_version, which is unnecessary but perhaps more robust in
2785    the face of future changes.  */
2786 
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 			   struct elf_info_failed *eif)
2790 {
2791   const struct elf_backend_data *bed;
2792 
2793   /* If this symbol was mentioned in a non-ELF file, try to set
2794      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2795      permit a non-ELF file to correctly refer to a symbol defined in
2796      an ELF dynamic object.  */
2797   if (h->non_elf)
2798     {
2799       while (h->root.type == bfd_link_hash_indirect)
2800 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801 
2802       if (h->root.type != bfd_link_hash_defined
2803 	  && h->root.type != bfd_link_hash_defweak)
2804 	{
2805 	  h->ref_regular = 1;
2806 	  h->ref_regular_nonweak = 1;
2807 	}
2808       else
2809 	{
2810 	  if (h->root.u.def.section->owner != NULL
2811 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2812 		  == bfd_target_elf_flavour))
2813 	    {
2814 	      h->ref_regular = 1;
2815 	      h->ref_regular_nonweak = 1;
2816 	    }
2817 	  else
2818 	    h->def_regular = 1;
2819 	}
2820 
2821       if (h->dynindx == -1
2822 	  && (h->def_dynamic
2823 	      || h->ref_dynamic))
2824 	{
2825 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 	    {
2827 	      eif->failed = TRUE;
2828 	      return FALSE;
2829 	    }
2830 	}
2831     }
2832   else
2833     {
2834       /* Unfortunately, NON_ELF is only correct if the symbol
2835 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2836 	 was first seen in an ELF file, we're probably OK unless the
2837 	 symbol was defined in a non-ELF file.  Catch that case here.
2838 	 FIXME: We're still in trouble if the symbol was first seen in
2839 	 a dynamic object, and then later in a non-ELF regular object.  */
2840       if ((h->root.type == bfd_link_hash_defined
2841 	   || h->root.type == bfd_link_hash_defweak)
2842 	  && !h->def_regular
2843 	  && (h->root.u.def.section->owner != NULL
2844 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 		 != bfd_target_elf_flavour)
2846 	      : (bfd_is_abs_section (h->root.u.def.section)
2847 		 && !h->def_dynamic)))
2848 	h->def_regular = 1;
2849     }
2850 
2851   /* Backend specific symbol fixup.  */
2852   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853   if (bed->elf_backend_fixup_symbol
2854       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855     return FALSE;
2856 
2857   /* If this is a final link, and the symbol was defined as a common
2858      symbol in a regular object file, and there was no definition in
2859      any dynamic object, then the linker will have allocated space for
2860      the symbol in a common section but the DEF_REGULAR
2861      flag will not have been set.  */
2862   if (h->root.type == bfd_link_hash_defined
2863       && !h->def_regular
2864       && h->ref_regular
2865       && !h->def_dynamic
2866       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867     h->def_regular = 1;
2868 
2869   /* Symbols defined in discarded sections shouldn't be dynamic.  */
2870   if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872 
2873   /* If a weak undefined symbol has non-default visibility, we also
2874      hide it from the dynamic linker.  */
2875   else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 	   && h->root.type == bfd_link_hash_undefweak)
2877     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878 
2879   /* A hidden versioned symbol in executable should be forced local if
2880      it is is locally defined, not referenced by shared library and not
2881      exported.  */
2882   else if (bfd_link_executable (eif->info)
2883 	   && h->versioned == versioned_hidden
2884 	   && !eif->info->export_dynamic
2885 	   && !h->dynamic
2886 	   && !h->ref_dynamic
2887 	   && h->def_regular)
2888     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889 
2890   /* If -Bsymbolic was used (which means to bind references to global
2891      symbols to the definition within the shared object), and this
2892      symbol was defined in a regular object, then it actually doesn't
2893      need a PLT entry.  Likewise, if the symbol has non-default
2894      visibility.  If the symbol has hidden or internal visibility, we
2895      will force it local.  */
2896   else if (h->needs_plt
2897 	   && bfd_link_pic (eif->info)
2898 	   && is_elf_hash_table (eif->info->hash)
2899 	   && (SYMBOLIC_BIND (eif->info, h)
2900 	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 	   && h->def_regular)
2902     {
2903       bfd_boolean force_local;
2904 
2905       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908     }
2909 
2910   /* If this is a weak defined symbol in a dynamic object, and we know
2911      the real definition in the dynamic object, copy interesting flags
2912      over to the real definition.  */
2913   if (h->is_weakalias)
2914     {
2915       struct elf_link_hash_entry *def = weakdef (h);
2916 
2917       /* If the real definition is defined by a regular object file,
2918 	 don't do anything special.  See the longer description in
2919 	 _bfd_elf_adjust_dynamic_symbol, below.  If the def is not
2920 	 bfd_link_hash_defined as it was when put on the alias list
2921 	 then it must have originally been a versioned symbol (for
2922 	 which a non-versioned indirect symbol is created) and later
2923 	 a definition for the non-versioned symbol is found.  In that
2924 	 case the indirection is flipped with the versioned symbol
2925 	 becoming an indirect pointing at the non-versioned symbol.
2926 	 Thus, not an alias any more.  */
2927       if (def->def_regular
2928 	  || def->root.type != bfd_link_hash_defined)
2929 	{
2930 	  h = def;
2931 	  while ((h = h->u.alias) != def)
2932 	    h->is_weakalias = 0;
2933 	}
2934       else
2935 	{
2936 	  while (h->root.type == bfd_link_hash_indirect)
2937 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 		      || h->root.type == bfd_link_hash_defweak);
2940 	  BFD_ASSERT (def->def_dynamic);
2941 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 	}
2943     }
2944 
2945   return TRUE;
2946 }
2947 
2948 /* Make the backend pick a good value for a dynamic symbol.  This is
2949    called via elf_link_hash_traverse, and also calls itself
2950    recursively.  */
2951 
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956   struct elf_link_hash_table *htab;
2957   const struct elf_backend_data *bed;
2958 
2959   if (! is_elf_hash_table (eif->info->hash))
2960     return FALSE;
2961 
2962   /* Ignore indirect symbols.  These are added by the versioning code.  */
2963   if (h->root.type == bfd_link_hash_indirect)
2964     return TRUE;
2965 
2966   /* Fix the symbol flags.  */
2967   if (! _bfd_elf_fix_symbol_flags (h, eif))
2968     return FALSE;
2969 
2970   htab = elf_hash_table (eif->info);
2971   bed = get_elf_backend_data (htab->dynobj);
2972 
2973   if (h->root.type == bfd_link_hash_undefweak)
2974     {
2975       if (eif->info->dynamic_undefined_weak == 0)
2976 	(*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977       else if (eif->info->dynamic_undefined_weak > 0
2978 	       && h->ref_regular
2979 	       && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 	       && !bfd_hide_sym_by_version (eif->info->version_info,
2981 					    h->root.root.string))
2982 	{
2983 	  if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 	    {
2985 	      eif->failed = TRUE;
2986 	      return FALSE;
2987 	    }
2988 	}
2989     }
2990 
2991   /* If this symbol does not require a PLT entry, and it is not
2992      defined by a dynamic object, or is not referenced by a regular
2993      object, ignore it.  We do have to handle a weak defined symbol,
2994      even if no regular object refers to it, if we decided to add it
2995      to the dynamic symbol table.  FIXME: Do we normally need to worry
2996      about symbols which are defined by one dynamic object and
2997      referenced by another one?  */
2998   if (!h->needs_plt
2999       && h->type != STT_GNU_IFUNC
3000       && (h->def_regular
3001 	  || !h->def_dynamic
3002 	  || (!h->ref_regular
3003 	      && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004     {
3005       h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006       return TRUE;
3007     }
3008 
3009   /* If we've already adjusted this symbol, don't do it again.  This
3010      can happen via a recursive call.  */
3011   if (h->dynamic_adjusted)
3012     return TRUE;
3013 
3014   /* Don't look at this symbol again.  Note that we must set this
3015      after checking the above conditions, because we may look at a
3016      symbol once, decide not to do anything, and then get called
3017      recursively later after REF_REGULAR is set below.  */
3018   h->dynamic_adjusted = 1;
3019 
3020   /* If this is a weak definition, and we know a real definition, and
3021      the real symbol is not itself defined by a regular object file,
3022      then get a good value for the real definition.  We handle the
3023      real symbol first, for the convenience of the backend routine.
3024 
3025      Note that there is a confusing case here.  If the real definition
3026      is defined by a regular object file, we don't get the real symbol
3027      from the dynamic object, but we do get the weak symbol.  If the
3028      processor backend uses a COPY reloc, then if some routine in the
3029      dynamic object changes the real symbol, we will not see that
3030      change in the corresponding weak symbol.  This is the way other
3031      ELF linkers work as well, and seems to be a result of the shared
3032      library model.
3033 
3034      I will clarify this issue.  Most SVR4 shared libraries define the
3035      variable _timezone and define timezone as a weak synonym.  The
3036      tzset call changes _timezone.  If you write
3037        extern int timezone;
3038        int _timezone = 5;
3039        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040      you might expect that, since timezone is a synonym for _timezone,
3041      the same number will print both times.  However, if the processor
3042      backend uses a COPY reloc, then actually timezone will be copied
3043      into your process image, and, since you define _timezone
3044      yourself, _timezone will not.  Thus timezone and _timezone will
3045      wind up at different memory locations.  The tzset call will set
3046      _timezone, leaving timezone unchanged.  */
3047 
3048   if (h->is_weakalias)
3049     {
3050       struct elf_link_hash_entry *def = weakdef (h);
3051 
3052       /* If we get to this point, there is an implicit reference to
3053 	 the alias by a regular object file via the weak symbol H.  */
3054       def->ref_regular = 1;
3055 
3056       /* Ensure that the backend adjust_dynamic_symbol function sees
3057 	 the strong alias before H by recursively calling ourselves.  */
3058       if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 	return FALSE;
3060     }
3061 
3062   /* If a symbol has no type and no size and does not require a PLT
3063      entry, then we are probably about to do the wrong thing here: we
3064      are probably going to create a COPY reloc for an empty object.
3065      This case can arise when a shared object is built with assembly
3066      code, and the assembly code fails to set the symbol type.  */
3067   if (h->size == 0
3068       && h->type == STT_NOTYPE
3069       && !h->needs_plt)
3070     _bfd_error_handler
3071       (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072        h->root.root.string);
3073 
3074   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075     {
3076       eif->failed = TRUE;
3077       return FALSE;
3078     }
3079 
3080   return TRUE;
3081 }
3082 
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084    DYNBSS.  */
3085 
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 			      struct elf_link_hash_entry *h,
3089 			      asection *dynbss)
3090 {
3091   unsigned int power_of_two;
3092   bfd_vma mask;
3093   asection *sec = h->root.u.def.section;
3094 
3095   /* The section alignment of the definition is the maximum alignment
3096      requirement of symbols defined in the section.  Since we don't
3097      know the symbol alignment requirement, we start with the
3098      maximum alignment and check low bits of the symbol address
3099      for the minimum alignment.  */
3100   power_of_two = bfd_section_alignment (sec);
3101   mask = ((bfd_vma) 1 << power_of_two) - 1;
3102   while ((h->root.u.def.value & mask) != 0)
3103     {
3104        mask >>= 1;
3105        --power_of_two;
3106     }
3107 
3108   if (power_of_two > bfd_section_alignment (dynbss))
3109     {
3110       /* Adjust the section alignment if needed.  */
3111       if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 	return FALSE;
3113     }
3114 
3115   /* We make sure that the symbol will be aligned properly.  */
3116   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117 
3118   /* Define the symbol as being at this point in DYNBSS.  */
3119   h->root.u.def.section = dynbss;
3120   h->root.u.def.value = dynbss->size;
3121 
3122   /* Increment the size of DYNBSS to make room for the symbol.  */
3123   dynbss->size += h->size;
3124 
3125   /* No error if extern_protected_data is true.  */
3126   if (h->protected_def
3127       && (!info->extern_protected_data
3128 	  || (info->extern_protected_data < 0
3129 	      && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130     info->callbacks->einfo
3131       (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132        h->root.root.string);
3133 
3134   return TRUE;
3135 }
3136 
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138    to reflect the object merging within the sections.  */
3139 
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143   asection *sec;
3144 
3145   if ((h->root.type == bfd_link_hash_defined
3146        || h->root.type == bfd_link_hash_defweak)
3147       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149     {
3150       bfd *output_bfd = (bfd *) data;
3151 
3152       h->root.u.def.value =
3153 	_bfd_merged_section_offset (output_bfd,
3154 				    &h->root.u.def.section,
3155 				    elf_section_data (sec)->sec_info,
3156 				    h->root.u.def.value);
3157     }
3158 
3159   return TRUE;
3160 }
3161 
3162 /* Returns false if the symbol referred to by H should be considered
3163    to resolve local to the current module, and true if it should be
3164    considered to bind dynamically.  */
3165 
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 			   struct bfd_link_info *info,
3169 			   bfd_boolean not_local_protected)
3170 {
3171   bfd_boolean binding_stays_local_p;
3172   const struct elf_backend_data *bed;
3173   struct elf_link_hash_table *hash_table;
3174 
3175   if (h == NULL)
3176     return FALSE;
3177 
3178   while (h->root.type == bfd_link_hash_indirect
3179 	 || h->root.type == bfd_link_hash_warning)
3180     h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181 
3182   /* If it was forced local, then clearly it's not dynamic.  */
3183   if (h->dynindx == -1)
3184     return FALSE;
3185   if (h->forced_local)
3186     return FALSE;
3187 
3188   /* Identify the cases where name binding rules say that a
3189      visible symbol resolves locally.  */
3190   binding_stays_local_p = (bfd_link_executable (info)
3191 			   || SYMBOLIC_BIND (info, h));
3192 
3193   switch (ELF_ST_VISIBILITY (h->other))
3194     {
3195     case STV_INTERNAL:
3196     case STV_HIDDEN:
3197       return FALSE;
3198 
3199     case STV_PROTECTED:
3200       hash_table = elf_hash_table (info);
3201       if (!is_elf_hash_table (hash_table))
3202 	return FALSE;
3203 
3204       bed = get_elf_backend_data (hash_table->dynobj);
3205 
3206       /* Proper resolution for function pointer equality may require
3207 	 that these symbols perhaps be resolved dynamically, even though
3208 	 we should be resolving them to the current module.  */
3209       if (!not_local_protected || !bed->is_function_type (h->type))
3210 	binding_stays_local_p = TRUE;
3211       break;
3212 
3213     default:
3214       break;
3215     }
3216 
3217   /* If it isn't defined locally, then clearly it's dynamic.  */
3218   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219     return TRUE;
3220 
3221   /* Otherwise, the symbol is dynamic if binding rules don't tell
3222      us that it remains local.  */
3223   return !binding_stays_local_p;
3224 }
3225 
3226 /* Return true if the symbol referred to by H should be considered
3227    to resolve local to the current module, and false otherwise.  Differs
3228    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229    undefined symbols.  The two functions are virtually identical except
3230    for the place where dynindx == -1 is tested.  If that test is true,
3231    _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232    _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233    defined symbols.
3234    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236    treatment of undefined weak symbols.  For those that do not make
3237    undefined weak symbols dynamic, both functions may return false.  */
3238 
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 			      struct bfd_link_info *info,
3242 			      bfd_boolean local_protected)
3243 {
3244   const struct elf_backend_data *bed;
3245   struct elf_link_hash_table *hash_table;
3246 
3247   /* If it's a local sym, of course we resolve locally.  */
3248   if (h == NULL)
3249     return TRUE;
3250 
3251   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
3252   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254     return TRUE;
3255 
3256   /* Forced local symbols resolve locally.  */
3257   if (h->forced_local)
3258     return TRUE;
3259 
3260   /* Common symbols that become definitions don't get the DEF_REGULAR
3261      flag set, so test it first, and don't bail out.  */
3262   if (ELF_COMMON_DEF_P (h))
3263     /* Do nothing.  */;
3264   /* If we don't have a definition in a regular file, then we can't
3265      resolve locally.  The sym is either undefined or dynamic.  */
3266   else if (!h->def_regular)
3267     return FALSE;
3268 
3269   /* Non-dynamic symbols resolve locally.  */
3270   if (h->dynindx == -1)
3271     return TRUE;
3272 
3273   /* At this point, we know the symbol is defined and dynamic.  In an
3274      executable it must resolve locally, likewise when building symbolic
3275      shared libraries.  */
3276   if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277     return TRUE;
3278 
3279   /* Now deal with defined dynamic symbols in shared libraries.  Ones
3280      with default visibility might not resolve locally.  */
3281   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282     return FALSE;
3283 
3284   hash_table = elf_hash_table (info);
3285   if (!is_elf_hash_table (hash_table))
3286     return TRUE;
3287 
3288   bed = get_elf_backend_data (hash_table->dynobj);
3289 
3290   /* If extern_protected_data is false, STV_PROTECTED non-function
3291      symbols are local.  */
3292   if ((!info->extern_protected_data
3293        || (info->extern_protected_data < 0
3294 	   && !bed->extern_protected_data))
3295       && !bed->is_function_type (h->type))
3296     return TRUE;
3297 
3298   /* Function pointer equality tests may require that STV_PROTECTED
3299      symbols be treated as dynamic symbols.  If the address of a
3300      function not defined in an executable is set to that function's
3301      plt entry in the executable, then the address of the function in
3302      a shared library must also be the plt entry in the executable.  */
3303   return local_protected;
3304 }
3305 
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307    aligned.  Returns the first TLS output section.  */
3308 
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312   struct bfd_section *sec, *tls;
3313   unsigned int align = 0;
3314 
3315   for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317       break;
3318   tls = sec;
3319 
3320   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321     if (sec->alignment_power > align)
3322       align = sec->alignment_power;
3323 
3324   elf_hash_table (info)->tls_sec = tls;
3325 
3326   /* Ensure the alignment of the first section is the largest alignment,
3327      so that the tls segment starts aligned.  */
3328   if (tls != NULL)
3329     tls->alignment_power = align;
3330 
3331   return tls;
3332 }
3333 
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 				  Elf_Internal_Sym *sym)
3338 {
3339   const struct elf_backend_data *bed;
3340 
3341   /* Local symbols do not count, but target specific ones might.  */
3342   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344     return FALSE;
3345 
3346   bed = get_elf_backend_data (abfd);
3347   /* Function symbols do not count.  */
3348   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349     return FALSE;
3350 
3351   /* If the section is undefined, then so is the symbol.  */
3352   if (sym->st_shndx == SHN_UNDEF)
3353     return FALSE;
3354 
3355   /* If the symbol is defined in the common section, then
3356      it is a common definition and so does not count.  */
3357   if (bed->common_definition (sym))
3358     return FALSE;
3359 
3360   /* If the symbol is in a target specific section then we
3361      must rely upon the backend to tell us what it is.  */
3362   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363     /* FIXME - this function is not coded yet:
3364 
3365        return _bfd_is_global_symbol_definition (abfd, sym);
3366 
3367        Instead for now assume that the definition is not global,
3368        Even if this is wrong, at least the linker will behave
3369        in the same way that it used to do.  */
3370     return FALSE;
3371 
3372   return TRUE;
3373 }
3374 
3375 /* Search the symbol table of the archive element of the archive ABFD
3376    whose archive map contains a mention of SYMDEF, and determine if
3377    the symbol is defined in this element.  */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381   Elf_Internal_Shdr * hdr;
3382   size_t symcount;
3383   size_t extsymcount;
3384   size_t extsymoff;
3385   Elf_Internal_Sym *isymbuf;
3386   Elf_Internal_Sym *isym;
3387   Elf_Internal_Sym *isymend;
3388   bfd_boolean result;
3389 
3390   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391   if (abfd == NULL)
3392     return FALSE;
3393 
3394   if (! bfd_check_format (abfd, bfd_object))
3395     return FALSE;
3396 
3397   /* Select the appropriate symbol table.  If we don't know if the
3398      object file is an IR object, give linker LTO plugin a chance to
3399      get the correct symbol table.  */
3400   if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402       || (abfd->plugin_format == bfd_plugin_unknown
3403 	  && bfd_link_plugin_object_p (abfd))
3404 #endif
3405       )
3406     {
3407       /* Use the IR symbol table if the object has been claimed by
3408 	 plugin.  */
3409       abfd = abfd->plugin_dummy_bfd;
3410       hdr = &elf_tdata (abfd)->symtab_hdr;
3411     }
3412   else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413     hdr = &elf_tdata (abfd)->symtab_hdr;
3414   else
3415     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416 
3417   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418 
3419   /* The sh_info field of the symtab header tells us where the
3420      external symbols start.  We don't care about the local symbols.  */
3421   if (elf_bad_symtab (abfd))
3422     {
3423       extsymcount = symcount;
3424       extsymoff = 0;
3425     }
3426   else
3427     {
3428       extsymcount = symcount - hdr->sh_info;
3429       extsymoff = hdr->sh_info;
3430     }
3431 
3432   if (extsymcount == 0)
3433     return FALSE;
3434 
3435   /* Read in the symbol table.  */
3436   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 				  NULL, NULL, NULL);
3438   if (isymbuf == NULL)
3439     return FALSE;
3440 
3441   /* Scan the symbol table looking for SYMDEF.  */
3442   result = FALSE;
3443   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444     {
3445       const char *name;
3446 
3447       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 					      isym->st_name);
3449       if (name == NULL)
3450 	break;
3451 
3452       if (strcmp (name, symdef->name) == 0)
3453 	{
3454 	  result = is_global_data_symbol_definition (abfd, isym);
3455 	  break;
3456 	}
3457     }
3458 
3459   free (isymbuf);
3460 
3461   return result;
3462 }
3463 
3464 /* Add an entry to the .dynamic table.  */
3465 
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 			    bfd_vma tag,
3469 			    bfd_vma val)
3470 {
3471   struct elf_link_hash_table *hash_table;
3472   const struct elf_backend_data *bed;
3473   asection *s;
3474   bfd_size_type newsize;
3475   bfd_byte *newcontents;
3476   Elf_Internal_Dyn dyn;
3477 
3478   hash_table = elf_hash_table (info);
3479   if (! is_elf_hash_table (hash_table))
3480     return FALSE;
3481 
3482   if (tag == DT_RELA || tag == DT_REL)
3483     hash_table->dynamic_relocs = TRUE;
3484 
3485   bed = get_elf_backend_data (hash_table->dynobj);
3486   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487   BFD_ASSERT (s != NULL);
3488 
3489   newsize = s->size + bed->s->sizeof_dyn;
3490   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491   if (newcontents == NULL)
3492     return FALSE;
3493 
3494   dyn.d_tag = tag;
3495   dyn.d_un.d_val = val;
3496   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497 
3498   s->size = newsize;
3499   s->contents = newcontents;
3500 
3501   return TRUE;
3502 }
3503 
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505    otherwise just check whether one already exists.  Returns -1 on error,
3506    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3507 
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 		       struct bfd_link_info *info,
3511 		       const char *soname,
3512 		       bfd_boolean do_it)
3513 {
3514   struct elf_link_hash_table *hash_table;
3515   size_t strindex;
3516 
3517   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518     return -1;
3519 
3520   hash_table = elf_hash_table (info);
3521   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522   if (strindex == (size_t) -1)
3523     return -1;
3524 
3525   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526     {
3527       asection *sdyn;
3528       const struct elf_backend_data *bed;
3529       bfd_byte *extdyn;
3530 
3531       bed = get_elf_backend_data (hash_table->dynobj);
3532       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533       if (sdyn != NULL)
3534 	for (extdyn = sdyn->contents;
3535 	     extdyn < sdyn->contents + sdyn->size;
3536 	     extdyn += bed->s->sizeof_dyn)
3537 	  {
3538 	    Elf_Internal_Dyn dyn;
3539 
3540 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 	    if (dyn.d_tag == DT_NEEDED
3542 		&& dyn.d_un.d_val == strindex)
3543 	      {
3544 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 		return 1;
3546 	      }
3547 	  }
3548     }
3549 
3550   if (do_it)
3551     {
3552       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 	return -1;
3554 
3555       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 	return -1;
3557     }
3558   else
3559     /* We were just checking for existence of the tag.  */
3560     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561 
3562   return 0;
3563 }
3564 
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566    (or the end of list if STOP is NULL), and needed by a library that
3567    will be loaded.  */
3568 
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 		struct bfd_link_needed_list *needed,
3572 		struct bfd_link_needed_list *stop)
3573 {
3574   struct bfd_link_needed_list *look;
3575   for (look = needed; look != stop; look = look->next)
3576     if (strcmp (soname, look->name) == 0
3577 	&& ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 	    /* If needed by a library that itself is not directly
3579 	       needed, recursively check whether that library is
3580 	       indirectly needed.  Since we add DT_NEEDED entries to
3581 	       the end of the list, library dependencies appear after
3582 	       the library.  Therefore search prior to the current
3583 	       LOOK, preventing possible infinite recursion.  */
3584 	    || on_needed_list (elf_dt_name (look->by), needed, look)))
3585       return TRUE;
3586 
3587   return FALSE;
3588 }
3589 
3590 /* Sort symbol by value, section, size, and type.  */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594   const struct elf_link_hash_entry *h1;
3595   const struct elf_link_hash_entry *h2;
3596   bfd_signed_vma vdiff;
3597   int sdiff;
3598   const char *n1;
3599   const char *n2;
3600 
3601   h1 = *(const struct elf_link_hash_entry **) arg1;
3602   h2 = *(const struct elf_link_hash_entry **) arg2;
3603   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3604   if (vdiff != 0)
3605     return vdiff > 0 ? 1 : -1;
3606 
3607   sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3608   if (sdiff != 0)
3609     return sdiff;
3610 
3611   /* Sort so that sized symbols are selected over zero size symbols.  */
3612   vdiff = h1->size - h2->size;
3613   if (vdiff != 0)
3614     return vdiff > 0 ? 1 : -1;
3615 
3616   /* Sort so that STT_OBJECT is selected over STT_NOTYPE.  */
3617   if (h1->type != h2->type)
3618     return h1->type - h2->type;
3619 
3620   /* If symbols are properly sized and typed, and multiple strong
3621      aliases are not defined in a shared library by the user we
3622      shouldn't get here.  Unfortunately linker script symbols like
3623      __bss_start sometimes match a user symbol defined at the start of
3624      .bss without proper size and type.  We'd like to preference the
3625      user symbol over reserved system symbols.  Sort on leading
3626      underscores.  */
3627   n1 = h1->root.root.string;
3628   n2 = h2->root.root.string;
3629   while (*n1 == *n2)
3630     {
3631       if (*n1 == 0)
3632 	break;
3633       ++n1;
3634       ++n2;
3635     }
3636   if (*n1 == '_')
3637     return -1;
3638   if (*n2 == '_')
3639     return 1;
3640 
3641   /* Final sort on name selects user symbols like '_u' over reserved
3642      system symbols like '_Z' and also will avoid qsort instability.  */
3643   return *n1 - *n2;
3644 }
3645 
3646 /* This function is used to adjust offsets into .dynstr for
3647    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3648 
3649 static bfd_boolean
3650 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3651 {
3652   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3653 
3654   if (h->dynindx != -1)
3655     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3656   return TRUE;
3657 }
3658 
3659 /* Assign string offsets in .dynstr, update all structures referencing
3660    them.  */
3661 
3662 static bfd_boolean
3663 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3664 {
3665   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3666   struct elf_link_local_dynamic_entry *entry;
3667   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3668   bfd *dynobj = hash_table->dynobj;
3669   asection *sdyn;
3670   bfd_size_type size;
3671   const struct elf_backend_data *bed;
3672   bfd_byte *extdyn;
3673 
3674   _bfd_elf_strtab_finalize (dynstr);
3675   size = _bfd_elf_strtab_size (dynstr);
3676 
3677   bed = get_elf_backend_data (dynobj);
3678   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3679   BFD_ASSERT (sdyn != NULL);
3680 
3681   /* Update all .dynamic entries referencing .dynstr strings.  */
3682   for (extdyn = sdyn->contents;
3683        extdyn < sdyn->contents + sdyn->size;
3684        extdyn += bed->s->sizeof_dyn)
3685     {
3686       Elf_Internal_Dyn dyn;
3687 
3688       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3689       switch (dyn.d_tag)
3690 	{
3691 	case DT_STRSZ:
3692 	  dyn.d_un.d_val = size;
3693 	  break;
3694 	case DT_NEEDED:
3695 	case DT_SONAME:
3696 	case DT_RPATH:
3697 	case DT_RUNPATH:
3698 	case DT_FILTER:
3699 	case DT_AUXILIARY:
3700 	case DT_AUDIT:
3701 	case DT_DEPAUDIT:
3702 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3703 	  break;
3704 	default:
3705 	  continue;
3706 	}
3707       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3708     }
3709 
3710   /* Now update local dynamic symbols.  */
3711   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3712     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3713 						  entry->isym.st_name);
3714 
3715   /* And the rest of dynamic symbols.  */
3716   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3717 
3718   /* Adjust version definitions.  */
3719   if (elf_tdata (output_bfd)->cverdefs)
3720     {
3721       asection *s;
3722       bfd_byte *p;
3723       size_t i;
3724       Elf_Internal_Verdef def;
3725       Elf_Internal_Verdaux defaux;
3726 
3727       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3728       p = s->contents;
3729       do
3730 	{
3731 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3732 				   &def);
3733 	  p += sizeof (Elf_External_Verdef);
3734 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3735 	    continue;
3736 	  for (i = 0; i < def.vd_cnt; ++i)
3737 	    {
3738 	      _bfd_elf_swap_verdaux_in (output_bfd,
3739 					(Elf_External_Verdaux *) p, &defaux);
3740 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3741 							defaux.vda_name);
3742 	      _bfd_elf_swap_verdaux_out (output_bfd,
3743 					 &defaux, (Elf_External_Verdaux *) p);
3744 	      p += sizeof (Elf_External_Verdaux);
3745 	    }
3746 	}
3747       while (def.vd_next);
3748     }
3749 
3750   /* Adjust version references.  */
3751   if (elf_tdata (output_bfd)->verref)
3752     {
3753       asection *s;
3754       bfd_byte *p;
3755       size_t i;
3756       Elf_Internal_Verneed need;
3757       Elf_Internal_Vernaux needaux;
3758 
3759       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3760       p = s->contents;
3761       do
3762 	{
3763 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3764 				    &need);
3765 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3766 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3767 				     (Elf_External_Verneed *) p);
3768 	  p += sizeof (Elf_External_Verneed);
3769 	  for (i = 0; i < need.vn_cnt; ++i)
3770 	    {
3771 	      _bfd_elf_swap_vernaux_in (output_bfd,
3772 					(Elf_External_Vernaux *) p, &needaux);
3773 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3774 							 needaux.vna_name);
3775 	      _bfd_elf_swap_vernaux_out (output_bfd,
3776 					 &needaux,
3777 					 (Elf_External_Vernaux *) p);
3778 	      p += sizeof (Elf_External_Vernaux);
3779 	    }
3780 	}
3781       while (need.vn_next);
3782     }
3783 
3784   return TRUE;
3785 }
3786 
3787 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3788    The default is to only match when the INPUT and OUTPUT are exactly
3789    the same target.  */
3790 
3791 bfd_boolean
3792 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3793 				    const bfd_target *output)
3794 {
3795   return input == output;
3796 }
3797 
3798 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3799    This version is used when different targets for the same architecture
3800    are virtually identical.  */
3801 
3802 bfd_boolean
3803 _bfd_elf_relocs_compatible (const bfd_target *input,
3804 			    const bfd_target *output)
3805 {
3806   const struct elf_backend_data *obed, *ibed;
3807 
3808   if (input == output)
3809     return TRUE;
3810 
3811   ibed = xvec_get_elf_backend_data (input);
3812   obed = xvec_get_elf_backend_data (output);
3813 
3814   if (ibed->arch != obed->arch)
3815     return FALSE;
3816 
3817   /* If both backends are using this function, deem them compatible.  */
3818   return ibed->relocs_compatible == obed->relocs_compatible;
3819 }
3820 
3821 /* Make a special call to the linker "notice" function to tell it that
3822    we are about to handle an as-needed lib, or have finished
3823    processing the lib.  */
3824 
3825 bfd_boolean
3826 _bfd_elf_notice_as_needed (bfd *ibfd,
3827 			   struct bfd_link_info *info,
3828 			   enum notice_asneeded_action act)
3829 {
3830   return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3831 }
3832 
3833 /* Check relocations an ELF object file.  */
3834 
3835 bfd_boolean
3836 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3837 {
3838   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3839   struct elf_link_hash_table *htab = elf_hash_table (info);
3840 
3841   /* If this object is the same format as the output object, and it is
3842      not a shared library, then let the backend look through the
3843      relocs.
3844 
3845      This is required to build global offset table entries and to
3846      arrange for dynamic relocs.  It is not required for the
3847      particular common case of linking non PIC code, even when linking
3848      against shared libraries, but unfortunately there is no way of
3849      knowing whether an object file has been compiled PIC or not.
3850      Looking through the relocs is not particularly time consuming.
3851      The problem is that we must either (1) keep the relocs in memory,
3852      which causes the linker to require additional runtime memory or
3853      (2) read the relocs twice from the input file, which wastes time.
3854      This would be a good case for using mmap.
3855 
3856      I have no idea how to handle linking PIC code into a file of a
3857      different format.  It probably can't be done.  */
3858   if ((abfd->flags & DYNAMIC) == 0
3859       && is_elf_hash_table (htab)
3860       && bed->check_relocs != NULL
3861       && elf_object_id (abfd) == elf_hash_table_id (htab)
3862       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3863     {
3864       asection *o;
3865 
3866       for (o = abfd->sections; o != NULL; o = o->next)
3867 	{
3868 	  Elf_Internal_Rela *internal_relocs;
3869 	  bfd_boolean ok;
3870 
3871 	  /* Don't check relocations in excluded sections.  */
3872 	  if ((o->flags & SEC_RELOC) == 0
3873 	      || (o->flags & SEC_EXCLUDE) != 0
3874 	      || o->reloc_count == 0
3875 	      || ((info->strip == strip_all || info->strip == strip_debugger)
3876 		  && (o->flags & SEC_DEBUGGING) != 0)
3877 	      || bfd_is_abs_section (o->output_section))
3878 	    continue;
3879 
3880 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3881 						       info->keep_memory);
3882 	  if (internal_relocs == NULL)
3883 	    return FALSE;
3884 
3885 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3886 
3887 	  if (elf_section_data (o)->relocs != internal_relocs)
3888 	    free (internal_relocs);
3889 
3890 	  if (! ok)
3891 	    return FALSE;
3892 	}
3893     }
3894 
3895   return TRUE;
3896 }
3897 
3898 /* Add symbols from an ELF object file to the linker hash table.  */
3899 
3900 static bfd_boolean
3901 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3902 {
3903   Elf_Internal_Ehdr *ehdr;
3904   Elf_Internal_Shdr *hdr;
3905   size_t symcount;
3906   size_t extsymcount;
3907   size_t extsymoff;
3908   struct elf_link_hash_entry **sym_hash;
3909   bfd_boolean dynamic;
3910   Elf_External_Versym *extversym = NULL;
3911   Elf_External_Versym *extversym_end = NULL;
3912   Elf_External_Versym *ever;
3913   struct elf_link_hash_entry *weaks;
3914   struct elf_link_hash_entry **nondeflt_vers = NULL;
3915   size_t nondeflt_vers_cnt = 0;
3916   Elf_Internal_Sym *isymbuf = NULL;
3917   Elf_Internal_Sym *isym;
3918   Elf_Internal_Sym *isymend;
3919   const struct elf_backend_data *bed;
3920   bfd_boolean add_needed;
3921   struct elf_link_hash_table *htab;
3922   bfd_size_type amt;
3923   void *alloc_mark = NULL;
3924   struct bfd_hash_entry **old_table = NULL;
3925   unsigned int old_size = 0;
3926   unsigned int old_count = 0;
3927   void *old_tab = NULL;
3928   void *old_ent;
3929   struct bfd_link_hash_entry *old_undefs = NULL;
3930   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3931   void *old_strtab = NULL;
3932   size_t tabsize = 0;
3933   asection *s;
3934   bfd_boolean just_syms;
3935 
3936   htab = elf_hash_table (info);
3937   bed = get_elf_backend_data (abfd);
3938 
3939   if ((abfd->flags & DYNAMIC) == 0)
3940     dynamic = FALSE;
3941   else
3942     {
3943       dynamic = TRUE;
3944 
3945       /* You can't use -r against a dynamic object.  Also, there's no
3946 	 hope of using a dynamic object which does not exactly match
3947 	 the format of the output file.  */
3948       if (bfd_link_relocatable (info)
3949 	  || !is_elf_hash_table (htab)
3950 	  || info->output_bfd->xvec != abfd->xvec)
3951 	{
3952 	  if (bfd_link_relocatable (info))
3953 	    bfd_set_error (bfd_error_invalid_operation);
3954 	  else
3955 	    bfd_set_error (bfd_error_wrong_format);
3956 	  goto error_return;
3957 	}
3958     }
3959 
3960   ehdr = elf_elfheader (abfd);
3961   if (info->warn_alternate_em
3962       && bed->elf_machine_code != ehdr->e_machine
3963       && ((bed->elf_machine_alt1 != 0
3964 	   && ehdr->e_machine == bed->elf_machine_alt1)
3965 	  || (bed->elf_machine_alt2 != 0
3966 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3967     _bfd_error_handler
3968       /* xgettext:c-format */
3969       (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3970        ehdr->e_machine, abfd, bed->elf_machine_code);
3971 
3972   /* As a GNU extension, any input sections which are named
3973      .gnu.warning.SYMBOL are treated as warning symbols for the given
3974      symbol.  This differs from .gnu.warning sections, which generate
3975      warnings when they are included in an output file.  */
3976   /* PR 12761: Also generate this warning when building shared libraries.  */
3977   for (s = abfd->sections; s != NULL; s = s->next)
3978     {
3979       const char *name;
3980 
3981       name = bfd_section_name (s);
3982       if (CONST_STRNEQ (name, ".gnu.warning."))
3983 	{
3984 	  char *msg;
3985 	  bfd_size_type sz;
3986 
3987 	  name += sizeof ".gnu.warning." - 1;
3988 
3989 	  /* If this is a shared object, then look up the symbol
3990 	     in the hash table.  If it is there, and it is already
3991 	     been defined, then we will not be using the entry
3992 	     from this shared object, so we don't need to warn.
3993 	     FIXME: If we see the definition in a regular object
3994 	     later on, we will warn, but we shouldn't.  The only
3995 	     fix is to keep track of what warnings we are supposed
3996 	     to emit, and then handle them all at the end of the
3997 	     link.  */
3998 	  if (dynamic)
3999 	    {
4000 	      struct elf_link_hash_entry *h;
4001 
4002 	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4003 
4004 	      /* FIXME: What about bfd_link_hash_common?  */
4005 	      if (h != NULL
4006 		  && (h->root.type == bfd_link_hash_defined
4007 		      || h->root.type == bfd_link_hash_defweak))
4008 		continue;
4009 	    }
4010 
4011 	  sz = s->size;
4012 	  msg = (char *) bfd_alloc (abfd, sz + 1);
4013 	  if (msg == NULL)
4014 	    goto error_return;
4015 
4016 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4017 	    goto error_return;
4018 
4019 	  msg[sz] = '\0';
4020 
4021 	  if (! (_bfd_generic_link_add_one_symbol
4022 		 (info, abfd, name, BSF_WARNING, s, 0, msg,
4023 		  FALSE, bed->collect, NULL)))
4024 	    goto error_return;
4025 
4026 	  if (bfd_link_executable (info))
4027 	    {
4028 	      /* Clobber the section size so that the warning does
4029 		 not get copied into the output file.  */
4030 	      s->size = 0;
4031 
4032 	      /* Also set SEC_EXCLUDE, so that symbols defined in
4033 		 the warning section don't get copied to the output.  */
4034 	      s->flags |= SEC_EXCLUDE;
4035 	    }
4036 	}
4037     }
4038 
4039   just_syms = ((s = abfd->sections) != NULL
4040 	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4041 
4042   add_needed = TRUE;
4043   if (! dynamic)
4044     {
4045       /* If we are creating a shared library, create all the dynamic
4046 	 sections immediately.  We need to attach them to something,
4047 	 so we attach them to this BFD, provided it is the right
4048 	 format and is not from ld --just-symbols.  Always create the
4049 	 dynamic sections for -E/--dynamic-list.  FIXME: If there
4050 	 are no input BFD's of the same format as the output, we can't
4051 	 make a shared library.  */
4052       if (!just_syms
4053 	  && (bfd_link_pic (info)
4054 	      || (!bfd_link_relocatable (info)
4055 		  && info->nointerp
4056 		  && (info->export_dynamic || info->dynamic)))
4057 	  && is_elf_hash_table (htab)
4058 	  && info->output_bfd->xvec == abfd->xvec
4059 	  && !htab->dynamic_sections_created)
4060 	{
4061 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4062 	    goto error_return;
4063 	}
4064     }
4065   else if (!is_elf_hash_table (htab))
4066     goto error_return;
4067   else
4068     {
4069       const char *soname = NULL;
4070       char *audit = NULL;
4071       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4072       const Elf_Internal_Phdr *phdr;
4073       int ret;
4074 
4075       /* ld --just-symbols and dynamic objects don't mix very well.
4076 	 ld shouldn't allow it.  */
4077       if (just_syms)
4078 	abort ();
4079 
4080       /* If this dynamic lib was specified on the command line with
4081 	 --as-needed in effect, then we don't want to add a DT_NEEDED
4082 	 tag unless the lib is actually used.  Similary for libs brought
4083 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
4084 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4085 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
4086 	 all.  */
4087       add_needed = (elf_dyn_lib_class (abfd)
4088 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
4089 		       | DYN_NO_NEEDED)) == 0;
4090 
4091       s = bfd_get_section_by_name (abfd, ".dynamic");
4092       if (s != NULL)
4093 	{
4094 	  bfd_byte *dynbuf;
4095 	  bfd_byte *extdyn;
4096 	  unsigned int elfsec;
4097 	  unsigned long shlink;
4098 
4099 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4100 	    {
4101 error_free_dyn:
4102 	      free (dynbuf);
4103 	      goto error_return;
4104 	    }
4105 
4106 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4107 	  if (elfsec == SHN_BAD)
4108 	    goto error_free_dyn;
4109 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4110 
4111 	  for (extdyn = dynbuf;
4112 	       extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4113 	       extdyn += bed->s->sizeof_dyn)
4114 	    {
4115 	      Elf_Internal_Dyn dyn;
4116 
4117 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4118 	      if (dyn.d_tag == DT_SONAME)
4119 		{
4120 		  unsigned int tagv = dyn.d_un.d_val;
4121 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4122 		  if (soname == NULL)
4123 		    goto error_free_dyn;
4124 		}
4125 	      if (dyn.d_tag == DT_NEEDED)
4126 		{
4127 		  struct bfd_link_needed_list *n, **pn;
4128 		  char *fnm, *anm;
4129 		  unsigned int tagv = dyn.d_un.d_val;
4130 
4131 		  amt = sizeof (struct bfd_link_needed_list);
4132 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4133 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4134 		  if (n == NULL || fnm == NULL)
4135 		    goto error_free_dyn;
4136 		  amt = strlen (fnm) + 1;
4137 		  anm = (char *) bfd_alloc (abfd, amt);
4138 		  if (anm == NULL)
4139 		    goto error_free_dyn;
4140 		  memcpy (anm, fnm, amt);
4141 		  n->name = anm;
4142 		  n->by = abfd;
4143 		  n->next = NULL;
4144 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4145 		    ;
4146 		  *pn = n;
4147 		}
4148 	      if (dyn.d_tag == DT_RUNPATH)
4149 		{
4150 		  struct bfd_link_needed_list *n, **pn;
4151 		  char *fnm, *anm;
4152 		  unsigned int tagv = dyn.d_un.d_val;
4153 
4154 		  amt = sizeof (struct bfd_link_needed_list);
4155 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4156 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4157 		  if (n == NULL || fnm == NULL)
4158 		    goto error_free_dyn;
4159 		  amt = strlen (fnm) + 1;
4160 		  anm = (char *) bfd_alloc (abfd, amt);
4161 		  if (anm == NULL)
4162 		    goto error_free_dyn;
4163 		  memcpy (anm, fnm, amt);
4164 		  n->name = anm;
4165 		  n->by = abfd;
4166 		  n->next = NULL;
4167 		  for (pn = & runpath;
4168 		       *pn != NULL;
4169 		       pn = &(*pn)->next)
4170 		    ;
4171 		  *pn = n;
4172 		}
4173 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
4174 	      if (!runpath && dyn.d_tag == DT_RPATH)
4175 		{
4176 		  struct bfd_link_needed_list *n, **pn;
4177 		  char *fnm, *anm;
4178 		  unsigned int tagv = dyn.d_un.d_val;
4179 
4180 		  amt = sizeof (struct bfd_link_needed_list);
4181 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4182 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4183 		  if (n == NULL || fnm == NULL)
4184 		    goto error_free_dyn;
4185 		  amt = strlen (fnm) + 1;
4186 		  anm = (char *) bfd_alloc (abfd, amt);
4187 		  if (anm == NULL)
4188 		    goto error_free_dyn;
4189 		  memcpy (anm, fnm, amt);
4190 		  n->name = anm;
4191 		  n->by = abfd;
4192 		  n->next = NULL;
4193 		  for (pn = & rpath;
4194 		       *pn != NULL;
4195 		       pn = &(*pn)->next)
4196 		    ;
4197 		  *pn = n;
4198 		}
4199 	      if (dyn.d_tag == DT_AUDIT)
4200 		{
4201 		  unsigned int tagv = dyn.d_un.d_val;
4202 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4203 		}
4204 	    }
4205 
4206 	  free (dynbuf);
4207 	}
4208 
4209       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
4210 	 frees all more recently bfd_alloc'd blocks as well.  */
4211       if (runpath)
4212 	rpath = runpath;
4213 
4214       if (rpath)
4215 	{
4216 	  struct bfd_link_needed_list **pn;
4217 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4218 	    ;
4219 	  *pn = rpath;
4220 	}
4221 
4222       /* If we have a PT_GNU_RELRO program header, mark as read-only
4223 	 all sections contained fully therein.  This makes relro
4224 	 shared library sections appear as they will at run-time.  */
4225       phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4226       while (phdr-- > elf_tdata (abfd)->phdr)
4227 	if (phdr->p_type == PT_GNU_RELRO)
4228 	  {
4229 	    for (s = abfd->sections; s != NULL; s = s->next)
4230 	      if ((s->flags & SEC_ALLOC) != 0
4231 		  && s->vma >= phdr->p_vaddr
4232 		  && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4233 		s->flags |= SEC_READONLY;
4234 	    break;
4235 	  }
4236 
4237       /* We do not want to include any of the sections in a dynamic
4238 	 object in the output file.  We hack by simply clobbering the
4239 	 list of sections in the BFD.  This could be handled more
4240 	 cleanly by, say, a new section flag; the existing
4241 	 SEC_NEVER_LOAD flag is not the one we want, because that one
4242 	 still implies that the section takes up space in the output
4243 	 file.  */
4244       bfd_section_list_clear (abfd);
4245 
4246       /* Find the name to use in a DT_NEEDED entry that refers to this
4247 	 object.  If the object has a DT_SONAME entry, we use it.
