1 /* ELF linking support for BFD. 2 Copyright (C) 1995-2020 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #define ARCH_SIZE 0 26 #include "elf-bfd.h" 27 #include "safe-ctype.h" 28 #include "libiberty.h" 29 #include "objalloc.h" 30 #if BFD_SUPPORTS_PLUGINS 31 #include "plugin-api.h" 32 #include "plugin.h" 33 #endif 34 35 /* This struct is used to pass information to routines called via 36 elf_link_hash_traverse which must return failure. */ 37 38 struct elf_info_failed 39 { 40 struct bfd_link_info *info; 41 bfd_boolean failed; 42 }; 43 44 /* This structure is used to pass information to 45 _bfd_elf_link_find_version_dependencies. */ 46 47 struct elf_find_verdep_info 48 { 49 /* General link information. */ 50 struct bfd_link_info *info; 51 /* The number of dependencies. */ 52 unsigned int vers; 53 /* Whether we had a failure. */ 54 bfd_boolean failed; 55 }; 56 57 static bfd_boolean _bfd_elf_fix_symbol_flags 58 (struct elf_link_hash_entry *, struct elf_info_failed *); 59 60 asection * 61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, 62 unsigned long r_symndx, 63 bfd_boolean discard) 64 { 65 if (r_symndx >= cookie->locsymcount 66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 67 { 68 struct elf_link_hash_entry *h; 69 70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 71 72 while (h->root.type == bfd_link_hash_indirect 73 || h->root.type == bfd_link_hash_warning) 74 h = (struct elf_link_hash_entry *) h->root.u.i.link; 75 76 if ((h->root.type == bfd_link_hash_defined 77 || h->root.type == bfd_link_hash_defweak) 78 && discarded_section (h->root.u.def.section)) 79 return h->root.u.def.section; 80 else 81 return NULL; 82 } 83 else 84 { 85 /* It's not a relocation against a global symbol, 86 but it could be a relocation against a local 87 symbol for a discarded section. */ 88 asection *isec; 89 Elf_Internal_Sym *isym; 90 91 /* Need to: get the symbol; get the section. */ 92 isym = &cookie->locsyms[r_symndx]; 93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); 94 if (isec != NULL 95 && discard ? discarded_section (isec) : 1) 96 return isec; 97 } 98 return NULL; 99 } 100 101 /* Define a symbol in a dynamic linkage section. */ 102 103 struct elf_link_hash_entry * 104 _bfd_elf_define_linkage_sym (bfd *abfd, 105 struct bfd_link_info *info, 106 asection *sec, 107 const char *name) 108 { 109 struct elf_link_hash_entry *h; 110 struct bfd_link_hash_entry *bh; 111 const struct elf_backend_data *bed; 112 113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); 114 if (h != NULL) 115 { 116 /* Zap symbol defined in an as-needed lib that wasn't linked. 117 This is a symptom of a larger problem: Absolute symbols 118 defined in shared libraries can't be overridden, because we 119 lose the link to the bfd which is via the symbol section. */ 120 h->root.type = bfd_link_hash_new; 121 bh = &h->root; 122 } 123 else 124 bh = NULL; 125 126 bed = get_elf_backend_data (abfd); 127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, 128 sec, 0, NULL, FALSE, bed->collect, 129 &bh)) 130 return NULL; 131 h = (struct elf_link_hash_entry *) bh; 132 BFD_ASSERT (h != NULL); 133 h->def_regular = 1; 134 h->non_elf = 0; 135 h->root.linker_def = 1; 136 h->type = STT_OBJECT; 137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 139 140 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 141 return h; 142 } 143 144 bfd_boolean 145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 146 { 147 flagword flags; 148 asection *s; 149 struct elf_link_hash_entry *h; 150 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 151 struct elf_link_hash_table *htab = elf_hash_table (info); 152 153 /* This function may be called more than once. */ 154 if (htab->sgot != NULL) 155 return TRUE; 156 157 flags = bed->dynamic_sec_flags; 158 159 s = bfd_make_section_anyway_with_flags (abfd, 160 (bed->rela_plts_and_copies_p 161 ? ".rela.got" : ".rel.got"), 162 (bed->dynamic_sec_flags 163 | SEC_READONLY)); 164 if (s == NULL 165 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 166 return FALSE; 167 htab->srelgot = s; 168 169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 170 if (s == NULL 171 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 172 return FALSE; 173 htab->sgot = s; 174 175 if (bed->want_got_plt) 176 { 177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 178 if (s == NULL 179 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 180 return FALSE; 181 htab->sgotplt = s; 182 } 183 184 /* The first bit of the global offset table is the header. */ 185 s->size += bed->got_header_size; 186 187 if (bed->want_got_sym) 188 { 189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 190 (or .got.plt) section. We don't do this in the linker script 191 because we don't want to define the symbol if we are not creating 192 a global offset table. */ 193 h = _bfd_elf_define_linkage_sym (abfd, info, s, 194 "_GLOBAL_OFFSET_TABLE_"); 195 elf_hash_table (info)->hgot = h; 196 if (h == NULL) 197 return FALSE; 198 } 199 200 return TRUE; 201 } 202 203 /* Create a strtab to hold the dynamic symbol names. */ 204 static bfd_boolean 205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) 206 { 207 struct elf_link_hash_table *hash_table; 208 209 hash_table = elf_hash_table (info); 210 if (hash_table->dynobj == NULL) 211 { 212 /* We may not set dynobj, an input file holding linker created 213 dynamic sections to abfd, which may be a dynamic object with 214 its own dynamic sections. We need to find a normal input file 215 to hold linker created sections if possible. */ 216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) 217 { 218 bfd *ibfd; 219 asection *s; 220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 221 if ((ibfd->flags 222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table) 225 && !((s = ibfd->sections) != NULL 226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) 227 { 228 abfd = ibfd; 229 break; 230 } 231 } 232 hash_table->dynobj = abfd; 233 } 234 235 if (hash_table->dynstr == NULL) 236 { 237 hash_table->dynstr = _bfd_elf_strtab_init (); 238 if (hash_table->dynstr == NULL) 239 return FALSE; 240 } 241 return TRUE; 242 } 243 244 /* Create some sections which will be filled in with dynamic linking 245 information. ABFD is an input file which requires dynamic sections 246 to be created. The dynamic sections take up virtual memory space 247 when the final executable is run, so we need to create them before 248 addresses are assigned to the output sections. We work out the 249 actual contents and size of these sections later. */ 250 251 bfd_boolean 252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 253 { 254 flagword flags; 255 asection *s; 256 const struct elf_backend_data *bed; 257 struct elf_link_hash_entry *h; 258 259 if (! is_elf_hash_table (info->hash)) 260 return FALSE; 261 262 if (elf_hash_table (info)->dynamic_sections_created) 263 return TRUE; 264 265 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 266 return FALSE; 267 268 abfd = elf_hash_table (info)->dynobj; 269 bed = get_elf_backend_data (abfd); 270 271 flags = bed->dynamic_sec_flags; 272 273 /* A dynamically linked executable has a .interp section, but a 274 shared library does not. */ 275 if (bfd_link_executable (info) && !info->nointerp) 276 { 277 s = bfd_make_section_anyway_with_flags (abfd, ".interp", 278 flags | SEC_READONLY); 279 if (s == NULL) 280 return FALSE; 281 } 282 283 /* Create sections to hold version informations. These are removed 284 if they are not needed. */ 285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", 286 flags | SEC_READONLY); 287 if (s == NULL 288 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 289 return FALSE; 290 291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", 292 flags | SEC_READONLY); 293 if (s == NULL 294 || !bfd_set_section_alignment (s, 1)) 295 return FALSE; 296 297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", 298 flags | SEC_READONLY); 299 if (s == NULL 300 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 301 return FALSE; 302 303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", 304 flags | SEC_READONLY); 305 if (s == NULL 306 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 307 return FALSE; 308 elf_hash_table (info)->dynsym = s; 309 310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", 311 flags | SEC_READONLY); 312 if (s == NULL) 313 return FALSE; 314 315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); 316 if (s == NULL 317 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 318 return FALSE; 319 320 /* The special symbol _DYNAMIC is always set to the start of the 321 .dynamic section. We could set _DYNAMIC in a linker script, but we 322 only want to define it if we are, in fact, creating a .dynamic 323 section. We don't want to define it if there is no .dynamic 324 section, since on some ELF platforms the start up code examines it 325 to decide how to initialize the process. */ 326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); 327 elf_hash_table (info)->hdynamic = h; 328 if (h == NULL) 329 return FALSE; 330 331 if (info->emit_hash) 332 { 333 s = bfd_make_section_anyway_with_flags (abfd, ".hash", 334 flags | SEC_READONLY); 335 if (s == NULL 336 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 337 return FALSE; 338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; 339 } 340 341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) 342 { 343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", 344 flags | SEC_READONLY); 345 if (s == NULL 346 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 347 return FALSE; 348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: 349 4 32-bit words followed by variable count of 64-bit words, then 350 variable count of 32-bit words. */ 351 if (bed->s->arch_size == 64) 352 elf_section_data (s)->this_hdr.sh_entsize = 0; 353 else 354 elf_section_data (s)->this_hdr.sh_entsize = 4; 355 } 356 357 /* Let the backend create the rest of the sections. This lets the 358 backend set the right flags. The backend will normally create 359 the .got and .plt sections. */ 360 if (bed->elf_backend_create_dynamic_sections == NULL 361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) 362 return FALSE; 363 364 elf_hash_table (info)->dynamic_sections_created = TRUE; 365 366 return TRUE; 367 } 368 369 /* Create dynamic sections when linking against a dynamic object. */ 370 371 bfd_boolean 372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 373 { 374 flagword flags, pltflags; 375 struct elf_link_hash_entry *h; 376 asection *s; 377 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 378 struct elf_link_hash_table *htab = elf_hash_table (info); 379 380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 381 .rel[a].bss sections. */ 382 flags = bed->dynamic_sec_flags; 383 384 pltflags = flags; 385 if (bed->plt_not_loaded) 386 /* We do not clear SEC_ALLOC here because we still want the OS to 387 allocate space for the section; it's just that there's nothing 388 to read in from the object file. */ 389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); 390 else 391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; 392 if (bed->plt_readonly) 393 pltflags |= SEC_READONLY; 394 395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); 396 if (s == NULL 397 || !bfd_set_section_alignment (s, bed->plt_alignment)) 398 return FALSE; 399 htab->splt = s; 400 401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 402 .plt section. */ 403 if (bed->want_plt_sym) 404 { 405 h = _bfd_elf_define_linkage_sym (abfd, info, s, 406 "_PROCEDURE_LINKAGE_TABLE_"); 407 elf_hash_table (info)->hplt = h; 408 if (h == NULL) 409 return FALSE; 410 } 411 412 s = bfd_make_section_anyway_with_flags (abfd, 413 (bed->rela_plts_and_copies_p 414 ? ".rela.plt" : ".rel.plt"), 415 flags | SEC_READONLY); 416 if (s == NULL 417 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 418 return FALSE; 419 htab->srelplt = s; 420 421 if (! _bfd_elf_create_got_section (abfd, info)) 422 return FALSE; 423 424 if (bed->want_dynbss) 425 { 426 /* The .dynbss section is a place to put symbols which are defined 427 by dynamic objects, are referenced by regular objects, and are 428 not functions. We must allocate space for them in the process 429 image and use a R_*_COPY reloc to tell the dynamic linker to 430 initialize them at run time. The linker script puts the .dynbss 431 section into the .bss section of the final image. */ 432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", 433 SEC_ALLOC | SEC_LINKER_CREATED); 434 if (s == NULL) 435 return FALSE; 436 htab->sdynbss = s; 437 438 if (bed->want_dynrelro) 439 { 440 /* Similarly, but for symbols that were originally in read-only 441 sections. This section doesn't really need to have contents, 442 but make it like other .data.rel.ro sections. */ 443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", 444 flags); 445 if (s == NULL) 446 return FALSE; 447 htab->sdynrelro = s; 448 } 449 450 /* The .rel[a].bss section holds copy relocs. This section is not 451 normally needed. We need to create it here, though, so that the 452 linker will map it to an output section. We can't just create it 453 only if we need it, because we will not know whether we need it 454 until we have seen all the input files, and the first time the 455 main linker code calls BFD after examining all the input files 456 (size_dynamic_sections) the input sections have already been 457 mapped to the output sections. If the section turns out not to 458 be needed, we can discard it later. We will never need this 459 section when generating a shared object, since they do not use 460 copy relocs. */ 461 if (bfd_link_executable (info)) 462 { 463 s = bfd_make_section_anyway_with_flags (abfd, 464 (bed->rela_plts_and_copies_p 465 ? ".rela.bss" : ".rel.bss"), 466 flags | SEC_READONLY); 467 if (s == NULL 468 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 469 return FALSE; 470 htab->srelbss = s; 471 472 if (bed->want_dynrelro) 473 { 474 s = (bfd_make_section_anyway_with_flags 475 (abfd, (bed->rela_plts_and_copies_p 476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), 477 flags | SEC_READONLY)); 478 if (s == NULL 479 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 480 return FALSE; 481 htab->sreldynrelro = s; 482 } 483 } 484 } 485 486 return TRUE; 487 } 488 489 /* Record a new dynamic symbol. We record the dynamic symbols as we 490 read the input files, since we need to have a list of all of them 491 before we can determine the final sizes of the output sections. 492 Note that we may actually call this function even though we are not 493 going to output any dynamic symbols; in some cases we know that a 494 symbol should be in the dynamic symbol table, but only if there is 495 one. */ 496 497 bfd_boolean 498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, 499 struct elf_link_hash_entry *h) 500 { 501 if (h->dynindx == -1) 502 { 503 struct elf_strtab_hash *dynstr; 504 char *p; 505 const char *name; 506 size_t indx; 507 508 /* XXX: The ABI draft says the linker must turn hidden and 509 internal symbols into STB_LOCAL symbols when producing the 510 DSO. However, if ld.so honors st_other in the dynamic table, 511 this would not be necessary. */ 512 switch (ELF_ST_VISIBILITY (h->other)) 513 { 514 case STV_INTERNAL: 515 case STV_HIDDEN: 516 if (h->root.type != bfd_link_hash_undefined 517 && h->root.type != bfd_link_hash_undefweak) 518 { 519 h->forced_local = 1; 520 if (!elf_hash_table (info)->is_relocatable_executable) 521 return TRUE; 522 } 523 524 default: 525 break; 526 } 527 528 h->dynindx = elf_hash_table (info)->dynsymcount; 529 ++elf_hash_table (info)->dynsymcount; 530 531 dynstr = elf_hash_table (info)->dynstr; 532 if (dynstr == NULL) 533 { 534 /* Create a strtab to hold the dynamic symbol names. */ 535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 536 if (dynstr == NULL) 537 return FALSE; 538 } 539 540 /* We don't put any version information in the dynamic string 541 table. */ 542 name = h->root.root.string; 543 p = strchr (name, ELF_VER_CHR); 544 if (p != NULL) 545 /* We know that the p points into writable memory. In fact, 546 there are only a few symbols that have read-only names, being 547 those like _GLOBAL_OFFSET_TABLE_ that are created specially 548 by the backends. Most symbols will have names pointing into 549 an ELF string table read from a file, or to objalloc memory. */ 550 *p = 0; 551 552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); 553 554 if (p != NULL) 555 *p = ELF_VER_CHR; 556 557 if (indx == (size_t) -1) 558 return FALSE; 559 h->dynstr_index = indx; 560 } 561 562 return TRUE; 563 } 564 565 /* Mark a symbol dynamic. */ 566 567 static void 568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, 569 struct elf_link_hash_entry *h, 570 Elf_Internal_Sym *sym) 571 { 572 struct bfd_elf_dynamic_list *d = info->dynamic_list; 573 574 /* It may be called more than once on the same H. */ 575 if(h->dynamic || bfd_link_relocatable (info)) 576 return; 577 578 if ((info->dynamic_data 579 && (h->type == STT_OBJECT 580 || h->type == STT_COMMON 581 || (sym != NULL 582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT 583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) 584 || (d != NULL 585 && h->non_elf 586 && (*d->match) (&d->head, NULL, h->root.root.string))) 587 { 588 h->dynamic = 1; 589 /* NB: If a symbol is made dynamic by --dynamic-list, it has 590 non-IR reference. */ 591 h->root.non_ir_ref_dynamic = 1; 592 } 593 } 594 595 /* Record an assignment to a symbol made by a linker script. We need 596 this in case some dynamic object refers to this symbol. */ 597 598 bfd_boolean 599 bfd_elf_record_link_assignment (bfd *output_bfd, 600 struct bfd_link_info *info, 601 const char *name, 602 bfd_boolean provide, 603 bfd_boolean hidden) 604 { 605 struct elf_link_hash_entry *h, *hv; 606 struct elf_link_hash_table *htab; 607 const struct elf_backend_data *bed; 608 609 if (!is_elf_hash_table (info->hash)) 610 return TRUE; 611 612 htab = elf_hash_table (info); 613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); 614 if (h == NULL) 615 return provide; 616 617 if (h->root.type == bfd_link_hash_warning) 618 h = (struct elf_link_hash_entry *) h->root.u.i.link; 619 620 if (h->versioned == unknown) 621 { 622 /* Set versioned if symbol version is unknown. */ 623 char *version = strrchr (name, ELF_VER_CHR); 624 if (version) 625 { 626 if (version > name && version[-1] != ELF_VER_CHR) 627 h->versioned = versioned_hidden; 628 else 629 h->versioned = versioned; 630 } 631 } 632 633 /* Symbols defined in a linker script but not referenced anywhere 634 else will have non_elf set. */ 635 if (h->non_elf) 636 { 637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL); 638 h->non_elf = 0; 639 } 640 641 switch (h->root.type) 642 { 643 case bfd_link_hash_defined: 644 case bfd_link_hash_defweak: 645 case bfd_link_hash_common: 646 break; 647 case bfd_link_hash_undefweak: 648 case bfd_link_hash_undefined: 649 /* Since we're defining the symbol, don't let it seem to have not 650 been defined. record_dynamic_symbol and size_dynamic_sections 651 may depend on this. */ 652 h->root.type = bfd_link_hash_new; 653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) 654 bfd_link_repair_undef_list (&htab->root); 655 break; 656 case bfd_link_hash_new: 657 break; 658 case bfd_link_hash_indirect: 659 /* We had a versioned symbol in a dynamic library. We make the 660 the versioned symbol point to this one. */ 661 bed = get_elf_backend_data (output_bfd); 662 hv = h; 663 while (hv->root.type == bfd_link_hash_indirect 664 || hv->root.type == bfd_link_hash_warning) 665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link; 666 /* We don't need to update h->root.u since linker will set them 667 later. */ 668 h->root.type = bfd_link_hash_undefined; 669 hv->root.type = bfd_link_hash_indirect; 670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h; 671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); 672 break; 673 default: 674 BFD_FAIL (); 675 return FALSE; 676 } 677 678 /* If this symbol is being provided by the linker script, and it is 679 currently defined by a dynamic object, but not by a regular 680 object, then mark it as undefined so that the generic linker will 681 force the correct value. */ 682 if (provide 683 && h->def_dynamic 684 && !h->def_regular) 685 h->root.type = bfd_link_hash_undefined; 686 687 /* If this symbol is currently defined by a dynamic object, but not 688 by a regular object, then clear out any version information because 689 the symbol will not be associated with the dynamic object any 690 more. */ 691 if (h->def_dynamic && !h->def_regular) 692 h->verinfo.verdef = NULL; 693 694 /* Make sure this symbol is not garbage collected. */ 695 h->mark = 1; 696 697 h->def_regular = 1; 698 699 if (hidden) 700 { 701 bed = get_elf_backend_data (output_bfd); 702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 704 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 705 } 706 707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects 708 and executables. */ 709 if (!bfd_link_relocatable (info) 710 && h->dynindx != -1 711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) 713 h->forced_local = 1; 714 715 if ((h->def_dynamic 716 || h->ref_dynamic 717 || bfd_link_dll (info) 718 || elf_hash_table (info)->is_relocatable_executable) 719 && !h->forced_local 720 && h->dynindx == -1) 721 { 722 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 723 return FALSE; 724 725 /* If this is a weak defined symbol, and we know a corresponding 726 real symbol from the same dynamic object, make sure the real 727 symbol is also made into a dynamic symbol. */ 728 if (h->is_weakalias) 729 { 730 struct elf_link_hash_entry *def = weakdef (h); 731 732 if (def->dynindx == -1 733 && !bfd_elf_link_record_dynamic_symbol (info, def)) 734 return FALSE; 735 } 736 } 737 738 return TRUE; 739 } 740 741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on 742 success, and 2 on a failure caused by attempting to record a symbol 743 in a discarded section, eg. a discarded link-once section symbol. */ 744 745 int 746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, 747 bfd *input_bfd, 748 long input_indx) 749 { 750 bfd_size_type amt; 751 struct elf_link_local_dynamic_entry *entry; 752 struct elf_link_hash_table *eht; 753 struct elf_strtab_hash *dynstr; 754 size_t dynstr_index; 755 char *name; 756 Elf_External_Sym_Shndx eshndx; 757 char esym[sizeof (Elf64_External_Sym)]; 758 759 if (! is_elf_hash_table (info->hash)) 760 return 0; 761 762 /* See if the entry exists already. */ 763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) 764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) 765 return 1; 766 767 amt = sizeof (*entry); 768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); 769 if (entry == NULL) 770 return 0; 771 772 /* Go find the symbol, so that we can find it's name. */ 773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, 774 1, input_indx, &entry->isym, esym, &eshndx)) 775 { 776 bfd_release (input_bfd, entry); 777 return 0; 778 } 779 780 if (entry->isym.st_shndx != SHN_UNDEF 781 && entry->isym.st_shndx < SHN_LORESERVE) 782 { 783 asection *s; 784 785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); 786 if (s == NULL || bfd_is_abs_section (s->output_section)) 787 { 788 /* We can still bfd_release here as nothing has done another 789 bfd_alloc. We can't do this later in this function. */ 790 bfd_release (input_bfd, entry); 791 return 2; 792 } 793 } 794 795 name = (bfd_elf_string_from_elf_section 796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, 797 entry->isym.st_name)); 798 799 dynstr = elf_hash_table (info)->dynstr; 800 if (dynstr == NULL) 801 { 802 /* Create a strtab to hold the dynamic symbol names. */ 803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 804 if (dynstr == NULL) 805 return 0; 806 } 807 808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); 809 if (dynstr_index == (size_t) -1) 810 return 0; 811 entry->isym.st_name = dynstr_index; 812 813 eht = elf_hash_table (info); 814 815 entry->next = eht->dynlocal; 816 eht->dynlocal = entry; 817 entry->input_bfd = input_bfd; 818 entry->input_indx = input_indx; 819 eht->dynsymcount++; 820 821 /* Whatever binding the symbol had before, it's now local. */ 822 entry->isym.st_info 823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); 824 825 /* The dynindx will be set at the end of size_dynamic_sections. */ 826 827 return 1; 828 } 829 830 /* Return the dynindex of a local dynamic symbol. */ 831 832 long 833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, 834 bfd *input_bfd, 835 long input_indx) 836 { 837 struct elf_link_local_dynamic_entry *e; 838 839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 840 if (e->input_bfd == input_bfd && e->input_indx == input_indx) 841 return e->dynindx; 842 return -1; 843 } 844 845 /* This function is used to renumber the dynamic symbols, if some of 846 them are removed because they are marked as local. This is called 847 via elf_link_hash_traverse. */ 848 849 static bfd_boolean 850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, 851 void *data) 852 { 853 size_t *count = (size_t *) data; 854 855 if (h->forced_local) 856 return TRUE; 857 858 if (h->dynindx != -1) 859 h->dynindx = ++(*count); 860 861 return TRUE; 862 } 863 864 865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with 866 STB_LOCAL binding. */ 867 868 static bfd_boolean 869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, 870 void *data) 871 { 872 size_t *count = (size_t *) data; 873 874 if (!h->forced_local) 875 return TRUE; 876 877 if (h->dynindx != -1) 878 h->dynindx = ++(*count); 879 880 return TRUE; 881 } 882 883 /* Return true if the dynamic symbol for a given section should be 884 omitted when creating a shared library. */ 885 bfd_boolean 886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, 887 struct bfd_link_info *info, 888 asection *p) 889 { 890 struct elf_link_hash_table *htab; 891 asection *ip; 892 893 switch (elf_section_data (p)->this_hdr.sh_type) 894 { 895 case SHT_PROGBITS: 896 case SHT_NOBITS: 897 /* If sh_type is yet undecided, assume it could be 898 SHT_PROGBITS/SHT_NOBITS. */ 899 case SHT_NULL: 900 htab = elf_hash_table (info); 901 if (htab->text_index_section != NULL) 902 return p != htab->text_index_section && p != htab->data_index_section; 903 904 return (htab->dynobj != NULL 905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL 906 && ip->output_section == p); 907 908 /* There shouldn't be section relative relocations 909 against any other section. */ 910 default: 911 return TRUE; 912 } 913 } 914 915 bfd_boolean 916 _bfd_elf_omit_section_dynsym_all 917 (bfd *output_bfd ATTRIBUTE_UNUSED, 918 struct bfd_link_info *info ATTRIBUTE_UNUSED, 919 asection *p ATTRIBUTE_UNUSED) 920 { 921 return TRUE; 922 } 923 924 /* Assign dynsym indices. In a shared library we generate a section 925 symbol for each output section, which come first. Next come symbols 926 which have been forced to local binding. Then all of the back-end 927 allocated local dynamic syms, followed by the rest of the global 928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. 929 (This prevents the early call before elf_backend_init_index_section 930 and strip_excluded_output_sections setting dynindx for sections 931 that are stripped.) */ 932 933 static unsigned long 934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, 935 struct bfd_link_info *info, 936 unsigned long *section_sym_count) 937 { 938 unsigned long dynsymcount = 0; 939 bfd_boolean do_sec = section_sym_count != NULL; 940 941 if (bfd_link_pic (info) 942 || elf_hash_table (info)->is_relocatable_executable) 943 { 944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 945 asection *p; 946 for (p = output_bfd->sections; p ; p = p->next) 947 if ((p->flags & SEC_EXCLUDE) == 0 948 && (p->flags & SEC_ALLOC) != 0 949 && elf_hash_table (info)->dynamic_relocs 950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 951 { 952 ++dynsymcount; 953 if (do_sec) 954 elf_section_data (p)->dynindx = dynsymcount; 955 } 956 else if (do_sec) 957 elf_section_data (p)->dynindx = 0; 958 } 959 if (do_sec) 960 *section_sym_count = dynsymcount; 961 962 elf_link_hash_traverse (elf_hash_table (info), 963 elf_link_renumber_local_hash_table_dynsyms, 964 &dynsymcount); 965 966 if (elf_hash_table (info)->dynlocal) 967 { 968 struct elf_link_local_dynamic_entry *p; 969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) 970 p->dynindx = ++dynsymcount; 971 } 972 elf_hash_table (info)->local_dynsymcount = dynsymcount; 973 974 elf_link_hash_traverse (elf_hash_table (info), 975 elf_link_renumber_hash_table_dynsyms, 976 &dynsymcount); 977 978 /* There is an unused NULL entry at the head of the table which we 979 must account for in our count even if the table is empty since it 980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in 981 .dynamic section. */ 982 dynsymcount++; 983 984 elf_hash_table (info)->dynsymcount = dynsymcount; 985 return dynsymcount; 986 } 987 988 /* Merge st_other field. */ 989 990 static void 991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, 992 const Elf_Internal_Sym *isym, asection *sec, 993 bfd_boolean definition, bfd_boolean dynamic) 994 { 995 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 996 997 /* If st_other has a processor-specific meaning, specific 998 code might be needed here. */ 999 if (bed->elf_backend_merge_symbol_attribute) 1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, 1001 dynamic); 1002 1003 if (!dynamic) 1004 { 1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other); 1006 unsigned hvis = ELF_ST_VISIBILITY (h->other); 1007 1008 /* Keep the most constraining visibility. Leave the remainder 1009 of the st_other field to elf_backend_merge_symbol_attribute. */ 1010 if (symvis - 1 < hvis - 1) 1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); 1012 } 1013 else if (definition 1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT 1015 && (sec->flags & SEC_READONLY) == 0) 1016 h->protected_def = 1; 1017 } 1018 1019 /* This function is called when we want to merge a new symbol with an 1020 existing symbol. It handles the various cases which arise when we 1021 find a definition in a dynamic object, or when there is already a 1022 definition in a dynamic object. The new symbol is described by 1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table 1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK 1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment 1026 of an old common symbol. We set OVERRIDE if the old symbol is 1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for 1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size 1029 to change. By OK to change, we mean that we shouldn't warn if the 1030 type or size does change. */ 1031 1032 static bfd_boolean 1033 _bfd_elf_merge_symbol (bfd *abfd, 1034 struct bfd_link_info *info, 1035 const char *name, 1036 Elf_Internal_Sym *sym, 1037 asection **psec, 1038 bfd_vma *pvalue, 1039 struct elf_link_hash_entry **sym_hash, 1040 bfd **poldbfd, 1041 bfd_boolean *pold_weak, 1042 unsigned int *pold_alignment, 1043 bfd_boolean *skip, 1044 bfd_boolean *override, 1045 bfd_boolean *type_change_ok, 1046 bfd_boolean *size_change_ok, 1047 bfd_boolean *matched) 1048 { 1049 asection *sec, *oldsec; 1050 struct elf_link_hash_entry *h; 1051 struct elf_link_hash_entry *hi; 1052 struct elf_link_hash_entry *flip; 1053 int bind; 1054 bfd *oldbfd; 1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; 1056 bfd_boolean newweak, oldweak, newfunc, oldfunc; 1057 const struct elf_backend_data *bed; 1058 char *new_version; 1059 bfd_boolean default_sym = *matched; 1060 1061 *skip = FALSE; 1062 *override = FALSE; 1063 1064 sec = *psec; 1065 bind = ELF_ST_BIND (sym->st_info); 1066 1067 if (! bfd_is_und_section (sec)) 1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); 1069 else 1070 h = ((struct elf_link_hash_entry *) 1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); 1072 if (h == NULL) 1073 return FALSE; 1074 *sym_hash = h; 1075 1076 bed = get_elf_backend_data (abfd); 1077 1078 /* NEW_VERSION is the symbol version of the new symbol. */ 1079 if (h->versioned != unversioned) 1080 { 1081 /* Symbol version is unknown or versioned. */ 1082 new_version = strrchr (name, ELF_VER_CHR); 1083 if (new_version) 1084 { 1085 if (h->versioned == unknown) 1086 { 1087 if (new_version > name && new_version[-1] != ELF_VER_CHR) 1088 h->versioned = versioned_hidden; 1089 else 1090 h->versioned = versioned; 1091 } 1092 new_version += 1; 1093 if (new_version[0] == '\0') 1094 new_version = NULL; 1095 } 1096 else 1097 h->versioned = unversioned; 1098 } 1099 else 1100 new_version = NULL; 1101 1102 /* For merging, we only care about real symbols. But we need to make 1103 sure that indirect symbol dynamic flags are updated. */ 1104 hi = h; 1105 while (h->root.type == bfd_link_hash_indirect 1106 || h->root.type == bfd_link_hash_warning) 1107 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1108 1109 if (!*matched) 1110 { 1111 if (hi == h || h->root.type == bfd_link_hash_new) 1112 *matched = TRUE; 1113 else 1114 { 1115 /* OLD_HIDDEN is true if the existing symbol is only visible 1116 to the symbol with the same symbol version. NEW_HIDDEN is 1117 true if the new symbol is only visible to the symbol with 1118 the same symbol version. */ 1119 bfd_boolean old_hidden = h->versioned == versioned_hidden; 1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden; 1121 if (!old_hidden && !new_hidden) 1122 /* The new symbol matches the existing symbol if both 1123 aren't hidden. */ 1124 *matched = TRUE; 1125 else 1126 { 1127 /* OLD_VERSION is the symbol version of the existing 1128 symbol. */ 1129 char *old_version; 1130 1131 if (h->versioned >= versioned) 1132 old_version = strrchr (h->root.root.string, 1133 ELF_VER_CHR) + 1; 1134 else 1135 old_version = NULL; 1136 1137 /* The new symbol matches the existing symbol if they 1138 have the same symbol version. */ 1139 *matched = (old_version == new_version 1140 || (old_version != NULL 1141 && new_version != NULL 1142 && strcmp (old_version, new_version) == 0)); 1143 } 1144 } 1145 } 1146 1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the 1148 existing symbol. */ 1149 1150 oldbfd = NULL; 1151 oldsec = NULL; 1152 switch (h->root.type) 1153 { 1154 default: 1155 break; 1156 1157 case bfd_link_hash_undefined: 1158 case bfd_link_hash_undefweak: 1159 oldbfd = h->root.u.undef.abfd; 1160 break; 1161 1162 case bfd_link_hash_defined: 1163 case bfd_link_hash_defweak: 1164 oldbfd = h->root.u.def.section->owner; 1165 oldsec = h->root.u.def.section; 1166 break; 1167 1168 case bfd_link_hash_common: 1169 oldbfd = h->root.u.c.p->section->owner; 1170 oldsec = h->root.u.c.p->section; 1171 if (pold_alignment) 1172 *pold_alignment = h->root.u.c.p->alignment_power; 1173 break; 1174 } 1175 if (poldbfd && *poldbfd == NULL) 1176 *poldbfd = oldbfd; 1177 1178 /* Differentiate strong and weak symbols. */ 1179 newweak = bind == STB_WEAK; 1180 oldweak = (h->root.type == bfd_link_hash_defweak 1181 || h->root.type == bfd_link_hash_undefweak); 1182 if (pold_weak) 1183 *pold_weak = oldweak; 1184 1185 /* We have to check it for every instance since the first few may be 1186 references and not all compilers emit symbol type for undefined 1187 symbols. */ 1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym); 1189 1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol, 1191 respectively, is from a dynamic object. */ 1192 1193 newdyn = (abfd->flags & DYNAMIC) != 0; 1194 1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined 1196 syms and defined syms in dynamic libraries respectively. 1197 ref_dynamic on the other hand can be set for a symbol defined in 1198 a dynamic library, and def_dynamic may not be set; When the 1199 definition in a dynamic lib is overridden by a definition in the 1200 executable use of the symbol in the dynamic lib becomes a 1201 reference to the executable symbol. */ 1202 if (newdyn) 1203 { 1204 if (bfd_is_und_section (sec)) 1205 { 1206 if (bind != STB_WEAK) 1207 { 1208 h->ref_dynamic_nonweak = 1; 1209 hi->ref_dynamic_nonweak = 1; 1210 } 1211 } 1212 else 1213 { 1214 /* Update the existing symbol only if they match. */ 1215 if (*matched) 1216 h->dynamic_def = 1; 1217 hi->dynamic_def = 1; 1218 } 1219 } 1220 1221 /* If we just created the symbol, mark it as being an ELF symbol. 1222 Other than that, there is nothing to do--there is no merge issue 1223 with a newly defined symbol--so we just return. */ 1224 1225 if (h->root.type == bfd_link_hash_new) 1226 { 1227 h->non_elf = 0; 1228 return TRUE; 1229 } 1230 1231 /* In cases involving weak versioned symbols, we may wind up trying 1232 to merge a symbol with itself. Catch that here, to avoid the 1233 confusion that results if we try to override a symbol with 1234 itself. The additional tests catch cases like 1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a 1236 dynamic object, which we do want to handle here. */ 1237 if (abfd == oldbfd 1238 && (newweak || oldweak) 1239 && ((abfd->flags & DYNAMIC) == 0 1240 || !h->def_regular)) 1241 return TRUE; 1242 1243 olddyn = FALSE; 1244 if (oldbfd != NULL) 1245 olddyn = (oldbfd->flags & DYNAMIC) != 0; 1246 else if (oldsec != NULL) 1247 { 1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section 1249 indices used by MIPS ELF. */ 1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; 1251 } 1252 1253 /* Handle a case where plugin_notice won't be called and thus won't 1254 set the non_ir_ref flags on the first pass over symbols. */ 1255 if (oldbfd != NULL 1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN) 1257 && newdyn != olddyn) 1258 { 1259 h->root.non_ir_ref_dynamic = TRUE; 1260 hi->root.non_ir_ref_dynamic = TRUE; 1261 } 1262 1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol, 1264 respectively, appear to be a definition rather than reference. */ 1265 1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); 1267 1268 olddef = (h->root.type != bfd_link_hash_undefined 1269 && h->root.type != bfd_link_hash_undefweak 1270 && h->root.type != bfd_link_hash_common); 1271 1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, 1273 respectively, appear to be a function. */ 1274 1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); 1277 1278 oldfunc = (h->type != STT_NOTYPE 1279 && bed->is_function_type (h->type)); 1280 1281 if (!(newfunc && oldfunc) 1282 && ELF_ST_TYPE (sym->st_info) != h->type 1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1284 && h->type != STT_NOTYPE 1285 && (newdef || bfd_is_com_section (sec)) 1286 && (olddef || h->root.type == bfd_link_hash_common)) 1287 { 1288 /* If creating a default indirect symbol ("foo" or "foo@") from 1289 a dynamic versioned definition ("foo@@") skip doing so if 1290 there is an existing regular definition with a different 1291 type. We don't want, for example, a "time" variable in the 1292 executable overriding a "time" function in a shared library. */ 1293 if (newdyn 1294 && !olddyn) 1295 { 1296 *skip = TRUE; 1297 return TRUE; 1298 } 1299 1300 /* When adding a symbol from a regular object file after we have 1301 created indirect symbols, undo the indirection and any 1302 dynamic state. */ 1303 if (hi != h 1304 && !newdyn 1305 && olddyn) 1306 { 1307 h = hi; 1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1309 h->forced_local = 0; 1310 h->ref_dynamic = 0; 1311 h->def_dynamic = 0; 1312 h->dynamic_def = 0; 1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1314 { 1315 h->root.type = bfd_link_hash_undefined; 1316 h->root.u.undef.abfd = abfd; 1317 } 1318 else 1319 { 1320 h->root.type = bfd_link_hash_new; 1321 h->root.u.undef.abfd = NULL; 1322 } 1323 return TRUE; 1324 } 1325 } 1326 1327 /* Check TLS symbols. We don't check undefined symbols introduced 1328 by "ld -u" which have no type (and oldbfd NULL), and we don't 1329 check symbols from plugins because they also have no type. */ 1330 if (oldbfd != NULL 1331 && (oldbfd->flags & BFD_PLUGIN) == 0 1332 && (abfd->flags & BFD_PLUGIN) == 0 1333 && ELF_ST_TYPE (sym->st_info) != h->type 1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) 1335 { 1336 bfd *ntbfd, *tbfd; 1337 bfd_boolean ntdef, tdef; 1338 asection *ntsec, *tsec; 1339 1340 if (h->type == STT_TLS) 1341 { 1342 ntbfd = abfd; 1343 ntsec = sec; 1344 ntdef = newdef; 1345 tbfd = oldbfd; 1346 tsec = oldsec; 1347 tdef = olddef; 1348 } 1349 else 1350 { 1351 ntbfd = oldbfd; 1352 ntsec = oldsec; 1353 ntdef = olddef; 1354 tbfd = abfd; 1355 tsec = sec; 1356 tdef = newdef; 1357 } 1358 1359 if (tdef && ntdef) 1360 _bfd_error_handler 1361 /* xgettext:c-format */ 1362 (_("%s: TLS definition in %pB section %pA " 1363 "mismatches non-TLS definition in %pB section %pA"), 1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec); 1365 else if (!tdef && !ntdef) 1366 _bfd_error_handler 1367 /* xgettext:c-format */ 1368 (_("%s: TLS reference in %pB " 1369 "mismatches non-TLS reference in %pB"), 1370 h->root.root.string, tbfd, ntbfd); 1371 else if (tdef) 1372 _bfd_error_handler 1373 /* xgettext:c-format */ 1374 (_("%s: TLS definition in %pB section %pA " 1375 "mismatches non-TLS reference in %pB"), 1376 h->root.root.string, tbfd, tsec, ntbfd); 1377 else 1378 _bfd_error_handler 1379 /* xgettext:c-format */ 1380 (_("%s: TLS reference in %pB " 1381 "mismatches non-TLS definition in %pB section %pA"), 1382 h->root.root.string, tbfd, ntbfd, ntsec); 1383 1384 bfd_set_error (bfd_error_bad_value); 1385 return FALSE; 1386 } 1387 1388 /* If the old symbol has non-default visibility, we ignore the new 1389 definition from a dynamic object. */ 1390 if (newdyn 1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1392 && !bfd_is_und_section (sec)) 1393 { 1394 *skip = TRUE; 1395 /* Make sure this symbol is dynamic. */ 1396 h->ref_dynamic = 1; 1397 hi->ref_dynamic = 1; 1398 /* A protected symbol has external availability. Make sure it is 1399 recorded as dynamic. 