4248 	 Otherwise, if the generic linker stuck something in
4249 	 elf_dt_name, we use that.  Otherwise, we just use the file
4250 	 name.  */
4251       if (soname == NULL || *soname == '\0')
4252 	{
4253 	  soname = elf_dt_name (abfd);
4254 	  if (soname == NULL || *soname == '\0')
4255 	    soname = bfd_get_filename (abfd);
4256 	}
4257 
4258       /* Save the SONAME because sometimes the linker emulation code
4259 	 will need to know it.  */
4260       elf_dt_name (abfd) = soname;
4261 
4262       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4263       if (ret < 0)
4264 	goto error_return;
4265 
4266       /* If we have already included this dynamic object in the
4267 	 link, just ignore it.  There is no reason to include a
4268 	 particular dynamic object more than once.  */
4269       if (ret > 0)
4270 	return TRUE;
4271 
4272       /* Save the DT_AUDIT entry for the linker emulation code. */
4273       elf_dt_audit (abfd) = audit;
4274     }
4275 
4276   /* If this is a dynamic object, we always link against the .dynsym
4277      symbol table, not the .symtab symbol table.  The dynamic linker
4278      will only see the .dynsym symbol table, so there is no reason to
4279      look at .symtab for a dynamic object.  */
4280 
4281   if (! dynamic || elf_dynsymtab (abfd) == 0)
4282     hdr = &elf_tdata (abfd)->symtab_hdr;
4283   else
4284     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4285 
4286   symcount = hdr->sh_size / bed->s->sizeof_sym;
4287 
4288   /* The sh_info field of the symtab header tells us where the
4289      external symbols start.  We don't care about the local symbols at
4290      this point.  */
4291   if (elf_bad_symtab (abfd))
4292     {
4293       extsymcount = symcount;
4294       extsymoff = 0;
4295     }
4296   else
4297     {
4298       extsymcount = symcount - hdr->sh_info;
4299       extsymoff = hdr->sh_info;
4300     }
4301 
4302   sym_hash = elf_sym_hashes (abfd);
4303   if (extsymcount != 0)
4304     {
4305       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4306 				      NULL, NULL, NULL);
4307       if (isymbuf == NULL)
4308 	goto error_return;
4309 
4310       if (sym_hash == NULL)
4311 	{
4312 	  /* We store a pointer to the hash table entry for each
4313 	     external symbol.  */
4314 	  amt = extsymcount;
4315 	  amt *= sizeof (struct elf_link_hash_entry *);
4316 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4317 	  if (sym_hash == NULL)
4318 	    goto error_free_sym;
4319 	  elf_sym_hashes (abfd) = sym_hash;
4320 	}
4321     }
4322 
4323   if (dynamic)
4324     {
4325       /* Read in any version definitions.  */
4326       if (!_bfd_elf_slurp_version_tables (abfd,
4327 					  info->default_imported_symver))
4328 	goto error_free_sym;
4329 
4330       /* Read in the symbol versions, but don't bother to convert them
4331 	 to internal format.  */
4332       if (elf_dynversym (abfd) != 0)
4333 	{
4334 	  Elf_Internal_Shdr *versymhdr;
4335 
4336 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4337 	  amt = versymhdr->sh_size;
4338 	  extversym = (Elf_External_Versym *) bfd_malloc (amt);
4339 	  if (extversym == NULL)
4340 	    goto error_free_sym;
4341 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4342 	      || bfd_bread (extversym, amt, abfd) != amt)
4343 	    goto error_free_vers;
4344 	  extversym_end = extversym + (amt / sizeof (* extversym));
4345 	}
4346     }
4347 
4348   /* If we are loading an as-needed shared lib, save the symbol table
4349      state before we start adding symbols.  If the lib turns out
4350      to be unneeded, restore the state.  */
4351   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4352     {
4353       unsigned int i;
4354       size_t entsize;
4355 
4356       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4357 	{
4358 	  struct bfd_hash_entry *p;
4359 	  struct elf_link_hash_entry *h;
4360 
4361 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4362 	    {
4363 	      h = (struct elf_link_hash_entry *) p;
4364 	      entsize += htab->root.table.entsize;
4365 	      if (h->root.type == bfd_link_hash_warning)
4366 		entsize += htab->root.table.entsize;
4367 	    }
4368 	}
4369 
4370       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4371       old_tab = bfd_malloc (tabsize + entsize);
4372       if (old_tab == NULL)
4373 	goto error_free_vers;
4374 
4375       /* Remember the current objalloc pointer, so that all mem for
4376 	 symbols added can later be reclaimed.  */
4377       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4378       if (alloc_mark == NULL)
4379 	goto error_free_vers;
4380 
4381       /* Make a special call to the linker "notice" function to
4382 	 tell it that we are about to handle an as-needed lib.  */
4383       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4384 	goto error_free_vers;
4385 
4386       /* Clone the symbol table.  Remember some pointers into the
4387 	 symbol table, and dynamic symbol count.  */
4388       old_ent = (char *) old_tab + tabsize;
4389       memcpy (old_tab, htab->root.table.table, tabsize);
4390       old_undefs = htab->root.undefs;
4391       old_undefs_tail = htab->root.undefs_tail;
4392       old_table = htab->root.table.table;
4393       old_size = htab->root.table.size;
4394       old_count = htab->root.table.count;
4395       old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4396       if (old_strtab == NULL)
4397 	goto error_free_vers;
4398 
4399       for (i = 0; i < htab->root.table.size; i++)
4400 	{
4401 	  struct bfd_hash_entry *p;
4402 	  struct elf_link_hash_entry *h;
4403 
4404 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4405 	    {
4406 	      memcpy (old_ent, p, htab->root.table.entsize);
4407 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4408 	      h = (struct elf_link_hash_entry *) p;
4409 	      if (h->root.type == bfd_link_hash_warning)
4410 		{
4411 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4412 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4413 		}
4414 	    }
4415 	}
4416     }
4417 
4418   weaks = NULL;
4419   if (extversym == NULL)
4420     ever = NULL;
4421   else if (extversym + extsymoff < extversym_end)
4422     ever = extversym + extsymoff;
4423   else
4424     {
4425       /* xgettext:c-format */
4426       _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4427 			  abfd, (long) extsymoff,
4428 			  (long) (extversym_end - extversym) / sizeof (* extversym));
4429       bfd_set_error (bfd_error_bad_value);
4430       goto error_free_vers;
4431     }
4432 
4433   if (!bfd_link_relocatable (info)
4434       && abfd->lto_slim_object)
4435     {
4436       _bfd_error_handler
4437 	(_("%pB: plugin needed to handle lto object"), abfd);
4438     }
4439 
4440   for (isym = isymbuf, isymend = isymbuf + extsymcount;
4441        isym < isymend;
4442        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4443     {
4444       int bind;
4445       bfd_vma value;
4446       asection *sec, *new_sec;
4447       flagword flags;
4448       const char *name;
4449       struct elf_link_hash_entry *h;
4450       struct elf_link_hash_entry *hi;
4451       bfd_boolean definition;
4452       bfd_boolean size_change_ok;
4453       bfd_boolean type_change_ok;
4454       bfd_boolean new_weak;
4455       bfd_boolean old_weak;
4456       bfd_boolean override;
4457       bfd_boolean common;
4458       bfd_boolean discarded;
4459       unsigned int old_alignment;
4460       unsigned int shindex;
4461       bfd *old_bfd;
4462       bfd_boolean matched;
4463 
4464       override = FALSE;
4465 
4466       flags = BSF_NO_FLAGS;
4467       sec = NULL;
4468       value = isym->st_value;
4469       common = bed->common_definition (isym);
4470       if (common && info->inhibit_common_definition)
4471 	{
4472 	  /* Treat common symbol as undefined for --no-define-common.  */
4473 	  isym->st_shndx = SHN_UNDEF;
4474 	  common = FALSE;
4475 	}
4476       discarded = FALSE;
4477 
4478       bind = ELF_ST_BIND (isym->st_info);
4479       switch (bind)
4480 	{
4481 	case STB_LOCAL:
4482 	  /* This should be impossible, since ELF requires that all
4483 	     global symbols follow all local symbols, and that sh_info
4484 	     point to the first global symbol.  Unfortunately, Irix 5
4485 	     screws this up.  */
4486 	  if (elf_bad_symtab (abfd))
4487 	    continue;
4488 
4489 	  /* If we aren't prepared to handle locals within the globals
4490 	     then we'll likely segfault on a NULL symbol hash if the
4491 	     symbol is ever referenced in relocations.  */
4492 	  shindex = elf_elfheader (abfd)->e_shstrndx;
4493 	  name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4494 	  _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4495 				" (>= sh_info of %lu)"),
4496 			      abfd, name, (long) (isym - isymbuf + extsymoff),
4497 			      (long) extsymoff);
4498 
4499 	  /* Dynamic object relocations are not processed by ld, so
4500 	     ld won't run into the problem mentioned above.  */
4501 	  if (dynamic)
4502 	    continue;
4503 	  bfd_set_error (bfd_error_bad_value);
4504 	  goto error_free_vers;
4505 
4506 	case STB_GLOBAL:
4507 	  if (isym->st_shndx != SHN_UNDEF && !common)
4508 	    flags = BSF_GLOBAL;
4509 	  break;
4510 
4511 	case STB_WEAK:
4512 	  flags = BSF_WEAK;
4513 	  break;
4514 
4515 	case STB_GNU_UNIQUE:
4516 	  flags = BSF_GNU_UNIQUE;
4517 	  break;
4518 
4519 	default:
4520 	  /* Leave it up to the processor backend.  */
4521 	  break;
4522 	}
4523 
4524       if (isym->st_shndx == SHN_UNDEF)
4525 	sec = bfd_und_section_ptr;
4526       else if (isym->st_shndx == SHN_ABS)
4527 	sec = bfd_abs_section_ptr;
4528       else if (isym->st_shndx == SHN_COMMON)
4529 	{
4530 	  sec = bfd_com_section_ptr;
4531 	  /* What ELF calls the size we call the value.  What ELF
4532 	     calls the value we call the alignment.  */
4533 	  value = isym->st_size;
4534 	}
4535       else
4536 	{
4537 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4538 	  if (sec == NULL)
4539 	    sec = bfd_abs_section_ptr;
4540 	  else if (discarded_section (sec))
4541 	    {
4542 	      /* Symbols from discarded section are undefined.  We keep
4543 		 its visibility.  */
4544 	      sec = bfd_und_section_ptr;
4545 	      discarded = TRUE;
4546 	      isym->st_shndx = SHN_UNDEF;
4547 	    }
4548 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4549 	    value -= sec->vma;
4550 	}
4551 
4552       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4553 					      isym->st_name);
4554       if (name == NULL)
4555 	goto error_free_vers;
4556 
4557       if (isym->st_shndx == SHN_COMMON
4558 	  && (abfd->flags & BFD_PLUGIN) != 0)
4559 	{
4560 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4561 
4562 	  if (xc == NULL)
4563 	    {
4564 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4565 				 | SEC_EXCLUDE);
4566 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4567 	      if (xc == NULL)
4568 		goto error_free_vers;
4569 	    }
4570 	  sec = xc;
4571 	}
4572       else if (isym->st_shndx == SHN_COMMON
4573 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
4574 	       && !bfd_link_relocatable (info))
4575 	{
4576 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4577 
4578 	  if (tcomm == NULL)
4579 	    {
4580 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4581 				 | SEC_LINKER_CREATED);
4582 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4583 	      if (tcomm == NULL)
4584 		goto error_free_vers;
4585 	    }
4586 	  sec = tcomm;
4587 	}
4588       else if (bed->elf_add_symbol_hook)
4589 	{
4590 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4591 					     &sec, &value))
4592 	    goto error_free_vers;
4593 
4594 	  /* The hook function sets the name to NULL if this symbol
4595 	     should be skipped for some reason.  */
4596 	  if (name == NULL)
4597 	    continue;
4598 	}
4599 
4600       /* Sanity check that all possibilities were handled.  */
4601       if (sec == NULL)
4602 	abort ();
4603 
4604       /* Silently discard TLS symbols from --just-syms.  There's
4605 	 no way to combine a static TLS block with a new TLS block
4606 	 for this executable.  */
4607       if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4608 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4609 	continue;
4610 
4611       if (bfd_is_und_section (sec)
4612 	  || bfd_is_com_section (sec))
4613 	definition = FALSE;
4614       else
4615 	definition = TRUE;
4616 
4617       size_change_ok = FALSE;
4618       type_change_ok = bed->type_change_ok;
4619       old_weak = FALSE;
4620       matched = FALSE;
4621       old_alignment = 0;
4622       old_bfd = NULL;
4623       new_sec = sec;
4624 
4625       if (is_elf_hash_table (htab))
4626 	{
4627 	  Elf_Internal_Versym iver;
4628 	  unsigned int vernum = 0;
4629 	  bfd_boolean skip;
4630 
4631 	  if (ever == NULL)
4632 	    {
4633 	      if (info->default_imported_symver)
4634 		/* Use the default symbol version created earlier.  */
4635 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
4636 	      else
4637 		iver.vs_vers = 0;
4638 	    }
4639 	  else if (ever >= extversym_end)
4640 	    {
4641 	      /* xgettext:c-format */
4642 	      _bfd_error_handler (_("%pB: not enough version information"),
4643 				  abfd);
4644 	      bfd_set_error (bfd_error_bad_value);
4645 	      goto error_free_vers;
4646 	    }
4647 	  else
4648 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4649 
4650 	  vernum = iver.vs_vers & VERSYM_VERSION;
4651 
4652 	  /* If this is a hidden symbol, or if it is not version
4653 	     1, we append the version name to the symbol name.
4654 	     However, we do not modify a non-hidden absolute symbol
4655 	     if it is not a function, because it might be the version
4656 	     symbol itself.  FIXME: What if it isn't?  */
4657 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4658 	      || (vernum > 1
4659 		  && (!bfd_is_abs_section (sec)
4660 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4661 	    {
4662 	      const char *verstr;
4663 	      size_t namelen, verlen, newlen;
4664 	      char *newname, *p;
4665 
4666 	      if (isym->st_shndx != SHN_UNDEF)
4667 		{
4668 		  if (vernum > elf_tdata (abfd)->cverdefs)
4669 		    verstr = NULL;
4670 		  else if (vernum > 1)
4671 		    verstr =
4672 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4673 		  else
4674 		    verstr = "";
4675 
4676 		  if (verstr == NULL)
4677 		    {
4678 		      _bfd_error_handler
4679 			/* xgettext:c-format */
4680 			(_("%pB: %s: invalid version %u (max %d)"),
4681 			 abfd, name, vernum,
4682 			 elf_tdata (abfd)->cverdefs);
4683 		      bfd_set_error (bfd_error_bad_value);
4684 		      goto error_free_vers;
4685 		    }
4686 		}
4687 	      else
4688 		{
4689 		  /* We cannot simply test for the number of
4690 		     entries in the VERNEED section since the
4691 		     numbers for the needed versions do not start
4692 		     at 0.  */
4693 		  Elf_Internal_Verneed *t;
4694 
4695 		  verstr = NULL;
4696 		  for (t = elf_tdata (abfd)->verref;
4697 		       t != NULL;
4698 		       t = t->vn_nextref)
4699 		    {
4700 		      Elf_Internal_Vernaux *a;
4701 
4702 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4703 			{
4704 			  if (a->vna_other == vernum)
4705 			    {
4706 			      verstr = a->vna_nodename;
4707 			      break;
4708 			    }
4709 			}
4710 		      if (a != NULL)
4711 			break;
4712 		    }
4713 		  if (verstr == NULL)
4714 		    {
4715 		      _bfd_error_handler
4716 			/* xgettext:c-format */
4717 			(_("%pB: %s: invalid needed version %d"),
4718 			 abfd, name, vernum);
4719 		      bfd_set_error (bfd_error_bad_value);
4720 		      goto error_free_vers;
4721 		    }
4722 		}
4723 
4724 	      namelen = strlen (name);
4725 	      verlen = strlen (verstr);
4726 	      newlen = namelen + verlen + 2;
4727 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4728 		  && isym->st_shndx != SHN_UNDEF)
4729 		++newlen;
4730 
4731 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4732 	      if (newname == NULL)
4733 		goto error_free_vers;
4734 	      memcpy (newname, name, namelen);
4735 	      p = newname + namelen;
4736 	      *p++ = ELF_VER_CHR;
4737 	      /* If this is a defined non-hidden version symbol,
4738 		 we add another @ to the name.  This indicates the
4739 		 default version of the symbol.  */
4740 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4741 		  && isym->st_shndx != SHN_UNDEF)
4742 		*p++ = ELF_VER_CHR;
4743 	      memcpy (p, verstr, verlen + 1);
4744 
4745 	      name = newname;
4746 	    }
4747 
4748 	  /* If this symbol has default visibility and the user has
4749 	     requested we not re-export it, then mark it as hidden.  */
4750 	  if (!bfd_is_und_section (sec)
4751 	      && !dynamic
4752 	      && abfd->no_export
4753 	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4754 	    isym->st_other = (STV_HIDDEN
4755 			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4756 
4757 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4758 				      sym_hash, &old_bfd, &old_weak,
4759 				      &old_alignment, &skip, &override,
4760 				      &type_change_ok, &size_change_ok,
4761 				      &matched))
4762 	    goto error_free_vers;
4763 
4764 	  if (skip)
4765 	    continue;
4766 
4767 	  /* Override a definition only if the new symbol matches the
4768 	     existing one.  */
4769 	  if (override && matched)
4770 	    definition = FALSE;
4771 
4772 	  h = *sym_hash;
4773 	  while (h->root.type == bfd_link_hash_indirect
4774 		 || h->root.type == bfd_link_hash_warning)
4775 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4776 
4777 	  if (elf_tdata (abfd)->verdef != NULL
4778 	      && vernum > 1
4779 	      && definition)
4780 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4781 	}
4782 
4783       if (! (_bfd_generic_link_add_one_symbol
4784 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4785 	      (struct bfd_link_hash_entry **) sym_hash)))
4786 	goto error_free_vers;
4787 
4788       h = *sym_hash;
4789       /* We need to make sure that indirect symbol dynamic flags are
4790 	 updated.  */
4791       hi = h;
4792       while (h->root.type == bfd_link_hash_indirect
4793 	     || h->root.type == bfd_link_hash_warning)
4794 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4795 
4796       /* Setting the index to -3 tells elf_link_output_extsym that
4797 	 this symbol is defined in a discarded section.  */
4798       if (discarded)
4799 	h->indx = -3;
4800 
4801       *sym_hash = h;
4802 
4803       new_weak = (flags & BSF_WEAK) != 0;
4804       if (dynamic
4805 	  && definition
4806 	  && new_weak
4807 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4808 	  && is_elf_hash_table (htab)
4809 	  && h->u.alias == NULL)
4810 	{
4811 	  /* Keep a list of all weak defined non function symbols from
4812 	     a dynamic object, using the alias field.  Later in this
4813 	     function we will set the alias field to the correct
4814 	     value.  We only put non-function symbols from dynamic
4815 	     objects on this list, because that happens to be the only
4816 	     time we need to know the normal symbol corresponding to a
4817 	     weak symbol, and the information is time consuming to
4818 	     figure out.  If the alias field is not already NULL,
4819 	     then this symbol was already defined by some previous
4820 	     dynamic object, and we will be using that previous
4821 	     definition anyhow.  */
4822 
4823 	  h->u.alias = weaks;
4824 	  weaks = h;
4825 	}
4826 
4827       /* Set the alignment of a common symbol.  */
4828       if ((common || bfd_is_com_section (sec))
4829 	  && h->root.type == bfd_link_hash_common)
4830 	{
4831 	  unsigned int align;
4832 
4833 	  if (common)
4834 	    align = bfd_log2 (isym->st_value);
4835 	  else
4836 	    {
4837 	      /* The new symbol is a common symbol in a shared object.
4838 		 We need to get the alignment from the section.  */
4839 	      align = new_sec->alignment_power;
4840 	    }
4841 	  if (align > old_alignment)
4842 	    h->root.u.c.p->alignment_power = align;
4843 	  else
4844 	    h->root.u.c.p->alignment_power = old_alignment;
4845 	}
4846 
4847       if (is_elf_hash_table (htab))
4848 	{
4849 	  /* Set a flag in the hash table entry indicating the type of
4850 	     reference or definition we just found.  A dynamic symbol
4851 	     is one which is referenced or defined by both a regular
4852 	     object and a shared object.  */
4853 	  bfd_boolean dynsym = FALSE;
4854 
4855 	  /* Plugin symbols aren't normal.  Don't set def_regular or
4856 	     ref_regular for them, or make them dynamic.  */
4857 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4858 	    ;
4859 	  else if (! dynamic)
4860 	    {
4861 	      if (! definition)
4862 		{
4863 		  h->ref_regular = 1;
4864 		  if (bind != STB_WEAK)
4865 		    h->ref_regular_nonweak = 1;
4866 		}
4867 	      else
4868 		{
4869 		  h->def_regular = 1;
4870 		  if (h->def_dynamic)
4871 		    {
4872 		      h->def_dynamic = 0;
4873 		      h->ref_dynamic = 1;
4874 		    }
4875 		}
4876 
4877 	      /* If the indirect symbol has been forced local, don't
4878 		 make the real symbol dynamic.  */
4879 	      if ((h == hi || !hi->forced_local)
4880 		  && (bfd_link_dll (info)
4881 		      || h->def_dynamic
4882 		      || h->ref_dynamic))
4883 		dynsym = TRUE;
4884 	    }
4885 	  else
4886 	    {
4887 	      if (! definition)
4888 		{
4889 		  h->ref_dynamic = 1;
4890 		  hi->ref_dynamic = 1;
4891 		}
4892 	      else
4893 		{
4894 		  h->def_dynamic = 1;
4895 		  hi->def_dynamic = 1;
4896 		}
4897 
4898 	      /* If the indirect symbol has been forced local, don't
4899 		 make the real symbol dynamic.  */
4900 	      if ((h == hi || !hi->forced_local)
4901 		  && (h->def_regular
4902 		      || h->ref_regular
4903 		      || (h->is_weakalias
4904 			  && weakdef (h)->dynindx != -1)))
4905 		dynsym = TRUE;
4906 	    }
4907 
4908 	  /* Check to see if we need to add an indirect symbol for
4909 	     the default name.  */
4910 	  if (definition
4911 	      || (!override && h->root.type == bfd_link_hash_common))
4912 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4913 					      sec, value, &old_bfd, &dynsym))
4914 	      goto error_free_vers;
4915 
4916 	  /* Check the alignment when a common symbol is involved. This
4917 	     can change when a common symbol is overridden by a normal
4918 	     definition or a common symbol is ignored due to the old
4919 	     normal definition. We need to make sure the maximum
4920 	     alignment is maintained.  */
4921 	  if ((old_alignment || common)
4922 	      && h->root.type != bfd_link_hash_common)
4923 	    {
4924 	      unsigned int common_align;
4925 	      unsigned int normal_align;
4926 	      unsigned int symbol_align;
4927 	      bfd *normal_bfd;
4928 	      bfd *common_bfd;
4929 
4930 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
4931 			  || h->root.type == bfd_link_hash_defweak);
4932 
4933 	      symbol_align = ffs (h->root.u.def.value) - 1;
4934 	      if (h->root.u.def.section->owner != NULL
4935 		  && (h->root.u.def.section->owner->flags
4936 		       & (DYNAMIC | BFD_PLUGIN)) == 0)
4937 		{
4938 		  normal_align = h->root.u.def.section->alignment_power;
4939 		  if (normal_align > symbol_align)
4940 		    normal_align = symbol_align;
4941 		}
4942 	      else
4943 		normal_align = symbol_align;
4944 
4945 	      if (old_alignment)
4946 		{
4947 		  common_align = old_alignment;
4948 		  common_bfd = old_bfd;
4949 		  normal_bfd = abfd;
4950 		}
4951 	      else
4952 		{
4953 		  common_align = bfd_log2 (isym->st_value);
4954 		  common_bfd = abfd;
4955 		  normal_bfd = old_bfd;
4956 		}
4957 
4958 	      if (normal_align < common_align)
4959 		{
4960 		  /* PR binutils/2735 */
4961 		  if (normal_bfd == NULL)
4962 		    _bfd_error_handler
4963 		      /* xgettext:c-format */
4964 		      (_("warning: alignment %u of common symbol `%s' in %pB is"
4965 			 " greater than the alignment (%u) of its section %pA"),
4966 		       1 << common_align, name, common_bfd,
4967 		       1 << normal_align, h->root.u.def.section);
4968 		  else
4969 		    _bfd_error_handler
4970 		      /* xgettext:c-format */
4971 		      (_("warning: alignment %u of symbol `%s' in %pB"
4972 			 " is smaller than %u in %pB"),
4973 		       1 << normal_align, name, normal_bfd,
4974 		       1 << common_align, common_bfd);
4975 		}
4976 	    }
4977 
4978 	  /* Remember the symbol size if it isn't undefined.  */
4979 	  if (isym->st_size != 0
4980 	      && isym->st_shndx != SHN_UNDEF
4981 	      && (definition || h->size == 0))
4982 	    {
4983 	      if (h->size != 0
4984 		  && h->size != isym->st_size
4985 		  && ! size_change_ok)
4986 		_bfd_error_handler
4987 		  /* xgettext:c-format */
4988 		  (_("warning: size of symbol `%s' changed"
4989 		     " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4990 		   name, (uint64_t) h->size, old_bfd,
4991 		   (uint64_t) isym->st_size, abfd);
4992 
4993 	      h->size = isym->st_size;
4994 	    }
4995 
4996 	  /* If this is a common symbol, then we always want H->SIZE
4997 	     to be the size of the common symbol.  The code just above
4998 	     won't fix the size if a common symbol becomes larger.  We
4999 	     don't warn about a size change here, because that is
5000 	     covered by --warn-common.  Allow changes between different
5001 	     function types.  */
5002 	  if (h->root.type == bfd_link_hash_common)
5003 	    h->size = h->root.u.c.size;
5004 
5005 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5006 	      && ((definition && !new_weak)
5007 		  || (old_weak && h->root.type == bfd_link_hash_common)
5008 		  || h->type == STT_NOTYPE))
5009 	    {
5010 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
5011 
5012 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
5013 		 symbol.  */
5014 	      if (type == STT_GNU_IFUNC
5015 		  && (abfd->flags & DYNAMIC) != 0)
5016 		type = STT_FUNC;
5017 
5018 	      if (h->type != type)
5019 		{
5020 		  if (h->type != STT_NOTYPE && ! type_change_ok)
5021 		    /* xgettext:c-format */
5022 		    _bfd_error_handler
5023 		      (_("warning: type of symbol `%s' changed"
5024 			 " from %d to %d in %pB"),
5025 		       name, h->type, type, abfd);
5026 
5027 		  h->type = type;
5028 		}
5029 	    }
5030 
5031 	  /* Merge st_other field.  */
5032 	  elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5033 
5034 	  /* We don't want to make debug symbol dynamic.  */
5035 	  if (definition
5036 	      && (sec->flags & SEC_DEBUGGING)
5037 	      && !bfd_link_relocatable (info))
5038 	    dynsym = FALSE;
5039 
5040 	  /* Nor should we make plugin symbols dynamic.  */
5041 	  if ((abfd->flags & BFD_PLUGIN) != 0)
5042 	    dynsym = FALSE;
5043 
5044 	  if (definition)
5045 	    {
5046 	      h->target_internal = isym->st_target_internal;
5047 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5048 	    }
5049 
5050 	  if (definition && !dynamic)
5051 	    {
5052 	      char *p = strchr (name, ELF_VER_CHR);
5053 	      if (p != NULL && p[1] != ELF_VER_CHR)
5054 		{
5055 		  /* Queue non-default versions so that .symver x, x@FOO
5056 		     aliases can be checked.  */
5057 		  if (!nondeflt_vers)
5058 		    {
5059 		      amt = ((isymend - isym + 1)
5060 			     * sizeof (struct elf_link_hash_entry *));
5061 		      nondeflt_vers
5062 			= (struct elf_link_hash_entry **) bfd_malloc (amt);
5063 		      if (!nondeflt_vers)
5064 			goto error_free_vers;
5065 		    }
5066 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
5067 		}
5068 	    }
5069 
5070 	  if (dynsym && h->dynindx == -1)
5071 	    {
5072 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5073 		goto error_free_vers;
5074 	      if (h->is_weakalias
5075 		  && weakdef (h)->dynindx == -1)
5076 		{
5077 		  if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5078 		    goto error_free_vers;
5079 		}
5080 	    }
5081 	  else if (h->dynindx != -1)
5082 	    /* If the symbol already has a dynamic index, but
5083 	       visibility says it should not be visible, turn it into
5084 	       a local symbol.  */
5085 	    switch (ELF_ST_VISIBILITY (h->other))
5086 	      {
5087 	      case STV_INTERNAL:
5088 	      case STV_HIDDEN:
5089 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
5090 		dynsym = FALSE;
5091 		break;
5092 	      }
5093 
5094 	  /* Don't add DT_NEEDED for references from the dummy bfd nor
5095 	     for unmatched symbol.  */
5096 	  if (!add_needed
5097 	      && matched
5098 	      && definition
5099 	      && ((dynsym
5100 		   && h->ref_regular_nonweak
5101 		   && (old_bfd == NULL
5102 		       || (old_bfd->flags & BFD_PLUGIN) == 0))
5103 		  || (h->ref_dynamic_nonweak
5104 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5105 		      && !on_needed_list (elf_dt_name (abfd),
5106 					  htab->needed, NULL))))
5107 	    {
5108 	      int ret;
5109 	      const char *soname = elf_dt_name (abfd);
5110 
5111 	      info->callbacks->minfo ("%!", soname, old_bfd,
5112 				      h->root.root.string);
5113 
5114 	      /* A symbol from a library loaded via DT_NEEDED of some
5115 		 other library is referenced by a regular object.
5116 		 Add a DT_NEEDED entry for it.  Issue an error if
5117 		 --no-add-needed is used and the reference was not
5118 		 a weak one.  */
5119 	      if (old_bfd != NULL
5120 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5121 		{
5122 		  _bfd_error_handler
5123 		    /* xgettext:c-format */
5124 		    (_("%pB: undefined reference to symbol '%s'"),
5125 		     old_bfd, name);
5126 		  bfd_set_error (bfd_error_missing_dso);
5127 		  goto error_free_vers;
5128 		}
5129 
5130 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5131 		(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5132 
5133 	      add_needed = TRUE;
5134 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5135 	      if (ret < 0)
5136 		goto error_free_vers;
5137 
5138 	      BFD_ASSERT (ret == 0);
5139 	    }
5140 	}
5141     }
5142 
5143   if (info->lto_plugin_active
5144       && !bfd_link_relocatable (info)
5145       && (abfd->flags & BFD_PLUGIN) == 0
5146       && !just_syms
5147       && extsymcount)
5148     {
5149       int r_sym_shift;
5150 
5151       if (bed->s->arch_size == 32)
5152 	r_sym_shift = 8;
5153       else
5154 	r_sym_shift = 32;
5155 
5156       /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5157 	 referenced in regular objects so that linker plugin will get
5158 	 the correct symbol resolution.  */
5159 
5160       sym_hash = elf_sym_hashes (abfd);
5161       for (s = abfd->sections; s != NULL; s = s->next)
5162 	{
5163 	  Elf_Internal_Rela *internal_relocs;
5164 	  Elf_Internal_Rela *rel, *relend;
5165 
5166 	  /* Don't check relocations in excluded sections.  */
5167 	  if ((s->flags & SEC_RELOC) == 0
5168 	      || s->reloc_count == 0
5169 	      || (s->flags & SEC_EXCLUDE) != 0
5170 	      || ((info->strip == strip_all
5171 		   || info->strip == strip_debugger)
5172 		  && (s->flags & SEC_DEBUGGING) != 0))
5173 	    continue;
5174 
5175 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5176 						       NULL,
5177 						       info->keep_memory);
5178 	  if (internal_relocs == NULL)
5179 	    goto error_free_vers;
5180 
5181 	  rel = internal_relocs;
5182 	  relend = rel + s->reloc_count;
5183 	  for ( ; rel < relend; rel++)
5184 	    {
5185 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
5186 	      struct elf_link_hash_entry *h;
5187 
5188 	      /* Skip local symbols.  */
5189 	      if (r_symndx < extsymoff)
5190 		continue;
5191 
5192 	      h = sym_hash[r_symndx - extsymoff];
5193 	      if (h != NULL)
5194 		h->root.non_ir_ref_regular = 1;
5195 	    }
5196 
5197 	  if (elf_section_data (s)->relocs != internal_relocs)
5198 	    free (internal_relocs);
5199 	}
5200     }
5201 
5202   if (extversym != NULL)
5203     {
5204       free (extversym);
5205       extversym = NULL;
5206     }
5207 
5208   if (isymbuf != NULL)
5209     {
5210       free (isymbuf);
5211       isymbuf = NULL;
5212     }
5213 
5214   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5215     {
5216       unsigned int i;
5217 
5218       /* Restore the symbol table.  */
5219       old_ent = (char *) old_tab + tabsize;
5220       memset (elf_sym_hashes (abfd), 0,
5221 	      extsymcount * sizeof (struct elf_link_hash_entry *));
5222       htab->root.table.table = old_table;
5223       htab->root.table.size = old_size;
5224       htab->root.table.count = old_count;
5225       memcpy (htab->root.table.table, old_tab, tabsize);
5226       htab->root.undefs = old_undefs;
5227       htab->root.undefs_tail = old_undefs_tail;
5228       _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5229       free (old_strtab);
5230       old_strtab = NULL;
5231       for (i = 0; i < htab->root.table.size; i++)
5232 	{
5233 	  struct bfd_hash_entry *p;
5234 	  struct elf_link_hash_entry *h;
5235 	  bfd_size_type size;
5236 	  unsigned int alignment_power;
5237 	  unsigned int non_ir_ref_dynamic;
5238 
5239 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5240 	    {
5241 	      h = (struct elf_link_hash_entry *) p;
5242 	      if (h->root.type == bfd_link_hash_warning)
5243 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
5244 
5245 	      /* Preserve the maximum alignment and size for common
5246 		 symbols even if this dynamic lib isn't on DT_NEEDED
5247 		 since it can still be loaded at run time by another
5248 		 dynamic lib.  */
5249 	      if (h->root.type == bfd_link_hash_common)
5250 		{
5251 		  size = h->root.u.c.size;
5252 		  alignment_power = h->root.u.c.p->alignment_power;
5253 		}
5254 	      else
5255 		{
5256 		  size = 0;
5257 		  alignment_power = 0;
5258 		}
5259 	      /* Preserve non_ir_ref_dynamic so that this symbol
5260 		 will be exported when the dynamic lib becomes needed
5261 		 in the second pass.  */
5262 	      non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5263 	      memcpy (p, old_ent, htab->root.table.entsize);
5264 	      old_ent = (char *) old_ent + htab->root.table.entsize;
5265 	      h = (struct elf_link_hash_entry *) p;
5266 	      if (h->root.type == bfd_link_hash_warning)
5267 		{
5268 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5269 		  old_ent = (char *) old_ent + htab->root.table.entsize;
5270 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
5271 		}
5272 	      if (h->root.type == bfd_link_hash_common)
5273 		{
5274 		  if (size > h->root.u.c.size)
5275 		    h->root.u.c.size = size;
5276 		  if (alignment_power > h->root.u.c.p->alignment_power)
5277 		    h->root.u.c.p->alignment_power = alignment_power;
5278 		}
5279 	      h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5280 	    }
5281 	}
5282 
5283       /* Make a special call to the linker "notice" function to
5284 	 tell it that symbols added for crefs may need to be removed.  */
5285       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5286 	goto error_free_vers;
5287 
5288       free (old_tab);
5289       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5290 			   alloc_mark);
5291       if (nondeflt_vers != NULL)
5292 	free (nondeflt_vers);
5293       return TRUE;
5294     }
5295 
5296   if (old_tab != NULL)
5297     {
5298       if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5299 	goto error_free_vers;
5300       free (old_tab);
5301       old_tab = NULL;
5302     }
5303 
5304   /* Now that all the symbols from this input file are created, if
5305      not performing a relocatable link, handle .symver foo, foo@BAR
5306      such that any relocs against foo become foo@BAR.  */
5307   if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5308     {
5309       size_t cnt, symidx;
5310 
5311       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5312 	{
5313 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5314 	  char *shortname, *p;
5315 
5316 	  p = strchr (h->root.root.string, ELF_VER_CHR);
5317 	  if (p == NULL
5318 	      || (h->root.type != bfd_link_hash_defined
5319 		  && h->root.type != bfd_link_hash_defweak))
5320 	    continue;
5321 
5322 	  amt = p - h->root.root.string;
5323 	  shortname = (char *) bfd_malloc (amt + 1);
5324 	  if (!shortname)
5325 	    goto error_free_vers;
5326 	  memcpy (shortname, h->root.root.string, amt);
5327 	  shortname[amt] = '\0';
5328 
5329 	  hi = (struct elf_link_hash_entry *)
5330 	       bfd_link_hash_lookup (&htab->root, shortname,
5331 				     FALSE, FALSE, FALSE);
5332 	  if (hi != NULL
5333 	      && hi->root.type == h->root.type
5334 	      && hi->root.u.def.value == h->root.u.def.value
5335 	      && hi->root.u.def.section == h->root.u.def.section)
5336 	    {
5337 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5338 	      hi->root.type = bfd_link_hash_indirect;
5339 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5340 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5341 	      sym_hash = elf_sym_hashes (abfd);
5342 	      if (sym_hash)
5343 		for (symidx = 0; symidx < extsymcount; ++symidx)
5344 		  if (sym_hash[symidx] == hi)
5345 		    {
5346 		      sym_hash[symidx] = h;
5347 		      break;
5348 		    }
5349 	    }
5350 	  free (shortname);
5351 	}
5352       free (nondeflt_vers);
5353       nondeflt_vers = NULL;
5354     }
5355 
5356   /* Now set the alias field correctly for all the weak defined
5357      symbols we found.  The only way to do this is to search all the
5358      symbols.  Since we only need the information for non functions in
5359      dynamic objects, that's the only time we actually put anything on
5360      the list WEAKS.  We need this information so that if a regular
5361      object refers to a symbol defined weakly in a dynamic object, the
5362      real symbol in the dynamic object is also put in the dynamic
5363      symbols; we also must arrange for both symbols to point to the
5364      same memory location.  We could handle the general case of symbol
5365      aliasing, but a general symbol alias can only be generated in
5366      assembler code, handling it correctly would be very time
5367      consuming, and other ELF linkers don't handle general aliasing
5368      either.  */
5369   if (weaks != NULL)
5370     {
5371       struct elf_link_hash_entry **hpp;
5372       struct elf_link_hash_entry **hppend;
5373       struct elf_link_hash_entry **sorted_sym_hash;
5374       struct elf_link_hash_entry *h;
5375       size_t sym_count;
5376 
5377       /* Since we have to search the whole symbol list for each weak
5378 	 defined symbol, search time for N weak defined symbols will be
5379 	 O(N^2). Binary search will cut it down to O(NlogN).  */
5380       amt = extsymcount;
5381       amt *= sizeof (*sorted_sym_hash);
5382       sorted_sym_hash = bfd_malloc (amt);
5383       if (sorted_sym_hash == NULL)
5384 	goto error_return;
5385       sym_hash = sorted_sym_hash;
5386       hpp = elf_sym_hashes (abfd);
5387       hppend = hpp + extsymcount;
5388       sym_count = 0;
5389       for (; hpp < hppend; hpp++)
5390 	{
5391 	  h = *hpp;
5392 	  if (h != NULL
5393 	      && h->root.type == bfd_link_hash_defined
5394 	      && !bed->is_function_type (h->type))
5395 	    {
5396 	      *sym_hash = h;
5397 	      sym_hash++;
5398 	      sym_count++;
5399 	    }
5400 	}
5401 
5402       qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5403 	     elf_sort_symbol);
5404 
5405       while (weaks != NULL)
5406 	{
5407 	  struct elf_link_hash_entry *hlook;
5408 	  asection *slook;
5409 	  bfd_vma vlook;
5410 	  size_t i, j, idx = 0;
5411 
5412 	  hlook = weaks;
5413 	  weaks = hlook->u.alias;
5414 	  hlook->u.alias = NULL;
5415 
5416 	  if (hlook->root.type != bfd_link_hash_defined
5417 	      && hlook->root.type != bfd_link_hash_defweak)
5418 	    continue;
5419 
5420 	  slook = hlook->root.u.def.section;
5421 	  vlook = hlook->root.u.def.value;
5422 
5423 	  i = 0;
5424 	  j = sym_count;
5425 	  while (i != j)
5426 	    {
5427 	      bfd_signed_vma vdiff;
5428 	      idx = (i + j) / 2;
5429 	      h = sorted_sym_hash[idx];
5430 	      vdiff = vlook - h->root.u.def.value;
5431 	      if (vdiff < 0)
5432 		j = idx;
5433 	      else if (vdiff > 0)
5434 		i = idx + 1;
5435 	      else
5436 		{
5437 		  int sdiff = slook->id - h->root.u.def.section->id;
5438 		  if (sdiff < 0)
5439 		    j = idx;
5440 		  else if (sdiff > 0)
5441 		    i = idx + 1;
5442 		  else
5443 		    break;
5444 		}
5445 	    }
5446 
5447 	  /* We didn't find a value/section match.  */
5448 	  if (i == j)
5449 	    continue;
5450 
5451 	  /* With multiple aliases, or when the weak symbol is already
5452 	     strongly defined, we have multiple matching symbols and
5453 	     the binary search above may land on any of them.  Step
5454 	     one past the matching symbol(s).  */
5455 	  while (++idx != j)
5456 	    {
5457 	      h = sorted_sym_hash[idx];
5458 	      if (h->root.u.def.section != slook
5459 		  || h->root.u.def.value != vlook)
5460 		break;
5461 	    }
5462 
5463 	  /* Now look back over the aliases.  Since we sorted by size
5464 	     as well as value and section, we'll choose the one with
5465 	     the largest size.  */
5466 	  while (idx-- != i)
5467 	    {
5468 	      h = sorted_sym_hash[idx];
5469 
5470 	      /* Stop if value or section doesn't match.  */
5471 	      if (h->root.u.def.section != slook
5472 		  || h->root.u.def.value != vlook)
5473 		break;
5474 	      else if (h != hlook)
5475 		{
5476 		  struct elf_link_hash_entry *t;
5477 
5478 		  hlook->u.alias = h;
5479 		  hlook->is_weakalias = 1;
5480 		  t = h;
5481 		  if (t->u.alias != NULL)
5482 		    while (t->u.alias != h)
5483 		      t = t->u.alias;
5484 		  t->u.alias = hlook;
5485 
5486 		  /* If the weak definition is in the list of dynamic
5487 		     symbols, make sure the real definition is put
5488 		     there as well.  */
5489 		  if (hlook->dynindx != -1 && h->dynindx == -1)
5490 		    {
5491 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5492 			{
5493 			err_free_sym_hash:
5494 			  free (sorted_sym_hash);
5495 			  goto error_return;
5496 			}
5497 		    }
5498 
5499 		  /* If the real definition is in the list of dynamic
5500 		     symbols, make sure the weak definition is put
5501 		     there as well.  If we don't do this, then the
5502 		     dynamic loader might not merge the entries for the
5503 		     real definition and the weak definition.  */
5504 		  if (h->dynindx != -1 && hlook->dynindx == -1)
5505 		    {
5506 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5507 			goto err_free_sym_hash;
5508 		    }
5509 		  break;
5510 		}
5511 	    }
5512 	}
5513 
5514       free (sorted_sym_hash);
5515     }
5516 
5517   if (bed->check_directives
5518       && !(*bed->check_directives) (abfd, info))
5519     return FALSE;
5520 
5521   /* If this is a non-traditional link, try to optimize the handling
5522      of the .stab/.stabstr sections.  */
5523   if (! dynamic
5524       && ! info->traditional_format
5525       && is_elf_hash_table (htab)
5526       && (info->strip != strip_all && info->strip != strip_debugger))
5527     {
5528       asection *stabstr;
5529 
5530       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5531       if (stabstr != NULL)
5532 	{
5533 	  bfd_size_type string_offset = 0;
5534 	  asection *stab;
5535 
5536 	  for (stab = abfd->sections; stab; stab = stab->next)
5537 	    if (CONST_STRNEQ (stab->name, ".stab")
5538 		&& (!stab->name[5] ||
5539 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5540 		&& (stab->flags & SEC_MERGE) == 0
5541 		&& !bfd_is_abs_section (stab->output_section))
5542 	      {
5543 		struct bfd_elf_section_data *secdata;
5544 
5545 		secdata = elf_section_data (stab);
5546 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5547 					       stabstr, &secdata->sec_info,
5548 					       &string_offset))
5549 		  goto error_return;
5550 		if (secdata->sec_info)
5551 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
5552 	    }
5553 	}
5554     }
5555 
5556   if (is_elf_hash_table (htab) && add_needed)
5557     {
5558       /* Add this bfd to the loaded list.  */
5559       struct elf_link_loaded_list *n;
5560 
5561       n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5562       if (n == NULL)
5563 	goto error_return;
5564       n->abfd = abfd;
5565       n->next = htab->loaded;
5566       htab->loaded = n;
5567     }
5568 
5569   return TRUE;
5570 
5571  error_free_vers:
5572   if (old_tab != NULL)
5573     free (old_tab);
5574   if (old_strtab != NULL)
5575     free (old_strtab);
5576   if (nondeflt_vers != NULL)
5577     free (nondeflt_vers);
5578   if (extversym != NULL)
5579     free (extversym);
5580  error_free_sym:
5581   if (isymbuf != NULL)
5582     free (isymbuf);
5583  error_return:
5584   return FALSE;
5585 }
5586 
5587 /* Return the linker hash table entry of a symbol that might be
5588    satisfied by an archive symbol.  Return -1 on error.  */
5589 
5590 struct elf_link_hash_entry *
5591 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5592 				struct bfd_link_info *info,
5593 				const char *name)
5594 {
5595   struct elf_link_hash_entry *h;
5596   char *p, *copy;
5597   size_t len, first;
5598 
5599   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5600   if (h != NULL)
5601     return h;
5602 
5603   /* If this is a default version (the name contains @@), look up the
5604      symbol again with only one `@' as well as without the version.
5605      The effect is that references to the symbol with and without the
5606      version will be matched by the default symbol in the archive.  */
5607 
5608   p = strchr (name, ELF_VER_CHR);
5609   if (p == NULL || p[1] != ELF_VER_CHR)
5610     return h;
5611 
5612   /* First check with only one `@'.  */
5613   len = strlen (name);
5614   copy = (char *) bfd_alloc (abfd, len);
5615   if (copy == NULL)
5616     return (struct elf_link_hash_entry *) -1;
5617 
5618   first = p - name + 1;
5619   memcpy (copy, name, first);
5620   memcpy (copy + first, name + first + 1, len - first);
5621 
5622   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5623   if (h == NULL)
5624     {
5625       /* We also need to check references to the symbol without the
5626 	 version.  */
5627       copy[first - 1] = '\0';
5628       h = elf_link_hash_lookup (elf_hash_table (info), copy,
5629 				FALSE, FALSE, TRUE);
5630     }
5631 
5632   bfd_release (abfd, copy);
5633   return h;
5634 }
5635 
5636 /* Add symbols from an ELF archive file to the linker hash table.  We
5637    don't use _bfd_generic_link_add_archive_symbols because we need to
5638    handle versioned symbols.
5639 
5640    Fortunately, ELF archive handling is simpler than that done by
5641    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5642    oddities.  In ELF, if we find a symbol in the archive map, and the
5643    symbol is currently undefined, we know that we must pull in that
5644    object file.
5645 
5646    Unfortunately, we do have to make multiple passes over the symbol
5647    table until nothing further is resolved.  */
5648 
5649 static bfd_boolean
5650 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5651 {
5652   symindex c;
5653   unsigned char *included = NULL;
5654   carsym *symdefs;
5655   bfd_boolean loop;
5656   bfd_size_type amt;
5657   const struct elf_backend_data *bed;
5658   struct elf_link_hash_entry * (*archive_symbol_lookup)
5659     (bfd *, struct bfd_link_info *, const char *);
5660 
5661   if (! bfd_has_map (abfd))
5662     {
5663       /* An empty archive is a special case.  */
5664       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5665 	return TRUE;
5666       bfd_set_error (bfd_error_no_armap);
5667       return FALSE;
5668     }
5669 
5670   /* Keep track of all symbols we know to be already defined, and all
5671      files we know to be already included.  This is to speed up the
5672      second and subsequent passes.  */
5673   c = bfd_ardata (abfd)->symdef_count;
5674   if (c == 0)
5675     return TRUE;
5676   amt = c;
5677   amt *= sizeof (*included);
5678   included = (unsigned char *) bfd_zmalloc (amt);
5679   if (included == NULL)
5680     return FALSE;
5681 
5682   symdefs = bfd_ardata (abfd)->symdefs;
5683   bed = get_elf_backend_data (abfd);
5684   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5685 
5686   do
5687     {
5688       file_ptr last;
5689       symindex i;
5690       carsym *symdef;
5691       carsym *symdefend;
5692 
5693       loop = FALSE;
5694       last = -1;
5695 
5696       symdef = symdefs;
5697       symdefend = symdef + c;
5698       for (i = 0; symdef < symdefend; symdef++, i++)
5699 	{
5700 	  struct elf_link_hash_entry *h;
5701 	  bfd *element;
5702 	  struct bfd_link_hash_entry *undefs_tail;
5703 	  symindex mark;
5704 
5705 	  if (included[i])
5706 	    continue;
5707 	  if (symdef->file_offset == last)
5708 	    {
5709 	      included[i] = TRUE;
5710 	      continue;
5711 	    }
5712 
5713 	  h = archive_symbol_lookup (abfd, info, symdef->name);
5714 	  if (h == (struct elf_link_hash_entry *) -1)
5715 	    goto error_return;
5716 
5717 	  if (h == NULL)
5718 	    continue;
5719 
5720 	  if (h->root.type == bfd_link_hash_common)
5721 	    {
5722 	      /* We currently have a common symbol.  The archive map contains
5723 		 a reference to this symbol, so we may want to include it.  We
5724 		 only want to include it however, if this archive element
5725 		 contains a definition of the symbol, not just another common
5726 		 declaration of it.
5727 
5728 		 Unfortunately some archivers (including GNU ar) will put
5729 		 declarations of common symbols into their archive maps, as
5730 		 well as real definitions, so we cannot just go by the archive
5731 		 map alone.  Instead we must read in the element's symbol
5732 		 table and check that to see what kind of symbol definition
5733 		 this is.  */
5734 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5735 		continue;
5736 	    }
5737 	  else if (h->root.type != bfd_link_hash_undefined)
5738 	    {
5739 	      if (h->root.type != bfd_link_hash_undefweak)
5740 		/* Symbol must be defined.  Don't check it again.  */
5741 		included[i] = TRUE;
5742 	      continue;
5743 	    }
5744 
5745 	  /* We need to include this archive member.  */
5746 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5747 	  if (element == NULL)
5748 	    goto error_return;
5749 
5750 	  if (! bfd_check_format (element, bfd_object))
5751 	    goto error_return;
5752 
5753 	  undefs_tail = info->hash->undefs_tail;
5754 
5755 	  if (!(*info->callbacks
5756 		->add_archive_element) (info, element, symdef->name, &element))
5757 	    continue;
5758 	  if (!bfd_link_add_symbols (element, info))
5759 	    goto error_return;
5760 
5761 	  /* If there are any new undefined symbols, we need to make
5762 	     another pass through the archive in order to see whether
5763 	     they can be defined.  FIXME: This isn't perfect, because
5764 	     common symbols wind up on undefs_tail and because an
5765 	     undefined symbol which is defined later on in this pass
5766 	     does not require another pass.  This isn't a bug, but it
5767 	     does make the code less efficient than it could be.  */
5768 	  if (undefs_tail != info->hash->undefs_tail)
5769 	    loop = TRUE;
5770 
5771 	  /* Look backward to mark all symbols from this object file
5772 	     which we have already seen in this pass.  */
5773 	  mark = i;
5774 	  do
5775 	    {
5776 	      included[mark] = TRUE;
5777 	      if (mark == 0)
5778 		break;
5779 	      --mark;
5780 	    }
5781 	  while (symdefs[mark].file_offset == symdef->file_offset);
5782 
5783 	  /* We mark subsequent symbols from this object file as we go
5784 	     on through the loop.  */
5785 	  last = symdef->file_offset;
5786 	}
5787     }
5788   while (loop);
5789 
5790   free (included);
5791 
5792   return TRUE;
5793 
5794  error_return:
5795   if (included != NULL)
5796     free (included);
5797   return FALSE;
5798 }
5799 
5800 /* Given an ELF BFD, add symbols to the global hash table as
5801    appropriate.  */
5802 
5803 bfd_boolean
5804 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5805 {
5806   switch (bfd_get_format (abfd))
5807     {
5808     case bfd_object:
5809       return elf_link_add_object_symbols (abfd, info);
5810     case bfd_archive:
5811       return elf_link_add_archive_symbols (abfd, info);
5812     default:
5813       bfd_set_error (bfd_error_wrong_format);
5814       return FALSE;
5815     }
5816 }
5817 
5818 struct hash_codes_info
5819 {
5820   unsigned long *hashcodes;
5821   bfd_boolean error;
5822 };
5823 
5824 /* This function will be called though elf_link_hash_traverse to store
5825    all hash value of the exported symbols in an array.  */
5826 
5827 static bfd_boolean
5828 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5829 {
5830   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5831   const char *name;
5832   unsigned long ha;
5833   char *alc = NULL;
5834 
5835   /* Ignore indirect symbols.  These are added by the versioning code.  */
5836   if (h->dynindx == -1)
5837     return TRUE;
5838 
5839   name = h->root.root.string;
5840   if (h->versioned >= versioned)
5841     {
5842       char *p = strchr (name, ELF_VER_CHR);
5843       if (p != NULL)
5844 	{
5845 	  alc = (char *) bfd_malloc (p - name + 1);
5846 	  if (alc == NULL)
5847 	    {
5848 	      inf->error = TRUE;
5849 	      return FALSE;
5850 	    }
5851 	  memcpy (alc, name, p - name);
5852 	  alc[p - name] = '\0';
5853 	  name = alc;
5854 	}
5855     }
5856 
5857   /* Compute the hash value.  */
5858   ha = bfd_elf_hash (name);
5859 
5860   /* Store the found hash value in the array given as the argument.  */
5861   *(inf->hashcodes)++ = ha;
5862 
5863   /* And store it in the struct so that we can put it in the hash table
5864      later.  */
5865   h->u.elf_hash_value = ha;
5866 
5867   if (alc != NULL)
5868     free (alc);
5869 
5870   return TRUE;
5871 }
5872 
5873 struct collect_gnu_hash_codes
5874 {
5875   bfd *output_bfd;
5876   const struct elf_backend_data *bed;
5877   unsigned long int nsyms;
5878   unsigned long int maskbits;
5879   unsigned long int *hashcodes;
5880   unsigned long int *hashval;
5881   unsigned long int *indx;
5882   unsigned long int *counts;
5883   bfd_vma *bitmask;
5884   bfd_byte *contents;
5885   bfd_size_type xlat;
5886   long int min_dynindx;
5887   unsigned long int bucketcount;
5888   unsigned long int symindx;
5889   long int local_indx;
5890   long int shift1, shift2;
5891   unsigned long int mask;
5892   bfd_boolean error;
5893 };
5894 
5895 /* This function will be called though elf_link_hash_traverse to store
5896    all hash value of the exported symbols in an array.  */
5897 
5898 static bfd_boolean
5899 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5900 {
5901   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5902   const char *name;
5903   unsigned long ha;
5904   char *alc = NULL;
5905 
5906   /* Ignore indirect symbols.  These are added by the versioning code.  */
5907   if (h->dynindx == -1)
5908     return TRUE;
5909 
5910   /* Ignore also local symbols and undefined symbols.  */
5911   if (! (*s->bed->elf_hash_symbol) (h))
5912     return TRUE;
5913 
5914   name = h->root.root.string;
5915   if (h->versioned >= versioned)
5916     {
5917       char *p = strchr (name, ELF_VER_CHR);
5918       if (p != NULL)
5919 	{
5920 	  alc = (char *) bfd_malloc (p - name + 1);
5921 	  if (alc == NULL)
5922 	    {
5923 	      s->error = TRUE;
5924 	      return FALSE;
5925 	    }
5926 	  memcpy (alc, name, p - name);
5927 	  alc[p - name] = '\0';
5928 	  name = alc;
5929 	}
5930     }
5931 
5932   /* Compute the hash value.  */
5933   ha = bfd_elf_gnu_hash (name);
5934 
5935   /* Store the found hash value in the array for compute_bucket_count,
5936      and also for .dynsym reordering purposes.  */
5937   s->hashcodes[s->nsyms] = ha;
5938   s->hashval[h->dynindx] = ha;
5939   ++s->nsyms;
5940   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5941     s->min_dynindx = h->dynindx;
5942 
5943   if (alc != NULL)
5944     free (alc);
5945 
5946   return TRUE;
5947 }
5948 
5949 /* This function will be called though elf_link_hash_traverse to do
5950    final dynamic symbol renumbering in case of .gnu.hash.
5951    If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5952    to the translation table.  */
5953 
5954 static bfd_boolean
5955 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5956 {
5957   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5958   unsigned long int bucket;
5959   unsigned long int val;
5960 
5961   /* Ignore indirect symbols.  */
5962   if (h->dynindx == -1)
5963     return TRUE;
5964 
5965   /* Ignore also local symbols and undefined symbols.  */
5966   if (! (*s->bed->elf_hash_symbol) (h))
5967     {
5968       if (h->dynindx >= s->min_dynindx)
5969 	{
5970 	  if (s->bed->record_xhash_symbol != NULL)
5971 	    {
5972 	      (*s->bed->record_xhash_symbol) (h, 0);
5973 	      s->local_indx++;
5974 	    }
5975 	  else
5976 	    h->dynindx = s->local_indx++;
5977 	}
5978       return TRUE;
5979     }
5980 
5981   bucket = s->hashval[h->dynindx] % s->bucketcount;
5982   val = (s->hashval[h->dynindx] >> s->shift1)
5983 	& ((s->maskbits >> s->shift1) - 1);
5984   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5985   s->bitmask[val]
5986     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5987   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5988   if (s->counts[bucket] == 1)
5989     /* Last element terminates the chain.  */
5990     val |= 1;
5991   bfd_put_32 (s->output_bfd, val,
5992 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5993   --s->counts[bucket];
5994   if (s->bed->record_xhash_symbol != NULL)
5995     {
5996       bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5997 
5998       (*s->bed->record_xhash_symbol) (h, xlat_loc);
5999     }
6000   else
6001     h->dynindx = s->indx[bucket]++;
6002   return TRUE;
6003 }
6004 
6005 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
6006 
6007 bfd_boolean
6008 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6009 {
6010   return !(h->forced_local
6011 	   || h->root.type == bfd_link_hash_undefined
6012 	   || h->root.type == bfd_link_hash_undefweak
6013 	   || ((h->root.type == bfd_link_hash_defined
6014 		|| h->root.type == bfd_link_hash_defweak)
6015 	       && h->root.u.def.section->output_section == NULL));
6016 }
6017 
6018 /* Array used to determine the number of hash table buckets to use
6019    based on the number of symbols there are.  If there are fewer than
6020    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6021    fewer than 37 we use 17 buckets, and so forth.  We never use more
6022    than 32771 buckets.  */
6023 
6024 static const size_t elf_buckets[] =
6025 {
6026   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6027   16411, 32771, 0
6028 };
6029 
6030 /* Compute bucket count for hashing table.  We do not use a static set
6031    of possible tables sizes anymore.  Instead we determine for all
6032    possible reasonable sizes of the table the outcome (i.e., the
6033    number of collisions etc) and choose the best solution.  The
6034    weighting functions are not too simple to allow the table to grow
6035    without bounds.  Instead one of the weighting factors is the size.
6036    Therefore the result is always a good payoff between few collisions
6037    (= short chain lengths) and table size.  */
6038 static size_t
6039 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6040 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6041 		      unsigned long int nsyms,
6042 		      int gnu_hash)
6043 {
6044   size_t best_size = 0;
6045   unsigned long int i;
6046 
6047   /* We have a problem here.  The following code to optimize the table
6048      size requires an integer type with more the 32 bits.  If
6049      BFD_HOST_U_64_BIT is set we know about such a type.  */
6050 #ifdef BFD_HOST_U_64_BIT
6051   if (info->optimize)
6052     {
6053       size_t minsize;
6054       size_t maxsize;
6055       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6056       bfd *dynobj = elf_hash_table (info)->dynobj;
6057       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6058       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6059       unsigned long int *counts;
6060       bfd_size_type amt;
6061       unsigned int no_improvement_count = 0;
6062 
6063       /* Possible optimization parameters: if we have NSYMS symbols we say
6064 	 that the hashing table must at least have NSYMS/4 and at most
6065 	 2*NSYMS buckets.  */
6066       minsize = nsyms / 4;
6067       if (minsize == 0)
6068 	minsize = 1;
6069       best_size = maxsize = nsyms * 2;
6070       if (gnu_hash)
6071 	{
6072 	  if (minsize < 2)
6073 	    minsize = 2;
6074 	  if ((best_size & 31) == 0)
6075 	    ++best_size;
6076 	}
6077 
6078       /* Create array where we count the collisions in.  We must use bfd_malloc
6079 	 since the size could be large.  */
6080       amt = maxsize;
6081       amt *= sizeof (unsigned long int);
6082       counts = (unsigned long int *) bfd_malloc (amt);
6083       if (counts == NULL)
6084 	return 0;
6085 
6086       /* Compute the "optimal" size for the hash table.  The criteria is a
6087 	 minimal chain length.  The minor criteria is (of course) the size
6088 	 of the table.  */
6089       for (i = minsize; i < maxsize; ++i)
6090 	{
6091 	  /* Walk through the array of hashcodes and count the collisions.  */
6092 	  BFD_HOST_U_64_BIT max;
6093 	  unsigned long int j;
6094 	  unsigned long int fact;
6095 
6096 	  if (gnu_hash && (i & 31) == 0)
6097 	    continue;
6098 
6099 	  memset (counts, '\0', i * sizeof (unsigned long int));
6100 
6101 	  /* Determine how often each hash bucket is used.  */
6102 	  for (j = 0; j < nsyms; ++j)
6103 	    ++counts[hashcodes[j] % i];
6104 
6105 	  /* For the weight function we need some information about the
6106 	     pagesize on the target.  This is information need not be 100%
6107 	     accurate.  Since this information is not available (so far) we
6108 	     define it here to a reasonable default value.  If it is crucial
6109 	     to have a better value some day simply define this value.  */
6110 # ifndef BFD_TARGET_PAGESIZE
6111 #  define BFD_TARGET_PAGESIZE	(4096)
6112 # endif
6113 
6114 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6115 	     and the chains.  */
6116 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6117 
6118 # if 1
6119 	  /* Variant 1: optimize for short chains.  We add the squares
6120 	     of all the chain lengths (which favors many small chain
6121 	     over a few long chains).  */
6122 	  for (j = 0; j < i; ++j)
6123 	    max += counts[j] * counts[j];
6124 
6125 	  /* This adds penalties for the overall size of the table.  */
6126 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6127 	  max *= fact * fact;
6128 # else
6129 	  /* Variant 2: Optimize a lot more for small table.  Here we
6130 	     also add squares of the size but we also add penalties for
6131 	     empty slots (the +1 term).  */
6132 	  for (j = 0; j < i; ++j)
6133 	    max += (1 + counts[j]) * (1 + counts[j]);
6134 
6135 	  /* The overall size of the table is considered, but not as
6136 	     strong as in variant 1, where it is squared.  */
6137 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6138 	  max *= fact;
6139 # endif
6140 
6141 	  /* Compare with current best results.  */
6142 	  if (max < best_chlen)
6143 	    {
6144 	      best_chlen = max;
6145 	      best_size = i;
6146 	      no_improvement_count = 0;
6147 	    }
6148 	  /* PR 11843: Avoid futile long searches for the best bucket size
6149 	     when there are a large number of symbols.  */
6150 	  else if (++no_improvement_count == 100)
6151 	    break;
6152 	}
6153 
6154       free (counts);
6155     }
6156   else
6157 #endif /* defined (BFD_HOST_U_64_BIT) */
6158     {
6159       /* This is the fallback solution if no 64bit type is available or if we
6160 	 are not supposed to spend much time on optimizations.  We select the
6161 	 bucket count using a fixed set of numbers.  */
6162       for (i = 0; elf_buckets[i] != 0; i++)
6163 	{
6164 	  best_size = elf_buckets[i];
6165 	  if (nsyms < elf_buckets[i + 1])
6166 	    break;
6167 	}
6168       if (gnu_hash && best_size < 2)
6169 	best_size = 2;
6170     }
6171 
6172   return best_size;
6173 }
6174 
6175 /* Size any SHT_GROUP section for ld -r.  */
6176 
6177 bfd_boolean
6178 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6179 {
6180   bfd *ibfd;
6181   asection *s;
6182 
6183   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6184     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6185 	&& (s = ibfd->sections) != NULL
6186 	&& s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6187 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6188       return FALSE;
6189   return TRUE;
6190 }
6191 
6192 /* Set a default stack segment size.  The value in INFO wins.  If it
6193    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6194    undefined it is initialized.  */
6195 
6196 bfd_boolean
6197 bfd_elf_stack_segment_size (bfd *output_bfd,
6198 			    struct bfd_link_info *info,
6199 			    const char *legacy_symbol,
6200 			    bfd_vma default_size)
6201 {
6202   struct elf_link_hash_entry *h = NULL;
6203 
6204   /* Look for legacy symbol.  */
6205   if (legacy_symbol)
6206     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6207 			      FALSE, FALSE, FALSE);
6208   if (h && (h->root.type == bfd_link_hash_defined
6209 	    || h->root.type == bfd_link_hash_defweak)
6210       && h->def_regular
6211       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6212     {
6213       /* The symbol has no type if specified on the command line.  */
6214       h->type = STT_OBJECT;
6215       if (info->stacksize)
6216 	/* xgettext:c-format */
6217 	_bfd_error_handler (_("%pB: stack size specified and %s set"),
6218 			    output_bfd, legacy_symbol);
6219       else if (h->root.u.def.section != bfd_abs_section_ptr)
6220 	/* xgettext:c-format */
6221 	_bfd_error_handler (_("%pB: %s not absolute"),
6222 			    output_bfd, legacy_symbol);
6223       else
6224 	info->stacksize = h->root.u.def.value;
6225     }
6226 
6227   if (!info->stacksize)
6228     /* If the user didn't set a size, or explicitly inhibit the
6229        size, set it now.  */
6230     info->stacksize = default_size;
6231 
6232   /* Provide the legacy symbol, if it is referenced.  */
6233   if (h && (h->root.type == bfd_link_hash_undefined
6234 	    || h->root.type == bfd_link_hash_undefweak))
6235     {
6236       struct bfd_link_hash_entry *bh = NULL;
6237 
6238       if (!(_bfd_generic_link_add_one_symbol
6239 	    (info, output_bfd, legacy_symbol,
6240 	     BSF_GLOBAL, bfd_abs_section_ptr,
6241 	     info->stacksize >= 0 ? info->stacksize : 0,
6242 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6243 	return FALSE;
6244 
6245       h = (struct elf_link_hash_entry *) bh;
6246       h->def_regular = 1;
6247       h->type = STT_OBJECT;
6248     }
6249 
6250   return TRUE;
6251 }
6252 
6253 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
6254 
6255 struct elf_gc_sweep_symbol_info
6256 {
6257   struct bfd_link_info *info;
6258   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6259 		       bfd_boolean);
6260 };
6261 
6262 static bfd_boolean
6263 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6264 {
6265   if (!h->mark
6266       && (((h->root.type == bfd_link_hash_defined
6267 	    || h->root.type == bfd_link_hash_defweak)
6268 	   && !((h->def_regular || ELF_COMMON_DEF_P (h))
6269 		&& h->root.u.def.section->gc_mark))
6270 	  || h->root.type == bfd_link_hash_undefined
6271 	  || h->root.type == bfd_link_hash_undefweak))
6272     {
6273       struct elf_gc_sweep_symbol_info *inf;
6274 
6275       inf = (struct elf_gc_sweep_symbol_info *) data;
6276       (*inf->hide_symbol) (inf->info, h, TRUE);
6277       h->def_regular = 0;
6278       h->ref_regular = 0;
6279       h->ref_regular_nonweak = 0;
6280     }
6281 
6282   return TRUE;
6283 }
6284 
6285 /* Set up the sizes and contents of the ELF dynamic sections.  This is
6286    called by the ELF linker emulation before_allocation routine.  We
6287    must set the sizes of the sections before the linker sets the
6288    addresses of the various sections.  */
6289 
6290 bfd_boolean
6291 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6292 			       const char *soname,
6293 			       const char *rpath,
6294 			       const char *filter_shlib,
6295 			       const char *audit,
6296 			       const char *depaudit,
6297 			       const char * const *auxiliary_filters,
6298 			       struct bfd_link_info *info,
6299 			       asection **sinterpptr)
6300 {
6301   bfd *dynobj;
6302   const struct elf_backend_data *bed;
6303 
6304   *sinterpptr = NULL;
6305 
6306   if (!is_elf_hash_table (info->hash))
6307     return TRUE;
6308 
6309   dynobj = elf_hash_table (info)->dynobj;
6310 
6311   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6312     {
6313       struct bfd_elf_version_tree *verdefs;
6314       struct elf_info_failed asvinfo;
6315       struct bfd_elf_version_tree *t;
6316       struct bfd_elf_version_expr *d;
6317       asection *s;
6318       size_t soname_indx;
6319 
6320       /* If we are supposed to export all symbols into the dynamic symbol
6321 	 table (this is not the normal case), then do so.  */
6322       if (info->export_dynamic
6323 	  || (bfd_link_executable (info) && info->dynamic))
6324 	{
6325 	  struct elf_info_failed eif;
6326 
6327 	  eif.info = info;
6328 	  eif.failed = FALSE;
6329 	  elf_link_hash_traverse (elf_hash_table (info),
6330 				  _bfd_elf_export_symbol,
6331 				  &eif);
6332 	  if (eif.failed)
6333 	    return FALSE;
6334 	}
6335 
6336       if (soname != NULL)
6337 	{
6338 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6339 					     soname, TRUE);
6340 	  if (soname_indx == (size_t) -1
6341 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6342 	    return FALSE;
6343 	}
6344       else
6345 	soname_indx = (size_t) -1;
6346 
6347       /* Make all global versions with definition.  */
6348       for (t = info->version_info; t != NULL; t = t->next)
6349 	for (d = t->globals.list; d != NULL; d = d->next)
6350 	  if (!d->symver && d->literal)
6351 	    {
6352 	      const char *verstr, *name;
6353 	      size_t namelen, verlen, newlen;
6354 	      char *newname, *p, leading_char;
6355 	      struct elf_link_hash_entry *newh;
6356 
6357 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
6358 	      name = d->pattern;
6359 	      namelen = strlen (name) + (leading_char != '\0');
6360 	      verstr = t->name;
6361 	      verlen = strlen (verstr);
6362 	      newlen = namelen + verlen + 3;
6363 
6364 	      newname = (char *) bfd_malloc (newlen);
6365 	      if (newname == NULL)
6366 		return FALSE;
6367 	      newname[0] = leading_char;
6368 	      memcpy (newname + (leading_char != '\0'), name, namelen);
6369 
6370 	      /* Check the hidden versioned definition.  */
6371 	      p = newname + namelen;
6372 	      *p++ = ELF_VER_CHR;
6373 	      memcpy (p, verstr, verlen + 1);
6374 	      newh = elf_link_hash_lookup (elf_hash_table (info),
6375 					   newname, FALSE, FALSE,
6376 					   FALSE);
6377 	      if (newh == NULL
6378 		  || (newh->root.type != bfd_link_hash_defined
6379 		      && newh->root.type != bfd_link_hash_defweak))
6380 		{
6381 		  /* Check the default versioned definition.  */
6382 		  *p++ = ELF_VER_CHR;
6383 		  memcpy (p, verstr, verlen + 1);
6384 		  newh = elf_link_hash_lookup (elf_hash_table (info),
6385 					       newname, FALSE, FALSE,
6386 					       FALSE);
6387 		}
6388 	      free (newname);
6389 
6390 	      /* Mark this version if there is a definition and it is
6391 		 not defined in a shared object.  */
6392 	      if (newh != NULL
6393 		  && !newh->def_dynamic
6394 		  && (newh->root.type == bfd_link_hash_defined
6395 		      || newh->root.type == bfd_link_hash_defweak))
6396 		d->symver = 1;
6397 	    }
6398 
6399       /* Attach all the symbols to their version information.  */
6400       asvinfo.info = info;
6401       asvinfo.failed = FALSE;
6402 
6403       elf_link_hash_traverse (elf_hash_table (info),
6404 			      _bfd_elf_link_assign_sym_version,
6405 			      &asvinfo);
6406       if (asvinfo.failed)
6407 	return FALSE;
6408 
6409       if (!info->allow_undefined_version)
6410 	{
6411 	  /* Check if all global versions have a definition.  */
6412 	  bfd_boolean all_defined = TRUE;
6413 	  for (t = info->version_info; t != NULL; t = t->next)
6414 	    for (d = t->globals.list; d != NULL; d = d->next)
6415 	      if (d->literal && !d->symver && !d->script)
6416 		{
6417 		  _bfd_error_handler
6418 		    (_("%s: undefined version: %s"),
6419 		     d->pattern, t->name);
6420 		  all_defined = FALSE;
6421 		}
6422 
6423 	  if (!all_defined)
6424 	    {
6425 	      bfd_set_error (bfd_error_bad_value);
6426 	      return FALSE;
6427 	    }
6428 	}
6429 
6430       /* Set up the version definition section.  */
6431       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6432       BFD_ASSERT (s != NULL);
6433 
6434       /* We may have created additional version definitions if we are
6435 	 just linking a regular application.  */
6436       verdefs = info->version_info;
6437 
6438       /* Skip anonymous version tag.  */
6439       if (verdefs != NULL && verdefs->vernum == 0)
6440 	verdefs = verdefs->next;
6441 
6442       if (verdefs == NULL && !info->create_default_symver)
6443 	s->flags |= SEC_EXCLUDE;
6444       else
6445 	{
6446 	  unsigned int cdefs;
6447 	  bfd_size_type size;
6448 	  bfd_byte *p;
6449 	  Elf_Internal_Verdef def;
6450 	  Elf_Internal_Verdaux defaux;
6451 	  struct bfd_link_hash_entry *bh;
6452 	  struct elf_link_hash_entry *h;
6453 	  const char *name;
6454 
6455 	  cdefs = 0;
6456 	  size = 0;
6457 
6458 	  /* Make space for the base version.  */
6459 	  size += sizeof (Elf_External_Verdef);
6460 	  size += sizeof (Elf_External_Verdaux);
6461 	  ++cdefs;
6462 
6463 	  /* Make space for the default version.  */
6464 	  if (info->create_default_symver)
6465 	    {
6466 	      size += sizeof (Elf_External_Verdef);
6467 	      ++cdefs;
6468 	    }
6469 
6470 	  for (t = verdefs; t != NULL; t = t->next)
6471 	    {
6472 	      struct bfd_elf_version_deps *n;
6473 
6474 	      /* Don't emit base version twice.  */
6475 	      if (t->vernum == 0)
6476 		continue;
6477 
6478 	      size += sizeof (Elf_External_Verdef);
6479 	      size += sizeof (Elf_External_Verdaux);
6480 	      ++cdefs;
6481 
6482 	      for (n = t->deps; n != NULL; n = n->next)
6483 		size += sizeof (Elf_External_Verdaux);
6484 	    }
6485 
6486 	  s->size = size;
6487 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6488 	  if (s->contents == NULL && s->size != 0)
6489 	    return FALSE;
6490 
6491 	  /* Fill in the version definition section.  */
6492 
6493 	  p = s->contents;
6494 
6495 	  def.vd_version = VER_DEF_CURRENT;
6496 	  def.vd_flags = VER_FLG_BASE;
6497 	  def.vd_ndx = 1;
6498 	  def.vd_cnt = 1;
6499 	  if (info->create_default_symver)
6500 	    {
6501 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6502 	      def.vd_next = sizeof (Elf_External_Verdef);
6503 	    }
6504 	  else
6505 	    {
6506 	      def.vd_aux = sizeof (Elf_External_Verdef);
6507 	      def.vd_next = (sizeof (Elf_External_Verdef)
6508 			     + sizeof (Elf_External_Verdaux));
6509 	    }
6510 
6511 	  if (soname_indx != (size_t) -1)
6512 	    {
6513 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6514 				      soname_indx);
6515 	      def.vd_hash = bfd_elf_hash (soname);
6516 	      defaux.vda_name = soname_indx;
6517 	      name = soname;
6518 	    }
6519 	  else
6520 	    {
6521 	      size_t indx;
6522 
6523 	      name = lbasename (output_bfd->filename);
6524 	      def.vd_hash = bfd_elf_hash (name);
6525 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6526 					  name, FALSE);
6527 	      if (indx == (size_t) -1)
6528 		return FALSE;
6529 	      defaux.vda_name = indx;
6530 	    }
6531 	  defaux.vda_next = 0;
6532 
6533 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6534 				    (Elf_External_Verdef *) p);
6535 	  p += sizeof (Elf_External_Verdef);
6536 	  if (info->create_default_symver)
6537 	    {
6538 	      /* Add a symbol representing this version.  */
6539 	      bh = NULL;
6540 	      if (! (_bfd_generic_link_add_one_symbol
6541 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6542 		      0, NULL, FALSE,
6543 		      get_elf_backend_data (dynobj)->collect, &bh)))
6544 		return FALSE;
6545 	      h = (struct elf_link_hash_entry *) bh;
6546 	      h->non_elf = 0;
6547 	      h->def_regular = 1;
6548 	      h->type = STT_OBJECT;
6549 	      h->verinfo.vertree = NULL;
6550 
6551 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6552 		return FALSE;
6553 
6554 	      /* Create a duplicate of the base version with the same
6555 		 aux block, but different flags.  */
6556 	      def.vd_flags = 0;
6557 	      def.vd_ndx = 2;
6558 	      def.vd_aux = sizeof (Elf_External_Verdef);
6559 	      if (verdefs)
6560 		def.vd_next = (sizeof (Elf_External_Verdef)
6561 			       + sizeof (Elf_External_Verdaux));
6562 	      else
6563 		def.vd_next = 0;
6564 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6565 					(Elf_External_Verdef *) p);
6566 	      p += sizeof (Elf_External_Verdef);
6567 	    }
6568 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6569 				     (Elf_External_Verdaux *) p);
6570 	  p += sizeof (Elf_External_Verdaux);
6571 
6572 	  for (t = verdefs; t != NULL; t = t->next)
6573 	    {
6574 	      unsigned int cdeps;
6575 	      struct bfd_elf_version_deps *n;
6576 
6577 	      /* Don't emit the base version twice.  */
6578 	      if (t->vernum == 0)
6579 		continue;
6580 
6581 	      cdeps = 0;
6582 	      for (n = t->deps; n != NULL; n = n->next)
6583 		++cdeps;
6584 
6585 	      /* Add a symbol representing this version.  */
6586 	      bh = NULL;
6587 	      if (! (_bfd_generic_link_add_one_symbol
6588 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6589 		      0, NULL, FALSE,
6590 		      get_elf_backend_data (dynobj)->collect, &bh)))
6591 		return FALSE;
6592 	      h = (struct elf_link_hash_entry *) bh;
6593 	      h->non_elf = 0;
6594 	      h->def_regular = 1;
6595 	      h->type = STT_OBJECT;
6596 	      h->verinfo.vertree = t;
6597 
6598 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6599 		return FALSE;
6600 
6601 	      def.vd_version = VER_DEF_CURRENT;
6602 	      def.vd_flags = 0;
6603 	      if (t->globals.list == NULL
6604 		  && t->locals.list == NULL
6605 		  && ! t->used)
6606 		def.vd_flags |= VER_FLG_WEAK;
6607 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6608 	      def.vd_cnt = cdeps + 1;
6609 	      def.vd_hash = bfd_elf_hash (t->name);
6610 	      def.vd_aux = sizeof (Elf_External_Verdef);
6611 	      def.vd_next = 0;
6612 
6613 	      /* If a basever node is next, it *must* be the last node in
6614 		 the chain, otherwise Verdef construction breaks.  */
6615 	      if (t->next != NULL && t->next->vernum == 0)
6616 		BFD_ASSERT (t->next->next == NULL);
6617 
6618 	      if (t->next != NULL && t->next->vernum != 0)
6619 		def.vd_next = (sizeof (Elf_External_Verdef)
6620 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6621 
6622 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6623 					(Elf_External_Verdef *) p);
6624 	      p += sizeof (Elf_External_Verdef);
6625 
6626 	      defaux.vda_name = h->dynstr_index;
6627 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6628 				      h->dynstr_index);
6629 	      defaux.vda_next = 0;
6630 	      if (t->deps != NULL)
6631 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6632 	      t->name_indx = defaux.vda_name;
6633 
6634 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6635 					 (Elf_External_Verdaux *) p);
6636 	      p += sizeof (Elf_External_Verdaux);
6637 
6638 	      for (n = t->deps; n != NULL; n = n->next)
6639 		{
6640 		  if (n->version_needed == NULL)
6641 		    {
6642 		      /* This can happen if there was an error in the
6643 			 version script.  */
6644 		      defaux.vda_name = 0;
6645 		    }
6646 		  else
6647 		    {
6648 		      defaux.vda_name = n->version_needed->name_indx;
6649 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6650 					      defaux.vda_name);
6651 		    }
6652 		  if (n->next == NULL)
6653 		    defaux.vda_next = 0;
6654 		  else
6655 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6656 
6657 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6658 					     (Elf_External_Verdaux *) p);
6659 		  p += sizeof (Elf_External_Verdaux);
6660 		}
6661 	    }
6662 
6663 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6664 	}
6665     }
6666 
6667   bed = get_elf_backend_data (output_bfd);
6668 
6669   if (info->gc_sections && bed->can_gc_sections)
6670     {
6671       struct elf_gc_sweep_symbol_info sweep_info;
6672 
6673       /* Remove the symbols that were in the swept sections from the
6674 	 dynamic symbol table.  */
6675       sweep_info.info = info;
6676       sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6677       elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6678 			      &sweep_info);
6679     }
6680 
6681   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6682     {
6683       asection *s;
6684       struct elf_find_verdep_info sinfo;
6685 
6686       /* Work out the size of the version reference section.  */
6687 
6688       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6689       BFD_ASSERT (s != NULL);
6690 
6691       sinfo.info = info;
6692       sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6693       if (sinfo.vers == 0)
6694 	sinfo.vers = 1;
6695       sinfo.failed = FALSE;
6696 
6697       elf_link_hash_traverse (elf_hash_table (info),
6698 			      _bfd_elf_link_find_version_dependencies,
6699 			      &sinfo);
6700       if (sinfo.failed)
6701 	return FALSE;
6702 
6703       if (elf_tdata (output_bfd)->verref == NULL)
6704 	s->flags |= SEC_EXCLUDE;
6705       else
6706 	{
6707 	  Elf_Internal_Verneed *vn;
6708 	  unsigned int size;
6709 	  unsigned int crefs;
6710 	  bfd_byte *p;
6711 
6712 	  /* Build the version dependency section.  */
6713 	  size = 0;
6714 	  crefs = 0;
6715 	  for (vn = elf_tdata (output_bfd)->verref;
6716 	       vn != NULL;
6717 	       vn = vn->vn_nextref)
6718 	    {
6719 	      Elf_Internal_Vernaux *a;
6720 
6721 	      size += sizeof (Elf_External_Verneed);
6722 	      ++crefs;
6723 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6724 		size += sizeof (Elf_External_Vernaux);
6725 	    }
6726 
6727 	  s->size = size;
6728 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6729 	  if (s->contents == NULL)
6730 	    return FALSE;
6731 
6732 	  p = s->contents;
6733 	  for (vn = elf_tdata (output_bfd)->verref;
6734 	       vn != NULL;
6735 	       vn = vn->vn_nextref)
6736 	    {
6737 	      unsigned int caux;
6738 	      Elf_Internal_Vernaux *a;
6739 	      size_t indx;
6740 
6741 	      caux = 0;
6742 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6743 		++caux;
6744 
6745 	      vn->vn_version = VER_NEED_CURRENT;
6746 	      vn->vn_cnt = caux;
6747 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6748 					  elf_dt_name (vn->vn_bfd) != NULL
6749 					  ? elf_dt_name (vn->vn_bfd)
6750 					  : lbasename (vn->vn_bfd->filename),
6751 					  FALSE);
6752 	      if (indx == (size_t) -1)
6753 		return FALSE;
6754 	      vn->vn_file = indx;
6755 	      vn->vn_aux = sizeof (Elf_External_Verneed);
6756 	      if (vn->vn_nextref == NULL)
6757 		vn->vn_next = 0;
6758 	      else
6759 		vn->vn_next = (sizeof (Elf_External_Verneed)
6760 			       + caux * sizeof (Elf_External_Vernaux));
6761 
6762 	      _bfd_elf_swap_verneed_out (output_bfd, vn,
6763 					 (Elf_External_Verneed *) p);
6764 	      p += sizeof (Elf_External_Verneed);
6765 
6766 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6767 		{
6768 		  a->vna_hash = bfd_elf_hash (a->vna_nodename);
6769 		  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6770 					      a->vna_nodename, FALSE);
6771 		  if (indx == (size_t) -1)
6772 		    return FALSE;
6773 		  a->vna_name = indx;
6774 		  if (a->vna_nextptr == NULL)
6775 		    a->vna_next = 0;
6776 		  else
6777 		    a->vna_next = sizeof (Elf_External_Vernaux);
6778 
6779 		  _bfd_elf_swap_vernaux_out (output_bfd, a,
6780 					     (Elf_External_Vernaux *) p);
6781 		  p += sizeof (Elf_External_Vernaux);
6782 		}
6783 	    }
6784 
6785 	  elf_tdata (output_bfd)->cverrefs = crefs;
6786 	}
6787     }
6788 
6789   /* Any syms created from now on start with -1 in
6790      got.refcount/offset and plt.refcount/offset.  */
6791   elf_hash_table (info)->init_got_refcount
6792     = elf_hash_table (info)->init_got_offset;
6793   elf_hash_table (info)->init_plt_refcount
6794     = elf_hash_table (info)->init_plt_offset;
6795 
6796   if (bfd_link_relocatable (info)
6797       && !_bfd_elf_size_group_sections (info))
6798     return FALSE;
6799 
6800   /* The backend may have to create some sections regardless of whether
6801      we're dynamic or not.  */
6802   if (bed->elf_backend_always_size_sections
6803       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6804     return FALSE;
6805 
6806   /* Determine any GNU_STACK segment requirements, after the backend
6807      has had a chance to set a default segment size.  */
6808   if (info->execstack)
6809     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6810   else if (info->noexecstack)
6811     elf_stack_flags (output_bfd) = PF_R | PF_W;
6812   else
6813     {
6814       bfd *inputobj;
6815       asection *notesec = NULL;
6816       int exec = 0;
6817 
6818       for (inputobj = info->input_bfds;
6819 	   inputobj;
6820 	   inputobj = inputobj->link.next)
6821 	{
6822 	  asection *s;
6823 
6824 	  if (inputobj->flags
6825 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6826 	    continue;
6827 	  s = inputobj->sections;
6828 	  if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6829 	    continue;
6830 
6831 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6832 	  if (s)
6833 	    {
6834 	      if (s->flags & SEC_CODE)
6835 		exec = PF_X;
6836 	      notesec = s;
6837 	    }
6838 	  else if (bed->default_execstack)
6839 	    exec = PF_X;
6840 	}
6841       if (notesec || info->stacksize > 0)
6842 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6843       if (notesec && exec && bfd_link_relocatable (info)
6844 	  && notesec->output_section != bfd_abs_section_ptr)
6845 	notesec->output_section->flags |= SEC_CODE;
6846     }
6847 
6848   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6849     {
6850       struct elf_info_failed eif;
6851       struct elf_link_hash_entry *h;
6852       asection *dynstr;
6853       asection *s;
6854 
6855       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6856       BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6857 
6858       if (info->symbolic)
6859 	{
6860 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6861 	    return FALSE;
6862 	  info->flags |= DF_SYMBOLIC;
6863 	}
6864 
6865       if (rpath != NULL)
6866 	{
6867 	  size_t indx;
6868 	  bfd_vma tag;
6869 
6870 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6871 				      TRUE);
6872 	  if (indx == (size_t) -1)
6873 	    return FALSE;
6874 
6875 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6876 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6877 	    return FALSE;
6878 	}
6879 
6880       if (filter_shlib != NULL)
6881 	{
6882 	  size_t indx;
6883 
6884 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6885 				      filter_shlib, TRUE);
6886 	  if (indx == (size_t) -1
6887 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6888 	    return FALSE;
6889 	}
6890 
6891       if (auxiliary_filters != NULL)
6892 	{
6893 	  const char * const *p;
6894 
6895 	  for (p = auxiliary_filters; *p != NULL; p++)
6896 	    {
6897 	      size_t indx;
6898 
6899 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6900 					  *p, TRUE);
6901 	      if (indx == (size_t) -1
6902 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6903 		return FALSE;
6904 	    }
6905 	}
6906 
6907       if (audit != NULL)
6908 	{
6909 	  size_t indx;
6910 
6911 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6912 				      TRUE);
6913 	  if (indx == (size_t) -1
6914 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6915 	    return FALSE;
6916 	}
6917 
6918       if (depaudit != NULL)
6919 	{
6920 	  size_t indx;
6921 
6922 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6923 				      TRUE);
6924 	  if (indx == (size_t) -1
6925 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6926 	    return FALSE;
6927 	}
6928 
6929       eif.info = info;
6930       eif.failed = FALSE;
6931 
6932       /* Find all symbols which were defined in a dynamic object and make
6933 	 the backend pick a reasonable value for them.  */
6934       elf_link_hash_traverse (elf_hash_table (info),
6935 			      _bfd_elf_adjust_dynamic_symbol,
6936 			      &eif);
6937       if (eif.failed)
6938 	return FALSE;
6939 
6940       /* Add some entries to the .dynamic section.  We fill in some of the
6941 	 values later, in bfd_elf_final_link, but we must add the entries
6942 	 now so that we know the final size of the .dynamic section.  */
6943 
6944       /* If there are initialization and/or finalization functions to
6945 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
6946       h = (info->init_function
6947 	   ? elf_link_hash_lookup (elf_hash_table (info),
6948 				   info->init_function, FALSE,
6949 				   FALSE, FALSE)
6950 	   : NULL);
6951       if (h != NULL
6952 	  && (h->ref_regular
6953 	      || h->def_regular))
6954 	{
6955 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6956 	    return FALSE;
6957 	}
6958       h = (info->fini_function
6959 	   ? elf_link_hash_lookup (elf_hash_table (info),
6960 				   info->fini_function, FALSE,
6961 				   FALSE, FALSE)
6962 	   : NULL);
6963       if (h != NULL
6964 	  && (h->ref_regular
6965 	      || h->def_regular))
6966 	{
6967 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6968 	    return FALSE;
6969 	}
6970 
6971       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6972       if (s != NULL && s->linker_has_input)
6973 	{
6974 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
6975 	  if (! bfd_link_executable (info))
6976 	    {
6977 	      bfd *sub;
6978 	      asection *o;
6979 
6980 	      for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6981 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6982 		    && (o = sub->sections) != NULL
6983 		    && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6984 		  for (o = sub->sections; o != NULL; o = o->next)
6985 		    if (elf_section_data (o)->this_hdr.sh_type
6986 			== SHT_PREINIT_ARRAY)
6987 		      {
6988 			_bfd_error_handler
6989 			  (_("%pB: .preinit_array section is not allowed in DSO"),
6990 			   sub);
6991 			break;
6992 		      }
6993 
6994 	      bfd_set_error (bfd_error_nonrepresentable_section);
6995 	      return FALSE;
6996 	    }
6997 
6998 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6999 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7000 	    return FALSE;
7001 	}
7002       s = bfd_get_section_by_name (output_bfd, ".init_array");
7003       if (s != NULL && s->linker_has_input)
7004 	{
7005 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7006 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7007 	    return FALSE;
7008 	}
7009       s = bfd_get_section_by_name (output_bfd, ".fini_array");
7010       if (s != NULL && s->linker_has_input)
7011 	{
7012 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7013 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7014 	    return FALSE;
7015 	}
7016 
7017       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7018       /* If .dynstr is excluded from the link, we don't want any of
7019 	 these tags.  Strictly, we should be checking each section
7020 	 individually;  This quick check covers for the case where
7021 	 someone does a /DISCARD/ : { *(*) }.  */
7022       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7023 	{
7024 	  bfd_size_type strsize;
7025 
7026 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7027 	  if ((info->emit_hash
7028 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7029 	      || (info->emit_gnu_hash
7030 		  && (bed->record_xhash_symbol == NULL
7031 		      && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7032 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7033 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7034 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7035 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7036 					      bed->s->sizeof_sym))
7037 	    return FALSE;
7038 	}
7039     }
7040 
7041   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7042     return FALSE;
7043 
7044   /* The backend must work out the sizes of all the other dynamic
7045      sections.  */
7046   if (dynobj != NULL
7047       && bed->elf_backend_size_dynamic_sections != NULL
7048       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7049     return FALSE;
7050 
7051   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7052     {
7053       if (elf_tdata (output_bfd)->cverdefs)
7054 	{
7055 	  unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7056 
7057 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7058 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7059 	    return FALSE;
7060 	}
7061 
7062       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7063 	{
7064 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7065 	    return FALSE;
7066 	}
7067       else if (info->flags & DF_BIND_NOW)
7068 	{
7069 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7070 	    return FALSE;
7071 	}
7072 
7073       if (info->flags_1)
7074 	{
7075 	  if (bfd_link_executable (info))
7076 	    info->flags_1 &= ~ (DF_1_INITFIRST
7077 				| DF_1_NODELETE
7078 				| DF_1_NOOPEN);
7079 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7080 	    return FALSE;
7081 	}
7082 
7083       if (elf_tdata (output_bfd)->cverrefs)
7084 	{
7085 	  unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7086 
7087 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7088 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7089 	    return FALSE;
7090 	}
7091 
7092       if ((elf_tdata (output_bfd)->cverrefs == 0
7093 	   && elf_tdata (output_bfd)->cverdefs == 0)
7094 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7095 	{
7096 	  asection *s;
7097 
7098 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
7099 	  s->flags |= SEC_EXCLUDE;
7100 	}
7101     }
7102   return TRUE;
7103 }
7104 
7105 /* Find the first non-excluded output section.  We'll use its
7106    section symbol for some emitted relocs.  */
7107 void
7108 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7109 {
7110   asection *s;
7111   asection *found = NULL;
7112 
7113   for (s = output_bfd->sections; s != NULL; s = s->next)
7114     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7115 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7116       {
7117 	found = s;
7118 	if ((s->flags & SEC_THREAD_LOCAL) == 0)
7119 	  break;
7120       }
7121   elf_hash_table (info)->text_index_section = found;
7122 }
7123 
7124 /* Find two non-excluded output sections, one for code, one for data.
7125    We'll use their section symbols for some emitted relocs.  */
7126 void
7127 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7128 {
7129   asection *s;
7130   asection *found = NULL;
7131 
7132   /* Data first, since setting text_index_section changes
7133      _bfd_elf_omit_section_dynsym_default.  */
7134   for (s = output_bfd->sections; s != NULL; s = s->next)
7135     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7136 	&& !(s->flags & SEC_READONLY)
7137 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7138       {
7139 	found = s;
7140 	if ((s->flags & SEC_THREAD_LOCAL) == 0)
7141 	  break;
7142       }
7143   elf_hash_table (info)->data_index_section = found;
7144 
7145   for (s = output_bfd->sections; s != NULL; s = s->next)
7146     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7147 	&& (s->flags & SEC_READONLY)
7148 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7149       {
7150 	found = s;
7151 	break;
7152       }
7153   elf_hash_table (info)->text_index_section = found;
7154 }
7155 
7156 #define GNU_HASH_SECTION_NAME(bed)			    \
7157   (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7158 
7159 bfd_boolean
7160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7161 {
7162   const struct elf_backend_data *bed;
7163   unsigned long section_sym_count;
7164   bfd_size_type dynsymcount = 0;
7165 
7166   if (!is_elf_hash_table (info->hash))
7167     return TRUE;
7168 
7169   bed = get_elf_backend_data (output_bfd);
7170   (*bed->elf_backend_init_index_section) (output_bfd, info);
7171 
7172   /* Assign dynsym indices.  In a shared library we generate a section
7173      symbol for each output section, which come first.  Next come all
7174      of the back-end allocated local dynamic syms, followed by the rest
7175      of the global symbols.