1400 1401 FIXME: Should we check type and size for protected symbol? */ 1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 1403 return bfd_elf_link_record_dynamic_symbol (info, h); 1404 else 1405 return TRUE; 1406 } 1407 else if (!newdyn 1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT 1409 && h->def_dynamic) 1410 { 1411 /* If the new symbol with non-default visibility comes from a 1412 relocatable file and the old definition comes from a dynamic 1413 object, we remove the old definition. */ 1414 if (hi->root.type == bfd_link_hash_indirect) 1415 { 1416 /* Handle the case where the old dynamic definition is 1417 default versioned. We need to copy the symbol info from 1418 the symbol with default version to the normal one if it 1419 was referenced before. */ 1420 if (h->ref_regular) 1421 { 1422 hi->root.type = h->root.type; 1423 h->root.type = bfd_link_hash_indirect; 1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); 1425 1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1428 { 1429 /* If the new symbol is hidden or internal, completely undo 1430 any dynamic link state. */ 1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1432 h->forced_local = 0; 1433 h->ref_dynamic = 0; 1434 } 1435 else 1436 h->ref_dynamic = 1; 1437 1438 h->def_dynamic = 0; 1439 /* FIXME: Should we check type and size for protected symbol? */ 1440 h->size = 0; 1441 h->type = 0; 1442 1443 h = hi; 1444 } 1445 else 1446 h = hi; 1447 } 1448 1449 /* If the old symbol was undefined before, then it will still be 1450 on the undefs list. If the new symbol is undefined or 1451 common, we can't make it bfd_link_hash_new here, because new 1452 undefined or common symbols will be added to the undefs list 1453 by _bfd_generic_link_add_one_symbol. Symbols may not be 1454 added twice to the undefs list. Also, if the new symbol is 1455 undefweak then we don't want to lose the strong undef. */ 1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1457 { 1458 h->root.type = bfd_link_hash_undefined; 1459 h->root.u.undef.abfd = abfd; 1460 } 1461 else 1462 { 1463 h->root.type = bfd_link_hash_new; 1464 h->root.u.undef.abfd = NULL; 1465 } 1466 1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1468 { 1469 /* If the new symbol is hidden or internal, completely undo 1470 any dynamic link state. */ 1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1472 h->forced_local = 0; 1473 h->ref_dynamic = 0; 1474 } 1475 else 1476 h->ref_dynamic = 1; 1477 h->def_dynamic = 0; 1478 /* FIXME: Should we check type and size for protected symbol? */ 1479 h->size = 0; 1480 h->type = 0; 1481 return TRUE; 1482 } 1483 1484 /* If a new weak symbol definition comes from a regular file and the 1485 old symbol comes from a dynamic library, we treat the new one as 1486 strong. Similarly, an old weak symbol definition from a regular 1487 file is treated as strong when the new symbol comes from a dynamic 1488 library. Further, an old weak symbol from a dynamic library is 1489 treated as strong if the new symbol is from a dynamic library. 1490 This reflects the way glibc's ld.so works. 1491 1492 Also allow a weak symbol to override a linker script symbol 1493 defined by an early pass over the script. This is done so the 1494 linker knows the symbol is defined in an object file, for the 1495 DEFINED script function. 1496 1497 Do this before setting *type_change_ok or *size_change_ok so that 1498 we warn properly when dynamic library symbols are overridden. */ 1499 1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) 1501 newweak = FALSE; 1502 if (olddef && newdyn) 1503 oldweak = FALSE; 1504 1505 /* Allow changes between different types of function symbol. */ 1506 if (newfunc && oldfunc) 1507 *type_change_ok = TRUE; 1508 1509 /* It's OK to change the type if either the existing symbol or the 1510 new symbol is weak. A type change is also OK if the old symbol 1511 is undefined and the new symbol is defined. */ 1512 1513 if (oldweak 1514 || newweak 1515 || (newdef 1516 && h->root.type == bfd_link_hash_undefined)) 1517 *type_change_ok = TRUE; 1518 1519 /* It's OK to change the size if either the existing symbol or the 1520 new symbol is weak, or if the old symbol is undefined. */ 1521 1522 if (*type_change_ok 1523 || h->root.type == bfd_link_hash_undefined) 1524 *size_change_ok = TRUE; 1525 1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old 1527 symbol, respectively, appears to be a common symbol in a dynamic 1528 object. If a symbol appears in an uninitialized section, and is 1529 not weak, and is not a function, then it may be a common symbol 1530 which was resolved when the dynamic object was created. We want 1531 to treat such symbols specially, because they raise special 1532 considerations when setting the symbol size: if the symbol 1533 appears as a common symbol in a regular object, and the size in 1534 the regular object is larger, we must make sure that we use the 1535 larger size. This problematic case can always be avoided in C, 1536 but it must be handled correctly when using Fortran shared 1537 libraries. 1538 1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and 1540 likewise for OLDDYNCOMMON and OLDDEF. 1541 1542 Note that this test is just a heuristic, and that it is quite 1543 possible to have an uninitialized symbol in a shared object which 1544 is really a definition, rather than a common symbol. This could 1545 lead to some minor confusion when the symbol really is a common 1546 symbol in some regular object. However, I think it will be 1547 harmless. */ 1548 1549 if (newdyn 1550 && newdef 1551 && !newweak 1552 && (sec->flags & SEC_ALLOC) != 0 1553 && (sec->flags & SEC_LOAD) == 0 1554 && sym->st_size > 0 1555 && !newfunc) 1556 newdyncommon = TRUE; 1557 else 1558 newdyncommon = FALSE; 1559 1560 if (olddyn 1561 && olddef 1562 && h->root.type == bfd_link_hash_defined 1563 && h->def_dynamic 1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0 1566 && h->size > 0 1567 && !oldfunc) 1568 olddyncommon = TRUE; 1569 else 1570 olddyncommon = FALSE; 1571 1572 /* We now know everything about the old and new symbols. We ask the 1573 backend to check if we can merge them. */ 1574 if (bed->merge_symbol != NULL) 1575 { 1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) 1577 return FALSE; 1578 sec = *psec; 1579 } 1580 1581 /* There are multiple definitions of a normal symbol. Skip the 1582 default symbol as well as definition from an IR object. */ 1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak 1584 && !default_sym && h->def_regular 1585 && !(oldbfd != NULL 1586 && (oldbfd->flags & BFD_PLUGIN) != 0 1587 && (abfd->flags & BFD_PLUGIN) == 0)) 1588 { 1589 /* Handle a multiple definition. */ 1590 (*info->callbacks->multiple_definition) (info, &h->root, 1591 abfd, sec, *pvalue); 1592 *skip = TRUE; 1593 return TRUE; 1594 } 1595 1596 /* If both the old and the new symbols look like common symbols in a 1597 dynamic object, set the size of the symbol to the larger of the 1598 two. */ 1599 1600 if (olddyncommon 1601 && newdyncommon 1602 && sym->st_size != h->size) 1603 { 1604 /* Since we think we have two common symbols, issue a multiple 1605 common warning if desired. Note that we only warn if the 1606 size is different. If the size is the same, we simply let 1607 the old symbol override the new one as normally happens with 1608 symbols defined in dynamic objects. */ 1609 1610 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1611 bfd_link_hash_common, sym->st_size); 1612 if (sym->st_size > h->size) 1613 h->size = sym->st_size; 1614 1615 *size_change_ok = TRUE; 1616 } 1617 1618 /* If we are looking at a dynamic object, and we have found a 1619 definition, we need to see if the symbol was already defined by 1620 some other object. If so, we want to use the existing 1621 definition, and we do not want to report a multiple symbol 1622 definition error; we do this by clobbering *PSEC to be 1623 bfd_und_section_ptr. 1624 1625 We treat a common symbol as a definition if the symbol in the 1626 shared library is a function, since common symbols always 1627 represent variables; this can cause confusion in principle, but 1628 any such confusion would seem to indicate an erroneous program or 1629 shared library. We also permit a common symbol in a regular 1630 object to override a weak symbol in a shared object. */ 1631 1632 if (newdyn 1633 && newdef 1634 && (olddef 1635 || (h->root.type == bfd_link_hash_common 1636 && (newweak || newfunc)))) 1637 { 1638 *override = TRUE; 1639 newdef = FALSE; 1640 newdyncommon = FALSE; 1641 1642 *psec = sec = bfd_und_section_ptr; 1643 *size_change_ok = TRUE; 1644 1645 /* If we get here when the old symbol is a common symbol, then 1646 we are explicitly letting it override a weak symbol or 1647 function in a dynamic object, and we don't want to warn about 1648 a type change. If the old symbol is a defined symbol, a type 1649 change warning may still be appropriate. */ 1650 1651 if (h->root.type == bfd_link_hash_common) 1652 *type_change_ok = TRUE; 1653 } 1654 1655 /* Handle the special case of an old common symbol merging with a 1656 new symbol which looks like a common symbol in a shared object. 1657 We change *PSEC and *PVALUE to make the new symbol look like a 1658 common symbol, and let _bfd_generic_link_add_one_symbol do the 1659 right thing. */ 1660 1661 if (newdyncommon 1662 && h->root.type == bfd_link_hash_common) 1663 { 1664 *override = TRUE; 1665 newdef = FALSE; 1666 newdyncommon = FALSE; 1667 *pvalue = sym->st_size; 1668 *psec = sec = bed->common_section (oldsec); 1669 *size_change_ok = TRUE; 1670 } 1671 1672 /* Skip weak definitions of symbols that are already defined. */ 1673 if (newdef && olddef && newweak) 1674 { 1675 /* Don't skip new non-IR weak syms. */ 1676 if (!(oldbfd != NULL 1677 && (oldbfd->flags & BFD_PLUGIN) != 0 1678 && (abfd->flags & BFD_PLUGIN) == 0)) 1679 { 1680 newdef = FALSE; 1681 *skip = TRUE; 1682 } 1683 1684 /* Merge st_other. If the symbol already has a dynamic index, 1685 but visibility says it should not be visible, turn it into a 1686 local symbol. */ 1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn); 1688 if (h->dynindx != -1) 1689 switch (ELF_ST_VISIBILITY (h->other)) 1690 { 1691 case STV_INTERNAL: 1692 case STV_HIDDEN: 1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1694 break; 1695 } 1696 } 1697 1698 /* If the old symbol is from a dynamic object, and the new symbol is 1699 a definition which is not from a dynamic object, then the new 1700 symbol overrides the old symbol. Symbols from regular files 1701 always take precedence over symbols from dynamic objects, even if 1702 they are defined after the dynamic object in the link. 1703 1704 As above, we again permit a common symbol in a regular object to 1705 override a definition in a shared object if the shared object 1706 symbol is a function or is weak. */ 1707 1708 flip = NULL; 1709 if (!newdyn 1710 && (newdef 1711 || (bfd_is_com_section (sec) 1712 && (oldweak || oldfunc))) 1713 && olddyn 1714 && olddef 1715 && h->def_dynamic) 1716 { 1717 /* Change the hash table entry to undefined, and let 1718 _bfd_generic_link_add_one_symbol do the right thing with the 1719 new definition. */ 1720 1721 h->root.type = bfd_link_hash_undefined; 1722 h->root.u.undef.abfd = h->root.u.def.section->owner; 1723 *size_change_ok = TRUE; 1724 1725 olddef = FALSE; 1726 olddyncommon = FALSE; 1727 1728 /* We again permit a type change when a common symbol may be 1729 overriding a function. */ 1730 1731 if (bfd_is_com_section (sec)) 1732 { 1733 if (oldfunc) 1734 { 1735 /* If a common symbol overrides a function, make sure 1736 that it isn't defined dynamically nor has type 1737 function. */ 1738 h->def_dynamic = 0; 1739 h->type = STT_NOTYPE; 1740 } 1741 *type_change_ok = TRUE; 1742 } 1743 1744 if (hi->root.type == bfd_link_hash_indirect) 1745 flip = hi; 1746 else 1747 /* This union may have been set to be non-NULL when this symbol 1748 was seen in a dynamic object. We must force the union to be 1749 NULL, so that it is correct for a regular symbol. */ 1750 h->verinfo.vertree = NULL; 1751 } 1752 1753 /* Handle the special case of a new common symbol merging with an 1754 old symbol that looks like it might be a common symbol defined in 1755 a shared object. Note that we have already handled the case in 1756 which a new common symbol should simply override the definition 1757 in the shared library. */ 1758 1759 if (! newdyn 1760 && bfd_is_com_section (sec) 1761 && olddyncommon) 1762 { 1763 /* It would be best if we could set the hash table entry to a 1764 common symbol, but we don't know what to use for the section 1765 or the alignment. */ 1766 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1767 bfd_link_hash_common, sym->st_size); 1768 1769 /* If the presumed common symbol in the dynamic object is 1770 larger, pretend that the new symbol has its size. */ 1771 1772 if (h->size > *pvalue) 1773 *pvalue = h->size; 1774 1775 /* We need to remember the alignment required by the symbol 1776 in the dynamic object. */ 1777 BFD_ASSERT (pold_alignment); 1778 *pold_alignment = h->root.u.def.section->alignment_power; 1779 1780 olddef = FALSE; 1781 olddyncommon = FALSE; 1782 1783 h->root.type = bfd_link_hash_undefined; 1784 h->root.u.undef.abfd = h->root.u.def.section->owner; 1785 1786 *size_change_ok = TRUE; 1787 *type_change_ok = TRUE; 1788 1789 if (hi->root.type == bfd_link_hash_indirect) 1790 flip = hi; 1791 else 1792 h->verinfo.vertree = NULL; 1793 } 1794 1795 if (flip != NULL) 1796 { 1797 /* Handle the case where we had a versioned symbol in a dynamic 1798 library and now find a definition in a normal object. In this 1799 case, we make the versioned symbol point to the normal one. */ 1800 flip->root.type = h->root.type; 1801 flip->root.u.undef.abfd = h->root.u.undef.abfd; 1802 h->root.type = bfd_link_hash_indirect; 1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip; 1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); 1805 if (h->def_dynamic) 1806 { 1807 h->def_dynamic = 0; 1808 flip->ref_dynamic = 1; 1809 } 1810 } 1811 1812 return TRUE; 1813 } 1814 1815 /* This function is called to create an indirect symbol from the 1816 default for the symbol with the default version if needed. The 1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We 1818 set DYNSYM if the new indirect symbol is dynamic. */ 1819 1820 static bfd_boolean 1821 _bfd_elf_add_default_symbol (bfd *abfd, 1822 struct bfd_link_info *info, 1823 struct elf_link_hash_entry *h, 1824 const char *name, 1825 Elf_Internal_Sym *sym, 1826 asection *sec, 1827 bfd_vma value, 1828 bfd **poldbfd, 1829 bfd_boolean *dynsym) 1830 { 1831 bfd_boolean type_change_ok; 1832 bfd_boolean size_change_ok; 1833 bfd_boolean skip; 1834 char *shortname; 1835 struct elf_link_hash_entry *hi; 1836 struct bfd_link_hash_entry *bh; 1837 const struct elf_backend_data *bed; 1838 bfd_boolean collect; 1839 bfd_boolean dynamic; 1840 bfd_boolean override; 1841 char *p; 1842 size_t len, shortlen; 1843 asection *tmp_sec; 1844 bfd_boolean matched; 1845 1846 if (h->versioned == unversioned || h->versioned == versioned_hidden) 1847 return TRUE; 1848 1849 /* If this symbol has a version, and it is the default version, we 1850 create an indirect symbol from the default name to the fully 1851 decorated name. This will cause external references which do not 1852 specify a version to be bound to this version of the symbol. */ 1853 p = strchr (name, ELF_VER_CHR); 1854 if (h->versioned == unknown) 1855 { 1856 if (p == NULL) 1857 { 1858 h->versioned = unversioned; 1859 return TRUE; 1860 } 1861 else 1862 { 1863 if (p[1] != ELF_VER_CHR) 1864 { 1865 h->versioned = versioned_hidden; 1866 return TRUE; 1867 } 1868 else 1869 h->versioned = versioned; 1870 } 1871 } 1872 else 1873 { 1874 /* PR ld/19073: We may see an unversioned definition after the 1875 default version. */ 1876 if (p == NULL) 1877 return TRUE; 1878 } 1879 1880 bed = get_elf_backend_data (abfd); 1881 collect = bed->collect; 1882 dynamic = (abfd->flags & DYNAMIC) != 0; 1883 1884 shortlen = p - name; 1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); 1886 if (shortname == NULL) 1887 return FALSE; 1888 memcpy (shortname, name, shortlen); 1889 shortname[shortlen] = '\0'; 1890 1891 /* We are going to create a new symbol. Merge it with any existing 1892 symbol with this name. For the purposes of the merge, act as 1893 though we were defining the symbol we just defined, although we 1894 actually going to define an indirect symbol. */ 1895 type_change_ok = FALSE; 1896 size_change_ok = FALSE; 1897 matched = TRUE; 1898 tmp_sec = sec; 1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 1900 &hi, poldbfd, NULL, NULL, &skip, &override, 1901 &type_change_ok, &size_change_ok, &matched)) 1902 return FALSE; 1903 1904 if (skip) 1905 goto nondefault; 1906 1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi)) 1908 { 1909 /* If the undecorated symbol will have a version added by a 1910 script different to H, then don't indirect to/from the 1911 undecorated symbol. This isn't ideal because we may not yet 1912 have seen symbol versions, if given by a script on the 1913 command line rather than via --version-script. */ 1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL) 1915 { 1916 bfd_boolean hide; 1917 1918 hi->verinfo.vertree 1919 = bfd_find_version_for_sym (info->version_info, 1920 hi->root.root.string, &hide); 1921 if (hi->verinfo.vertree != NULL && hide) 1922 { 1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 1924 goto nondefault; 1925 } 1926 } 1927 if (hi->verinfo.vertree != NULL 1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) 1929 goto nondefault; 1930 } 1931 1932 if (! override) 1933 { 1934 /* Add the default symbol if not performing a relocatable link. */ 1935 if (! bfd_link_relocatable (info)) 1936 { 1937 bh = &hi->root; 1938 if (bh->type == bfd_link_hash_defined 1939 && bh->u.def.section->owner != NULL 1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) 1941 { 1942 /* Mark the previous definition from IR object as 1943 undefined so that the generic linker will override 1944 it. */ 1945 bh->type = bfd_link_hash_undefined; 1946 bh->u.undef.abfd = bh->u.def.section->owner; 1947 } 1948 if (! (_bfd_generic_link_add_one_symbol 1949 (info, abfd, shortname, BSF_INDIRECT, 1950 bfd_ind_section_ptr, 1951 0, name, FALSE, collect, &bh))) 1952 return FALSE; 1953 hi = (struct elf_link_hash_entry *) bh; 1954 } 1955 } 1956 else 1957 { 1958 /* In this case the symbol named SHORTNAME is overriding the 1959 indirect symbol we want to add. We were planning on making 1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME 1961 is the name without a version. NAME is the fully versioned 1962 name, and it is the default version. 1963 1964 Overriding means that we already saw a definition for the 1965 symbol SHORTNAME in a regular object, and it is overriding 1966 the symbol defined in the dynamic object. 1967 1968 When this happens, we actually want to change NAME, the 1969 symbol we just added, to refer to SHORTNAME. This will cause 1970 references to NAME in the shared object to become references 1971 to SHORTNAME in the regular object. This is what we expect 1972 when we override a function in a shared object: that the 1973 references in the shared object will be mapped to the 1974 definition in the regular object. */ 1975 1976 while (hi->root.type == bfd_link_hash_indirect 1977 || hi->root.type == bfd_link_hash_warning) 1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1979 1980 h->root.type = bfd_link_hash_indirect; 1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1982 if (h->def_dynamic) 1983 { 1984 h->def_dynamic = 0; 1985 hi->ref_dynamic = 1; 1986 if (hi->ref_regular 1987 || hi->def_regular) 1988 { 1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi)) 1990 return FALSE; 1991 } 1992 } 1993 1994 /* Now set HI to H, so that the following code will set the 1995 other fields correctly. */ 1996 hi = h; 1997 } 1998 1999 /* Check if HI is a warning symbol. */ 2000 if (hi->root.type == bfd_link_hash_warning) 2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 2002 2003 /* If there is a duplicate definition somewhere, then HI may not 2004 point to an indirect symbol. We will have reported an error to 2005 the user in that case. */ 2006 2007 if (hi->root.type == bfd_link_hash_indirect) 2008 { 2009 struct elf_link_hash_entry *ht; 2010 2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link; 2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); 2013 2014 /* A reference to the SHORTNAME symbol from a dynamic library 2015 will be satisfied by the versioned symbol at runtime. In 2016 effect, we have a reference to the versioned symbol. */ 2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2018 hi->dynamic_def |= ht->dynamic_def; 2019 2020 /* See if the new flags lead us to realize that the symbol must 2021 be dynamic. */ 2022 if (! *dynsym) 2023 { 2024 if (! dynamic) 2025 { 2026 if (! bfd_link_executable (info) 2027 || hi->def_dynamic 2028 || hi->ref_dynamic) 2029 *dynsym = TRUE; 2030 } 2031 else 2032 { 2033 if (hi->ref_regular) 2034 *dynsym = TRUE; 2035 } 2036 } 2037 } 2038 2039 /* We also need to define an indirection from the nondefault version 2040 of the symbol. */ 2041 2042 nondefault: 2043 len = strlen (name); 2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len); 2045 if (shortname == NULL) 2046 return FALSE; 2047 memcpy (shortname, name, shortlen); 2048 memcpy (shortname + shortlen, p + 1, len - shortlen); 2049 2050 /* Once again, merge with any existing symbol. */ 2051 type_change_ok = FALSE; 2052 size_change_ok = FALSE; 2053 tmp_sec = sec; 2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 2055 &hi, poldbfd, NULL, NULL, &skip, &override, 2056 &type_change_ok, &size_change_ok, &matched)) 2057 return FALSE; 2058 2059 if (skip) 2060 return TRUE; 2061 2062 if (override) 2063 { 2064 /* Here SHORTNAME is a versioned name, so we don't expect to see 2065 the type of override we do in the case above unless it is 2066 overridden by a versioned definition. */ 2067 if (hi->root.type != bfd_link_hash_defined 2068 && hi->root.type != bfd_link_hash_defweak) 2069 _bfd_error_handler 2070 /* xgettext:c-format */ 2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), 2072 abfd, shortname); 2073 } 2074 else 2075 { 2076 bh = &hi->root; 2077 if (! (_bfd_generic_link_add_one_symbol 2078 (info, abfd, shortname, BSF_INDIRECT, 2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) 2080 return FALSE; 2081 hi = (struct elf_link_hash_entry *) bh; 2082 2083 /* If there is a duplicate definition somewhere, then HI may not 2084 point to an indirect symbol. We will have reported an error 2085 to the user in that case. */ 2086 2087 if (hi->root.type == bfd_link_hash_indirect) 2088 { 2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2091 hi->dynamic_def |= h->dynamic_def; 2092 2093 /* See if the new flags lead us to realize that the symbol 2094 must be dynamic. */ 2095 if (! *dynsym) 2096 { 2097 if (! dynamic) 2098 { 2099 if (! bfd_link_executable (info) 2100 || hi->ref_dynamic) 2101 *dynsym = TRUE; 2102 } 2103 else 2104 { 2105 if (hi->ref_regular) 2106 *dynsym = TRUE; 2107 } 2108 } 2109 } 2110 } 2111 2112 return TRUE; 2113 } 2114 2115 /* This routine is used to export all defined symbols into the dynamic 2116 symbol table. It is called via elf_link_hash_traverse. */ 2117 2118 static bfd_boolean 2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) 2120 { 2121 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2122 2123 /* Ignore indirect symbols. These are added by the versioning code. */ 2124 if (h->root.type == bfd_link_hash_indirect) 2125 return TRUE; 2126 2127 /* Ignore this if we won't export it. */ 2128 if (!eif->info->export_dynamic && !h->dynamic) 2129 return TRUE; 2130 2131 if (h->dynindx == -1 2132 && (h->def_regular || h->ref_regular) 2133 && ! bfd_hide_sym_by_version (eif->info->version_info, 2134 h->root.root.string)) 2135 { 2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2137 { 2138 eif->failed = TRUE; 2139 return FALSE; 2140 } 2141 } 2142 2143 return TRUE; 2144 } 2145 2146 /* Look through the symbols which are defined in other shared 2147 libraries and referenced here. Update the list of version 2148 dependencies. This will be put into the .gnu.version_r section. 2149 This function is called via elf_link_hash_traverse. */ 2150 2151 static bfd_boolean 2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, 2153 void *data) 2154 { 2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; 2156 Elf_Internal_Verneed *t; 2157 Elf_Internal_Vernaux *a; 2158 bfd_size_type amt; 2159 2160 /* We only care about symbols defined in shared objects with version 2161 information. */ 2162 if (!h->def_dynamic 2163 || h->def_regular 2164 || h->dynindx == -1 2165 || h->verinfo.verdef == NULL 2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 2168 return TRUE; 2169 2170 /* See if we already know about this version. */ 2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref; 2172 t != NULL; 2173 t = t->vn_nextref) 2174 { 2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd) 2176 continue; 2177 2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename) 2180 return TRUE; 2181 2182 break; 2183 } 2184 2185 /* This is a new version. Add it to tree we are building. */ 2186 2187 if (t == NULL) 2188 { 2189 amt = sizeof *t; 2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); 2191 if (t == NULL) 2192 { 2193 rinfo->failed = TRUE; 2194 return FALSE; 2195 } 2196 2197 t->vn_bfd = h->verinfo.verdef->vd_bfd; 2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; 2199 elf_tdata (rinfo->info->output_bfd)->verref = t; 2200 } 2201 2202 amt = sizeof *a; 2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); 2204 if (a == NULL) 2205 { 2206 rinfo->failed = TRUE; 2207 return FALSE; 2208 } 2209 2210 /* Note that we are copying a string pointer here, and testing it 2211 above. If bfd_elf_string_from_elf_section is ever changed to 2212 discard the string data when low in memory, this will have to be 2213 fixed. */ 2214 a->vna_nodename = h->verinfo.verdef->vd_nodename; 2215 2216 a->vna_flags = h->verinfo.verdef->vd_flags; 2217 a->vna_nextptr = t->vn_auxptr; 2218 2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers; 2220 ++rinfo->vers; 2221 2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; 2223 2224 t->vn_auxptr = a; 2225 2226 return TRUE; 2227 } 2228 2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is 2230 hidden. Set *T_P to NULL if there is no match. */ 2231 2232 static bfd_boolean 2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, 2234 struct elf_link_hash_entry *h, 2235 const char *version_p, 2236 struct bfd_elf_version_tree **t_p, 2237 bfd_boolean *hide) 2238 { 2239 struct bfd_elf_version_tree *t; 2240 2241 /* Look for the version. If we find it, it is no longer weak. */ 2242 for (t = info->version_info; t != NULL; t = t->next) 2243 { 2244 if (strcmp (t->name, version_p) == 0) 2245 { 2246 size_t len; 2247 char *alc; 2248 struct bfd_elf_version_expr *d; 2249 2250 len = version_p - h->root.root.string; 2251 alc = (char *) bfd_malloc (len); 2252 if (alc == NULL) 2253 return FALSE; 2254 memcpy (alc, h->root.root.string, len - 1); 2255 alc[len - 1] = '\0'; 2256 if (alc[len - 2] == ELF_VER_CHR) 2257 alc[len - 2] = '\0'; 2258 2259 h->verinfo.vertree = t; 2260 t->used = TRUE; 2261 d = NULL; 2262 2263 if (t->globals.list != NULL) 2264 d = (*t->match) (&t->globals, NULL, alc); 2265 2266 /* See if there is anything to force this symbol to 2267 local scope. */ 2268 if (d == NULL && t->locals.list != NULL) 2269 { 2270 d = (*t->match) (&t->locals, NULL, alc); 2271 if (d != NULL 2272 && h->dynindx != -1 2273 && ! info->export_dynamic) 2274 *hide = TRUE; 2275 } 2276 2277 free (alc); 2278 break; 2279 } 2280 } 2281 2282 *t_p = t; 2283 2284 return TRUE; 2285 } 2286 2287 /* Return TRUE if the symbol H is hidden by version script. */ 2288 2289 bfd_boolean 2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, 2291 struct elf_link_hash_entry *h) 2292 { 2293 const char *p; 2294 bfd_boolean hide = FALSE; 2295 const struct elf_backend_data *bed 2296 = get_elf_backend_data (info->output_bfd); 2297 2298 /* Version script only hides symbols defined in regular objects. */ 2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2300 return TRUE; 2301 2302 p = strchr (h->root.root.string, ELF_VER_CHR); 2303 if (p != NULL && h->verinfo.vertree == NULL) 2304 { 2305 struct bfd_elf_version_tree *t; 2306 2307 ++p; 2308 if (*p == ELF_VER_CHR) 2309 ++p; 2310 2311 if (*p != '\0' 2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) 2313 && hide) 2314 { 2315 if (hide) 2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2317 return TRUE; 2318 } 2319 } 2320 2321 /* If we don't have a version for this symbol, see if we can find 2322 something. */ 2323 if (h->verinfo.vertree == NULL && info->version_info != NULL) 2324 { 2325 h->verinfo.vertree 2326 = bfd_find_version_for_sym (info->version_info, 2327 h->root.root.string, &hide); 2328 if (h->verinfo.vertree != NULL && hide) 2329 { 2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2331 return TRUE; 2332 } 2333 } 2334 2335 return FALSE; 2336 } 2337 2338 /* Figure out appropriate versions for all the symbols. We may not 2339 have the version number script until we have read all of the input 2340 files, so until that point we don't know which symbols should be 2341 local. This function is called via elf_link_hash_traverse. */ 2342 2343 static bfd_boolean 2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) 2345 { 2346 struct elf_info_failed *sinfo; 2347 struct bfd_link_info *info; 2348 const struct elf_backend_data *bed; 2349 struct elf_info_failed eif; 2350 char *p; 2351 bfd_boolean hide; 2352 2353 sinfo = (struct elf_info_failed *) data; 2354 info = sinfo->info; 2355 2356 /* Fix the symbol flags. */ 2357 eif.failed = FALSE; 2358 eif.info = info; 2359 if (! _bfd_elf_fix_symbol_flags (h, &eif)) 2360 { 2361 if (eif.failed) 2362 sinfo->failed = TRUE; 2363 return FALSE; 2364 } 2365 2366 bed = get_elf_backend_data (info->output_bfd); 2367 2368 /* We only need version numbers for symbols defined in regular 2369 objects. */ 2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2371 { 2372 /* Hide symbols defined in discarded input sections. */ 2373 if ((h->root.type == bfd_link_hash_defined 2374 || h->root.type == bfd_link_hash_defweak) 2375 && discarded_section (h->root.u.def.section)) 2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2377 return TRUE; 2378 } 2379 2380 hide = FALSE; 2381 p = strchr (h->root.root.string, ELF_VER_CHR); 2382 if (p != NULL && h->verinfo.vertree == NULL) 2383 { 2384 struct bfd_elf_version_tree *t; 2385 2386 ++p; 2387 if (*p == ELF_VER_CHR) 2388 ++p; 2389 2390 /* If there is no version string, we can just return out. */ 2391 if (*p == '\0') 2392 return TRUE; 2393 2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) 2395 { 2396 sinfo->failed = TRUE; 2397 return FALSE; 2398 } 2399 2400 if (hide) 2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2402 2403 /* If we are building an application, we need to create a 2404 version node for this version. */ 2405 if (t == NULL && bfd_link_executable (info)) 2406 { 2407 struct bfd_elf_version_tree **pp; 2408 int version_index; 2409 2410 /* If we aren't going to export this symbol, we don't need 2411 to worry about it. */ 2412 if (h->dynindx == -1) 2413 return TRUE; 2414 2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, 2416 sizeof *t); 2417 if (t == NULL) 2418 { 2419 sinfo->failed = TRUE; 2420 return FALSE; 2421 } 2422 2423 t->name = p; 2424 t->name_indx = (unsigned int) -1; 2425 t->used = TRUE; 2426 2427 version_index = 1; 2428 /* Don't count anonymous version tag. */ 2429 if (sinfo->info->version_info != NULL 2430 && sinfo->info->version_info->vernum == 0) 2431 version_index = 0; 2432 for (pp = &sinfo->info->version_info; 2433 *pp != NULL; 2434 pp = &(*pp)->next) 2435 ++version_index; 2436 t->vernum = version_index; 2437 2438 *pp = t; 2439 2440 h->verinfo.vertree = t; 2441 } 2442 else if (t == NULL) 2443 { 2444 /* We could not find the version for a symbol when 2445 generating a shared archive. Return an error. */ 2446 _bfd_error_handler 2447 /* xgettext:c-format */ 2448 (_("%pB: version node not found for symbol %s"), 2449 info->output_bfd, h->root.root.string); 2450 bfd_set_error (bfd_error_bad_value); 2451 sinfo->failed = TRUE; 2452 return FALSE; 2453 } 2454 } 2455 2456 /* If we don't have a version for this symbol, see if we can find 2457 something. */ 2458 if (!hide 2459 && h->verinfo.vertree == NULL 2460 && sinfo->info->version_info != NULL) 2461 { 2462 h->verinfo.vertree 2463 = bfd_find_version_for_sym (sinfo->info->version_info, 2464 h->root.root.string, &hide); 2465 if (h->verinfo.vertree != NULL && hide) 2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2467 } 2468 2469 return TRUE; 2470 } 2471 2472 /* Read and swap the relocs from the section indicated by SHDR. This 2473 may be either a REL or a RELA section. The relocations are 2474 translated into RELA relocations and stored in INTERNAL_RELOCS, 2475 which should have already been allocated to contain enough space. 2476 The EXTERNAL_RELOCS are a buffer where the external form of the 2477 relocations should be stored. 2478 2479 Returns FALSE if something goes wrong. */ 2480 2481 static bfd_boolean 2482 elf_link_read_relocs_from_section (bfd *abfd, 2483 asection *sec, 2484 Elf_Internal_Shdr *shdr, 2485 void *external_relocs, 2486 Elf_Internal_Rela *internal_relocs) 2487 { 2488 const struct elf_backend_data *bed; 2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 2490 const bfd_byte *erela; 2491 const bfd_byte *erelaend; 2492 Elf_Internal_Rela *irela; 2493 Elf_Internal_Shdr *symtab_hdr; 2494 size_t nsyms; 2495 2496 /* Position ourselves at the start of the section. */ 2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) 2498 return FALSE; 2499 2500 /* Read the relocations. */ 2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) 2502 return FALSE; 2503 2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 2506 2507 bed = get_elf_backend_data (abfd); 2508 2509 /* Convert the external relocations to the internal format. */ 2510 if (shdr->sh_entsize == bed->s->sizeof_rel) 2511 swap_in = bed->s->swap_reloc_in; 2512 else if (shdr->sh_entsize == bed->s->sizeof_rela) 2513 swap_in = bed->s->swap_reloca_in; 2514 else 2515 { 2516 bfd_set_error (bfd_error_wrong_format); 2517 return FALSE; 2518 } 2519 2520 erela = (const bfd_byte *) external_relocs; 2521 /* Setting erelaend like this and comparing with <= handles case of 2522 a fuzzed object with sh_size not a multiple of sh_entsize. */ 2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize; 2524 irela = internal_relocs; 2525 while (erela <= erelaend) 2526 { 2527 bfd_vma r_symndx; 2528 2529 (*swap_in) (abfd, erela, irela); 2530 r_symndx = ELF32_R_SYM (irela->r_info); 2531 if (bed->s->arch_size == 64) 2532 r_symndx >>= 24; 2533 if (nsyms > 0) 2534 { 2535 if ((size_t) r_symndx >= nsyms) 2536 { 2537 _bfd_error_handler 2538 /* xgettext:c-format */ 2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" 2540 " for offset %#" PRIx64 " in section `%pA'"), 2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms, 2542 (uint64_t) irela->r_offset, sec); 2543 bfd_set_error (bfd_error_bad_value); 2544 return FALSE; 2545 } 2546 } 2547 else if (r_symndx != STN_UNDEF) 2548 { 2549 _bfd_error_handler 2550 /* xgettext:c-format */ 2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")" 2552 " for offset %#" PRIx64 " in section `%pA'" 2553 " when the object file has no symbol table"), 2554 abfd, (uint64_t) r_symndx, 2555 (uint64_t) irela->r_offset, sec); 2556 bfd_set_error (bfd_error_bad_value); 2557 return FALSE; 2558 } 2559 irela += bed->s->int_rels_per_ext_rel; 2560 erela += shdr->sh_entsize; 2561 } 2562 2563 return TRUE; 2564 } 2565 2566 /* Read and swap the relocs for a section O. They may have been 2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are 2568 not NULL, they are used as buffers to read into. They are known to 2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL, 2570 the return value is allocated using either malloc or bfd_alloc, 2571 according to the KEEP_MEMORY argument. If O has two relocation 2572 sections (both REL and RELA relocations), then the REL_HDR 2573 relocations will appear first in INTERNAL_RELOCS, followed by the 2574 RELA_HDR relocations. */ 2575 2576 Elf_Internal_Rela * 2577 _bfd_elf_link_read_relocs (bfd *abfd, 2578 asection *o, 2579 void *external_relocs, 2580 Elf_Internal_Rela *internal_relocs, 2581 bfd_boolean keep_memory) 2582 { 2583 void *alloc1 = NULL; 2584 Elf_Internal_Rela *alloc2 = NULL; 2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2586 struct bfd_elf_section_data *esdo = elf_section_data (o); 2587 Elf_Internal_Rela *internal_rela_relocs; 2588 2589 if (esdo->relocs != NULL) 2590 return esdo->relocs; 2591 2592 if (o->reloc_count == 0) 2593 return NULL; 2594 2595 if (internal_relocs == NULL) 2596 { 2597 bfd_size_type size; 2598 2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); 2600 if (keep_memory) 2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); 2602 else 2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); 2604 if (internal_relocs == NULL) 2605 goto error_return; 2606 } 2607 2608 if (external_relocs == NULL) 2609 { 2610 bfd_size_type size = 0; 2611 2612 if (esdo->rel.hdr) 2613 size += esdo->rel.hdr->sh_size; 2614 if (esdo->rela.hdr) 2615 size += esdo->rela.hdr->sh_size; 2616 2617 alloc1 = bfd_malloc (size); 2618 if (alloc1 == NULL) 2619 goto error_return; 2620 external_relocs = alloc1; 2621 } 2622 2623 internal_rela_relocs = internal_relocs; 2624 if (esdo->rel.hdr) 2625 { 2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, 2627 external_relocs, 2628 internal_relocs)) 2629 goto error_return; 2630 external_relocs = (((bfd_byte *) external_relocs) 2631 + esdo->rel.hdr->sh_size); 2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) 2633 * bed->s->int_rels_per_ext_rel); 2634 } 2635 2636 if (esdo->rela.hdr 2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, 2638 external_relocs, 2639 internal_rela_relocs))) 2640 goto error_return; 2641 2642 /* Cache the results for next time, if we can. */ 2643 if (keep_memory) 2644 esdo->relocs = internal_relocs; 2645 2646 if (alloc1 != NULL) 2647 free (alloc1); 2648 2649 /* Don't free alloc2, since if it was allocated we are passing it 2650 back (under the name of internal_relocs). */ 2651 2652 return internal_relocs; 2653 2654 error_return: 2655 if (alloc1 != NULL) 2656 free (alloc1); 2657 if (alloc2 != NULL) 2658 { 2659 if (keep_memory) 2660 bfd_release (abfd, alloc2); 2661 else 2662 free (alloc2); 2663 } 2664 return NULL; 2665 } 2666 2667 /* Compute the size of, and allocate space for, REL_HDR which is the 2668 section header for a section containing relocations for O. */ 2669 2670 static bfd_boolean 2671 _bfd_elf_link_size_reloc_section (bfd *abfd, 2672 struct bfd_elf_section_reloc_data *reldata) 2673 { 2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr; 2675 2676 /* That allows us to calculate the size of the section. */ 2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; 2678 2679 /* The contents field must last into write_object_contents, so we 2680 allocate it with bfd_alloc rather than malloc. Also since we 2681 cannot be sure that the contents will actually be filled in, 2682 we zero the allocated space. */ 2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); 2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) 2685 return FALSE; 2686 2687 if (reldata->hashes == NULL && reldata->count) 2688 { 2689 struct elf_link_hash_entry **p; 2690 2691 p = ((struct elf_link_hash_entry **) 2692 bfd_zmalloc (reldata->count * sizeof (*p))); 2693 if (p == NULL) 2694 return FALSE; 2695 2696 reldata->hashes = p; 2697 } 2698 2699 return TRUE; 2700 } 2701 2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which 2703 originated from the section given by INPUT_REL_HDR) to the 2704 OUTPUT_BFD. */ 2705 2706 bfd_boolean 2707 _bfd_elf_link_output_relocs (bfd *output_bfd, 2708 asection *input_section, 2709 Elf_Internal_Shdr *input_rel_hdr, 2710 Elf_Internal_Rela *internal_relocs, 2711 struct elf_link_hash_entry **rel_hash 2712 ATTRIBUTE_UNUSED) 2713 { 2714 Elf_Internal_Rela *irela; 2715 Elf_Internal_Rela *irelaend; 2716 bfd_byte *erel; 2717 struct bfd_elf_section_reloc_data *output_reldata; 2718 asection *output_section; 2719 const struct elf_backend_data *bed; 2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 2721 struct bfd_elf_section_data *esdo; 2722 2723 output_section = input_section->output_section; 2724 2725 bed = get_elf_backend_data (output_bfd); 2726 esdo = elf_section_data (output_section); 2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2728 { 2729 output_reldata = &esdo->rel; 2730 swap_out = bed->s->swap_reloc_out; 2731 } 2732 else if (esdo->rela.hdr 2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2734 { 2735 output_reldata = &esdo->rela; 2736 swap_out = bed->s->swap_reloca_out; 2737 } 2738 else 2739 { 2740 _bfd_error_handler 2741 /* xgettext:c-format */ 2742 (_("%pB: relocation size mismatch in %pB section %pA"), 2743 