7176 
7177      This is usually not needed for static binaries, however backends
7178      can request to always do it, e.g. the MIPS backend uses dynamic
7179      symbol counts to lay out GOT, which will be produced in the
7180      presence of GOT relocations even in static binaries (holding fixed
7181      data in that case, to satisfy those relocations).  */
7182 
7183   if (elf_hash_table (info)->dynamic_sections_created
7184       || bed->always_renumber_dynsyms)
7185     dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7186 						  &section_sym_count);
7187 
7188   if (elf_hash_table (info)->dynamic_sections_created)
7189     {
7190       bfd *dynobj;
7191       asection *s;
7192       unsigned int dtagcount;
7193 
7194       dynobj = elf_hash_table (info)->dynobj;
7195 
7196       /* Work out the size of the symbol version section.  */
7197       s = bfd_get_linker_section (dynobj, ".gnu.version");
7198       BFD_ASSERT (s != NULL);
7199       if ((s->flags & SEC_EXCLUDE) == 0)
7200 	{
7201 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
7202 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7203 	  if (s->contents == NULL)
7204 	    return FALSE;
7205 
7206 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7207 	    return FALSE;
7208 	}
7209 
7210       /* Set the size of the .dynsym and .hash sections.  We counted
7211 	 the number of dynamic symbols in elf_link_add_object_symbols.
7212 	 We will build the contents of .dynsym and .hash when we build
7213 	 the final symbol table, because until then we do not know the
7214 	 correct value to give the symbols.  We built the .dynstr
7215 	 section as we went along in elf_link_add_object_symbols.  */
7216       s = elf_hash_table (info)->dynsym;
7217       BFD_ASSERT (s != NULL);
7218       s->size = dynsymcount * bed->s->sizeof_sym;
7219 
7220       s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7221       if (s->contents == NULL)
7222 	return FALSE;
7223 
7224       /* The first entry in .dynsym is a dummy symbol.  Clear all the
7225 	 section syms, in case we don't output them all.  */
7226       ++section_sym_count;
7227       memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7228 
7229       elf_hash_table (info)->bucketcount = 0;
7230 
7231       /* Compute the size of the hashing table.  As a side effect this
7232 	 computes the hash values for all the names we export.  */
7233       if (info->emit_hash)
7234 	{
7235 	  unsigned long int *hashcodes;
7236 	  struct hash_codes_info hashinf;
7237 	  bfd_size_type amt;
7238 	  unsigned long int nsyms;
7239 	  size_t bucketcount;
7240 	  size_t hash_entry_size;
7241 
7242 	  /* Compute the hash values for all exported symbols.  At the same
7243 	     time store the values in an array so that we could use them for
7244 	     optimizations.  */
7245 	  amt = dynsymcount * sizeof (unsigned long int);
7246 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
7247 	  if (hashcodes == NULL)
7248 	    return FALSE;
7249 	  hashinf.hashcodes = hashcodes;
7250 	  hashinf.error = FALSE;
7251 
7252 	  /* Put all hash values in HASHCODES.  */
7253 	  elf_link_hash_traverse (elf_hash_table (info),
7254 				  elf_collect_hash_codes, &hashinf);
7255 	  if (hashinf.error)
7256 	    {
7257 	      free (hashcodes);
7258 	      return FALSE;
7259 	    }
7260 
7261 	  nsyms = hashinf.hashcodes - hashcodes;
7262 	  bucketcount
7263 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
7264 	  free (hashcodes);
7265 
7266 	  if (bucketcount == 0 && nsyms > 0)
7267 	    return FALSE;
7268 
7269 	  elf_hash_table (info)->bucketcount = bucketcount;
7270 
7271 	  s = bfd_get_linker_section (dynobj, ".hash");
7272 	  BFD_ASSERT (s != NULL);
7273 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7274 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7275 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7276 	  if (s->contents == NULL)
7277 	    return FALSE;
7278 
7279 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7280 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7281 		   s->contents + hash_entry_size);
7282 	}
7283 
7284       if (info->emit_gnu_hash)
7285 	{
7286 	  size_t i, cnt;
7287 	  unsigned char *contents;
7288 	  struct collect_gnu_hash_codes cinfo;
7289 	  bfd_size_type amt;
7290 	  size_t bucketcount;
7291 
7292 	  memset (&cinfo, 0, sizeof (cinfo));
7293 
7294 	  /* Compute the hash values for all exported symbols.  At the same
7295 	     time store the values in an array so that we could use them for
7296 	     optimizations.  */
7297 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
7298 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7299 	  if (cinfo.hashcodes == NULL)
7300 	    return FALSE;
7301 
7302 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
7303 	  cinfo.min_dynindx = -1;
7304 	  cinfo.output_bfd = output_bfd;
7305 	  cinfo.bed = bed;
7306 
7307 	  /* Put all hash values in HASHCODES.  */
7308 	  elf_link_hash_traverse (elf_hash_table (info),
7309 				  elf_collect_gnu_hash_codes, &cinfo);
7310 	  if (cinfo.error)
7311 	    {
7312 	      free (cinfo.hashcodes);
7313 	      return FALSE;
7314 	    }
7315 
7316 	  bucketcount
7317 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7318 
7319 	  if (bucketcount == 0)
7320 	    {
7321 	      free (cinfo.hashcodes);
7322 	      return FALSE;
7323 	    }
7324 
7325 	  s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7326 	  BFD_ASSERT (s != NULL);
7327 
7328 	  if (cinfo.nsyms == 0)
7329 	    {
7330 	      /* Empty .gnu.hash or .MIPS.xhash section is special.  */
7331 	      BFD_ASSERT (cinfo.min_dynindx == -1);
7332 	      free (cinfo.hashcodes);
7333 	      s->size = 5 * 4 + bed->s->arch_size / 8;
7334 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7335 	      if (contents == NULL)
7336 		return FALSE;
7337 	      s->contents = contents;
7338 	      /* 1 empty bucket.  */
7339 	      bfd_put_32 (output_bfd, 1, contents);
7340 	      /* SYMIDX above the special symbol 0.  */
7341 	      bfd_put_32 (output_bfd, 1, contents + 4);
7342 	      /* Just one word for bitmask.  */
7343 	      bfd_put_32 (output_bfd, 1, contents + 8);
7344 	      /* Only hash fn bloom filter.  */
7345 	      bfd_put_32 (output_bfd, 0, contents + 12);
7346 	      /* No hashes are valid - empty bitmask.  */
7347 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7348 	      /* No hashes in the only bucket.  */
7349 	      bfd_put_32 (output_bfd, 0,
7350 			  contents + 16 + bed->s->arch_size / 8);
7351 	    }
7352 	  else
7353 	    {
7354 	      unsigned long int maskwords, maskbitslog2, x;
7355 	      BFD_ASSERT (cinfo.min_dynindx != -1);
7356 
7357 	      x = cinfo.nsyms;
7358 	      maskbitslog2 = 1;
7359 	      while ((x >>= 1) != 0)
7360 		++maskbitslog2;
7361 	      if (maskbitslog2 < 3)
7362 		maskbitslog2 = 5;
7363 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7364 		maskbitslog2 = maskbitslog2 + 3;
7365 	      else
7366 		maskbitslog2 = maskbitslog2 + 2;
7367 	      if (bed->s->arch_size == 64)
7368 		{
7369 		  if (maskbitslog2 == 5)
7370 		    maskbitslog2 = 6;
7371 		  cinfo.shift1 = 6;
7372 		}
7373 	      else
7374 		cinfo.shift1 = 5;
7375 	      cinfo.mask = (1 << cinfo.shift1) - 1;
7376 	      cinfo.shift2 = maskbitslog2;
7377 	      cinfo.maskbits = 1 << maskbitslog2;
7378 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7379 	      amt = bucketcount * sizeof (unsigned long int) * 2;
7380 	      amt += maskwords * sizeof (bfd_vma);
7381 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7382 	      if (cinfo.bitmask == NULL)
7383 		{
7384 		  free (cinfo.hashcodes);
7385 		  return FALSE;
7386 		}
7387 
7388 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7389 	      cinfo.indx = cinfo.counts + bucketcount;
7390 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
7391 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7392 
7393 	      /* Determine how often each hash bucket is used.  */
7394 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7395 	      for (i = 0; i < cinfo.nsyms; ++i)
7396 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7397 
7398 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7399 		if (cinfo.counts[i] != 0)
7400 		  {
7401 		    cinfo.indx[i] = cnt;
7402 		    cnt += cinfo.counts[i];
7403 		  }
7404 	      BFD_ASSERT (cnt == dynsymcount);
7405 	      cinfo.bucketcount = bucketcount;
7406 	      cinfo.local_indx = cinfo.min_dynindx;
7407 
7408 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7409 	      s->size += cinfo.maskbits / 8;
7410 	      if (bed->record_xhash_symbol != NULL)
7411 		s->size += cinfo.nsyms * 4;
7412 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7413 	      if (contents == NULL)
7414 		{
7415 		  free (cinfo.bitmask);
7416 		  free (cinfo.hashcodes);
7417 		  return FALSE;
7418 		}
7419 
7420 	      s->contents = contents;
7421 	      bfd_put_32 (output_bfd, bucketcount, contents);
7422 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7423 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
7424 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7425 	      contents += 16 + cinfo.maskbits / 8;
7426 
7427 	      for (i = 0; i < bucketcount; ++i)
7428 		{
7429 		  if (cinfo.counts[i] == 0)
7430 		    bfd_put_32 (output_bfd, 0, contents);
7431 		  else
7432 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7433 		  contents += 4;
7434 		}
7435 
7436 	      cinfo.contents = contents;
7437 
7438 	      cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7439 	      /* Renumber dynamic symbols, if populating .gnu.hash section.
7440 		 If using .MIPS.xhash, populate the translation table.  */
7441 	      elf_link_hash_traverse (elf_hash_table (info),
7442 				      elf_gnu_hash_process_symidx, &cinfo);
7443 
7444 	      contents = s->contents + 16;
7445 	      for (i = 0; i < maskwords; ++i)
7446 		{
7447 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7448 			   contents);
7449 		  contents += bed->s->arch_size / 8;
7450 		}
7451 
7452 	      free (cinfo.bitmask);
7453 	      free (cinfo.hashcodes);
7454 	    }
7455 	}
7456 
7457       s = bfd_get_linker_section (dynobj, ".dynstr");
7458       BFD_ASSERT (s != NULL);
7459 
7460       elf_finalize_dynstr (output_bfd, info);
7461 
7462       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7463 
7464       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7465 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7466 	  return FALSE;
7467     }
7468 
7469   return TRUE;
7470 }
7471 
7472 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
7473 
7474 static void
7475 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7476 			    asection *sec)
7477 {
7478   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7479   sec->sec_info_type = SEC_INFO_TYPE_NONE;
7480 }
7481 
7482 /* Finish SHF_MERGE section merging.  */
7483 
7484 bfd_boolean
7485 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7486 {
7487   bfd *ibfd;
7488   asection *sec;
7489 
7490   if (!is_elf_hash_table (info->hash))
7491     return FALSE;
7492 
7493   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7494     if ((ibfd->flags & DYNAMIC) == 0
7495 	&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7496 	&& (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7497 	    == get_elf_backend_data (obfd)->s->elfclass))
7498       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7499 	if ((sec->flags & SEC_MERGE) != 0
7500 	    && !bfd_is_abs_section (sec->output_section))
7501 	  {
7502 	    struct bfd_elf_section_data *secdata;
7503 
7504 	    secdata = elf_section_data (sec);
7505 	    if (! _bfd_add_merge_section (obfd,
7506 					  &elf_hash_table (info)->merge_info,
7507 					  sec, &secdata->sec_info))
7508 	      return FALSE;
7509 	    else if (secdata->sec_info)
7510 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7511 	  }
7512 
7513   if (elf_hash_table (info)->merge_info != NULL)
7514     _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7515 			 merge_sections_remove_hook);
7516   return TRUE;
7517 }
7518 
7519 /* Create an entry in an ELF linker hash table.  */
7520 
7521 struct bfd_hash_entry *
7522 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7523 			    struct bfd_hash_table *table,
7524 			    const char *string)
7525 {
7526   /* Allocate the structure if it has not already been allocated by a
7527      subclass.  */
7528   if (entry == NULL)
7529     {
7530       entry = (struct bfd_hash_entry *)
7531 	bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7532       if (entry == NULL)
7533 	return entry;
7534     }
7535 
7536   /* Call the allocation method of the superclass.  */
7537   entry = _bfd_link_hash_newfunc (entry, table, string);
7538   if (entry != NULL)
7539     {
7540       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7541       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7542 
7543       /* Set local fields.  */
7544       ret->indx = -1;
7545       ret->dynindx = -1;
7546       ret->got = htab->init_got_refcount;
7547       ret->plt = htab->init_plt_refcount;
7548       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7549 			      - offsetof (struct elf_link_hash_entry, size)));
7550       /* Assume that we have been called by a non-ELF symbol reader.
7551 	 This flag is then reset by the code which reads an ELF input
7552 	 file.  This ensures that a symbol created by a non-ELF symbol
7553 	 reader will have the flag set correctly.  */
7554       ret->non_elf = 1;
7555     }
7556 
7557   return entry;
7558 }
7559 
7560 /* Copy data from an indirect symbol to its direct symbol, hiding the
7561    old indirect symbol.  Also used for copying flags to a weakdef.  */
7562 
7563 void
7564 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7565 				  struct elf_link_hash_entry *dir,
7566 				  struct elf_link_hash_entry *ind)
7567 {
7568   struct elf_link_hash_table *htab;
7569 
7570   /* Copy down any references that we may have already seen to the
7571      symbol which just became indirect.  */
7572 
7573   if (dir->versioned != versioned_hidden)
7574     dir->ref_dynamic |= ind->ref_dynamic;
7575   dir->ref_regular |= ind->ref_regular;
7576   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7577   dir->non_got_ref |= ind->non_got_ref;
7578   dir->needs_plt |= ind->needs_plt;
7579   dir->pointer_equality_needed |= ind->pointer_equality_needed;
7580 
7581   if (ind->root.type != bfd_link_hash_indirect)
7582     return;
7583 
7584   /* Copy over the global and procedure linkage table refcount entries.
7585      These may have been already set up by a check_relocs routine.  */
7586   htab = elf_hash_table (info);
7587   if (ind->got.refcount > htab->init_got_refcount.refcount)
7588     {
7589       if (dir->got.refcount < 0)
7590 	dir->got.refcount = 0;
7591       dir->got.refcount += ind->got.refcount;
7592       ind->got.refcount = htab->init_got_refcount.refcount;
7593     }
7594 
7595   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7596     {
7597       if (dir->plt.refcount < 0)
7598 	dir->plt.refcount = 0;
7599       dir->plt.refcount += ind->plt.refcount;
7600       ind->plt.refcount = htab->init_plt_refcount.refcount;
7601     }
7602 
7603   if (ind->dynindx != -1)
7604     {
7605       if (dir->dynindx != -1)
7606 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7607       dir->dynindx = ind->dynindx;
7608       dir->dynstr_index = ind->dynstr_index;
7609       ind->dynindx = -1;
7610       ind->dynstr_index = 0;
7611     }
7612 }
7613 
7614 void
7615 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7616 				struct elf_link_hash_entry *h,
7617 				bfd_boolean force_local)
7618 {
7619   /* STT_GNU_IFUNC symbol must go through PLT.  */
7620   if (h->type != STT_GNU_IFUNC)
7621     {
7622       h->plt = elf_hash_table (info)->init_plt_offset;
7623       h->needs_plt = 0;
7624     }
7625   if (force_local)
7626     {
7627       h->forced_local = 1;
7628       if (h->dynindx != -1)
7629 	{
7630 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7631 				  h->dynstr_index);
7632 	  h->dynindx = -1;
7633 	  h->dynstr_index = 0;
7634 	}
7635     }
7636 }
7637 
7638 /* Hide a symbol. */
7639 
7640 void
7641 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7642 			   struct bfd_link_info *info,
7643 			   struct bfd_link_hash_entry *h)
7644 {
7645   if (is_elf_hash_table (info->hash))
7646     {
7647       const struct elf_backend_data *bed
7648 	= get_elf_backend_data (output_bfd);
7649       struct elf_link_hash_entry *eh
7650 	= (struct elf_link_hash_entry *) h;
7651       bed->elf_backend_hide_symbol (info, eh, TRUE);
7652       eh->def_dynamic = 0;
7653       eh->ref_dynamic = 0;
7654       eh->dynamic_def = 0;
7655     }
7656 }
7657 
7658 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
7659    caller.  */
7660 
7661 bfd_boolean
7662 _bfd_elf_link_hash_table_init
7663   (struct elf_link_hash_table *table,
7664    bfd *abfd,
7665    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7666 				      struct bfd_hash_table *,
7667 				      const char *),
7668    unsigned int entsize,
7669    enum elf_target_id target_id)
7670 {
7671   bfd_boolean ret;
7672   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7673 
7674   table->init_got_refcount.refcount = can_refcount - 1;
7675   table->init_plt_refcount.refcount = can_refcount - 1;
7676   table->init_got_offset.offset = -(bfd_vma) 1;
7677   table->init_plt_offset.offset = -(bfd_vma) 1;
7678   /* The first dynamic symbol is a dummy.  */
7679   table->dynsymcount = 1;
7680 
7681   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7682 
7683   table->root.type = bfd_link_elf_hash_table;
7684   table->hash_table_id = target_id;
7685 
7686   return ret;
7687 }
7688 
7689 /* Create an ELF linker hash table.  */
7690 
7691 struct bfd_link_hash_table *
7692 _bfd_elf_link_hash_table_create (bfd *abfd)
7693 {
7694   struct elf_link_hash_table *ret;
7695   bfd_size_type amt = sizeof (struct elf_link_hash_table);
7696 
7697   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7698   if (ret == NULL)
7699     return NULL;
7700 
7701   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7702 				       sizeof (struct elf_link_hash_entry),
7703 				       GENERIC_ELF_DATA))
7704     {
7705       free (ret);
7706       return NULL;
7707     }
7708   ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7709 
7710   return &ret->root;
7711 }
7712 
7713 /* Destroy an ELF linker hash table.  */
7714 
7715 void
7716 _bfd_elf_link_hash_table_free (bfd *obfd)
7717 {
7718   struct elf_link_hash_table *htab;
7719 
7720   htab = (struct elf_link_hash_table *) obfd->link.hash;
7721   if (htab->dynstr != NULL)
7722     _bfd_elf_strtab_free (htab->dynstr);
7723   _bfd_merge_sections_free (htab->merge_info);
7724   _bfd_generic_link_hash_table_free (obfd);
7725 }
7726 
7727 /* This is a hook for the ELF emulation code in the generic linker to
7728    tell the backend linker what file name to use for the DT_NEEDED
7729    entry for a dynamic object.  */
7730 
7731 void
7732 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7733 {
7734   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7735       && bfd_get_format (abfd) == bfd_object)
7736     elf_dt_name (abfd) = name;
7737 }
7738 
7739 int
7740 bfd_elf_get_dyn_lib_class (bfd *abfd)
7741 {
7742   int lib_class;
7743   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7744       && bfd_get_format (abfd) == bfd_object)
7745     lib_class = elf_dyn_lib_class (abfd);
7746   else
7747     lib_class = 0;
7748   return lib_class;
7749 }
7750 
7751 void
7752 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7753 {
7754   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7755       && bfd_get_format (abfd) == bfd_object)
7756     elf_dyn_lib_class (abfd) = lib_class;
7757 }
7758 
7759 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
7760    the linker ELF emulation code.  */
7761 
7762 struct bfd_link_needed_list *
7763 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7764 			 struct bfd_link_info *info)
7765 {
7766   if (! is_elf_hash_table (info->hash))
7767     return NULL;
7768   return elf_hash_table (info)->needed;
7769 }
7770 
7771 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
7772    hook for the linker ELF emulation code.  */
7773 
7774 struct bfd_link_needed_list *
7775 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7776 			  struct bfd_link_info *info)
7777 {
7778   if (! is_elf_hash_table (info->hash))
7779     return NULL;
7780   return elf_hash_table (info)->runpath;
7781 }
7782 
7783 /* Get the name actually used for a dynamic object for a link.  This
7784    is the SONAME entry if there is one.  Otherwise, it is the string
7785    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
7786 
7787 const char *
7788 bfd_elf_get_dt_soname (bfd *abfd)
7789 {
7790   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7791       && bfd_get_format (abfd) == bfd_object)
7792     return elf_dt_name (abfd);
7793   return NULL;
7794 }
7795 
7796 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
7797    the ELF linker emulation code.  */
7798 
7799 bfd_boolean
7800 bfd_elf_get_bfd_needed_list (bfd *abfd,
7801 			     struct bfd_link_needed_list **pneeded)
7802 {
7803   asection *s;
7804   bfd_byte *dynbuf = NULL;
7805   unsigned int elfsec;
7806   unsigned long shlink;
7807   bfd_byte *extdyn, *extdynend;
7808   size_t extdynsize;
7809   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7810 
7811   *pneeded = NULL;
7812 
7813   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7814       || bfd_get_format (abfd) != bfd_object)
7815     return TRUE;
7816 
7817   s = bfd_get_section_by_name (abfd, ".dynamic");
7818   if (s == NULL || s->size == 0)
7819     return TRUE;
7820 
7821   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7822     goto error_return;
7823 
7824   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7825   if (elfsec == SHN_BAD)
7826     goto error_return;
7827 
7828   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7829 
7830   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7831   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7832 
7833   extdyn = dynbuf;
7834   extdynend = extdyn + s->size;
7835   for (; extdyn < extdynend; extdyn += extdynsize)
7836     {
7837       Elf_Internal_Dyn dyn;
7838 
7839       (*swap_dyn_in) (abfd, extdyn, &dyn);
7840 
7841       if (dyn.d_tag == DT_NULL)
7842 	break;
7843 
7844       if (dyn.d_tag == DT_NEEDED)
7845 	{
7846 	  const char *string;
7847 	  struct bfd_link_needed_list *l;
7848 	  unsigned int tagv = dyn.d_un.d_val;
7849 	  bfd_size_type amt;
7850 
7851 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7852 	  if (string == NULL)
7853 	    goto error_return;
7854 
7855 	  amt = sizeof *l;
7856 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7857 	  if (l == NULL)
7858 	    goto error_return;
7859 
7860 	  l->by = abfd;
7861 	  l->name = string;
7862 	  l->next = *pneeded;
7863 	  *pneeded = l;
7864 	}
7865     }
7866 
7867   free (dynbuf);
7868 
7869   return TRUE;
7870 
7871  error_return:
7872   if (dynbuf != NULL)
7873     free (dynbuf);
7874   return FALSE;
7875 }
7876 
7877 struct elf_symbuf_symbol
7878 {
7879   unsigned long st_name;	/* Symbol name, index in string tbl */
7880   unsigned char st_info;	/* Type and binding attributes */
7881   unsigned char st_other;	/* Visibilty, and target specific */
7882 };
7883 
7884 struct elf_symbuf_head
7885 {
7886   struct elf_symbuf_symbol *ssym;
7887   size_t count;
7888   unsigned int st_shndx;
7889 };
7890 
7891 struct elf_symbol
7892 {
7893   union
7894     {
7895       Elf_Internal_Sym *isym;
7896       struct elf_symbuf_symbol *ssym;
7897       void *p;
7898     } u;
7899   const char *name;
7900 };
7901 
7902 /* Sort references to symbols by ascending section number.  */
7903 
7904 static int
7905 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7906 {
7907   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7908   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7909 
7910   if (s1->st_shndx != s2->st_shndx)
7911     return s1->st_shndx > s2->st_shndx ? 1 : -1;
7912   /* Final sort by the address of the sym in the symbuf ensures
7913      a stable sort.  */
7914   if (s1 != s2)
7915     return s1 > s2 ? 1 : -1;
7916   return 0;
7917 }
7918 
7919 static int
7920 elf_sym_name_compare (const void *arg1, const void *arg2)
7921 {
7922   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7923   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7924   int ret = strcmp (s1->name, s2->name);
7925   if (ret != 0)
7926     return ret;
7927   if (s1->u.p != s2->u.p)
7928     return s1->u.p > s2->u.p ? 1 : -1;
7929   return 0;
7930 }
7931 
7932 static struct elf_symbuf_head *
7933 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7934 {
7935   Elf_Internal_Sym **ind, **indbufend, **indbuf;
7936   struct elf_symbuf_symbol *ssym;
7937   struct elf_symbuf_head *ssymbuf, *ssymhead;
7938   size_t i, shndx_count, total_size;
7939 
7940   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7941   if (indbuf == NULL)
7942     return NULL;
7943 
7944   for (ind = indbuf, i = 0; i < symcount; i++)
7945     if (isymbuf[i].st_shndx != SHN_UNDEF)
7946       *ind++ = &isymbuf[i];
7947   indbufend = ind;
7948 
7949   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7950 	 elf_sort_elf_symbol);
7951 
7952   shndx_count = 0;
7953   if (indbufend > indbuf)
7954     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7955       if (ind[0]->st_shndx != ind[1]->st_shndx)
7956 	shndx_count++;
7957 
7958   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7959 		+ (indbufend - indbuf) * sizeof (*ssym));
7960   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7961   if (ssymbuf == NULL)
7962     {
7963       free (indbuf);
7964       return NULL;
7965     }
7966 
7967   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7968   ssymbuf->ssym = NULL;
7969   ssymbuf->count = shndx_count;
7970   ssymbuf->st_shndx = 0;
7971   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7972     {
7973       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7974 	{
7975 	  ssymhead++;
7976 	  ssymhead->ssym = ssym;
7977 	  ssymhead->count = 0;
7978 	  ssymhead->st_shndx = (*ind)->st_shndx;
7979 	}
7980       ssym->st_name = (*ind)->st_name;
7981       ssym->st_info = (*ind)->st_info;
7982       ssym->st_other = (*ind)->st_other;
7983       ssymhead->count++;
7984     }
7985   BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7986 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7987 		  == total_size));
7988 
7989   free (indbuf);
7990   return ssymbuf;
7991 }
7992 
7993 /* Check if 2 sections define the same set of local and global
7994    symbols.  */
7995 
7996 static bfd_boolean
7997 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7998 				   struct bfd_link_info *info)
7999 {
8000   bfd *bfd1, *bfd2;
8001   const struct elf_backend_data *bed1, *bed2;
8002   Elf_Internal_Shdr *hdr1, *hdr2;
8003   size_t symcount1, symcount2;
8004   Elf_Internal_Sym *isymbuf1, *isymbuf2;
8005   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8006   Elf_Internal_Sym *isym, *isymend;
8007   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8008   size_t count1, count2, i;
8009   unsigned int shndx1, shndx2;
8010   bfd_boolean result;
8011 
8012   bfd1 = sec1->owner;
8013   bfd2 = sec2->owner;
8014 
8015   /* Both sections have to be in ELF.  */
8016   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8017       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8018     return FALSE;
8019 
8020   if (elf_section_type (sec1) != elf_section_type (sec2))
8021     return FALSE;
8022 
8023   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8024   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8025   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8026     return FALSE;
8027 
8028   bed1 = get_elf_backend_data (bfd1);
8029   bed2 = get_elf_backend_data (bfd2);
8030   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8031   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8032   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8033   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8034 
8035   if (symcount1 == 0 || symcount2 == 0)
8036     return FALSE;
8037 
8038   result = FALSE;
8039   isymbuf1 = NULL;
8040   isymbuf2 = NULL;
8041   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8042   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8043 
8044   if (ssymbuf1 == NULL)
8045     {
8046       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8047 				       NULL, NULL, NULL);
8048       if (isymbuf1 == NULL)
8049 	goto done;
8050 
8051       if (!info->reduce_memory_overheads)
8052 	{
8053 	  ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8054 	  elf_tdata (bfd1)->symbuf = ssymbuf1;
8055 	}
8056     }
8057 
8058   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8059     {
8060       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8061 				       NULL, NULL, NULL);
8062       if (isymbuf2 == NULL)
8063 	goto done;
8064 
8065       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8066 	{
8067 	  ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8068 	  elf_tdata (bfd2)->symbuf = ssymbuf2;
8069 	}
8070     }
8071 
8072   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8073     {
8074       /* Optimized faster version.  */
8075       size_t lo, hi, mid;
8076       struct elf_symbol *symp;
8077       struct elf_symbuf_symbol *ssym, *ssymend;
8078 
8079       lo = 0;
8080       hi = ssymbuf1->count;
8081       ssymbuf1++;
8082       count1 = 0;
8083       while (lo < hi)
8084 	{
8085 	  mid = (lo + hi) / 2;
8086 	  if (shndx1 < ssymbuf1[mid].st_shndx)
8087 	    hi = mid;
8088 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
8089 	    lo = mid + 1;
8090 	  else
8091 	    {
8092 	      count1 = ssymbuf1[mid].count;
8093 	      ssymbuf1 += mid;
8094 	      break;
8095 	    }
8096 	}
8097 
8098       lo = 0;
8099       hi = ssymbuf2->count;
8100       ssymbuf2++;
8101       count2 = 0;
8102       while (lo < hi)
8103 	{
8104 	  mid = (lo + hi) / 2;
8105 	  if (shndx2 < ssymbuf2[mid].st_shndx)
8106 	    hi = mid;
8107 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
8108 	    lo = mid + 1;
8109 	  else
8110 	    {
8111 	      count2 = ssymbuf2[mid].count;
8112 	      ssymbuf2 += mid;
8113 	      break;
8114 	    }
8115 	}
8116 
8117       if (count1 == 0 || count2 == 0 || count1 != count2)
8118 	goto done;
8119 
8120       symtable1
8121 	= (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8122       symtable2
8123 	= (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8124       if (symtable1 == NULL || symtable2 == NULL)
8125 	goto done;
8126 
8127       symp = symtable1;
8128       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8129 	   ssym < ssymend; ssym++, symp++)
8130 	{
8131 	  symp->u.ssym = ssym;
8132 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
8133 							hdr1->sh_link,
8134 							ssym->st_name);
8135 	}
8136 
8137       symp = symtable2;
8138       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8139 	   ssym < ssymend; ssym++, symp++)
8140 	{
8141 	  symp->u.ssym = ssym;
8142 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
8143 							hdr2->sh_link,
8144 							ssym->st_name);
8145 	}
8146 
8147       /* Sort symbol by name.  */
8148       qsort (symtable1, count1, sizeof (struct elf_symbol),
8149 	     elf_sym_name_compare);
8150       qsort (symtable2, count1, sizeof (struct elf_symbol),
8151 	     elf_sym_name_compare);
8152 
8153       for (i = 0; i < count1; i++)
8154 	/* Two symbols must have the same binding, type and name.  */
8155 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8156 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8157 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8158 	  goto done;
8159 
8160       result = TRUE;
8161       goto done;
8162     }
8163 
8164   symtable1 = (struct elf_symbol *)
8165       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8166   symtable2 = (struct elf_symbol *)
8167       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8168   if (symtable1 == NULL || symtable2 == NULL)
8169     goto done;
8170 
8171   /* Count definitions in the section.  */
8172   count1 = 0;
8173   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8174     if (isym->st_shndx == shndx1)
8175       symtable1[count1++].u.isym = isym;
8176 
8177   count2 = 0;
8178   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8179     if (isym->st_shndx == shndx2)
8180       symtable2[count2++].u.isym = isym;
8181 
8182   if (count1 == 0 || count2 == 0 || count1 != count2)
8183     goto done;
8184 
8185   for (i = 0; i < count1; i++)
8186     symtable1[i].name
8187       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8188 					 symtable1[i].u.isym->st_name);
8189 
8190   for (i = 0; i < count2; i++)
8191     symtable2[i].name
8192       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8193 					 symtable2[i].u.isym->st_name);
8194 
8195   /* Sort symbol by name.  */
8196   qsort (symtable1, count1, sizeof (struct elf_symbol),
8197 	 elf_sym_name_compare);
8198   qsort (symtable2, count1, sizeof (struct elf_symbol),
8199 	 elf_sym_name_compare);
8200 
8201   for (i = 0; i < count1; i++)
8202     /* Two symbols must have the same binding, type and name.  */
8203     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8204 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8205 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8206       goto done;
8207 
8208   result = TRUE;
8209 
8210 done:
8211   if (symtable1)
8212     free (symtable1);
8213   if (symtable2)
8214     free (symtable2);
8215   if (isymbuf1)
8216     free (isymbuf1);
8217   if (isymbuf2)
8218     free (isymbuf2);
8219 
8220   return result;
8221 }
8222 
8223 /* Return TRUE if 2 section types are compatible.  */
8224 
8225 bfd_boolean
8226 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8227 				 bfd *bbfd, const asection *bsec)
8228 {
8229   if (asec == NULL
8230       || bsec == NULL
8231       || abfd->xvec->flavour != bfd_target_elf_flavour
8232       || bbfd->xvec->flavour != bfd_target_elf_flavour)
8233     return TRUE;
8234 
8235   return elf_section_type (asec) == elf_section_type (bsec);
8236 }
8237 
8238 /* Final phase of ELF linker.  */
8239 
8240 /* A structure we use to avoid passing large numbers of arguments.  */
8241 
8242 struct elf_final_link_info
8243 {
8244   /* General link information.  */
8245   struct bfd_link_info *info;
8246   /* Output BFD.  */
8247   bfd *output_bfd;
8248   /* Symbol string table.  */
8249   struct elf_strtab_hash *symstrtab;
8250   /* .hash section.  */
8251   asection *hash_sec;
8252   /* symbol version section (.gnu.version).  */
8253   asection *symver_sec;
8254   /* Buffer large enough to hold contents of any section.  */
8255   bfd_byte *contents;
8256   /* Buffer large enough to hold external relocs of any section.  */
8257   void *external_relocs;
8258   /* Buffer large enough to hold internal relocs of any section.  */
8259   Elf_Internal_Rela *internal_relocs;
8260   /* Buffer large enough to hold external local symbols of any input
8261      BFD.  */
8262   bfd_byte *external_syms;
8263   /* And a buffer for symbol section indices.  */
8264   Elf_External_Sym_Shndx *locsym_shndx;
8265   /* Buffer large enough to hold internal local symbols of any input
8266      BFD.  */
8267   Elf_Internal_Sym *internal_syms;
8268   /* Array large enough to hold a symbol index for each local symbol
8269      of any input BFD.  */
8270   long *indices;
8271   /* Array large enough to hold a section pointer for each local
8272      symbol of any input BFD.  */
8273   asection **sections;
8274   /* Buffer for SHT_SYMTAB_SHNDX section.  */
8275   Elf_External_Sym_Shndx *symshndxbuf;
8276   /* Number of STT_FILE syms seen.  */
8277   size_t filesym_count;
8278 };
8279 
8280 /* This struct is used to pass information to elf_link_output_extsym.  */
8281 
8282 struct elf_outext_info
8283 {
8284   bfd_boolean failed;
8285   bfd_boolean localsyms;
8286   bfd_boolean file_sym_done;
8287   struct elf_final_link_info *flinfo;
8288 };
8289 
8290 
8291 /* Support for evaluating a complex relocation.
8292 
8293    Complex relocations are generalized, self-describing relocations.  The
8294    implementation of them consists of two parts: complex symbols, and the
8295    relocations themselves.
8296 
8297    The relocations are use a reserved elf-wide relocation type code (R_RELC
8298    external / BFD_RELOC_RELC internal) and an encoding of relocation field
8299    information (start bit, end bit, word width, etc) into the addend.  This
8300    information is extracted from CGEN-generated operand tables within gas.
8301 
8302    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8303    internal) representing prefix-notation expressions, including but not
8304    limited to those sorts of expressions normally encoded as addends in the
8305    addend field.  The symbol mangling format is:
8306 
8307    <node> := <literal>
8308 	  |  <unary-operator> ':' <node>
8309 	  |  <binary-operator> ':' <node> ':' <node>
8310 	  ;
8311 
8312    <literal> := 's' <digits=N> ':' <N character symbol name>
8313 	     |  'S' <digits=N> ':' <N character section name>
8314 	     |  '#' <hexdigits>
8315 	     ;
8316 
8317    <binary-operator> := as in C
8318    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
8319 
8320 static void
8321 set_symbol_value (bfd *bfd_with_globals,
8322 		  Elf_Internal_Sym *isymbuf,
8323 		  size_t locsymcount,
8324 		  size_t symidx,
8325 		  bfd_vma val)
8326 {
8327   struct elf_link_hash_entry **sym_hashes;
8328   struct elf_link_hash_entry *h;
8329   size_t extsymoff = locsymcount;
8330 
8331   if (symidx < locsymcount)
8332     {
8333       Elf_Internal_Sym *sym;
8334 
8335       sym = isymbuf + symidx;
8336       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8337 	{
8338 	  /* It is a local symbol: move it to the
8339 	     "absolute" section and give it a value.  */
8340 	  sym->st_shndx = SHN_ABS;
8341 	  sym->st_value = val;
8342 	  return;
8343 	}
8344       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8345       extsymoff = 0;
8346     }
8347 
8348   /* It is a global symbol: set its link type
8349      to "defined" and give it a value.  */
8350 
8351   sym_hashes = elf_sym_hashes (bfd_with_globals);
8352   h = sym_hashes [symidx - extsymoff];
8353   while (h->root.type == bfd_link_hash_indirect
8354 	 || h->root.type == bfd_link_hash_warning)
8355     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8356   h->root.type = bfd_link_hash_defined;
8357   h->root.u.def.value = val;
8358   h->root.u.def.section = bfd_abs_section_ptr;
8359 }
8360 
8361 static bfd_boolean
8362 resolve_symbol (const char *name,
8363 		bfd *input_bfd,
8364 		struct elf_final_link_info *flinfo,
8365 		bfd_vma *result,
8366 		Elf_Internal_Sym *isymbuf,
8367 		size_t locsymcount)
8368 {
8369   Elf_Internal_Sym *sym;
8370   struct bfd_link_hash_entry *global_entry;
8371   const char *candidate = NULL;
8372   Elf_Internal_Shdr *symtab_hdr;
8373   size_t i;
8374 
8375   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8376 
8377   for (i = 0; i < locsymcount; ++ i)
8378     {
8379       sym = isymbuf + i;
8380 
8381       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8382 	continue;
8383 
8384       candidate = bfd_elf_string_from_elf_section (input_bfd,
8385 						   symtab_hdr->sh_link,
8386 						   sym->st_name);
8387 #ifdef DEBUG
8388       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8389 	      name, candidate, (unsigned long) sym->st_value);
8390 #endif
8391       if (candidate && strcmp (candidate, name) == 0)
8392 	{
8393 	  asection *sec = flinfo->sections [i];
8394 
8395 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8396 	  *result += sec->output_offset + sec->output_section->vma;
8397 #ifdef DEBUG
8398 	  printf ("Found symbol with value %8.8lx\n",
8399 		  (unsigned long) *result);
8400 #endif
8401 	  return TRUE;
8402 	}
8403     }
8404 
8405   /* Hmm, haven't found it yet. perhaps it is a global.  */
8406   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8407 				       FALSE, FALSE, TRUE);
8408   if (!global_entry)
8409     return FALSE;
8410 
8411   if (global_entry->type == bfd_link_hash_defined
8412       || global_entry->type == bfd_link_hash_defweak)
8413     {
8414       *result = (global_entry->u.def.value
8415 		 + global_entry->u.def.section->output_section->vma
8416 		 + global_entry->u.def.section->output_offset);
8417 #ifdef DEBUG
8418       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8419 	      global_entry->root.string, (unsigned long) *result);
8420 #endif
8421       return TRUE;
8422     }
8423 
8424   return FALSE;
8425 }
8426 
8427 /* Looks up NAME in SECTIONS.  If found sets RESULT to NAME's address (in
8428    bytes) and returns TRUE, otherwise returns FALSE.  Accepts pseudo-section
8429    names like "foo.end" which is the end address of section "foo".  */
8430 
8431 static bfd_boolean
8432 resolve_section (const char *name,
8433 		 asection *sections,
8434 		 bfd_vma *result,
8435 		 bfd * abfd)
8436 {
8437   asection *curr;
8438   unsigned int len;
8439 
8440   for (curr = sections; curr; curr = curr->next)
8441     if (strcmp (curr->name, name) == 0)
8442       {
8443 	*result = curr->vma;
8444 	return TRUE;
8445       }
8446 
8447   /* Hmm. still haven't found it. try pseudo-section names.  */
8448   /* FIXME: This could be coded more efficiently...  */
8449   for (curr = sections; curr; curr = curr->next)
8450     {
8451       len = strlen (curr->name);
8452       if (len > strlen (name))
8453 	continue;
8454 
8455       if (strncmp (curr->name, name, len) == 0)
8456 	{
8457 	  if (strncmp (".end", name + len, 4) == 0)
8458 	    {
8459 	      *result = (curr->vma
8460 			 + curr->size / bfd_octets_per_byte (abfd, curr));
8461 	      return TRUE;
8462 	    }
8463 
8464 	  /* Insert more pseudo-section names here, if you like.  */
8465 	}
8466     }
8467 
8468   return FALSE;
8469 }
8470 
8471 static void
8472 undefined_reference (const char *reftype, const char *name)
8473 {
8474   /* xgettext:c-format */
8475   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8476 		      reftype, name);
8477 }
8478 
8479 static bfd_boolean
8480 eval_symbol (bfd_vma *result,
8481 	     const char **symp,
8482 	     bfd *input_bfd,
8483 	     struct elf_final_link_info *flinfo,
8484 	     bfd_vma dot,
8485 	     Elf_Internal_Sym *isymbuf,
8486 	     size_t locsymcount,
8487 	     int signed_p)
8488 {
8489   size_t len;
8490   size_t symlen;
8491   bfd_vma a;
8492   bfd_vma b;
8493   char symbuf[4096];
8494   const char *sym = *symp;
8495   const char *symend;
8496   bfd_boolean symbol_is_section = FALSE;
8497 
8498   len = strlen (sym);
8499   symend = sym + len;
8500 
8501   if (len < 1 || len > sizeof (symbuf))
8502     {
8503       bfd_set_error (bfd_error_invalid_operation);
8504       return FALSE;
8505     }
8506 
8507   switch (* sym)
8508     {
8509     case '.':
8510       *result = dot;
8511       *symp = sym + 1;
8512       return TRUE;
8513 
8514     case '#':
8515       ++sym;
8516       *result = strtoul (sym, (char **) symp, 16);
8517       return TRUE;
8518 
8519     case 'S':
8520       symbol_is_section = TRUE;
8521       /* Fall through.  */
8522     case 's':
8523       ++sym;
8524       symlen = strtol (sym, (char **) symp, 10);
8525       sym = *symp + 1; /* Skip the trailing ':'.  */
8526 
8527       if (symend < sym || symlen + 1 > sizeof (symbuf))
8528 	{
8529 	  bfd_set_error (bfd_error_invalid_operation);
8530 	  return FALSE;
8531 	}
8532 
8533       memcpy (symbuf, sym, symlen);
8534       symbuf[symlen] = '\0';
8535       *symp = sym + symlen;
8536 
8537       /* Is it always possible, with complex symbols, that gas "mis-guessed"
8538 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
8539 	 interpretation here; section means "try section first", not "must be a
8540 	 section", and likewise with symbol.  */
8541 
8542       if (symbol_is_section)
8543 	{
8544 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8545 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8546 				  isymbuf, locsymcount))
8547 	    {
8548 	      undefined_reference ("section", symbuf);
8549 	      return FALSE;
8550 	    }
8551 	}
8552       else
8553 	{
8554 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8555 			       isymbuf, locsymcount)
8556 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
8557 				   result, input_bfd))
8558 	    {
8559 	      undefined_reference ("symbol", symbuf);
8560 	      return FALSE;
8561 	    }
8562 	}
8563 
8564       return TRUE;
8565 
8566       /* All that remains are operators.  */
8567 
8568 #define UNARY_OP(op)						\
8569   if (strncmp (sym, #op, strlen (#op)) == 0)			\
8570     {								\
8571       sym += strlen (#op);					\
8572       if (*sym == ':')						\
8573 	++sym;							\
8574       *symp = sym;						\
8575       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8576 			isymbuf, locsymcount, signed_p))	\
8577 	return FALSE;						\
8578       if (signed_p)						\
8579 	*result = op ((bfd_signed_vma) a);			\
8580       else							\
8581 	*result = op a;						\
8582       return TRUE;						\
8583     }
8584 
8585 #define BINARY_OP(op)						\
8586   if (strncmp (sym, #op, strlen (#op)) == 0)			\
8587     {								\
8588       sym += strlen (#op);					\
8589       if (*sym == ':')						\
8590 	++sym;							\
8591       *symp = sym;						\
8592       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8593 			isymbuf, locsymcount, signed_p))	\
8594 	return FALSE;						\
8595       ++*symp;							\
8596       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
8597 			isymbuf, locsymcount, signed_p))	\
8598 	return FALSE;						\
8599       if (signed_p)						\
8600 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
8601       else							\
8602 	*result = a op b;					\
8603       return TRUE;						\
8604     }
8605 
8606     default:
8607       UNARY_OP  (0-);
8608       BINARY_OP (<<);
8609       BINARY_OP (>>);
8610       BINARY_OP (==);
8611       BINARY_OP (!=);
8612       BINARY_OP (<=);
8613       BINARY_OP (>=);
8614       BINARY_OP (&&);
8615       BINARY_OP (||);
8616       UNARY_OP  (~);
8617       UNARY_OP  (!);
8618       BINARY_OP (*);
8619       BINARY_OP (/);
8620       BINARY_OP (%);
8621       BINARY_OP (^);
8622       BINARY_OP (|);
8623       BINARY_OP (&);
8624       BINARY_OP (+);
8625       BINARY_OP (-);
8626       BINARY_OP (<);
8627       BINARY_OP (>);
8628 #undef UNARY_OP
8629 #undef BINARY_OP
8630       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8631       bfd_set_error (bfd_error_invalid_operation);
8632       return FALSE;
8633     }
8634 }
8635 
8636 static void
8637 put_value (bfd_vma size,
8638 	   unsigned long chunksz,
8639 	   bfd *input_bfd,
8640 	   bfd_vma x,
8641 	   bfd_byte *location)
8642 {
8643   location += (size - chunksz);
8644 
8645   for (; size; size -= chunksz, location -= chunksz)
8646     {
8647       switch (chunksz)
8648 	{
8649 	case 1:
8650 	  bfd_put_8 (input_bfd, x, location);
8651 	  x >>= 8;
8652 	  break;
8653 	case 2:
8654 	  bfd_put_16 (input_bfd, x, location);
8655 	  x >>= 16;
8656 	  break;
8657 	case 4:
8658 	  bfd_put_32 (input_bfd, x, location);
8659 	  /* Computed this way because x >>= 32 is undefined if x is a 32-bit value.  */
8660 	  x >>= 16;
8661 	  x >>= 16;
8662 	  break;
8663 #ifdef BFD64
8664 	case 8:
8665 	  bfd_put_64 (input_bfd, x, location);
8666 	  /* Computed this way because x >>= 64 is undefined if x is a 64-bit value.  */
8667 	  x >>= 32;
8668 	  x >>= 32;
8669 	  break;
8670 #endif
8671 	default:
8672 	  abort ();
8673 	  break;
8674 	}
8675     }
8676 }
8677 
8678 static bfd_vma
8679 get_value (bfd_vma size,
8680 	   unsigned long chunksz,
8681 	   bfd *input_bfd,
8682 	   bfd_byte *location)
8683 {
8684   int shift;
8685   bfd_vma x = 0;
8686 
8687   /* Sanity checks.  */
8688   BFD_ASSERT (chunksz <= sizeof (x)
8689 	      && size >= chunksz
8690 	      && chunksz != 0
8691 	      && (size % chunksz) == 0
8692 	      && input_bfd != NULL
8693 	      && location != NULL);
8694 
8695   if (chunksz == sizeof (x))
8696     {
8697       BFD_ASSERT (size == chunksz);
8698 
8699       /* Make sure that we do not perform an undefined shift operation.