output_bfd, input_section->owner, input_section); 2744 bfd_set_error (bfd_error_wrong_format); 2745 return FALSE; 2746 } 2747 2748 erel = output_reldata->hdr->contents; 2749 erel += output_reldata->count * input_rel_hdr->sh_entsize; 2750 irela = internal_relocs; 2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) 2752 * bed->s->int_rels_per_ext_rel); 2753 while (irela < irelaend) 2754 { 2755 (*swap_out) (output_bfd, irela, erel); 2756 irela += bed->s->int_rels_per_ext_rel; 2757 erel += input_rel_hdr->sh_entsize; 2758 } 2759 2760 /* Bump the counter, so that we know where to add the next set of 2761 relocations. */ 2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); 2763 2764 return TRUE; 2765 } 2766 2767 /* Make weak undefined symbols in PIE dynamic. */ 2768 2769 bfd_boolean 2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, 2771 struct elf_link_hash_entry *h) 2772 { 2773 if (bfd_link_pie (info) 2774 && h->dynindx == -1 2775 && h->root.type == bfd_link_hash_undefweak) 2776 return bfd_elf_link_record_dynamic_symbol (info, h); 2777 2778 return TRUE; 2779 } 2780 2781 /* Fix up the flags for a symbol. This handles various cases which 2782 can only be fixed after all the input files are seen. This is 2783 currently called by both adjust_dynamic_symbol and 2784 assign_sym_version, which is unnecessary but perhaps more robust in 2785 the face of future changes. */ 2786 2787 static bfd_boolean 2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, 2789 struct elf_info_failed *eif) 2790 { 2791 const struct elf_backend_data *bed; 2792 2793 /* If this symbol was mentioned in a non-ELF file, try to set 2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to 2795 permit a non-ELF file to correctly refer to a symbol defined in 2796 an ELF dynamic object. */ 2797 if (h->non_elf) 2798 { 2799 while (h->root.type == bfd_link_hash_indirect) 2800 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2801 2802 if (h->root.type != bfd_link_hash_defined 2803 && h->root.type != bfd_link_hash_defweak) 2804 { 2805 h->ref_regular = 1; 2806 h->ref_regular_nonweak = 1; 2807 } 2808 else 2809 { 2810 if (h->root.u.def.section->owner != NULL 2811 && (bfd_get_flavour (h->root.u.def.section->owner) 2812 == bfd_target_elf_flavour)) 2813 { 2814 h->ref_regular = 1; 2815 h->ref_regular_nonweak = 1; 2816 } 2817 else 2818 h->def_regular = 1; 2819 } 2820 2821 if (h->dynindx == -1 2822 && (h->def_dynamic 2823 || h->ref_dynamic)) 2824 { 2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2826 { 2827 eif->failed = TRUE; 2828 return FALSE; 2829 } 2830 } 2831 } 2832 else 2833 { 2834 /* Unfortunately, NON_ELF is only correct if the symbol 2835 was first seen in a non-ELF file. Fortunately, if the symbol 2836 was first seen in an ELF file, we're probably OK unless the 2837 symbol was defined in a non-ELF file. Catch that case here. 2838 FIXME: We're still in trouble if the symbol was first seen in 2839 a dynamic object, and then later in a non-ELF regular object. */ 2840 if ((h->root.type == bfd_link_hash_defined 2841 || h->root.type == bfd_link_hash_defweak) 2842 && !h->def_regular 2843 && (h->root.u.def.section->owner != NULL 2844 ? (bfd_get_flavour (h->root.u.def.section->owner) 2845 != bfd_target_elf_flavour) 2846 : (bfd_is_abs_section (h->root.u.def.section) 2847 && !h->def_dynamic))) 2848 h->def_regular = 1; 2849 } 2850 2851 /* Backend specific symbol fixup. */ 2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2853 if (bed->elf_backend_fixup_symbol 2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) 2855 return FALSE; 2856 2857 /* If this is a final link, and the symbol was defined as a common 2858 symbol in a regular object file, and there was no definition in 2859 any dynamic object, then the linker will have allocated space for 2860 the symbol in a common section but the DEF_REGULAR 2861 flag will not have been set. */ 2862 if (h->root.type == bfd_link_hash_defined 2863 && !h->def_regular 2864 && h->ref_regular 2865 && !h->def_dynamic 2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) 2867 h->def_regular = 1; 2868 2869 /* Symbols defined in discarded sections shouldn't be dynamic. */ 2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3) 2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2872 2873 /* If a weak undefined symbol has non-default visibility, we also 2874 hide it from the dynamic linker. */ 2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 2876 && h->root.type == bfd_link_hash_undefweak) 2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2878 2879 /* A hidden versioned symbol in executable should be forced local if 2880 it is is locally defined, not referenced by shared library and not 2881 exported. */ 2882 else if (bfd_link_executable (eif->info) 2883 && h->versioned == versioned_hidden 2884 && !eif->info->export_dynamic 2885 && !h->dynamic 2886 && !h->ref_dynamic 2887 && h->def_regular) 2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2889 2890 /* If -Bsymbolic was used (which means to bind references to global 2891 symbols to the definition within the shared object), and this 2892 symbol was defined in a regular object, then it actually doesn't 2893 need a PLT entry. Likewise, if the symbol has non-default 2894 visibility. If the symbol has hidden or internal visibility, we 2895 will force it local. */ 2896 else if (h->needs_plt 2897 && bfd_link_pic (eif->info) 2898 && is_elf_hash_table (eif->info->hash) 2899 && (SYMBOLIC_BIND (eif->info, h) 2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 2901 && h->def_regular) 2902 { 2903 bfd_boolean force_local; 2904 2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); 2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); 2908 } 2909 2910 /* If this is a weak defined symbol in a dynamic object, and we know 2911 the real definition in the dynamic object, copy interesting flags 2912 over to the real definition. */ 2913 if (h->is_weakalias) 2914 { 2915 struct elf_link_hash_entry *def = weakdef (h); 2916 2917 /* If the real definition is defined by a regular object file, 2918 don't do anything special. See the longer description in 2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not 2920 bfd_link_hash_defined as it was when put on the alias list 2921 then it must have originally been a versioned symbol (for 2922 which a non-versioned indirect symbol is created) and later 2923 a definition for the non-versioned symbol is found. In that 2924 case the indirection is flipped with the versioned symbol 2925 becoming an indirect pointing at the non-versioned symbol. 2926 Thus, not an alias any more. */ 2927 if (def->def_regular 2928 || def->root.type != bfd_link_hash_defined) 2929 { 2930 h = def; 2931 while ((h = h->u.alias) != def) 2932 h->is_weakalias = 0; 2933 } 2934 else 2935 { 2936 while (h->root.type == bfd_link_hash_indirect) 2937 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined 2939 || h->root.type == bfd_link_hash_defweak); 2940 BFD_ASSERT (def->def_dynamic); 2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); 2942 } 2943 } 2944 2945 return TRUE; 2946 } 2947 2948 /* Make the backend pick a good value for a dynamic symbol. This is 2949 called via elf_link_hash_traverse, and also calls itself 2950 recursively. */ 2951 2952 static bfd_boolean 2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) 2954 { 2955 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2956 struct elf_link_hash_table *htab; 2957 const struct elf_backend_data *bed; 2958 2959 if (! is_elf_hash_table (eif->info->hash)) 2960 return FALSE; 2961 2962 /* Ignore indirect symbols. These are added by the versioning code. */ 2963 if (h->root.type == bfd_link_hash_indirect) 2964 return TRUE; 2965 2966 /* Fix the symbol flags. */ 2967 if (! _bfd_elf_fix_symbol_flags (h, eif)) 2968 return FALSE; 2969 2970 htab = elf_hash_table (eif->info); 2971 bed = get_elf_backend_data (htab->dynobj); 2972 2973 if (h->root.type == bfd_link_hash_undefweak) 2974 { 2975 if (eif->info->dynamic_undefined_weak == 0) 2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2977 else if (eif->info->dynamic_undefined_weak > 0 2978 && h->ref_regular 2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2980 && !bfd_hide_sym_by_version (eif->info->version_info, 2981 h->root.root.string)) 2982 { 2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2984 { 2985 eif->failed = TRUE; 2986 return FALSE; 2987 } 2988 } 2989 } 2990 2991 /* If this symbol does not require a PLT entry, and it is not 2992 defined by a dynamic object, or is not referenced by a regular 2993 object, ignore it. We do have to handle a weak defined symbol, 2994 even if no regular object refers to it, if we decided to add it 2995 to the dynamic symbol table. FIXME: Do we normally need to worry 2996 about symbols which are defined by one dynamic object and 2997 referenced by another one? */ 2998 if (!h->needs_plt 2999 && h->type != STT_GNU_IFUNC 3000 && (h->def_regular 3001 || !h->def_dynamic 3002 || (!h->ref_regular 3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) 3004 { 3005 h->plt = elf_hash_table (eif->info)->init_plt_offset; 3006 return TRUE; 3007 } 3008 3009 /* If we've already adjusted this symbol, don't do it again. This 3010 can happen via a recursive call. */ 3011 if (h->dynamic_adjusted) 3012 return TRUE; 3013 3014 /* Don't look at this symbol again. Note that we must set this 3015 after checking the above conditions, because we may look at a 3016 symbol once, decide not to do anything, and then get called 3017 recursively later after REF_REGULAR is set below. */ 3018 h->dynamic_adjusted = 1; 3019 3020 /* If this is a weak definition, and we know a real definition, and 3021 the real symbol is not itself defined by a regular object file, 3022 then get a good value for the real definition. We handle the 3023 real symbol first, for the convenience of the backend routine. 3024 3025 Note that there is a confusing case here. If the real definition 3026 is defined by a regular object file, we don't get the real symbol 3027 from the dynamic object, but we do get the weak symbol. If the 3028 processor backend uses a COPY reloc, then if some routine in the 3029 dynamic object changes the real symbol, we will not see that 3030 change in the corresponding weak symbol. This is the way other 3031 ELF linkers work as well, and seems to be a result of the shared 3032 library model. 3033 3034 I will clarify this issue. Most SVR4 shared libraries define the 3035 variable _timezone and define timezone as a weak synonym. The 3036 tzset call changes _timezone. If you write 3037 extern int timezone; 3038 int _timezone = 5; 3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } 3040 you might expect that, since timezone is a synonym for _timezone, 3041 the same number will print both times. However, if the processor 3042 backend uses a COPY reloc, then actually timezone will be copied 3043 into your process image, and, since you define _timezone 3044 yourself, _timezone will not. Thus timezone and _timezone will 3045 wind up at different memory locations. The tzset call will set 3046 _timezone, leaving timezone unchanged. */ 3047 3048 if (h->is_weakalias) 3049 { 3050 struct elf_link_hash_entry *def = weakdef (h); 3051 3052 /* If we get to this point, there is an implicit reference to 3053 the alias by a regular object file via the weak symbol H. */ 3054 def->ref_regular = 1; 3055 3056 /* Ensure that the backend adjust_dynamic_symbol function sees 3057 the strong alias before H by recursively calling ourselves. */ 3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) 3059 return FALSE; 3060 } 3061 3062 /* If a symbol has no type and no size and does not require a PLT 3063 entry, then we are probably about to do the wrong thing here: we 3064 are probably going to create a COPY reloc for an empty object. 3065 This case can arise when a shared object is built with assembly 3066 code, and the assembly code fails to set the symbol type. */ 3067 if (h->size == 0 3068 && h->type == STT_NOTYPE 3069 && !h->needs_plt) 3070 _bfd_error_handler 3071 (_("warning: type and size of dynamic symbol `%s' are not defined"), 3072 h->root.root.string); 3073 3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) 3075 { 3076 eif->failed = TRUE; 3077 return FALSE; 3078 } 3079 3080 return TRUE; 3081 } 3082 3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, 3084 DYNBSS. */ 3085 3086 bfd_boolean 3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, 3088 struct elf_link_hash_entry *h, 3089 asection *dynbss) 3090 { 3091 unsigned int power_of_two; 3092 bfd_vma mask; 3093 asection *sec = h->root.u.def.section; 3094 3095 /* The section alignment of the definition is the maximum alignment 3096 requirement of symbols defined in the section. Since we don't 3097 know the symbol alignment requirement, we start with the 3098 maximum alignment and check low bits of the symbol address 3099 for the minimum alignment. */ 3100 power_of_two = bfd_section_alignment (sec); 3101 mask = ((bfd_vma) 1 << power_of_two) - 1; 3102 while ((h->root.u.def.value & mask) != 0) 3103 { 3104 mask >>= 1; 3105 --power_of_two; 3106 } 3107 3108 if (power_of_two > bfd_section_alignment (dynbss)) 3109 { 3110 /* Adjust the section alignment if needed. */ 3111 if (!bfd_set_section_alignment (dynbss, power_of_two)) 3112 return FALSE; 3113 } 3114 3115 /* We make sure that the symbol will be aligned properly. */ 3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); 3117 3118 /* Define the symbol as being at this point in DYNBSS. */ 3119 h->root.u.def.section = dynbss; 3120 h->root.u.def.value = dynbss->size; 3121 3122 /* Increment the size of DYNBSS to make room for the symbol. */ 3123 dynbss->size += h->size; 3124 3125 /* No error if extern_protected_data is true. */ 3126 if (h->protected_def 3127 && (!info->extern_protected_data 3128 || (info->extern_protected_data < 0 3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) 3130 info->callbacks->einfo 3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"), 3132 h->root.root.string); 3133 3134 return TRUE; 3135 } 3136 3137 /* Adjust all external symbols pointing into SEC_MERGE sections 3138 to reflect the object merging within the sections. */ 3139 3140 static bfd_boolean 3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) 3142 { 3143 asection *sec; 3144 3145 if ((h->root.type == bfd_link_hash_defined 3146 || h->root.type == bfd_link_hash_defweak) 3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE) 3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 3149 { 3150 bfd *output_bfd = (bfd *) data; 3151 3152 h->root.u.def.value = 3153 _bfd_merged_section_offset (output_bfd, 3154 &h->root.u.def.section, 3155 elf_section_data (sec)->sec_info, 3156 h->root.u.def.value); 3157 } 3158 3159 return TRUE; 3160 } 3161 3162 /* Returns false if the symbol referred to by H should be considered 3163 to resolve local to the current module, and true if it should be 3164 considered to bind dynamically. */ 3165 3166 bfd_boolean 3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, 3168 struct bfd_link_info *info, 3169 bfd_boolean not_local_protected) 3170 { 3171 bfd_boolean binding_stays_local_p; 3172 const struct elf_backend_data *bed; 3173 struct elf_link_hash_table *hash_table; 3174 3175 if (h == NULL) 3176 return FALSE; 3177 3178 while (h->root.type == bfd_link_hash_indirect 3179 || h->root.type == bfd_link_hash_warning) 3180 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3181 3182 /* If it was forced local, then clearly it's not dynamic. */ 3183 if (h->dynindx == -1) 3184 return FALSE; 3185 if (h->forced_local) 3186 return FALSE; 3187 3188 /* Identify the cases where name binding rules say that a 3189 visible symbol resolves locally. */ 3190 binding_stays_local_p = (bfd_link_executable (info) 3191 || SYMBOLIC_BIND (info, h)); 3192 3193 switch (ELF_ST_VISIBILITY (h->other)) 3194 { 3195 case STV_INTERNAL: 3196 case STV_HIDDEN: 3197 return FALSE; 3198 3199 case STV_PROTECTED: 3200 hash_table = elf_hash_table (info); 3201 if (!is_elf_hash_table (hash_table)) 3202 return FALSE; 3203 3204 bed = get_elf_backend_data (hash_table->dynobj); 3205 3206 /* Proper resolution for function pointer equality may require 3207 that these symbols perhaps be resolved dynamically, even though 3208 we should be resolving them to the current module. */ 3209 if (!not_local_protected || !bed->is_function_type (h->type)) 3210 binding_stays_local_p = TRUE; 3211 break; 3212 3213 default: 3214 break; 3215 } 3216 3217 /* If it isn't defined locally, then clearly it's dynamic. */ 3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 3219 return TRUE; 3220 3221 /* Otherwise, the symbol is dynamic if binding rules don't tell 3222 us that it remains local. */ 3223 return !binding_stays_local_p; 3224 } 3225 3226 /* Return true if the symbol referred to by H should be considered 3227 to resolve local to the current module, and false otherwise. Differs 3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of 3229 undefined symbols. The two functions are virtually identical except 3230 for the place where dynindx == -1 is tested. If that test is true, 3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while 3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for 3233 defined symbols. 3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as 3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their 3236 treatment of undefined weak symbols. For those that do not make 3237 undefined weak symbols dynamic, both functions may return false. */ 3238 3239 bfd_boolean 3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, 3241 struct bfd_link_info *info, 3242 bfd_boolean local_protected) 3243 { 3244 const struct elf_backend_data *bed; 3245 struct elf_link_hash_table *hash_table; 3246 3247 /* If it's a local sym, of course we resolve locally. */ 3248 if (h == NULL) 3249 return TRUE; 3250 3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */ 3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 3254 return TRUE; 3255 3256 /* Forced local symbols resolve locally. */ 3257 if (h->forced_local) 3258 return TRUE; 3259 3260 /* Common symbols that become definitions don't get the DEF_REGULAR 3261 flag set, so test it first, and don't bail out. */ 3262 if (ELF_COMMON_DEF_P (h)) 3263 /* Do nothing. */; 3264 /* If we don't have a definition in a regular file, then we can't 3265 resolve locally. The sym is either undefined or dynamic. */ 3266 else if (!h->def_regular) 3267 return FALSE; 3268 3269 /* Non-dynamic symbols resolve locally. */ 3270 if (h->dynindx == -1) 3271 return TRUE; 3272 3273 /* At this point, we know the symbol is defined and dynamic. In an 3274 executable it must resolve locally, likewise when building symbolic 3275 shared libraries. */ 3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) 3277 return TRUE; 3278 3279 /* Now deal with defined dynamic symbols in shared libraries. Ones 3280 with default visibility might not resolve locally. */ 3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 3282 return FALSE; 3283 3284 hash_table = elf_hash_table (info); 3285 if (!is_elf_hash_table (hash_table)) 3286 return TRUE; 3287 3288 bed = get_elf_backend_data (hash_table->dynobj); 3289 3290 /* If extern_protected_data is false, STV_PROTECTED non-function 3291 symbols are local. */ 3292 if ((!info->extern_protected_data 3293 || (info->extern_protected_data < 0 3294 && !bed->extern_protected_data)) 3295 && !bed->is_function_type (h->type)) 3296 return TRUE; 3297 3298 /* Function pointer equality tests may require that STV_PROTECTED 3299 symbols be treated as dynamic symbols. If the address of a 3300 function not defined in an executable is set to that function's 3301 plt entry in the executable, then the address of the function in 3302 a shared library must also be the plt entry in the executable. */ 3303 return local_protected; 3304 } 3305 3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is 3307 aligned. Returns the first TLS output section. */ 3308 3309 struct bfd_section * 3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) 3311 { 3312 struct bfd_section *sec, *tls; 3313 unsigned int align = 0; 3314 3315 for (sec = obfd->sections; sec != NULL; sec = sec->next) 3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0) 3317 break; 3318 tls = sec; 3319 3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) 3321 if (sec->alignment_power > align) 3322 align = sec->alignment_power; 3323 3324 elf_hash_table (info)->tls_sec = tls; 3325 3326 /* Ensure the alignment of the first section is the largest alignment, 3327 so that the tls segment starts aligned. */ 3328 if (tls != NULL) 3329 tls->alignment_power = align; 3330 3331 return tls; 3332 } 3333 3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ 3335 static bfd_boolean 3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, 3337 Elf_Internal_Sym *sym) 3338 { 3339 const struct elf_backend_data *bed; 3340 3341 /* Local symbols do not count, but target specific ones might. */ 3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL 3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS) 3344 return FALSE; 3345 3346 bed = get_elf_backend_data (abfd); 3347 /* Function symbols do not count. */ 3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) 3349 return FALSE; 3350 3351 /* If the section is undefined, then so is the symbol. */ 3352 if (sym->st_shndx == SHN_UNDEF) 3353 return FALSE; 3354 3355 /* If the symbol is defined in the common section, then 3356 it is a common definition and so does not count. */ 3357 if (bed->common_definition (sym)) 3358 return FALSE; 3359 3360 /* If the symbol is in a target specific section then we 3361 must rely upon the backend to tell us what it is. */ 3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) 3363 /* FIXME - this function is not coded yet: 3364 3365 return _bfd_is_global_symbol_definition (abfd, sym); 3366 3367 Instead for now assume that the definition is not global, 3368 Even if this is wrong, at least the linker will behave 3369 in the same way that it used to do. */ 3370 return FALSE; 3371 3372 return TRUE; 3373 } 3374 3375 /* Search the symbol table of the archive element of the archive ABFD 3376 whose archive map contains a mention of SYMDEF, and determine if 3377 the symbol is defined in this element. */ 3378 static bfd_boolean 3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) 3380 { 3381 Elf_Internal_Shdr * hdr; 3382 size_t symcount; 3383 size_t extsymcount; 3384 size_t extsymoff; 3385 Elf_Internal_Sym *isymbuf; 3386 Elf_Internal_Sym *isym; 3387 Elf_Internal_Sym *isymend; 3388 bfd_boolean result; 3389 3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 3391 if (abfd == NULL) 3392 return FALSE; 3393 3394 if (! bfd_check_format (abfd, bfd_object)) 3395 return FALSE; 3396 3397 /* Select the appropriate symbol table. If we don't know if the 3398 object file is an IR object, give linker LTO plugin a chance to 3399 get the correct symbol table. */ 3400 if (abfd->plugin_format == bfd_plugin_yes 3401 #if BFD_SUPPORTS_PLUGINS 3402 || (abfd->plugin_format == bfd_plugin_unknown 3403 && bfd_link_plugin_object_p (abfd)) 3404 #endif 3405 ) 3406 { 3407 /* Use the IR symbol table if the object has been claimed by 3408 plugin. */ 3409 abfd = abfd->plugin_dummy_bfd; 3410 hdr = &elf_tdata (abfd)->symtab_hdr; 3411 } 3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) 3413 hdr = &elf_tdata (abfd)->symtab_hdr; 3414 else 3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 3416 3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 3418 3419 /* The sh_info field of the symtab header tells us where the 3420 external symbols start. We don't care about the local symbols. */ 3421 if (elf_bad_symtab (abfd)) 3422 { 3423 extsymcount = symcount; 3424 extsymoff = 0; 3425 } 3426 else 3427 { 3428 extsymcount = symcount - hdr->sh_info; 3429 extsymoff = hdr->sh_info; 3430 } 3431 3432 if (extsymcount == 0) 3433 return FALSE; 3434 3435 /* Read in the symbol table. */ 3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 3437 NULL, NULL, NULL); 3438 if (isymbuf == NULL) 3439 return FALSE; 3440 3441 /* Scan the symbol table looking for SYMDEF. */ 3442 result = FALSE; 3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) 3444 { 3445 const char *name; 3446 3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 3448 isym->st_name); 3449 if (name == NULL) 3450 break; 3451 3452 if (strcmp (name, symdef->name) == 0) 3453 { 3454 result = is_global_data_symbol_definition (abfd, isym); 3455 break; 3456 } 3457 } 3458 3459 free (isymbuf); 3460 3461 return result; 3462 } 3463 3464 /* Add an entry to the .dynamic table. */ 3465 3466 bfd_boolean 3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, 3468 bfd_vma tag, 3469 bfd_vma val) 3470 { 3471 struct elf_link_hash_table *hash_table; 3472 const struct elf_backend_data *bed; 3473 asection *s; 3474 bfd_size_type newsize; 3475 bfd_byte *newcontents; 3476 Elf_Internal_Dyn dyn; 3477 3478 hash_table = elf_hash_table (info); 3479 if (! is_elf_hash_table (hash_table)) 3480 return FALSE; 3481 3482 if (tag == DT_RELA || tag == DT_REL) 3483 hash_table->dynamic_relocs = TRUE; 3484 3485 bed = get_elf_backend_data (hash_table->dynobj); 3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3487 BFD_ASSERT (s != NULL); 3488 3489 newsize = s->size + bed->s->sizeof_dyn; 3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); 3491 if (newcontents == NULL) 3492 return FALSE; 3493 3494 dyn.d_tag = tag; 3495 dyn.d_un.d_val = val; 3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); 3497 3498 s->size = newsize; 3499 s->contents = newcontents; 3500 3501 return TRUE; 3502 } 3503 3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, 3505 otherwise just check whether one already exists. Returns -1 on error, 3506 1 if a DT_NEEDED tag already exists, and 0 on success. */ 3507 3508 static int 3509 elf_add_dt_needed_tag (bfd *abfd, 3510 struct bfd_link_info *info, 3511 const char *soname, 3512 bfd_boolean do_it) 3513 { 3514 struct elf_link_hash_table *hash_table; 3515 size_t strindex; 3516 3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 3518 return -1; 3519 3520 hash_table = elf_hash_table (info); 3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); 3522 if (strindex == (size_t) -1) 3523 return -1; 3524 3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) 3526 { 3527 asection *sdyn; 3528 const struct elf_backend_data *bed; 3529 bfd_byte *extdyn; 3530 3531 bed = get_elf_backend_data (hash_table->dynobj); 3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3533 if (sdyn != NULL) 3534 for (extdyn = sdyn->contents; 3535 extdyn < sdyn->contents + sdyn->size; 3536 extdyn += bed->s->sizeof_dyn) 3537 { 3538 Elf_Internal_Dyn dyn; 3539 3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 3541 if (dyn.d_tag == DT_NEEDED 3542 && dyn.d_un.d_val == strindex) 3543 { 3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3545 return 1; 3546 } 3547 } 3548 } 3549 3550 if (do_it) 3551 { 3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) 3553 return -1; 3554 3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) 3556 return -1; 3557 } 3558 else 3559 /* We were just checking for existence of the tag. */ 3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3561 3562 return 0; 3563 } 3564 3565 /* Return true if SONAME is on the needed list between NEEDED and STOP 3566 (or the end of list if STOP is NULL), and needed by a library that 3567 will be loaded. */ 3568 3569 static bfd_boolean 3570 on_needed_list (const char *soname, 3571 struct bfd_link_needed_list *needed, 3572 struct bfd_link_needed_list *stop) 3573 { 3574 struct bfd_link_needed_list *look; 3575 for (look = needed; look != stop; look = look->next) 3576 if (strcmp (soname, look->name) == 0 3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 3578 /* If needed by a library that itself is not directly 3579 needed, recursively check whether that library is 3580 indirectly needed. Since we add DT_NEEDED entries to 3581 the end of the list, library dependencies appear after 3582 the library. Therefore search prior to the current 3583 LOOK, preventing possible infinite recursion. */ 3584 || on_needed_list (elf_dt_name (look->by), needed, look))) 3585 return TRUE; 3586 3587 return FALSE; 3588 } 3589 3590 /* Sort symbol by value, section, size, and type. */ 3591 static int 3592 elf_sort_symbol (const void *arg1, const void *arg2) 3593 { 3594 const struct elf_link_hash_entry *h1; 3595 const struct elf_link_hash_entry *h2; 3596 bfd_signed_vma vdiff; 3597 int sdiff; 3598 const char *n1; 3599 const char *n2; 3600 3601 h1 = *(const struct elf_link_hash_entry **) arg1; 3602 h2 = *(const struct elf_link_hash_entry **) arg2; 3603 vdiff = h1->root.u.def.value - h2->root.u.def.value; 3604 if (vdiff != 0) 3605 return vdiff > 0 ? 1 : -1; 3606 3607 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; 3608 if (sdiff != 0) 3609 return sdiff; 3610 3611 /* Sort so that sized symbols are selected over zero size symbols. */ 3612 vdiff = h1->size - h2->size; 3613 if (vdiff != 0) 3614 return vdiff > 0 ? 1 : -1; 3615 3616 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ 3617 if (h1->type != h2->type) 3618 return h1->type - h2->type; 3619 3620 /* If symbols are properly sized and typed, and multiple strong 3621 aliases are not defined in a shared library by the user we 3622 shouldn't get here. Unfortunately linker script symbols like 3623 __bss_start sometimes match a user symbol defined at the start of 3624 .bss without proper size and type. We'd like to preference the 3625 user symbol over reserved system symbols. Sort on leading 3626 underscores. */ 3627 n1 = h1->root.root.string; 3628 n2 = h2->root.root.string; 3629 while (*n1 == *n2) 3630 { 3631 if (*n1 == 0) 3632 break; 3633 ++n1; 3634 ++n2; 3635 } 3636 if (*n1 == '_') 3637 return -1; 3638 if (*n2 == '_') 3639 return 1; 3640 3641 /* Final sort on name selects user symbols like '_u' over reserved 3642 system symbols like '_Z' and also will avoid qsort instability. */ 3643 return *n1 - *n2; 3644 } 3645 3646 /* This function is used to adjust offsets into .dynstr for 3647 dynamic symbols. This is called via elf_link_hash_traverse. */ 3648 3649 static bfd_boolean 3650 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) 3651 { 3652 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; 3653 3654 if (h->dynindx != -1) 3655 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); 3656 return TRUE; 3657 } 3658 3659 /* Assign string offsets in .dynstr, update all structures referencing 3660 them. */ 3661 3662 static bfd_boolean 3663 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) 3664 { 3665 struct elf_link_hash_table *hash_table = elf_hash_table (info); 3666 struct elf_link_local_dynamic_entry *entry; 3667 struct elf_strtab_hash *dynstr = hash_table->dynstr; 3668 bfd *dynobj = hash_table->dynobj; 3669 asection *sdyn; 3670 bfd_size_type size; 3671 const struct elf_backend_data *bed; 3672 bfd_byte *extdyn; 3673 3674 _bfd_elf_strtab_finalize (dynstr); 3675 size = _bfd_elf_strtab_size (dynstr); 3676 3677 bed = get_elf_backend_data (dynobj); 3678 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3679 BFD_ASSERT (sdyn != NULL); 3680 3681 /* Update all .dynamic entries referencing .dynstr strings. */ 3682 for (extdyn = sdyn->contents; 3683 extdyn < sdyn->contents + sdyn->size; 3684 extdyn += bed->s->sizeof_dyn) 3685 { 3686 Elf_Internal_Dyn dyn; 3687 3688 bed->s->swap_dyn_in (dynobj, extdyn, &dyn); 3689 switch (dyn.d_tag) 3690 { 3691 case DT_STRSZ: 3692 dyn.d_un.d_val = size; 3693 break; 3694 case DT_NEEDED: 3695 case DT_SONAME: 3696 case DT_RPATH: 3697 case DT_RUNPATH: 3698 case DT_FILTER: 3699 case DT_AUXILIARY: 3700 case DT_AUDIT: 3701 case DT_DEPAUDIT: 3702 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); 3703 break; 3704 default: 3705 continue; 3706 } 3707 bed->s->swap_dyn_out (dynobj, &dyn, extdyn); 3708 } 3709 3710 /* Now update local dynamic symbols. */ 3711 for (entry = hash_table->dynlocal; entry ; entry = entry->next) 3712 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, 3713 entry->isym.st_name); 3714 3715 /* And the rest of dynamic symbols. */ 3716 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); 3717 3718 /* Adjust version definitions. */ 3719 if (elf_tdata (output_bfd)->cverdefs) 3720 { 3721 asection *s; 3722 bfd_byte *p; 3723 size_t i; 3724 Elf_Internal_Verdef def; 3725 Elf_Internal_Verdaux defaux; 3726 3727 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 3728 p = s->contents; 3729 do 3730 { 3731 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, 3732 &def); 3733 p += sizeof (Elf_External_Verdef); 3734 if (def.vd_aux != sizeof (Elf_External_Verdef)) 3735 continue; 3736 for (i = 0; i < def.vd_cnt; ++i) 3737 { 3738 _bfd_elf_swap_verdaux_in (output_bfd, 3739 (Elf_External_Verdaux *) p, &defaux); 3740 defaux.vda_name = _bfd_elf_strtab_offset (dynstr, 3741 defaux.vda_name); 3742 _bfd_elf_swap_verdaux_out (output_bfd, 3743 &defaux, (Elf_External_Verdaux *) p); 3744 p += sizeof (Elf_External_Verdaux); 3745 } 3746 } 3747 while (def.vd_next); 3748 } 3749 3750 /* Adjust version references. */ 3751 if (elf_tdata (output_bfd)->verref) 3752 { 3753 asection *s; 3754 bfd_byte *p; 3755 size_t i; 3756 Elf_Internal_Verneed need; 3757 Elf_Internal_Vernaux needaux; 3758 3759 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 3760 p = s->contents; 3761 do 3762 { 3763 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, 3764 &need); 3765 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); 3766 _bfd_elf_swap_verneed_out (output_bfd, &need, 3767 (Elf_External_Verneed *) p); 3768 p += sizeof (Elf_External_Verneed); 3769 for (i = 0; i < need.vn_cnt; ++i) 3770 { 3771 _bfd_elf_swap_vernaux_in (output_bfd, 3772 (Elf_External_Vernaux *) p, &needaux); 3773 needaux.vna_name = _bfd_elf_strtab_offset (dynstr, 3774 needaux.vna_name); 3775 _bfd_elf_swap_vernaux_out (output_bfd, 3776 &needaux, 3777 (Elf_External_Vernaux *) p); 3778 p += sizeof (Elf_External_Vernaux); 3779 } 3780 } 3781 while (need.vn_next); 3782 } 3783 3784 return TRUE; 3785 } 3786 3787 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3788 The default is to only match when the INPUT and OUTPUT are exactly 3789 the same target. */ 3790 3791 bfd_boolean 3792 _bfd_elf_default_relocs_compatible (const bfd_target *input, 3793 const bfd_target *output) 3794 { 3795 return input == output; 3796 } 3797 3798 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3799 This version is used when different targets for the same architecture 3800 are virtually identical. */ 3801 3802 bfd_boolean 3803 _bfd_elf_relocs_compatible (const bfd_target *input, 3804 const bfd_target *output) 3805 { 3806 const struct elf_backend_data *obed, *ibed; 3807 3808 if (input == output) 3809 return TRUE; 3810 3811 ibed = xvec_get_elf_backend_data (input); 3812 obed = xvec_get_elf_backend_data (output); 3813 3814 if (ibed->arch != obed->arch) 3815 return FALSE; 3816 3817 /* If both backends are using this function, deem them compatible. */ 3818 return ibed->relocs_compatible == obed->relocs_compatible; 3819 } 3820 3821 /* Make a special call to the linker "notice" function to tell it that 3822 we are about to handle an as-needed lib, or have finished 3823 processing the lib. */ 3824 3825 bfd_boolean 3826 _bfd_elf_notice_as_needed (bfd *ibfd, 3827 struct bfd_link_info *info, 3828 enum notice_asneeded_action act) 3829 { 3830 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); 3831 } 3832 3833 /* Check relocations an ELF object file. */ 3834 3835 bfd_boolean 3836 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3837 { 3838 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3839 struct elf_link_hash_table *htab = elf_hash_table (info); 3840 3841 /* If this object is the same format as the output object, and it is 3842 not a shared library, then let the backend look through the 3843 relocs. 3844 3845 This is required to build global offset table entries and to 3846 arrange for dynamic relocs. It is not required for the 3847 particular common case of linking non PIC code, even when linking 3848 against shared libraries, but unfortunately there is no way of 3849 knowing whether an object file has been compiled PIC or not. 3850 Looking through the relocs is not particularly time consuming. 3851 The problem is that we must either (1) keep the relocs in memory, 3852 which causes the linker to require additional runtime memory or 3853 (2) read the relocs twice from the input file, which wastes time. 3854 This would be a good case for using mmap. 3855 3856 I have no idea how to handle linking PIC code into a file of a 3857 different format. It probably can't be done. */ 3858 if ((abfd->flags & DYNAMIC) == 0 3859 && is_elf_hash_table (htab) 3860 && bed->check_relocs != NULL 3861 && elf_object_id (abfd) == elf_hash_table_id (htab) 3862 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) 3863 { 3864 asection *o; 3865 3866 for (o = abfd->sections; o != NULL; o = o->next) 3867 { 3868 Elf_Internal_Rela *internal_relocs; 3869 bfd_boolean ok; 3870 3871 /* Don't check relocations in excluded sections. */ 3872 if ((o->flags & SEC_RELOC) == 0 3873 || (o->flags & SEC_EXCLUDE) != 0 3874 || o->reloc_count == 0 3875 || ((info->strip == strip_all || info->strip == strip_debugger) 3876 && (o->flags & SEC_DEBUGGING) != 0) 3877 || bfd_is_abs_section (o->output_section)) 3878 continue; 3879 3880 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 3881 info->keep_memory); 3882 if (internal_relocs == NULL) 3883 return FALSE; 3884 3885 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); 3886 3887 if (elf_section_data (o)->relocs != internal_relocs) 3888 free (internal_relocs); 3889 3890 if (! ok) 3891 return FALSE; 3892 } 3893 } 3894 3895 return TRUE; 3896 } 3897 3898 /* Add symbols from an ELF object file to the linker hash table. */ 3899 3900 static bfd_boolean 3901 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) 3902 { 3903 Elf_Internal_Ehdr *ehdr; 3904 Elf_Internal_Shdr *hdr; 3905 size_t symcount; 3906 size_t extsymcount; 3907 size_t extsymoff; 3908 struct elf_link_hash_entry **sym_hash; 3909 bfd_boolean dynamic; 3910 Elf_External_Versym *extversym = NULL; 3911 Elf_External_Versym *extversym_end = NULL; 3912 Elf_External_Versym *ever; 3913 struct elf_link_hash_entry *weaks; 3914 struct elf_link_hash_entry **nondeflt_vers = NULL; 3915 size_t nondeflt_vers_cnt = 0; 3916 Elf_Internal_Sym *isymbuf = NULL; 3917 Elf_Internal_Sym *isym; 3918 Elf_Internal_Sym *isymend; 3919 const struct elf_backend_data *bed; 3920 bfd_boolean add_needed; 3921 struct elf_link_hash_table *htab; 3922 bfd_size_type amt; 3923 void *alloc_mark = NULL; 3924 struct bfd_hash_entry **old_table = NULL; 3925 unsigned int old_size = 0; 3926 unsigned int old_count = 0; 3927 void *old_tab = NULL; 3928 void *old_ent; 3929 struct bfd_link_hash_entry *old_undefs = NULL; 3930 struct bfd_link_hash_entry *old_undefs_tail = NULL; 3931 void *old_strtab = NULL; 3932 size_t tabsize = 0; 3933 asection *s; 3934 bfd_boolean just_syms; 3935 3936 htab = elf_hash_table (info); 3937 bed = get_elf_backend_data (abfd); 3938 3939 if ((abfd->flags & DYNAMIC) == 0) 3940 dynamic = FALSE; 3941 else 3942 { 3943 dynamic = TRUE; 3944 3945 /* You can't use -r against a dynamic object. Also, there's no 3946 hope of using a dynamic object which does not exactly match 3947 the format of the output file. */ 3948 if (bfd_link_relocatable (info) 3949 || !is_elf_hash_table (htab) 3950 || info->output_bfd->xvec != abfd->xvec) 3951 { 3952 if (bfd_link_relocatable (info)) 3953 bfd_set_error (bfd_error_invalid_operation); 3954 else 3955 bfd_set_error (bfd_error_wrong_format); 3956 goto error_return; 3957 } 3958 } 3959 3960 ehdr = elf_elfheader (abfd); 3961 if (info->warn_alternate_em 3962 && bed->elf_machine_code != ehdr->e_machine 3963 && ((bed->elf_machine_alt1 != 0 3964 && ehdr->e_machine == bed->elf_machine_alt1) 3965 || (bed->elf_machine_alt2 != 0 3966 && ehdr->e_machine == bed->elf_machine_alt2))) 3967 _bfd_error_handler 3968 /* xgettext:c-format */ 3969 (_("alternate ELF machine code found (%d) in %pB, expecting %d"), 3970 ehdr->e_machine, abfd, bed->elf_machine_code); 3971 3972 /* As a GNU extension, any input sections which are named 3973 .gnu.warning.SYMBOL are treated as warning symbols for the given 3974 symbol. This differs from .gnu.warning sections, which generate 3975 warnings when they are included in an output file. */ 3976 /* PR 12761: Also generate this warning when building shared libraries. */ 3977 for (s = abfd->sections; s != NULL; s = s->next) 3978 { 3979 const char *name; 3980 3981 name = bfd_section_name (s); 3982 if (CONST_STRNEQ (name, ".gnu.warning.")) 