8700 	 We know that size == chunksz so there will only be one iteration
8701 	 of the loop below.  */
8702       shift = 0;
8703     }
8704   else
8705     shift = 8 * chunksz;
8706 
8707   for (; size; size -= chunksz, location += chunksz)
8708     {
8709       switch (chunksz)
8710 	{
8711 	case 1:
8712 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
8713 	  break;
8714 	case 2:
8715 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
8716 	  break;
8717 	case 4:
8718 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
8719 	  break;
8720 #ifdef BFD64
8721 	case 8:
8722 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
8723 	  break;
8724 #endif
8725 	default:
8726 	  abort ();
8727 	}
8728     }
8729   return x;
8730 }
8731 
8732 static void
8733 decode_complex_addend (unsigned long *start,   /* in bits */
8734 		       unsigned long *oplen,   /* in bits */
8735 		       unsigned long *len,     /* in bits */
8736 		       unsigned long *wordsz,  /* in bytes */
8737 		       unsigned long *chunksz, /* in bytes */
8738 		       unsigned long *lsb0_p,
8739 		       unsigned long *signed_p,
8740 		       unsigned long *trunc_p,
8741 		       unsigned long encoded)
8742 {
8743   * start     =	 encoded	& 0x3F;
8744   * len	      = (encoded >>  6) & 0x3F;
8745   * oplen     = (encoded >> 12) & 0x3F;
8746   * wordsz    = (encoded >> 18) & 0xF;
8747   * chunksz   = (encoded >> 22) & 0xF;
8748   * lsb0_p    = (encoded >> 27) & 1;
8749   * signed_p  = (encoded >> 28) & 1;
8750   * trunc_p   = (encoded >> 29) & 1;
8751 }
8752 
8753 bfd_reloc_status_type
8754 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8755 				    asection *input_section,
8756 				    bfd_byte *contents,
8757 				    Elf_Internal_Rela *rel,
8758 				    bfd_vma relocation)
8759 {
8760   bfd_vma shift, x, mask;
8761   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8762   bfd_reloc_status_type r;
8763   bfd_size_type octets;
8764 
8765   /*  Perform this reloc, since it is complex.
8766       (this is not to say that it necessarily refers to a complex
8767       symbol; merely that it is a self-describing CGEN based reloc.
8768       i.e. the addend has the complete reloc information (bit start, end,
8769       word size, etc) encoded within it.).  */
8770 
8771   decode_complex_addend (&start, &oplen, &len, &wordsz,
8772 			 &chunksz, &lsb0_p, &signed_p,
8773 			 &trunc_p, rel->r_addend);
8774 
8775   mask = (((1L << (len - 1)) - 1) << 1) | 1;
8776 
8777   if (lsb0_p)
8778     shift = (start + 1) - len;
8779   else
8780     shift = (8 * wordsz) - (start + len);
8781 
8782   octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8783   x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8784 
8785 #ifdef DEBUG
8786   printf ("Doing complex reloc: "
8787 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8788 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8789 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8790 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8791 	  oplen, (unsigned long) x, (unsigned long) mask,
8792 	  (unsigned long) relocation);
8793 #endif
8794 
8795   r = bfd_reloc_ok;
8796   if (! trunc_p)
8797     /* Now do an overflow check.  */
8798     r = bfd_check_overflow ((signed_p
8799 			     ? complain_overflow_signed
8800 			     : complain_overflow_unsigned),
8801 			    len, 0, (8 * wordsz),
8802 			    relocation);
8803 
8804   /* Do the deed.  */
8805   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8806 
8807 #ifdef DEBUG
8808   printf ("           relocation: %8.8lx\n"
8809 	  "         shifted mask: %8.8lx\n"
8810 	  " shifted/masked reloc: %8.8lx\n"
8811 	  "               result: %8.8lx\n",
8812 	  (unsigned long) relocation, (unsigned long) (mask << shift),
8813 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8814 #endif
8815   put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8816   return r;
8817 }
8818 
8819 /* Functions to read r_offset from external (target order) reloc
8820    entry.  Faster than bfd_getl32 et al, because we let the compiler
8821    know the value is aligned.  */
8822 
8823 static bfd_vma
8824 ext32l_r_offset (const void *p)
8825 {
8826   union aligned32
8827   {
8828     uint32_t v;
8829     unsigned char c[4];
8830   };
8831   const union aligned32 *a
8832     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8833 
8834   uint32_t aval = (  (uint32_t) a->c[0]
8835 		   | (uint32_t) a->c[1] << 8
8836 		   | (uint32_t) a->c[2] << 16
8837 		   | (uint32_t) a->c[3] << 24);
8838   return aval;
8839 }
8840 
8841 static bfd_vma
8842 ext32b_r_offset (const void *p)
8843 {
8844   union aligned32
8845   {
8846     uint32_t v;
8847     unsigned char c[4];
8848   };
8849   const union aligned32 *a
8850     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8851 
8852   uint32_t aval = (  (uint32_t) a->c[0] << 24
8853 		   | (uint32_t) a->c[1] << 16
8854 		   | (uint32_t) a->c[2] << 8
8855 		   | (uint32_t) a->c[3]);
8856   return aval;
8857 }
8858 
8859 #ifdef BFD_HOST_64_BIT
8860 static bfd_vma
8861 ext64l_r_offset (const void *p)
8862 {
8863   union aligned64
8864   {
8865     uint64_t v;
8866     unsigned char c[8];
8867   };
8868   const union aligned64 *a
8869     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8870 
8871   uint64_t aval = (  (uint64_t) a->c[0]
8872 		   | (uint64_t) a->c[1] << 8
8873 		   | (uint64_t) a->c[2] << 16
8874 		   | (uint64_t) a->c[3] << 24
8875 		   | (uint64_t) a->c[4] << 32
8876 		   | (uint64_t) a->c[5] << 40
8877 		   | (uint64_t) a->c[6] << 48
8878 		   | (uint64_t) a->c[7] << 56);
8879   return aval;
8880 }
8881 
8882 static bfd_vma
8883 ext64b_r_offset (const void *p)
8884 {
8885   union aligned64
8886   {
8887     uint64_t v;
8888     unsigned char c[8];
8889   };
8890   const union aligned64 *a
8891     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8892 
8893   uint64_t aval = (  (uint64_t) a->c[0] << 56
8894 		   | (uint64_t) a->c[1] << 48
8895 		   | (uint64_t) a->c[2] << 40
8896 		   | (uint64_t) a->c[3] << 32
8897 		   | (uint64_t) a->c[4] << 24
8898 		   | (uint64_t) a->c[5] << 16
8899 		   | (uint64_t) a->c[6] << 8
8900 		   | (uint64_t) a->c[7]);
8901   return aval;
8902 }
8903 #endif
8904 
8905 /* When performing a relocatable link, the input relocations are
8906    preserved.  But, if they reference global symbols, the indices
8907    referenced must be updated.  Update all the relocations found in
8908    RELDATA.  */
8909 
8910 static bfd_boolean
8911 elf_link_adjust_relocs (bfd *abfd,
8912 			asection *sec,
8913 			struct bfd_elf_section_reloc_data *reldata,
8914 			bfd_boolean sort,
8915 			struct bfd_link_info *info)
8916 {
8917   unsigned int i;
8918   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8919   bfd_byte *erela;
8920   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8921   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8922   bfd_vma r_type_mask;
8923   int r_sym_shift;
8924   unsigned int count = reldata->count;
8925   struct elf_link_hash_entry **rel_hash = reldata->hashes;
8926 
8927   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8928     {
8929       swap_in = bed->s->swap_reloc_in;
8930       swap_out = bed->s->swap_reloc_out;
8931     }
8932   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8933     {
8934       swap_in = bed->s->swap_reloca_in;
8935       swap_out = bed->s->swap_reloca_out;
8936     }
8937   else
8938     abort ();
8939 
8940   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8941     abort ();
8942 
8943   if (bed->s->arch_size == 32)
8944     {
8945       r_type_mask = 0xff;
8946       r_sym_shift = 8;
8947     }
8948   else
8949     {
8950       r_type_mask = 0xffffffff;
8951       r_sym_shift = 32;
8952     }
8953 
8954   erela = reldata->hdr->contents;
8955   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8956     {
8957       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8958       unsigned int j;
8959 
8960       if (*rel_hash == NULL)
8961 	continue;
8962 
8963       if ((*rel_hash)->indx == -2
8964 	  && info->gc_sections
8965 	  && ! info->gc_keep_exported)
8966 	{
8967 	  /* PR 21524: Let the user know if a symbol was removed by garbage collection.  */
8968 	  _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8969 			      abfd, sec,
8970 			      (*rel_hash)->root.root.string);
8971 	  _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8972 			      abfd, sec);
8973 	  bfd_set_error (bfd_error_invalid_operation);
8974 	  return FALSE;
8975 	}
8976       BFD_ASSERT ((*rel_hash)->indx >= 0);
8977 
8978       (*swap_in) (abfd, erela, irela);
8979       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8980 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8981 			   | (irela[j].r_info & r_type_mask));
8982       (*swap_out) (abfd, irela, erela);
8983     }
8984 
8985   if (bed->elf_backend_update_relocs)
8986     (*bed->elf_backend_update_relocs) (sec, reldata);
8987 
8988   if (sort && count != 0)
8989     {
8990       bfd_vma (*ext_r_off) (const void *);
8991       bfd_vma r_off;
8992       size_t elt_size;
8993       bfd_byte *base, *end, *p, *loc;
8994       bfd_byte *buf = NULL;
8995 
8996       if (bed->s->arch_size == 32)
8997 	{
8998 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8999 	    ext_r_off = ext32l_r_offset;
9000 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9001 	    ext_r_off = ext32b_r_offset;
9002 	  else
9003 	    abort ();
9004 	}
9005       else
9006 	{
9007 #ifdef BFD_HOST_64_BIT
9008 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9009 	    ext_r_off = ext64l_r_offset;
9010 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9011 	    ext_r_off = ext64b_r_offset;
9012 	  else
9013 #endif
9014 	    abort ();
9015 	}
9016 
9017       /*  Must use a stable sort here.  A modified insertion sort,
9018 	  since the relocs are mostly sorted already.  */
9019       elt_size = reldata->hdr->sh_entsize;
9020       base = reldata->hdr->contents;
9021       end = base + count * elt_size;
9022       if (elt_size > sizeof (Elf64_External_Rela))
9023 	abort ();
9024 
9025       /* Ensure the first element is lowest.  This acts as a sentinel,
9026 	 speeding the main loop below.  */
9027       r_off = (*ext_r_off) (base);
9028       for (p = loc = base; (p += elt_size) < end; )
9029 	{
9030 	  bfd_vma r_off2 = (*ext_r_off) (p);
9031 	  if (r_off > r_off2)
9032 	    {
9033 	      r_off = r_off2;
9034 	      loc = p;
9035 	    }
9036 	}
9037       if (loc != base)
9038 	{
9039 	  /* Don't just swap *base and *loc as that changes the order
9040 	     of the original base[0] and base[1] if they happen to
9041 	     have the same r_offset.  */
9042 	  bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9043 	  memcpy (onebuf, loc, elt_size);
9044 	  memmove (base + elt_size, base, loc - base);
9045 	  memcpy (base, onebuf, elt_size);
9046 	}
9047 
9048       for (p = base + elt_size; (p += elt_size) < end; )
9049 	{
9050 	  /* base to p is sorted, *p is next to insert.  */
9051 	  r_off = (*ext_r_off) (p);
9052 	  /* Search the sorted region for location to insert.  */
9053 	  loc = p - elt_size;
9054 	  while (r_off < (*ext_r_off) (loc))
9055 	    loc -= elt_size;
9056 	  loc += elt_size;
9057 	  if (loc != p)
9058 	    {
9059 	      /* Chances are there is a run of relocs to insert here,
9060 		 from one of more input files.  Files are not always
9061 		 linked in order due to the way elf_link_input_bfd is
9062 		 called.  See pr17666.  */
9063 	      size_t sortlen = p - loc;
9064 	      bfd_vma r_off2 = (*ext_r_off) (loc);
9065 	      size_t runlen = elt_size;
9066 	      size_t buf_size = 96 * 1024;
9067 	      while (p + runlen < end
9068 		     && (sortlen <= buf_size
9069 			 || runlen + elt_size <= buf_size)
9070 		     && r_off2 > (*ext_r_off) (p + runlen))
9071 		runlen += elt_size;
9072 	      if (buf == NULL)
9073 		{
9074 		  buf = bfd_malloc (buf_size);
9075 		  if (buf == NULL)
9076 		    return FALSE;
9077 		}
9078 	      if (runlen < sortlen)
9079 		{
9080 		  memcpy (buf, p, runlen);
9081 		  memmove (loc + runlen, loc, sortlen);
9082 		  memcpy (loc, buf, runlen);
9083 		}
9084 	      else
9085 		{
9086 		  memcpy (buf, loc, sortlen);
9087 		  memmove (loc, p, runlen);
9088 		  memcpy (loc + runlen, buf, sortlen);
9089 		}
9090 	      p += runlen - elt_size;
9091 	    }
9092 	}
9093       /* Hashes are no longer valid.  */
9094       free (reldata->hashes);
9095       reldata->hashes = NULL;
9096       free (buf);
9097     }
9098   return TRUE;
9099 }
9100 
9101 struct elf_link_sort_rela
9102 {
9103   union {
9104     bfd_vma offset;
9105     bfd_vma sym_mask;
9106   } u;
9107   enum elf_reloc_type_class type;
9108   /* We use this as an array of size int_rels_per_ext_rel.  */
9109   Elf_Internal_Rela rela[1];
9110 };
9111 
9112 /* qsort stability here and for cmp2 is only an issue if multiple
9113    dynamic relocations are emitted at the same address.  But targets
9114    that apply a series of dynamic relocations each operating on the
9115    result of the prior relocation can't use -z combreloc as
9116    implemented anyway.  Such schemes tend to be broken by sorting on
9117    symbol index.  That leaves dynamic NONE relocs as the only other
9118    case where ld might emit multiple relocs at the same address, and
9119    those are only emitted due to target bugs.  */
9120 
9121 static int
9122 elf_link_sort_cmp1 (const void *A, const void *B)
9123 {
9124   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9125   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9126   int relativea, relativeb;
9127 
9128   relativea = a->type == reloc_class_relative;
9129   relativeb = b->type == reloc_class_relative;
9130 
9131   if (relativea < relativeb)
9132     return 1;
9133   if (relativea > relativeb)
9134     return -1;
9135   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9136     return -1;
9137   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9138     return 1;
9139   if (a->rela->r_offset < b->rela->r_offset)
9140     return -1;
9141   if (a->rela->r_offset > b->rela->r_offset)
9142     return 1;
9143   return 0;
9144 }
9145 
9146 static int
9147 elf_link_sort_cmp2 (const void *A, const void *B)
9148 {
9149   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9150   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9151 
9152   if (a->type < b->type)
9153     return -1;
9154   if (a->type > b->type)
9155     return 1;
9156   if (a->u.offset < b->u.offset)
9157     return -1;
9158   if (a->u.offset > b->u.offset)
9159     return 1;
9160   if (a->rela->r_offset < b->rela->r_offset)
9161     return -1;
9162   if (a->rela->r_offset > b->rela->r_offset)
9163     return 1;
9164   return 0;
9165 }
9166 
9167 static size_t
9168 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9169 {
9170   asection *dynamic_relocs;
9171   asection *rela_dyn;
9172   asection *rel_dyn;
9173   bfd_size_type count, size;
9174   size_t i, ret, sort_elt, ext_size;
9175   bfd_byte *sort, *s_non_relative, *p;
9176   struct elf_link_sort_rela *sq;
9177   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9178   int i2e = bed->s->int_rels_per_ext_rel;
9179   unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9180   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9181   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9182   struct bfd_link_order *lo;
9183   bfd_vma r_sym_mask;
9184   bfd_boolean use_rela;
9185 
9186   /* Find a dynamic reloc section.  */
9187   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9188   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
9189   if (rela_dyn != NULL && rela_dyn->size > 0
9190       && rel_dyn != NULL && rel_dyn->size > 0)
9191     {
9192       bfd_boolean use_rela_initialised = FALSE;
9193 
9194       /* This is just here to stop gcc from complaining.
9195 	 Its initialization checking code is not perfect.  */
9196       use_rela = TRUE;
9197 
9198       /* Both sections are present.  Examine the sizes
9199 	 of the indirect sections to help us choose.  */
9200       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9201 	if (lo->type == bfd_indirect_link_order)
9202 	  {
9203 	    asection *o = lo->u.indirect.section;
9204 
9205 	    if ((o->size % bed->s->sizeof_rela) == 0)
9206 	      {
9207 		if ((o->size % bed->s->sizeof_rel) == 0)
9208 		  /* Section size is divisible by both rel and rela sizes.
9209 		     It is of no help to us.  */
9210 		  ;
9211 		else
9212 		  {
9213 		    /* Section size is only divisible by rela.  */
9214 		    if (use_rela_initialised && !use_rela)
9215 		      {
9216 			_bfd_error_handler (_("%pB: unable to sort relocs - "
9217 					      "they are in more than one size"),
9218 					    abfd);
9219 			bfd_set_error (bfd_error_invalid_operation);
9220 			return 0;
9221 		      }
9222 		    else
9223 		      {
9224 			use_rela = TRUE;
9225 			use_rela_initialised = TRUE;
9226 		      }
9227 		  }
9228 	      }
9229 	    else if ((o->size % bed->s->sizeof_rel) == 0)
9230 	      {
9231 		/* Section size is only divisible by rel.  */
9232 		if (use_rela_initialised && use_rela)
9233 		  {
9234 		    _bfd_error_handler (_("%pB: unable to sort relocs - "
9235 					  "they are in more than one size"),
9236 					abfd);
9237 		    bfd_set_error (bfd_error_invalid_operation);
9238 		    return 0;
9239 		  }
9240 		else
9241 		  {
9242 		    use_rela = FALSE;
9243 		    use_rela_initialised = TRUE;
9244 		  }
9245 	      }
9246 	    else
9247 	      {
9248 		/* The section size is not divisible by either -
9249 		   something is wrong.  */
9250 		_bfd_error_handler (_("%pB: unable to sort relocs - "
9251 				      "they are of an unknown size"), abfd);
9252 		bfd_set_error (bfd_error_invalid_operation);
9253 		return 0;
9254 	      }
9255 	  }
9256 
9257       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9258 	if (lo->type == bfd_indirect_link_order)
9259 	  {
9260 	    asection *o = lo->u.indirect.section;
9261 
9262 	    if ((o->size % bed->s->sizeof_rela) == 0)
9263 	      {
9264 		if ((o->size % bed->s->sizeof_rel) == 0)
9265 		  /* Section size is divisible by both rel and rela sizes.
9266 		     It is of no help to us.  */
9267 		  ;
9268 		else
9269 		  {
9270 		    /* Section size is only divisible by rela.  */
9271 		    if (use_rela_initialised && !use_rela)
9272 		      {
9273 			_bfd_error_handler (_("%pB: unable to sort relocs - "
9274 					      "they are in more than one size"),
9275 					    abfd);
9276 			bfd_set_error (bfd_error_invalid_operation);
9277 			return 0;
9278 		      }
9279 		    else
9280 		      {
9281 			use_rela = TRUE;
9282 			use_rela_initialised = TRUE;
9283 		      }
9284 		  }
9285 	      }
9286 	    else if ((o->size % bed->s->sizeof_rel) == 0)
9287 	      {
9288 		/* Section size is only divisible by rel.  */
9289 		if (use_rela_initialised && use_rela)
9290 		  {
9291 		    _bfd_error_handler (_("%pB: unable to sort relocs - "
9292 					  "they are in more than one size"),
9293 					abfd);
9294 		    bfd_set_error (bfd_error_invalid_operation);
9295 		    return 0;
9296 		  }
9297 		else
9298 		  {
9299 		    use_rela = FALSE;
9300 		    use_rela_initialised = TRUE;
9301 		  }
9302 	      }
9303 	    else
9304 	      {
9305 		/* The section size is not divisible by either -
9306 		   something is wrong.  */
9307 		_bfd_error_handler (_("%pB: unable to sort relocs - "
9308 				      "they are of an unknown size"), abfd);
9309 		bfd_set_error (bfd_error_invalid_operation);
9310 		return 0;
9311 	      }
9312 	  }
9313 
9314       if (! use_rela_initialised)
9315 	/* Make a guess.  */
9316 	use_rela = TRUE;
9317     }
9318   else if (rela_dyn != NULL && rela_dyn->size > 0)
9319     use_rela = TRUE;
9320   else if (rel_dyn != NULL && rel_dyn->size > 0)
9321     use_rela = FALSE;
9322   else
9323     return 0;
9324 
9325   if (use_rela)
9326     {
9327       dynamic_relocs = rela_dyn;
9328       ext_size = bed->s->sizeof_rela;
9329       swap_in = bed->s->swap_reloca_in;
9330       swap_out = bed->s->swap_reloca_out;
9331     }
9332   else
9333     {
9334       dynamic_relocs = rel_dyn;
9335       ext_size = bed->s->sizeof_rel;
9336       swap_in = bed->s->swap_reloc_in;
9337       swap_out = bed->s->swap_reloc_out;
9338     }
9339 
9340   size = 0;
9341   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9342     if (lo->type == bfd_indirect_link_order)
9343       size += lo->u.indirect.section->size;
9344 
9345   if (size != dynamic_relocs->size)
9346     return 0;
9347 
9348   sort_elt = (sizeof (struct elf_link_sort_rela)
9349 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
9350 
9351   count = dynamic_relocs->size / ext_size;
9352   if (count == 0)
9353     return 0;
9354   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9355 
9356   if (sort == NULL)
9357     {
9358       (*info->callbacks->warning)
9359 	(info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9360       return 0;
9361     }
9362 
9363   if (bed->s->arch_size == 32)
9364     r_sym_mask = ~(bfd_vma) 0xff;
9365   else
9366     r_sym_mask = ~(bfd_vma) 0xffffffff;
9367 
9368   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9369     if (lo->type == bfd_indirect_link_order)
9370       {
9371 	bfd_byte *erel, *erelend;
9372 	asection *o = lo->u.indirect.section;
9373 
9374 	if (o->contents == NULL && o->size != 0)
9375 	  {
9376 	    /* This is a reloc section that is being handled as a normal
9377 	       section.  See bfd_section_from_shdr.  We can't combine
9378 	       relocs in this case.  */
9379 	    free (sort);
9380 	    return 0;
9381 	  }
9382 	erel = o->contents;
9383 	erelend = o->contents + o->size;
9384 	p = sort + o->output_offset * opb / ext_size * sort_elt;
9385 
9386 	while (erel < erelend)
9387 	  {
9388 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9389 
9390 	    (*swap_in) (abfd, erel, s->rela);
9391 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9392 	    s->u.sym_mask = r_sym_mask;
9393 	    p += sort_elt;
9394 	    erel += ext_size;
9395 	  }
9396       }
9397 
9398   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9399 
9400   for (i = 0, p = sort; i < count; i++, p += sort_elt)
9401     {
9402       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9403       if (s->type != reloc_class_relative)
9404 	break;
9405     }
9406   ret = i;
9407   s_non_relative = p;
9408 
9409   sq = (struct elf_link_sort_rela *) s_non_relative;
9410   for (; i < count; i++, p += sort_elt)
9411     {
9412       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9413       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9414 	sq = sp;
9415       sp->u.offset = sq->rela->r_offset;
9416     }
9417 
9418   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9419 
9420   struct elf_link_hash_table *htab = elf_hash_table (info);
9421   if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9422     {
9423       /* We have plt relocs in .rela.dyn.  */
9424       sq = (struct elf_link_sort_rela *) sort;
9425       for (i = 0; i < count; i++)
9426 	if (sq[count - i - 1].type != reloc_class_plt)
9427 	  break;
9428       if (i != 0 && htab->srelplt->size == i * ext_size)
9429 	{
9430 	  struct bfd_link_order **plo;
9431 	  /* Put srelplt link_order last.  This is so the output_offset
9432 	     set in the next loop is correct for DT_JMPREL.  */
9433 	  for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9434 	    if ((*plo)->type == bfd_indirect_link_order
9435 		&& (*plo)->u.indirect.section == htab->srelplt)
9436 	      {
9437 		lo = *plo;
9438 		*plo = lo->next;
9439 	      }
9440 	    else
9441 	      plo = &(*plo)->next;
9442 	  *plo = lo;
9443 	  lo->next = NULL;
9444 	  dynamic_relocs->map_tail.link_order = lo;
9445 	}
9446     }
9447 
9448   p = sort;
9449   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9450     if (lo->type == bfd_indirect_link_order)
9451       {
9452 	bfd_byte *erel, *erelend;
9453 	asection *o = lo->u.indirect.section;
9454 
9455 	erel = o->contents;
9456 	erelend = o->contents + o->size;
9457 	o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9458 	while (erel < erelend)
9459 	  {
9460 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9461 	    (*swap_out) (abfd, s->rela, erel);
9462 	    p += sort_elt;
9463 	    erel += ext_size;
9464 	  }
9465       }
9466 
9467   free (sort);
9468   *psec = dynamic_relocs;
9469   return ret;
9470 }
9471 
9472 /* Add a symbol to the output symbol string table.  */
9473 
9474 static int
9475 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9476 			   const char *name,
9477 			   Elf_Internal_Sym *elfsym,
9478 			   asection *input_sec,
9479 			   struct elf_link_hash_entry *h)
9480 {
9481   int (*output_symbol_hook)
9482     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9483      struct elf_link_hash_entry *);
9484   struct elf_link_hash_table *hash_table;
9485   const struct elf_backend_data *bed;
9486   bfd_size_type strtabsize;
9487 
9488   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9489 
9490   bed = get_elf_backend_data (flinfo->output_bfd);
9491   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9492   if (output_symbol_hook != NULL)
9493     {
9494       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9495       if (ret != 1)
9496 	return ret;
9497     }
9498 
9499   if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9500     elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9501   if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9502     elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9503 
9504   if (name == NULL
9505       || *name == '\0'
9506       || (input_sec->flags & SEC_EXCLUDE))
9507     elfsym->st_name = (unsigned long) -1;
9508   else
9509     {
9510       /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9511 	 to get the final offset for st_name.  */
9512       elfsym->st_name
9513 	= (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9514 					       name, FALSE);
9515       if (elfsym->st_name == (unsigned long) -1)
9516 	return 0;
9517     }
9518 
9519   hash_table = elf_hash_table (flinfo->info);
9520   strtabsize = hash_table->strtabsize;
9521   if (strtabsize <= hash_table->strtabcount)
9522     {
9523       strtabsize += strtabsize;
9524       hash_table->strtabsize = strtabsize;
9525       strtabsize *= sizeof (*hash_table->strtab);
9526       hash_table->strtab
9527 	= (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9528 						 strtabsize);
9529       if (hash_table->strtab == NULL)
9530 	return 0;
9531     }
9532   hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9533   hash_table->strtab[hash_table->strtabcount].dest_index
9534     = hash_table->strtabcount;
9535   hash_table->strtab[hash_table->strtabcount].destshndx_index
9536     = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9537 
9538   flinfo->output_bfd->symcount += 1;
9539   hash_table->strtabcount += 1;
9540 
9541   return 1;
9542 }
9543 
9544 /* Swap symbols out to the symbol table and flush the output symbols to
9545    the file.  */
9546 
9547 static bfd_boolean
9548 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9549 {
9550   struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9551   bfd_size_type amt;
9552   size_t i;
9553   const struct elf_backend_data *bed;
9554   bfd_byte *symbuf;
9555   Elf_Internal_Shdr *hdr;
9556   file_ptr pos;
9557   bfd_boolean ret;
9558 
9559   if (!hash_table->strtabcount)
9560     return TRUE;
9561 
9562   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9563 
9564   bed = get_elf_backend_data (flinfo->output_bfd);
9565 
9566   amt = bed->s->sizeof_sym * hash_table->strtabcount;
9567   symbuf = (bfd_byte *) bfd_malloc (amt);
9568   if (symbuf == NULL)
9569     return FALSE;
9570 
9571   if (flinfo->symshndxbuf)
9572     {
9573       amt = sizeof (Elf_External_Sym_Shndx);
9574       amt *= bfd_get_symcount (flinfo->output_bfd);
9575       flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9576       if (flinfo->symshndxbuf == NULL)
9577 	{
9578 	  free (symbuf);
9579 	  return FALSE;
9580 	}
9581     }
9582 
9583   for (i = 0; i < hash_table->strtabcount; i++)
9584     {
9585       struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9586       if (elfsym->sym.st_name == (unsigned long) -1)
9587 	elfsym->sym.st_name = 0;
9588       else
9589 	elfsym->sym.st_name
9590 	  = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9591 						    elfsym->sym.st_name);
9592       bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9593 			       ((bfd_byte *) symbuf
9594 				+ (elfsym->dest_index
9595 				   * bed->s->sizeof_sym)),
9596 			       (flinfo->symshndxbuf
9597 				+ elfsym->destshndx_index));
9598     }
9599 
9600   /* Allow the linker to examine the strtab and symtab now they are
9601      populated.  */
9602 
9603   if (flinfo->info->callbacks->examine_strtab)
9604     flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9605 					     hash_table->strtabcount,
9606 					     flinfo->symstrtab);
9607 
9608   hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9609   pos = hdr->sh_offset + hdr->sh_size;
9610   amt = hash_table->strtabcount * bed->s->sizeof_sym;
9611   if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9612       && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9613     {
9614       hdr->sh_size += amt;
9615       ret = TRUE;
9616     }
9617   else
9618     ret = FALSE;
9619 
9620   free (symbuf);
9621 
9622   free (hash_table->strtab);
9623   hash_table->strtab = NULL;
9624 
9625   return ret;
9626 }
9627 
9628 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
9629 
9630 static bfd_boolean
9631 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9632 {
9633   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9634       && sym->st_shndx < SHN_LORESERVE)
9635     {
9636       /* The gABI doesn't support dynamic symbols in output sections
9637 	 beyond 64k.  */
9638       _bfd_error_handler
9639 	/* xgettext:c-format */
9640 	(_("%pB: too many sections: %d (>= %d)"),
9641 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9642       bfd_set_error (bfd_error_nonrepresentable_section);
9643       return FALSE;
9644     }
9645   return TRUE;
9646 }
9647 
9648 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9649    allowing an unsatisfied unversioned symbol in the DSO to match a
9650    versioned symbol that would normally require an explicit version.
9651    We also handle the case that a DSO references a hidden symbol
9652    which may be satisfied by a versioned symbol in another DSO.  */
9653 
9654 static bfd_boolean
9655 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9656 				 const struct elf_backend_data *bed,
9657 				 struct elf_link_hash_entry *h)
9658 {
9659   bfd *abfd;
9660   struct elf_link_loaded_list *loaded;
9661 
9662   if (!is_elf_hash_table (info->hash))
9663     return FALSE;
9664 
9665   /* Check indirect symbol.  */
9666   while (h->root.type == bfd_link_hash_indirect)
9667     h = (struct elf_link_hash_entry *) h->root.u.i.link;
9668 
9669   switch (h->root.type)
9670     {
9671     default:
9672       abfd = NULL;
9673       break;
9674 
9675     case bfd_link_hash_undefined:
9676     case bfd_link_hash_undefweak:
9677       abfd = h->root.u.undef.abfd;
9678       if (abfd == NULL
9679 	  || (abfd->flags & DYNAMIC) == 0
9680 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9681 	return FALSE;
9682       break;
9683 
9684     case bfd_link_hash_defined:
9685     case bfd_link_hash_defweak:
9686       abfd = h->root.u.def.section->owner;
9687       break;
9688 
9689     case bfd_link_hash_common:
9690       abfd = h->root.u.c.p->section->owner;
9691       break;
9692     }
9693   BFD_ASSERT (abfd != NULL);
9694 
9695   for (loaded = elf_hash_table (info)->loaded;
9696        loaded != NULL;
9697        loaded = loaded->next)
9698     {
9699       bfd *input;
9700       Elf_Internal_Shdr *hdr;
9701       size_t symcount;
9702       size_t extsymcount;
9703       size_t extsymoff;
9704       Elf_Internal_Shdr *versymhdr;
9705       Elf_Internal_Sym *isym;
9706       Elf_Internal_Sym *isymend;
9707       Elf_Internal_Sym *isymbuf;
9708       Elf_External_Versym *ever;
9709       Elf_External_Versym *extversym;
9710 
9711       input = loaded->abfd;
9712 
9713       /* We check each DSO for a possible hidden versioned definition.  */
9714       if (input == abfd
9715 	  || (input->flags & DYNAMIC) == 0
9716 	  || elf_dynversym (input) == 0)
9717 	continue;
9718 
9719       hdr = &elf_tdata (input)->dynsymtab_hdr;
9720 
9721       symcount = hdr->sh_size / bed->s->sizeof_sym;
9722       if (elf_bad_symtab (input))
9723 	{
9724 	  extsymcount = symcount;
9725 	  extsymoff = 0;
9726 	}
9727       else
9728 	{
9729 	  extsymcount = symcount - hdr->sh_info;
9730 	  extsymoff = hdr->sh_info;
9731 	}
9732 
9733       if (extsymcount == 0)
9734 	continue;
9735 
9736       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9737 				      NULL, NULL, NULL);
9738       if (isymbuf == NULL)
9739 	return FALSE;
9740 
9741       /* Read in any version definitions.  */
9742       versymhdr = &elf_tdata (input)->dynversym_hdr;
9743       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9744       if (extversym == NULL)
9745 	goto error_ret;
9746 
9747       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9748 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
9749 	      != versymhdr->sh_size))
9750 	{
9751 	  free (extversym);
9752 	error_ret:
9753 	  free (isymbuf);
9754 	  return FALSE;
9755 	}
9756 
9757       ever = extversym + extsymoff;
9758       isymend = isymbuf + extsymcount;
9759       for (isym = isymbuf; isym < isymend; isym++, ever++)
9760 	{
9761 	  const char *name;
9762 	  Elf_Internal_Versym iver;
9763 	  unsigned short version_index;
9764 
9765 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9766 	      || isym->st_shndx == SHN_UNDEF)
9767 	    continue;
9768 
9769 	  name = bfd_elf_string_from_elf_section (input,
9770 						  hdr->sh_link,
9771 						  isym->st_name);
9772 	  if (strcmp (name, h->root.root.string) != 0)
9773 	    continue;
9774 
9775 	  _bfd_elf_swap_versym_in (input, ever, &iver);
9776 
9777 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9778 	      && !(h->def_regular
9779 		   && h->forced_local))
9780 	    {
9781 	      /* If we have a non-hidden versioned sym, then it should
9782 		 have provided a definition for the undefined sym unless
9783 		 it is defined in a non-shared object and forced local.
9784 	       */
9785 	      abort ();
9786 	    }
9787 
9788 	  version_index = iver.vs_vers & VERSYM_VERSION;
9789 	  if (version_index == 1 || version_index == 2)
9790 	    {
9791 	      /* This is the base or first version.  We can use it.  */
9792 	      free (extversym);
9793 	      free (isymbuf);
9794 	      return TRUE;
9795 	    }
9796 	}
9797 
9798       free (extversym);
9799       free (isymbuf);
9800     }
9801 
9802   return FALSE;
9803 }
9804 
9805 /* Convert ELF common symbol TYPE.  */
9806 
9807 static int
9808 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9809 {
9810   /* Commom symbol can only appear in relocatable link.  */
9811   if (!bfd_link_relocatable (info))
9812     abort ();
9813   switch (info->elf_stt_common)
9814     {
9815     case unchanged:
9816       break;
9817     case elf_stt_common:
9818       type = STT_COMMON;
9819       break;
9820     case no_elf_stt_common:
9821       type = STT_OBJECT;
9822       break;
9823     }
9824   return type;
9825 }
9826 
9827 /* Add an external symbol to the symbol table.  This is called from
9828    the hash table traversal routine.  When generating a shared object,
9829    we go through the symbol table twice.  The first time we output
9830    anything that might have been forced to local scope in a version
9831    script.  The second time we output the symbols that are still
9832    global symbols.  */
9833 
9834 static bfd_boolean
9835 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9836 {
9837   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9838   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9839   struct elf_final_link_info *flinfo = eoinfo->flinfo;
9840   bfd_boolean strip;
9841   Elf_Internal_Sym sym;
9842   asection *input_sec;
9843   const struct elf_backend_data *bed;
9844   long indx;
9845   int ret;
9846   unsigned int type;
9847 
9848   if (h->root.type == bfd_link_hash_warning)
9849     {
9850       h = (struct elf_link_hash_entry *) h->root.u.i.link;
9851       if (h->root.type == bfd_link_hash_new)
9852 	return TRUE;
9853     }
9854 
9855   /* Decide whether to output this symbol in this pass.  */
9856   if (eoinfo->localsyms)
9857     {
9858       if (!h->forced_local)
9859 	return TRUE;
9860     }
9861   else
9862     {
9863       if (h->forced_local)
9864 	return TRUE;
9865     }
9866 
9867   bed = get_elf_backend_data (flinfo->output_bfd);
9868 
9869   if (h->root.type == bfd_link_hash_undefined)
9870     {
9871       /* If we have an undefined symbol reference here then it must have
9872 	 come from a shared library that is being linked in.  (Undefined
9873 	 references in regular files have already been handled unless
9874 	 they are in unreferenced sections which are removed by garbage
9875 	 collection).  */
9876       bfd_boolean ignore_undef = FALSE;
9877 
9878       /* Some symbols may be special in that the fact that they're
9879 	 undefined can be safely ignored - let backend determine that.  */
9880       if (bed->elf_backend_ignore_undef_symbol)
9881 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9882 
9883       /* If we are reporting errors for this situation then do so now.  */
9884       if (!ignore_undef
9885 	  && h->ref_dynamic_nonweak
9886 	  && (!h->ref_regular || flinfo->info->gc_sections)
9887 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9888 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9889 	(*flinfo->info->callbacks->undefined_symbol)
9890 	  (flinfo->info, h->root.root.string,
9891 	   h->ref_regular ? NULL : h->root.u.undef.abfd,
9892 	   NULL, 0,
9893 	   flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9894 
9895       /* Strip a global symbol defined in a discarded section.  */
9896       if (h->indx == -3)
9897 	return TRUE;
9898     }
9899 
9900   /* We should also warn if a forced local symbol is referenced from
9901      shared libraries.  */
9902   if (bfd_link_executable (flinfo->info)
9903       && h->forced_local
9904       && h->ref_dynamic
9905       && h->def_regular
9906       && !h->dynamic_def
9907       && h->ref_dynamic_nonweak
9908       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9909     {
9910       bfd *def_bfd;
9911       const char *msg;
9912       struct elf_link_hash_entry *hi = h;
9913 
9914       /* Check indirect symbol.  */
9915       while (hi->root.type == bfd_link_hash_indirect)
9916 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9917 
9918       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9919 	/* xgettext:c-format */
9920 	msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9921       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9922 	/* xgettext:c-format */
9923 	msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9924       else
9925 	/* xgettext:c-format */
9926 	msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9927       def_bfd = flinfo->output_bfd;
9928       if (hi->root.u.def.section != bfd_abs_section_ptr)
9929 	def_bfd = hi->root.u.def.section->owner;
9930       _bfd_error_handler (msg, flinfo->output_bfd,
9931 			  h->root.root.string, def_bfd);
9932       bfd_set_error (bfd_error_bad_value);
9933       eoinfo->failed = TRUE;
9934       return FALSE;
9935     }
9936 
9937   /* We don't want to output symbols that have never been mentioned by
9938      a regular file, or that we have been told to strip.  However, if
9939      h->indx is set to -2, the symbol is used by a reloc and we must
9940      output it.  */
9941   strip = FALSE;
9942   if (h->indx == -2)
9943     ;
9944   else if ((h->def_dynamic
9945 	    || h->ref_dynamic
9946 	    || h->root.type == bfd_link_hash_new)
9947 	   && !h->def_regular
9948 	   && !h->ref_regular)
9949     strip = TRUE;
9950   else if (flinfo->info->strip == strip_all)
9951     strip = TRUE;
9952   else if (flinfo->info->strip == strip_some
9953 	   && bfd_hash_lookup (flinfo->info->keep_hash,
9954 			       h->root.root.string, FALSE, FALSE) == NULL)
9955     strip = TRUE;
9956   else if ((h->root.type == bfd_link_hash_defined
9957 	    || h->root.type == bfd_link_hash_defweak)
9958 	   && ((flinfo->info->strip_discarded
9959 		&& discarded_section (h->root.u.def.section))
9960 	       || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9961 		   && h->root.u.def.section->owner != NULL
9962 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9963     strip = TRUE;
9964   else if ((h->root.type == bfd_link_hash_undefined
9965 	    || h->root.type == bfd_link_hash_undefweak)
9966 	   && h->root.u.undef.abfd != NULL
9967 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9968     strip = TRUE;
9969 
9970   type = h->type;
9971 
9972   /* If we're stripping it, and it's not a dynamic symbol, there's
9973      nothing else to do.   However, if it is a forced local symbol or
9974      an ifunc symbol we need to give the backend finish_dynamic_symbol
9975      function a chance to make it dynamic.  */
9976   if (strip
9977       && h->dynindx == -1
9978       && type != STT_GNU_IFUNC
9979       && !h->forced_local)
9980     return TRUE;
9981 
9982   sym.st_value = 0;
9983   sym.st_size = h->size;
9984   sym.st_other = h->other;
9985   switch (h->root.type)
9986     {
9987     default:
9988     case bfd_link_hash_new:
9989     case bfd_link_hash_warning:
9990       abort ();
9991       return FALSE;
9992 
9993     case bfd_link_hash_undefined:
9994     case bfd_link_hash_undefweak:
9995       input_sec = bfd_und_section_ptr;
9996       sym.st_shndx = SHN_UNDEF;
9997       break;
9998 
9999     case bfd_link_hash_defined:
10000     case bfd_link_hash_defweak:
10001       {
10002 	input_sec = h->root.u.def.section;
10003 	if (input_sec->output_section != NULL)
10004 	  {
10005 	    sym.st_shndx =
10006 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10007 						 input_sec->output_section);
10008 	    if (sym.st_shndx == SHN_BAD)
10009 	      {
10010 		_bfd_error_handler
10011 		  /* xgettext:c-format */
10012 		  (_("%pB: could not find output section %pA for input section %pA"),
10013 		   flinfo->output_bfd, input_sec->output_section, input_sec);
10014 		bfd_set_error (bfd_error_nonrepresentable_section);
10015 		eoinfo->failed = TRUE;
10016 		return FALSE;
10017 	      }
10018 
10019 	    /* ELF symbols in relocatable files are section relative,
10020 	       but in nonrelocatable files they are virtual
10021 	       addresses.  */
10022 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
10023 	    if (!bfd_link_relocatable (flinfo->info))
10024 	      {
10025 		sym.st_value += input_sec->output_section->vma;
10026 		if (h->type == STT_TLS)
10027 		  {
10028 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10029 		    if (tls_sec != NULL)
10030 		      sym.st_value -= tls_sec->vma;
10031 		  }
10032 	      }
10033 	  }
10034 	else
10035 	  {
10036 	    BFD_ASSERT (input_sec->owner == NULL
10037 			|| (input_sec->owner->flags & DYNAMIC) != 0);
10038 	    sym.st_shndx = SHN_UNDEF;
10039 	    input_sec = bfd_und_section_ptr;
10040 	  }
10041       }
10042       break;
10043 
10044     case bfd_link_hash_common:
10045       input_sec = h->root.u.c.p->section;
10046       sym.st_shndx = bed->common_section_index (input_sec);
10047       sym.st_value = 1 << h->root.u.c.p->alignment_power;
10048       break;
10049 
10050     case bfd_link_hash_indirect:
10051       /* These symbols are created by symbol versioning.  They point
10052 	 to the decorated version of the name.  For example, if the
10053 	 symbol foo@@GNU_1.2 is the default, which should be used when
10054 	 foo is used with no version, then we add an indirect symbol
10055 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
10056 	 since the indirected symbol is already in the hash table.  */
10057       return TRUE;
10058     }
10059 
10060   if (type == STT_COMMON || type == STT_OBJECT)
10061     switch (h->root.type)
10062       {
10063       case bfd_link_hash_common:
10064 	type = elf_link_convert_common_type (flinfo->info, type);
10065 	break;
10066       case bfd_link_hash_defined:
10067       case bfd_link_hash_defweak:
10068 	if (bed->common_definition (&sym))
10069 	  type = elf_link_convert_common_type (flinfo->info, type);
10070 	else
10071 	  type = STT_OBJECT;
10072 	break;
10073       case bfd_link_hash_undefined:
10074       case bfd_link_hash_undefweak:
10075 	break;
10076       default:
10077 	abort ();
10078       }
10079 
10080   if (h->forced_local)
10081     {
10082       sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10083       /* Turn off visibility on local symbol.  */
10084       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10085     }
10086   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
10087   else if (h->unique_global && h->def_regular)
10088     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10089   else if (h->root.type == bfd_link_hash_undefweak
10090 	   || h->root.type == bfd_link_hash_defweak)
10091     sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10092   else
10093     sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10094   sym.st_target_internal = h->target_internal;
10095 
10096   /* Give the processor backend a chance to tweak the symbol value,
10097      and also to finish up anything that needs to be done for this
10098      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
10099      forced local syms when non-shared is due to a historical quirk.
10100      STT_GNU_IFUNC symbol must go through PLT.  */
10101   if ((h->type == STT_GNU_IFUNC
10102        && h->def_regular
10103        && !bfd_link_relocatable (flinfo->info))
10104       || ((h->dynindx != -1
10105 	   || h->forced_local)
10106 	  && ((bfd_link_pic (flinfo->info)
10107 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10108 		   || h->root.type != bfd_link_hash_undefweak))
10109 	      || !h->forced_local)
10110 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
10111     {
10112       if (! ((*bed->elf_backend_finish_dynamic_symbol)
10113 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
10114 	{
10115 	  eoinfo->failed = TRUE;
10116 	  return FALSE;
10117 	}
10118     }
10119 
10120   /* If we are marking the symbol as undefined, and there are no
10121      non-weak references to this symbol from a regular object, then
10122      mark the symbol as weak undefined; if there are non-weak
10123      references, mark the symbol as strong.  We can't do this earlier,
10124      because it might not be marked as undefined until the
10125      finish_dynamic_symbol routine gets through with it.  */
10126   if (sym.st_shndx == SHN_UNDEF
10127       && h->ref_regular
10128       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10129 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10130     {
10131       int bindtype;
10132       type = ELF_ST_TYPE (sym.st_info);
10133 
10134       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10135       if (type == STT_GNU_IFUNC)
10136 	type = STT_FUNC;
10137 
10138       if (h->ref_regular_nonweak)
10139 	bindtype = STB_GLOBAL;
10140       else
10141 	bindtype = STB_WEAK;
10142       sym.st_info = ELF_ST_INFO (bindtype, type);
10143     }
10144 
10145   /* If this is a symbol defined in a dynamic library, don't use the
10146      symbol size from the dynamic library.  Relinking an executable
10147      against a new library may introduce gratuitous changes in the
10148      executable's symbols if we keep the size.  */
10149   if (sym.st_shndx == SHN_UNDEF
10150       && !h->def_regular
10151       && h->def_dynamic)
10152     sym.st_size = 0;
10153 
10154   /* If a non-weak symbol with non-default visibility is not defined
10155      locally, it is a fatal error.  */
10156   if (!bfd_link_relocatable (flinfo->info)
10157       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10158       && ELF_ST_BIND (sym.st_info) != STB_WEAK
10159       && h->root.type == bfd_link_hash_undefined
10160       && !h->def_regular)
10161     {
10162       const char *msg;
10163 
10164       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10165 	/* xgettext:c-format */
10166 	msg = _("%pB: protected symbol `%s' isn't defined");
10167       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10168 	/* xgettext:c-format */
10169 	msg = _("%pB: internal symbol `%s' isn't defined");
10170       else
10171 	/* xgettext:c-format */
10172 	msg = _("%pB: hidden symbol `%s' isn't defined");
10173       _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10174       bfd_set_error (bfd_error_bad_value);
10175       eoinfo->failed = TRUE;
10176       return FALSE;
10177     }
10178 
10179   /* If this symbol should be put in the .dynsym section, then put it
10180      there now.  We already know the symbol index.  We also fill in
10181      the entry in the .hash section.  */
10182   if (h->dynindx != -1
10183       && elf_hash_table (flinfo->info)->dynamic_sections_created
10184       && elf_hash_table (flinfo->info)->dynsym != NULL
10185       && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10186     {
10187       bfd_byte *esym;
10188 
10189       /* Since there is no version information in the dynamic string,
10190 	 if there is no version info in symbol version section, we will
10191 	 have a run-time problem if not linking executable, referenced
10192 	 by shared library, or not bound locally.  */
10193       if (h->verinfo.verdef == NULL
10194 	  && (!bfd_link_executable (flinfo->info)
10195 	      || h->ref_dynamic
10196 	      || !h->def_regular))
10197 	{
10198 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10199 
10200 	  if (p && p [1] != '\0')
10201 	    {
10202 	      _bfd_error_handler
10203 		/* xgettext:c-format */
10204 		(_("%pB: no symbol version section for versioned symbol `%s'"),
10205 		 flinfo->output_bfd, h->root.root.string);
10206 	      eoinfo->failed = TRUE;
10207 	      return FALSE;
10208 	    }
10209 	}
10210 
10211       sym.st_name = h->dynstr_index;
10212       esym = (elf_hash_table (flinfo->info)->dynsym->contents
10213 	      + h->dynindx * bed->s->sizeof_sym);
10214       if (!check_dynsym (flinfo->output_bfd, &sym))
10215 	{
10216 	  eoinfo->failed = TRUE;
10217 	  return FALSE;
10218 	}
10219       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10220 
10221       if (flinfo->hash_sec != NULL)
10222 	{
10223 	  size_t hash_entry_size;
10224 	  bfd_byte *bucketpos;
10225 	  bfd_vma chain;
10226 	  size_t bucketcount;
10227 	  size_t bucket;
10228 
10229 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10230 	  bucket = h->u.elf_hash_value % bucketcount;
10231 
10232 	  hash_entry_size
10233 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10234 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10235 		       + (bucket + 2) * hash_entry_size);
10236 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10237 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10238 		   bucketpos);
10239 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10240 		   ((bfd_byte *) flinfo->hash_sec->contents
10241 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10242 	}
10243 
10244       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10245 	{
10246 	  Elf_Internal_Versym iversym;
10247 	  Elf_External_Versym *eversym;
10248 
10249 	  if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10250 	    {
10251 	      if (h->verinfo.verdef == NULL
10252 		  || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10253 		      & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10254 		iversym.vs_vers = 0;
10255 	      else
10256 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10257 	    }
10258 	  else
10259 	    {
10260 	      if (h->verinfo.vertree == NULL)
10261 		iversym.vs_vers = 1;
10262 	      else
10263 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10264 	      if (flinfo->info->create_default_symver)
10265 		iversym.vs_vers++;
10266 	    }
10267 
10268 	  /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10269 	     defined locally.  */
10270 	  if (h->versioned == versioned_hidden && h->def_regular)
10271 	    iversym.vs_vers |= VERSYM_HIDDEN;
10272 
10273 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10274 	  eversym += h->dynindx;
10275 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10276 	}
10277     }
10278 
10279   /* If the symbol is undefined, and we didn't output it to .dynsym,
10280      strip it from .symtab too.  Obviously we can't do this for
10281      relocatable output or when needed for --emit-relocs.  */
10282   else if (input_sec == bfd_und_section_ptr
10283 	   && h->indx != -2
10284 	   /* PR 22319 Do not strip global undefined symbols marked as being needed.  */
10285 	   && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10286 	   && !bfd_link_relocatable (flinfo->info))
10287     return TRUE;
10288 
10289   /* Also strip others that we couldn't earlier due to dynamic symbol
10290      processing.  */
10291   if (strip)
10292     return TRUE;
10293   if ((input_sec->flags & SEC_EXCLUDE) != 0)
10294     return TRUE;
10295 
10296   /* Output a FILE symbol so that following locals are not associated
10297      with the wrong input file.  We need one for forced local symbols
10298      if we've seen more than one FILE symbol or when we have exactly
10299      one FILE symbol but global symbols are present in a file other
10300      than the one with the FILE symbol.  We also need one if linker
10301      defined symbols are present.  In practice these conditions are
10302      always met, so just emit the FILE symbol unconditionally.  */
10303   if (eoinfo->localsyms
10304       && !eoinfo->file_sym_done
10305       && eoinfo->flinfo->filesym_count != 0)
10306     {
10307       Elf_Internal_Sym fsym;
10308 
10309       memset (&fsym, 0, sizeof (fsym));
10310       fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10311       fsym.st_shndx = SHN_ABS;
10312       if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10313 				      bfd_und_section_ptr, NULL))
10314 	return FALSE;
10315 
10316       eoinfo->file_sym_done = TRUE;
10317     }
10318 
10319   indx = bfd_get_symcount (flinfo->output_bfd);
10320   ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10321 				   input_sec, h);
10322   if (ret == 0)
10323     {
10324       eoinfo->failed = TRUE;
10325       return FALSE;
10326     }
10327   else if (ret == 1)
10328     h->indx = indx;
10329   else if (h->indx == -2)
10330     abort();
10331 
10332   return TRUE;
10333 }
10334 
10335 /* Return TRUE if special handling is done for relocs in SEC against
10336    symbols defined in discarded sections.  */
10337 
10338 static bfd_boolean
10339 elf_section_ignore_discarded_relocs (asection *sec)
10340 {
10341   const struct elf_backend_data *bed;
10342 
10343   switch (sec->sec_info_type)
10344     {
10345     case SEC_INFO_TYPE_STABS:
10346     case SEC_INFO_TYPE_EH_FRAME:
10347     case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10348       return TRUE;
10349     default:
10350       break;
10351     }
10352 
10353   bed = get_elf_backend_data (sec->owner);
10354   if (bed->elf_backend_ignore_discarded_relocs != NULL
10355       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10356     return TRUE;
10357 
10358   return FALSE;
10359 }
10360 
10361 /* Return a mask saying how ld should treat relocations in SEC against
10362    symbols defined in discarded sections.  If this function returns
10363    COMPLAIN set, ld will issue a warning message.  If this function
10364    returns PRETEND set, and the discarded section was link-once and the
10365    same size as the kept link-once section, ld will pretend that the
10366    symbol was actually defined in the kept section.  Otherwise ld will
10367    zero the reloc (at least that is the intent, but some cooperation by
10368    the target dependent code is needed, particularly for REL targets).  */
10369 
10370 unsigned int
10371 _bfd_elf_default_action_discarded (asection *sec)
10372 {
10373   if (sec->flags & SEC_DEBUGGING)
10374     return PRETEND;
10375 
10376   if (strcmp (".eh_frame", sec->name) == 0)
10377     return 0;
10378 
10379   if (strcmp (".gcc_except_table", sec->name) == 0)
10380     return 0;
10381 
10382   return COMPLAIN | PRETEND;
10383 }
10384 
10385 /* Find a match between a section and a member of a section group.  */
10386 
10387 static asection *
10388 match_group_member (asection *sec, asection *group,
10389 		    struct bfd_link_info *info)
10390 {
10391   asection *first = elf_next_in_group (group);
10392   asection *s = first;
10393 
10394   while (s != NULL)
10395     {
10396       if (bfd_elf_match_symbols_in_sections (s, sec, info))
10397 	return s;
10398 
10399       s = elf_next_in_group (s);
10400       if (s == first)
10401 	break;
10402     }
10403 
10404   return NULL;
10405 }
10406 
10407 /* Check if the kept section of a discarded section SEC can be used
10408    to replace it.  Return the replacement if it is OK.  Otherwise return
10409    NULL.  */
10410 
10411 asection *
10412 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10413 {
10414   asection *kept;
10415 
10416   kept = sec->kept_section;
10417   if (kept != NULL)
10418     {
10419       if ((kept->flags & SEC_GROUP) != 0)
10420 	kept = match_group_member (sec, kept, info);
10421       if (kept != NULL
10422 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10423 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10424 	kept = NULL;
10425       sec->kept_section = kept;
10426     }
10427   return kept;
10428 }
10429 
10430 /* Link an input file into the linker output file.  This function
10431    handles all the sections and relocations of the input file at once.
10432    This is so that we only have to read the local symbols once, and
10433    don't have to keep them in memory.  */
10434 
10435 static bfd_boolean
10436 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10437 {
10438   int (*relocate_section)
10439     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10440      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10441   bfd *output_bfd;
10442   Elf_Internal_Shdr *symtab_hdr;
10443   size_t locsymcount;
10444   size_t extsymoff;
10445   Elf_Internal_Sym *isymbuf;
10446   Elf_Internal_Sym *isym;
10447   Elf_Internal_Sym *isymend;
10448   long *pindex;
10449   asection **ppsection;
10450   asection *o;
10451   const struct elf_backend_data *bed;
10452   struct elf_link_hash_entry **sym_hashes;
10453   bfd_size_type address_size;
10454   bfd_vma r_type_mask;
10455   int r_sym_shift;
10456   bfd_boolean have_file_sym = FALSE;
10457 
10458   output_bfd = flinfo->output_bfd;
10459   bed = get_elf_backend_data (output_bfd);
10460   relocate_section = bed->elf_backend_relocate_section;
10461 
10462   /* If this is a dynamic object, we don't want to do anything here:
10463      we don't want the local symbols, and we don't want the section
10464      contents.  */
10465   if ((input_bfd->flags & DYNAMIC) != 0)
10466     return TRUE;
10467 
10468   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10469   if (elf_bad_symtab (input_bfd))
10470     {
10471       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10472       extsymoff = 0;
10473     }
10474   else
10475     {
10476       locsymcount = symtab_hdr->sh_info;
10477       extsymoff = symtab_hdr->sh_info;
10478     }
10479 
10480   /* Read the local symbols.  */
10481   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10482   if (isymbuf == NULL && locsymcount != 0)
10483     {
10484       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10485 				      flinfo->internal_syms,
10486 				      flinfo->external_syms,
10487 				      flinfo->locsym_shndx);
10488       if (isymbuf == NULL)
10489 	return FALSE;
10490     }
10491 
10492   /* Find local symbol sections and adjust values of symbols in
10493      SEC_MERGE sections.  Write out those local symbols we know are
10494      going into the output file.  */
10495   isymend = isymbuf + locsymcount;
10496   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10497        isym < isymend;
10498        isym++, pindex++, ppsection++)
10499     {
10500       asection *isec;
10501       const char *name;
10502       Elf_Internal_Sym osym;
10503       long indx;
10504       int ret;
10505 
10506       *pindex = -1;
10507 
10508       if (elf_bad_symtab (input_bfd))
10509 	{
10510 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10511 	    {
10512 	      *ppsection = NULL;
10513 	      continue;
10514 	    }
10515 	}
10516 
10517       if (isym->st_shndx == SHN_UNDEF)
10518 	isec = bfd_und_section_ptr;
10519       else if (isym->st_shndx == SHN_ABS)
10520 	isec = bfd_abs_section_ptr;
10521       else if (isym->st_shndx == SHN_COMMON)
10522 	isec = bfd_com_section_ptr;
10523       else
10524 	{
10525 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10526 	  if (isec == NULL)
10527 	    {
10528 	      /* Don't attempt to output symbols with st_shnx in the
10529 		 reserved range other than SHN_ABS and SHN_COMMON.  */
10530 	      isec = bfd_und_section_ptr;
10531 	    }
10532 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10533 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10534 	    isym->st_value =
10535 	      _bfd_merged_section_offset (output_bfd, &isec,
10536 					  elf_section_data (isec)->sec_info,
10537 					  isym->st_value);
10538 	}
10539 
10540       *ppsection = isec;
10541 
10542       /* Don't output the first, undefined, symbol.  In fact, don't
10543 	 output any undefined local symbol.  */
10544       if (isec == bfd_und_section_ptr)
10545 	continue;
10546 
10547       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10548 	{
10549 	  /* We never output section symbols.  Instead, we use the
10550 	     section symbol of the corresponding section in the output
10551 	     file.  */
10552 	  continue;
10553 	}
10554 
10555       /* If we are stripping all symbols, we don't want to output this
10556 	 one.  */
10557       if (flinfo->info->strip == strip_all)
10558 	continue;
10559 
10560       /* If we are discarding all local symbols, we don't want to
10561 	 output this one.  If we are generating a relocatable output
10562 	 file, then some of the local symbols may be required by
10563 	 relocs; we output them below as we discover that they are
10564 	 needed.  */
10565       if (flinfo->info->discard == discard_all)
10566 	continue;
10567 
10568       /* If this symbol is defined in a section which we are
10569 	 discarding, we don't need to keep it.  */
10570       if (isym->st_shndx != SHN_UNDEF
10571 	  && isym->st_shndx < SHN_LORESERVE
10572 	  && bfd_section_removed_from_list (output_bfd,
10573 					    isec->output_section))
10574 	continue;
10575 
10576       /* Get the name of the symbol.  */
10577       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10578 					      isym->st_name);
10579       if (name == NULL)
10580 	return FALSE;
10581 
10582       /* See if we are discarding symbols with this name.  */
10583       if ((flinfo->info->strip == strip_some
10584 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10585 	       == NULL))
10586 	  || (((flinfo->info->discard == discard_sec_merge
10587 		&& (isec->flags & SEC_MERGE)
10588 		&& !bfd_link_relocatable (flinfo->info))
10589 	       || flinfo->info->discard == discard_l)
10590 	      && bfd_is_local_label_name (input_bfd, name)))
10591 	continue;
10592 
10593       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10594 	{
10595 	  if (input_bfd->lto_output)
10596 	    /* -flto puts a temp file name here.  This means builds
10597 	       are not reproducible.  Discard the symbol.  */
10598 	    continue;
10599 	  have_file_sym = TRUE;
10600 	  flinfo->filesym_count += 1;
10601 	}
10602       if (!have_file_sym)
10603 	{
10604 	  /* In the absence of debug info, bfd_find_nearest_line uses
10605 	     FILE symbols to determine the source file for local
10606 	     function symbols.  Provide a FILE symbol here if input
10607 	     files lack such, so that their symbols won't be
10608 	     associated with a previous input file.  It's not the
10609 	     source file, but the best we can do.  */
10610 	  have_file_sym = TRUE;
10611 	  flinfo->filesym_count += 1;
10612 	  memset (&osym, 0, sizeof (osym));
10613 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10614 	  osym.st_shndx = SHN_ABS;
10615 	  if (!elf_link_output_symstrtab (flinfo,
10616 					  (input_bfd->lto_output ? NULL
10617 					   : input_bfd->filename),
10618 					  &osym, bfd_abs_section_ptr,
10619 					  NULL))
10620 	    return FALSE;
10621 	}
10622 
10623       osym = *isym;
10624 
10625       /* Adjust the section index for the output file.  */
10626       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10627 							 isec->output_section);
10628       if (osym.st_shndx == SHN_BAD)
10629 	return FALSE;
10630 
10631       /* ELF symbols in relocatable files are section relative, but
10632 	 in executable files they are virtual addresses.  Note that
10633 	 this code assumes that all ELF sections have an associated
10634 	 BFD section with a reasonable value for output_offset; below
10635 	 we assume that they also have a reasonable value for
10636 	 output_section.  Any special sections must be set up to meet
10637 	 these requirements.  */
10638       osym.st_value += isec->output_offset;
10639       if (!bfd_link_relocatable (flinfo->info))
10640 	{
10641 	  osym.st_value += isec->output_section->vma;
10642 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10643 	    {
10644 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
10645 	      if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10646 		osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10647 	      else
10648 		osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10649 					    STT_NOTYPE);
10650 	    }
10651 	}
10652 
10653       indx = bfd_get_symcount (output_bfd);
10654       ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10655       if (ret == 0)
10656 	return FALSE;
10657       else if (ret == 1)
10658 	*pindex = indx;
10659     }
10660 
10661   if (bed->s->arch_size == 32)
10662     {
10663       r_type_mask = 0xff;
10664       r_sym_shift = 8;
10665       address_size = 4;
10666     }
10667   else
10668     {
10669       r_type_mask = 0xffffffff;
10670       r_sym_shift = 32;
10671       address_size = 8;
10672     }
10673 
10674   /* Relocate the contents of each section.  */
10675   sym_hashes = elf_sym_hashes (input_bfd);
10676   for (o = input_bfd->sections; o != NULL; o = o->next)
10677     {
10678       bfd_byte *contents;
10679 
10680       if (! o->linker_mark)
10681 	{
10682 	  /* This section was omitted from the link.  */
10683 	  continue;
10684 	}
10685 
10686       if (!flinfo->info->resolve_section_groups
10687 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10688 	{
10689 	  /* Deal with the group signature symbol.  */
10690 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
10691 	  unsigned long symndx = sec_data->this_hdr.sh_info;
10692 	  asection *osec = o->output_section;
10693 
10694 	  BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10695 	  if (symndx >= locsymcount
10696 	      || (elf_bad_symtab (input_bfd)
10697 		  && flinfo->sections[symndx] == NULL))
10698 	    {
10699 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10700 	      while (h->root.type == bfd_link_hash_indirect
10701 		     || h->root.type == bfd_link_hash_warning)
10702 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
10703 	      /* Arrange for symbol to be output.  */
10704 	      h->indx = -2;
10705 	      elf_section_data (osec)->this_hdr.sh_info = -2;
10706 	    }
10707 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10708 	    {
10709 	      /* We'll use the output section target_index.  */
10710 	      asection *sec = flinfo->sections[symndx]->output_section;
10711 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10712 	    }
10713 	  else
10714 	    {
10715 	      if (flinfo->indices[symndx] == -1)
10716 		{
10717 		  /* Otherwise output the local symbol now.  */
10718 		  Elf_Internal_Sym sym = isymbuf[symndx];
10719 		  asection *sec = flinfo->sections[symndx]->output_section;
10720 		  const char *name;
10721 		  long indx;
10722 		  int ret;
10723 
10724 		  name = bfd_elf_string_from_elf_section (input_bfd,
10725 							  symtab_hdr->sh_link,
10726 							  sym.st_name);
10727 		  if (name == NULL)
10728 		    return FALSE;
10729 
10730 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10731 								    sec);
10732 		  if (sym.st_shndx == SHN_BAD)
10733 		    return FALSE;
10734 
10735 		  sym.st_value += o->output_offset;
10736 
10737 		  indx = bfd_get_symcount (output_bfd);
10738 		  ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10739 						   NULL);
10740 		  if (ret == 0)
10741 		    return FALSE;
10742 		  else if (ret == 1)
10743 		    flinfo->indices[symndx] = indx;
10744 		  else
10745 		    abort ();
10746 		}
10747 	      elf_section_data (osec)->this_hdr.sh_info
10748 		= flinfo->indices[symndx];
10749 	    }
10750 	}
10751 
10752       if ((o->flags & SEC_HAS_CONTENTS) == 0
10753 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10754 	continue;
10755 
10756       if ((o->flags & SEC_LINKER_CREATED) != 0)
10757 	{
10758 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
10759 	     or somesuch.  */
10760 	  continue;
10761 	}
10762 
10763       /* Get the contents of the section.  They have been cached by a
10764 	 relaxation routine.  Note that o is a section in an input
10765 	 file, so the contents field will not have been set by any of
10766 	 the routines which work on output files.  */
10767       if (elf_section_data (o)->this_hdr.contents != NULL)
10768 	{
10769 	  contents = elf_section_data (o)->this_hdr.contents;
10770 	  if (bed->caches_rawsize
10771 	      && o->rawsize != 0
10772 	      && o->rawsize < o->size)
10773 	    {
10774 	      memcpy (flinfo->contents, contents, o->rawsize);
10775 	      contents = flinfo->contents;
10776 	    }
10777 	}
10778       else
10779 	{
10780 	  contents = flinfo->contents;
10781 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10782 	    return FALSE;
10783 	}
10784 
10785       if ((o->flags & SEC_RELOC) != 0)
10786 	{
10787 	  Elf_Internal_Rela *internal_relocs;
10788 	  Elf_Internal_Rela *rel, *relend;
10789 	  int action_discarded;
10790 	  int ret;
10791 
10792 	  /* Get the swapped relocs.  */
10793 	  internal_relocs
10794 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10795 					 flinfo->internal_relocs, FALSE);
10796 	  if (internal_relocs == NULL
10797 	      && o->reloc_count > 0)
10798 	    return FALSE;
10799 
10800 	  /* We need to reverse-copy input .ctors/.dtors sections if
10801 	     they are placed in .init_array/.finit_array for output.  */
10802 	  if (o->size > address_size
10803 	      && ((strncmp (o->name, ".ctors", 6) == 0
10804 		   && strcmp (o->output_section->name,
10805 			      ".init_array") == 0)
10806 		  || (strncmp (o->name, ".dtors", 6) == 0
10807 		      && strcmp (o->output_section->name,
10808 				 ".fini_array") == 0))
10809 	      && (o->name[6] == 0 || o->name[6] == '.'))
10810 	    {
10811 	      if (o->size * bed->s->int_rels_per_ext_rel
10812 		  != o->reloc_count * address_size)
10813 		{
10814 		  _bfd_error_handler
10815 		    /* xgettext:c-format */
10816 		    (_("error: %pB: size of section %pA is not "
10817 		       "multiple of address size"),
10818 		     input_bfd, o);
10819 		  bfd_set_error (bfd_error_bad_value);
10820 		  return FALSE;
10821 		}
10822 	      o->flags |= SEC_ELF_REVERSE_COPY;
10823 	    }
10824 
10825 	  action_discarded = -1;
10826 	  if (!elf_section_ignore_discarded_relocs (o))
10827 	    action_discarded = (*bed->action_discarded) (o);
10828 
10829 	  /* Run through the relocs evaluating complex reloc symbols and
10830 	     looking for relocs against symbols from discarded sections
10831 	     or section symbols from removed link-once sections.
10832 	     Complain about relocs against discarded sections.  Zero
10833 	     relocs against removed link-once sections.  */
10834 
10835 	  rel = internal_relocs;
10836 	  relend = rel + o->reloc_count;
10837 	  for ( ; rel < relend; rel++)
10838 	    {
10839 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
10840 	      unsigned int s_type;
10841 	      asection **ps, *sec;
10842 	      struct elf_link_hash_entry *h = NULL;
10843 	      const char *sym_name;
10844 
10845 	      if (r_symndx == STN_UNDEF)
10846 		continue;
10847 
10848 	      if (r_symndx >= locsymcount
10849 		  || (elf_bad_symtab (input_bfd)
10850 		      && flinfo->sections[r_symndx] == NULL))
10851 		{
10852 		  h = sym_hashes[r_symndx - extsymoff];
10853 
10854 		  /* Badly formatted input files can contain relocs that
10855 		     reference non-existant symbols.  Check here so that
10856 		     we do not seg fault.  */
10857 		  if (h == NULL)
10858 		    {
10859 		      _bfd_error_handler
10860 			/* xgettext:c-format */
10861 			(_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10862 			   "that references a non-existent global symbol"),
10863 			 input_bfd, (uint64_t) rel->r_info, o);
10864 		      bfd_set_error (bfd_error_bad_value);
10865 		      return FALSE;
10866 		    }
10867 
10868 		  while (h->root.type == bfd_link_hash_indirect
10869 			 || h->root.type == bfd_link_hash_warning)
10870 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10871 
10872 		  s_type = h->type;
10873 
10874 		  /* If a plugin symbol is referenced from a non-IR file,
10875 		     mark the symbol as undefined.  Note that the
10876 		     linker may attach linker created dynamic sections
10877 		     to the plugin bfd.  Symbols defined in linker
10878 		     created sections are not plugin symbols.  */
10879 		  if ((h->root.non_ir_ref_regular
10880 		       || h->root.non_ir_ref_dynamic)
10881 		      && (h->root.type == bfd_link_hash_defined
10882 			  || h->root.type == bfd_link_hash_defweak)
10883 		      && (h->root.u.def.section->flags
10884 			  & SEC_LINKER_CREATED) == 0
10885 		      && h->root.u.def.section->owner != NULL
10886 		      && (h->root.u.def.section->owner->flags
10887 			  & BFD_PLUGIN) != 0)
10888 		    {
10889 		      h->root.type = bfd_link_hash_undefined;
10890 		      h->root.u.undef.abfd = h->root.u.def.section->owner;
10891 		    }
10892 
10893 		  ps = NULL;
10894 		  if (h->root.type == bfd_link_hash_defined
10895 		      || h->root.type == bfd_link_hash_defweak)
10896 		    ps = &h->root.u.def.section;
10897 
10898 		  sym_name = h->root.root.string;
10899 		}
10900 	      else
10901 		{
10902 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
10903 
10904 		  s_type = ELF_ST_TYPE (sym->st_info);
10905 		  ps = &flinfo->sections[r_symndx];
10906 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10907 					       sym, *ps);
10908 		}
10909 
10910 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
10911 		  && !bfd_link_relocatable (flinfo->info))
10912 		{
10913 		  bfd_vma val;
10914 		  bfd_vma dot = (rel->r_offset
10915 				 + o->output_offset + o->output_section->vma);
10916 #ifdef DEBUG
10917 		  printf ("Encountered a complex symbol!");
10918 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
10919 			  input_bfd->filename, o->name,
10920 			  (long) (rel - internal_relocs));
10921 		  printf (" symbol: idx  %8.8lx, name %s\n",
10922 			  r_symndx, sym_name);
10923 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
10924 			  (unsigned long) rel->r_info,
10925 			  (unsigned long) rel->r_offset);
10926 #endif
10927 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10928 				    isymbuf, locsymcount, s_type == STT_SRELC))
10929 		    return FALSE;
10930 
10931 		  /* Symbol evaluated OK.  Update to absolute value.  */
10932 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
10933 				    r_symndx, val);
10934 		  continue;
10935 		}
10936 
10937 	      if (action_discarded != -1 && ps != NULL)
10938 		{
10939 		  /* Complain if the definition comes from a
10940 		     discarded section.  */
10941 		  if ((sec = *ps) != NULL && discarded_section (sec))
10942 		    {
10943 		      BFD_ASSERT (r_symndx != STN_UNDEF);
10944 		      if (action_discarded & COMPLAIN)
10945 			(*flinfo->info->callbacks->einfo)
10946 			  /* xgettext:c-format */
10947 			  (_("%X`%s' referenced in section `%pA' of %pB: "
10948 			     "defined in discarded section `%pA' of %pB\n"),
10949 			   sym_name, o, input_bfd, sec, sec->owner);
10950 
10951 		      /* Try to do the best we can to support buggy old
10952 			 versions of gcc.  Pretend that the symbol is
10953 			 really defined in the kept linkonce section.
10954 			 FIXME: This is quite broken.  Modifying the
10955 			 symbol here means we will be changing all later
10956 			 uses of the symbol, not just in this section.  */
10957 		      if (action_discarded & PRETEND)
10958 			{
10959 			  asection *kept;
10960 
10961 			  kept = _bfd_elf_check_kept_section (sec,
10962 							      flinfo->info);
10963 			  if (kept != NULL)
10964 			    {
10965 			      *ps = kept;
10966 			      continue;
10967 			    }
10968 			}
10969 		    }
10970 		}
10971 	    }
10972 
10973 	  /* Relocate the section by invoking a back end routine.
10974 
10975 	     The back end routine is responsible for adjusting the
10976 	     section contents as necessary, and (if using Rela relocs
10977 	     and generating a relocatable output file) adjusting the
10978 	     reloc addend as necessary.
10979 
10980 	     The back end routine does not have to worry about setting
10981 	     the reloc address or the reloc symbol index.
10982 
10983 	     The back end routine is given a pointer to the swapped in
10984 	     internal symbols, and can access the hash table entries
10985 	     for the external symbols via elf_sym_hashes (input_bfd).
10986 
10987 	     When generating relocatable output, the back end routine
10988 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
10989 	     output symbol is going to be a section symbol
10990 	     corresponding to the output section, which will require
10991 	     the addend to be adjusted.  */
10992 
10993 	  ret = (*relocate_section) (output_bfd, flinfo->info,
10994 				     input_bfd, o, contents,
10995 				     internal_relocs,
10996 				     isymbuf,
10997 				     flinfo->sections);
10998 	  if (!ret)
10999 	    return FALSE;
11000 
11001 	  if (ret == 2
11002 	      || bfd_link_relocatable (flinfo->info)
11003 	      || flinfo->info->emitrelocations)
11004 	    {
11005 	      Elf_Internal_Rela *irela;
11006 	      Elf_Internal_Rela *irelaend, *irelamid;
11007 	      bfd_vma last_offset;
11008 	      struct elf_link_hash_entry **rel_hash;
11009 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11010 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11011 	      unsigned int next_erel;
11012 	      bfd_boolean rela_normal;
11013 	      struct bfd_elf_section_data *esdi, *esdo;
11014 
11015 	      esdi = elf_section_data (o);
11016 	      esdo = elf_section_data (o->output_section);
11017 	      rela_normal = FALSE;
11018 
11019 	      /* Adjust the reloc addresses and symbol indices.  */
11020 
11021 	      irela = internal_relocs;
11022 	      irelaend = irela + o->reloc_count;
11023 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
11024 	      /* We start processing the REL relocs, if any.  When we reach
11025 		 IRELAMID in the loop, we switch to the RELA relocs.  */
11026 	      irelamid = irela;
11027 	      if (esdi->rel.hdr != NULL)
11028 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11029 			     * bed->s->int_rels_per_ext_rel);
11030 	      rel_hash_list = rel_hash;
11031 	      rela_hash_list = NULL;
11032 	      last_offset = o->output_offset;
11033 	      if (!bfd_link_relocatable (flinfo->info))
11034 		last_offset += o->output_section->vma;
11035 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11036 		{
11037 		  unsigned long r_symndx;
11038 		  asection *sec;
11039 		  Elf_Internal_Sym sym;
11040 
11041 		  if (next_erel == bed->s->int_rels_per_ext_rel)
11042 		    {
11043 		      rel_hash++;
11044 		      next_erel = 0;
11045 		    }
11046 
11047 		  if (irela == irelamid)
11048 		    {
11049 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
11050 		      rela_hash_list = rel_hash;
11051 		      rela_normal = bed->rela_normal;
11052 		    }
11053 
11054 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
11055 							     flinfo->info, o,
11056 							     irela->r_offset);
11057 		  if (irela->r_offset >= (bfd_vma) -2)
11058 		    {
11059 		      /* This is a reloc for a deleted entry or somesuch.
11060 			 Turn it into an R_*_NONE reloc, at the same
11061 			 offset as the last reloc.  elf_eh_frame.c and
11062 			 bfd_elf_discard_info rely on reloc offsets
11063 			 being ordered.  */
11064 		      irela->r_offset = last_offset;
11065 		      irela->r_info = 0;
11066 		      irela->r_addend = 0;
11067 		      continue;
11068 		    }
11069 
11070 		  irela->r_offset += o->output_offset;
11071 
11072 		  /* Relocs in an executable have to be virtual addresses.  */
11073 		  if (!bfd_link_relocatable (flinfo->info))
11074 		    irela->r_offset += o->output_section->vma;
11075 
11076 		  last_offset = irela->r_offset;
11077 
11078 		  r_symndx = irela->r_info >> r_sym_shift;
11079 		  if (r_symndx == STN_UNDEF)
11080 		    continue;
11081 
11082 		  if (r_symndx >= locsymcount
11083 		      || (elf_bad_symtab (input_bfd)
11084 			  && flinfo->sections[r_symndx] == NULL))
11085 		    {
11086 		      struct elf_link_hash_entry *rh;
11087 		      unsigned long indx;
11088 
11089 		      /* This is a reloc against a global symbol.  We
11090 			 have not yet output all the local symbols, so
11091 			 we do not know the symbol index of any global
11092 			 symbol.  We set the rel_hash entry for this
11093 			 reloc to point to the global hash table entry
11094 			 for this symbol.  The symbol index is then
11095 			 set at the end of bfd_elf_final_link.  */
11096 		      indx = r_symndx - extsymoff;
11097 		      rh = elf_sym_hashes (input_bfd)[indx];
11098 		      while (rh->root.type == bfd_link_hash_indirect
11099 			     || rh->root.type == bfd_link_hash_warning)
11100 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11101 
11102 		      /* Setting the index to -2 tells
11103 			 elf_link_output_extsym that this symbol is
11104 			 used by a reloc.  */
11105 		      BFD_ASSERT (rh->indx < 0);
11106 		      rh->indx = -2;
11107 		      *rel_hash = rh;
11108 
11109 		      continue;
11110 		    }
11111 
11112 		  /* This is a reloc against a local symbol.  */
11113 
11114 		  *rel_hash = NULL;
11115 		  sym = isymbuf[r_symndx];
11116 		  sec = flinfo->sections[r_symndx];
11117 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11118 		    {
11119 		      /* I suppose the backend ought to fill in the
11120 			 section of any STT_SECTION symbol against a
11121 			 processor specific section.  */
11122 		      r_symndx = STN_UNDEF;
11123 		      if (bfd_is_abs_section (sec))
11124 			;
11125 		      else if (sec == NULL || sec->owner == NULL)
11126 			{
11127 			  bfd_set_error (bfd_error_bad_value);
11128 			  return FALSE;
11129 			}
11130 		      else
11131 			{
11132 			  asection *osec = sec->output_section;
11133 
11134 			  /* If we have discarded a section, the output
11135 			     section will be the absolute section.  In
11136 			     case of discarded SEC_MERGE sections, use
11137 			     the kept section.  relocate_section should
11138 			     have already handled discarded linkonce
11139 			     sections.  */
11140 			  if (bfd_is_abs_section (osec)
11141 			      && sec->kept_section != NULL
11142 			      && sec->kept_section->output_section != NULL)
11143 			    {
11144 			      osec = sec->kept_section->output_section;
11145 			      irela->r_addend -= osec->vma;
11146 			    }
11147 
11148 			  if (!bfd_is_abs_section (osec))
11149 			    {
11150 			      r_symndx = osec->target_index;
11151 			      if (r_symndx == STN_UNDEF)
11152 				{
11153 				  irela->r_addend += osec->vma;
11154 				  osec = _bfd_nearby_section (output_bfd, osec,
11155 							      osec->vma);
11156 				  irela->r_addend -= osec->vma;
11157 				  r_symndx = osec->target_index;
11158 				}
11159 			    }
11160 			}
11161 
11162 		      /* Adjust the addend according to where the
11163 			 section winds up in the output section.  */
11164 		      if (rela_normal)
11165 			irela->r_addend += sec->output_offset;
11166 		    }
11167 		  else
11168 		    {
11169 		      if (flinfo->indices[r_symndx] == -1)
11170 			{
11171 			  unsigned long shlink;
11172 			  const char *name;
11173 			  asection *osec;
11174 			  long indx;
11175 
11176 			  if (flinfo->info->strip == strip_all)
11177 			    {
11178 			      /* You can't do ld -r -s.  */
11179 			      bfd_set_error (bfd_error_invalid_operation);
11180 			      return FALSE;
11181 			    }
11182 
11183 			  /* This symbol was skipped earlier, but
11184 			     since it is needed by a reloc, we
11185 			     must output it now.  */
11186 			  shlink = symtab_hdr->sh_link;
11187 			  name = (bfd_elf_string_from_elf_section
11188 				  (input_bfd, shlink, sym.st_name));
11189 			  if (name == NULL)
11190 			    return FALSE;
11191 
11192 			  osec = sec->output_section;
11193 			  sym.st_shndx =
11194 			    _bfd_elf_section_from_bfd_section (output_bfd,
11195 							       osec);
11196 			  if (sym.st_shndx == SHN_BAD)
11197 			    return FALSE;
11198 
11199 			  sym.st_value += sec->output_offset;
11200 			  if (!bfd_link_relocatable (flinfo->info))
11201 			    {
11202 			      sym.st_value += osec->vma;
11203 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11204 				{
11205 				  struct elf_link_hash_table *htab
11206 				    = elf_hash_table (flinfo->info);
11207 
11208 				  /* STT_TLS symbols are relative to PT_TLS
11209 				     segment base.  */
11210 				  if (htab->tls_sec != NULL)
11211 				    sym.st_value -= htab->tls_sec->vma;
11212 				  else
11213 				    sym.st_info
11214 				      = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11215 						     STT_NOTYPE);
11216 				}
11217 			    }
11218 
11219 			  indx = bfd_get_symcount (output_bfd);
11220 			  ret = elf_link_output_symstrtab (flinfo, name,
11221 							   &sym, sec,
11222 							   NULL);
11223 			  if (ret == 0)
11224 			    return FALSE;
11225 			  else if (ret == 1)
11226 			    flinfo->indices[r_symndx] = indx;
11227 			  else
11228 			    abort ();
11229 			}
11230 
11231 		      r_symndx = flinfo->indices[r_symndx];
11232 		    }
11233 
11234 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11235 				   | (irela->r_info & r_type_mask));
11236 		}
11237 
11238 	      /* Swap out the relocs.  */
11239 	      input_rel_hdr = esdi->rel.hdr;
11240 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11241 		{
11242 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
11243 						     input_rel_hdr,
11244 						     internal_relocs,
11245 						     rel_hash_list))
11246 		    return FALSE;
11247 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11248 				      * bed->s->int_rels_per_ext_rel);
11249 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11250 		}
11251 
11252 	      input_rela_hdr = esdi->rela.hdr;
11253 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11254 		{
11255 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
11256 						     input_rela_hdr,
11257 						     internal_relocs,
11258 						     rela_hash_list))
11259 		    return FALSE;
11260 		}
11261 	    }
11262 	}
11263 
11264       /* Write out the modified section contents.  */
11265       if (bed->elf_backend_write_section
11266 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11267 						contents))
11268 	{
11269 	  /* Section written out.  */
11270 	}
11271       else switch (o->sec_info_type)
11272 	{
11273 	case SEC_INFO_TYPE_STABS:
11274 	  if (! (_bfd_write_section_stabs
11275 		 (output_bfd,
11276 		  &elf_hash_table (flinfo->info)->stab_info,
11277 		  o, &elf_section_data (o)->sec_info, contents)))
11278 	    return FALSE;
11279 	  break;
11280 	case SEC_INFO_TYPE_MERGE:
11281 	  if (! _bfd_write_merged_section (output_bfd, o,
11282 					   elf_section_data (o)->sec_info))
11283 	    return FALSE;
11284 	  break;
11285 	case SEC_INFO_TYPE_EH_FRAME:
11286 	  {
11287 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11288 						   o, contents))
11289 	      return FALSE;
11290 	  }
11291 	  break;
11292 	case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11293 	  {
11294 	    if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11295 							 flinfo->info,
11296 							 o, contents))
11297 	      return FALSE;
11298 	  }
11299 	  break;
11300 	default:
11301 	  {
11302 	    if (! (o->flags & SEC_EXCLUDE))
11303 	      {
11304 		file_ptr offset = (file_ptr) o->output_offset;
11305 		bfd_size_type todo = o->size;
11306 
11307 		offset *= bfd_octets_per_byte (output_bfd, o);
11308 
11309 		if ((o->flags & SEC_ELF_REVERSE_COPY))
11310 		  {
11311 		    /* Reverse-copy input section to output.  */
11312 		    do
11313 		      {
11314 			todo -= address_size;
11315 			if (! bfd_set_section_contents (output_bfd,
11316 							o->output_section,
11317 							contents + todo,
11318 							offset,
11319 							address_size))
11320 			  return FALSE;
11321 			if (todo == 0)
11322 			  break;
11323 			offset += address_size;
11324 		      }
11325 		    while (1);
11326 		  }
11327 		else if (! bfd_set_section_contents (output_bfd,
11328 						     o->output_section,
11329 						     contents,
11330 						     offset, todo))
11331 		  return FALSE;
11332 	      }
11333 	  }
11334 	  break;
11335 	}
11336     }
11337 
11338   return TRUE;
11339 }
11340 
11341 /* Generate a reloc when linking an ELF file.  This is a reloc
11342    requested by the linker, and does not come from any input file.  This
11343    is used to build constructor and destructor tables when linking
11344    with -Ur.  */
11345 
11346 static bfd_boolean
11347 elf_reloc_link_order (bfd *output_bfd,
11348 		      struct bfd_link_info *info,
11349 		      asection *output_section,
11350 		      struct bfd_link_order *link_order)
11351 {
11352   reloc_howto_type *howto;
11353   long indx;
11354   bfd_vma offset;
11355   bfd_vma addend;
11356   struct bfd_elf_section_reloc_data *reldata;
11357   struct elf_link_hash_entry **rel_hash_ptr;
11358   Elf_Internal_Shdr *rel_hdr;
11359   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11360   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11361   bfd_byte *erel;
11362   unsigned int i;
11363   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11364 
11365   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11366   if (howto == NULL)
11367     {
11368       bfd_set_error (bfd_error_bad_value);
11369       return FALSE;
11370     }
11371 
11372   addend = link_order->u.reloc.p->addend;
11373 
11374   if (esdo->rel.hdr)
11375     reldata = &esdo->rel;
11376   else if (esdo->rela.hdr)
11377     reldata = &esdo->rela;
11378   else
11379     {
11380       reldata = NULL;
11381       BFD_ASSERT (0);
11382     }
11383 
11384   /* Figure out the symbol index.  */
11385   rel_hash_ptr = reldata->hashes + reldata->count;
11386   if (link_order->type == bfd_section_reloc_link_order)
11387     {
11388       indx = link_order->u.reloc.p->u.section->target_index;
11389       BFD_ASSERT (indx != 0);
11390       *rel_hash_ptr = NULL;
11391     }
11392   else
11393     {
11394       struct elf_link_hash_entry *h;
11395 
11396       /* Treat a reloc against a defined symbol as though it were
11397 	 actually against the section.  */
11398       h = ((struct elf_link_hash_entry *)
11399 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
11400 					 link_order->u.reloc.p->u.name,
11401 					 FALSE, FALSE, TRUE));
11402       if (h != NULL
11403 	  && (h->root.type == bfd_link_hash_defined
11404 	      || h->root.type == bfd_link_hash_defweak))
11405 	{
11406 	  asection *section;
11407 
11408 	  section = h->root.u.def.section;
11409 	  indx = section->output_section->target_index;
11410 	  *rel_hash_ptr = NULL;
11411 	  /* It seems that we ought to add the symbol value to the
11412 	     addend here, but in practice it has already been added
11413 	     because it was passed to constructor_callback.  */
11414 	  addend += section->output_section->vma + section->output_offset;
11415 	}
11416       else if (h != NULL)
11417 	{
11418 	  /* Setting the index to -2 tells elf_link_output_extsym that
11419 	     this symbol is used by a reloc.  */
11420 	  h->indx = -2;
11421 	  *rel_hash_ptr = h;
11422 	  indx = 0;
11423 	}
11424       else
11425 	{
11426 	  (*info->callbacks->unattached_reloc)
11427 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11428 	  indx = 0;
11429 	}
11430     }
11431 
11432   /* If this is an inplace reloc, we must write the addend into the
11433      object file.  */
11434   if (howto->partial_inplace && addend != 0)
11435     {
11436       bfd_size_type size;
11437       bfd_reloc_status_type rstat;
11438       bfd_byte *buf;
11439       bfd_boolean ok;
11440       const char *sym_name;
11441       bfd_size_type octets;
11442 
11443       size = (bfd_size_type) bfd_get_reloc_size (howto);
11444       buf = (bfd_byte *) bfd_zmalloc (size);
11445       if (buf == NULL && size != 0)
11446 	return FALSE;
11447       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11448       switch (rstat)
11449 	{
11450 	case bfd_reloc_ok:
11451 	  break;
11452 
11453 	default:
11454 	case bfd_reloc_outofrange:
11455 	  abort ();
11456 
11457 	case bfd_reloc_overflow:
11458 	  if (link_order->type == bfd_section_reloc_link_order)
11459 	    sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11460 	  else
11461 	    sym_name = link_order->u.reloc.p->u.name;
11462 	  (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11463 					      howto->name, addend, NULL, NULL,
11464 					      (bfd_vma) 0);
11465 	  break;
11466 	}
11467 
11468       octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11469 							 output_section);
11470       ok = bfd_set_section_contents (output_bfd, output_section, buf,
11471 				     octets, size);
11472       free (buf);
11473       if (! ok)
11474 	return FALSE;
11475     }
11476 
11477   /* The address of a reloc is relative to the section in a
11478      relocatable file, and is a virtual address in an executable
11479      file.  */
11480   offset = link_order->offset;
11481   if (! bfd_link_relocatable (info))
11482     offset += output_section->vma;
11483 
11484   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11485     {
11486       irel[i].r_offset = offset;
11487       irel[i].r_info = 0;
11488       irel[i].r_addend = 0;
11489     }
11490   if (bed->s->arch_size == 32)
11491     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11492   else
11493     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11494 
11495   rel_hdr = reldata->hdr;
11496   erel = rel_hdr->contents;
11497   if (rel_hdr->sh_type == SHT_REL)
11498     {
11499       erel += reldata->count * bed->s->sizeof_rel;
11500       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11501     }
11502   else
11503     {
11504       irel[0].r_addend = addend;
11505       erel += reldata->count * bed->s->sizeof_rela;
11506       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11507     }
11508 
11509   ++reldata->count;
11510 
11511   return TRUE;
11512 }
11513 
11514 
11515 /* Compare two sections based on the locations of the sections they are
11516    linked to.  Used by elf_fixup_link_order.  */
11517 
11518 static int
11519 compare_link_order (const void *a, const void *b)
11520 {
11521   const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11522   const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11523   asection *asec = elf_linked_to_section (alo->u.indirect.section);
11524   asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11525   bfd_vma apos = asec->output_section->lma + asec->output_offset;
11526   bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11527 
11528   if (apos < bpos)
11529     return -1;
11530   if (apos > bpos)
11531     return 1;
11532 
11533   /* The only way we should get matching LMAs is when the first of two
11534      sections has zero size.  */
11535   if (asec->size < bsec->size)
11536     return -1;
11537   if (asec->size > bsec->size)
11538     return 1;
11539 
11540   /* If they are both zero size then they almost certainly have the same
11541      VMA and thus are not ordered with respect to each other.  Test VMA
11542      anyway, and fall back to id to make the result reproducible across
11543      qsort implementations.  */
11544   apos = asec->output_section->vma + asec->output_offset;
11545   bpos = bsec->output_section->vma + bsec->output_offset;
11546   if (apos < bpos)
11547     return -1;
11548   if (apos > bpos)
11549     return 1;
11550 
11551   return asec->id - bsec->id;
11552 }
11553 
11554 
11555 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
11556    order as their linked sections.  Returns false if this could not be done
11557    because an output section includes both ordered and unordered
11558    sections.  Ideally we'd do this in the linker proper.  */
11559 
11560 static bfd_boolean
11561 elf_fixup_link_order (bfd *abfd, asection *o)
11562 {
11563   size_t seen_linkorder;
11564   size_t seen_other;
11565   size_t n;
11566   struct bfd_link_order *p;
11567   bfd *sub;
11568   struct bfd_link_order **sections;
11569   asection *s, *other_sec, *linkorder_sec;
11570   bfd_vma offset;
11571 
11572   other_sec = NULL;
11573   linkorder_sec = NULL;
11574   seen_other = 0;
11575   seen_linkorder = 0;
11576   for (p = o->map_head.link_order; p != NULL; p = p->next)
11577     {
11578       if (p->type == bfd_indirect_link_order)
11579 	{
11580 	  s = p->u.indirect.section;
11581 	  sub = s->owner;
11582 	  if ((s->flags & SEC_LINKER_CREATED) == 0
11583 	      && bfd_get_flavour (sub) == bfd_target_elf_flavour
11584 	      && elf_section_data (s) != NULL
11585 	      && elf_linked_to_section (s) != NULL)
11586 	    {
11587 	      seen_linkorder++;
11588 	      linkorder_sec = s;
11589 	    }
11590 	  else
11591 	    {
11592 	      seen_other++;
11593 	      other_sec = s;
11594 	    }
11595 	}
11596       else
11597 	seen_other++;
11598 
11599       if (seen_other && seen_linkorder)
11600 	{
11601 	  if (other_sec && linkorder_sec)
11602 	    _bfd_error_handler
11603 	      /* xgettext:c-format */
11604 	      (_("%pA has both ordered [`%pA' in %pB] "
11605 		 "and unordered [`%pA' in %pB] sections"),
11606 	       o, linkorder_sec, linkorder_sec->owner,
11607 	       other_sec, other_sec->owner);
11608 	  else
11609 	    _bfd_error_handler
11610 	      (_("%pA has both ordered and unordered sections"), o);
11611 	  bfd_set_error (bfd_error_bad_value);
11612 	  return FALSE;
11613 	}
11614     }
11615 
11616   if (!seen_linkorder)
11617     return TRUE;
11618 
11619   sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11620   if (sections == NULL)
11621     return FALSE;
11622 
11623   seen_linkorder = 0;
11624   for (p = o->map_head.link_order; p != NULL; p = p->next)
11625     sections[seen_linkorder++] = p;
11626 
11627   /* Sort the input sections in the order of their linked section.  */
11628   qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11629 
11630   /* Change the offsets of the sections.  */
11631   offset = 0;
11632   for (n = 0; n < seen_linkorder; n++)
11633     {
11634       bfd_vma mask;
11635       s = sections[n]->u.indirect.section;
11636       mask = ~(bfd_vma) 0 << s->alignment_power;
11637       offset = (offset + ~mask) & mask;
11638       s->output_offset = offset / bfd_octets_per_byte (abfd, s);
11639       sections[n]->offset = offset;
11640       offset += sections[n]->size;
11641     }
11642 
11643   free (sections);
11644   return TRUE;
11645 }
11646 
11647 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11648    Returns TRUE upon success, FALSE otherwise.  */
11649 
11650 static bfd_boolean
11651 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11652 {
11653   bfd_boolean ret = FALSE;
11654   bfd *implib_bfd;
11655   const struct elf_backend_data *bed;
11656   flagword flags;
11657   enum bfd_architecture arch;
11658   unsigned int mach;
11659   asymbol **sympp = NULL;
11660   long symsize;
11661   long symcount;
11662   long src_count;
11663   elf_symbol_type *osymbuf;
11664 
11665   implib_bfd = info->out_implib_bfd;
11666   bed = get_elf_backend_data (abfd);
11667 
11668   if (!bfd_set_format (implib_bfd, bfd_object))
11669     return FALSE;
11670 
11671   /* Use flag from executable but make it a relocatable object.  */
11672   flags = bfd_get_file_flags (abfd);
11673   flags &= ~HAS_RELOC;
11674   if (!bfd_set_start_address (implib_bfd, 0)
11675       || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11676     return FALSE;
11677 
11678   /* Copy architecture of output file to import library file.  */
11679   arch = bfd_get_arch (abfd);
11680   mach = bfd_get_mach (abfd);
11681   if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11682       && (abfd->target_defaulted
11683 	  || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11684     return FALSE;
11685 
11686   /* Get symbol table size.  */
11687   symsize = bfd_get_symtab_upper_bound (abfd);
11688   if (symsize < 0)
11689     return FALSE;
11690 
11691   /* Read in the symbol table.  */
11692   sympp = (asymbol **) bfd_malloc (symsize);
11693   if (sympp == NULL)
11694     return FALSE;
11695 
11696   symcount = bfd_canonicalize_symtab (abfd, sympp);
11697   if (symcount < 0)
11698     goto free_sym_buf;
11699 
11700   /* Allow the BFD backend to copy any private header data it
11701      understands from the output BFD to the import library BFD.  */
11702   if (! bfd_copy_private_header_data (abfd, implib_bfd))
11703     goto free_sym_buf;
11704 
11705   /* Filter symbols to appear in the import library.  */
11706   if (bed->elf_backend_filter_implib_symbols)