3983 { 3984 char *msg; 3985 bfd_size_type sz; 3986 3987 name += sizeof ".gnu.warning." - 1; 3988 3989 /* If this is a shared object, then look up the symbol 3990 in the hash table. If it is there, and it is already 3991 been defined, then we will not be using the entry 3992 from this shared object, so we don't need to warn. 3993 FIXME: If we see the definition in a regular object 3994 later on, we will warn, but we shouldn't. The only 3995 fix is to keep track of what warnings we are supposed 3996 to emit, and then handle them all at the end of the 3997 link. */ 3998 if (dynamic) 3999 { 4000 struct elf_link_hash_entry *h; 4001 4002 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 4003 4004 /* FIXME: What about bfd_link_hash_common? */ 4005 if (h != NULL 4006 && (h->root.type == bfd_link_hash_defined 4007 || h->root.type == bfd_link_hash_defweak)) 4008 continue; 4009 } 4010 4011 sz = s->size; 4012 msg = (char *) bfd_alloc (abfd, sz + 1); 4013 if (msg == NULL) 4014 goto error_return; 4015 4016 if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) 4017 goto error_return; 4018 4019 msg[sz] = '\0'; 4020 4021 if (! (_bfd_generic_link_add_one_symbol 4022 (info, abfd, name, BSF_WARNING, s, 0, msg, 4023 FALSE, bed->collect, NULL))) 4024 goto error_return; 4025 4026 if (bfd_link_executable (info)) 4027 { 4028 /* Clobber the section size so that the warning does 4029 not get copied into the output file. */ 4030 s->size = 0; 4031 4032 /* Also set SEC_EXCLUDE, so that symbols defined in 4033 the warning section don't get copied to the output. */ 4034 s->flags |= SEC_EXCLUDE; 4035 } 4036 } 4037 } 4038 4039 just_syms = ((s = abfd->sections) != NULL 4040 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); 4041 4042 add_needed = TRUE; 4043 if (! dynamic) 4044 { 4045 /* If we are creating a shared library, create all the dynamic 4046 sections immediately. We need to attach them to something, 4047 so we attach them to this BFD, provided it is the right 4048 format and is not from ld --just-symbols. Always create the 4049 dynamic sections for -E/--dynamic-list. FIXME: If there 4050 are no input BFD's of the same format as the output, we can't 4051 make a shared library. */ 4052 if (!just_syms 4053 && (bfd_link_pic (info) 4054 || (!bfd_link_relocatable (info) 4055 && info->nointerp 4056 && (info->export_dynamic || info->dynamic))) 4057 && is_elf_hash_table (htab) 4058 && info->output_bfd->xvec == abfd->xvec 4059 && !htab->dynamic_sections_created) 4060 { 4061 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 4062 goto error_return; 4063 } 4064 } 4065 else if (!is_elf_hash_table (htab)) 4066 goto error_return; 4067 else 4068 { 4069 const char *soname = NULL; 4070 char *audit = NULL; 4071 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; 4072 const Elf_Internal_Phdr *phdr; 4073 int ret; 4074 4075 /* ld --just-symbols and dynamic objects don't mix very well. 4076 ld shouldn't allow it. */ 4077 if (just_syms) 4078 abort (); 4079 4080 /* If this dynamic lib was specified on the command line with 4081 --as-needed in effect, then we don't want to add a DT_NEEDED 4082 tag unless the lib is actually used. Similary for libs brought 4083 in by another lib's DT_NEEDED. When --no-add-needed is used 4084 on a dynamic lib, we don't want to add a DT_NEEDED entry for 4085 any dynamic library in DT_NEEDED tags in the dynamic lib at 4086 all. */ 4087 add_needed = (elf_dyn_lib_class (abfd) 4088 & (DYN_AS_NEEDED | DYN_DT_NEEDED 4089 | DYN_NO_NEEDED)) == 0; 4090 4091 s = bfd_get_section_by_name (abfd, ".dynamic"); 4092 if (s != NULL) 4093 { 4094 bfd_byte *dynbuf; 4095 bfd_byte *extdyn; 4096 unsigned int elfsec; 4097 unsigned long shlink; 4098 4099 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 4100 { 4101 error_free_dyn: 4102 free (dynbuf); 4103 goto error_return; 4104 } 4105 4106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 4107 if (elfsec == SHN_BAD) 4108 goto error_free_dyn; 4109 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 4110 4111 for (extdyn = dynbuf; 4112 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn; 4113 extdyn += bed->s->sizeof_dyn) 4114 { 4115 Elf_Internal_Dyn dyn; 4116 4117 bed->s->swap_dyn_in (abfd, extdyn, &dyn); 4118 if (dyn.d_tag == DT_SONAME) 4119 { 4120 unsigned int tagv = dyn.d_un.d_val; 4121 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4122 if (soname == NULL) 4123 goto error_free_dyn; 4124 } 4125 if (dyn.d_tag == DT_NEEDED) 4126 { 4127 struct bfd_link_needed_list *n, **pn; 4128 char *fnm, *anm; 4129 unsigned int tagv = dyn.d_un.d_val; 4130 4131 amt = sizeof (struct bfd_link_needed_list); 4132 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4133 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4134 if (n == NULL || fnm == NULL) 4135 goto error_free_dyn; 4136 amt = strlen (fnm) + 1; 4137 anm = (char *) bfd_alloc (abfd, amt); 4138 if (anm == NULL) 4139 goto error_free_dyn; 4140 memcpy (anm, fnm, amt); 4141 n->name = anm; 4142 n->by = abfd; 4143 n->next = NULL; 4144 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) 4145 ; 4146 *pn = n; 4147 } 4148 if (dyn.d_tag == DT_RUNPATH) 4149 { 4150 struct bfd_link_needed_list *n, **pn; 4151 char *fnm, *anm; 4152 unsigned int tagv = dyn.d_un.d_val; 4153 4154 amt = sizeof (struct bfd_link_needed_list); 4155 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4156 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4157 if (n == NULL || fnm == NULL) 4158 goto error_free_dyn; 4159 amt = strlen (fnm) + 1; 4160 anm = (char *) bfd_alloc (abfd, amt); 4161 if (anm == NULL) 4162 goto error_free_dyn; 4163 memcpy (anm, fnm, amt); 4164 n->name = anm; 4165 n->by = abfd; 4166 n->next = NULL; 4167 for (pn = & runpath; 4168 *pn != NULL; 4169 pn = &(*pn)->next) 4170 ; 4171 *pn = n; 4172 } 4173 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ 4174 if (!runpath && dyn.d_tag == DT_RPATH) 4175 { 4176 struct bfd_link_needed_list *n, **pn; 4177 char *fnm, *anm; 4178 unsigned int tagv = dyn.d_un.d_val; 4179 4180 amt = sizeof (struct bfd_link_needed_list); 4181 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4182 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4183 if (n == NULL || fnm == NULL) 4184 goto error_free_dyn; 4185 amt = strlen (fnm) + 1; 4186 anm = (char *) bfd_alloc (abfd, amt); 4187 if (anm == NULL) 4188 goto error_free_dyn; 4189 memcpy (anm, fnm, amt); 4190 n->name = anm; 4191 n->by = abfd; 4192 n->next = NULL; 4193 for (pn = & rpath; 4194 *pn != NULL; 4195 pn = &(*pn)->next) 4196 ; 4197 *pn = n; 4198 } 4199 if (dyn.d_tag == DT_AUDIT) 4200 { 4201 unsigned int tagv = dyn.d_un.d_val; 4202 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4203 } 4204 } 4205 4206 free (dynbuf); 4207 } 4208 4209 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that 4210 frees all more recently bfd_alloc'd blocks as well. */ 4211 if (runpath) 4212 rpath = runpath; 4213 4214 if (rpath) 4215 { 4216 struct bfd_link_needed_list **pn; 4217 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) 4218 ; 4219 *pn = rpath; 4220 } 4221 4222 /* If we have a PT_GNU_RELRO program header, mark as read-only 4223 all sections contained fully therein. This makes relro 4224 shared library sections appear as they will at run-time. */ 4225 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; 4226 while (phdr-- > elf_tdata (abfd)->phdr) 4227 if (phdr->p_type == PT_GNU_RELRO) 4228 { 4229 for (s = abfd->sections; s != NULL; s = s->next) 4230 if ((s->flags & SEC_ALLOC) != 0 4231 && s->vma >= phdr->p_vaddr 4232 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz) 4233 s->flags |= SEC_READONLY; 4234 break; 4235 } 4236 4237 /* We do not want to include any of the sections in a dynamic 4238 object in the output file. We hack by simply clobbering the 4239 list of sections in the BFD. This could be handled more 4240 cleanly by, say, a new section flag; the existing 4241 SEC_NEVER_LOAD flag is not the one we want, because that one 4242 still implies that the section takes up space in the output 4243 file. */ 4244 bfd_section_list_clear (abfd); 4245 4246 /* Find the name to use in a DT_NEEDED entry that refers to this 4247 object. If the object has a DT_SONAME entry, we use it. 4248 Otherwise, if the generic linker stuck something in 4249 elf_dt_name, we use that. Otherwise, we just use the file 4250 name. */ 4251 if (soname == NULL || *soname == '\0') 4252 { 4253 soname = elf_dt_name (abfd); 4254 if (soname == NULL || *soname == '\0') 4255 soname = bfd_get_filename (abfd); 4256 } 4257 4258 /* Save the SONAME because sometimes the linker emulation code 4259 will need to know it. */ 4260 elf_dt_name (abfd) = soname; 4261 4262 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 4263 if (ret < 0) 4264 goto error_return; 4265 4266 /* If we have already included this dynamic object in the 4267 link, just ignore it. There is no reason to include a 4268 particular dynamic object more than once. */ 4269 if (ret > 0) 4270 return TRUE; 4271 4272 /* Save the DT_AUDIT entry for the linker emulation code. */ 4273 elf_dt_audit (abfd) = audit; 4274 } 4275 4276 /* If this is a dynamic object, we always link against the .dynsym 4277 symbol table, not the .symtab symbol table. The dynamic linker 4278 will only see the .dynsym symbol table, so there is no reason to 4279 look at .symtab for a dynamic object. */ 4280 4281 if (! dynamic || elf_dynsymtab (abfd) == 0) 4282 hdr = &elf_tdata (abfd)->symtab_hdr; 4283 else 4284 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 4285 4286 symcount = hdr->sh_size / bed->s->sizeof_sym; 4287 4288 /* The sh_info field of the symtab header tells us where the 4289 external symbols start. We don't care about the local symbols at 4290 this point. */ 4291 if (elf_bad_symtab (abfd)) 4292 { 4293 extsymcount = symcount; 4294 extsymoff = 0; 4295 } 4296 else 4297 { 4298 extsymcount = symcount - hdr->sh_info; 4299 extsymoff = hdr->sh_info; 4300 } 4301 4302 sym_hash = elf_sym_hashes (abfd); 4303 if (extsymcount != 0) 4304 { 4305 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 4306 NULL, NULL, NULL); 4307 if (isymbuf == NULL) 4308 goto error_return; 4309 4310 if (sym_hash == NULL) 4311 { 4312 /* We store a pointer to the hash table entry for each 4313 external symbol. */ 4314 amt = extsymcount; 4315 amt *= sizeof (struct elf_link_hash_entry *); 4316 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); 4317 if (sym_hash == NULL) 4318 goto error_free_sym; 4319 elf_sym_hashes (abfd) = sym_hash; 4320 } 4321 } 4322 4323 if (dynamic) 4324 { 4325 /* Read in any version definitions. */ 4326 if (!_bfd_elf_slurp_version_tables (abfd, 4327 info->default_imported_symver)) 4328 goto error_free_sym; 4329 4330 /* Read in the symbol versions, but don't bother to convert them 4331 to internal format. */ 4332 if (elf_dynversym (abfd) != 0) 4333 { 4334 Elf_Internal_Shdr *versymhdr; 4335 4336 versymhdr = &elf_tdata (abfd)->dynversym_hdr; 4337 amt = versymhdr->sh_size; 4338 extversym = (Elf_External_Versym *) bfd_malloc (amt); 4339 if (extversym == NULL) 4340 goto error_free_sym; 4341 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 4342 || bfd_bread (extversym, amt, abfd) != amt) 4343 goto error_free_vers; 4344 extversym_end = extversym + (amt / sizeof (* extversym)); 4345 } 4346 } 4347 4348 /* If we are loading an as-needed shared lib, save the symbol table 4349 state before we start adding symbols. If the lib turns out 4350 to be unneeded, restore the state. */ 4351 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 4352 { 4353 unsigned int i; 4354 size_t entsize; 4355 4356 for (entsize = 0, i = 0; i < htab->root.table.size; i++) 4357 { 4358 struct bfd_hash_entry *p; 4359 struct elf_link_hash_entry *h; 4360 4361 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4362 { 4363 h = (struct elf_link_hash_entry *) p; 4364 entsize += htab->root.table.entsize; 4365 if (h->root.type == bfd_link_hash_warning) 4366 entsize += htab->root.table.entsize; 4367 } 4368 } 4369 4370 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); 4371 old_tab = bfd_malloc (tabsize + entsize); 4372 if (old_tab == NULL) 4373 goto error_free_vers; 4374 4375 /* Remember the current objalloc pointer, so that all mem for 4376 symbols added can later be reclaimed. */ 4377 alloc_mark = bfd_hash_allocate (&htab->root.table, 1); 4378 if (alloc_mark == NULL) 4379 goto error_free_vers; 4380 4381 /* Make a special call to the linker "notice" function to 4382 tell it that we are about to handle an as-needed lib. */ 4383 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) 4384 goto error_free_vers; 4385 4386 /* Clone the symbol table. Remember some pointers into the 4387 symbol table, and dynamic symbol count. */ 4388 old_ent = (char *) old_tab + tabsize; 4389 memcpy (old_tab, htab->root.table.table, tabsize); 4390 old_undefs = htab->root.undefs; 4391 old_undefs_tail = htab->root.undefs_tail; 4392 old_table = htab->root.table.table; 4393 old_size = htab->root.table.size; 4394 old_count = htab->root.table.count; 4395 old_strtab = _bfd_elf_strtab_save (htab->dynstr); 4396 if (old_strtab == NULL) 4397 goto error_free_vers; 4398 4399 for (i = 0; i < htab->root.table.size; i++) 4400 { 4401 struct bfd_hash_entry *p; 4402 struct elf_link_hash_entry *h; 4403 4404 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4405 { 4406 memcpy (old_ent, p, htab->root.table.entsize); 4407 old_ent = (char *) old_ent + htab->root.table.entsize; 4408 h = (struct elf_link_hash_entry *) p; 4409 if (h->root.type == bfd_link_hash_warning) 4410 { 4411 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); 4412 old_ent = (char *) old_ent + htab->root.table.entsize; 4413 } 4414 } 4415 } 4416 } 4417 4418 weaks = NULL; 4419 if (extversym == NULL) 4420 ever = NULL; 4421 else if (extversym + extsymoff < extversym_end) 4422 ever = extversym + extsymoff; 4423 else 4424 { 4425 /* xgettext:c-format */ 4426 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), 4427 abfd, (long) extsymoff, 4428 (long) (extversym_end - extversym) / sizeof (* extversym)); 4429 bfd_set_error (bfd_error_bad_value); 4430 goto error_free_vers; 4431 } 4432 4433 if (!bfd_link_relocatable (info) 4434 && abfd->lto_slim_object) 4435 { 4436 _bfd_error_handler 4437 (_("%pB: plugin needed to handle lto object"), abfd); 4438 } 4439 4440 for (isym = isymbuf, isymend = isymbuf + extsymcount; 4441 isym < isymend; 4442 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) 4443 { 4444 int bind; 4445 bfd_vma value; 4446 asection *sec, *new_sec; 4447 flagword flags; 4448 const char *name; 4449 struct elf_link_hash_entry *h; 4450 struct elf_link_hash_entry *hi; 4451 bfd_boolean definition; 4452 bfd_boolean size_change_ok; 4453 bfd_boolean type_change_ok; 4454 bfd_boolean new_weak; 4455 bfd_boolean old_weak; 4456 bfd_boolean override; 4457 bfd_boolean common; 4458 bfd_boolean discarded; 4459 unsigned int old_alignment; 4460 unsigned int shindex; 4461 bfd *old_bfd; 4462 bfd_boolean matched; 4463 4464 override = FALSE; 4465 4466 flags = BSF_NO_FLAGS; 4467 sec = NULL; 4468 value = isym->st_value; 4469 common = bed->common_definition (isym); 4470 if (common && info->inhibit_common_definition) 4471 { 4472 /* Treat common symbol as undefined for --no-define-common. */ 4473 isym->st_shndx = SHN_UNDEF; 4474 common = FALSE; 4475 } 4476 discarded = FALSE; 4477 4478 bind = ELF_ST_BIND (isym->st_info); 4479 switch (bind) 4480 { 4481 case STB_LOCAL: 4482 /* This should be impossible, since ELF requires that all 4483 global symbols follow all local symbols, and that sh_info 4484 point to the first global symbol. Unfortunately, Irix 5 4485 screws this up. */ 4486 if (elf_bad_symtab (abfd)) 4487 continue; 4488 4489 /* If we aren't prepared to handle locals within the globals 4490 then we'll likely segfault on a NULL symbol hash if the 4491 symbol is ever referenced in relocations. */ 4492 shindex = elf_elfheader (abfd)->e_shstrndx; 4493 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); 4494 _bfd_error_handler (_("%pB: %s local symbol at index %lu" 4495 " (>= sh_info of %lu)"), 4496 abfd, name, (long) (isym - isymbuf + extsymoff), 4497 (long) extsymoff); 4498 4499 /* Dynamic object relocations are not processed by ld, so 4500 ld won't run into the problem mentioned above. */ 4501 if (dynamic) 4502 continue; 4503 bfd_set_error (bfd_error_bad_value); 4504 goto error_free_vers; 4505 4506 case STB_GLOBAL: 4507 if (isym->st_shndx != SHN_UNDEF && !common) 4508 flags = BSF_GLOBAL; 4509 break; 4510 4511 case STB_WEAK: 4512 flags = BSF_WEAK; 4513 break; 4514 4515 case STB_GNU_UNIQUE: 4516 flags = BSF_GNU_UNIQUE; 4517 break; 4518 4519 default: 4520 /* Leave it up to the processor backend. */ 4521 break; 4522 } 4523 4524 if (isym->st_shndx == SHN_UNDEF) 4525 sec = bfd_und_section_ptr; 4526 else if (isym->st_shndx == SHN_ABS) 4527 sec = bfd_abs_section_ptr; 4528 else if (isym->st_shndx == SHN_COMMON) 4529 { 4530 sec = bfd_com_section_ptr; 4531 /* What ELF calls the size we call the value. What ELF 4532 calls the value we call the alignment. */ 4533 value = isym->st_size; 4534 } 4535 else 4536 { 4537 sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4538 if (sec == NULL) 4539 sec = bfd_abs_section_ptr; 4540 else if (discarded_section (sec)) 4541 { 4542 /* Symbols from discarded section are undefined. We keep 4543 its visibility. */ 4544 sec = bfd_und_section_ptr; 4545 discarded = TRUE; 4546 isym->st_shndx = SHN_UNDEF; 4547 } 4548 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 4549 value -= sec->vma; 4550 } 4551 4552 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 4553 isym->st_name); 4554 if (name == NULL) 4555 goto error_free_vers; 4556 4557 if (isym->st_shndx == SHN_COMMON 4558 && (abfd->flags & BFD_PLUGIN) != 0) 4559 { 4560 asection *xc = bfd_get_section_by_name (abfd, "COMMON"); 4561 4562 if (xc == NULL) 4563 { 4564 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP 4565 | SEC_EXCLUDE); 4566 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); 4567 if (xc == NULL) 4568 goto error_free_vers; 4569 } 4570 sec = xc; 4571 } 4572 else if (isym->st_shndx == SHN_COMMON 4573 && ELF_ST_TYPE (isym->st_info) == STT_TLS 4574 && !bfd_link_relocatable (info)) 4575 { 4576 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); 4577 4578 if (tcomm == NULL) 4579 { 4580 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON 4581 | SEC_LINKER_CREATED); 4582 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); 4583 if (tcomm == NULL) 4584 goto error_free_vers; 4585 } 4586 sec = tcomm; 4587 } 4588 else if (bed->elf_add_symbol_hook) 4589 { 4590 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, 4591 &sec, &value)) 4592 goto error_free_vers; 4593 4594 /* The hook function sets the name to NULL if this symbol 4595 should be skipped for some reason. */ 4596 if (name == NULL) 4597 continue; 4598 } 4599 4600 /* Sanity check that all possibilities were handled. */ 4601 if (sec == NULL) 4602 abort (); 4603 4604 /* Silently discard TLS symbols from --just-syms. There's 4605 no way to combine a static TLS block with a new TLS block 4606 for this executable. */ 4607 if (ELF_ST_TYPE (isym->st_info) == STT_TLS 4608 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4609 continue; 4610 4611 if (bfd_is_und_section (sec) 4612 || bfd_is_com_section (sec)) 4613 definition = FALSE; 4614 else 4615 definition = TRUE; 4616 4617 size_change_ok = FALSE; 4618 type_change_ok = bed->type_change_ok; 4619 old_weak = FALSE; 4620 matched = FALSE; 4621 old_alignment = 0; 4622 old_bfd = NULL; 4623 new_sec = sec; 4624 4625 if (is_elf_hash_table (htab)) 4626 { 4627 Elf_Internal_Versym iver; 4628 unsigned int vernum = 0; 4629 bfd_boolean skip; 4630 4631 if (ever == NULL) 4632 { 4633 if (info->default_imported_symver) 4634 /* Use the default symbol version created earlier. */ 4635 iver.vs_vers = elf_tdata (abfd)->cverdefs; 4636 else 4637 iver.vs_vers = 0; 4638 } 4639 else if (ever >= extversym_end) 4640 { 4641 /* xgettext:c-format */ 4642 _bfd_error_handler (_("%pB: not enough version information"), 4643 abfd); 4644 bfd_set_error (bfd_error_bad_value); 4645 goto error_free_vers; 4646 } 4647 else 4648 _bfd_elf_swap_versym_in (abfd, ever, &iver); 4649 4650 vernum = iver.vs_vers & VERSYM_VERSION; 4651 4652 /* If this is a hidden symbol, or if it is not version 4653 1, we append the version name to the symbol name. 4654 However, we do not modify a non-hidden absolute symbol 4655 if it is not a function, because it might be the version 4656 symbol itself. FIXME: What if it isn't? */ 4657 if ((iver.vs_vers & VERSYM_HIDDEN) != 0 4658 || (vernum > 1 4659 && (!bfd_is_abs_section (sec) 4660 || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) 4661 { 4662 const char *verstr; 4663 size_t namelen, verlen, newlen; 4664 char *newname, *p; 4665 4666 if (isym->st_shndx != SHN_UNDEF) 4667 { 4668 if (vernum > elf_tdata (abfd)->cverdefs) 4669 verstr = NULL; 4670 else if (vernum > 1) 4671 verstr = 4672 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 4673 else 4674 verstr = ""; 4675 4676 if (verstr == NULL) 4677 { 4678 _bfd_error_handler 4679 /* xgettext:c-format */ 4680 (_("%pB: %s: invalid version %u (max %d)"), 4681 abfd, name, vernum, 4682 elf_tdata (abfd)->cverdefs); 4683 bfd_set_error (bfd_error_bad_value); 4684 goto error_free_vers; 4685 } 4686 } 4687 else 4688 { 4689 /* We cannot simply test for the number of 4690 entries in the VERNEED section since the 4691 numbers for the needed versions do not start 4692 at 0. */ 4693 Elf_Internal_Verneed *t; 4694 4695 verstr = NULL; 4696 for (t = elf_tdata (abfd)->verref; 4697 t != NULL; 4698 t = t->vn_nextref) 4699 { 4700 Elf_Internal_Vernaux *a; 4701 4702 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 4703 { 4704 if (a->vna_other == vernum) 4705 { 4706 verstr = a->vna_nodename; 4707 break; 4708 } 4709 } 4710 if (a != NULL) 4711 break; 4712 } 4713 if (verstr == NULL) 4714 { 4715 _bfd_error_handler 4716 /* xgettext:c-format */ 4717 (_("%pB: %s: invalid needed version %d"), 4718 abfd, name, vernum); 4719 bfd_set_error (bfd_error_bad_value); 4720 goto error_free_vers; 4721 } 4722 } 4723 4724 namelen = strlen (name); 4725 verlen = strlen (verstr); 4726 newlen = namelen + verlen + 2; 4727 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4728 && isym->st_shndx != SHN_UNDEF) 4729 ++newlen; 4730 4731 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); 4732 if (newname == NULL) 4733 goto error_free_vers; 4734 memcpy (newname, name, namelen); 4735 p = newname + namelen; 4736 *p++ = ELF_VER_CHR; 4737 /* If this is a defined non-hidden version symbol, 4738 we add another @ to the name. This indicates the 4739 default version of the symbol. */ 4740 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4741 && isym->st_shndx != SHN_UNDEF) 4742 *p++ = ELF_VER_CHR; 4743 memcpy (p, verstr, verlen + 1); 4744 4745 name = newname; 4746 } 4747 4748 /* If this symbol has default visibility and the user has 4749 requested we not re-export it, then mark it as hidden. */ 4750 if (!bfd_is_und_section (sec) 4751 && !dynamic 4752 && abfd->no_export 4753 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) 4754 isym->st_other = (STV_HIDDEN 4755 | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); 4756 4757 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, 4758 sym_hash, &old_bfd, &old_weak, 4759 &old_alignment, &skip, &override, 4760 &type_change_ok, &size_change_ok, 4761 &matched)) 4762 goto error_free_vers; 4763 4764 if (skip) 4765 continue; 4766 4767 /* Override a definition only if the new symbol matches the 4768 existing one. */ 4769 if (override && matched) 4770 definition = FALSE; 4771 4772 h = *sym_hash; 4773 while (h->root.type == bfd_link_hash_indirect 4774 || h->root.type == bfd_link_hash_warning) 4775 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4776 4777 if (elf_tdata (abfd)->verdef != NULL 4778 && vernum > 1 4779 && definition) 4780 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; 4781 } 4782 4783 if (! (_bfd_generic_link_add_one_symbol 4784 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, 4785 (struct bfd_link_hash_entry **) sym_hash))) 4786 goto error_free_vers; 4787 4788 h = *sym_hash; 4789 /* We need to make sure that indirect symbol dynamic flags are 4790 updated. */ 4791 hi = h; 4792 while (h->root.type == bfd_link_hash_indirect 4793 || h->root.type == bfd_link_hash_warning) 4794 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4795 4796 /* Setting the index to -3 tells elf_link_output_extsym that 4797 this symbol is defined in a discarded section. */ 4798 if (discarded) 4799 h->indx = -3; 4800 4801 *sym_hash = h; 4802 4803 new_weak = (flags & BSF_WEAK) != 0; 4804 if (dynamic 4805 && definition 4806 && new_weak 4807 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) 4808 && is_elf_hash_table (htab) 4809 && h->u.alias == NULL) 4810 { 4811 /* Keep a list of all weak defined non function symbols from 4812 a dynamic object, using the alias field. Later in this 4813 function we will set the alias field to the correct 4814 value. We only put non-function symbols from dynamic 4815 objects on this list, because that happens to be the only 4816 time we need to know the normal symbol corresponding to a 4817 weak symbol, and the information is time consuming to 4818 figure out. If the alias field is not already NULL, 4819 then this symbol was already defined by some previous 4820 dynamic object, and we will be using that previous 4821 definition anyhow. */ 4822 4823 h->u.alias = weaks; 4824 weaks = h; 4825 } 4826 4827 /* Set the alignment of a common symbol. */ 4828 if ((common || bfd_is_com_section (sec)) 4829 && h->root.type == bfd_link_hash_common) 4830 { 4831 unsigned int align; 4832 4833 if (common) 4834 align = bfd_log2 (isym->st_value); 4835 else 4836 { 4837 /* The new symbol is a common symbol in a shared object. 4838 We need to get the alignment from the section. */ 4839 align = new_sec->alignment_power; 4840 } 4841 if (align > old_alignment) 4842 h->root.u.c.p->alignment_power = align; 4843 else 4844 h->root.u.c.p->alignment_power = old_alignment; 4845 } 4846 4847 if (is_elf_hash_table (htab)) 4848 { 4849 /* Set a flag in the hash table entry indicating the type of 4850 reference or definition we just found. A dynamic symbol 4851 is one which is referenced or defined by both a regular 4852 object and a shared object. */ 4853 bfd_boolean dynsym = FALSE; 4854 4855 /* Plugin symbols aren't normal. Don't set def_regular or 4856 ref_regular for them, or make them dynamic. */ 4857 if ((abfd->flags & BFD_PLUGIN) != 0) 4858 ; 4859 else if (! dynamic) 4860 { 4861 if (! definition) 4862 { 4863 h->ref_regular = 1; 4864 if (bind != STB_WEAK) 4865 h->ref_regular_nonweak = 1; 4866 } 4867 else 4868 { 4869 h->def_regular = 1; 4870 if (h->def_dynamic) 4871 { 4872 h->def_dynamic = 0; 4873 h->ref_dynamic = 1; 4874 } 4875 } 4876 4877 /* If the indirect symbol has been forced local, don't 4878 make the real symbol dynamic. */ 4879 if ((h == hi || !hi->forced_local) 4880 && (bfd_link_dll (info) 4881 || h->def_dynamic 4882 || h->ref_dynamic)) 4883 dynsym = TRUE; 4884 } 4885 else 4886 { 4887 if (! definition) 4888 { 4889 h->ref_dynamic = 1; 4890 hi->ref_dynamic = 1; 4891 } 4892 else 4893 { 4894 h->def_dynamic = 1; 4895 hi->def_dynamic = 1; 4896 } 4897 4898 /* If the indirect symbol has been forced local, don't 4899 make the real symbol dynamic. */ 4900 if ((h == hi || !hi->forced_local) 4901 && (h->def_regular 4902 || h->ref_regular 4903 || (h->is_weakalias 4904 && weakdef (h)->dynindx != -1))) 4905 dynsym = TRUE; 4906 } 4907 4908 /* Check to see if we need to add an indirect symbol for 4909 the default name. */ 4910 if (definition 4911 || (!override && h->root.type == bfd_link_hash_common)) 4912 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, 4913 sec, value, &old_bfd, &dynsym)) 4914 goto error_free_vers; 4915 4916 /* Check the alignment when a common symbol is involved. This 4917 can change when a common symbol is overridden by a normal 4918 definition or a common symbol is ignored due to the old 4919 normal definition. We need to make sure the maximum 4920 alignment is maintained. */ 4921 if ((old_alignment || common) 4922 && h->root.type != bfd_link_hash_common) 4923 { 4924 unsigned int common_align; 4925 unsigned int normal_align; 4926 unsigned int symbol_align; 4927 bfd *normal_bfd; 4928 bfd *common_bfd; 4929 4930 BFD_ASSERT (h->root.type == bfd_link_hash_defined 4931 || h->root.type == bfd_link_hash_defweak); 4932 4933 symbol_align = ffs (h->root.u.def.value) - 1; 4934 if (h->root.u.def.section->owner != NULL 4935 && (h->root.u.def.section->owner->flags 4936 & (DYNAMIC | BFD_PLUGIN)) == 0) 4937 { 4938 normal_align = h->root.u.def.section->alignment_power; 4939 if (normal_align > symbol_align) 4940 normal_align = symbol_align; 4941 } 4942 else 4943 normal_align = symbol_align; 4944 4945 if (old_alignment) 4946 { 4947 common_align = old_alignment; 4948 common_bfd = old_bfd; 4949 normal_bfd = abfd; 4950 } 4951 else 4952 { 4953 common_align = bfd_log2 (isym->st_value); 4954 common_bfd = abfd; 4955 normal_bfd = old_bfd; 4956 } 4957 4958 if (normal_align < common_align) 4959 { 4960 /* PR binutils/2735 */ 4961 if (normal_bfd == NULL) 4962 _bfd_error_handler 4963 /* xgettext:c-format */ 4964 (_("warning: alignment %u of common symbol `%s' in %pB is" 4965 " greater than the alignment (%u) of its section %pA"), 4966 1 << common_align, name, common_bfd, 4967 1 << normal_align, h->root.u.def.section); 4968 else 4969 _bfd_error_handler 4970 /* xgettext:c-format */ 4971 (_("warning: alignment %u of symbol `%s' in %pB" 4972 " is smaller than %u in %pB"), 4973 1 << normal_align, name, normal_bfd, 4974 1 << common_align, common_bfd); 4975 } 4976 } 4977 4978 /* Remember the symbol size if it isn't undefined. */ 4979 if (isym->st_size != 0 4980 && isym->st_shndx != SHN_UNDEF 4981 && (definition || h->size == 0)) 4982 { 4983 if (h->size != 0 4984 && h->size != isym->st_size 4985 && ! size_change_ok) 4986 _bfd_error_handler 4987 /* xgettext:c-format */ 4988 (_("warning: size of symbol `%s' changed" 4989 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), 4990 name, (uint64_t) h->size, old_bfd, 4991 (uint64_t) isym->st_size, abfd); 4992 4993 h->size = isym->st_size; 4994 } 4995 4996 /* If this is a common symbol, then we always want H->SIZE 4997 to be the size of the common symbol. The code just above 4998 won't fix the size if a common symbol becomes larger. We 4999 don't warn about a size change here, because that is 5000 covered by --warn-common. Allow changes between different 5001 function types. */ 5002 if (h->root.type == bfd_link_hash_common) 5003 h->size = h->root.u.c.size; 5004 5005 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE 5006 && ((definition && !new_weak) 5007 || (old_weak && h->root.type == bfd_link_hash_common) 5008 || h->type == STT_NOTYPE)) 5009 { 5010 unsigned int type = ELF_ST_TYPE (isym->st_info); 5011 5012 /* Turn an IFUNC symbol from a DSO into a normal FUNC 5013 symbol. */ 5014 if (type == STT_GNU_IFUNC 5015 && (abfd->flags & DYNAMIC) != 0) 5016 type = STT_FUNC; 5017 5018 if (h->type != type) 5019 { 5020 if (h->type != STT_NOTYPE && ! type_change_ok) 5021 /* xgettext:c-format */ 5022 _bfd_error_handler 5023 (_("warning: type of symbol `%s' changed" 5024 " from %d to %d in %pB"), 5025 name, h->type, type, abfd); 5026 5027 h->type = type; 5028 } 5029 } 5030 5031 /* Merge st_other field. */ 5032 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic); 5033 5034 /* We don't want to make debug symbol dynamic. */ 5035 if (definition 5036 && (sec->flags & SEC_DEBUGGING) 5037 && !bfd_link_relocatable (info)) 5038 dynsym = FALSE; 5039 5040 /* Nor should we make plugin symbols dynamic. */ 5041 if ((abfd->flags & BFD_PLUGIN) != 0) 5042 dynsym = FALSE; 5043 5044 if (definition) 5045 { 5046 h->target_internal = isym->st_target_internal; 5047 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; 5048 } 5049 5050 if (definition && !dynamic) 5051 { 5052 char *p = strchr (name, ELF_VER_CHR); 5053 if (p != NULL && p[1] != ELF_VER_CHR) 5054 { 5055 /* Queue non-default versions so that .symver x, x@FOO 5056 aliases can be checked. */ 5057 if (!nondeflt_vers) 5058 { 5059 amt = ((isymend - isym + 1) 5060 * sizeof (struct elf_link_hash_entry *)); 5061 nondeflt_vers 5062 = (struct elf_link_hash_entry **) bfd_malloc (amt); 5063 if (!nondeflt_vers) 5064 goto error_free_vers; 5065 } 5066 nondeflt_vers[nondeflt_vers_cnt++] = h; 5067 } 5068 } 5069 5070 if (dynsym && h->dynindx == -1) 5071 { 5072 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5073 goto error_free_vers; 5074 if (h->is_weakalias 5075 && weakdef (h)->dynindx == -1) 5076 { 5077 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) 5078 goto error_free_vers; 5079 } 5080 } 5081 else if (h->dynindx != -1) 5082 /* If the symbol already has a dynamic index, but 5083 visibility says it should not be visible, turn it into 5084 a local symbol. */ 5085 switch (ELF_ST_VISIBILITY (h->other)) 5086 { 5087 case STV_INTERNAL: 5088 case STV_HIDDEN: 5089 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 5090 dynsym = FALSE; 5091 break; 5092 } 5093 5094 /* Don't add DT_NEEDED for references from the dummy bfd nor 5095 for unmatched symbol. */ 5096 if (!add_needed 5097 && matched 5098 && definition 5099 && ((dynsym 5100 && h->ref_regular_nonweak 5101 && (old_bfd == NULL 5102 || (old_bfd->flags & BFD_PLUGIN) == 0)) 5103 || (h->ref_dynamic_nonweak 5104 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 5105 && !on_needed_list (elf_dt_name (abfd), 5106 htab->needed, NULL)))) 5107 { 5108 int ret; 5109 const char *soname = elf_dt_name (abfd); 5110 5111 info->callbacks->minfo ("%!", soname, old_bfd, 5112 h->root.root.string); 5113 5114 /* A symbol from a library loaded via DT_NEEDED of some 5115 other library is referenced by a regular object. 5116 Add a DT_NEEDED entry for it. Issue an error if 5117 --no-add-needed is used and the reference was not 5118 a weak one. */ 5119 if (old_bfd != NULL 5120 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) 5121 { 5122 _bfd_error_handler 5123 /* xgettext:c-format */ 5124 (_("%pB: undefined reference to symbol '%s'"), 5125 old_bfd, name); 5126 bfd_set_error (bfd_error_missing_dso); 5127 goto error_free_vers; 5128 } 5129 5130 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) 5131 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); 5132 5133 add_needed = TRUE; 5134 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 5135 if (ret < 0) 5136 goto error_free_vers; 5137 5138 BFD_ASSERT (ret == 0); 5139 } 5140 } 5141 } 5142 5143 if (info->lto_plugin_active 5144 && !bfd_link_relocatable (info) 5145 && (abfd->flags & BFD_PLUGIN) == 0 5146 && !just_syms 5147 && extsymcount) 5148 { 5149 int r_sym_shift; 5150 5151 if (bed->s->arch_size == 32) 5152 r_sym_shift = 8; 5153 else 5154 r_sym_shift = 32; 5155 5156 /* If linker plugin is enabled, set non_ir_ref_regular on symbols 5157 referenced in regular objects so that linker plugin will get 5158 the correct symbol resolution. */ 5159 5160 sym_hash = elf_sym_hashes (abfd); 5161 for (s = abfd->sections; s != NULL; s = s->next) 5162 { 5163 Elf_Internal_Rela *internal_relocs; 5164 Elf_Internal_Rela *rel, *relend; 5165 5166 /* Don't check relocations in excluded sections. */ 5167 if ((s->flags & SEC_RELOC) == 0 5168 || s->reloc_count == 0 5169 || (s->flags & SEC_EXCLUDE) != 0 5170 || ((info->strip == strip_all 5171 || info->strip == strip_debugger) 5172 && (s->flags & SEC_DEBUGGING) != 0)) 5173 continue; 5174 5175 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL, 5176 NULL, 5177 info->keep_memory); 5178 if (internal_relocs == NULL) 5179 goto error_free_vers; 5180 5181 rel = internal_relocs; 5182 relend = rel + s->reloc_count; 5183 for ( ; rel < relend; rel++) 5184 { 5185 unsigned long r_symndx = rel->r_info >> r_sym_shift; 5186 struct elf_link_hash_entry *h; 5187 5188 /* Skip local symbols. */ 5189 if (r_symndx < extsymoff) 5190 continue; 5191 5192 h = sym_hash[r_symndx - extsymoff]; 5193 if (h != NULL) 5194 h->root.non_ir_ref_regular = 1; 5195 } 5196 5197 if (elf_section_data (s)->relocs != internal_relocs) 5198 free (internal_relocs); 5199 } 5200 } 5201 5202 if (extversym != NULL) 5203 { 5204 free (extversym); 5205 extversym = NULL; 5206 } 5207 5208 if (isymbuf != NULL) 5209 { 5210 free (isymbuf); 5211 isymbuf = NULL; 5212 } 5213 5214 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 5215 { 5216 unsigned int i; 5217 5218 /* Restore the symbol table. */ 5219 old_ent = (char *) old_tab + tabsize; 5220 memset (elf_sym_hashes (abfd), 0, 5221 extsymcount * sizeof (struct elf_link_hash_entry *)); 5222 htab->root.table.table = old_table; 5223 htab->root.table.size = old_size; 5224 htab->root.table.count = old_count; 5225 memcpy (htab->root.table.table, old_tab, tabsize); 5226 htab->root.undefs = old_undefs; 5227 htab->root.undefs_tail = old_undefs_tail; 5228 _bfd_elf_strtab_restore (htab->dynstr, old_strtab); 5229 free (old_strtab); 5230 old_strtab = NULL; 5231 for (i = 0; i < htab->root.table.size; i++) 5232 { 5233 struct bfd_hash_entry *p; 5234 struct elf_link_hash_entry *h; 5235 bfd_size_type size; 5236 unsigned int alignment_power; 5237 unsigned int non_ir_ref_dynamic; 5238 5239 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 5240 { 5241 h = (struct elf_link_hash_entry *) p; 5242 if (h->root.type == bfd_link_hash_warning) 5243 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5244 5245 /* Preserve the maximum alignment and size for common 5246 symbols even if this dynamic lib isn't on DT_NEEDED 5247 since it can still be loaded at run time by another 5248 dynamic lib. */ 5249 if (h->root.type == bfd_link_hash_common) 5250 { 5251 size = h->root.u.c.size; 5252 alignment_power = h->root.u.c.p->alignment_power; 5253 } 5254 else 5255 { 5256 size = 0; 5257 alignment_power = 0; 5258 } 5259 /* Preserve non_ir_ref_dynamic so that this symbol 5260 will be exported when the dynamic lib becomes needed 5261 in the second pass. */ 5262 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; 5263 memcpy (p, old_ent, htab->root.table.entsize); 5264 old_ent = (char *) old_ent + htab->root.table.entsize; 5265 h = (struct elf_link_hash_entry *) p; 5266 if (h->root.type == bfd_link_hash_warning) 5267 { 5268 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); 5269 old_ent = (char *) old_ent + htab->root.table.entsize; 5270 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5271 } 5272 if (h->root.type == bfd_link_hash_common) 5273 { 5274 if (size > h->root.u.c.size) 5275 h->root.u.c.size = size; 5276 if (alignment_power > h->root.u.c.p->alignment_power) 5277 h->root.u.c.p->alignment_power = alignment_power; 5278 } 5279 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; 5280 } 5281 } 5282 5283 /* Make a special call to the linker "notice" function to 5284 tell it that symbols added for crefs may need to be removed. */ 5285 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) 5286 goto error_free_vers; 5287 5288 free (old_tab); 5289 objalloc_free_block ((struct objalloc *) htab->root.table.memory, 5290 alloc_mark); 5291 if (nondeflt_vers != NULL) 5292 free (nondeflt_vers); 5293 return TRUE; 5294 } 5295 5296 if (old_tab != NULL) 5297 { 5298 if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) 5299 goto error_free_vers; 5300 free (old_tab); 5301 old_tab = NULL; 5302 } 5303 5304 /* Now that all the symbols from this input file are created, if 5305 not performing a relocatable link, handle .symver foo, foo@BAR 5306 such that any relocs against foo become foo@BAR. */ 5307 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) 5308 { 5309 size_t cnt, symidx; 5310 5311 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) 5312 { 5313 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; 5314 char *shortname, *p; 5315 5316 p = strchr (h->root.root.string, ELF_VER_CHR); 5317 if (p == NULL 5318 || (h->root.type != bfd_link_hash_defined 5319 && h->root.type != bfd_link_hash_defweak)) 5320 continue; 5321 5322 amt = p - h->root.root.string; 5323 shortname = (char *) bfd_malloc (amt + 1); 5324 if (!shortname) 5325 goto error_free_vers; 5326 memcpy (shortname, h->root.root.string, amt); 5327 shortname[amt] = '\0'; 5328 5329 hi = (struct elf_link_hash_entry *) 5330 bfd_link_hash_lookup (&htab->root, shortname, 5331 FALSE, FALSE, FALSE); 5332 if (hi != NULL 5333 && hi->root.type == h->root.type 5334 && hi->root.u.def.value == h->root.u.def.value 5335 && hi->root.u.def.section == h->root.u.def.section) 5336 { 5337 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 5338 hi->root.type = bfd_link_hash_indirect; 5339 hi->root.u.i.link = (struct bfd_link_hash_entry *) h; 5340 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 5341 sym_hash = elf_sym_hashes (abfd); 5342 if (sym_hash) 5343 for (symidx = 0; symidx < extsymcount; ++symidx) 5344 if (sym_hash[symidx] == hi) 5345 { 5346 sym_hash[symidx] = h; 5347 break; 5348 } 5349 } 5350 free (shortname); 5351 } 5352 free (nondeflt_vers); 5353 nondeflt_vers = NULL; 5354 } 5355 5356 /* Now set the alias field correctly for all the weak defined 5357 symbols we found. The only way to do this is to search all the 5358 symbols. Since we only need the information for non functions in 5359 dynamic objects, that's the only time we actually put anything on 5360 the list WEAKS. We need this information so that if a regular 5361 object refers to a symbol defined weakly in a dynamic object, the 5362 real symbol in the dynamic object is also put in the dynamic 5363 symbols; we also must arrange for both symbols to point to the 5364 same memory location. We could handle the general case of symbol 5365 aliasing, but a general symbol alias can only be generated in 5366 assembler code, handling it correctly would be very time 5367 consuming, and other ELF linkers don't handle general aliasing 5368 either. */ 5369 if (weaks != NULL) 5370 { 5371 struct elf_link_hash_entry **hpp; 5372 struct elf_link_hash_entry **hppend; 5373 struct elf_link_hash_entry **sorted_sym_hash; 5374 struct elf_link_hash_entry *h; 5375 size_t sym_count; 5376 5377 /* Since we have to search the whole symbol list for each weak 5378 defined symbol, search time for N weak defined symbols will be 5379 O(N^2). Binary search will cut it down to O(NlogN). */ 5380 amt = extsymcount; 5381 amt *= sizeof (*sorted_sym_hash); 5382 sorted_sym_hash = bfd_malloc (amt); 5383 if (sorted_sym_hash == NULL) 5384 goto error_return; 5385 sym_hash = sorted_sym_hash; 5386 hpp = elf_sym_hashes (abfd); 5387 hppend = hpp + extsymcount; 5388 sym_count = 0; 5389 for (; hpp < hppend; hpp++) 5390 { 5391 h = *hpp; 5392 if (h != NULL 5393 && h->root.type == bfd_link_hash_defined 5394 && !bed->is_function_type (h->type)) 5395 { 5396 *sym_hash = h; 5397 sym_hash++; 5398 sym_count++; 5399 } 5400 } 5401 5402 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), 5403 elf_sort_symbol); 5404 5405 while (weaks != NULL) 5406 { 5407 struct elf_link_hash_entry *hlook; 5408 asection *slook; 5409 bfd_vma vlook; 5410 size_t i, j, idx = 0; 5411 5412 hlook = weaks; 5413 weaks = hlook->u.alias; 5414 hlook->u.alias = NULL; 5415 5416 if (hlook->root.type != bfd_link_hash_defined 5417 && hlook->root.type != bfd_link_hash_defweak) 5418 continue; 5419 5420 slook = hlook->root.u.def.section; 5421 vlook = hlook->root.u.def.value; 5422 5423 i = 0; 5424 j = sym_count; 5425 while (i != j) 5426 { 5427 bfd_signed_vma vdiff; 5428 idx = (i + j) / 2; 5429 h = sorted_sym_hash[idx]; 5430 vdiff = vlook - h->root.u.def.value; 5431 if (vdiff < 0) 5432 j = idx; 5433 else if (vdiff > 0) 5434 i = idx + 1; 5435 else 5436 { 5437 int sdiff = slook->id - h->root.u.def.section->id; 5438 if (sdiff < 0) 5439 j = idx; 5440 else if (sdiff > 0) 5441 i = idx + 1; 5442 else 5443 break; 5444 } 5445 } 5446 5447 /* We didn't find a value/section match. */ 5448 if (i == j) 5449 continue; 5450 5451 /* With multiple aliases, or when the weak symbol is already 5452 strongly defined, we have multiple matching symbols and 5453 the binary search above may land on any of them. Step 5454 one past the matching symbol(s). */ 5455 while (++idx != j) 5456 { 5457 h = sorted_sym_hash[idx]; 5458 if (h->root.u.def.section != slook 5459 || h->root.u.def.value != vlook) 5460 break; 5461 } 5462 5463 /* Now look back over the aliases. Since we sorted by size 5464 as well as value and section, we'll choose the one with 5465 the largest size. */ 5466 while (idx-- != i) 5467 { 5468 h = sorted_sym_hash[idx]; 5469 5470 /* Stop if value or section doesn't match. */ 5471 if (h->root.u.def.section != slook 5472 || h->root.u.def.value != vlook) 5473 break; 5474 else if (h != hlook) 5475 { 5476 struct elf_link_hash_entry *t; 5477 5478 hlook->u.alias = h; 5479 hlook->is_weakalias = 1; 5480 t = h; 5481 if (t->u.alias != NULL) 5482 while (t->u.alias != h) 5483 t = t->u.alias; 5484 t->u.alias = hlook; 5485 5486 /* If the weak definition is in the list of dynamic 5487 symbols, make sure the real definition is put 5488 there as well. */ 5489 if (hlook->dynindx != -1 && h->dynindx == -1) 5490 { 5491 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5492 { 5493 err_free_sym_hash: 5494 free (sorted_sym_hash); 5495 goto error_return; 5496 } 5497 } 5498 5499 /* If the real definition is in the list of dynamic 5500 symbols, make sure the weak definition is put 5501 there as well. If we don't do this, then the 5502 dynamic loader might not merge the entries for the 5503 real definition and the weak definition. */ 5504 if (h->dynindx != -1 && hlook->dynindx == -1) 5505 { 5506 if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) 5507 goto err_free_sym_hash; 5508 } 5509 break; 5510 } 5511 } 5512 } 5513 5514 free (sorted_sym_hash); 5515 } 5516 5517 if (bed->check_directives 5518 && !