11707     symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11708 						       symcount);
11709   else
11710     symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11711   if (symcount == 0)
11712     {
11713       bfd_set_error (bfd_error_no_symbols);
11714       _bfd_error_handler (_("%pB: no symbol found for import library"),
11715 			  implib_bfd);
11716       goto free_sym_buf;
11717     }
11718 
11719 
11720   /* Make symbols absolute.  */
11721   osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11722 					    sizeof (*osymbuf));
11723   if (osymbuf == NULL)
11724     goto free_sym_buf;
11725 
11726   for (src_count = 0; src_count < symcount; src_count++)
11727     {
11728       memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11729 	      sizeof (*osymbuf));
11730       osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11731       osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11732       osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11733       osymbuf[src_count].internal_elf_sym.st_value =
11734 	osymbuf[src_count].symbol.value;
11735       sympp[src_count] = &osymbuf[src_count].symbol;
11736     }
11737 
11738   bfd_set_symtab (implib_bfd, sympp, symcount);
11739 
11740   /* Allow the BFD backend to copy any private data it understands
11741      from the output BFD to the import library BFD.  This is done last
11742      to permit the routine to look at the filtered symbol table.  */
11743   if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11744     goto free_sym_buf;
11745 
11746   if (!bfd_close (implib_bfd))
11747     goto free_sym_buf;
11748 
11749   ret = TRUE;
11750 
11751 free_sym_buf:
11752   free (sympp);
11753   return ret;
11754 }
11755 
11756 static void
11757 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11758 {
11759   asection *o;
11760 
11761   if (flinfo->symstrtab != NULL)
11762     _bfd_elf_strtab_free (flinfo->symstrtab);
11763   if (flinfo->contents != NULL)
11764     free (flinfo->contents);
11765   if (flinfo->external_relocs != NULL)
11766     free (flinfo->external_relocs);
11767   if (flinfo->internal_relocs != NULL)
11768     free (flinfo->internal_relocs);
11769   if (flinfo->external_syms != NULL)
11770     free (flinfo->external_syms);
11771   if (flinfo->locsym_shndx != NULL)
11772     free (flinfo->locsym_shndx);
11773   if (flinfo->internal_syms != NULL)
11774     free (flinfo->internal_syms);
11775   if (flinfo->indices != NULL)
11776     free (flinfo->indices);
11777   if (flinfo->sections != NULL)
11778     free (flinfo->sections);
11779   if (flinfo->symshndxbuf != NULL
11780       && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11781     free (flinfo->symshndxbuf);
11782   for (o = obfd->sections; o != NULL; o = o->next)
11783     {
11784       struct bfd_elf_section_data *esdo = elf_section_data (o);
11785       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11786 	free (esdo->rel.hashes);
11787       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11788 	free (esdo->rela.hashes);
11789     }
11790 }
11791 
11792 /* Do the final step of an ELF link.  */
11793 
11794 bfd_boolean
11795 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11796 {
11797   bfd_boolean dynamic;
11798   bfd_boolean emit_relocs;
11799   bfd *dynobj;
11800   struct elf_final_link_info flinfo;
11801   asection *o;
11802   struct bfd_link_order *p;
11803   bfd *sub;
11804   bfd_size_type max_contents_size;
11805   bfd_size_type max_external_reloc_size;
11806   bfd_size_type max_internal_reloc_count;
11807   bfd_size_type max_sym_count;
11808   bfd_size_type max_sym_shndx_count;
11809   Elf_Internal_Sym elfsym;
11810   unsigned int i;
11811   Elf_Internal_Shdr *symtab_hdr;
11812   Elf_Internal_Shdr *symtab_shndx_hdr;
11813   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11814   struct elf_outext_info eoinfo;
11815   bfd_boolean merged;
11816   size_t relativecount = 0;
11817   asection *reldyn = 0;
11818   bfd_size_type amt;
11819   asection *attr_section = NULL;
11820   bfd_vma attr_size = 0;
11821   const char *std_attrs_section;
11822   struct elf_link_hash_table *htab = elf_hash_table (info);
11823   bfd_boolean sections_removed;
11824 
11825   if (!is_elf_hash_table (htab))
11826     return FALSE;
11827 
11828   if (bfd_link_pic (info))
11829     abfd->flags |= DYNAMIC;
11830 
11831   dynamic = htab->dynamic_sections_created;
11832   dynobj = htab->dynobj;
11833 
11834   emit_relocs = (bfd_link_relocatable (info)
11835 		 || info->emitrelocations);
11836 
11837   flinfo.info = info;
11838   flinfo.output_bfd = abfd;
11839   flinfo.symstrtab = _bfd_elf_strtab_init ();
11840   if (flinfo.symstrtab == NULL)
11841     return FALSE;
11842 
11843   if (! dynamic)
11844     {
11845       flinfo.hash_sec = NULL;
11846       flinfo.symver_sec = NULL;
11847     }
11848   else
11849     {
11850       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11851       /* Note that dynsym_sec can be NULL (on VMS).  */
11852       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11853       /* Note that it is OK if symver_sec is NULL.  */
11854     }
11855 
11856   flinfo.contents = NULL;
11857   flinfo.external_relocs = NULL;
11858   flinfo.internal_relocs = NULL;
11859   flinfo.external_syms = NULL;
11860   flinfo.locsym_shndx = NULL;
11861   flinfo.internal_syms = NULL;
11862   flinfo.indices = NULL;
11863   flinfo.sections = NULL;
11864   flinfo.symshndxbuf = NULL;
11865   flinfo.filesym_count = 0;
11866 
11867   /* The object attributes have been merged.  Remove the input
11868      sections from the link, and set the contents of the output
11869      section.  */
11870   sections_removed = FALSE;
11871   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11872   for (o = abfd->sections; o != NULL; o = o->next)
11873     {
11874       bfd_boolean remove_section = FALSE;
11875 
11876       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11877 	  || strcmp (o->name, ".gnu.attributes") == 0)
11878 	{
11879 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
11880 	    {
11881 	      asection *input_section;
11882 
11883 	      if (p->type != bfd_indirect_link_order)
11884 		continue;
11885 	      input_section = p->u.indirect.section;
11886 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
11887 		 elf_link_input_bfd ignores this section.  */
11888 	      input_section->flags &= ~SEC_HAS_CONTENTS;
11889 	    }
11890 
11891 	  attr_size = bfd_elf_obj_attr_size (abfd);
11892 	  bfd_set_section_size (o, attr_size);
11893 	  /* Skip this section later on.  */
11894 	  o->map_head.link_order = NULL;
11895 	  if (attr_size)
11896 	    attr_section = o;
11897 	  else
11898 	    remove_section = TRUE;
11899 	}
11900       else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11901 	{
11902 	  /* Remove empty group section from linker output.  */
11903 	  remove_section = TRUE;
11904 	}
11905       if (remove_section)
11906 	{
11907 	  o->flags |= SEC_EXCLUDE;
11908 	  bfd_section_list_remove (abfd, o);
11909 	  abfd->section_count--;
11910 	  sections_removed = TRUE;
11911 	}
11912     }
11913   if (sections_removed)
11914     _bfd_fix_excluded_sec_syms (abfd, info);
11915 
11916   /* Count up the number of relocations we will output for each output
11917      section, so that we know the sizes of the reloc sections.  We
11918      also figure out some maximum sizes.  */
11919   max_contents_size = 0;
11920   max_external_reloc_size = 0;
11921   max_internal_reloc_count = 0;
11922   max_sym_count = 0;
11923   max_sym_shndx_count = 0;
11924   merged = FALSE;
11925   for (o = abfd->sections; o != NULL; o = o->next)
11926     {
11927       struct bfd_elf_section_data *esdo = elf_section_data (o);
11928       o->reloc_count = 0;
11929 
11930       for (p = o->map_head.link_order; p != NULL; p = p->next)
11931 	{
11932 	  unsigned int reloc_count = 0;
11933 	  unsigned int additional_reloc_count = 0;
11934 	  struct bfd_elf_section_data *esdi = NULL;
11935 
11936 	  if (p->type == bfd_section_reloc_link_order
11937 	      || p->type == bfd_symbol_reloc_link_order)
11938 	    reloc_count = 1;
11939 	  else if (p->type == bfd_indirect_link_order)
11940 	    {
11941 	      asection *sec;
11942 
11943 	      sec = p->u.indirect.section;
11944 
11945 	      /* Mark all sections which are to be included in the
11946 		 link.  This will normally be every section.  We need
11947 		 to do this so that we can identify any sections which
11948 		 the linker has decided to not include.  */
11949 	      sec->linker_mark = TRUE;
11950 
11951 	      if (sec->flags & SEC_MERGE)
11952 		merged = TRUE;
11953 
11954 	      if (sec->rawsize > max_contents_size)
11955 		max_contents_size = sec->rawsize;
11956 	      if (sec->size > max_contents_size)
11957 		max_contents_size = sec->size;
11958 
11959 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11960 		  && (sec->owner->flags & DYNAMIC) == 0)
11961 		{
11962 		  size_t sym_count;
11963 
11964 		  /* We are interested in just local symbols, not all
11965 		     symbols.  */
11966 		  if (elf_bad_symtab (sec->owner))
11967 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11968 				 / bed->s->sizeof_sym);
11969 		  else
11970 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11971 
11972 		  if (sym_count > max_sym_count)
11973 		    max_sym_count = sym_count;
11974 
11975 		  if (sym_count > max_sym_shndx_count
11976 		      && elf_symtab_shndx_list (sec->owner) != NULL)
11977 		    max_sym_shndx_count = sym_count;
11978 
11979 		  if (esdo->this_hdr.sh_type == SHT_REL
11980 		      || esdo->this_hdr.sh_type == SHT_RELA)
11981 		    /* Some backends use reloc_count in relocation sections
11982 		       to count particular types of relocs.  Of course,
11983 		       reloc sections themselves can't have relocations.  */
11984 		    ;
11985 		  else if (emit_relocs)
11986 		    {
11987 		      reloc_count = sec->reloc_count;
11988 		      if (bed->elf_backend_count_additional_relocs)
11989 			{
11990 			  int c;
11991 			  c = (*bed->elf_backend_count_additional_relocs) (sec);
11992 			  additional_reloc_count += c;
11993 			}
11994 		    }
11995 		  else if (bed->elf_backend_count_relocs)
11996 		    reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11997 
11998 		  esdi = elf_section_data (sec);
11999 
12000 		  if ((sec->flags & SEC_RELOC) != 0)
12001 		    {
12002 		      size_t ext_size = 0;
12003 
12004 		      if (esdi->rel.hdr != NULL)
12005 			ext_size = esdi->rel.hdr->sh_size;
12006 		      if (esdi->rela.hdr != NULL)
12007 			ext_size += esdi->rela.hdr->sh_size;
12008 
12009 		      if (ext_size > max_external_reloc_size)
12010 			max_external_reloc_size = ext_size;
12011 		      if (sec->reloc_count > max_internal_reloc_count)
12012 			max_internal_reloc_count = sec->reloc_count;
12013 		    }
12014 		}
12015 	    }
12016 
12017 	  if (reloc_count == 0)
12018 	    continue;
12019 
12020 	  reloc_count += additional_reloc_count;
12021 	  o->reloc_count += reloc_count;
12022 
12023 	  if (p->type == bfd_indirect_link_order && emit_relocs)
12024 	    {
12025 	      if (esdi->rel.hdr)
12026 		{
12027 		  esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12028 		  esdo->rel.count += additional_reloc_count;
12029 		}
12030 	      if (esdi->rela.hdr)
12031 		{
12032 		  esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12033 		  esdo->rela.count += additional_reloc_count;
12034 		}
12035 	    }
12036 	  else
12037 	    {
12038 	      if (o->use_rela_p)
12039 		esdo->rela.count += reloc_count;
12040 	      else
12041 		esdo->rel.count += reloc_count;
12042 	    }
12043 	}
12044 
12045       if (o->reloc_count > 0)
12046 	o->flags |= SEC_RELOC;
12047       else
12048 	{
12049 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
12050 	     set it (this is probably a bug) and if it is set
12051 	     assign_section_numbers will create a reloc section.  */
12052 	  o->flags &=~ SEC_RELOC;
12053 	}
12054 
12055       /* If the SEC_ALLOC flag is not set, force the section VMA to
12056 	 zero.  This is done in elf_fake_sections as well, but forcing
12057 	 the VMA to 0 here will ensure that relocs against these
12058 	 sections are handled correctly.  */
12059       if ((o->flags & SEC_ALLOC) == 0
12060 	  && ! o->user_set_vma)
12061 	o->vma = 0;
12062     }
12063 
12064   if (! bfd_link_relocatable (info) && merged)
12065     elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12066 
12067   /* Figure out the file positions for everything but the symbol table
12068      and the relocs.  We set symcount to force assign_section_numbers
12069      to create a symbol table.  */
12070   abfd->symcount = info->strip != strip_all || emit_relocs;
12071   BFD_ASSERT (! abfd->output_has_begun);
12072   if (! _bfd_elf_compute_section_file_positions (abfd, info))
12073     goto error_return;
12074 
12075   /* Set sizes, and assign file positions for reloc sections.  */
12076   for (o = abfd->sections; o != NULL; o = o->next)
12077     {
12078       struct bfd_elf_section_data *esdo = elf_section_data (o);
12079       if ((o->flags & SEC_RELOC) != 0)
12080 	{
12081 	  if (esdo->rel.hdr
12082 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12083 	    goto error_return;
12084 
12085 	  if (esdo->rela.hdr
12086 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12087 	    goto error_return;
12088 	}
12089 
12090       /* _bfd_elf_compute_section_file_positions makes temporary use
12091 	 of target_index.  Reset it.  */
12092       o->target_index = 0;
12093 
12094       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12095 	 to count upwards while actually outputting the relocations.  */
12096       esdo->rel.count = 0;
12097       esdo->rela.count = 0;
12098 
12099       if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12100 	  && !bfd_section_is_ctf (o))
12101 	{
12102 	  /* Cache the section contents so that they can be compressed
12103 	     later.  Use bfd_malloc since it will be freed by
12104 	     bfd_compress_section_contents.  */
12105 	  unsigned char *contents = esdo->this_hdr.contents;
12106 	  if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12107 	    abort ();
12108 	  contents
12109 	    = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12110 	  if (contents == NULL)
12111 	    goto error_return;
12112 	  esdo->this_hdr.contents = contents;
12113 	}
12114     }
12115 
12116   /* We have now assigned file positions for all the sections except .symtab,
12117      .strtab, and non-loaded reloc and compressed debugging sections.  We start
12118      the .symtab section at the current file position, and write directly to it.
12119      We build the .strtab section in memory.  */
12120   abfd->symcount = 0;
12121   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12122   /* sh_name is set in prep_headers.  */
12123   symtab_hdr->sh_type = SHT_SYMTAB;
12124   /* sh_flags, sh_addr and sh_size all start off zero.  */
12125   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12126   /* sh_link is set in assign_section_numbers.  */
12127   /* sh_info is set below.  */
12128   /* sh_offset is set just below.  */
12129   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12130 
12131   if (max_sym_count < 20)
12132     max_sym_count = 20;
12133   htab->strtabsize = max_sym_count;
12134   amt = max_sym_count * sizeof (struct elf_sym_strtab);
12135   htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12136   if (htab->strtab == NULL)
12137     goto error_return;
12138   /* The real buffer will be allocated in elf_link_swap_symbols_out.  */
12139   flinfo.symshndxbuf
12140     = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12141        ? (Elf_External_Sym_Shndx *) -1 : NULL);
12142 
12143   if (info->strip != strip_all || emit_relocs)
12144     {
12145       file_ptr off = elf_next_file_pos (abfd);
12146 
12147       _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12148 
12149       /* Note that at this point elf_next_file_pos (abfd) is
12150 	 incorrect.  We do not yet know the size of the .symtab section.
12151 	 We correct next_file_pos below, after we do know the size.  */
12152 
12153       /* Start writing out the symbol table.  The first symbol is always a
12154 	 dummy symbol.  */
12155       elfsym.st_value = 0;
12156       elfsym.st_size = 0;
12157       elfsym.st_info = 0;
12158       elfsym.st_other = 0;
12159       elfsym.st_shndx = SHN_UNDEF;
12160       elfsym.st_target_internal = 0;
12161       if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12162 				     bfd_und_section_ptr, NULL) != 1)
12163 	goto error_return;
12164 
12165       /* Output a symbol for each section.  We output these even if we are
12166 	 discarding local symbols, since they are used for relocs.  These
12167 	 symbols have no names.  We store the index of each one in the
12168 	 index field of the section, so that we can find it again when
12169 	 outputting relocs.  */
12170 
12171       elfsym.st_size = 0;
12172       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12173       elfsym.st_other = 0;
12174       elfsym.st_value = 0;
12175       elfsym.st_target_internal = 0;
12176       for (i = 1; i < elf_numsections (abfd); i++)
12177 	{
12178 	  o = bfd_section_from_elf_index (abfd, i);
12179 	  if (o != NULL)
12180 	    {
12181 	      o->target_index = bfd_get_symcount (abfd);
12182 	      elfsym.st_shndx = i;
12183 	      if (!bfd_link_relocatable (info))
12184 		elfsym.st_value = o->vma;
12185 	      if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12186 					     NULL) != 1)
12187 		goto error_return;
12188 	    }
12189 	}
12190     }
12191 
12192   /* Allocate some memory to hold information read in from the input
12193      files.  */
12194   if (max_contents_size != 0)
12195     {
12196       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12197       if (flinfo.contents == NULL)
12198 	goto error_return;
12199     }
12200 
12201   if (max_external_reloc_size != 0)
12202     {
12203       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12204       if (flinfo.external_relocs == NULL)
12205 	goto error_return;
12206     }
12207 
12208   if (max_internal_reloc_count != 0)
12209     {
12210       amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12211       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12212       if (flinfo.internal_relocs == NULL)
12213 	goto error_return;
12214     }
12215 
12216   if (max_sym_count != 0)
12217     {
12218       amt = max_sym_count * bed->s->sizeof_sym;
12219       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12220       if (flinfo.external_syms == NULL)
12221 	goto error_return;
12222 
12223       amt = max_sym_count * sizeof (Elf_Internal_Sym);
12224       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12225       if (flinfo.internal_syms == NULL)
12226 	goto error_return;
12227 
12228       amt = max_sym_count * sizeof (long);
12229       flinfo.indices = (long int *) bfd_malloc (amt);
12230       if (flinfo.indices == NULL)
12231 	goto error_return;
12232 
12233       amt = max_sym_count * sizeof (asection *);
12234       flinfo.sections = (asection **) bfd_malloc (amt);
12235       if (flinfo.sections == NULL)
12236 	goto error_return;
12237     }
12238 
12239   if (max_sym_shndx_count != 0)
12240     {
12241       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12242       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12243       if (flinfo.locsym_shndx == NULL)
12244 	goto error_return;
12245     }
12246 
12247   if (htab->tls_sec)
12248     {
12249       bfd_vma base, end = 0;
12250       asection *sec;
12251 
12252       for (sec = htab->tls_sec;
12253 	   sec && (sec->flags & SEC_THREAD_LOCAL);
12254 	   sec = sec->next)
12255 	{
12256 	  bfd_size_type size = sec->size;
12257 
12258 	  if (size == 0
12259 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
12260 	    {
12261 	      struct bfd_link_order *ord = sec->map_tail.link_order;
12262 
12263 	      if (ord != NULL)
12264 		size = ord->offset + ord->size;
12265 	    }
12266 	  end = sec->vma + size;
12267 	}
12268       base = htab->tls_sec->vma;
12269       /* Only align end of TLS section if static TLS doesn't have special
12270 	 alignment requirements.  */
12271       if (bed->static_tls_alignment == 1)
12272 	end = align_power (end, htab->tls_sec->alignment_power);
12273       htab->tls_size = end - base;
12274     }
12275 
12276   /* Reorder SHF_LINK_ORDER sections.  */
12277   for (o = abfd->sections; o != NULL; o = o->next)
12278     {
12279       if (!elf_fixup_link_order (abfd, o))
12280 	return FALSE;
12281     }
12282 
12283   if (!_bfd_elf_fixup_eh_frame_hdr (info))
12284     return FALSE;
12285 
12286   /* Since ELF permits relocations to be against local symbols, we
12287      must have the local symbols available when we do the relocations.
12288      Since we would rather only read the local symbols once, and we
12289      would rather not keep them in memory, we handle all the
12290      relocations for a single input file at the same time.
12291 
12292      Unfortunately, there is no way to know the total number of local
12293      symbols until we have seen all of them, and the local symbol
12294      indices precede the global symbol indices.  This means that when
12295      we are generating relocatable output, and we see a reloc against
12296      a global symbol, we can not know the symbol index until we have
12297      finished examining all the local symbols to see which ones we are
12298      going to output.  To deal with this, we keep the relocations in
12299      memory, and don't output them until the end of the link.  This is
12300      an unfortunate waste of memory, but I don't see a good way around
12301      it.  Fortunately, it only happens when performing a relocatable
12302      link, which is not the common case.  FIXME: If keep_memory is set
12303      we could write the relocs out and then read them again; I don't
12304      know how bad the memory loss will be.  */
12305 
12306   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12307     sub->output_has_begun = FALSE;
12308   for (o = abfd->sections; o != NULL; o = o->next)
12309     {
12310       for (p = o->map_head.link_order; p != NULL; p = p->next)
12311 	{
12312 	  if (p->type == bfd_indirect_link_order
12313 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12314 		  == bfd_target_elf_flavour)
12315 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12316 	    {
12317 	      if (! sub->output_has_begun)
12318 		{
12319 		  if (! elf_link_input_bfd (&flinfo, sub))
12320 		    goto error_return;
12321 		  sub->output_has_begun = TRUE;
12322 		}
12323 	    }
12324 	  else if (p->type == bfd_section_reloc_link_order
12325 		   || p->type == bfd_symbol_reloc_link_order)
12326 	    {
12327 	      if (! elf_reloc_link_order (abfd, info, o, p))
12328 		goto error_return;
12329 	    }
12330 	  else
12331 	    {
12332 	      if (! _bfd_default_link_order (abfd, info, o, p))
12333 		{
12334 		  if (p->type == bfd_indirect_link_order
12335 		      && (bfd_get_flavour (sub)
12336 			  == bfd_target_elf_flavour)
12337 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
12338 			  != bed->s->elfclass))
12339 		    {
12340 		      const char *iclass, *oclass;
12341 
12342 		      switch (bed->s->elfclass)
12343 			{
12344 			case ELFCLASS64: oclass = "ELFCLASS64"; break;
12345 			case ELFCLASS32: oclass = "ELFCLASS32"; break;
12346 			case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12347 			default: abort ();
12348 			}
12349 
12350 		      switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12351 			{
12352 			case ELFCLASS64: iclass = "ELFCLASS64"; break;
12353 			case ELFCLASS32: iclass = "ELFCLASS32"; break;
12354 			case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12355 			default: abort ();
12356 			}
12357 
12358 		      bfd_set_error (bfd_error_wrong_format);
12359 		      _bfd_error_handler
12360 			/* xgettext:c-format */
12361 			(_("%pB: file class %s incompatible with %s"),
12362 			 sub, iclass, oclass);
12363 		    }
12364 
12365 		  goto error_return;
12366 		}
12367 	    }
12368 	}
12369     }
12370 
12371   /* Free symbol buffer if needed.  */
12372   if (!info->reduce_memory_overheads)
12373     {
12374       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12375 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12376 	    && elf_tdata (sub)->symbuf)
12377 	  {
12378 	    free (elf_tdata (sub)->symbuf);
12379 	    elf_tdata (sub)->symbuf = NULL;
12380 	  }
12381     }
12382 
12383   /* Output any global symbols that got converted to local in a
12384      version script or due to symbol visibility.  We do this in a
12385      separate step since ELF requires all local symbols to appear
12386      prior to any global symbols.  FIXME: We should only do this if
12387      some global symbols were, in fact, converted to become local.
12388      FIXME: Will this work correctly with the Irix 5 linker?  */
12389   eoinfo.failed = FALSE;
12390   eoinfo.flinfo = &flinfo;
12391   eoinfo.localsyms = TRUE;
12392   eoinfo.file_sym_done = FALSE;
12393   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12394   if (eoinfo.failed)
12395     return FALSE;
12396 
12397   /* If backend needs to output some local symbols not present in the hash
12398      table, do it now.  */
12399   if (bed->elf_backend_output_arch_local_syms
12400       && (info->strip != strip_all || emit_relocs))
12401     {
12402       typedef int (*out_sym_func)
12403 	(void *, const char *, Elf_Internal_Sym *, asection *,
12404 	 struct elf_link_hash_entry *);
12405 
12406       if (! ((*bed->elf_backend_output_arch_local_syms)
12407 	     (abfd, info, &flinfo,
12408 	      (out_sym_func) elf_link_output_symstrtab)))
12409 	return FALSE;
12410     }
12411 
12412   /* That wrote out all the local symbols.  Finish up the symbol table
12413      with the global symbols. Even if we want to strip everything we
12414      can, we still need to deal with those global symbols that got
12415      converted to local in a version script.  */
12416 
12417   /* The sh_info field records the index of the first non local symbol.  */
12418   symtab_hdr->sh_info = bfd_get_symcount (abfd);
12419 
12420   if (dynamic
12421       && htab->dynsym != NULL
12422       && htab->dynsym->output_section != bfd_abs_section_ptr)
12423     {
12424       Elf_Internal_Sym sym;
12425       bfd_byte *dynsym = htab->dynsym->contents;
12426 
12427       o = htab->dynsym->output_section;
12428       elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12429 
12430       /* Write out the section symbols for the output sections.  */
12431       if (bfd_link_pic (info)
12432 	  || htab->is_relocatable_executable)
12433 	{
12434 	  asection *s;
12435 
12436 	  sym.st_size = 0;
12437 	  sym.st_name = 0;
12438 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12439 	  sym.st_other = 0;
12440 	  sym.st_target_internal = 0;
12441 
12442 	  for (s = abfd->sections; s != NULL; s = s->next)
12443 	    {
12444 	      int indx;
12445 	      bfd_byte *dest;
12446 	      long dynindx;
12447 
12448 	      dynindx = elf_section_data (s)->dynindx;
12449 	      if (dynindx <= 0)
12450 		continue;
12451 	      indx = elf_section_data (s)->this_idx;
12452 	      BFD_ASSERT (indx > 0);
12453 	      sym.st_shndx = indx;
12454 	      if (! check_dynsym (abfd, &sym))
12455 		return FALSE;
12456 	      sym.st_value = s->vma;
12457 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
12458 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12459 	    }
12460 	}
12461 
12462       /* Write out the local dynsyms.  */
12463       if (htab->dynlocal)
12464 	{
12465 	  struct elf_link_local_dynamic_entry *e;
12466 	  for (e = htab->dynlocal; e ; e = e->next)
12467 	    {
12468 	      asection *s;
12469 	      bfd_byte *dest;
12470 
12471 	      /* Copy the internal symbol and turn off visibility.
12472 		 Note that we saved a word of storage and overwrote
12473 		 the original st_name with the dynstr_index.  */
12474 	      sym = e->isym;
12475 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12476 
12477 	      s = bfd_section_from_elf_index (e->input_bfd,
12478 					      e->isym.st_shndx);
12479 	      if (s != NULL)
12480 		{
12481 		  sym.st_shndx =
12482 		    elf_section_data (s->output_section)->this_idx;
12483 		  if (! check_dynsym (abfd, &sym))
12484 		    return FALSE;
12485 		  sym.st_value = (s->output_section->vma
12486 				  + s->output_offset
12487 				  + e->isym.st_value);
12488 		}
12489 
12490 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12491 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12492 	    }
12493 	}
12494     }
12495 
12496   /* We get the global symbols from the hash table.  */
12497   eoinfo.failed = FALSE;
12498   eoinfo.localsyms = FALSE;
12499   eoinfo.flinfo = &flinfo;
12500   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12501   if (eoinfo.failed)
12502     return FALSE;
12503 
12504   /* If backend needs to output some symbols not present in the hash
12505      table, do it now.  */
12506   if (bed->elf_backend_output_arch_syms
12507       && (info->strip != strip_all || emit_relocs))
12508     {
12509       typedef int (*out_sym_func)
12510 	(void *, const char *, Elf_Internal_Sym *, asection *,
12511 	 struct elf_link_hash_entry *);
12512 
12513       if (! ((*bed->elf_backend_output_arch_syms)
12514 	     (abfd, info, &flinfo,
12515 	      (out_sym_func) elf_link_output_symstrtab)))
12516 	return FALSE;
12517     }
12518 
12519   /* Finalize the .strtab section.  */
12520   _bfd_elf_strtab_finalize (flinfo.symstrtab);
12521 
12522   /* Swap out the .strtab section. */
12523   if (!elf_link_swap_symbols_out (&flinfo))
12524     return FALSE;
12525 
12526   /* Now we know the size of the symtab section.  */
12527   if (bfd_get_symcount (abfd) > 0)
12528     {
12529       /* Finish up and write out the symbol string table (.strtab)
12530 	 section.  */
12531       Elf_Internal_Shdr *symstrtab_hdr = NULL;
12532       file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12533 
12534       if (elf_symtab_shndx_list (abfd))
12535 	{
12536 	  symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12537 
12538 	  if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12539 	    {
12540 	      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12541 	      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12542 	      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12543 	      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12544 	      symtab_shndx_hdr->sh_size = amt;
12545 
12546 	      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12547 							       off, TRUE);
12548 
12549 	      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12550 		  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12551 		return FALSE;
12552 	    }
12553 	}
12554 
12555       symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12556       /* sh_name was set in prep_headers.  */
12557       symstrtab_hdr->sh_type = SHT_STRTAB;
12558       symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12559       symstrtab_hdr->sh_addr = 0;
12560       symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12561       symstrtab_hdr->sh_entsize = 0;
12562       symstrtab_hdr->sh_link = 0;
12563       symstrtab_hdr->sh_info = 0;
12564       /* sh_offset is set just below.  */
12565       symstrtab_hdr->sh_addralign = 1;
12566 
12567       off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12568 						       off, TRUE);
12569       elf_next_file_pos (abfd) = off;
12570 
12571       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12572 	  || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12573 	return FALSE;
12574     }
12575 
12576   if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12577     {
12578       _bfd_error_handler (_("%pB: failed to generate import library"),
12579 			  info->out_implib_bfd);
12580       return FALSE;
12581     }
12582 
12583   /* Adjust the relocs to have the correct symbol indices.  */
12584   for (o = abfd->sections; o != NULL; o = o->next)
12585     {
12586       struct bfd_elf_section_data *esdo = elf_section_data (o);
12587       bfd_boolean sort;
12588 
12589       if ((o->flags & SEC_RELOC) == 0)
12590 	continue;
12591 
12592       sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12593       if (esdo->rel.hdr != NULL
12594 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12595 	return FALSE;
12596       if (esdo->rela.hdr != NULL
12597 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12598 	return FALSE;
12599 
12600       /* Set the reloc_count field to 0 to prevent write_relocs from
12601 	 trying to swap the relocs out itself.  */
12602       o->reloc_count = 0;
12603     }
12604 
12605   if (dynamic && info->combreloc && dynobj != NULL)
12606     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12607 
12608   /* If we are linking against a dynamic object, or generating a
12609      shared library, finish up the dynamic linking information.  */
12610   if (dynamic)
12611     {
12612       bfd_byte *dyncon, *dynconend;
12613 
12614       /* Fix up .dynamic entries.  */
12615       o = bfd_get_linker_section (dynobj, ".dynamic");
12616       BFD_ASSERT (o != NULL);
12617 
12618       dyncon = o->contents;
12619       dynconend = o->contents + o->size;
12620       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12621 	{
12622 	  Elf_Internal_Dyn dyn;
12623 	  const char *name;
12624 	  unsigned int type;
12625 	  bfd_size_type sh_size;
12626 	  bfd_vma sh_addr;
12627 
12628 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12629 
12630 	  switch (dyn.d_tag)
12631 	    {
12632 	    default:
12633 	      continue;
12634 	    case DT_NULL:
12635 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12636 		{
12637 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
12638 		    {
12639 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12640 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12641 		    default: continue;
12642 		    }
12643 		  dyn.d_un.d_val = relativecount;
12644 		  relativecount = 0;
12645 		  break;
12646 		}
12647 	      continue;
12648 
12649 	    case DT_INIT:
12650 	      name = info->init_function;
12651 	      goto get_sym;
12652 	    case DT_FINI:
12653 	      name = info->fini_function;
12654 	    get_sym:
12655 	      {
12656 		struct elf_link_hash_entry *h;
12657 
12658 		h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12659 		if (h != NULL
12660 		    && (h->root.type == bfd_link_hash_defined
12661 			|| h->root.type == bfd_link_hash_defweak))
12662 		  {
12663 		    dyn.d_un.d_ptr = h->root.u.def.value;
12664 		    o = h->root.u.def.section;
12665 		    if (o->output_section != NULL)
12666 		      dyn.d_un.d_ptr += (o->output_section->vma
12667 					 + o->output_offset);
12668 		    else
12669 		      {
12670 			/* The symbol is imported from another shared
12671 			   library and does not apply to this one.  */
12672 			dyn.d_un.d_ptr = 0;
12673 		      }
12674 		    break;
12675 		  }
12676 	      }
12677 	      continue;
12678 
12679 	    case DT_PREINIT_ARRAYSZ:
12680 	      name = ".preinit_array";
12681 	      goto get_out_size;
12682 	    case DT_INIT_ARRAYSZ:
12683 	      name = ".init_array";
12684 	      goto get_out_size;
12685 	    case DT_FINI_ARRAYSZ:
12686 	      name = ".fini_array";
12687 	    get_out_size:
12688 	      o = bfd_get_section_by_name (abfd, name);
12689 	      if (o == NULL)
12690 		{
12691 		  _bfd_error_handler
12692 		    (_("could not find section %s"), name);
12693 		  goto error_return;
12694 		}
12695 	      if (o->size == 0)
12696 		_bfd_error_handler
12697 		  (_("warning: %s section has zero size"), name);
12698 	      dyn.d_un.d_val = o->size;
12699 	      break;
12700 
12701 	    case DT_PREINIT_ARRAY:
12702 	      name = ".preinit_array";
12703 	      goto get_out_vma;
12704 	    case DT_INIT_ARRAY:
12705 	      name = ".init_array";
12706 	      goto get_out_vma;
12707 	    case DT_FINI_ARRAY:
12708 	      name = ".fini_array";
12709 	    get_out_vma:
12710 	      o = bfd_get_section_by_name (abfd, name);
12711 	      goto do_vma;
12712 
12713 	    case DT_HASH:
12714 	      name = ".hash";
12715 	      goto get_vma;
12716 	    case DT_GNU_HASH:
12717 	      name = ".gnu.hash";
12718 	      goto get_vma;
12719 	    case DT_STRTAB:
12720 	      name = ".dynstr";
12721 	      goto get_vma;
12722 	    case DT_SYMTAB:
12723 	      name = ".dynsym";
12724 	      goto get_vma;
12725 	    case DT_VERDEF:
12726 	      name = ".gnu.version_d";
12727 	      goto get_vma;
12728 	    case DT_VERNEED:
12729 	      name = ".gnu.version_r";
12730 	      goto get_vma;
12731 	    case DT_VERSYM:
12732 	      name = ".gnu.version";
12733 	    get_vma:
12734 	      o = bfd_get_linker_section (dynobj, name);
12735 	    do_vma:
12736 	      if (o == NULL || bfd_is_abs_section (o->output_section))
12737 		{
12738 		  _bfd_error_handler
12739 		    (_("could not find section %s"), name);
12740 		  goto error_return;
12741 		}
12742 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12743 		{
12744 		  _bfd_error_handler
12745 		    (_("warning: section '%s' is being made into a note"), name);
12746 		  bfd_set_error (bfd_error_nonrepresentable_section);
12747 		  goto error_return;
12748 		}
12749 	      dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12750 	      break;
12751 
12752 	    case DT_REL:
12753 	    case DT_RELA:
12754 	    case DT_RELSZ:
12755 	    case DT_RELASZ:
12756 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12757 		type = SHT_REL;
12758 	      else
12759 		type = SHT_RELA;
12760 	      sh_size = 0;
12761 	      sh_addr = 0;
12762 	      for (i = 1; i < elf_numsections (abfd); i++)
12763 		{
12764 		  Elf_Internal_Shdr *hdr;
12765 
12766 		  hdr = elf_elfsections (abfd)[i];
12767 		  if (hdr->sh_type == type
12768 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
12769 		    {
12770 		      sh_size += hdr->sh_size;
12771 		      if (sh_addr == 0
12772 			  || sh_addr > hdr->sh_addr)
12773 			sh_addr = hdr->sh_addr;
12774 		    }
12775 		}
12776 
12777 	      if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12778 		{
12779 		  /* Don't count procedure linkage table relocs in the
12780 		     overall reloc count.  */
12781 		  sh_size -= htab->srelplt->size;
12782 		  if (sh_size == 0)
12783 		    /* If the size is zero, make the address zero too.
12784 		       This is to avoid a glibc bug.  If the backend
12785 		       emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12786 		       zero, then we'll put DT_RELA at the end of
12787 		       DT_JMPREL.  glibc will interpret the end of
12788 		       DT_RELA matching the end of DT_JMPREL as the
12789 		       case where DT_RELA includes DT_JMPREL, and for
12790 		       LD_BIND_NOW will decide that processing DT_RELA
12791 		       will process the PLT relocs too.  Net result:
12792 		       No PLT relocs applied.  */
12793 		    sh_addr = 0;
12794 
12795 		  /* If .rela.plt is the first .rela section, exclude
12796 		     it from DT_RELA.  */
12797 		  else if (sh_addr == (htab->srelplt->output_section->vma
12798 				       + htab->srelplt->output_offset))
12799 		    sh_addr += htab->srelplt->size;
12800 		}
12801 
12802 	      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12803 		dyn.d_un.d_val = sh_size;
12804 	      else
12805 		dyn.d_un.d_ptr = sh_addr;
12806 	      break;
12807 	    }
12808 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12809 	}
12810     }
12811 
12812   /* If we have created any dynamic sections, then output them.  */
12813   if (dynobj != NULL)
12814     {
12815       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12816 	goto error_return;
12817 
12818       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
12819       if (((info->warn_shared_textrel && bfd_link_pic (info))
12820 	   || info->error_textrel)
12821 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12822 	{
12823 	  bfd_byte *dyncon, *dynconend;
12824 
12825 	  dyncon = o->contents;
12826 	  dynconend = o->contents + o->size;
12827 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12828 	    {
12829 	      Elf_Internal_Dyn dyn;
12830 
12831 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12832 
12833 	      if (dyn.d_tag == DT_TEXTREL)
12834 		{
12835 		  if (info->error_textrel)
12836 		    info->callbacks->einfo
12837 		      (_("%P%X: read-only segment has dynamic relocations\n"));
12838 		  else
12839 		    info->callbacks->einfo
12840 		      (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12841 		  break;
12842 		}
12843 	    }
12844 	}
12845 
12846       for (o = dynobj->sections; o != NULL; o = o->next)
12847 	{
12848 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
12849 	      || o->size == 0
12850 	      || o->output_section == bfd_abs_section_ptr)
12851 	    continue;
12852 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
12853 	    {
12854 	      /* At this point, we are only interested in sections
12855 		 created by _bfd_elf_link_create_dynamic_sections.  */
12856 	      continue;
12857 	    }
12858 	  if (htab->stab_info.stabstr == o)
12859 	    continue;
12860 	  if (htab->eh_info.hdr_sec == o)
12861 	    continue;
12862 	  if (strcmp (o->name, ".dynstr") != 0)
12863 	    {
12864 	      bfd_size_type octets = ((file_ptr) o->output_offset
12865 				      * bfd_octets_per_byte (abfd, o));
12866 	      if (!bfd_set_section_contents (abfd, o->output_section,
12867 					     o->contents, octets, o->size))
12868 		goto error_return;
12869 	    }
12870 	  else
12871 	    {
12872 	      /* The contents of the .dynstr section are actually in a
12873 		 stringtab.  */
12874 	      file_ptr off;
12875 
12876 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12877 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
12878 		  || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12879 		goto error_return;
12880 	    }
12881 	}
12882     }
12883 
12884   if (!info->resolve_section_groups)
12885     {
12886       bfd_boolean failed = FALSE;
12887 
12888       BFD_ASSERT (bfd_link_relocatable (info));
12889       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12890       if (failed)
12891 	goto error_return;
12892     }
12893 
12894   /* If we have optimized stabs strings, output them.  */
12895   if (htab->stab_info.stabstr != NULL)
12896     {
12897       if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12898 	goto error_return;
12899     }
12900 
12901   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12902     goto error_return;
12903 
12904   if (info->callbacks->emit_ctf)
12905       info->callbacks->emit_ctf ();
12906 
12907   elf_final_link_free (abfd, &flinfo);
12908 
12909   if (attr_section)
12910     {
12911       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12912       if (contents == NULL)
12913 	return FALSE;	/* Bail out and fail.  */
12914       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12915       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12916       free (contents);
12917     }
12918 
12919   return TRUE;
12920 
12921  error_return:
12922   elf_final_link_free (abfd, &flinfo);
12923   return FALSE;
12924 }
12925 
12926 /* Initialize COOKIE for input bfd ABFD.  */
12927 
12928 static bfd_boolean
12929 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12930 		   struct bfd_link_info *info, bfd *abfd)
12931 {
12932   Elf_Internal_Shdr *symtab_hdr;
12933   const struct elf_backend_data *bed;
12934 
12935   bed = get_elf_backend_data (abfd);
12936   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12937 
12938   cookie->abfd = abfd;
12939   cookie->sym_hashes = elf_sym_hashes (abfd);
12940   cookie->bad_symtab = elf_bad_symtab (abfd);
12941   if (cookie->bad_symtab)
12942     {
12943       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12944       cookie->extsymoff = 0;
12945     }
12946   else
12947     {
12948       cookie->locsymcount = symtab_hdr->sh_info;
12949       cookie->extsymoff = symtab_hdr->sh_info;
12950     }
12951 
12952   if (bed->s->arch_size == 32)
12953     cookie->r_sym_shift = 8;
12954   else
12955     cookie->r_sym_shift = 32;
12956 
12957   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12958   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12959     {
12960       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12961 					      cookie->locsymcount, 0,
12962 					      NULL, NULL, NULL);
12963       if (cookie->locsyms == NULL)
12964 	{
12965 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12966 	  return FALSE;
12967 	}
12968       if (info->keep_memory)
12969 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12970     }
12971   return TRUE;
12972 }
12973 
12974 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
12975 
12976 static void
12977 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12978 {
12979   Elf_Internal_Shdr *symtab_hdr;
12980 
12981   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12982   if (cookie->locsyms != NULL
12983       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12984     free (cookie->locsyms);
12985 }
12986 
12987 /* Initialize the relocation information in COOKIE for input section SEC
12988    of input bfd ABFD.  */
12989 
12990 static bfd_boolean
12991 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12992 			struct bfd_link_info *info, bfd *abfd,
12993 			asection *sec)
12994 {
12995   if (sec->reloc_count == 0)
12996     {
12997       cookie->rels = NULL;
12998       cookie->relend = NULL;
12999     }
13000   else
13001     {
13002       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13003 						info->keep_memory);
13004       if (cookie->rels == NULL)
13005 	return FALSE;
13006       cookie->rel = cookie->rels;
13007       cookie->relend = cookie->rels + sec->reloc_count;
13008     }
13009   cookie->rel = cookie->rels;
13010   return TRUE;
13011 }
13012 
13013 /* Free the memory allocated by init_reloc_cookie_rels,
13014    if appropriate.  */
13015 
13016 static void
13017 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13018 			asection *sec)
13019 {
13020   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13021     free (cookie->rels);
13022 }
13023 
13024 /* Initialize the whole of COOKIE for input section SEC.  */
13025 
13026 static bfd_boolean
13027 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13028 			       struct bfd_link_info *info,
13029 			       asection *sec)
13030 {
13031   if (!init_reloc_cookie (cookie, info, sec->owner))
13032     goto error1;
13033   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13034     goto error2;
13035   return TRUE;
13036 
13037  error2:
13038   fini_reloc_cookie (cookie, sec->owner);
13039  error1:
13040   return FALSE;
13041 }
13042 
13043 /* Free the memory allocated by init_reloc_cookie_for_section,
13044    if appropriate.  */
13045 
13046 static void
13047 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13048 			       asection *sec)
13049 {
13050   fini_reloc_cookie_rels (cookie, sec);
13051   fini_reloc_cookie (cookie, sec->owner);
13052 }
13053 
13054 /* Garbage collect unused sections.  */
13055 
13056 /* Default gc_mark_hook.  */
13057 
13058 asection *
13059 _bfd_elf_gc_mark_hook (asection *sec,
13060 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
13061 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13062 		       struct elf_link_hash_entry *h,
13063 		       Elf_Internal_Sym *sym)
13064 {
13065   if (h != NULL)
13066     {
13067       switch (h->root.type)
13068 	{
13069 	case bfd_link_hash_defined:
13070 	case bfd_link_hash_defweak:
13071 	  return h->root.u.def.section;
13072 
13073 	case bfd_link_hash_common:
13074 	  return h->root.u.c.p->section;
13075 
13076 	default:
13077 	  break;
13078 	}
13079     }
13080   else
13081     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13082 
13083   return NULL;
13084 }
13085 
13086 /* Return the debug definition section.  */
13087 
13088 static asection *
13089 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13090 			   struct bfd_link_info *info ATTRIBUTE_UNUSED,
13091 			   Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13092 			   struct elf_link_hash_entry *h,
13093 			   Elf_Internal_Sym *sym)
13094 {
13095   if (h != NULL)
13096     {
13097       /* Return the global debug definition section.  */
13098       if ((h->root.type == bfd_link_hash_defined
13099 	   || h->root.type == bfd_link_hash_defweak)
13100 	  && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13101 	return h->root.u.def.section;
13102     }
13103   else
13104     {
13105       /* Return the local debug definition section.  */
13106       asection *isec = bfd_section_from_elf_index (sec->owner,
13107 						   sym->st_shndx);
13108       if ((isec->flags & SEC_DEBUGGING) != 0)
13109 	return isec;
13110     }
13111 
13112   return NULL;
13113 }
13114 
13115 /* COOKIE->rel describes a relocation against section SEC, which is
13116    a section we've decided to keep.  Return the section that contains
13117    the relocation symbol, or NULL if no section contains it.  */
13118 
13119 asection *
13120 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13121 		       elf_gc_mark_hook_fn gc_mark_hook,
13122 		       struct elf_reloc_cookie *cookie,
13123 		       bfd_boolean *start_stop)
13124 {
13125   unsigned long r_symndx;
13126   struct elf_link_hash_entry *h, *hw;
13127 
13128   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13129   if (r_symndx == STN_UNDEF)
13130     return NULL;
13131 
13132   if (r_symndx >= cookie->locsymcount
13133       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13134     {
13135       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13136       if (h == NULL)
13137 	{
13138 	  info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13139 				  sec->owner);
13140 	  return NULL;
13141 	}
13142       while (h->root.type == bfd_link_hash_indirect
13143 	     || h->root.type == bfd_link_hash_warning)
13144 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
13145       h->mark = 1;
13146       /* Keep all aliases of the symbol too.  If an object symbol
13147 	 needs to be copied into .dynbss then all of its aliases
13148 	 should be present as dynamic symbols, not just the one used
13149 	 on the copy relocation.  */
13150       hw = h;
13151       while (hw->is_weakalias)
13152 	{
13153 	  hw = hw->u.alias;
13154 	  hw->mark = 1;
13155 	}
13156 
13157       if (start_stop != NULL)
13158 	{
13159 	  /* To work around a glibc bug, mark XXX input sections
13160 	     when there is a reference to __start_XXX or __stop_XXX
13161 	     symbols.  */
13162 	  if (h->start_stop)
13163 	    {
13164 	      asection *s = h->u2.start_stop_section;
13165 	      *start_stop = !s->gc_mark;
13166 	      return s;
13167 	    }
13168 	}
13169 
13170       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13171     }
13172 
13173   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13174 			  &cookie->locsyms[r_symndx]);
13175 }
13176 
13177 /* COOKIE->rel describes a relocation against section SEC, which is
13178    a section we've decided to keep.  Mark the section that contains
13179    the relocation symbol.  */
13180 
13181 bfd_boolean
13182 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13183 			asection *sec,
13184 			elf_gc_mark_hook_fn gc_mark_hook,
13185 			struct elf_reloc_cookie *cookie)
13186 {
13187   asection *rsec;
13188   bfd_boolean start_stop = FALSE;
13189 
13190   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13191   while (rsec != NULL)
13192     {
13193       if (!rsec->gc_mark)
13194 	{
13195 	  if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13196 	      || (rsec->owner->flags & DYNAMIC) != 0)
13197 	    rsec->gc_mark = 1;
13198 	  else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13199 	    return FALSE;
13200 	}
13201       if (!start_stop)
13202 	break;
13203       rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13204     }
13205   return TRUE;
13206 }
13207 
13208 /* The mark phase of garbage collection.  For a given section, mark
13209    it and any sections in this section's group, and all the sections
13210    which define symbols to which it refers.  */
13211 
13212 bfd_boolean
13213 _bfd_elf_gc_mark (struct bfd_link_info *info,
13214 		  asection *sec,
13215 		  elf_gc_mark_hook_fn gc_mark_hook)
13216 {
13217   bfd_boolean ret;
13218   asection *group_sec, *eh_frame;
13219 
13220   sec->gc_mark = 1;
13221 
13222   /* Mark all the sections in the group.  */
13223   group_sec = elf_section_data (sec)->next_in_group;
13224   if (group_sec && !group_sec->gc_mark)
13225     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13226       return FALSE;
13227 
13228   /* Look through the section relocs.  */
13229   ret = TRUE;
13230   eh_frame = elf_eh_frame_section (sec->owner);
13231   if ((sec->flags & SEC_RELOC) != 0
13232       && sec->reloc_count > 0
13233       && sec != eh_frame)
13234     {
13235       struct elf_reloc_cookie cookie;
13236 
13237       if (!init_reloc_cookie_for_section (&cookie, info, sec))
13238 	ret = FALSE;
13239       else
13240 	{
13241 	  for (; cookie.rel < cookie.relend; cookie.rel++)
13242 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13243 	      {
13244 		ret = FALSE;
13245 		break;
13246 	      }
13247 	  fini_reloc_cookie_for_section (&cookie, sec);
13248 	}
13249     }
13250 
13251   if (ret && eh_frame && elf_fde_list (sec))
13252     {
13253       struct elf_reloc_cookie cookie;
13254 
13255       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13256 	ret = FALSE;
13257       else
13258 	{
13259 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13260 				      gc_mark_hook, &cookie))
13261 	    ret = FALSE;
13262 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
13263 	}
13264     }
13265 
13266   eh_frame = elf_section_eh_frame_entry (sec);
13267   if (ret && eh_frame && !eh_frame->gc_mark)
13268     if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13269       ret = FALSE;
13270 
13271   return ret;
13272 }
13273 
13274 /* Scan and mark sections in a special or debug section group.  */
13275 
13276 static void
13277 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13278 {
13279   /* Point to first section of section group.  */
13280   asection *ssec;
13281   /* Used to iterate the section group.  */
13282   asection *msec;
13283 
13284   bfd_boolean is_special_grp = TRUE;
13285   bfd_boolean is_debug_grp = TRUE;
13286 
13287   /* First scan to see if group contains any section other than debug
13288      and special section.  */
13289   ssec = msec = elf_next_in_group (grp);
13290   do
13291     {
13292       if ((msec->flags & SEC_DEBUGGING) == 0)
13293 	is_debug_grp = FALSE;
13294 
13295       if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13296 	is_special_grp = FALSE;
13297 
13298       msec = elf_next_in_group (msec);
13299     }
13300   while (msec != ssec);
13301 
13302   /* If this is a pure debug section group or pure special section group,
13303      keep all sections in this group.  */
13304   if (is_debug_grp || is_special_grp)
13305     {
13306       do
13307 	{
13308 	  msec->gc_mark = 1;
13309 	  msec = elf_next_in_group (msec);
13310 	}
13311       while (msec != ssec);
13312     }
13313 }
13314 
13315 /* Keep debug and special sections.  */
13316 
13317 bfd_boolean
13318 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13319 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13320 {
13321   bfd *ibfd;
13322 
13323   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13324     {
13325       asection *isec;
13326       bfd_boolean some_kept;
13327       bfd_boolean debug_frag_seen;
13328       bfd_boolean has_kept_debug_info;
13329 
13330       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13331 	continue;
13332       isec = ibfd->sections;
13333       if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13334 	continue;
13335 
13336       /* Ensure all linker created sections are kept,
13337 	 see if any other section is already marked,
13338 	 and note if we have any fragmented debug sections.  */
13339       debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13340       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13341 	{
13342 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
13343 	    isec->gc_mark = 1;
13344 	  else if (isec->gc_mark
13345 		   && (isec->flags & SEC_ALLOC) != 0
13346 		   && elf_section_type (isec) != SHT_NOTE)
13347 	    some_kept = TRUE;
13348 
13349 	  if (!debug_frag_seen
13350 	      && (isec->flags & SEC_DEBUGGING)
13351 	      && CONST_STRNEQ (isec->name, ".debug_line."))