(*bed->check_directives) (abfd, info)) 5519 return FALSE; 5520 5521 /* If this is a non-traditional link, try to optimize the handling 5522 of the .stab/.stabstr sections. */ 5523 if (! dynamic 5524 && ! info->traditional_format 5525 && is_elf_hash_table (htab) 5526 && (info->strip != strip_all && info->strip != strip_debugger)) 5527 { 5528 asection *stabstr; 5529 5530 stabstr = bfd_get_section_by_name (abfd, ".stabstr"); 5531 if (stabstr != NULL) 5532 { 5533 bfd_size_type string_offset = 0; 5534 asection *stab; 5535 5536 for (stab = abfd->sections; stab; stab = stab->next) 5537 if (CONST_STRNEQ (stab->name, ".stab") 5538 && (!stab->name[5] || 5539 (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) 5540 && (stab->flags & SEC_MERGE) == 0 5541 && !bfd_is_abs_section (stab->output_section)) 5542 { 5543 struct bfd_elf_section_data *secdata; 5544 5545 secdata = elf_section_data (stab); 5546 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, 5547 stabstr, &secdata->sec_info, 5548 &string_offset)) 5549 goto error_return; 5550 if (secdata->sec_info) 5551 stab->sec_info_type = SEC_INFO_TYPE_STABS; 5552 } 5553 } 5554 } 5555 5556 if (is_elf_hash_table (htab) && add_needed) 5557 { 5558 /* Add this bfd to the loaded list. */ 5559 struct elf_link_loaded_list *n; 5560 5561 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); 5562 if (n == NULL) 5563 goto error_return; 5564 n->abfd = abfd; 5565 n->next = htab->loaded; 5566 htab->loaded = n; 5567 } 5568 5569 return TRUE; 5570 5571 error_free_vers: 5572 if (old_tab != NULL) 5573 free (old_tab); 5574 if (old_strtab != NULL) 5575 free (old_strtab); 5576 if (nondeflt_vers != NULL) 5577 free (nondeflt_vers); 5578 if (extversym != NULL) 5579 free (extversym); 5580 error_free_sym: 5581 if (isymbuf != NULL) 5582 free (isymbuf); 5583 error_return: 5584 return FALSE; 5585 } 5586 5587 /* Return the linker hash table entry of a symbol that might be 5588 satisfied by an archive symbol. Return -1 on error. */ 5589 5590 struct elf_link_hash_entry * 5591 _bfd_elf_archive_symbol_lookup (bfd *abfd, 5592 struct bfd_link_info *info, 5593 const char *name) 5594 { 5595 struct elf_link_hash_entry *h; 5596 char *p, *copy; 5597 size_t len, first; 5598 5599 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); 5600 if (h != NULL) 5601 return h; 5602 5603 /* If this is a default version (the name contains @@), look up the 5604 symbol again with only one `@' as well as without the version. 5605 The effect is that references to the symbol with and without the 5606 version will be matched by the default symbol in the archive. */ 5607 5608 p = strchr (name, ELF_VER_CHR); 5609 if (p == NULL || p[1] != ELF_VER_CHR) 5610 return h; 5611 5612 /* First check with only one `@'. */ 5613 len = strlen (name); 5614 copy = (char *) bfd_alloc (abfd, len); 5615 if (copy == NULL) 5616 return (struct elf_link_hash_entry *) -1; 5617 5618 first = p - name + 1; 5619 memcpy (copy, name, first); 5620 memcpy (copy + first, name + first + 1, len - first); 5621 5622 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE); 5623 if (h == NULL) 5624 { 5625 /* We also need to check references to the symbol without the 5626 version. */ 5627 copy[first - 1] = '\0'; 5628 h = elf_link_hash_lookup (elf_hash_table (info), copy, 5629 FALSE, FALSE, TRUE); 5630 } 5631 5632 bfd_release (abfd, copy); 5633 return h; 5634 } 5635 5636 /* Add symbols from an ELF archive file to the linker hash table. We 5637 don't use _bfd_generic_link_add_archive_symbols because we need to 5638 handle versioned symbols. 5639 5640 Fortunately, ELF archive handling is simpler than that done by 5641 _bfd_generic_link_add_archive_symbols, which has to allow for a.out 5642 oddities. In ELF, if we find a symbol in the archive map, and the 5643 symbol is currently undefined, we know that we must pull in that 5644 object file. 5645 5646 Unfortunately, we do have to make multiple passes over the symbol 5647 table until nothing further is resolved. */ 5648 5649 static bfd_boolean 5650 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) 5651 { 5652 symindex c; 5653 unsigned char *included = NULL; 5654 carsym *symdefs; 5655 bfd_boolean loop; 5656 bfd_size_type amt; 5657 const struct elf_backend_data *bed; 5658 struct elf_link_hash_entry * (*archive_symbol_lookup) 5659 (bfd *, struct bfd_link_info *, const char *); 5660 5661 if (! bfd_has_map (abfd)) 5662 { 5663 /* An empty archive is a special case. */ 5664 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 5665 return TRUE; 5666 bfd_set_error (bfd_error_no_armap); 5667 return FALSE; 5668 } 5669 5670 /* Keep track of all symbols we know to be already defined, and all 5671 files we know to be already included. This is to speed up the 5672 second and subsequent passes. */ 5673 c = bfd_ardata (abfd)->symdef_count; 5674 if (c == 0) 5675 return TRUE; 5676 amt = c; 5677 amt *= sizeof (*included); 5678 included = (unsigned char *) bfd_zmalloc (amt); 5679 if (included == NULL) 5680 return FALSE; 5681 5682 symdefs = bfd_ardata (abfd)->symdefs; 5683 bed = get_elf_backend_data (abfd); 5684 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; 5685 5686 do 5687 { 5688 file_ptr last; 5689 symindex i; 5690 carsym *symdef; 5691 carsym *symdefend; 5692 5693 loop = FALSE; 5694 last = -1; 5695 5696 symdef = symdefs; 5697 symdefend = symdef + c; 5698 for (i = 0; symdef < symdefend; symdef++, i++) 5699 { 5700 struct elf_link_hash_entry *h; 5701 bfd *element; 5702 struct bfd_link_hash_entry *undefs_tail; 5703 symindex mark; 5704 5705 if (included[i]) 5706 continue; 5707 if (symdef->file_offset == last) 5708 { 5709 included[i] = TRUE; 5710 continue; 5711 } 5712 5713 h = archive_symbol_lookup (abfd, info, symdef->name); 5714 if (h == (struct elf_link_hash_entry *) -1) 5715 goto error_return; 5716 5717 if (h == NULL) 5718 continue; 5719 5720 if (h->root.type == bfd_link_hash_common) 5721 { 5722 /* We currently have a common symbol. The archive map contains 5723 a reference to this symbol, so we may want to include it. We 5724 only want to include it however, if this archive element 5725 contains a definition of the symbol, not just another common 5726 declaration of it. 5727 5728 Unfortunately some archivers (including GNU ar) will put 5729 declarations of common symbols into their archive maps, as 5730 well as real definitions, so we cannot just go by the archive 5731 map alone. Instead we must read in the element's symbol 5732 table and check that to see what kind of symbol definition 5733 this is. */ 5734 if (! elf_link_is_defined_archive_symbol (abfd, symdef)) 5735 continue; 5736 } 5737 else if (h->root.type != bfd_link_hash_undefined) 5738 { 5739 if (h->root.type != bfd_link_hash_undefweak) 5740 /* Symbol must be defined. Don't check it again. */ 5741 included[i] = TRUE; 5742 continue; 5743 } 5744 5745 /* We need to include this archive member. */ 5746 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 5747 if (element == NULL) 5748 goto error_return; 5749 5750 if (! bfd_check_format (element, bfd_object)) 5751 goto error_return; 5752 5753 undefs_tail = info->hash->undefs_tail; 5754 5755 if (!(*info->callbacks 5756 ->add_archive_element) (info, element, symdef->name, &element)) 5757 continue; 5758 if (!bfd_link_add_symbols (element, info)) 5759 goto error_return; 5760 5761 /* If there are any new undefined symbols, we need to make 5762 another pass through the archive in order to see whether 5763 they can be defined. FIXME: This isn't perfect, because 5764 common symbols wind up on undefs_tail and because an 5765 undefined symbol which is defined later on in this pass 5766 does not require another pass. This isn't a bug, but it 5767 does make the code less efficient than it could be. */ 5768 if (undefs_tail != info->hash->undefs_tail) 5769 loop = TRUE; 5770 5771 /* Look backward to mark all symbols from this object file 5772 which we have already seen in this pass. */ 5773 mark = i; 5774 do 5775 { 5776 included[mark] = TRUE; 5777 if (mark == 0) 5778 break; 5779 --mark; 5780 } 5781 while (symdefs[mark].file_offset == symdef->file_offset); 5782 5783 /* We mark subsequent symbols from this object file as we go 5784 on through the loop. */ 5785 last = symdef->file_offset; 5786 } 5787 } 5788 while (loop); 5789 5790 free (included); 5791 5792 return TRUE; 5793 5794 error_return: 5795 if (included != NULL) 5796 free (included); 5797 return FALSE; 5798 } 5799 5800 /* Given an ELF BFD, add symbols to the global hash table as 5801 appropriate. */ 5802 5803 bfd_boolean 5804 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 5805 { 5806 switch (bfd_get_format (abfd)) 5807 { 5808 case bfd_object: 5809 return elf_link_add_object_symbols (abfd, info); 5810 case bfd_archive: 5811 return elf_link_add_archive_symbols (abfd, info); 5812 default: 5813 bfd_set_error (bfd_error_wrong_format); 5814 return FALSE; 5815 } 5816 } 5817 5818 struct hash_codes_info 5819 { 5820 unsigned long *hashcodes; 5821 bfd_boolean error; 5822 }; 5823 5824 /* This function will be called though elf_link_hash_traverse to store 5825 all hash value of the exported symbols in an array. */ 5826 5827 static bfd_boolean 5828 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) 5829 { 5830 struct hash_codes_info *inf = (struct hash_codes_info *) data; 5831 const char *name; 5832 unsigned long ha; 5833 char *alc = NULL; 5834 5835 /* Ignore indirect symbols. These are added by the versioning code. */ 5836 if (h->dynindx == -1) 5837 return TRUE; 5838 5839 name = h->root.root.string; 5840 if (h->versioned >= versioned) 5841 { 5842 char *p = strchr (name, ELF_VER_CHR); 5843 if (p != NULL) 5844 { 5845 alc = (char *) bfd_malloc (p - name + 1); 5846 if (alc == NULL) 5847 { 5848 inf->error = TRUE; 5849 return FALSE; 5850 } 5851 memcpy (alc, name, p - name); 5852 alc[p - name] = '\0'; 5853 name = alc; 5854 } 5855 } 5856 5857 /* Compute the hash value. */ 5858 ha = bfd_elf_hash (name); 5859 5860 /* Store the found hash value in the array given as the argument. */ 5861 *(inf->hashcodes)++ = ha; 5862 5863 /* And store it in the struct so that we can put it in the hash table 5864 later. */ 5865 h->u.elf_hash_value = ha; 5866 5867 if (alc != NULL) 5868 free (alc); 5869 5870 return TRUE; 5871 } 5872 5873 struct collect_gnu_hash_codes 5874 { 5875 bfd *output_bfd; 5876 const struct elf_backend_data *bed; 5877 unsigned long int nsyms; 5878 unsigned long int maskbits; 5879 unsigned long int *hashcodes; 5880 unsigned long int *hashval; 5881 unsigned long int *indx; 5882 unsigned long int *counts; 5883 bfd_vma *bitmask; 5884 bfd_byte *contents; 5885 bfd_size_type xlat; 5886 long int min_dynindx; 5887 unsigned long int bucketcount; 5888 unsigned long int symindx; 5889 long int local_indx; 5890 long int shift1, shift2; 5891 unsigned long int mask; 5892 bfd_boolean error; 5893 }; 5894 5895 /* This function will be called though elf_link_hash_traverse to store 5896 all hash value of the exported symbols in an array. */ 5897 5898 static bfd_boolean 5899 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) 5900 { 5901 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5902 const char *name; 5903 unsigned long ha; 5904 char *alc = NULL; 5905 5906 /* Ignore indirect symbols. These are added by the versioning code. */ 5907 if (h->dynindx == -1) 5908 return TRUE; 5909 5910 /* Ignore also local symbols and undefined symbols. */ 5911 if (! (*s->bed->elf_hash_symbol) (h)) 5912 return TRUE; 5913 5914 name = h->root.root.string; 5915 if (h->versioned >= versioned) 5916 { 5917 char *p = strchr (name, ELF_VER_CHR); 5918 if (p != NULL) 5919 { 5920 alc = (char *) bfd_malloc (p - name + 1); 5921 if (alc == NULL) 5922 { 5923 s->error = TRUE; 5924 return FALSE; 5925 } 5926 memcpy (alc, name, p - name); 5927 alc[p - name] = '\0'; 5928 name = alc; 5929 } 5930 } 5931 5932 /* Compute the hash value. */ 5933 ha = bfd_elf_gnu_hash (name); 5934 5935 /* Store the found hash value in the array for compute_bucket_count, 5936 and also for .dynsym reordering purposes. */ 5937 s->hashcodes[s->nsyms] = ha; 5938 s->hashval[h->dynindx] = ha; 5939 ++s->nsyms; 5940 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) 5941 s->min_dynindx = h->dynindx; 5942 5943 if (alc != NULL) 5944 free (alc); 5945 5946 return TRUE; 5947 } 5948 5949 /* This function will be called though elf_link_hash_traverse to do 5950 final dynamic symbol renumbering in case of .gnu.hash. 5951 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index 5952 to the translation table. */ 5953 5954 static bfd_boolean 5955 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) 5956 { 5957 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5958 unsigned long int bucket; 5959 unsigned long int val; 5960 5961 /* Ignore indirect symbols. */ 5962 if (h->dynindx == -1) 5963 return TRUE; 5964 5965 /* Ignore also local symbols and undefined symbols. */ 5966 if (! (*s->bed->elf_hash_symbol) (h)) 5967 { 5968 if (h->dynindx >= s->min_dynindx) 5969 { 5970 if (s->bed->record_xhash_symbol != NULL) 5971 { 5972 (*s->bed->record_xhash_symbol) (h, 0); 5973 s->local_indx++; 5974 } 5975 else 5976 h->dynindx = s->local_indx++; 5977 } 5978 return TRUE; 5979 } 5980 5981 bucket = s->hashval[h->dynindx] % s->bucketcount; 5982 val = (s->hashval[h->dynindx] >> s->shift1) 5983 & ((s->maskbits >> s->shift1) - 1); 5984 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); 5985 s->bitmask[val] 5986 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); 5987 val = s->hashval[h->dynindx] & ~(unsigned long int) 1; 5988 if (s->counts[bucket] == 1) 5989 /* Last element terminates the chain. */ 5990 val |= 1; 5991 bfd_put_32 (s->output_bfd, val, 5992 s->contents + (s->indx[bucket] - s->symindx) * 4); 5993 --s->counts[bucket]; 5994 if (s->bed->record_xhash_symbol != NULL) 5995 { 5996 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; 5997 5998 (*s->bed->record_xhash_symbol) (h, xlat_loc); 5999 } 6000 else 6001 h->dynindx = s->indx[bucket]++; 6002 return TRUE; 6003 } 6004 6005 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 6006 6007 bfd_boolean 6008 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) 6009 { 6010 return !(h->forced_local 6011 || h->root.type == bfd_link_hash_undefined 6012 || h->root.type == bfd_link_hash_undefweak 6013 || ((h->root.type == bfd_link_hash_defined 6014 || h->root.type == bfd_link_hash_defweak) 6015 && h->root.u.def.section->output_section == NULL)); 6016 } 6017 6018 /* Array used to determine the number of hash table buckets to use 6019 based on the number of symbols there are. If there are fewer than 6020 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, 6021 fewer than 37 we use 17 buckets, and so forth. We never use more 6022 than 32771 buckets. */ 6023 6024 static const size_t elf_buckets[] = 6025 { 6026 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 6027 16411, 32771, 0 6028 }; 6029 6030 /* Compute bucket count for hashing table. We do not use a static set 6031 of possible tables sizes anymore. Instead we determine for all 6032 possible reasonable sizes of the table the outcome (i.e., the 6033 number of collisions etc) and choose the best solution. The 6034 weighting functions are not too simple to allow the table to grow 6035 without bounds. Instead one of the weighting factors is the size. 6036 Therefore the result is always a good payoff between few collisions 6037 (= short chain lengths) and table size. */ 6038 static size_t 6039 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, 6040 unsigned long int *hashcodes ATTRIBUTE_UNUSED, 6041 unsigned long int nsyms, 6042 int gnu_hash) 6043 { 6044 size_t best_size = 0; 6045 unsigned long int i; 6046 6047 /* We have a problem here. The following code to optimize the table 6048 size requires an integer type with more the 32 bits. If 6049 BFD_HOST_U_64_BIT is set we know about such a type. */ 6050 #ifdef BFD_HOST_U_64_BIT 6051 if (info->optimize) 6052 { 6053 size_t minsize; 6054 size_t maxsize; 6055 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); 6056 bfd *dynobj = elf_hash_table (info)->dynobj; 6057 size_t dynsymcount = elf_hash_table (info)->dynsymcount; 6058 const struct elf_backend_data *bed = get_elf_backend_data (dynobj); 6059 unsigned long int *counts; 6060 bfd_size_type amt; 6061 unsigned int no_improvement_count = 0; 6062 6063 /* Possible optimization parameters: if we have NSYMS symbols we say 6064 that the hashing table must at least have NSYMS/4 and at most 6065 2*NSYMS buckets. */ 6066 minsize = nsyms / 4; 6067 if (minsize == 0) 6068 minsize = 1; 6069 best_size = maxsize = nsyms * 2; 6070 if (gnu_hash) 6071 { 6072 if (minsize < 2) 6073 minsize = 2; 6074 if ((best_size & 31) == 0) 6075 ++best_size; 6076 } 6077 6078 /* Create array where we count the collisions in. We must use bfd_malloc 6079 since the size could be large. */ 6080 amt = maxsize; 6081 amt *= sizeof (unsigned long int); 6082 counts = (unsigned long int *) bfd_malloc (amt); 6083 if (counts == NULL) 6084 return 0; 6085 6086 /* Compute the "optimal" size for the hash table. The criteria is a 6087 minimal chain length. The minor criteria is (of course) the size 6088 of the table. */ 6089 for (i = minsize; i < maxsize; ++i) 6090 { 6091 /* Walk through the array of hashcodes and count the collisions. */ 6092 BFD_HOST_U_64_BIT max; 6093 unsigned long int j; 6094 unsigned long int fact; 6095 6096 if (gnu_hash && (i & 31) == 0) 6097 continue; 6098 6099 memset (counts, '\0', i * sizeof (unsigned long int)); 6100 6101 /* Determine how often each hash bucket is used. */ 6102 for (j = 0; j < nsyms; ++j) 6103 ++counts[hashcodes[j] % i]; 6104 6105 /* For the weight function we need some information about the 6106 pagesize on the target. This is information need not be 100% 6107 accurate. Since this information is not available (so far) we 6108 define it here to a reasonable default value. If it is crucial 6109 to have a better value some day simply define this value. */ 6110 # ifndef BFD_TARGET_PAGESIZE 6111 # define BFD_TARGET_PAGESIZE (4096) 6112 # endif 6113 6114 /* We in any case need 2 + DYNSYMCOUNT entries for the size values 6115 and the chains. */ 6116 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; 6117 6118 # if 1 6119 /* Variant 1: optimize for short chains. We add the squares 6120 of all the chain lengths (which favors many small chain 6121 over a few long chains). */ 6122 for (j = 0; j < i; ++j) 6123 max += counts[j] * counts[j]; 6124 6125 /* This adds penalties for the overall size of the table. */ 6126 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6127 max *= fact * fact; 6128 # else 6129 /* Variant 2: Optimize a lot more for small table. Here we 6130 also add squares of the size but we also add penalties for 6131 empty slots (the +1 term). */ 6132 for (j = 0; j < i; ++j) 6133 max += (1 + counts[j]) * (1 + counts[j]); 6134 6135 /* The overall size of the table is considered, but not as 6136 strong as in variant 1, where it is squared. */ 6137 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6138 max *= fact; 6139 # endif 6140 6141 /* Compare with current best results. */ 6142 if (max < best_chlen) 6143 { 6144 best_chlen = max; 6145 best_size = i; 6146 no_improvement_count = 0; 6147 } 6148 /* PR 11843: Avoid futile long searches for the best bucket size 6149 when there are a large number of symbols. */ 6150 else if (++no_improvement_count == 100) 6151 break; 6152 } 6153 6154 free (counts); 6155 } 6156 else 6157 #endif /* defined (BFD_HOST_U_64_BIT) */ 6158 { 6159 /* This is the fallback solution if no 64bit type is available or if we 6160 are not supposed to spend much time on optimizations. We select the 6161 bucket count using a fixed set of numbers. */ 6162 for (i = 0; elf_buckets[i] != 0; i++) 6163 { 6164 best_size = elf_buckets[i]; 6165 if (nsyms < elf_buckets[i + 1]) 6166 break; 6167 } 6168 if (gnu_hash && best_size < 2) 6169 best_size = 2; 6170 } 6171 6172 return best_size; 6173 } 6174 6175 /* Size any SHT_GROUP section for ld -r. */ 6176 6177 bfd_boolean 6178 _bfd_elf_size_group_sections (struct bfd_link_info *info) 6179 { 6180 bfd *ibfd; 6181 asection *s; 6182 6183 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 6184 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour 6185 && (s = ibfd->sections) != NULL 6186 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS 6187 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) 6188 return FALSE; 6189 return TRUE; 6190 } 6191 6192 /* Set a default stack segment size. The value in INFO wins. If it 6193 is unset, LEGACY_SYMBOL's value is used, and if that symbol is 6194 undefined it is initialized. */ 6195 6196 bfd_boolean 6197 bfd_elf_stack_segment_size (bfd *output_bfd, 6198 struct bfd_link_info *info, 6199 const char *legacy_symbol, 6200 bfd_vma default_size) 6201 { 6202 struct elf_link_hash_entry *h = NULL; 6203 6204 /* Look for legacy symbol. */ 6205 if (legacy_symbol) 6206 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, 6207 FALSE, FALSE, FALSE); 6208 if (h && (h->root.type == bfd_link_hash_defined 6209 || h->root.type == bfd_link_hash_defweak) 6210 && h->def_regular 6211 && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) 6212 { 6213 /* The symbol has no type if specified on the command line. */ 6214 h->type = STT_OBJECT; 6215 if (info->stacksize) 6216 /* xgettext:c-format */ 6217 _bfd_error_handler (_("%pB: stack size specified and %s set"), 6218 output_bfd, legacy_symbol); 6219 else if (h->root.u.def.section != bfd_abs_section_ptr) 6220 /* xgettext:c-format */ 6221 _bfd_error_handler (_("%pB: %s not absolute"), 6222 output_bfd, legacy_symbol); 6223 else 6224 info->stacksize = h->root.u.def.value; 6225 } 6226 6227 if (!info->stacksize) 6228 /* If the user didn't set a size, or explicitly inhibit the 6229 size, set it now. */ 6230 info->stacksize = default_size; 6231 6232 /* Provide the legacy symbol, if it is referenced. */ 6233 if (h && (h->root.type == bfd_link_hash_undefined 6234 || h->root.type == bfd_link_hash_undefweak)) 6235 { 6236 struct bfd_link_hash_entry *bh = NULL; 6237 6238 if (!(_bfd_generic_link_add_one_symbol 6239 (info, output_bfd, legacy_symbol, 6240 BSF_GLOBAL, bfd_abs_section_ptr, 6241 info->stacksize >= 0 ? info->stacksize : 0, 6242 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) 6243 return FALSE; 6244 6245 h = (struct elf_link_hash_entry *) bh; 6246 h->def_regular = 1; 6247 h->type = STT_OBJECT; 6248 } 6249 6250 return TRUE; 6251 } 6252 6253 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ 6254 6255 struct elf_gc_sweep_symbol_info 6256 { 6257 struct bfd_link_info *info; 6258 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, 6259 bfd_boolean); 6260 }; 6261 6262 static bfd_boolean 6263 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) 6264 { 6265 if (!h->mark 6266 && (((h->root.type == bfd_link_hash_defined 6267 || h->root.type == bfd_link_hash_defweak) 6268 && !((h->def_regular || ELF_COMMON_DEF_P (h)) 6269 && h->root.u.def.section->gc_mark)) 6270 || h->root.type == bfd_link_hash_undefined 6271 || h->root.type == bfd_link_hash_undefweak)) 6272 { 6273 struct elf_gc_sweep_symbol_info *inf; 6274 6275 inf = (struct elf_gc_sweep_symbol_info *) data; 6276 (*inf->hide_symbol) (inf->info, h, TRUE); 6277 h->def_regular = 0; 6278 h->ref_regular = 0; 6279 h->ref_regular_nonweak = 0; 6280 } 6281 6282 return TRUE; 6283 } 6284 6285 /* Set up the sizes and contents of the ELF dynamic sections. This is 6286 called by the ELF linker emulation before_allocation routine. We 6287 must set the sizes of the sections before the linker sets the 6288 addresses of the various sections. */ 6289 6290 bfd_boolean 6291 bfd_elf_size_dynamic_sections (bfd *output_bfd, 6292 const char *soname, 6293 const char *rpath, 6294 const char *filter_shlib, 6295 const char *audit, 6296 const char *depaudit, 6297 const char * const *auxiliary_filters, 6298 struct bfd_link_info *info, 6299 asection **sinterpptr) 6300 { 6301 bfd *dynobj; 6302 const struct elf_backend_data *bed; 6303 6304 *sinterpptr = NULL; 6305 6306 if (!is_elf_hash_table (info->hash)) 6307 return TRUE; 6308 6309 dynobj = elf_hash_table (info)->dynobj; 6310 6311 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6312 { 6313 struct bfd_elf_version_tree *verdefs; 6314 struct elf_info_failed asvinfo; 6315 struct bfd_elf_version_tree *t; 6316 struct bfd_elf_version_expr *d; 6317 asection *s; 6318 size_t soname_indx; 6319 6320 /* If we are supposed to export all symbols into the dynamic symbol 6321 table (this is not the normal case), then do so. */ 6322 if (info->export_dynamic 6323 || (bfd_link_executable (info) && info->dynamic)) 6324 { 6325 struct elf_info_failed eif; 6326 6327 eif.info = info; 6328 eif.failed = FALSE; 6329 elf_link_hash_traverse (elf_hash_table (info), 6330 _bfd_elf_export_symbol, 6331 &eif); 6332 if (eif.failed) 6333 return FALSE; 6334 } 6335 6336 if (soname != NULL) 6337 { 6338 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6339 soname, TRUE); 6340 if (soname_indx == (size_t) -1 6341 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) 6342 return FALSE; 6343 } 6344 else 6345 soname_indx = (size_t) -1; 6346 6347 /* Make all global versions with definition. */ 6348 for (t = info->version_info; t != NULL; t = t->next) 6349 for (d = t->globals.list; d != NULL; d = d->next) 6350 if (!d->symver && d->literal) 6351 { 6352 const char *verstr, *name; 6353 size_t namelen, verlen, newlen; 6354 char *newname, *p, leading_char; 6355 struct elf_link_hash_entry *newh; 6356 6357 leading_char = bfd_get_symbol_leading_char (output_bfd); 6358 name = d->pattern; 6359 namelen = strlen (name) + (leading_char != '\0'); 6360 verstr = t->name; 6361 verlen = strlen (verstr); 6362 newlen = namelen + verlen + 3; 6363 6364 newname = (char *) bfd_malloc (newlen); 6365 if (newname == NULL) 6366 return FALSE; 6367 newname[0] = leading_char; 6368 memcpy (newname + (leading_char != '\0'), name, namelen); 6369 6370 /* Check the hidden versioned definition. */ 6371 p = newname + namelen; 6372 *p++ = ELF_VER_CHR; 6373 memcpy (p, verstr, verlen + 1); 6374 newh = elf_link_hash_lookup (elf_hash_table (info), 6375 newname, FALSE, FALSE, 6376 FALSE); 6377 if (newh == NULL 6378 || (newh->root.type != bfd_link_hash_defined 6379 && newh->root.type != bfd_link_hash_defweak)) 6380 { 6381 /* Check the default versioned definition. */ 6382 *p++ = ELF_VER_CHR; 6383 memcpy (p, verstr, verlen + 1); 6384 newh = elf_link_hash_lookup (elf_hash_table (info), 6385 newname, FALSE, FALSE, 6386 FALSE); 6387 } 6388 free (newname); 6389 6390 /* Mark this version if there is a definition and it is 6391 not defined in a shared object. */ 6392 if (newh != NULL 6393 && !newh->def_dynamic 6394 && (newh->root.type == bfd_link_hash_defined 6395 || newh->root.type == bfd_link_hash_defweak)) 6396 d->symver = 1; 6397 } 6398 6399 /* Attach all the symbols to their version information. */ 6400 asvinfo.info = info; 6401 asvinfo.failed = FALSE; 6402 6403 elf_link_hash_traverse (elf_hash_table (info), 6404 _bfd_elf_link_assign_sym_version, 6405 &asvinfo); 6406 if (asvinfo.failed) 6407 return FALSE; 6408 6409 if (!info->allow_undefined_version) 6410 { 6411 /* Check if all global versions have a definition. */ 6412 bfd_boolean all_defined = TRUE; 6413 for (t = info->version_info; t != NULL; t = t->next) 6414 for (d = t->globals.list; d != NULL; d = d->next) 6415 if (d->literal && !d->symver && !d->script) 6416 { 6417 _bfd_error_handler 6418 (_("%s: undefined version: %s"), 6419 d->pattern, t->name); 6420 all_defined = FALSE; 6421 } 6422 6423 if (!all_defined) 6424 { 6425 bfd_set_error (bfd_error_bad_value); 6426 return FALSE; 6427 } 6428 } 6429 6430 /* Set up the version definition section. */ 6431 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 6432 BFD_ASSERT (s != NULL); 6433 6434 /* We may have created additional version definitions if we are 6435 just linking a regular application. */ 6436 verdefs = info->version_info; 6437 6438 /* Skip anonymous version tag. */ 6439 if (verdefs != NULL && verdefs->vernum == 0) 6440 verdefs = verdefs->next; 6441 6442 if (verdefs == NULL && !info->create_default_symver) 6443 s->flags |= SEC_EXCLUDE; 6444 else 6445 { 6446 unsigned int cdefs; 6447 bfd_size_type size; 6448 bfd_byte *p; 6449 Elf_Internal_Verdef def; 6450 Elf_Internal_Verdaux defaux; 6451 struct bfd_link_hash_entry *bh; 6452 struct elf_link_hash_entry *h; 6453 const char *name; 6454 6455 cdefs = 0; 6456 size = 0; 6457 6458 /* Make space for the base version. */ 6459 size += sizeof (Elf_External_Verdef); 6460 size += sizeof (Elf_External_Verdaux); 6461 ++cdefs; 6462 6463 /* Make space for the default version. */ 6464 if (info->create_default_symver) 6465 { 6466 size += sizeof (Elf_External_Verdef); 6467 ++cdefs; 6468 } 6469 6470 for (t = verdefs; t != NULL; t = t->next) 6471 { 6472 struct bfd_elf_version_deps *n; 6473 6474 /* Don't emit base version twice. */ 6475 if (t->vernum == 0) 6476 continue; 6477 6478 size += sizeof (Elf_External_Verdef); 6479 size += sizeof (Elf_External_Verdaux); 6480 ++cdefs; 6481 6482 for (n = t->deps; n != NULL; n = n->next) 6483 size += sizeof (Elf_External_Verdaux); 6484 } 6485 6486 s->size = size; 6487 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6488 if (s->contents == NULL && s->size != 0) 6489 return FALSE; 6490 6491 /* Fill in the version definition section. */ 6492 6493 p = s->contents; 6494 6495 def.vd_version = VER_DEF_CURRENT; 6496 def.vd_flags = VER_FLG_BASE; 6497 def.vd_ndx = 1; 6498 def.vd_cnt = 1; 6499 if (info->create_default_symver) 6500 { 6501 def.vd_aux = 2 * sizeof (Elf_External_Verdef); 6502 def.vd_next = sizeof (Elf_External_Verdef); 6503 } 6504 else 6505 { 6506 def.vd_aux = sizeof (Elf_External_Verdef); 6507 def.vd_next = (sizeof (Elf_External_Verdef) 6508 + sizeof (Elf_External_Verdaux)); 6509 } 6510 6511 if (soname_indx != (size_t) -1) 6512 { 6513 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6514 soname_indx); 6515 def.vd_hash = bfd_elf_hash (soname); 6516 defaux.vda_name = soname_indx; 6517 name = soname; 6518 } 6519 else 6520 { 6521 size_t indx; 6522 6523 name = lbasename (output_bfd->filename); 6524 def.vd_hash = bfd_elf_hash (name); 6525 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6526 name, FALSE); 6527 if (indx == (size_t) -1) 6528 return FALSE; 6529 defaux.vda_name = indx; 6530 } 6531 defaux.vda_next = 0; 6532 6533 _bfd_elf_swap_verdef_out (output_bfd, &def, 6534 (Elf_External_Verdef *) p); 6535 p += sizeof (Elf_External_Verdef); 6536 if (info->create_default_symver) 6537 { 6538 /* Add a symbol representing this version. */ 6539 bh = NULL; 6540 if (! (_bfd_generic_link_add_one_symbol 6541 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, 6542 0, NULL, FALSE, 6543 get_elf_backend_data (dynobj)->collect, &bh))) 6544 return FALSE; 6545 h = (struct elf_link_hash_entry *) bh; 6546 h->non_elf = 0; 6547 h->def_regular = 1; 6548 h->type = STT_OBJECT; 6549 h->verinfo.vertree = NULL; 6550 6551 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6552 return FALSE; 6553 6554 /* Create a duplicate of the base version with the same 6555 aux block, but different flags. */ 6556 def.vd_flags = 0; 6557 def.vd_ndx = 2; 6558 def.vd_aux = sizeof (Elf_External_Verdef); 6559 if (verdefs) 6560 def.vd_next = (sizeof (Elf_External_Verdef) 6561 + sizeof (Elf_External_Verdaux)); 6562 else 6563 def.vd_next = 0; 6564 _bfd_elf_swap_verdef_out (output_bfd, &def, 6565 (Elf_External_Verdef *) p); 6566 p += sizeof (Elf_External_Verdef); 6567 } 6568 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6569 (Elf_External_Verdaux *) p); 6570 p += sizeof (Elf_External_Verdaux); 6571 6572 for (t = verdefs; t != NULL; t = t->next) 6573 { 6574 unsigned int cdeps; 6575 struct bfd_elf_version_deps *n; 6576 6577 /* Don't emit the base version twice. */ 6578 if (t->vernum == 0) 6579 continue; 6580 6581 cdeps = 0; 6582 for (n = t->deps; n != NULL; n = n->next) 6583 ++cdeps; 6584 6585 /* Add a symbol representing this version. */ 6586 bh = NULL; 6587 if (! (_bfd_generic_link_add_one_symbol 6588 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, 6589 0, NULL, FALSE, 6590 get_elf_backend_data (dynobj)->collect, &bh))) 6591 return FALSE; 6592 h = (struct elf_link_hash_entry *) bh; 6593 h->non_elf = 0; 6594 h->def_regular = 1; 6595 h->type = STT_OBJECT; 6596 h->verinfo.vertree = t; 6597 6598 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6599 return FALSE; 6600 6601 def.vd_version = VER_DEF_CURRENT; 6602 def.vd_flags = 0; 6603 if (t->globals.list == NULL 6604 && t->locals.list == NULL 6605 && ! t->used) 6606 def.vd_flags |= VER_FLG_WEAK; 6607 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); 6608 def.vd_cnt = cdeps + 1; 6609 def.vd_hash = bfd_elf_hash (t->name); 6610 def.vd_aux = sizeof (Elf_External_Verdef); 6611 def.vd_next = 0; 6612 6613 /* If a basever node is next, it *must* be the last node in 6614 the chain, otherwise Verdef construction breaks. */ 6615 if (t->next != NULL && t->next->vernum == 0) 6616 BFD_ASSERT (t->next->next == NULL); 6617 6618 if (t->next != NULL && t->next->vernum != 0) 6619 def.vd_next = (sizeof (Elf_External_Verdef) 6620 + (cdeps + 1) * sizeof (Elf_External_Verdaux)); 6621 6622 _bfd_elf_swap_verdef_out (output_bfd, &def, 6623 (Elf_External_Verdef *) p); 6624 p += sizeof (Elf_External_Verdef); 6625 6626 defaux.vda_name = h->dynstr_index; 6627 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6628 h->dynstr_index); 6629 defaux.vda_next = 0; 6630 if (t->deps != NULL) 6631 defaux.vda_next = sizeof (Elf_External_Verdaux); 6632 t->name_indx = defaux.vda_name; 6633 6634 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6635 (Elf_External_Verdaux *) p); 6636 p += sizeof (Elf_External_Verdaux); 6637 6638 for (n = t->deps; n != NULL; n = n->next) 6639 { 6640 if (n->version_needed == NULL) 6641 { 6642 /* This can happen if there was an error in the 6643 version script. */ 6644 defaux.vda_name = 0; 6645 } 6646 else 6647 { 6648 defaux.vda_name = n->version_needed->name_indx; 6649 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6650 defaux.vda_name); 6651 } 6652 if (n->next == NULL) 6653 defaux.vda_next = 0; 6654 else 6655 defaux.vda_next = sizeof (Elf_External_Verdaux); 6656 6657 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6658 (Elf_External_Verdaux *) p); 6659 p += sizeof (Elf_External_Verdaux); 6660 } 6661 } 6662 6663 elf_tdata (output_bfd)->cverdefs = cdefs; 6664 } 6665 } 6666 6667 bed = get_elf_backend_data (output_bfd); 6668 6669 if (info->gc_sections && bed->can_gc_sections) 6670 { 6671 struct elf_gc_sweep_symbol_info sweep_info; 6672 6673 /* Remove the symbols that were in the swept sections from the 6674 dynamic symbol table. */ 6675 sweep_info.info = info; 6676 sweep_info.hide_symbol = bed->elf_backend_hide_symbol; 6677 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, 6678 &sweep_info); 6679 } 6680 6681 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6682 { 6683 asection *s; 6684 struct elf_find_verdep_info sinfo; 6685 6686 /* Work out the size of the version reference section. */ 6687 6688 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 6689 BFD_ASSERT (s != NULL); 6690 6691 sinfo.info = info; 6692 sinfo.vers = elf_tdata (output_bfd)->cverdefs; 6693 if (sinfo.vers == 0) 6694 sinfo.vers = 1; 6695 sinfo.failed = FALSE; 6696 6697 elf_link_hash_traverse (elf_hash_table (info), 6698 _bfd_elf_link_find_version_dependencies, 6699 &sinfo); 6700 if (sinfo.failed) 6701 return FALSE; 6702 6703 if (elf_tdata (output_bfd)->verref == NULL) 6704 s->flags |= SEC_EXCLUDE; 6705 else 6706 { 6707 Elf_Internal_Verneed *vn; 6708 unsigned int size; 6709 unsigned int crefs; 6710 bfd_byte *p; 6711 6712 /* Build the version dependency section. */ 6713 size = 0; 6714 crefs = 0; 6715 for (vn = elf_tdata (output_bfd)->verref; 6716 vn != NULL; 6717 vn = vn->vn_nextref) 6718 { 6719 Elf_Internal_Vernaux *a; 6720 6721 size += sizeof (Elf_External_Verneed); 6722 ++crefs; 6723 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6724 size += sizeof (Elf_External_Vernaux); 6725 } 6726 6727 s->size = size; 6728 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6729 if (s->contents == NULL) 6730 return FALSE; 6731 6732 p = s->contents; 6733 for (vn = elf_tdata (output_bfd)->verref; 6734 vn != NULL; 6735 vn = vn->vn_nextref) 6736 { 6737 unsigned int caux; 6738 Elf_Internal_Vernaux *a; 6739 size_t indx; 6740 6741 caux = 0; 6742 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6743 ++caux; 6744 6745 vn->vn_version = VER_NEED_CURRENT; 6746 vn->vn_cnt = caux; 6747 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6748 elf_dt_name (vn->vn_bfd) != NULL 6749 ? elf_dt_name (vn->vn_bfd) 6750 : lbasename (vn->vn_bfd->filename), 6751 FALSE); 6752 if (indx == (size_t) -1) 6753 return FALSE; 6754 vn->vn_file = indx; 6755 vn->vn_aux = sizeof (Elf_External_Verneed); 6756 if (vn->vn_nextref == NULL) 6757 vn->vn_next = 0; 6758 else 6759 vn->vn_next = (sizeof (Elf_External_Verneed) 6760 + caux * sizeof (Elf_External_Vernaux)); 6761 6762 _bfd_elf_swap_verneed_out (output_bfd, vn, 6763 (Elf_External_Verneed *) p); 6764 p += sizeof (Elf_External_Verneed); 6765 6766 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6767 { 6768 a->vna_hash = bfd_elf_hash (a->vna_nodename); 6769 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6770 a->vna_nodename, FALSE); 6771 if (indx == (size_t) -1) 6772 return FALSE; 6773 a->vna_name = indx; 6774 if (a->vna_nextptr == NULL) 6775 a->vna_next = 0; 6776 else 6777 a->vna_next = sizeof (Elf_External_Vernaux); 6778 6779 _bfd_elf_swap_vernaux_out (output_bfd, a, 6780 (Elf_External_Vernaux *) p); 6781 p += sizeof (Elf_External_Vernaux); 6782 } 6783 } 6784 6785 elf_tdata (output_bfd)->cverrefs = crefs; 6786 } 6787 } 6788 6789 /* Any syms created from now on start with -1 in 6790 got.refcount/offset and plt.refcount/offset. */ 6791 elf_hash_table (info)->init_got_refcount 6792 = elf_hash_table (info)->init_got_offset; 6793 elf_hash_table (info)->init_plt_refcount 6794 = elf_hash_table (info)->init_plt_offset; 6795 6796 if (bfd_link_relocatable (info) 6797 && !