13352 	    debug_frag_seen = TRUE;
13353 	}
13354 
13355       /* If no non-note alloc section in this file will be kept, then
13356 	 we can toss out the debug and special sections.  */
13357       if (!some_kept)
13358 	continue;
13359 
13360       /* Keep debug and special sections like .comment when they are
13361 	 not part of a group.  Also keep section groups that contain
13362 	 just debug sections or special sections.  */
13363       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13364 	{
13365 	  if ((isec->flags & SEC_GROUP) != 0)
13366 	    _bfd_elf_gc_mark_debug_special_section_group (isec);
13367 	  else if (((isec->flags & SEC_DEBUGGING) != 0
13368 		    || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13369 		   && elf_next_in_group (isec) == NULL)
13370 	    isec->gc_mark = 1;
13371 	  if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13372 	    has_kept_debug_info = TRUE;
13373 	}
13374 
13375       /* Look for CODE sections which are going to be discarded,
13376 	 and find and discard any fragmented debug sections which
13377 	 are associated with that code section.  */
13378       if (debug_frag_seen)
13379 	for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13380 	  if ((isec->flags & SEC_CODE) != 0
13381 	      && isec->gc_mark == 0)
13382 	    {
13383 	      unsigned int ilen;
13384 	      asection *dsec;
13385 
13386 	      ilen = strlen (isec->name);
13387 
13388 	      /* Association is determined by the name of the debug
13389 		 section containing the name of the code section as
13390 		 a suffix.  For example .debug_line.text.foo is a
13391 		 debug section associated with .text.foo.  */
13392 	      for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13393 		{
13394 		  unsigned int dlen;
13395 
13396 		  if (dsec->gc_mark == 0
13397 		      || (dsec->flags & SEC_DEBUGGING) == 0)
13398 		    continue;
13399 
13400 		  dlen = strlen (dsec->name);
13401 
13402 		  if (dlen > ilen
13403 		      && strncmp (dsec->name + (dlen - ilen),
13404 				  isec->name, ilen) == 0)
13405 		    dsec->gc_mark = 0;
13406 		}
13407 	  }
13408 
13409       /* Mark debug sections referenced by kept debug sections.  */
13410       if (has_kept_debug_info)
13411 	for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13412 	  if (isec->gc_mark
13413 	      && (isec->flags & SEC_DEBUGGING) != 0)
13414 	    if (!_bfd_elf_gc_mark (info, isec,
13415 				   elf_gc_mark_debug_section))
13416 	      return FALSE;
13417     }
13418   return TRUE;
13419 }
13420 
13421 static bfd_boolean
13422 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13423 {
13424   bfd *sub;
13425   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13426 
13427   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13428     {
13429       asection *o;
13430 
13431       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13432 	  || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13433 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13434 	continue;
13435       o = sub->sections;
13436       if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13437 	continue;
13438 
13439       for (o = sub->sections; o != NULL; o = o->next)
13440 	{
13441 	  /* When any section in a section group is kept, we keep all
13442 	     sections in the section group.  If the first member of
13443 	     the section group is excluded, we will also exclude the
13444 	     group section.  */
13445 	  if (o->flags & SEC_GROUP)
13446 	    {
13447 	      asection *first = elf_next_in_group (o);
13448 	      o->gc_mark = first->gc_mark;
13449 	    }
13450 
13451 	  if (o->gc_mark)
13452 	    continue;
13453 
13454 	  /* Skip sweeping sections already excluded.  */
13455 	  if (o->flags & SEC_EXCLUDE)
13456 	    continue;
13457 
13458 	  /* Since this is early in the link process, it is simple
13459 	     to remove a section from the output.  */
13460 	  o->flags |= SEC_EXCLUDE;
13461 
13462 	  if (info->print_gc_sections && o->size != 0)
13463 	    /* xgettext:c-format */
13464 	    _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13465 				o, sub);
13466 	}
13467     }
13468 
13469   return TRUE;
13470 }
13471 
13472 /* Propagate collected vtable information.  This is called through
13473    elf_link_hash_traverse.  */
13474 
13475 static bfd_boolean
13476 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13477 {
13478   /* Those that are not vtables.  */
13479   if (h->start_stop
13480       || h->u2.vtable == NULL
13481       || h->u2.vtable->parent == NULL)
13482     return TRUE;
13483 
13484   /* Those vtables that do not have parents, we cannot merge.  */
13485   if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13486     return TRUE;
13487 
13488   /* If we've already been done, exit.  */
13489   if (h->u2.vtable->used && h->u2.vtable->used[-1])
13490     return TRUE;
13491 
13492   /* Make sure the parent's table is up to date.  */
13493   elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13494 
13495   if (h->u2.vtable->used == NULL)
13496     {
13497       /* None of this table's entries were referenced.  Re-use the
13498 	 parent's table.  */
13499       h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13500       h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13501     }
13502   else
13503     {
13504       size_t n;
13505       bfd_boolean *cu, *pu;
13506 
13507       /* Or the parent's entries into ours.  */
13508       cu = h->u2.vtable->used;
13509       cu[-1] = TRUE;
13510       pu = h->u2.vtable->parent->u2.vtable->used;
13511       if (pu != NULL)
13512 	{
13513 	  const struct elf_backend_data *bed;
13514 	  unsigned int log_file_align;
13515 
13516 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
13517 	  log_file_align = bed->s->log_file_align;
13518 	  n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13519 	  while (n--)
13520 	    {
13521 	      if (*pu)
13522 		*cu = TRUE;
13523 	      pu++;
13524 	      cu++;
13525 	    }
13526 	}
13527     }
13528 
13529   return TRUE;
13530 }
13531 
13532 static bfd_boolean
13533 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13534 {
13535   asection *sec;
13536   bfd_vma hstart, hend;
13537   Elf_Internal_Rela *relstart, *relend, *rel;
13538   const struct elf_backend_data *bed;
13539   unsigned int log_file_align;
13540 
13541   /* Take care of both those symbols that do not describe vtables as
13542      well as those that are not loaded.  */
13543   if (h->start_stop
13544       || h->u2.vtable == NULL
13545       || h->u2.vtable->parent == NULL)
13546     return TRUE;
13547 
13548   BFD_ASSERT (h->root.type == bfd_link_hash_defined
13549 	      || h->root.type == bfd_link_hash_defweak);
13550 
13551   sec = h->root.u.def.section;
13552   hstart = h->root.u.def.value;
13553   hend = hstart + h->size;
13554 
13555   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13556   if (!relstart)
13557     return *(bfd_boolean *) okp = FALSE;
13558   bed = get_elf_backend_data (sec->owner);
13559   log_file_align = bed->s->log_file_align;
13560 
13561   relend = relstart + sec->reloc_count;
13562 
13563   for (rel = relstart; rel < relend; ++rel)
13564     if (rel->r_offset >= hstart && rel->r_offset < hend)
13565       {
13566 	/* If the entry is in use, do nothing.  */
13567 	if (h->u2.vtable->used
13568 	    && (rel->r_offset - hstart) < h->u2.vtable->size)
13569 	  {
13570 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13571 	    if (h->u2.vtable->used[entry])
13572 	      continue;
13573 	  }
13574 	/* Otherwise, kill it.  */
13575 	rel->r_offset = rel->r_info = rel->r_addend = 0;
13576       }
13577 
13578   return TRUE;
13579 }
13580 
13581 /* Mark sections containing dynamically referenced symbols.  When
13582    building shared libraries, we must assume that any visible symbol is
13583    referenced.  */
13584 
13585 bfd_boolean
13586 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13587 {
13588   struct bfd_link_info *info = (struct bfd_link_info *) inf;
13589   struct bfd_elf_dynamic_list *d = info->dynamic_list;
13590 
13591   if ((h->root.type == bfd_link_hash_defined
13592        || h->root.type == bfd_link_hash_defweak)
13593       && ((h->ref_dynamic && !h->forced_local)
13594 	  || ((h->def_regular || ELF_COMMON_DEF_P (h))
13595 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13596 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13597 	      && (!bfd_link_executable (info)
13598 		  || info->gc_keep_exported
13599 		  || info->export_dynamic
13600 		  || (h->dynamic
13601 		      && d != NULL
13602 		      && (*d->match) (&d->head, NULL, h->root.root.string)))
13603 	      && (h->versioned >= versioned
13604 		  || !bfd_hide_sym_by_version (info->version_info,
13605 					       h->root.root.string)))))
13606     h->root.u.def.section->flags |= SEC_KEEP;
13607 
13608   return TRUE;
13609 }
13610 
13611 /* Keep all sections containing symbols undefined on the command-line,
13612    and the section containing the entry symbol.  */
13613 
13614 void
13615 _bfd_elf_gc_keep (struct bfd_link_info *info)
13616 {
13617   struct bfd_sym_chain *sym;
13618 
13619   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13620     {
13621       struct elf_link_hash_entry *h;
13622 
13623       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13624 				FALSE, FALSE, FALSE);
13625 
13626       if (h != NULL
13627 	  && (h->root.type == bfd_link_hash_defined
13628 	      || h->root.type == bfd_link_hash_defweak)
13629 	  && !bfd_is_abs_section (h->root.u.def.section)
13630 	  && !bfd_is_und_section (h->root.u.def.section))
13631 	h->root.u.def.section->flags |= SEC_KEEP;
13632     }
13633 }
13634 
13635 bfd_boolean
13636 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13637 				struct bfd_link_info *info)
13638 {
13639   bfd *ibfd = info->input_bfds;
13640 
13641   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13642     {
13643       asection *sec;
13644       struct elf_reloc_cookie cookie;
13645 
13646       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13647 	continue;
13648       sec = ibfd->sections;
13649       if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13650 	continue;
13651 
13652       if (!init_reloc_cookie (&cookie, info, ibfd))
13653 	return FALSE;
13654 
13655       for (sec = ibfd->sections; sec; sec = sec->next)
13656 	{
13657 	  if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13658 	      && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13659 	    {
13660 	      _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13661 	      fini_reloc_cookie_rels (&cookie, sec);
13662 	    }
13663 	}
13664     }
13665   return TRUE;
13666 }
13667 
13668 /* Do mark and sweep of unused sections.  */
13669 
13670 bfd_boolean
13671 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13672 {
13673   bfd_boolean ok = TRUE;
13674   bfd *sub;
13675   elf_gc_mark_hook_fn gc_mark_hook;
13676   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13677   struct elf_link_hash_table *htab;
13678 
13679   if (!bed->can_gc_sections
13680       || !is_elf_hash_table (info->hash))
13681     {
13682       _bfd_error_handler(_("warning: gc-sections option ignored"));
13683       return TRUE;
13684     }
13685 
13686   bed->gc_keep (info);
13687   htab = elf_hash_table (info);
13688 
13689   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
13690      at the .eh_frame section if we can mark the FDEs individually.  */
13691   for (sub = info->input_bfds;
13692        info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13693        sub = sub->link.next)
13694     {
13695       asection *sec;
13696       struct elf_reloc_cookie cookie;
13697 
13698       sec = sub->sections;
13699       if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13700 	continue;
13701       sec = bfd_get_section_by_name (sub, ".eh_frame");
13702       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13703 	{
13704 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13705 	  if (elf_section_data (sec)->sec_info
13706 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
13707 	    elf_eh_frame_section (sub) = sec;
13708 	  fini_reloc_cookie_for_section (&cookie, sec);
13709 	  sec = bfd_get_next_section_by_name (NULL, sec);
13710 	}
13711     }
13712 
13713   /* Apply transitive closure to the vtable entry usage info.  */
13714   elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13715   if (!ok)
13716     return FALSE;
13717 
13718   /* Kill the vtable relocations that were not used.  */
13719   elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13720   if (!ok)
13721     return FALSE;
13722 
13723   /* Mark dynamically referenced symbols.  */
13724   if (htab->dynamic_sections_created || info->gc_keep_exported)
13725     elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13726 
13727   /* Grovel through relocs to find out who stays ...  */
13728   gc_mark_hook = bed->gc_mark_hook;
13729   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13730     {
13731       asection *o;
13732 
13733       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13734 	  || elf_object_id (sub) != elf_hash_table_id (htab)
13735 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13736 	continue;
13737 
13738       o = sub->sections;
13739       if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13740 	continue;
13741 
13742       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13743 	 Also treat note sections as a root, if the section is not part
13744 	 of a group.  We must keep all PREINIT_ARRAY, INIT_ARRAY as
13745 	 well as FINI_ARRAY sections for ld -r.  */
13746       for (o = sub->sections; o != NULL; o = o->next)
13747 	if (!o->gc_mark
13748 	    && (o->flags & SEC_EXCLUDE) == 0
13749 	    && ((o->flags & SEC_KEEP) != 0
13750 		|| (bfd_link_relocatable (info)
13751 		    && ((elf_section_data (o)->this_hdr.sh_type
13752 			 == SHT_PREINIT_ARRAY)
13753 			|| (elf_section_data (o)->this_hdr.sh_type
13754 			    == SHT_INIT_ARRAY)
13755 			|| (elf_section_data (o)->this_hdr.sh_type
13756 			    == SHT_FINI_ARRAY)))
13757 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13758 		    && elf_next_in_group (o) == NULL )))
13759 	  {
13760 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13761 	      return FALSE;
13762 	  }
13763     }
13764 
13765   /* Allow the backend to mark additional target specific sections.  */
13766   bed->gc_mark_extra_sections (info, gc_mark_hook);
13767 
13768   /* ... and mark SEC_EXCLUDE for those that go.  */
13769   return elf_gc_sweep (abfd, info);
13770 }
13771 
13772 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
13773 
13774 bfd_boolean
13775 bfd_elf_gc_record_vtinherit (bfd *abfd,
13776 			     asection *sec,
13777 			     struct elf_link_hash_entry *h,
13778 			     bfd_vma offset)
13779 {
13780   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13781   struct elf_link_hash_entry **search, *child;
13782   size_t extsymcount;
13783   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13784 
13785   /* The sh_info field of the symtab header tells us where the
13786      external symbols start.  We don't care about the local symbols at
13787      this point.  */
13788   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13789   if (!elf_bad_symtab (abfd))
13790     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13791 
13792   sym_hashes = elf_sym_hashes (abfd);
13793   sym_hashes_end = sym_hashes + extsymcount;
13794 
13795   /* Hunt down the child symbol, which is in this section at the same
13796      offset as the relocation.  */
13797   for (search = sym_hashes; search != sym_hashes_end; ++search)
13798     {
13799       if ((child = *search) != NULL
13800 	  && (child->root.type == bfd_link_hash_defined
13801 	      || child->root.type == bfd_link_hash_defweak)
13802 	  && child->root.u.def.section == sec
13803 	  && child->root.u.def.value == offset)
13804 	goto win;
13805     }
13806 
13807   /* xgettext:c-format */
13808   _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13809 		      abfd, sec, (uint64_t) offset);
13810   bfd_set_error (bfd_error_invalid_operation);
13811   return FALSE;
13812 
13813  win:
13814   if (!child->u2.vtable)
13815     {
13816       child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13817 			  bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13818       if (!child->u2.vtable)
13819 	return FALSE;
13820     }
13821   if (!h)
13822     {
13823       /* This *should* only be the absolute section.  It could potentially
13824 	 be that someone has defined a non-global vtable though, which
13825 	 would be bad.  It isn't worth paging in the local symbols to be
13826 	 sure though; that case should simply be handled by the assembler.  */
13827 
13828       child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13829     }
13830   else
13831     child->u2.vtable->parent = h;
13832 
13833   return TRUE;
13834 }
13835 
13836 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
13837 
13838 bfd_boolean
13839 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13840 			   struct elf_link_hash_entry *h,
13841 			   bfd_vma addend)
13842 {
13843   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13844   unsigned int log_file_align = bed->s->log_file_align;
13845 
13846   if (!h)
13847     {
13848       /* xgettext:c-format */
13849       _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13850 			  abfd, sec);
13851       bfd_set_error (bfd_error_bad_value);
13852       return FALSE;
13853     }
13854 
13855   if (!h->u2.vtable)
13856     {
13857       h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13858 		      bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13859       if (!h->u2.vtable)
13860 	return FALSE;
13861     }
13862 
13863   if (addend >= h->u2.vtable->size)
13864     {
13865       size_t size, bytes, file_align;
13866       bfd_boolean *ptr = h->u2.vtable->used;
13867 
13868       /* While the symbol is undefined, we have to be prepared to handle
13869 	 a zero size.  */
13870       file_align = 1 << log_file_align;
13871       if (h->root.type == bfd_link_hash_undefined)
13872 	size = addend + file_align;
13873       else
13874 	{
13875 	  size = h->size;
13876 	  if (addend >= size)
13877 	    {
13878 	      /* Oops!  We've got a reference past the defined end of
13879 		 the table.  This is probably a bug -- shall we warn?  */
13880 	      size = addend + file_align;
13881 	    }
13882 	}
13883       size = (size + file_align - 1) & -file_align;
13884 
13885       /* Allocate one extra entry for use as a "done" flag for the
13886 	 consolidation pass.  */
13887       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13888 
13889       if (ptr)
13890 	{
13891 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13892 
13893 	  if (ptr != NULL)
13894 	    {
13895 	      size_t oldbytes;
13896 
13897 	      oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13898 			  * sizeof (bfd_boolean));
13899 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13900 	    }
13901 	}
13902       else
13903 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13904 
13905       if (ptr == NULL)
13906 	return FALSE;
13907 
13908       /* And arrange for that done flag to be at index -1.  */
13909       h->u2.vtable->used = ptr + 1;
13910       h->u2.vtable->size = size;
13911     }
13912 
13913   h->u2.vtable->used[addend >> log_file_align] = TRUE;
13914 
13915   return TRUE;
13916 }
13917 
13918 /* Map an ELF section header flag to its corresponding string.  */
13919 typedef struct
13920 {
13921   char *flag_name;
13922   flagword flag_value;
13923 } elf_flags_to_name_table;
13924 
13925 static elf_flags_to_name_table elf_flags_to_names [] =
13926 {
13927   { "SHF_WRITE", SHF_WRITE },
13928   { "SHF_ALLOC", SHF_ALLOC },
13929   { "SHF_EXECINSTR", SHF_EXECINSTR },
13930   { "SHF_MERGE", SHF_MERGE },
13931   { "SHF_STRINGS", SHF_STRINGS },
13932   { "SHF_INFO_LINK", SHF_INFO_LINK},
13933   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13934   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13935   { "SHF_GROUP", SHF_GROUP },
13936   { "SHF_TLS", SHF_TLS },
13937   { "SHF_MASKOS", SHF_MASKOS },
13938   { "SHF_EXCLUDE", SHF_EXCLUDE },
13939 };
13940 
13941 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
13942 bfd_boolean
13943 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13944 			      struct flag_info *flaginfo,
13945 			      asection *section)
13946 {
13947   const bfd_vma sh_flags = elf_section_flags (section);
13948 
13949   if (!flaginfo->flags_initialized)
13950     {
13951       bfd *obfd = info->output_bfd;
13952       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13953       struct flag_info_list *tf = flaginfo->flag_list;
13954       int with_hex = 0;
13955       int without_hex = 0;
13956 
13957       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13958 	{
13959 	  unsigned i;
13960 	  flagword (*lookup) (char *);
13961 
13962 	  lookup = bed->elf_backend_lookup_section_flags_hook;
13963 	  if (lookup != NULL)
13964 	    {
13965 	      flagword hexval = (*lookup) ((char *) tf->name);
13966 
13967 	      if (hexval != 0)
13968 		{
13969 		  if (tf->with == with_flags)
13970 		    with_hex |= hexval;
13971 		  else if (tf->with == without_flags)
13972 		    without_hex |= hexval;
13973 		  tf->valid = TRUE;
13974 		  continue;
13975 		}
13976 	    }
13977 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13978 	    {
13979 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13980 		{
13981 		  if (tf->with == with_flags)
13982 		    with_hex |= elf_flags_to_names[i].flag_value;
13983 		  else if (tf->with == without_flags)
13984 		    without_hex |= elf_flags_to_names[i].flag_value;
13985 		  tf->valid = TRUE;
13986 		  break;
13987 		}
13988 	    }
13989 	  if (!tf->valid)
13990 	    {
13991 	      info->callbacks->einfo
13992 		(_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13993 	      return FALSE;
13994 	    }
13995 	}
13996       flaginfo->flags_initialized = TRUE;
13997       flaginfo->only_with_flags |= with_hex;
13998       flaginfo->not_with_flags |= without_hex;
13999     }
14000 
14001   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14002     return FALSE;
14003 
14004   if ((flaginfo->not_with_flags & sh_flags) != 0)
14005     return FALSE;
14006 
14007   return TRUE;
14008 }
14009 
14010 struct alloc_got_off_arg {
14011   bfd_vma gotoff;
14012   struct bfd_link_info *info;
14013 };
14014 
14015 /* We need a special top-level link routine to convert got reference counts
14016    to real got offsets.  */
14017 
14018 static bfd_boolean
14019 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14020 {
14021   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14022   bfd *obfd = gofarg->info->output_bfd;
14023   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14024 
14025   if (h->got.refcount > 0)
14026     {
14027       h->got.offset = gofarg->gotoff;
14028       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14029     }
14030   else
14031     h->got.offset = (bfd_vma) -1;
14032 
14033   return TRUE;
14034 }
14035 
14036 /* And an accompanying bit to work out final got entry offsets once
14037    we're done.  Should be called from final_link.  */
14038 
14039 bfd_boolean
14040 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14041 					struct bfd_link_info *info)
14042 {
14043   bfd *i;
14044   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14045   bfd_vma gotoff;
14046   struct alloc_got_off_arg gofarg;
14047 
14048   BFD_ASSERT (abfd == info->output_bfd);
14049 
14050   if (! is_elf_hash_table (info->hash))
14051     return FALSE;
14052 
14053   /* The GOT offset is relative to the .got section, but the GOT header is
14054      put into the .got.plt section, if the backend uses it.  */
14055   if (bed->want_got_plt)
14056     gotoff = 0;
14057   else
14058     gotoff = bed->got_header_size;
14059 
14060   /* Do the local .got entries first.  */
14061   for (i = info->input_bfds; i; i = i->link.next)
14062     {
14063       bfd_signed_vma *local_got;
14064       size_t j, locsymcount;
14065       Elf_Internal_Shdr *symtab_hdr;
14066 
14067       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14068 	continue;
14069 
14070       local_got = elf_local_got_refcounts (i);
14071       if (!local_got)
14072 	continue;
14073 
14074       symtab_hdr = &elf_tdata (i)->symtab_hdr;
14075       if (elf_bad_symtab (i))
14076 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14077       else
14078 	locsymcount = symtab_hdr->sh_info;
14079 
14080       for (j = 0; j < locsymcount; ++j)
14081 	{
14082 	  if (local_got[j] > 0)
14083 	    {
14084 	      local_got[j] = gotoff;
14085 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14086 	    }
14087 	  else
14088 	    local_got[j] = (bfd_vma) -1;
14089 	}
14090     }
14091 
14092   /* Then the global .got entries.  .plt refcounts are handled by
14093      adjust_dynamic_symbol  */
14094   gofarg.gotoff = gotoff;
14095   gofarg.info = info;
14096   elf_link_hash_traverse (elf_hash_table (info),
14097 			  elf_gc_allocate_got_offsets,
14098 			  &gofarg);
14099   return TRUE;
14100 }
14101 
14102 /* Many folk need no more in the way of final link than this, once
14103    got entry reference counting is enabled.  */
14104 
14105 bfd_boolean
14106 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14107 {
14108   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14109     return FALSE;
14110 
14111   /* Invoke the regular ELF backend linker to do all the work.  */
14112   return bfd_elf_final_link (abfd, info);
14113 }
14114 
14115 bfd_boolean
14116 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14117 {
14118   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14119 
14120   if (rcookie->bad_symtab)
14121     rcookie->rel = rcookie->rels;
14122 
14123   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14124     {
14125       unsigned long r_symndx;
14126 
14127       if (! rcookie->bad_symtab)
14128 	if (rcookie->rel->r_offset > offset)
14129 	  return FALSE;
14130       if (rcookie->rel->r_offset != offset)
14131 	continue;
14132 
14133       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14134       if (r_symndx == STN_UNDEF)
14135 	return TRUE;
14136 
14137       if (r_symndx >= rcookie->locsymcount
14138 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14139 	{
14140 	  struct elf_link_hash_entry *h;
14141 
14142 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14143 
14144 	  while (h->root.type == bfd_link_hash_indirect
14145 		 || h->root.type == bfd_link_hash_warning)
14146 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
14147 
14148 	  if ((h->root.type == bfd_link_hash_defined
14149 	       || h->root.type == bfd_link_hash_defweak)
14150 	      && (h->root.u.def.section->owner != rcookie->abfd
14151 		  || h->root.u.def.section->kept_section != NULL
14152 		  || discarded_section (h->root.u.def.section)))
14153 	    return TRUE;
14154 	}
14155       else
14156 	{
14157 	  /* It's not a relocation against a global symbol,
14158 	     but it could be a relocation against a local
14159 	     symbol for a discarded section.  */
14160 	  asection *isec;
14161 	  Elf_Internal_Sym *isym;
14162 
14163 	  /* Need to: get the symbol; get the section.  */
14164 	  isym = &rcookie->locsyms[r_symndx];
14165 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14166 	  if (isec != NULL
14167 	      && (isec->kept_section != NULL
14168 		  || discarded_section (isec)))
14169 	    return TRUE;
14170 	}
14171       return FALSE;
14172     }
14173   return FALSE;
14174 }
14175 
14176 /* Discard unneeded references to discarded sections.
14177    Returns -1 on error, 1 if any section's size was changed, 0 if
14178    nothing changed.  This function assumes that the relocations are in
14179    sorted order, which is true for all known assemblers.  */
14180 
14181 int
14182 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14183 {
14184   struct elf_reloc_cookie cookie;
14185   asection *o;
14186   bfd *abfd;
14187   int changed = 0;
14188 
14189   if (info->traditional_format
14190       || !is_elf_hash_table (info->hash))
14191     return 0;
14192 
14193   o = bfd_get_section_by_name (output_bfd, ".stab");
14194   if (o != NULL)
14195     {
14196       asection *i;
14197 
14198       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14199 	{
14200 	  if (i->size == 0
14201 	      || i->reloc_count == 0
14202 	      || i->sec_info_type != SEC_INFO_TYPE_STABS)
14203 	    continue;
14204 
14205 	  abfd = i->owner;
14206 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14207 	    continue;
14208 
14209 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
14210 	    return -1;
14211 
14212 	  if (_bfd_discard_section_stabs (abfd, i,
14213 					  elf_section_data (i)->sec_info,
14214 					  bfd_elf_reloc_symbol_deleted_p,
14215 					  &cookie))
14216 	    changed = 1;
14217 
14218 	  fini_reloc_cookie_for_section (&cookie, i);
14219 	}
14220     }
14221 
14222   o = NULL;
14223   if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14224     o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14225   if (o != NULL)
14226     {
14227       asection *i;
14228       int eh_changed = 0;
14229       unsigned int eh_alignment;
14230 
14231       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14232 	{
14233 	  if (i->size == 0)
14234 	    continue;
14235 
14236 	  abfd = i->owner;
14237 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14238 	    continue;
14239 
14240 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
14241 	    return -1;
14242 
14243 	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14244 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14245 						 bfd_elf_reloc_symbol_deleted_p,
14246 						 &cookie))
14247 	    {
14248 	      eh_changed = 1;
14249 	      if (i->size != i->rawsize)
14250 		changed = 1;
14251 	    }
14252 
14253 	  fini_reloc_cookie_for_section (&cookie, i);
14254 	}
14255 
14256       eh_alignment = 1 << o->alignment_power;
14257       /* Skip over zero terminator, and prevent empty sections from
14258 	 adding alignment padding at the end.  */
14259       for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14260 	if (i->size == 0)
14261 	  i->flags |= SEC_EXCLUDE;
14262 	else if (i->size > 4)
14263 	  break;
14264       /* The last non-empty eh_frame section doesn't need padding.  */
14265       if (i != NULL)
14266 	i = i->map_tail.s;
14267       /* Any prior sections must pad the last FDE out to the output
14268 	 section alignment.  Otherwise we might have zero padding
14269 	 between sections, which would be seen as a terminator.  */
14270       for (; i != NULL; i = i->map_tail.s)
14271 	if (i->size == 4)
14272 	  /* All but the last zero terminator should have been removed.  */
14273 	  BFD_FAIL ();
14274 	else
14275 	  {
14276 	    bfd_size_type size
14277 	      = (i->size + eh_alignment - 1) & -eh_alignment;
14278 	    if (i->size != size)
14279 	      {
14280 		i->size = size;
14281 		changed = 1;
14282 		eh_changed = 1;
14283 	      }
14284 	  }
14285       if (eh_changed)
14286 	elf_link_hash_traverse (elf_hash_table (info),
14287 				_bfd_elf_adjust_eh_frame_global_symbol, NULL);
14288     }
14289 
14290   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14291     {
14292       const struct elf_backend_data *bed;
14293       asection *s;
14294 
14295       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14296 	continue;
14297       s = abfd->sections;
14298       if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14299 	continue;
14300 
14301       bed = get_elf_backend_data (abfd);
14302 
14303       if (bed->elf_backend_discard_info != NULL)
14304 	{
14305 	  if (!init_reloc_cookie (&cookie, info, abfd))
14306 	    return -1;
14307 
14308 	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14309 	    changed = 1;
14310 
14311 	  fini_reloc_cookie (&cookie, abfd);
14312 	}
14313     }
14314 
14315   if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14316     _bfd_elf_end_eh_frame_parsing (info);
14317 
14318   if (info->eh_frame_hdr_type
14319       && !bfd_link_relocatable (info)
14320       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14321     changed = 1;
14322 
14323   return changed;
14324 }
14325 
14326 bfd_boolean
14327 _bfd_elf_section_already_linked (bfd *abfd,
14328 				 asection *sec,
14329 				 struct bfd_link_info *info)
14330 {
14331   flagword flags;
14332   const char *name, *key;
14333   struct bfd_section_already_linked *l;
14334   struct bfd_section_already_linked_hash_entry *already_linked_list;
14335 
14336   if (sec->output_section == bfd_abs_section_ptr)
14337     return FALSE;
14338 
14339   flags = sec->flags;
14340 
14341   /* Return if it isn't a linkonce section.  A comdat group section
14342      also has SEC_LINK_ONCE set.  */
14343   if ((flags & SEC_LINK_ONCE) == 0)
14344     return FALSE;
14345 
14346   /* Don't put group member sections on our list of already linked
14347      sections.  They are handled as a group via their group section.  */
14348   if (elf_sec_group (sec) != NULL)
14349     return FALSE;
14350 
14351   /* For a SHT_GROUP section, use the group signature as the key.  */
14352   name = sec->name;
14353   if ((flags & SEC_GROUP) != 0
14354       && elf_next_in_group (sec) != NULL
14355       && elf_group_name (elf_next_in_group (sec)) != NULL)
14356     key = elf_group_name (elf_next_in_group (sec));
14357   else
14358     {
14359       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
14360       if (CONST_STRNEQ (name, ".gnu.linkonce.")
14361 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14362 	key++;
14363       else
14364 	/* Must be a user linkonce section that doesn't follow gcc's
14365 	   naming convention.  In this case we won't be matching
14366 	   single member groups.  */
14367 	key = name;
14368     }
14369 
14370   already_linked_list = bfd_section_already_linked_table_lookup (key);
14371 
14372   for (l = already_linked_list->entry; l != NULL; l = l->next)
14373     {
14374       /* We may have 2 different types of sections on the list: group
14375 	 sections with a signature of <key> (<key> is some string),
14376 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
14377 	 Match like sections.  LTO plugin sections are an exception.
14378 	 They are always named .gnu.linkonce.t.<key> and match either
14379 	 type of section.  */
14380       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14381 	   && ((flags & SEC_GROUP) != 0
14382 	       || strcmp (name, l->sec->name) == 0))
14383 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14384 	{
14385 	  /* The section has already been linked.  See if we should
14386 	     issue a warning.  */
14387 	  if (!_bfd_handle_already_linked (sec, l, info))
14388 	    return FALSE;
14389 
14390 	  if (flags & SEC_GROUP)
14391 	    {
14392 	      asection *first = elf_next_in_group (sec);
14393 	      asection *s = first;
14394 
14395 	      while (s != NULL)
14396 		{
14397 		  s->output_section = bfd_abs_section_ptr;
14398 		  /* Record which group discards it.  */
14399 		  s->kept_section = l->sec;
14400 		  s = elf_next_in_group (s);
14401 		  /* These lists are circular.  */
14402 		  if (s == first)
14403 		    break;
14404 		}
14405 	    }
14406 
14407 	  return TRUE;
14408 	}
14409     }
14410 
14411   /* A single member comdat group section may be discarded by a
14412      linkonce section and vice versa.  */
14413   if ((flags & SEC_GROUP) != 0)
14414     {
14415       asection *first = elf_next_in_group (sec);
14416 
14417       if (first != NULL && elf_next_in_group (first) == first)
14418 	/* Check this single member group against linkonce sections.  */
14419 	for (l = already_linked_list->entry; l != NULL; l = l->next)
14420 	  if ((l->sec->flags & SEC_GROUP) == 0
14421 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14422 	    {
14423 	      first->output_section = bfd_abs_section_ptr;
14424 	      first->kept_section = l->sec;
14425 	      sec->output_section = bfd_abs_section_ptr;
14426 	      break;
14427 	    }
14428     }
14429   else
14430     /* Check this linkonce section against single member groups.  */
14431     for (l = already_linked_list->entry; l != NULL; l = l->next)
14432       if (l->sec->flags & SEC_GROUP)
14433 	{
14434 	  asection *first = elf_next_in_group (l->sec);
14435 
14436 	  if (first != NULL
14437 	      && elf_next_in_group (first) == first
14438 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
14439 	    {
14440 	      sec->output_section = bfd_abs_section_ptr;
14441 	      sec->kept_section = first;
14442 	      break;
14443 	    }
14444 	}
14445 
14446   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14447      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14448      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14449      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
14450      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
14451      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14452      `.gnu.linkonce.t.F' section from a different bfd not requiring any
14453      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
14454      The reverse order cannot happen as there is never a bfd with only the
14455      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
14456      matter as here were are looking only for cross-bfd sections.  */
14457 
14458   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14459     for (l = already_linked_list->entry; l != NULL; l = l->next)
14460       if ((l->sec->flags & SEC_GROUP) == 0
14461 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14462 	{
14463 	  if (abfd != l->sec->owner)
14464 	    sec->output_section = bfd_abs_section_ptr;
14465 	  break;
14466 	}
14467 
14468   /* This is the first section with this name.  Record it.  */
14469   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14470     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14471   return sec->output_section == bfd_abs_section_ptr;
14472 }
14473 
14474 bfd_boolean
14475 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14476 {
14477   return sym->st_shndx == SHN_COMMON;
14478 }
14479 
14480 unsigned int
14481 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14482 {
14483   return SHN_COMMON;
14484 }
14485 
14486 asection *
14487 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14488 {
14489   return bfd_com_section_ptr;
14490 }
14491 
14492 bfd_vma
14493 _bfd_elf_default_got_elt_size (bfd *abfd,
14494 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
14495 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14496 			       bfd *ibfd ATTRIBUTE_UNUSED,
14497 			       unsigned long symndx ATTRIBUTE_UNUSED)
14498 {
14499   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14500   return bed->s->arch_size / 8;
14501 }
14502 
14503 /* Routines to support the creation of dynamic relocs.  */
14504 
14505 /* Returns the name of the dynamic reloc section associated with SEC.  */
14506 
14507 static const char *
14508 get_dynamic_reloc_section_name (bfd *       abfd,
14509 				asection *  sec,
14510 				bfd_boolean is_rela)
14511 {
14512   char *name;
14513   const char *old_name = bfd_section_name (sec);
14514   const char *prefix = is_rela ? ".rela" : ".rel";
14515 
14516   if (old_name == NULL)
14517     return NULL;
14518 
14519   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14520   sprintf (name, "%s%s", prefix, old_name);
14521 
14522   return name;
14523 }
14524 
14525 /* Returns the dynamic reloc section associated with SEC.
14526    If necessary compute the name of the dynamic reloc section based
14527    on SEC's name (looked up in ABFD's string table) and the setting
14528    of IS_RELA.  */
14529 
14530 asection *
14531 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
14532 				    asection *  sec,
14533 				    bfd_boolean is_rela)
14534 {
14535   asection * reloc_sec = elf_section_data (sec)->sreloc;
14536 
14537   if (reloc_sec == NULL)
14538     {
14539       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14540 
14541       if (name != NULL)
14542 	{
14543 	  reloc_sec = bfd_get_linker_section (abfd, name);
14544 
14545 	  if (reloc_sec != NULL)
14546 	    elf_section_data (sec)->sreloc = reloc_sec;
14547 	}
14548     }
14549 
14550   return reloc_sec;
14551 }
14552 
14553 /* Returns the dynamic reloc section associated with SEC.  If the
14554    section does not exist it is created and attached to the DYNOBJ
14555    bfd and stored in the SRELOC field of SEC's elf_section_data
14556    structure.
14557 
14558    ALIGNMENT is the alignment for the newly created section and
14559    IS_RELA defines whether the name should be .rela.<SEC's name>
14560    or .rel.<SEC's name>.  The section name is looked up in the
14561    string table associated with ABFD.  */
14562 
14563 asection *
14564 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14565 				     bfd *dynobj,
14566 				     unsigned int alignment,
14567 				     bfd *abfd,
14568 				     bfd_boolean is_rela)
14569 {
14570   asection * reloc_sec = elf_section_data (sec)->sreloc;
14571 
14572   if (reloc_sec == NULL)
14573     {
14574       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14575 
14576       if (name == NULL)
14577 	return NULL;
14578 
14579       reloc_sec = bfd_get_linker_section (dynobj, name);
14580 
14581       if (reloc_sec == NULL)
14582 	{
14583 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14584 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14585 	  if ((sec->flags & SEC_ALLOC) != 0)
14586 	    flags |= SEC_ALLOC | SEC_LOAD;
14587 
14588 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14589 	  if (reloc_sec != NULL)
14590 	    {
14591 	      /* _bfd_elf_get_sec_type_attr chooses a section type by
14592 		 name.  Override as it may be wrong, eg. for a user
14593 		 section named "auto" we'll get ".relauto" which is
14594 		 seen to be a .rela section.  */
14595 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14596 	      if (!bfd_set_section_alignment (reloc_sec, alignment))
14597 		reloc_sec = NULL;
14598 	    }
14599 	}
14600 
14601       elf_section_data (sec)->sreloc = reloc_sec;
14602     }
14603 
14604   return reloc_sec;
14605 }
14606 
14607 /* Copy the ELF symbol type and other attributes for a linker script
14608    assignment from HSRC to HDEST.  Generally this should be treated as
14609    if we found a strong non-dynamic definition for HDEST (except that
14610    ld ignores multiple definition errors).  */
14611 void
14612 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14613 				     struct bfd_link_hash_entry *hdest,
14614 				     struct bfd_link_hash_entry *hsrc)
14615 {
14616   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14617   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14618   Elf_Internal_Sym isym;
14619 
14620   ehdest->type = ehsrc->type;
14621   ehdest->target_internal = ehsrc->target_internal;
14622 
14623   isym.st_other = ehsrc->other;
14624   elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14625 }
14626 
14627 /* Append a RELA relocation REL to section S in BFD.  */
14628 
14629 void
14630 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14631 {
14632   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14633   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14634   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14635   bed->s->swap_reloca_out (abfd, rel, loc);
14636 }
14637 
14638 /* Append a REL relocation REL to section S in BFD.  */
14639 
14640 void
14641 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14642 {
14643   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14644   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14645   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14646   bed->s->swap_reloc_out (abfd, rel, loc);
14647 }
14648 
14649 /* Define __start, __stop, .startof. or .sizeof. symbol.  */
14650 
14651 struct bfd_link_hash_entry *
14652 bfd_elf_define_start_stop (struct bfd_link_info *info,
14653 			   const char *symbol, asection *sec)
14654 {
14655   struct elf_link_hash_entry *h;
14656 
14657   h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14658 			    FALSE, FALSE, TRUE);
14659   if (h != NULL
14660       && (h->root.type == bfd_link_hash_undefined
14661 	  || h->root.type == bfd_link_hash_undefweak
14662 	  || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14663     {
14664       bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14665       h->root.type = bfd_link_hash_defined;
14666       h->root.u.def.section = sec;
14667       h->root.u.def.value = 0;
14668       h->def_regular = 1;
14669       h->def_dynamic = 0;
14670       h->start_stop = 1;
14671       h->u2.start_stop_section = sec;
14672       if (symbol[0] == '.')
14673 	{
14674 	  /* .startof. and .sizeof. symbols are local.  */
14675 	  const struct elf_backend_data *bed;
14676 	  bed = get_elf_backend_data (info->output_bfd);
14677 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14678 	}
14679       else
14680 	{
14681 	  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14682 	    h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14683 	  if (was_dynamic)
14684 	    bfd_elf_link_record_dynamic_symbol (info, h);
14685 	}
14686       return &h->root;
14687     }
14688   return NULL;
14689 }
14690