_bfd_elf_size_group_sections (info)) 6798 return FALSE; 6799 6800 /* The backend may have to create some sections regardless of whether 6801 we're dynamic or not. */ 6802 if (bed->elf_backend_always_size_sections 6803 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) 6804 return FALSE; 6805 6806 /* Determine any GNU_STACK segment requirements, after the backend 6807 has had a chance to set a default segment size. */ 6808 if (info->execstack) 6809 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; 6810 else if (info->noexecstack) 6811 elf_stack_flags (output_bfd) = PF_R | PF_W; 6812 else 6813 { 6814 bfd *inputobj; 6815 asection *notesec = NULL; 6816 int exec = 0; 6817 6818 for (inputobj = info->input_bfds; 6819 inputobj; 6820 inputobj = inputobj->link.next) 6821 { 6822 asection *s; 6823 6824 if (inputobj->flags 6825 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) 6826 continue; 6827 s = inputobj->sections; 6828 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 6829 continue; 6830 6831 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); 6832 if (s) 6833 { 6834 if (s->flags & SEC_CODE) 6835 exec = PF_X; 6836 notesec = s; 6837 } 6838 else if (bed->default_execstack) 6839 exec = PF_X; 6840 } 6841 if (notesec || info->stacksize > 0) 6842 elf_stack_flags (output_bfd) = PF_R | PF_W | exec; 6843 if (notesec && exec && bfd_link_relocatable (info) 6844 && notesec->output_section != bfd_abs_section_ptr) 6845 notesec->output_section->flags |= SEC_CODE; 6846 } 6847 6848 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6849 { 6850 struct elf_info_failed eif; 6851 struct elf_link_hash_entry *h; 6852 asection *dynstr; 6853 asection *s; 6854 6855 *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); 6856 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); 6857 6858 if (info->symbolic) 6859 { 6860 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) 6861 return FALSE; 6862 info->flags |= DF_SYMBOLIC; 6863 } 6864 6865 if (rpath != NULL) 6866 { 6867 size_t indx; 6868 bfd_vma tag; 6869 6870 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, 6871 TRUE); 6872 if (indx == (size_t) -1) 6873 return FALSE; 6874 6875 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; 6876 if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) 6877 return FALSE; 6878 } 6879 6880 if (filter_shlib != NULL) 6881 { 6882 size_t indx; 6883 6884 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6885 filter_shlib, TRUE); 6886 if (indx == (size_t) -1 6887 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) 6888 return FALSE; 6889 } 6890 6891 if (auxiliary_filters != NULL) 6892 { 6893 const char * const *p; 6894 6895 for (p = auxiliary_filters; *p != NULL; p++) 6896 { 6897 size_t indx; 6898 6899 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6900 *p, TRUE); 6901 if (indx == (size_t) -1 6902 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) 6903 return FALSE; 6904 } 6905 } 6906 6907 if (audit != NULL) 6908 { 6909 size_t indx; 6910 6911 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, 6912 TRUE); 6913 if (indx == (size_t) -1 6914 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) 6915 return FALSE; 6916 } 6917 6918 if (depaudit != NULL) 6919 { 6920 size_t indx; 6921 6922 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, 6923 TRUE); 6924 if (indx == (size_t) -1 6925 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) 6926 return FALSE; 6927 } 6928 6929 eif.info = info; 6930 eif.failed = FALSE; 6931 6932 /* Find all symbols which were defined in a dynamic object and make 6933 the backend pick a reasonable value for them. */ 6934 elf_link_hash_traverse (elf_hash_table (info), 6935 _bfd_elf_adjust_dynamic_symbol, 6936 &eif); 6937 if (eif.failed) 6938 return FALSE; 6939 6940 /* Add some entries to the .dynamic section. We fill in some of the 6941 values later, in bfd_elf_final_link, but we must add the entries 6942 now so that we know the final size of the .dynamic section. */ 6943 6944 /* If there are initialization and/or finalization functions to 6945 call then add the corresponding DT_INIT/DT_FINI entries. */ 6946 h = (info->init_function 6947 ? elf_link_hash_lookup (elf_hash_table (info), 6948 info->init_function, FALSE, 6949 FALSE, FALSE) 6950 : NULL); 6951 if (h != NULL 6952 && (h->ref_regular 6953 || h->def_regular)) 6954 { 6955 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) 6956 return FALSE; 6957 } 6958 h = (info->fini_function 6959 ? elf_link_hash_lookup (elf_hash_table (info), 6960 info->fini_function, FALSE, 6961 FALSE, FALSE) 6962 : NULL); 6963 if (h != NULL 6964 && (h->ref_regular 6965 || h->def_regular)) 6966 { 6967 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) 6968 return FALSE; 6969 } 6970 6971 s = bfd_get_section_by_name (output_bfd, ".preinit_array"); 6972 if (s != NULL && s->linker_has_input) 6973 { 6974 /* DT_PREINIT_ARRAY is not allowed in shared library. */ 6975 if (! bfd_link_executable (info)) 6976 { 6977 bfd *sub; 6978 asection *o; 6979 6980 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 6981 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 6982 && (o = sub->sections) != NULL 6983 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) 6984 for (o = sub->sections; o != NULL; o = o->next) 6985 if (elf_section_data (o)->this_hdr.sh_type 6986 == SHT_PREINIT_ARRAY) 6987 { 6988 _bfd_error_handler 6989 (_("%pB: .preinit_array section is not allowed in DSO"), 6990 sub); 6991 break; 6992 } 6993 6994 bfd_set_error (bfd_error_nonrepresentable_section); 6995 return FALSE; 6996 } 6997 6998 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) 6999 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) 7000 return FALSE; 7001 } 7002 s = bfd_get_section_by_name (output_bfd, ".init_array"); 7003 if (s != NULL && s->linker_has_input) 7004 { 7005 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) 7006 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) 7007 return FALSE; 7008 } 7009 s = bfd_get_section_by_name (output_bfd, ".fini_array"); 7010 if (s != NULL && s->linker_has_input) 7011 { 7012 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) 7013 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) 7014 return FALSE; 7015 } 7016 7017 dynstr = bfd_get_linker_section (dynobj, ".dynstr"); 7018 /* If .dynstr is excluded from the link, we don't want any of 7019 these tags. Strictly, we should be checking each section 7020 individually; This quick check covers for the case where 7021 someone does a /DISCARD/ : { *(*) }. */ 7022 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) 7023 { 7024 bfd_size_type strsize; 7025 7026 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7027 if ((info->emit_hash 7028 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) 7029 || (info->emit_gnu_hash 7030 && (bed->record_xhash_symbol == NULL 7031 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) 7032 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) 7033 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) 7034 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) 7035 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, 7036 bed->s->sizeof_sym)) 7037 return FALSE; 7038 } 7039 } 7040 7041 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) 7042 return FALSE; 7043 7044 /* The backend must work out the sizes of all the other dynamic 7045 sections. */ 7046 if (dynobj != NULL 7047 && bed->elf_backend_size_dynamic_sections != NULL 7048 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) 7049 return FALSE; 7050 7051 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 7052 { 7053 if (elf_tdata (output_bfd)->cverdefs) 7054 { 7055 unsigned int crefs = elf_tdata (output_bfd)->cverdefs; 7056 7057 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) 7058 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) 7059 return FALSE; 7060 } 7061 7062 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) 7063 { 7064 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) 7065 return FALSE; 7066 } 7067 else if (info->flags & DF_BIND_NOW) 7068 { 7069 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) 7070 return FALSE; 7071 } 7072 7073 if (info->flags_1) 7074 { 7075 if (bfd_link_executable (info)) 7076 info->flags_1 &= ~ (DF_1_INITFIRST 7077 | DF_1_NODELETE 7078 | DF_1_NOOPEN); 7079 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) 7080 return FALSE; 7081 } 7082 7083 if (elf_tdata (output_bfd)->cverrefs) 7084 { 7085 unsigned int crefs = elf_tdata (output_bfd)->cverrefs; 7086 7087 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) 7088 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) 7089 return FALSE; 7090 } 7091 7092 if ((elf_tdata (output_bfd)->cverrefs == 0 7093 && elf_tdata (output_bfd)->cverdefs == 0) 7094 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) 7095 { 7096 asection *s; 7097 7098 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7099 s->flags |= SEC_EXCLUDE; 7100 } 7101 } 7102 return TRUE; 7103 } 7104 7105 /* Find the first non-excluded output section. We'll use its 7106 section symbol for some emitted relocs. */ 7107 void 7108 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) 7109 { 7110 asection *s; 7111 asection *found = NULL; 7112 7113 for (s = output_bfd->sections; s != NULL; s = s->next) 7114 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7115 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7116 { 7117 found = s; 7118 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7119 break; 7120 } 7121 elf_hash_table (info)->text_index_section = found; 7122 } 7123 7124 /* Find two non-excluded output sections, one for code, one for data. 7125 We'll use their section symbols for some emitted relocs. */ 7126 void 7127 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) 7128 { 7129 asection *s; 7130 asection *found = NULL; 7131 7132 /* Data first, since setting text_index_section changes 7133 _bfd_elf_omit_section_dynsym_default. */ 7134 for (s = output_bfd->sections; s != NULL; s = s->next) 7135 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7136 && !(s->flags & SEC_READONLY) 7137 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7138 { 7139 found = s; 7140 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7141 break; 7142 } 7143 elf_hash_table (info)->data_index_section = found; 7144 7145 for (s = output_bfd->sections; s != NULL; s = s->next) 7146 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7147 && (s->flags & SEC_READONLY) 7148 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7149 { 7150 found = s; 7151 break; 7152 } 7153 elf_hash_table (info)->text_index_section = found; 7154 } 7155 7156 #define GNU_HASH_SECTION_NAME(bed) \ 7157 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" 7158 7159 bfd_boolean 7160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) 7161 { 7162 const struct elf_backend_data *bed; 7163 unsigned long section_sym_count; 7164 bfd_size_type dynsymcount = 0; 7165 7166 if (!is_elf_hash_table (info->hash)) 7167 return TRUE; 7168 7169 bed = get_elf_backend_data (output_bfd); 7170 (*bed->elf_backend_init_index_section) (output_bfd, info); 7171 7172 /* Assign dynsym indices. In a shared library we generate a section 7173 symbol for each output section, which come first. Next come all 7174 of the back-end allocated local dynamic syms, followed by the rest 7175 of the global symbols. 7176 7177 This is usually not needed for static binaries, however backends 7178 can request to always do it, e.g. the MIPS backend uses dynamic 7179 symbol counts to lay out GOT, which will be produced in the 7180 presence of GOT relocations even in static binaries (holding fixed 7181 data in that case, to satisfy those relocations). */ 7182 7183 if (elf_hash_table (info)->dynamic_sections_created 7184 || bed->always_renumber_dynsyms) 7185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, 7186 §ion_sym_count); 7187 7188 if (elf_hash_table (info)->dynamic_sections_created) 7189 { 7190 bfd *dynobj; 7191 asection *s; 7192 unsigned int dtagcount; 7193 7194 dynobj = elf_hash_table (info)->dynobj; 7195 7196 /* Work out the size of the symbol version section. */ 7197 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7198 BFD_ASSERT (s != NULL); 7199 if ((s->flags & SEC_EXCLUDE) == 0) 7200 { 7201 s->size = dynsymcount * sizeof (Elf_External_Versym); 7202 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7203 if (s->contents == NULL) 7204 return FALSE; 7205 7206 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) 7207 return FALSE; 7208 } 7209 7210 /* Set the size of the .dynsym and .hash sections. We counted 7211 the number of dynamic symbols in elf_link_add_object_symbols. 7212 We will build the contents of .dynsym and .hash when we build 7213 the final symbol table, because until then we do not know the 7214 correct value to give the symbols. We built the .dynstr 7215 section as we went along in elf_link_add_object_symbols. */ 7216 s = elf_hash_table (info)->dynsym; 7217 BFD_ASSERT (s != NULL); 7218 s->size = dynsymcount * bed->s->sizeof_sym; 7219 7220 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 7221 if (s->contents == NULL) 7222 return FALSE; 7223 7224 /* The first entry in .dynsym is a dummy symbol. Clear all the 7225 section syms, in case we don't output them all. */ 7226 ++section_sym_count; 7227 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); 7228 7229 elf_hash_table (info)->bucketcount = 0; 7230 7231 /* Compute the size of the hashing table. As a side effect this 7232 computes the hash values for all the names we export. */ 7233 if (info->emit_hash) 7234 { 7235 unsigned long int *hashcodes; 7236 struct hash_codes_info hashinf; 7237 bfd_size_type amt; 7238 unsigned long int nsyms; 7239 size_t bucketcount; 7240 size_t hash_entry_size; 7241 7242 /* Compute the hash values for all exported symbols. At the same 7243 time store the values in an array so that we could use them for 7244 optimizations. */ 7245 amt = dynsymcount * sizeof (unsigned long int); 7246 hashcodes = (unsigned long int *) bfd_malloc (amt); 7247 if (hashcodes == NULL) 7248 return FALSE; 7249 hashinf.hashcodes = hashcodes; 7250 hashinf.error = FALSE; 7251 7252 /* Put all hash values in HASHCODES. */ 7253 elf_link_hash_traverse (elf_hash_table (info), 7254 elf_collect_hash_codes, &hashinf); 7255 if (hashinf.error) 7256 { 7257 free (hashcodes); 7258 return FALSE; 7259 } 7260 7261 nsyms = hashinf.hashcodes - hashcodes; 7262 bucketcount 7263 = compute_bucket_count (info, hashcodes, nsyms, 0); 7264 free (hashcodes); 7265 7266 if (bucketcount == 0 && nsyms > 0) 7267 return FALSE; 7268 7269 elf_hash_table (info)->bucketcount = bucketcount; 7270 7271 s = bfd_get_linker_section (dynobj, ".hash"); 7272 BFD_ASSERT (s != NULL); 7273 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; 7274 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); 7275 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7276 if (s->contents == NULL) 7277 return FALSE; 7278 7279 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); 7280 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, 7281 s->contents + hash_entry_size); 7282 } 7283 7284 if (info->emit_gnu_hash) 7285 { 7286 size_t i, cnt; 7287 unsigned char *contents; 7288 struct collect_gnu_hash_codes cinfo; 7289 bfd_size_type amt; 7290 size_t bucketcount; 7291 7292 memset (&cinfo, 0, sizeof (cinfo)); 7293 7294 /* Compute the hash values for all exported symbols. At the same 7295 time store the values in an array so that we could use them for 7296 optimizations. */ 7297 amt = dynsymcount * 2 * sizeof (unsigned long int); 7298 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); 7299 if (cinfo.hashcodes == NULL) 7300 return FALSE; 7301 7302 cinfo.hashval = cinfo.hashcodes + dynsymcount; 7303 cinfo.min_dynindx = -1; 7304 cinfo.output_bfd = output_bfd; 7305 cinfo.bed = bed; 7306 7307 /* Put all hash values in HASHCODES. */ 7308 elf_link_hash_traverse (elf_hash_table (info), 7309 elf_collect_gnu_hash_codes, &cinfo); 7310 if (cinfo.error) 7311 { 7312 free (cinfo.hashcodes); 7313 return FALSE; 7314 } 7315 7316 bucketcount 7317 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); 7318 7319 if (bucketcount == 0) 7320 { 7321 free (cinfo.hashcodes); 7322 return FALSE; 7323 } 7324 7325 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); 7326 BFD_ASSERT (s != NULL); 7327 7328 if (cinfo.nsyms == 0) 7329 { 7330 /* Empty .gnu.hash or .MIPS.xhash section is special. */ 7331 BFD_ASSERT (cinfo.min_dynindx == -1); 7332 free (cinfo.hashcodes); 7333 s->size = 5 * 4 + bed->s->arch_size / 8; 7334 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7335 if (contents == NULL) 7336 return FALSE; 7337 s->contents = contents; 7338 /* 1 empty bucket. */ 7339 bfd_put_32 (output_bfd, 1, contents); 7340 /* SYMIDX above the special symbol 0. */ 7341 bfd_put_32 (output_bfd, 1, contents + 4); 7342 /* Just one word for bitmask. */ 7343 bfd_put_32 (output_bfd, 1, contents + 8); 7344 /* Only hash fn bloom filter. */ 7345 bfd_put_32 (output_bfd, 0, contents + 12); 7346 /* No hashes are valid - empty bitmask. */ 7347 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); 7348 /* No hashes in the only bucket. */ 7349 bfd_put_32 (output_bfd, 0, 7350 contents + 16 + bed->s->arch_size / 8); 7351 } 7352 else 7353 { 7354 unsigned long int maskwords, maskbitslog2, x; 7355 BFD_ASSERT (cinfo.min_dynindx != -1); 7356 7357 x = cinfo.nsyms; 7358 maskbitslog2 = 1; 7359 while ((x >>= 1) != 0) 7360 ++maskbitslog2; 7361 if (maskbitslog2 < 3) 7362 maskbitslog2 = 5; 7363 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) 7364 maskbitslog2 = maskbitslog2 + 3; 7365 else 7366 maskbitslog2 = maskbitslog2 + 2; 7367 if (bed->s->arch_size == 64) 7368 { 7369 if (maskbitslog2 == 5) 7370 maskbitslog2 = 6; 7371 cinfo.shift1 = 6; 7372 } 7373 else 7374 cinfo.shift1 = 5; 7375 cinfo.mask = (1 << cinfo.shift1) - 1; 7376 cinfo.shift2 = maskbitslog2; 7377 cinfo.maskbits = 1 << maskbitslog2; 7378 maskwords = 1 << (maskbitslog2 - cinfo.shift1); 7379 amt = bucketcount * sizeof (unsigned long int) * 2; 7380 amt += maskwords * sizeof (bfd_vma); 7381 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); 7382 if (cinfo.bitmask == NULL) 7383 { 7384 free (cinfo.hashcodes); 7385 return FALSE; 7386 } 7387 7388 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); 7389 cinfo.indx = cinfo.counts + bucketcount; 7390 cinfo.symindx = dynsymcount - cinfo.nsyms; 7391 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); 7392 7393 /* Determine how often each hash bucket is used. */ 7394 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); 7395 for (i = 0; i < cinfo.nsyms; ++i) 7396 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; 7397 7398 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) 7399 if (cinfo.counts[i] != 0) 7400 { 7401 cinfo.indx[i] = cnt; 7402 cnt += cinfo.counts[i]; 7403 } 7404 BFD_ASSERT (cnt == dynsymcount); 7405 cinfo.bucketcount = bucketcount; 7406 cinfo.local_indx = cinfo.min_dynindx; 7407 7408 s->size = (4 + bucketcount + cinfo.nsyms) * 4; 7409 s->size += cinfo.maskbits / 8; 7410 if (bed->record_xhash_symbol != NULL) 7411 s->size += cinfo.nsyms * 4; 7412 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7413 if (contents == NULL) 7414 { 7415 free (cinfo.bitmask); 7416 free (cinfo.hashcodes); 7417 return FALSE; 7418 } 7419 7420 s->contents = contents; 7421 bfd_put_32 (output_bfd, bucketcount, contents); 7422 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); 7423 bfd_put_32 (output_bfd, maskwords, contents + 8); 7424 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); 7425 contents += 16 + cinfo.maskbits / 8; 7426 7427 for (i = 0; i < bucketcount; ++i) 7428 { 7429 if (cinfo.counts[i] == 0) 7430 bfd_put_32 (output_bfd, 0, contents); 7431 else 7432 bfd_put_32 (output_bfd, cinfo.indx[i], contents); 7433 contents += 4; 7434 } 7435 7436 cinfo.contents = contents; 7437 7438 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; 7439 /* Renumber dynamic symbols, if populating .gnu.hash section. 7440 If using .MIPS.xhash, populate the translation table. */ 7441 elf_link_hash_traverse (elf_hash_table (info), 7442 elf_gnu_hash_process_symidx, &cinfo); 7443 7444 contents = s->contents + 16; 7445 for (i = 0; i < maskwords; ++i) 7446 { 7447 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], 7448 contents); 7449 contents += bed->s->arch_size / 8; 7450 } 7451 7452 free (cinfo.bitmask); 7453 free (cinfo.hashcodes); 7454 } 7455 } 7456 7457 s = bfd_get_linker_section (dynobj, ".dynstr"); 7458 BFD_ASSERT (s != NULL); 7459 7460 elf_finalize_dynstr (output_bfd, info); 7461 7462 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7463 7464 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) 7465 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) 7466 return FALSE; 7467 } 7468 7469 return TRUE; 7470 } 7471 7472 /* Make sure sec_info_type is cleared if sec_info is cleared too. */ 7473 7474 static void 7475 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, 7476 asection *sec) 7477 { 7478 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); 7479 sec->sec_info_type = SEC_INFO_TYPE_NONE; 7480 } 7481 7482 /* Finish SHF_MERGE section merging. */ 7483 7484 bfd_boolean 7485 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) 7486 { 7487 bfd *ibfd; 7488 asection *sec; 7489 7490 if (!is_elf_hash_table (info->hash)) 7491 return FALSE; 7492 7493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 7494 if ((ibfd->flags & DYNAMIC) == 0 7495 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 7496 && (elf_elfheader (ibfd)->e_ident[EI_CLASS] 7497 == get_elf_backend_data (obfd)->s->elfclass)) 7498 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 7499 if ((sec->flags & SEC_MERGE) != 0 7500 && !bfd_is_abs_section (sec->output_section)) 7501 { 7502 struct bfd_elf_section_data *secdata; 7503 7504 secdata = elf_section_data (sec); 7505 if (! _bfd_add_merge_section (obfd, 7506 &elf_hash_table (info)->merge_info, 7507 sec, &secdata->sec_info)) 7508 return FALSE; 7509 else if (secdata->sec_info) 7510 sec->sec_info_type = SEC_INFO_TYPE_MERGE; 7511 } 7512 7513 if (elf_hash_table (info)->merge_info != NULL) 7514 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, 7515 merge_sections_remove_hook); 7516 return TRUE; 7517 } 7518 7519 /* Create an entry in an ELF linker hash table. */ 7520 7521 struct bfd_hash_entry * 7522 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 7523 struct bfd_hash_table *table, 7524 const char *string) 7525 { 7526 /* Allocate the structure if it has not already been allocated by a 7527 subclass. */ 7528 if (entry == NULL) 7529 { 7530 entry = (struct bfd_hash_entry *) 7531 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); 7532 if (entry == NULL) 7533 return entry; 7534 } 7535 7536 /* Call the allocation method of the superclass. */ 7537 entry = _bfd_link_hash_newfunc (entry, table, string); 7538 if (entry != NULL) 7539 { 7540 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; 7541 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; 7542 7543 /* Set local fields. */ 7544 ret->indx = -1; 7545 ret->dynindx = -1; 7546 ret->got = htab->init_got_refcount; 7547 ret->plt = htab->init_plt_refcount; 7548 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) 7549 - offsetof (struct elf_link_hash_entry, size))); 7550 /* Assume that we have been called by a non-ELF symbol reader. 7551 This flag is then reset by the code which reads an ELF input 7552 file. This ensures that a symbol created by a non-ELF symbol 7553 reader will have the flag set correctly. */ 7554 ret->non_elf = 1; 7555 } 7556 7557 return entry; 7558 } 7559 7560 /* Copy data from an indirect symbol to its direct symbol, hiding the 7561 old indirect symbol. Also used for copying flags to a weakdef. */ 7562 7563 void 7564 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, 7565 struct elf_link_hash_entry *dir, 7566 struct elf_link_hash_entry *ind) 7567 { 7568 struct elf_link_hash_table *htab; 7569 7570 /* Copy down any references that we may have already seen to the 7571 symbol which just became indirect. */ 7572 7573 if (dir->versioned != versioned_hidden) 7574 dir->ref_dynamic |= ind->ref_dynamic; 7575 dir->ref_regular |= ind->ref_regular; 7576 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 7577 dir->non_got_ref |= ind->non_got_ref; 7578 dir->needs_plt |= ind->needs_plt; 7579 dir->pointer_equality_needed |= ind->pointer_equality_needed; 7580 7581 if (ind->root.type != bfd_link_hash_indirect) 7582 return; 7583 7584 /* Copy over the global and procedure linkage table refcount entries. 7585 These may have been already set up by a check_relocs routine. */ 7586 htab = elf_hash_table (info); 7587 if (ind->got.refcount > htab->init_got_refcount.refcount) 7588 { 7589 if (dir->got.refcount < 0) 7590 dir->got.refcount = 0; 7591 dir->got.refcount += ind->got.refcount; 7592 ind->got.refcount = htab->init_got_refcount.refcount; 7593 } 7594 7595 if (ind->plt.refcount > htab->init_plt_refcount.refcount) 7596 { 7597 if (dir->plt.refcount < 0) 7598 dir->plt.refcount = 0; 7599 dir->plt.refcount += ind->plt.refcount; 7600 ind->plt.refcount = htab->init_plt_refcount.refcount; 7601 } 7602 7603 if (ind->dynindx != -1) 7604 { 7605 if (dir->dynindx != -1) 7606 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); 7607 dir->dynindx = ind->dynindx; 7608 dir->dynstr_index = ind->dynstr_index; 7609 ind->dynindx = -1; 7610 ind->dynstr_index = 0; 7611 } 7612 } 7613 7614 void 7615 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, 7616 struct elf_link_hash_entry *h, 7617 bfd_boolean force_local) 7618 { 7619 /* STT_GNU_IFUNC symbol must go through PLT. */ 7620 if (h->type != STT_GNU_IFUNC) 7621 { 7622 h->plt = elf_hash_table (info)->init_plt_offset; 7623 h->needs_plt = 0; 7624 } 7625 if (force_local) 7626 { 7627 h->forced_local = 1; 7628 if (h->dynindx != -1) 7629 { 7630 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 7631 h->dynstr_index); 7632 h->dynindx = -1; 7633 h->dynstr_index = 0; 7634 } 7635 } 7636 } 7637 7638 /* Hide a symbol. */ 7639 7640 void 7641 _bfd_elf_link_hide_symbol (bfd *output_bfd, 7642 struct bfd_link_info *info, 7643 struct bfd_link_hash_entry *h) 7644 { 7645 if (is_elf_hash_table (info->hash)) 7646 { 7647 const struct elf_backend_data *bed 7648 = get_elf_backend_data (output_bfd); 7649 struct elf_link_hash_entry *eh 7650 = (struct elf_link_hash_entry *) h; 7651 bed->elf_backend_hide_symbol (info, eh, TRUE); 7652 eh->def_dynamic = 0; 7653 eh->ref_dynamic = 0; 7654 eh->dynamic_def = 0; 7655 } 7656 } 7657 7658 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our 7659 caller. */ 7660 7661 bfd_boolean 7662 _bfd_elf_link_hash_table_init 7663 (struct elf_link_hash_table *table, 7664 bfd *abfd, 7665 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 7666 struct bfd_hash_table *, 7667 const char *), 7668 unsigned int entsize, 7669 enum elf_target_id target_id) 7670 { 7671 bfd_boolean ret; 7672 int can_refcount = get_elf_backend_data (abfd)->can_refcount; 7673 7674 table->init_got_refcount.refcount = can_refcount - 1; 7675 table->init_plt_refcount.refcount = can_refcount - 1; 7676 table->init_got_offset.offset = -(bfd_vma) 1; 7677 table->init_plt_offset.offset = -(bfd_vma) 1; 7678 /* The first dynamic symbol is a dummy. */ 7679 table->dynsymcount = 1; 7680 7681 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); 7682 7683 table->root.type = bfd_link_elf_hash_table; 7684 table->hash_table_id = target_id; 7685 7686 return ret; 7687 } 7688 7689 /* Create an ELF linker hash table. */ 7690 7691 struct bfd_link_hash_table * 7692 _bfd_elf_link_hash_table_create (bfd *abfd) 7693 { 7694 struct elf_link_hash_table *ret; 7695 bfd_size_type amt = sizeof (struct elf_link_hash_table); 7696 7697 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); 7698 if (ret == NULL) 7699 return NULL; 7700 7701 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, 7702 sizeof (struct elf_link_hash_entry), 7703 GENERIC_ELF_DATA)) 7704 { 7705 free (ret); 7706 return NULL; 7707 } 7708 ret->root.hash_table_free = _bfd_elf_link_hash_table_free; 7709 7710 return &ret->root; 7711 } 7712 7713 /* Destroy an ELF linker hash table. */ 7714 7715 void 7716 _bfd_elf_link_hash_table_free (bfd *obfd) 7717 { 7718 struct elf_link_hash_table *htab; 7719 7720 htab = (struct elf_link_hash_table *) obfd->link.hash; 7721 if (htab->dynstr != NULL) 7722 _bfd_elf_strtab_free (htab->dynstr); 7723 _bfd_merge_sections_free (htab->merge_info); 7724 _bfd_generic_link_hash_table_free (obfd); 7725 } 7726 7727 /* This is a hook for the ELF emulation code in the generic linker to 7728 tell the backend linker what file name to use for the DT_NEEDED 7729 entry for a dynamic object. */ 7730 7731 void 7732 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) 7733 { 7734 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7735 && bfd_get_format (abfd) == bfd_object) 7736 elf_dt_name (abfd) = name; 7737 } 7738 7739 int 7740 bfd_elf_get_dyn_lib_class (bfd *abfd) 7741 { 7742 int lib_class; 7743 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7744 && bfd_get_format (abfd) == bfd_object) 7745 lib_class = elf_dyn_lib_class (abfd); 7746 else 7747 lib_class = 0; 7748 return lib_class; 7749 } 7750 7751 void 7752 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) 7753 { 7754 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7755 && bfd_get_format (abfd) == bfd_object) 7756 elf_dyn_lib_class (abfd) = lib_class; 7757 } 7758 7759 /* Get the list of DT_NEEDED entries for a link. This is a hook for 7760 the linker ELF emulation code. */ 7761 7762 struct bfd_link_needed_list * 7763 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, 7764 struct bfd_link_info *info) 7765 { 7766 if (! is_elf_hash_table (info->hash)) 7767 return NULL; 7768 return elf_hash_table (info)->needed; 7769 } 7770 7771 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a 7772 hook for the linker ELF emulation code. */ 7773 7774 struct bfd_link_needed_list * 7775 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, 7776 struct bfd_link_info *info) 7777 { 7778 if (! is_elf_hash_table (info->hash)) 7779 return NULL; 7780 return elf_hash_table (info)->runpath; 7781 } 7782 7783 /* Get the name actually used for a dynamic object for a link. This 7784 is the SONAME entry if there is one. Otherwise, it is the string 7785 passed to bfd_elf_set_dt_needed_name, or it is the filename. */ 7786 7787 const char * 7788 bfd_elf_get_dt_soname (bfd *abfd) 7789 { 7790 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7791 && bfd_get_format (abfd) == bfd_object) 7792 return elf_dt_name (abfd); 7793 return NULL; 7794 } 7795 7796 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for 7797 the ELF linker emulation code. */ 7798 7799 bfd_boolean 7800 bfd_elf_get_bfd_needed_list (bfd *abfd, 7801 struct bfd_link_needed_list **pneeded) 7802 { 7803 asection *s; 7804 bfd_byte *dynbuf = NULL; 7805 unsigned int elfsec; 7806 unsigned long shlink; 7807 bfd_byte *extdyn, *extdynend; 7808 size_t extdynsize; 7809 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 7810 7811 *pneeded = NULL; 7812 7813 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour 7814 || bfd_get_format (abfd) != bfd_object) 7815 return TRUE; 7816 7817 s = bfd_get_section_by_name (abfd, ".dynamic"); 7818 if (s == NULL || s->size == 0) 7819 return TRUE; 7820 7821 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 7822 goto error_return; 7823 7824 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 7825 if (elfsec == SHN_BAD) 7826 goto error_return; 7827 7828 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 7829 7830 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 7831 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 7832 7833 extdyn = dynbuf; 7834 extdynend = extdyn + s->size; 7835 for (; extdyn < extdynend; extdyn += extdynsize) 7836 { 7837 Elf_Internal_Dyn dyn; 7838 7839 (*swap_dyn_in) (abfd, extdyn, &dyn); 7840 7841 if (dyn.d_tag == DT_NULL) 7842 break; 7843 7844 if (dyn.d_tag == DT_NEEDED) 7845 { 7846 const char *string; 7847 struct bfd_link_needed_list *l; 7848 unsigned int tagv = dyn.d_un.d_val; 7849 bfd_size_type amt; 7850 7851 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 7852 if (string == NULL) 7853 goto error_return; 7854 7855 amt = sizeof *l; 7856 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 7857 if (l == NULL) 7858 goto error_return; 7859 7860 l->by = abfd; 7861 l->name = string; 7862 l->next = *pneeded; 7863 *pneeded = l; 7864 } 7865 } 7866 7867 free (dynbuf); 7868 7869 return TRUE; 7870 7871 error_return: 7872 if (dynbuf != NULL) 7873 free (dynbuf); 7874 return FALSE; 7875 } 7876 7877 struct elf_symbuf_symbol 7878 { 7879 unsigned long st_name; /* Symbol name, index in string tbl */ 7880 unsigned char st_info; /* Type and binding attributes */ 7881 unsigned char st_other; /* Visibilty, and target specific */ 7882 }; 7883 7884 struct elf_symbuf_head 7885 { 7886 struct elf_symbuf_symbol *ssym; 7887 size_t count; 7888 unsigned int st_shndx; 7889 }; 7890 7891 struct elf_symbol 7892 { 7893 union 7894 { 7895 Elf_Internal_Sym *isym; 7896 struct elf_symbuf_symbol *ssym; 7897 void *p; 7898 } u; 7899 const char *name; 7900 }; 7901 7902 /* Sort references to symbols by ascending section number. */ 7903 7904 static int 7905 elf_sort_elf_symbol (const void *arg1, const void *arg2) 7906 { 7907 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; 7908 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; 7909 7910 if (s1->st_shndx != s2->st_shndx) 7911 return s1->st_shndx > s2->st_shndx ? 1 : -1; 7912 /* Final sort by the address of the sym in the symbuf ensures 7913 a stable sort. */ 7914 if (s1 != s2) 7915 return s1 > s2 ? 1 : -1; 7916 return 0; 7917 } 7918 7919 static int 7920 elf_sym_name_compare (const void *arg1, const void *arg2) 7921 { 7922 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; 7923 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; 7924 int ret = strcmp (s1->name, s2->name); 7925 if (ret != 0) 7926 return ret; 7927 if (s1->u.p != s2->u.p) 7928 return s1->u.p > s2->u.p ? 1 : -1; 7929 return 0; 7930 } 7931 7932 static struct elf_symbuf_head * 7933 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) 7934 { 7935 Elf_Internal_Sym **ind, **indbufend, **indbuf; 7936 struct elf_symbuf_symbol *ssym; 7937 struct elf_symbuf_head *ssymbuf, *ssymhead; 7938 size_t i, shndx_count, total_size; 7939 7940 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf)); 7941 if (indbuf == NULL) 7942 return NULL; 7943 7944 for (ind = indbuf, i = 0; i < symcount; i++) 7945 if (isymbuf[i].st_shndx != SHN_UNDEF) 7946 *ind++ = &isymbuf[i]; 7947 indbufend = ind; 7948 7949 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), 7950 elf_sort_elf_symbol); 7951 7952 shndx_count = 0; 7953 if (indbufend > indbuf) 7954 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) 7955 if (ind[0]->st_shndx != ind[1]->st_shndx) 7956 shndx_count++; 7957 7958 total_size = ((shndx_count + 1) * sizeof (*ssymbuf) 7959 + (indbufend - indbuf) * sizeof (*ssym)); 7960 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); 7961 if (ssymbuf == NULL) 7962 { 7963 free (indbuf); 7964 return NULL; 7965 } 7966 7967 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); 7968 ssymbuf->ssym = NULL; 7969 ssymbuf->count = shndx_count; 7970 ssymbuf->st_shndx = 0; 7971 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) 7972 { 7973 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) 7974 { 7975 ssymhead++; 7976 ssymhead->ssym = ssym; 7977 ssymhead->count = 0; 7978 ssymhead->st_shndx = (*ind)->st_shndx; 7979 } 7980 ssym->st_name = (*ind)->st_name; 7981 ssym->st_info = (*ind)->st_info; 7982 ssym->st_other = (*ind)->st_other; 7983 ssymhead->count++; 7984 } 7985 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count 7986 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) 7987 == total_size)); 7988 7989 free (indbuf); 7990 return ssymbuf; 7991 } 7992 7993 /* Check if 2 sections define the same set of local and global 7994 symbols. */ 7995 7996 static bfd_boolean 7997 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, 7998 struct bfd_link_info *info) 7999 { 8000 bfd *bfd1, *bfd2; 8001 const struct elf_backend_data *bed1, *bed2; 8002 Elf_Internal_Shdr *hdr1, *hdr2; 8003 size_t symcount1, symcount2; 8004 Elf_Internal_Sym *isymbuf1, *isymbuf2; 8005 struct elf_symbuf_head *ssymbuf1, *ssymbuf2; 8006 Elf_Internal_Sym *isym, *isymend; 8007 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; 8008 size_t count1, count2, i; 8009 unsigned int shndx1, shndx2; 8010 bfd_boolean result; 8011 8012 bfd1 = sec1->owner; 8013 bfd2 = sec2->owner; 8014 8015 /* Both sections have to be in ELF. */ 8016 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour 8017 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) 8018 return FALSE; 8019 8020 if (elf_section_type (sec1) != elf_section_type (sec2)) 8021 return FALSE; 8022 8023 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); 8024 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); 8025 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) 8026 return FALSE; 8027 8028 bed1 = get_elf_backend_data (bfd1); 8029 bed2 = get_elf_backend_data (bfd2); 8030 hdr1 = &elf_tdata (bfd1)->symtab_hdr; 8031 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; 8032 hdr2 = &elf_tdata (bfd2)->symtab_hdr; 8033 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; 8034 8035 if (symcount1 == 0 || symcount2 == 0) 8036 return FALSE; 8037 8038 result = FALSE; 8039 isymbuf1 = NULL; 8040 isymbuf2 = NULL; 8041 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; 8042 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; 8043 8044 if (ssymbuf1 == NULL) 8045 { 8046 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, 8047 NULL, NULL, NULL); 8048 if (isymbuf1 == NULL) 8049 goto done; 8050 8051 if (!info->reduce_memory_overheads) 8052 { 8053 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); 8054 elf_tdata (bfd1)->symbuf = ssymbuf1; 8055 } 8056 } 8057 8058 if (ssymbuf1 == NULL || ssymbuf2 == NULL) 8059 { 8060 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, 8061 NULL, NULL, NULL); 8062 if (isymbuf2 == NULL) 8063 goto done; 8064 8065 if (ssymbuf1 != NULL && !info->reduce_memory_overheads) 8066 { 8067 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); 8068 elf_tdata (bfd2)->symbuf = ssymbuf2; 8069 } 8070 } 8071 8072 if (ssymbuf1 != NULL && ssymbuf2 != NULL) 8073 { 8074 /* Optimized faster version. */ 8075 size_t lo, hi, mid; 8076 struct elf_symbol *symp; 8077 struct elf_symbuf_symbol *ssym, *ssymend; 8078 8079 lo = 0; 8080 hi = ssymbuf1->count; 8081 ssymbuf1++; 8082 count1 = 0; 8083 while (lo < hi) 8084 { 8085 mid = (lo + hi) / 2; 8086 if (shndx1 < ssymbuf1[mid].st_shndx) 8087 hi = mid; 8088 else if (shndx1 > ssymbuf1[mid].st_shndx) 8089 lo = mid + 1; 8090 else 8091 { 8092 count1 = ssymbuf1[mid].count; 8093 ssymbuf1 += mid; 8094 break; 8095 } 8096 } 8097 8098 lo = 0; 8099 hi = ssymbuf2->count; 8100 ssymbuf2++; 8101 count2 = 0; 8102 while (lo < hi) 8103 { 8104 mid = (lo + hi) / 2; 8105 if (shndx2 < ssymbuf2[mid].st_shndx) 8106 hi = mid; 8107 else if (shndx2 > ssymbuf2[mid].st_shndx) 8108 lo = mid + 1; 8109 else 8110 { 8111 count2 = ssymbuf2[mid].count; 8112 ssymbuf2 += mid; 8113 break; 8114 } 8115 } 8116 8117 if (count1 == 0 || count2 == 0 || count1 != count2) 8118 goto done; 8119 8120 symtable1 8121 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); 8122 symtable2 8123 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); 8124 if (symtable1 == NULL || symtable2 == NULL) 8125 goto done; 8126 8127 symp = symtable1; 8128 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; 8129 ssym < ssymend; ssym++, symp++) 8130 { 8131 symp->u.ssym = ssym; 8132 symp->name = bfd_elf_string_from_elf_section (bfd1, 8133 hdr1->sh_link, 8134 ssym->st_name); 8135 } 8136 8137 symp = symtable2; 8138 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; 8139 ssym < ssymend; ssym++, symp++) 8140 { 8141 symp->u.ssym = ssym; 8142 symp->name = bfd_elf_string_from_elf_section (bfd2, 8143 hdr2->sh_link, 8144 ssym->st_name); 8145 } 8146 8147 /* Sort symbol by name. */ 8148 qsort (symtable1, count1, sizeof (struct elf_symbol), 8149 elf_sym_name_compare); 8150 qsort (symtable2, count1, sizeof (struct elf_symbol), 8151 elf_sym_name_compare); 8152 8153 for (i = 0; i < count1; i++) 8154 /* Two symbols must have the same binding, type and name. */ 8155 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info 8156 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other 8157 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8158 goto done; 8159 8160 result = TRUE; 8161 goto done; 8162 } 8163 8164 symtable1 = (struct elf_symbol *) 8165 bfd_malloc (symcount1 * sizeof (struct elf_symbol)); 8166 symtable2 = (struct elf_symbol *) 8167 bfd_malloc (symcount2 * sizeof (struct elf_symbol)); 8168 if (symtable1 == NULL || symtable2 == NULL) 8169 goto done; 8170 8171 /* Count definitions in the section. */ 8172 count1 = 0; 8173 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) 8174 if (isym->st_shndx == shndx1) 8175 symtable1[count1++].u.isym = isym; 8176 8177 count2 = 0; 8178 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) 8179 if (isym->st_shndx == shndx2) 8180 symtable2[count2++].u.isym = isym; 8181 8182 if (count1 == 0 || count2 == 0 || count1 != count2) 8183 goto done; 8184 8185 for (i = 0; i < count1; i++) 8186 symtable1[i].name 8187 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, 8188 symtable1[i].u.isym->st_name); 8189 8190 for (i = 0; i < count2; i++) 8191 symtable2[i].name 8192 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, 8193 symtable2[i].u.isym->st_name); 8194 8195 /* Sort symbol by name. */ 8196 qsort (symtable1, count1, sizeof (struct elf_symbol), 8197 elf_sym_name_compare); 8198 qsort (symtable2, count1, sizeof (struct elf_symbol), 8199 elf_sym_name_compare); 8200 8201 for (i = 0; i < count1; i++) 8202 /* Two symbols must have the same binding, type and name. */ 8203 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info 8204 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other 8205 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8206 goto done; 8207 8208 result = TRUE; 8209 8210 done: 8211 if (symtable1) 8212 free (symtable1); 8213 if (symtable2) 8214 free (symtable2); 8215 if (isymbuf1) 8216 free (isymbuf1); 8217 if (isymbuf2) 8218 free (isymbuf2); 8219 8220 return result; 8221 } 8222 8223 /* Return TRUE if 2 section types are compatible. */ 8224 8225 bfd_boolean 8226 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, 8227 bfd *bbfd, const asection *bsec) 8228 { 8229 if (asec == NULL 8230 || bsec == NULL 8231 || abfd->xvec->flavour != bfd_target_elf_flavour 8232 || bbfd->xvec->flavour != bfd_target_elf_flavour) 8233 return TRUE; 8234 8235 return elf_section_type (asec) == elf_section_type (bsec); 8236 } 8237 8238 /* Final phase of ELF linker. */ 8239 8240 /* A structure we use to avoid passing large numbers of arguments. */ 8241 8242 struct elf_final_link_info 8243 { 8244 /* General link information. */ 8245 struct bfd_link_info *info; 8246 /* Output BFD. */ 8247 bfd *output_bfd; 8248 /* Symbol string table. */ 8249 struct elf_strtab_hash *symstrtab; 8250 /* .hash section. */ 8251 asection *hash_sec; 8252 /* symbol version section (.gnu.version). */ 8253 asection *symver_sec; 8254 /* Buffer large enough to hold contents of any section. */ 8255 bfd_byte *contents; 8256 /* Buffer large enough to hold external relocs of any section. */ 8257 void *external_relocs; 8258 /* Buffer large enough to hold internal relocs of any section. */ 8259 Elf_Internal_Rela *internal_relocs; 8260 /* Buffer large enough to hold external local symbols of any input 8261 BFD. */ 8262 bfd_byte *external_syms; 8263 /* And a buffer for symbol section indices. */ 8264 Elf_External_Sym_Shndx *locsym_shndx; 8265 /* Buffer large enough to hold internal local symbols of any input 8266 BFD. */ 8267 Elf_Internal_Sym *internal_syms; 8268 /* Array large enough to hold a symbol index for each local symbol 8269 of any input BFD. */ 8270 long *indices; 8271 /* Array large enough to hold a section pointer for each local 8272 symbol of any input BFD. */ 8273 asection **sections; 8274 /* Buffer for SHT_SYMTAB_SHNDX section. */ 8275 Elf_External_Sym_Shndx *symshndxbuf; 8276 /* Number of STT_FILE syms seen. */ 8277 size_t filesym_count; 8278 }; 8279 8280 /* This struct is used to pass information to elf_link_output_extsym. */ 8281 8282 struct elf_outext_info 8283 { 8284 bfd_boolean failed; 8285 bfd_boolean localsyms; 8286 bfd_boolean file_sym_done; 8287 struct elf_final_link_info *flinfo; 8288 }; 8289 8290 8291 /* Support for evaluating a complex relocation. 8292 8293 Complex relocations are generalized, self-describing relocations. The 8294 implementation of them consists of two parts: complex symbols, and the 8295 relocations themselves. 8296 8297 The relocations are use a reserved elf-wide relocation type code (R_RELC 8298 external / BFD_RELOC_RELC internal) and an encoding of relocation field 8299 information (start bit, end bit, word width, etc) into the addend. This 8300 information is extracted from CGEN-generated operand tables within gas. 8301 8302 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC 8303 internal) representing prefix-notation expressions, including but not 8304 limited to those sorts of expressions normally encoded as addends in the 8305 addend field. The symbol mangling format is: 8306 8307 <node> := <literal> 8308 | <unary-operator> ':' <node> 8309 | <binary-operator> ':' <node> ':' <node> 8310 ; 8311 8312 <literal> := 's' <digits=N> ':' <N character symbol name> 8313 | 'S' <digits=N> ':' <N character section name> 8314 | '#' <hexdigits> 8315 ; 8316 8317 <binary-operator> := as in C 8318 <unary-operator> := as in C, plus "0-" for unambiguous negation. */ 8319 8320 static void 8321 set_symbol_value (bfd *bfd_with_globals, 8322 Elf_Internal_Sym *isymbuf, 8323 size_t locsymcount, 8324 size_t symidx, 8325 bfd_vma val) 8326 { 8327 struct elf_link_hash_entry **sym_hashes; 8328 struct elf_link_hash_entry *h; 8329 size_t extsymoff = locsymcount; 8330 8331 if (symidx < locsymcount) 8332 { 8333 Elf_Internal_Sym *sym; 8334 8335 sym = isymbuf + symidx; 8336 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) 8337 { 8338 /* It is a local symbol: move it to the 8339 "absolute" section and give it a value. */ 8340 sym->st_shndx = SHN_ABS; 8341 sym->st_value = val; 8342 return; 8343 } 8344 BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); 8345 extsymoff = 0; 8346 } 8347 8348 /* It is a global symbol: set its link type 8349 to "defined" and give it a value. */ 8350 8351 sym_hashes = elf_sym_hashes (bfd_with_globals); 8352 h = sym_hashes [symidx - extsymoff]; 8353 while (h->root.type == bfd_link_hash_indirect 8354 || h->root.type == bfd_link_hash_warning) 8355 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8356 h->root.type = bfd_link_hash_defined; 8357 h->root.u.def.value = val; 8358 h->root.u.def.section = bfd_abs_section_ptr; 8359 } 8360 8361 static bfd_boolean 8362 resolve_symbol (const char *name, 8363 bfd *input_bfd, 8364 struct elf_final_link_info *flinfo, 8365 bfd_vma *result, 8366 Elf_Internal_Sym *isymbuf, 8367 size_t locsymcount) 8368 { 8369 Elf_Internal_Sym *sym; 8370 struct bfd_link_hash_entry *global_entry; 8371 const char *candidate = NULL; 8372 Elf_Internal_Shdr *symtab_hdr; 8373 size_t i; 8374 8375 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 8376 8377 for (i = 0; i < locsymcount; ++ i) 8378 { 8379 sym = isymbuf + i; 8380 8381 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) 8382 continue; 8383 8384 candidate = bfd_elf_string_from_elf_section (input_bfd, 8385 symtab_hdr->sh_link, 8386 sym->st_name); 8387 #ifdef DEBUG 8388 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", 8389 name, candidate, (unsigned long) sym->st_value); 8390 #endif 8391 if (candidate && strcmp (candidate, name) == 0) 8392 { 8393 asection *sec = flinfo->sections [i]; 8394 8395 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); 8396 *result += sec->output_offset + sec->output_section->vma; 8397 #ifdef DEBUG 8398 printf ("Found symbol with value %8.8lx\n", 8399 (unsigned long) *result); 8400 #endif 8401 return TRUE; 8402 } 8403 } 8404 8405 /* Hmm, haven't found it yet. perhaps it is a global. */ 8406 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, 8407 FALSE, FALSE, TRUE); 8408 if (!global_entry) 8409 return FALSE; 8410 8411 if (global_entry->type == bfd_link_hash_defined 8412 || global_entry->type == bfd_link_hash_defweak) 8413 { 8414 *result = (global_entry->u.def.value 8415 + global_entry->u.def.section->output_section->vma 8416 + global_entry->u.def.section->output_offset); 8417 #ifdef DEBUG 8418 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", 8419 global_entry->root.string, (unsigned long) *result); 8420 #endif 8421 return TRUE; 8422 } 8423 8424 return FALSE; 8425 } 8426 8427 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in 8428 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section 8429 names like "foo.end" which is the end address of section "foo". */ 8430 8431 static bfd_boolean 8432 resolve_section (const char *name, 8433 asection *sections, 8434 bfd_vma *result, 8435 bfd * abfd) 8436 { 8437 asection *curr; 8438 unsigned int len; 8439 8440 for (curr = sections; curr; curr = curr->next) 8441 if (strcmp (curr->name, name) == 0) 8442 { 8443 *result = curr->vma; 8444 return TRUE; 8445 } 8446 8447 /* Hmm. still haven't found it. try pseudo-section names. */ 8448 /* FIXME: This could be coded more efficiently... */ 8449 for (curr = sections; curr; curr = curr->next) 8450 { 8451 len = strlen (curr->name); 8452 if (len > strlen (name)) 8453 continue; 8454 8455 if (strncmp (curr->name, name, len) == 0) 8456 { 8457 if (strncmp (".end", name + len, 4) == 0) 8458 { 8459 *result = (curr->vma 8460 + curr->size / bfd_octets_per_byte (abfd, curr)); 8461 return TRUE; 8462 } 8463 8464 /* Insert more pseudo-section names here, if you like. */ 8465 } 8466 } 8467 8468 return FALSE; 8469 } 8470 8471 static void 8472 undefined_reference (const char *reftype, const char *name) 8473 { 8474 /* xgettext:c-format */ 8475 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), 8476 reftype, name); 8477 } 8478 8479 static bfd_boolean 8480 eval_symbol (bfd_vma *result, 8481 const char **symp, 8482 bfd *input_bfd, 8483 struct elf_final_link_info *flinfo, 8484 bfd_vma dot, 8485 Elf_Internal_Sym *isymbuf, 8486 size_t locsymcount, 8487 int signed_p) 8488 { 8489 size_t len; 8490 size_t symlen; 8491 bfd_vma a; 8492 bfd_vma b; 8493 char symbuf[4096]; 8494 const char *sym = *symp; 8495 const char *symend; 8496 bfd_boolean symbol_is_section = FALSE; 8497 8498 len = strlen (sym); 8499 symend = sym + len; 8500 8501 if (len < 1 || len > sizeof (symbuf)) 8502 { 8503 bfd_set_error (bfd_error_invalid_operation); 8504 return FALSE; 8505 } 8506 8507 switch (* sym) 8508 { 8509 case '.': 8510 *result = dot; 8511 *symp = sym + 1; 8512 return TRUE; 8513 8514 case '#': 8515 ++sym; 8516 *result = strtoul (sym, (char **) symp, 16); 8517 return TRUE; 8518 8519 case 'S': 8520 symbol_is_section = TRUE; 8521 /* Fall through. */ 8522 case 's': 8523 ++sym; 8524 symlen = strtol (sym, (char **) symp, 10); 8525 sym = *symp + 1; /* Skip the trailing ':'. */ 8526 8527 if (symend < sym || symlen + 1 > sizeof (symbuf)) 8528 { 8529 bfd_set_error (bfd_error_invalid_operation); 8530 return FALSE; 8531 } 8532 8533 memcpy (symbuf, sym, symlen); 8534 symbuf[symlen] = '\0'; 8535 *symp = sym + symlen; 8536 8537 /* Is it always possible, with complex symbols, that gas "mis-guessed" 8538 the symbol as a section, or vice-versa. so we're pretty liberal in our 8539 interpretation here; section means "try section first", not "must be a 8540 section", and likewise with symbol. */ 8541 8542 if (symbol_is_section) 8543 { 8544 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) 8545 && !resolve_symbol (symbuf, input_bfd, flinfo, result, 8546 isymbuf, locsymcount)) 8547 { 8548 undefined_reference ("section", symbuf); 8549 return FALSE; 8550 } 8551 } 8552 else 8553 { 8554 if (!resolve_symbol (symbuf, input_bfd, flinfo, result, 8555 isymbuf, locsymcount) 8556 && !resolve_section (symbuf, flinfo->output_bfd->sections, 8557 result, input_bfd)) 8558 { 8559 undefined_reference ("symbol", symbuf); 8560 return FALSE; 8561 } 8562 } 8563 8564 return TRUE; 8565 8566 /* All that remains are operators. */ 8567 8568 #define UNARY_OP(op) \ 8569 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8570 { \ 8571 sym += strlen (#op); \ 8572 if (*sym == ':') \ 8573 ++sym; \ 8574 *symp = sym; \ 8575 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8576 isymbuf, locsymcount, signed_p)) \ 8577 return FALSE; \ 8578 if (signed_p) \ 8579 *result = op ((bfd_signed_vma) a); \ 8580 else \ 8581 *result = op a; \ 8582 return TRUE; \ 8583 } 8584 8585 #define BINARY_OP(op) \ 8586 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8587 { \ 8588 sym += strlen (#op); \ 8589 if (*sym == ':') \ 8590 ++sym; \ 8591 *symp = sym; \ 8592 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8593 isymbuf, locsymcount, signed_p)) \ 8594 return FALSE; \ 8595 ++*symp; \ 8596 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ 8597 isymbuf, locsymcount, signed_p)) \ 8598 return FALSE; \ 8599 if (signed_p) \ 8600 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ 8601 else \ 8602 *result = a op b; \ 8603 return TRUE; \ 8604 } 8605 8606 default: 8607 UNARY_OP (0-); 8608 BINARY_OP (<<); 8609 BINARY_OP (>>); 8610 BINARY_OP (==); 8611 BINARY_OP (!=); 8612 BINARY_OP (<=); 8613 BINARY_OP (>=); 8614 BINARY_OP (&&); 8615 BINARY_OP (||); 8616 UNARY_OP (~); 8617 UNARY_OP (!); 8618 BINARY_OP (*); 8619 BINARY_OP (/); 8620 BINARY_OP (%); 8621 BINARY_OP (^); 8622 BINARY_OP (|); 8623 BINARY_OP (&); 8624 BINARY_OP (+); 8625 BINARY_OP (-); 8626 BINARY_OP (<); 8627 BINARY_OP (>); 8628 #undef UNARY_OP 8629 #undef BINARY_OP 8630 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); 8631 bfd_set_error (bfd_error_invalid_operation); 8632 return FALSE; 8633 } 8634 } 8635 8636 static void 8637 put_value (bfd_vma size, 8638 unsigned long chunksz, 8639 bfd *input_bfd, 8640 bfd_vma x, 8641 bfd_byte *location) 8642 { 8643 location += (size - chunksz); 8644 8645 for (; size; size -= chunksz, location -= chunksz) 8646 { 8647 switch (chunksz) 8648 { 8649 case 1: 8650 bfd_put_8 (input_bfd, x, location); 8651 x >>= 8; 8652 break; 8653 case 2: 8654 bfd_put_16 (input_bfd, x, location); 8655 x >>= 16; 8656 break; 8657 case 4: 8658 bfd_put_32 (input_bfd, x, location); 8659 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ 8660 x >>= 16; 8661 x >>= 16; 8662 break; 8663 #ifdef BFD64 8664 case 8: 8665 bfd_put_64 (input_bfd, x, location); 8666 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ 8667 x >>= 32; 8668 x >>= 32; 8669 break; 8670 #endif 8671 default: 8672 abort (); 8673 break; 8674 } 8675 } 8676 } 8677 8678 static bfd_vma 8679 get_value (bfd_vma size, 8680 unsigned long chunksz, 8681 bfd *input_bfd, 8682 bfd_byte *location) 8683 { 8684 int shift; 8685 bfd_vma x = 0; 8686 8687 /* Sanity checks. */ 8688 BFD_ASSERT (chunksz <= sizeof (x) 8689 && size >= chunksz 8690 && chunksz != 0 8691 && (size % chunksz) == 0 8692 && input_bfd != NULL 8693 && location != NULL); 8694 8695 if (chunksz == sizeof (x)) 8696 { 8697 BFD_ASSERT (size == chunksz); 8698 8699 /* Make sure that we do not perform an undefined shift operation. 8700 We know that size == chunksz so there will only be one iteration 8701 of the loop below. */ 8702 shift = 0; 8703 } 8704 else 8705 shift = 8 * chunksz; 8706 8707 for (; size; size -= chunksz, location += chunksz) 8708 { 8709 switch (chunksz) 8710 { 8711 case 1: 8712 x = (x << shift) | bfd_get_8 (input_bfd, location); 8713 break; 8714 case 2: 8715 x = (x << shift) | bfd_get_16 (input_bfd, location); 8716 break; 8717 case 4: 8718 x = (x << shift) | bfd_get_32 (input_bfd, location); 8719 break; 8720 #ifdef BFD64 8721 case 8: 8722 x = (x << shift) | bfd_get_64 (input_bfd, location); 8723 break; 8724 #endif 8725 default: 8726 abort (); 8727 } 8728 } 8729 return x; 8730 } 8731 8732 static void 8733 decode_complex_addend (unsigned long *start, /* in bits */ 8734 unsigned long *oplen, /* in bits */ 8735 unsigned long *len, /* in bits */ 8736 unsigned long *wordsz, /* in bytes */ 8737 unsigned long *chunksz, /* in bytes */ 8738 unsigned long *lsb0_p, 8739 unsigned long *signed_p, 8740 unsigned long *trunc_p, 8741 unsigned long encoded) 8742 { 8743 * start = encoded & 0x3F; 8744 * len = (encoded >> 6) & 0x3F; 8745 * oplen = (encoded >> 12) & 0x3F; 8746 * wordsz = (encoded >> 18) & 0xF; 8747 * chunksz = (encoded >> 22) & 0xF; 8748 * lsb0_p = (encoded >> 27) & 1; 8749 * signed_p = (encoded >> 28) & 1; 8750 * trunc_p = (encoded >> 29) & 1; 8751 } 8752 8753 bfd_reloc_status_type 8754 bfd_elf_perform_complex_relocation (bfd *input_bfd, 8755 asection *input_section, 8756 bfd_byte *contents, 8757 Elf_Internal_Rela *rel, 8758 bfd_vma relocation) 8759 { 8760 bfd_vma shift, x, mask; 8761 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; 8762 bfd_reloc_status_type r; 8763 bfd_size_type octets; 8764 8765 /* Perform this reloc, since it is complex. 8766 (this is not to say that it necessarily refers to a complex 8767 symbol; merely that it is a self-describing CGEN based reloc. 8768 i.e. the addend has the complete reloc information (bit start, end, 8769 word size, etc) encoded within it.). */ 8770 8771 decode_complex_addend (&start, &oplen, &len, &wordsz, 8772 &chunksz, &lsb0_p, &signed_p, 8773 &trunc_p, rel->r_addend); 8774 8775 mask = (((1L << (len - 1)) - 1) << 1) | 1; 8776 8777 if (lsb0_p) 8778 shift = (start + 1) - len; 8779 else 8780 shift = (8 * wordsz) - (start + len); 8781 8782 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); 8783 x = get_value (wordsz, chunksz, input_bfd, contents + octets); 8784 8785 #ifdef DEBUG 8786 printf ("Doing complex reloc: " 8787 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " 8788 "chunksz %ld, start %ld, len %ld, oplen %ld\n" 8789 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", 8790 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, 8791 oplen, (unsigned long) x, (unsigned long) mask, 8792 (unsigned long) relocation); 8793 #endif 8794 8795 r = bfd_reloc_ok; 8796 if (! trunc_p) 8797 /* Now do an overflow check. */ 8798 r = bfd_check_overflow ((signed_p 8799 ? complain_overflow_signed 8800 : complain_overflow_unsigned), 8801 len, 0, (8 * wordsz), 8802 relocation); 8803 8804 /* Do the deed. */ 8805 x = (x & ~(mask << shift)) | ((relocation & mask) << shift); 8806 8807 #ifdef DEBUG 8808 printf (" relocation: %8.8lx\n" 8809 " shifted mask: %8.8lx\n" 8810 " shifted/masked reloc: %8.8lx\n" 8811 " result: %8.8lx\n", 8812 (unsigned long) relocation, (unsigned long) (mask << shift), 8813 (unsigned long) ((relocation & mask) << shift), (unsigned long) x); 8814 #endif 8815 put_value (wordsz, chunksz, input_bfd, x, contents + octets); 8816 return r; 8817 } 8818 8819 /* Functions to read r_offset from external (target order) reloc 8820 entry. Faster than bfd_getl32 et al, because we let the compiler 8821 know the value is aligned. */ 8822 8823 static bfd_vma 8824 ext32l_r_offset (const void *p) 8825 { 8826 union aligned32 8827 { 8828 uint32_t v; 8829 unsigned char c[4]; 8830 }; 8831 const union aligned32 *a 8832 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8833 8834 uint32_t aval = ( (uint32_t) a->c[0] 8835 | (uint32_t) a->c[1] << 8 8836 | (uint32_t) a->c[2] << 16 8837 | (uint32_t) a->c[3] << 24); 8838 return aval; 8839 } 8840 8841 static bfd_vma 8842 ext32b_r_offset (const void *p) 8843 { 8844 union aligned32 8845 { 8846 uint32_t v; 8847 unsigned char c[4]; 8848 }; 8849 const union aligned32 *a 8850 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8851 8852 uint32_t aval = ( (uint32_t) a->c[0] << 24 8853 | (uint32_t) a->c[1] << 16 8854 | (uint32_t) a->c[2] << 8 8855 | (uint32_t) a->c[3]); 8856 return aval; 8857 } 8858 8859 #ifdef BFD_HOST_64_BIT 8860 static bfd_vma 8861 ext64l_r_offset (const void *p) 8862 { 8863 union aligned64 8864 { 8865 uint64_t v; 8866 unsigned char c[8]; 8867 }; 8868 const union aligned64 *a 8869 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8870 8871 uint64_t aval = ( (uint64_t) a->c[0] 8872 | (uint64_t) a->c[1] << 8 8873 | (uint64_t) a->c[2] << 16 8874 | (uint64_t) a->c[3] << 24 8875 | (uint64_t) a->c[4] << 32 8876 | (uint64_t) a->c[5] << 40 8877 | (uint64_t) a->c[6] << 48 8878 | (uint64_t) a->c[7] << 56); 8879 return aval; 8880 } 8881 8882 static bfd_vma 8883 ext64b_r_offset (const void *p) 8884 { 8885 union aligned64 8886 { 8887 uint64_t v; 8888 unsigned char c[8]; 8889 }; 8890 const union aligned64 *a 8891 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8892 8893 uint64_t aval = ( (uint64_t) a->c[0] << 56 8894 | (uint64_t) a->c[1] << 48 8895 | (uint64_t) a->c[2] << 40 8896 | (uint64_t) a->c[3] << 32 8897 | (uint64_t) a->c[4] << 24 8898 | (uint64_t) a->c[5] << 16 8899 | (uint64_t) a->c[6] << 8 8900 | (uint64_t) a->c[7]); 8901 return aval; 8902 } 8903 #endif 8904 8905 /* When performing a relocatable link, the input relocations are 8906 preserved. But, if they reference global symbols, the indices 8907 referenced must be updated. Update all the relocations found in 8908 RELDATA. */ 8909 8910 static bfd_boolean 8911 elf_link_adjust_relocs (bfd *abfd, 8912 asection *sec, 8913 struct bfd_elf_section_reloc_data *reldata, 8914 bfd_boolean sort, 8915 struct bfd_link_info *info) 8916 { 8917 unsigned int i; 8918 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8919 bfd_byte *erela; 8920 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 8921 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 8922 bfd_vma r_type_mask; 8923 int r_sym_shift; 8924 unsigned int count = reldata->count; 8925 struct elf_link_hash_entry **rel_hash = reldata->hashes; 8926 8927 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) 8928 { 8929 swap_in = bed->s->swap_reloc_in; 8930 swap_out = bed->s->swap_reloc_out; 8931 } 8932 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) 8933 { 8934 swap_in = bed->s->swap_reloca_in; 8935 swap_out = bed->s->swap_reloca_out; 8936 } 8937 else 8938 abort (); 8939 8940 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) 8941 abort (); 8942 8943 if (bed->s->arch_size == 32) 8944 { 8945 r_type_mask = 0xff; 8946 r_sym_shift = 8; 8947 } 8948 else 8949 { 8950 r_type_mask = 0xffffffff; 8951 r_sym_shift = 32; 8952 } 8953 8954 erela = reldata->hdr->contents; 8955 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) 8956 { 8957 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; 8958 unsigned int j; 8959 8960 if (*rel_hash == NULL) 8961 continue; 8962 8963 if ((*rel_hash)->indx == -2 8964 && info->gc_sections 8965 && ! info->gc_keep_exported) 8966 { 8967 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ 8968 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), 8969 abfd, sec, 8970 (*rel_hash)->root.root.string); 8971 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), 8972 abfd, sec); 8973 bfd_set_error (bfd_error_invalid_operation); 8974 return FALSE; 8975 } 8976 BFD_ASSERT ((*rel_hash)->indx >= 0); 8977 8978 (*swap_in) (abfd, erela, irela); 8979 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) 8980 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift 8981 | (irela[j].r_info & r_type_mask)); 8982 (*swap_out) (abfd, irela, erela); 8983 } 8984 8985 if (bed->elf_backend_update_relocs) 8986 (*bed->elf_backend_update_relocs) (sec, reldata); 8987 8988 if (sort && count != 0) 8989 { 8990 bfd_vma (*ext_r_off) (const void *); 8991 bfd_vma r_off; 8992 size_t elt_size; 8993 bfd_byte *base, *end, *p, *loc; 8994 bfd_byte *buf = NULL; 8995 8996 if (bed->s->arch_size == 32) 8997 { 8998 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 8999 ext_r_off = ext32l_r_offset; 9000 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9001 ext_r_off = ext32b_r_offset; 9002 else 9003 abort (); 9004 } 9005 else 9006 { 9007 #ifdef BFD_HOST_64_BIT 9008 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 9009 ext_r_off = ext64l_r_offset; 9010 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9011 ext_r_off = ext64b_r_offset; 9012 else 9013 #endif 9014 abort (); 9015 } 9016 9017 /* Must use a stable sort here. A modified insertion sort, 9018 since the relocs are mostly sorted already. */ 9019 elt_size = reldata->hdr->sh_entsize; 9020 base = reldata->hdr->contents; 9021 end = base + count * elt_size; 9022 if (elt_size > sizeof (Elf64_External_Rela)) 9023 abort (); 9024 9025 /* Ensure the first element is lowest. This acts as a sentinel, 9026 speeding the main loop below. */ 9027 r_off = (*ext_r_off) (base); 9028 for (p = loc = base; (p += elt_size) < end; ) 9029 { 9030 bfd_vma r_off2 = (*ext_r_off) (p); 9031 if (r_off > r_off2) 9032 { 9033 r_off = r_off2; 9034 loc = p; 9035 } 9036 } 9037 if (loc != base) 9038 { 9039 /* Don't just swap *base and *loc as that changes the order 9040 of the original base[0] and base[1] if they happen to 9041 have the same r_offset. */ 9042 bfd_byte onebuf[sizeof (Elf64_External_Rela)]; 9043 memcpy (onebuf, loc, elt_size); 9044 memmove (base + elt_size, base, loc - base); 9045 memcpy (base, onebuf, elt_size); 9046 } 9047 9048 for (p = base + elt_size; (p += elt_size) < end; ) 9049 { 9050 /* base to p is sorted, *p is next to insert. */ 9051 r_off = (*ext_r_off) (p); 9052 /* Search the sorted region for location to insert. */ 9053 loc = p - elt_size; 9054 while (r_off < (*ext_r_off) (loc)) 9055 loc -= elt_size; 9056 loc += elt_size; 9057 if (loc != p) 9058 { 9059 /* Chances are there is a run of relocs to insert here, 9060 from one of more input files. Files are not always 9061 linked in order due to the way elf_link_input_bfd is 9062 called. See pr17666. */ 9063 size_t sortlen = p - loc; 9064 bfd_vma r_off2 = (*ext_r_off) (loc); 9065 size_t runlen = elt_size; 9066 size_t buf_size = 96 * 1024; 9067 while (p + runlen < end 9068 && (sortlen <= buf_size 9069 || runlen + elt_size <= buf_size) 9070 && r_off2 > (*ext_r_off) (p + runlen)) 9071 runlen += elt_size; 9072 if (buf == NULL) 9073 { 9074 buf = bfd_malloc (buf_size); 9075 if (buf == NULL) 9076 return FALSE; 9077 } 9078 if (runlen < sortlen) 9079 { 9080 memcpy (buf, p, runlen); 9081 memmove (loc + runlen, loc, sortlen); 9082 memcpy (loc, buf, runlen); 9083 } 9084 else 9085 { 9086 memcpy (buf, loc, sortlen); 9087 memmove (loc, p, runlen); 9088 memcpy (loc + runlen, buf, sortlen); 9089 } 9090 p += runlen - elt_size; 9091 } 9092 } 9093 /* Hashes are no longer valid. */ 9094 free (reldata->hashes); 9095 reldata->hashes = NULL; 9096 free (buf); 9097 } 9098 return TRUE; 9099 } 9100 9101 struct elf_link_sort_rela 9102 { 9103 union { 9104 bfd_vma offset; 9105 bfd_vma sym_mask; 9106 } u; 9107 enum elf_reloc_type_class type; 9108 /* We use this as an array of size int_rels_per_ext_rel. */ 9109 Elf_Internal_Rela rela[1]; 9110 }; 9111 9112 /* qsort stability here and for cmp2 is only an issue if multiple 9113 dynamic relocations are emitted at the same address. But targets 9114 that apply a series of dynamic relocations each operating on the 9115 result of the prior relocation can't use -z combreloc as 9116 implemented anyway. Such schemes tend to be broken by sorting on 9117 symbol index. That leaves dynamic NONE relocs as the only other 9118 case where ld might emit multiple relocs at the same address, and 9119 those are only emitted due to target bugs. */ 9120 9121 static int 9122 elf_link_sort_cmp1 (const void *A, const void *B) 9123 { 9124 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9125 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9126 int relativea, relativeb; 9127 9128 relativea = a->type == reloc_class_relative; 9129 relativeb = b->type == reloc_class_relative; 9130 9131 if (relativea < relativeb) 9132 return 1; 9133 if (relativea > relativeb) 9134 return -1; 9135 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) 9136 return -1; 9137 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) 9138 return 1; 9139 if (a->rela->r_offset < b->rela->r_offset) 9140 return -1; 9141 if (a->rela->r_offset > b->rela->r_offset) 9142 return 1; 9143 return 0; 9144 } 9145 9146 static int 9147 elf_link_sort_cmp2 (const void *A, const void *B) 9148 { 9149 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9150 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9151 9152 if (a->type < b->type) 9153 return -1; 9154 if (a->type > b->type) 9155 return 1; 9156 if (a->u.offset < b->u.offset) 9157 return -1; 9158 if (a->u.offset > b->u.offset) 9159 return 1; 9160 if (a->rela->r_offset < b->rela->r_offset) 9161 return -1; 9162 if (a->rela->r_offset > b->rela->r_offset) 9163 return 1; 9164 return 0; 9165 } 9166 9167 static size_t 9168 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) 9169 { 9170 asection *dynamic_relocs; 9171 asection *rela_dyn; 9172 asection *rel_dyn; 9173 bfd_size_type count, size; 9174 size_t i, ret, sort_elt, ext_size; 9175 bfd_byte *sort, *s_non_relative, *p; 9176 struct elf_link_sort_rela *sq; 9177 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9178 int i2e = bed->s->int_rels_per_ext_rel; 9179 unsigned int opb = bfd_octets_per_byte (abfd, NULL); 9180 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 9181 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 9182 struct bfd_link_order *lo; 9183 bfd_vma r_sym_mask; 9184 bfd_boolean use_rela; 9185 9186 /* Find a dynamic reloc section. */ 9187 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); 9188 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); 9189 if (rela_dyn != NULL && rela_dyn->size > 0 9190 && rel_dyn != NULL && rel_dyn->size > 0) 9191 { 9192 bfd_boolean use_rela_initialised = FALSE; 9193 9194 /* This is just here to stop gcc from complaining. 9195 Its initialization checking code is not perfect. */ 9196 use_rela = TRUE; 9197 9198 /* Both sections are present. Examine the sizes 9199 of the indirect sections to help us choose. */ 9200 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9201 if (lo->type == bfd_indirect_link_order) 9202 { 9203 asection *o = lo->u.indirect.section; 9204 9205 if ((o->size % bed->s->sizeof_rela) == 0) 9206 { 9207 if ((o->size % bed->s->sizeof_rel) == 0) 9208 /* Section size is divisible by both rel and rela sizes. 9209 It is of no help to us. */ 9210 ; 9211 else 9212 { 9213 /* Section size is only divisible by rela. */ 9214 if (use_rela_initialised && !use_rela) 9215 { 9216 _bfd_error_handler (_("%pB: unable to sort relocs - " 9217 "they are in more than one size"), 9218 abfd); 9219 bfd_set_error (bfd_error_invalid_operation); 9220 return 0; 9221 } 9222 else 9223 { 9224 use_rela = TRUE; 9225 use_rela_initialised = TRUE; 9226 } 9227 } 9228 } 9229 else if ((o->size % bed->s->sizeof_rel) == 0) 9230 { 9231 /* Section size is only divisible by rel. */ 9232 if (use_rela_initialised && use_rela) 9233 { 9234 _bfd_error_handler (_("%pB: unable to sort relocs - " 9235 "they are in more than one size"), 9236 abfd); 9237 bfd_set_error (bfd_error_invalid_operation); 9238 return 0; 9239 } 9240 else 9241 { 9242 use_rela = FALSE; 9243 use_rela_initialised = TRUE; 9244 } 9245 } 9246 else 9247 { 9248 /* The section size is not divisible by either - 9249 something is wrong. */ 9250 _bfd_error_handler (_("%pB: unable to sort relocs - " 9251 "they are of an unknown size"), abfd); 9252 bfd_set_error (bfd_error_invalid_operation); 9253 return 0; 9254 } 9255 } 9256 9257 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9258 if (lo->type == bfd_indirect_link_order) 9259 { 9260 asection *o = lo->u.indirect.section; 9261 9262 if ((o->size % bed->s->sizeof_rela) == 0) 9263 { 9264 if ((o->size % bed->s->sizeof_rel) == 0) 9265 /* Section size is divisible by both rel and rela sizes. 9266 It is of no help to us. */ 9267 ; 9268 else 9269 { 9270 /* Section size is only divisible by rela. */ 9271 if (use_rela_initialised && !use_rela) 9272 { 9273 _bfd_error_handler (_("%pB: unable to sort relocs - " 9274 "they are in more than one size"), 9275 abfd); 9276 bfd_set_error (bfd_error_invalid_operation); 9277 return 0; 9278 } 9279 else 9280 { 9281 use_rela = TRUE; 9282 use_rela_initialised = TRUE; 9283 } 9284 } 9285 } 9286 else if ((o->size % bed->s->sizeof_rel) == 0) 9287 { 9288 /* Section size is only divisible by rel. */ 9289 if (use_rela_initialised && use_rela) 9290 { 9291 _bfd_error_handler (_("%pB: unable to sort relocs - " 9292 "they are in more than one size"), 9293 abfd); 9294 bfd_set_error (bfd_error_invalid_operation); 9295 return 0; 9296 } 9297 else 9298 { 9299 use_rela = FALSE; 9300 use_rela_initialised = TRUE; 9301 } 9302 } 9303 else 9304 { 9305 /* The section size is not divisible by either - 9306 something is wrong. */ 9307 _bfd_error_handler (_("%pB: unable to sort relocs - " 9308 "they are of an unknown size"), abfd); 9309 bfd_set_error (bfd_error_invalid_operation); 9310 return 0; 9311 } 9312 } 9313 9314 if (! use_rela_initialised) 9315 /* Make a guess. */ 9316 use_rela = TRUE; 9317 } 9318 else if (rela_dyn != NULL && rela_dyn->size > 0) 9319 use_rela = TRUE; 9320 else if (rel_dyn != NULL && rel_dyn->size > 0) 9321 use_rela = FALSE; 9322 else 9323 return 0; 9324 9325 if (use_rela) 9326 { 9327 dynamic_relocs = rela_dyn; 9328 ext_size = bed->s->sizeof_rela; 9329 swap_in = bed->s->swap_reloca_in; 9330 swap_out = bed->s->swap_reloca_out; 9331 } 9332 else 9333 { 9334 dynamic_relocs = rel_dyn; 9335 ext_size = bed->s->sizeof_rel; 9336 swap_in = bed->s->swap_reloc_in; 9337 swap_out = bed->s->swap_reloc_out; 9338 } 9339 9340 size = 0; 9341 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9342 if (lo->type == bfd_indirect_link_order) 9343 size += lo->u.indirect.section->size; 9344 9345 if (size != dynamic_relocs->size) 9346 return 0; 9347 9348 sort_elt = (sizeof (struct elf_link_sort_rela) 9349 + (i2e - 1) * sizeof (Elf_Internal_Rela)); 9350 9351 count = dynamic_relocs->size / ext_size; 9352 if (count == 0) 9353 return 0; 9354 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); 9355 9356 if (sort == NULL) 9357 { 9358 (*info->callbacks->warning) 9359 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); 9360 return 0; 9361 } 9362 9363 if (bed->s->arch_size == 32) 9364 r_sym_mask = ~(bfd_vma) 0xff; 9365 else 9366 r_sym_mask = ~(bfd_vma) 0xffffffff; 9367 9368 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9369 if (lo->type == bfd_indirect_link_order) 9370 { 9371 bfd_byte *erel, *erelend; 9372 asection *o = lo->u.indirect.section; 9373 9374 if (o->contents == NULL && o->size != 0) 9375 { 9376 /* This is a reloc section that is being handled as a normal 9377 section. See bfd_section_from_shdr. We can't combine 9378 relocs in this case. */ 9379 free (sort); 9380 return 0; 9381 } 9382 erel = o->contents; 9383 erelend = o->contents + o->size; 9384 p = sort + o->output_offset * opb / ext_size * sort_elt; 9385 9386 while (erel < erelend) 9387 { 9388 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9389 9390 (*swap_in) (abfd, erel, s->rela); 9391 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); 9392 s->u.sym_mask = r_sym_mask; 9393 p += sort_elt; 9394 erel += ext_size; 9395 } 9396 } 9397 9398 qsort (sort, count, sort_elt, elf_link_sort_cmp1); 9399 9400 for (i = 0, p = sort; i < count; i++, p += sort_elt) 9401 { 9402 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9403 if (s->type != reloc_class_relative) 9404 break; 9405 } 9406 ret = i; 9407 s_non_relative = p; 9408 9409 sq = (struct elf_link_sort_rela *) s_non_relative; 9410 for (; i < count; i++, p += sort_elt) 9411 { 9412 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; 9413 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) 9414 sq = sp; 9415 sp->u.offset = sq->rela->r_offset; 9416 } 9417 9418 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); 9419 9420 struct elf_link_hash_table *htab = elf_hash_table (info); 9421 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) 9422 { 9423 /* We have plt relocs in .rela.dyn. */ 9424 sq = (struct elf_link_sort_rela *) sort; 9425 for (i = 0; i < count; i++) 9426 if (sq[count - i - 1].type != reloc_class_plt) 9427 break; 9428 if (i != 0 && htab->srelplt->size == i * ext_size) 9429 { 9430 struct bfd_link_order **plo; 9431 /* Put srelplt link_order last. This is so the output_offset 9432 set in the next loop is correct for DT_JMPREL. */ 9433 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) 9434 if ((*plo)->type == bfd_indirect_link_order 9435 && (*plo)->u.indirect.section == htab->srelplt) 9436 { 9437 lo = *plo; 9438 *plo = lo->next; 9439 } 9440 else 9441 plo = &(*plo)->next; 9442 *plo = lo; 9443 lo->next = NULL; 9444 dynamic_relocs->map_tail.link_order = lo; 9445 } 9446 } 9447 9448 p = sort; 9449 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9450 if (lo->type == bfd_indirect_link_order) 9451 { 9452 bfd_byte *erel, *erelend; 9453 asection *o = lo->u.indirect.section; 9454 9455 erel = o->contents; 9456 erelend = o->contents + o->size; 9457 o->output_offset = (p - sort) / sort_elt * ext_size / opb; 9458 while (erel < erelend) 9459 { 9460 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9461 (*swap_out) (abfd, s->rela, erel); 9462 p += sort_elt; 9463 erel += ext_size; 9464 } 9465 } 9466 9467 free (sort); 9468 *psec = dynamic_relocs; 9469 return ret; 9470 } 9471 9472 /* Add a symbol to the output symbol string table. */ 9473 9474 static int 9475 elf_link_output_symstrtab (struct elf_final_link_info *flinfo, 9476 const char *name, 9477 Elf_Internal_Sym *elfsym, 9478 asection *input_sec, 9479 struct elf_link_hash_entry *h) 9480 { 9481 int (*output_symbol_hook) 9482 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, 9483 struct elf_link_hash_entry *); 9484 struct elf_link_hash_table *hash_table; 9485 const struct elf_backend_data *bed; 9486 bfd_size_type strtabsize; 9487 9488 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9489 9490 bed = get_elf_backend_data (flinfo->output_bfd); 9491 output_symbol_hook = bed->elf_backend_link_output_symbol_hook; 9492 if (output_symbol_hook != NULL) 9493 { 9494 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); 9495 if (ret != 1) 9496 return ret; 9497 } 9498 9499 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) 9500 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; 9501 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) 9502 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; 9503 9504 if (name == NULL 9505 || *name == '\0' 9506 || (input_sec->flags & SEC_EXCLUDE)) 9507 elfsym->st_name = (unsigned long) -1; 9508 else 9509 { 9510 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize 9511 to get the final offset for st_name. */ 9512 elfsym->st_name 9513 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, 9514 name, FALSE); 9515 if (elfsym->st_name == (unsigned long) -1) 9516 return 0; 9517 } 9518 9519 hash_table = elf_hash_table (flinfo->info); 9520 strtabsize = hash_table->strtabsize; 9521 if (strtabsize <= hash_table->strtabcount) 9522 { 9523 strtabsize += strtabsize; 9524 hash_table->strtabsize = strtabsize; 9525 strtabsize *= sizeof (*hash_table->strtab); 9526 hash_table->strtab 9527 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, 9528 strtabsize); 9529 if (hash_table->strtab == NULL) 9530 return 0; 9531 } 9532 hash_table->strtab[hash_table->strtabcount].sym = *elfsym; 9533 hash_table->strtab[hash_table->strtabcount].dest_index 9534 = hash_table->strtabcount; 9535 hash_table->strtab[hash_table->strtabcount].destshndx_index 9536 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0; 9537 9538 flinfo->output_bfd->symcount += 1; 9539 hash_table->strtabcount += 1; 9540 9541 return 1; 9542 } 9543 9544 /* Swap symbols out to the symbol table and flush the output symbols to 9545 the file. */ 9546 9547 static bfd_boolean 9548 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) 9549 { 9550 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); 9551 bfd_size_type amt; 9552 size_t i; 9553 const struct elf_backend_data *bed; 9554 bfd_byte *symbuf; 9555 Elf_Internal_Shdr *hdr; 9556 file_ptr pos; 9557 bfd_boolean ret; 9558 9559 if (!hash_table->strtabcount) 9560 return TRUE; 9561 9562 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9563 9564 bed = get_elf_backend_data (flinfo->output_bfd); 9565 9566 amt = bed->s->sizeof_sym * hash_table->strtabcount; 9567 symbuf = (bfd_byte *) bfd_malloc (amt); 9568 if (symbuf == NULL) 9569 return FALSE; 9570 9571 if (flinfo->symshndxbuf) 9572 { 9573 amt = sizeof (Elf_External_Sym_Shndx); 9574 amt *= bfd_get_symcount (flinfo->output_bfd); 9575 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); 9576 if (flinfo->symshndxbuf == NULL) 9577 { 9578 free (symbuf); 9579 return FALSE; 9580 } 9581 } 9582 9583 for (i = 0; i < hash_table->strtabcount; i++) 9584 { 9585 struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; 9586 if (elfsym->sym.st_name == (unsigned long) -1) 9587 elfsym->sym.st_name = 0; 9588 else 9589 elfsym->sym.st_name 9590 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, 9591 elfsym->sym.st_name); 9592 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, 9593 ((bfd_byte *) symbuf 9594 + (elfsym->dest_index 9595 * bed->s->sizeof_sym)), 9596 (flinfo->symshndxbuf 9597 + elfsym->destshndx_index)); 9598 } 9599 9600 /* Allow the linker to examine the strtab and symtab now they are 9601 populated. */ 9602 9603 if (flinfo->info->callbacks->examine_strtab) 9604 flinfo->info->callbacks->examine_strtab (hash_table->strtab, 9605 hash_table->strtabcount, 9606 flinfo->symstrtab); 9607 9608 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; 9609 pos = hdr->sh_offset + hdr->sh_size; 9610 amt = hash_table->strtabcount * bed->s->sizeof_sym; 9611 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 9612 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) 9613 { 9614 hdr->sh_size += amt; 9615 ret = TRUE; 9616 } 9617 else 9618 ret = FALSE; 9619 9620 free (symbuf); 9621 9622 free (hash_table->strtab); 9623 hash_table->strtab = NULL; 9624 9625 return ret; 9626 } 9627 9628 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ 9629 9630 static bfd_boolean 9631 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) 9632 { 9633 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) 9634 && sym->st_shndx < SHN_LORESERVE) 9635 { 9636 /* The gABI doesn't support dynamic symbols in output sections 9637 beyond 64k. */ 9638 _bfd_error_handler 9639 /* xgettext:c-format */ 9640 (_("%pB: too many sections: %d (>= %d)"), 9641 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); 9642 bfd_set_error (bfd_error_nonrepresentable_section); 9643 return FALSE; 9644 } 9645 return TRUE; 9646 } 9647 9648 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in 9649 allowing an unsatisfied unversioned symbol in the DSO to match a 9650 versioned symbol that would normally require an explicit version. 9651 We also handle the case that a DSO references a hidden symbol 9652 which may be satisfied by a versioned symbol in another DSO. */ 9653 9654 static bfd_boolean 9655 elf_link_check_versioned_symbol (struct bfd_link_info *info, 9656 const struct elf_backend_data *bed, 9657 struct elf_link_hash_entry *h) 9658 { 9659 bfd *abfd; 9660 struct elf_link_loaded_list *loaded; 9661 9662 if (!is_elf_hash_table (info->hash)) 9663 return FALSE; 9664 9665 /* Check indirect symbol. */ 9666 while (h->root.type == bfd_link_hash_indirect) 9667 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9668 9669 switch (h->root.type) 9670 { 9671 default: 9672 abfd = NULL; 9673 break; 9674 9675 case bfd_link_hash_undefined: 9676 case bfd_link_hash_undefweak: 9677 abfd = h->root.u.undef.abfd; 9678 if (abfd == NULL 9679 || (abfd->flags & DYNAMIC) == 0 9680 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) 9681 return FALSE; 9682 break; 9683 9684 case bfd_link_hash_defined: 9685 case bfd_link_hash_defweak: 9686 abfd = h->root.u.def.section->owner; 9687 break; 9688 9689 case bfd_link_hash_common: 9690 abfd = h->root.u.c.p->section->owner; 9691 break; 9692 } 9693 BFD_ASSERT (abfd != NULL); 9694 9695 for (loaded = elf_hash_table (info)->loaded; 9696 loaded != NULL; 9697 loaded = loaded->next) 9698 { 9699 bfd *input; 9700 Elf_Internal_Shdr *hdr; 9701 size_t symcount; 9702 size_t extsymcount; 9703 size_t extsymoff; 9704 Elf_Internal_Shdr *versymhdr; 9705 Elf_Internal_Sym *isym; 9706 Elf_Internal_Sym *isymend; 9707 Elf_Internal_Sym *isymbuf; 9708 Elf_External_Versym *ever; 9709 Elf_External_Versym *extversym; 9710 9711 input = loaded->abfd; 9712 9713 /* We check each DSO for a possible hidden versioned definition. */ 9714 if (input == abfd 9715 || (input->flags & DYNAMIC) == 0 9716 || elf_dynversym (input) == 0) 9717 continue; 9718 9719 hdr = &elf_tdata (input)->dynsymtab_hdr; 9720 9721 symcount = hdr->sh_size / bed->s->sizeof_sym; 9722 if (elf_bad_symtab (input)) 9723 { 9724 extsymcount = symcount; 9725 extsymoff = 0; 9726 } 9727 else 9728 { 9729 extsymcount = symcount - hdr->sh_info; 9730 extsymoff = hdr->sh_info; 9731 } 9732 9733 if (extsymcount == 0) 9734 continue; 9735 9736 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, 9737 NULL, NULL, NULL); 9738 if (isymbuf == NULL) 9739 return FALSE; 9740 9741 /* Read in any version definitions. */ 9742 versymhdr = &elf_tdata (input)->dynversym_hdr; 9743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); 9744 if (extversym == NULL) 9745 goto error_ret; 9746 9747 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 9748 || (bfd_bread (extversym, versymhdr->sh_size, input) 9749 != versymhdr->sh_size)) 9750 { 9751 free (extversym); 9752 error_ret: 9753 free (isymbuf); 9754 return FALSE; 9755 } 9756 9757 ever = extversym + extsymoff; 9758 isymend = isymbuf + extsymcount; 9759 for (isym = isymbuf; isym < isymend; isym++, ever++) 9760 { 9761 const char *name; 9762 Elf_Internal_Versym iver; 9763 unsigned short version_index; 9764 9765 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL 9766 || isym->st_shndx == SHN_UNDEF) 9767 continue; 9768 9769 name = bfd_elf_string_from_elf_section (input, 9770 hdr->sh_link, 9771 isym->st_name); 9772 if (strcmp (name, h->root.root.string) != 0) 9773 continue; 9774 9775 _bfd_elf_swap_versym_in (input, ever, &iver); 9776 9777 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 9778 && !(h->def_regular 9779 && h->forced_local)) 9780 { 9781 /* If we have a non-hidden versioned sym, then it should 9782 have provided a definition for the undefined sym unless 9783 it is defined in a non-shared object and forced local. 9784 */ 9785 abort (); 9786 } 9787 9788 version_index = iver.vs_vers & VERSYM_VERSION; 9789 if (version_index == 1 || version_index == 2) 9790 { 9791 /* This is the base or first version. We can use it. */ 9792 free (extversym); 9793 free (isymbuf); 9794 return TRUE; 9795 } 9796 } 9797 9798 free (extversym); 9799 free (isymbuf); 9800 } 9801 9802 return FALSE; 9803 } 9804 9805 /* Convert ELF common symbol TYPE. */ 9806 9807 static int 9808 elf_link_convert_common_type (struct bfd_link_info *info, int type) 9809 { 9810 /* Commom symbol can only appear in relocatable link. */ 9811 if (!bfd_link_relocatable (info)) 9812 abort (); 9813 switch (info->elf_stt_common) 9814 { 9815 case unchanged: 9816 break; 9817 case elf_stt_common: 9818 type = STT_COMMON; 9819 break; 9820 case no_elf_stt_common: 9821 type = STT_OBJECT; 9822 break; 9823 } 9824 return type; 9825 } 9826 9827 /* Add an external symbol to the symbol table. This is called from 9828 the hash table traversal routine. When generating a shared object, 9829 we go through the symbol table twice. The first time we output 9830 anything that might have been forced to local scope in a version 9831 script. The second time we output the symbols that are still 9832 global symbols. */ 9833 9834 static bfd_boolean 9835 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) 9836 { 9837 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; 9838 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; 9839 struct elf_final_link_info *flinfo = eoinfo->flinfo; 9840 bfd_boolean strip; 9841 Elf_Internal_Sym sym; 9842 asection *input_sec; 9843 const struct elf_backend_data *bed; 9844 long indx; 9845 int ret; 9846 unsigned int type; 9847 9848 if (h->root.type == bfd_link_hash_warning) 9849 { 9850 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9851 if (h->root.type == bfd_link_hash_new) 9852 return TRUE; 9853 } 9854 9855 /* Decide whether to output this symbol in this pass. */ 9856 if (eoinfo->localsyms) 9857 { 9858 if (!h->forced_local) 9859 return TRUE; 9860 } 9861 else 9862 { 9863 if (h->forced_local) 9864 return TRUE; 9865 } 9866 9867 bed = get_elf_backend_data (flinfo->output_bfd); 9868 9869 if (h->root.type == bfd_link_hash_undefined) 9870 { 9871 /* If we have an undefined symbol reference here then it must have 9872 come from a shared library that is being linked in. (Undefined 9873 references in regular files have already been handled unless 9874 they are in unreferenced sections which are removed by garbage 9875 collection). */ 9876 bfd_boolean ignore_undef = FALSE; 9877 9878 /* Some symbols may be special in that the fact that they're 9879 undefined can be safely ignored - let backend determine that. */ 9880 if (bed->elf_backend_ignore_undef_symbol) 9881 ignore_undef = bed->elf_backend_ignore_undef_symbol (h); 9882 9883 /* If we are reporting errors for this situation then do so now. */ 9884 if (!ignore_undef 9885 && h->ref_dynamic_nonweak 9886 && (!h->ref_regular || flinfo->info->gc_sections) 9887 && !elf_link_check_versioned_symbol (flinfo->info, bed, h) 9888 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) 9889 (*flinfo->info->callbacks->undefined_symbol) 9890 (flinfo->info, h->root.root.string, 9891 h->ref_regular ? NULL : h->root.u.undef.abfd, 9892 NULL, 0, 9893 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR); 9894 9895 /* Strip a global symbol defined in a discarded section. */ 9896 if (h->indx == -3) 9897 return TRUE; 9898 } 9899 9900 /* We should also warn if a forced local symbol is referenced from 9901 shared libraries. */ 9902 if (bfd_link_executable (flinfo->info) 9903 && h->forced_local 9904 && h->ref_dynamic 9905 && h->def_regular 9906 && !h->dynamic_def 9907 && h->ref_dynamic_nonweak 9908 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) 9909 { 9910 bfd *def_bfd; 9911 const char *msg; 9912 struct elf_link_hash_entry *hi = h; 9913 9914 /* Check indirect symbol. */ 9915 while (hi->root.type == bfd_link_hash_indirect) 9916 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 9917 9918 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 9919 /* xgettext:c-format */ 9920 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); 9921 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) 9922 /* xgettext:c-format */ 9923 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); 9924 else 9925 /* xgettext:c-format */ 9926 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); 9927 def_bfd = flinfo->output_bfd; 9928 if (hi->root.u.def.section != bfd_abs_section_ptr) 9929 def_bfd = hi->root.u.def.section->owner; 9930 _bfd_error_handler (msg, flinfo->output_bfd, 9931 h->root.root.string, def_bfd); 9932 bfd_set_error (bfd_error_bad_value); 9933 eoinfo->failed = TRUE; 9934 return FALSE; 9935 } 9936 9937 /* We don't want to output symbols that have never been mentioned by 9938 a regular file, or that we have been told to strip. However, if 9939 h->indx is set to -2, the symbol is used by a reloc and we must 9940 output it. */ 9941 strip = FALSE; 9942 if (h->indx == -2) 9943 ; 9944 else if ((h->def_dynamic 9945 || h->ref_dynamic 9946 || h->root.type == bfd_link_hash_new) 9947 && !h->def_regular 9948 && !h->ref_regular) 9949 strip = TRUE; 9950 else if (flinfo->info->strip == strip_all) 9951 strip = TRUE; 9952 else if (flinfo->info->strip == strip_some 9953 && bfd_hash_lookup (flinfo->info->keep_hash, 9954 h->root.root.string, FALSE, FALSE) == NULL) 9955 strip = TRUE; 9956 else if ((h->root.type == bfd_link_hash_defined 9957 || h->root.type == bfd_link_hash_defweak) 9958 && ((flinfo->info->strip_discarded 9959 && discarded_section (h->root.u.def.section)) 9960 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 9961 && h->root.u.def.section->owner != NULL 9962 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) 9963 strip = TRUE; 9964 else if ((h->root.type == bfd_link_hash_undefined 9965 || h->root.type == bfd_link_hash_undefweak) 9966 && h->root.u.undef.abfd != NULL 9967 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) 9968 strip = TRUE; 9969 9970 type = h->type; 9971 9972 /* If we're stripping it, and it's not a dynamic symbol, there's 9973 nothing else to do. However, if it is a forced local symbol or 9974 an ifunc symbol we need to give the backend finish_dynamic_symbol 9975 function a chance to make it dynamic. */ 9976 if (strip 9977 && h->dynindx == -1 9978 && type != STT_GNU_IFUNC 9979 && !h->forced_local) 9980 return TRUE; 9981 9982 sym.st_value = 0; 9983 sym.st_size = h->size; 9984 sym.st_other = h->other; 9985 switch (h->root.type) 9986 { 9987 default: 9988 case bfd_link_hash_new: 9989 case bfd_link_hash_warning: 9990 abort (); 9991 return FALSE; 9992 9993 case bfd_link_hash_undefined: 9994 case bfd_link_hash_undefweak: 9995 input_sec = bfd_und_section_ptr; 9996 sym.st_shndx = SHN_UNDEF; 9997 break; 9998 9999 case bfd_link_hash_defined: 10000 case bfd_link_hash_defweak: 10001 { 10002 input_sec = h->root.u.def.section; 10003 if (input_sec->output_section != NULL) 10004 { 10005 sym.st_shndx = 10006 _bfd_elf_section_from_bfd_section (flinfo->output_bfd, 10007 input_sec->output_section); 10008 if (sym.st_shndx == SHN_BAD) 10009 { 10010 _bfd_error_handler 10011 /* xgettext:c-format */ 10012 (_("%pB: could not find output section %pA for input section %pA"), 10013 flinfo->output_bfd, input_sec->output_section, input_sec); 10014 bfd_set_error (bfd_error_nonrepresentable_section); 10015 eoinfo->failed = TRUE; 10016 return FALSE; 10017 } 10018 10019 /* ELF symbols in relocatable files are section relative, 10020 but in nonrelocatable files they are virtual 10021 addresses. */ 10022 sym.st_value = h->root.u.def.value + input_sec->output_offset; 10023 if (!bfd_link_relocatable (flinfo->info)) 10024 { 10025 sym.st_value += input_sec->output_section->vma; 10026 if (h->type == STT_TLS) 10027 { 10028 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; 10029 if (tls_sec != NULL) 10030 sym.st_value -= tls_sec->vma; 10031 } 10032 } 10033 } 10034 else 10035 { 10036 BFD_ASSERT (input_sec->owner == NULL 10037 || (input_sec->owner->flags & DYNAMIC) != 0); 10038 sym.st_shndx = SHN_UNDEF; 10039 input_sec = bfd_und_section_ptr; 10040 } 10041 } 10042 break; 10043 10044 case bfd_link_hash_common: 10045 input_sec = h->root.u.c.p->section; 10046 sym.st_shndx = bed->common_section_index (input_sec); 10047 sym.st_value = 1 << h->root.u.c.p->alignment_power; 10048 break; 10049 10050 case bfd_link_hash_indirect: 10051 /* These symbols are created by symbol versioning. They point 10052 to the decorated version of the name. For example, if the 10053 symbol foo@@GNU_1.2 is the default, which should be used when 10054 foo is used with no version, then we add an indirect symbol 10055 foo which points to foo@@GNU_1.2. We ignore these symbols, 10056 since the indirected symbol is already in the hash table. */ 10057 return TRUE; 10058 } 10059 10060 if (type == STT_COMMON || type == STT_OBJECT) 10061 switch (h->root.type) 10062 { 10063 case bfd_link_hash_common: 10064 type = elf_link_convert_common_type (flinfo->info, type); 10065 break; 10066 case bfd_link_hash_defined: 10067 case bfd_link_hash_defweak: 10068 if (bed->common_definition (&sym)) 10069 type = elf_link_convert_common_type (flinfo->info, type); 10070 else 10071 type = STT_OBJECT; 10072 break; 10073 case bfd_link_hash_undefined: 10074 case bfd_link_hash_undefweak: 10075 break; 10076 default: 10077 abort (); 10078 } 10079 10080 if (h->forced_local) 10081 { 10082 sym.st_info = ELF_ST_INFO (STB_LOCAL, type); 10083 /* Turn off visibility on local symbol. */ 10084 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 10085 } 10086 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ 10087 else if (h->unique_global && h->def_regular) 10088 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); 10089 else if (h->root.type == bfd_link_hash_undefweak 10090 || h->root.type == bfd_link_hash_defweak) 10091 sym.st_info = ELF_ST_INFO (STB_WEAK, type); 10092 else 10093 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 10094 sym.st_target_internal = h->target_internal; 10095 10096 /* Give the processor backend a chance to tweak the symbol value, 10097 and also to finish up anything that needs to be done for this 10098 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for 10099 forced local syms when non-shared is due to a historical quirk. 10100 STT_GNU_IFUNC symbol must go through PLT. */ 10101 if ((h->type == STT_GNU_IFUNC 10102 && h->def_regular 10103 && !bfd_link_relocatable (flinfo->info)) 10104 || ((h->dynindx != -1 10105 || h->forced_local) 10106 && ((bfd_link_pic (flinfo->info) 10107 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10108 || h->root.type != bfd_link_hash_undefweak)) 10109 || !h->forced_local) 10110 && elf_hash_table (flinfo->info)->dynamic_sections_created)) 10111 { 10112 if (! ((*bed->elf_backend_finish_dynamic_symbol) 10113 (flinfo->output_bfd, flinfo->info, h, &sym))) 10114 { 10115 eoinfo->failed = TRUE; 10116 return FALSE; 10117 } 10118 } 10119 10120 /* If we are marking the symbol as undefined, and there are no 10121 non-weak references to this symbol from a regular object, then 10122 mark the symbol as weak undefined; if there are non-weak 10123 references, mark the symbol as strong. We can't do this earlier, 10124 because it might not be marked as undefined until the 10125 finish_dynamic_symbol routine gets through with it. */ 10126 if (sym.st_shndx == SHN_UNDEF 10127 && h->ref_regular 10128 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL 10129 || ELF_ST_BIND (sym.st_info) == STB_WEAK)) 10130 { 10131 int bindtype; 10132 type = ELF_ST_TYPE (sym.st_info); 10133 10134 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ 10135 if (type == STT_GNU_IFUNC) 10136 type = STT_FUNC; 10137 10138 if (h->ref_regular_nonweak) 10139 bindtype = STB_GLOBAL; 10140 else 10141 bindtype = STB_WEAK; 10142 sym.st_info = ELF_ST_INFO (bindtype, type); 10143 } 10144 10145 /* If this is a symbol defined in a dynamic library, don't use the 10146 symbol size from the dynamic library. Relinking an executable 10147 against a new library may introduce gratuitous changes in the 10148 executable's symbols if we keep the size. */ 10149 if (sym.st_shndx == SHN_UNDEF 10150 && !h->def_regular 10151 && h->def_dynamic) 10152 sym.st_size = 0; 10153 10154 /* If a non-weak symbol with non-default visibility is not defined 10155 locally, it is a fatal error. */ 10156 if (!bfd_link_relocatable (flinfo->info) 10157 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT 10158 && ELF_ST_BIND (sym.st_info) != STB_WEAK 10159 && h->root.type == bfd_link_hash_undefined 10160 && !h->def_regular) 10161 { 10162 const char *msg; 10163 10164 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) 10165 /* xgettext:c-format */ 10166 msg = _("%pB: protected symbol `%s' isn't defined"); 10167 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) 10168 /* xgettext:c-format */ 10169 msg = _("%pB: internal symbol `%s' isn't defined"); 10170 else 10171 /* xgettext:c-format */ 10172 msg = _("%pB: hidden symbol `%s' isn't defined"); 10173 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); 10174 bfd_set_error (bfd_error_bad_value); 10175 eoinfo->failed = TRUE; 10176 return FALSE; 10177 } 10178 10179 /* If this symbol should be put in the .dynsym section, then put it 10180 there now. We already know the symbol index. We also fill in 10181 the entry in the .hash section. */ 10182 if (h->dynindx != -1 10183 && elf_hash_table (flinfo->info)->dynamic_sections_created 10184 && elf_hash_table (flinfo->info)->dynsym != NULL 10185 && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) 10186 { 10187 bfd_byte *esym; 10188 10189 /* Since there is no version information in the dynamic string, 10190 if there is no version info in symbol version section, we will 10191 have a run-time problem if not linking executable, referenced 10192 by shared library, or not bound locally. */ 10193 if (h->verinfo.verdef == NULL 10194 && (!bfd_link_executable (flinfo->info) 10195 || h->ref_dynamic 10196 || !h->def_regular)) 10197 { 10198 char *p = strrchr (h->root.root.string, ELF_VER_CHR); 10199 10200 if (p && p [1] != '\0') 10201 { 10202 _bfd_error_handler 10203 /* xgettext:c-format */ 10204 (_("%pB: no symbol version section for versioned symbol `%s'"), 10205 flinfo->output_bfd, h->root.root.string); 10206 eoinfo->failed = TRUE; 10207 return FALSE; 10208 } 10209 } 10210 10211 sym.st_name = h->dynstr_index; 10212 esym = (elf_hash_table (flinfo->info)->dynsym->contents 10213 + h->dynindx * bed->s->sizeof_sym); 10214 if (!check_dynsym (flinfo->output_bfd, &sym)) 10215 { 10216 eoinfo->failed = TRUE; 10217 return FALSE; 10218 } 10219 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); 10220 10221 if (flinfo->hash_sec != NULL) 10222 { 10223 size_t hash_entry_size; 10224 bfd_byte *bucketpos; 10225 bfd_vma chain; 10226 size_t bucketcount; 10227 size_t bucket; 10228 10229 bucketcount = elf_hash_table (flinfo->info)->bucketcount; 10230 bucket = h->u.elf_hash_value % bucketcount; 10231 10232 hash_entry_size 10233 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; 10234 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents 10235 + (bucket + 2) * hash_entry_size); 10236 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); 10237 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, 10238 bucketpos); 10239 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, 10240 ((bfd_byte *) flinfo->hash_sec->contents 10241 + (bucketcount + 2 + h->dynindx) * hash_entry_size)); 10242 } 10243 10244 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) 10245 { 10246 Elf_Internal_Versym iversym; 10247 Elf_External_Versym *eversym; 10248 10249 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 10250 { 10251 if (h->verinfo.verdef == NULL 10252 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 10253 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 10254 iversym.vs_vers = 0; 10255 else 10256 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; 10257 } 10258 else 10259 { 10260 if (h->verinfo.vertree == NULL) 10261 iversym.vs_vers = 1; 10262 else 10263 iversym.vs_vers = h->verinfo.vertree->vernum + 1; 10264 if (flinfo->info->create_default_symver) 10265 iversym.vs_vers++; 10266 } 10267 10268 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is 10269 defined locally. */ 10270 if (h->versioned == versioned_hidden && h->def_regular) 10271 iversym.vs_vers |= VERSYM_HIDDEN; 10272 10273 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; 10274 eversym += h->dynindx; 10275 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); 10276 } 10277 } 10278 10279 /* If the symbol is undefined, and we didn't output it to .dynsym, 10280 strip it from .symtab too. Obviously we can't do this for 10281 relocatable output or when needed for --emit-relocs. */ 10282 else if (input_sec == bfd_und_section_ptr 10283 && h->indx != -2 10284 /* PR 22319 Do not strip global undefined symbols marked as being needed. */ 10285 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) 10286 && !bfd_link_relocatable (flinfo->info)) 10287 return TRUE; 10288 10289 /* Also strip others that we couldn't earlier due to dynamic symbol 10290 processing. */ 10291 if (strip) 10292 return TRUE; 10293 if ((input_sec->flags & SEC_EXCLUDE) != 0) 10294 return TRUE; 10295 10296 /* Output a FILE symbol so that following locals are not associated 10297 with the wrong input file. We need one for forced local symbols 10298 if we've seen more than one FILE symbol or when we have exactly 10299 one FILE symbol but global symbols are present in a file other 10300 than the one with the FILE symbol. We also need one if linker 10301 defined symbols are present. In practice these conditions are 10302 always met, so just emit the FILE symbol unconditionally. */ 10303 if (eoinfo->localsyms 10304 && !eoinfo->file_sym_done 10305 && eoinfo->flinfo->filesym_count != 0) 10306 { 10307 Elf_Internal_Sym fsym; 10308 10309 memset (&fsym, 0, sizeof (fsym)); 10310 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10311 fsym.st_shndx = SHN_ABS; 10312 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, 10313 bfd_und_section_ptr, NULL)) 10314 return FALSE; 10315 10316 eoinfo->file_sym_done = TRUE; 10317 } 10318 10319 indx = bfd_get_symcount (flinfo->output_bfd); 10320 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, 10321 input_sec, h); 10322 if (ret == 0) 10323 { 10324 eoinfo->failed = TRUE; 10325 return FALSE; 10326 } 10327 else if (ret == 1) 10328 h->indx = indx; 10329 else if (h->indx == -2) 10330 abort(); 10331 10332 return TRUE; 10333 } 10334 10335 /* Return TRUE if special handling is done for relocs in SEC against 10336 symbols defined in discarded sections. */ 10337 10338 static bfd_boolean 10339 elf_section_ignore_discarded_relocs (asection *sec) 10340 { 10341 const struct elf_backend_data *bed; 10342 10343 switch (sec->sec_info_type) 10344 { 10345 case SEC_INFO_TYPE_STABS: 10346 case SEC_INFO_TYPE_EH_FRAME: 10347 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 10348 return TRUE; 10349 default: 10350 break; 10351 } 10352 10353 bed = get_elf_backend_data (sec->owner); 10354 if (bed->elf_backend_ignore_discarded_relocs != NULL 10355 && (*bed->elf_backend_ignore_discarded_relocs) (sec)) 10356 return TRUE; 10357 10358 return FALSE; 10359 } 10360 10361 /* Return a mask saying how ld should treat relocations in SEC against 10362 symbols defined in discarded sections. If this function returns 10363 COMPLAIN set, ld will issue a warning message. If this function 10364 returns PRETEND set, and the discarded section was link-once and the 10365 same size as the kept link-once section, ld will pretend that the 10366 symbol was actually defined in the kept section. Otherwise ld will 10367 zero the reloc (at least that is the intent, but some cooperation by 10368 the target dependent code is needed, particularly for REL targets). */ 10369 10370 unsigned int 10371 _bfd_elf_default_action_discarded (asection *sec) 10372 { 10373 if (sec->flags & SEC_DEBUGGING) 10374 return PRETEND; 10375 10376 if (strcmp (".eh_frame", sec->name) == 0) 10377 return 0; 10378 10379 if (strcmp (".gcc_except_table", sec->name) == 0) 10380 return 0; 10381 10382 return COMPLAIN | PRETEND; 10383 } 10384 10385 /* Find a match between a section and a member of a section group. */ 10386 10387 static asection * 10388 match_group_member (asection *sec, asection *group, 10389 struct bfd_link_info *info) 10390 { 10391 asection *first = elf_next_in_group (group); 10392 asection *s = first; 10393 10394 while (s != NULL) 10395 { 10396 if (bfd_elf_match_symbols_in_sections (s, sec, info)) 10397 return s; 10398 10399 s = elf_next_in_group (s); 10400 if (s == first) 10401 break; 10402 } 10403 10404 return NULL; 10405 } 10406 10407 /* Check if the kept section of a discarded section SEC can be used 10408 to replace it. Return the replacement if it is OK. Otherwise return 10409 NULL. */ 10410 10411 asection * 10412 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) 10413 { 10414 asection *kept; 10415 10416 kept = sec->kept_section; 10417 if (kept != NULL) 10418 { 10419 if ((kept->flags & SEC_GROUP) != 0) 10420 kept = match_group_member (sec, kept, info); 10421 if (kept != NULL 10422 && ((sec->rawsize != 0 ? sec->rawsize : sec->size) 10423 != (kept->rawsize != 0 ? kept->rawsize : kept->size))) 10424 kept = NULL; 10425 sec->kept_section = kept; 10426 } 10427 return kept; 10428 } 10429 10430 /* Link an input file into the linker output file. This function 10431 handles all the sections and relocations of the input file at once. 10432 This is so that we only have to read the local symbols once, and 10433 don't have to keep them in memory. */ 10434 10435 static bfd_boolean 10436 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) 10437 { 10438 int (*relocate_section) 10439 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 10440 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); 10441 bfd *output_bfd; 10442 Elf_Internal_Shdr *symtab_hdr; 10443 size_t locsymcount; 10444 size_t extsymoff; 10445 Elf_Internal_Sym *isymbuf; 10446 Elf_Internal_Sym *isym; 10447 Elf_Internal_Sym *isymend; 10448 long *pindex; 10449 asection **ppsection; 10450 asection *o; 10451 const struct elf_backend_data *bed; 10452 struct elf_link_hash_entry **sym_hashes; 10453 bfd_size_type address_size; 10454 bfd_vma r_type_mask; 10455 int r_sym_shift; 10456 bfd_boolean have_file_sym = FALSE; 10457 10458 output_bfd = flinfo->output_bfd; 10459 bed = get_elf_backend_data (output_bfd); 10460 relocate_section = bed->elf_backend_relocate_section; 10461 10462 /* If this is a dynamic object, we don't want to do anything here: 10463 we don't want the local symbols, and we don't want the section 10464 contents. */ 10465 if ((input_bfd->flags & DYNAMIC) != 0) 10466 return TRUE; 10467 10468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10469 if (elf_bad_symtab (input_bfd)) 10470 { 10471 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 10472 extsymoff = 0; 10473 } 10474 else 10475 { 10476 locsymcount = symtab_hdr->sh_info; 10477 extsymoff = symtab_hdr->sh_info; 10478 } 10479 10480 /* Read the local symbols. */ 10481 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 10482 if (isymbuf == NULL && locsymcount != 0) 10483 { 10484 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 10485 flinfo->internal_syms, 10486 flinfo->external_syms, 10487 flinfo->locsym_shndx); 10488 if (isymbuf == NULL) 10489 return FALSE; 10490 } 10491 10492 /* Find local symbol sections and adjust values of symbols in 10493 SEC_MERGE sections. Write out those local symbols we know are 10494 going into the output file. */ 10495 isymend = isymbuf + locsymcount; 10496 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; 10497 isym < isymend; 10498 isym++, pindex++, ppsection++) 10499 { 10500 asection *isec; 10501 const char *name; 10502 Elf_Internal_Sym osym; 10503 long indx; 10504 int ret; 10505 10506 *pindex = -1; 10507 10508 if (elf_bad_symtab (input_bfd)) 10509 { 10510 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) 10511 { 10512 *ppsection = NULL; 10513 continue; 10514 } 10515 } 10516 10517 if (isym->st_shndx == SHN_UNDEF) 10518 isec = bfd_und_section_ptr; 10519 else if (isym->st_shndx == SHN_ABS) 10520 isec = bfd_abs_section_ptr; 10521 else if (isym->st_shndx == SHN_COMMON) 10522 isec = bfd_com_section_ptr; 10523 else 10524 { 10525 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 10526 if (isec == NULL) 10527 { 10528 /* Don't attempt to output symbols with st_shnx in the 10529 reserved range other than SHN_ABS and SHN_COMMON. */ 10530 isec = bfd_und_section_ptr; 10531 } 10532 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE 10533 && ELF_ST_TYPE (isym->st_info) != STT_SECTION) 10534 isym->st_value = 10535 _bfd_merged_section_offset (output_bfd, &isec, 10536 elf_section_data (isec)->sec_info, 10537 isym->st_value); 10538 } 10539 10540 *ppsection = isec; 10541 10542 /* Don't output the first, undefined, symbol. In fact, don't 10543 output any undefined local symbol. */ 10544 if (isec == bfd_und_section_ptr) 10545 continue; 10546 10547 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 10548 { 10549 /* We never output section symbols. Instead, we use the 10550 section symbol of the corresponding section in the output 10551 file. */ 10552 continue; 10553 } 10554 10555 /* If we are stripping all symbols, we don't want to output this 10556 one. */ 10557 if (flinfo->info->strip == strip_all) 10558 continue; 10559 10560 /* If we are discarding all local symbols, we don't want to 10561 output this one. If we are generating a relocatable output 10562 file, then some of the local symbols may be required by 10563 relocs; we output them below as we discover that they are 10564 needed. */ 10565 if (flinfo->info->discard == discard_all) 10566 continue; 10567 10568 /* If this symbol is defined in a section which we are 10569 discarding, we don't need to keep it. */ 10570 if (isym->st_shndx != SHN_UNDEF 10571 && isym->st_shndx < SHN_LORESERVE 10572 && bfd_section_removed_from_list (output_bfd, 10573 isec->output_section)) 10574 continue; 10575 10576 /* Get the name of the symbol. */ 10577 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, 10578 isym->st_name); 10579 if (name == NULL) 10580 return FALSE; 10581 10582 /* See if we are discarding symbols with this name. */ 10583 if ((flinfo->info->strip == strip_some 10584 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE) 10585 == NULL)) 10586 || (((flinfo->info->discard == discard_sec_merge 10587 && (isec->flags & SEC_MERGE) 10588 && !bfd_link_relocatable (flinfo->info)) 10589 || flinfo->info->discard == discard_l) 10590 && bfd_is_local_label_name (input_bfd, name))) 10591 continue; 10592 10593 if (ELF_ST_TYPE (isym->st_info) == STT_FILE) 10594 { 10595 if (input_bfd->lto_output) 10596 /* -flto puts a temp file name here. This means builds 10597 are not reproducible. Discard the symbol. */ 10598 continue; 10599 have_file_sym = TRUE; 10600 flinfo->filesym_count += 1; 10601 } 10602 if (!have_file_sym) 10603 { 10604 /* In the absence of debug info, bfd_find_nearest_line uses 10605 FILE symbols to determine the source file for local 10606 function symbols. Provide a FILE symbol here if input 10607 files lack such, so that their symbols won't be 10608 associated with a previous input file. It's not the 10609 source file, but the best we can do. */ 10610 have_file_sym = TRUE; 10611 flinfo->filesym_count += 1; 10612 memset (&osym, 0, sizeof (osym)); 10613 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10614 osym.st_shndx = SHN_ABS; 10615 if (!elf_link_output_symstrtab (flinfo, 10616 (input_bfd->lto_output ? NULL 10617 : input_bfd->filename), 10618 &osym, bfd_abs_section_ptr, 10619 NULL)) 10620 return FALSE; 10621 } 10622 10623 osym = *isym; 10624 10625 /* Adjust the section index for the output file. */ 10626 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10627 isec->output_section); 10628 if (osym.st_shndx == SHN_BAD) 10629 return FALSE; 10630 10631 /* ELF symbols in relocatable files are section relative, but 10632 in executable files they are virtual addresses. Note that 10633 this code assumes that all ELF sections have an associated 10634 BFD section with a reasonable value for output_offset; below 10635 we assume that they also have a reasonable value for 10636 output_section. Any special sections must be set up to meet 10637 these requirements. */ 10638 osym.st_value += isec->output_offset; 10639 if (!bfd_link_relocatable (flinfo->info)) 10640 { 10641 osym.st_value += isec->output_section->vma; 10642 if (ELF_ST_TYPE (osym.st_info) == STT_TLS) 10643 { 10644 /* STT_TLS symbols are relative to PT_TLS segment base. */ 10645 if (elf_hash_table (flinfo->info)->tls_sec != NULL) 10646 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; 10647 else 10648 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), 10649 STT_NOTYPE); 10650 } 10651 } 10652 10653 indx = bfd_get_symcount (output_bfd); 10654 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); 10655 if (ret == 0) 10656 return FALSE; 10657 else if (ret == 1) 10658 *pindex = indx; 10659 } 10660 10661 if (bed->s->arch_size == 32) 10662 { 10663 r_type_mask = 0xff; 10664 r_sym_shift = 8; 10665 address_size = 4; 10666 } 10667 else 10668 { 10669 r_type_mask = 0xffffffff; 10670 r_sym_shift = 32; 10671 address_size = 8; 10672 } 10673 10674 /* Relocate the contents of each section. */ 10675 sym_hashes = elf_sym_hashes (input_bfd); 10676 for (o = input_bfd->sections; o != NULL; o = o->next) 10677 { 10678 bfd_byte *contents; 10679 10680 if (! o->linker_mark) 10681 { 10682 /* This section was omitted from the link. */ 10683 continue; 10684 } 10685 10686 if (!flinfo->info->resolve_section_groups 10687 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) 10688 { 10689 /* Deal with the group signature symbol. */ 10690 struct bfd_elf_section_data *sec_data = elf_section_data (o); 10691 unsigned long symndx = sec_data->this_hdr.sh_info; 10692 asection *osec = o->output_section; 10693 10694 BFD_ASSERT (bfd_link_relocatable (flinfo->info)); 10695 if (symndx >= locsymcount 10696 || (elf_bad_symtab (input_bfd) 10697 && flinfo->sections[symndx] == NULL)) 10698 { 10699 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; 10700 while (h->root.type == bfd_link_hash_indirect 10701 || h->root.type == bfd_link_hash_warning) 10702 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10703 /* Arrange for symbol to be output. */ 10704 h->indx = -2; 10705 elf_section_data (osec)->this_hdr.sh_info = -2; 10706 } 10707 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) 10708 { 10709 /* We'll use the output section target_index. */ 10710 asection *sec = flinfo->sections[symndx]->output_section; 10711 elf_section_data (osec)->this_hdr.sh_info = sec->target_index; 10712 } 10713 else 10714 { 10715 if (flinfo->indices[symndx] == -1) 10716 { 10717 /* Otherwise output the local symbol now. */ 10718 Elf_Internal_Sym sym = isymbuf[symndx]; 10719 asection *sec = flinfo->sections[symndx]->output_section; 10720 const char *name; 10721 long indx; 10722 int ret; 10723 10724 name = bfd_elf_string_from_elf_section (input_bfd, 10725 symtab_hdr->sh_link, 10726 sym.st_name); 10727 if (name == NULL) 10728 return FALSE; 10729 10730 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10731 sec); 10732 if (sym.st_shndx == SHN_BAD) 10733 return FALSE; 10734 10735 sym.st_value += o->output_offset; 10736 10737 indx = bfd_get_symcount (output_bfd); 10738 ret = elf_link_output_symstrtab (flinfo, name, &sym, o, 10739 NULL); 10740 if (ret == 0) 10741 return FALSE; 10742 else if (ret == 1) 10743 flinfo->indices[symndx] = indx; 10744 else 10745 abort (); 10746 } 10747 elf_section_data (osec)->this_hdr.sh_info 10748 = flinfo->indices[symndx]; 10749 } 10750 } 10751 10752 if ((o->flags & SEC_HAS_CONTENTS) == 0 10753 || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) 10754 continue; 10755 10756 if ((o->flags & SEC_LINKER_CREATED) != 0) 10757 { 10758 /* Section was created by _bfd_elf_link_create_dynamic_sections 10759 or somesuch. */ 10760 continue; 10761 } 10762 10763 /* Get the contents of the section. They have been cached by a 10764 relaxation routine. Note that o is a section in an input 10765 file, so the contents field will not have been set by any of 10766 the routines which work on output files. */ 10767 if (elf_section_data (o)->this_hdr.contents != NULL) 10768 { 10769 contents = elf_section_data (o)->this_hdr.contents; 10770 if (bed->caches_rawsize 10771 && o->rawsize != 0 10772 && o->rawsize < o->size) 10773 { 10774 memcpy (flinfo->contents, contents, o->rawsize); 10775 contents = flinfo->contents; 10776 } 10777 } 10778 else 10779 { 10780 contents = flinfo->contents; 10781 if (! bfd_get_full_section_contents (input_bfd, o, &contents)) 10782 return FALSE; 10783 } 10784 10785 if ((o->flags & SEC_RELOC) != 0) 10786 { 10787 Elf_Internal_Rela *internal_relocs; 10788 Elf_Internal_Rela *rel, *relend; 10789 int action_discarded; 10790 int ret; 10791 10792 /* Get the swapped relocs. */ 10793 internal_relocs 10794 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs, 10795 flinfo->internal_relocs, FALSE); 10796 if (internal_relocs == NULL 10797 && o->reloc_count > 0) 10798 return FALSE; 10799 10800 /* We need to reverse-copy input .ctors/.dtors sections if 10801 they are placed in .init_array/.finit_array for output. */ 10802 if (o->size > address_size 10803 && ((strncmp (o->name, ".ctors", 6) == 0 10804 && strcmp (o->output_section->name, 10805 ".init_array") == 0) 10806 || (strncmp (o->name, ".dtors", 6) == 0 10807 && strcmp (o->output_section->name, 10808 ".fini_array") == 0)) 10809 && (o->name[6] == 0 || o->name[6] == '.')) 10810 { 10811 if (o->size * bed->s->int_rels_per_ext_rel 10812 != o->reloc_count * address_size) 10813 { 10814 _bfd_error_handler 10815 /* xgettext:c-format */ 10816 (_("error: %pB: size of section %pA is not " 10817 "multiple of address size"), 10818 input_bfd, o); 10819 bfd_set_error (bfd_error_bad_value); 10820 return FALSE; 10821 } 10822 o->flags |= SEC_ELF_REVERSE_COPY; 10823 } 10824 10825 action_discarded = -1; 10826 if (!elf_section_ignore_discarded_relocs (o)) 10827 action_discarded = (*bed->action_discarded) (o); 10828 10829 /* Run through the relocs evaluating complex reloc symbols and 10830 looking for relocs against symbols from discarded sections 10831 or section symbols from removed link-once sections. 10832 Complain about relocs against discarded sections. Zero 10833 relocs against removed link-once sections. */ 10834 10835 rel = internal_relocs; 10836 relend = rel + o->reloc_count; 10837 for ( ; rel < relend; rel++) 10838 { 10839 unsigned long r_symndx = rel->r_info >> r_sym_shift; 10840 unsigned int s_type; 10841 asection **ps, *sec; 10842 struct elf_link_hash_entry *h = NULL; 10843 const char *sym_name; 10844 10845 if (r_symndx == STN_UNDEF) 10846 continue; 10847 10848 if (r_symndx >= locsymcount 10849 || (elf_bad_symtab (input_bfd) 10850 && flinfo->sections[r_symndx] == NULL)) 10851 { 10852 h = sym_hashes[r_symndx - extsymoff]; 10853 10854 /* Badly formatted input files can contain relocs that 10855 reference non-existant symbols. Check here so that 10856 we do not seg fault. */ 10857 if (h == NULL) 10858 { 10859 _bfd_error_handler 10860 /* xgettext:c-format */ 10861 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA " 10862 "that references a non-existent global symbol"), 10863 input_bfd, (uint64_t) rel->r_info, o); 10864 bfd_set_error (bfd_error_bad_value); 10865 return FALSE; 10866 } 10867 10868 while (h->root.type == bfd_link_hash_indirect 10869 || h->root.type == bfd_link_hash_warning) 10870 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10871 10872 s_type = h->type; 10873 10874 /* If a plugin symbol is referenced from a non-IR file, 10875 mark the symbol as undefined. Note that the 10876 linker may attach linker created dynamic sections 10877 to the plugin bfd. Symbols defined in linker 10878 created sections are not plugin symbols. */ 10879 if ((h->root.non_ir_ref_regular 10880 || h->root.non_ir_ref_dynamic) 10881 && (h->root.type == bfd_link_hash_defined 10882 || h->root.type == bfd_link_hash_defweak) 10883 && (h->root.u.def.section->flags 10884 & SEC_LINKER_CREATED) == 0 10885 && h->root.u.def.section->owner != NULL 10886 && (h->root.u.def.section->owner->flags 10887 & BFD_PLUGIN) != 0) 10888 { 10889 h->root.type = bfd_link_hash_undefined; 10890 h->root.u.undef.abfd = h->root.u.def.section->owner; 10891 } 10892 10893 ps = NULL; 10894 if (h->root.type == bfd_link_hash_defined 10895 || h->root.type == bfd_link_hash_defweak) 10896 ps = &h->root.u.def.section; 10897 10898 sym_name = h->root.root.string; 10899 } 10900 else 10901 { 10902 Elf_Internal_Sym *sym = isymbuf + r_symndx; 10903 10904 s_type = ELF_ST_TYPE (sym->st_info); 10905 ps = &flinfo->sections[r_symndx]; 10906 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10907 sym, *ps); 10908 } 10909 10910 if ((s_type == STT_RELC || s_type == STT_SRELC) 10911 && !bfd_link_relocatable (flinfo->info)) 10912 { 10913 bfd_vma val; 10914 bfd_vma dot = (rel->r_offset 10915 + o->output_offset + o->output_section->vma); 10916 #ifdef DEBUG 10917 printf ("Encountered a complex symbol!"); 10918 printf (" (input_bfd %s, section %s, reloc %ld\n", 10919 input_bfd->filename, o->name, 10920 (long) (rel - internal_relocs)); 10921 printf (" symbol: idx %8.8lx, name %s\n", 10922 r_symndx, sym_name); 10923 printf (" reloc : info %8.8lx, addr %8.8lx\n", 10924 (unsigned long) rel->r_info, 10925 (unsigned long) rel->r_offset); 10926 #endif 10927 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, 10928 isymbuf, locsymcount, s_type == STT_SRELC)) 10929 return FALSE; 10930 10931 /* Symbol evaluated OK. Update to absolute value. */ 10932 set_symbol_value (input_bfd, isymbuf, locsymcount, 10933 r_symndx, val); 10934 continue; 10935 } 10936 10937 if (action_discarded != -1 && ps != NULL) 10938 { 10939 /* Complain if the definition comes from a 10940 discarded section. */ 10941 if ((sec = *ps) != NULL && discarded_section (sec)) 10942 { 10943 BFD_ASSERT (r_symndx != STN_UNDEF); 10944 if (action_discarded & COMPLAIN) 10945 (*flinfo->info->callbacks->einfo) 10946 /* xgettext:c-format */ 10947 (_("%X`%s' referenced in section `%pA' of %pB: " 10948 "defined in discarded section `%pA' of %pB\n"), 10949 sym_name, o, input_bfd, sec, sec->owner); 10950 10951 /* Try to do the best we can to support buggy old 10952 versions of gcc. Pretend that the symbol is 10953 really defined in the kept linkonce section. 10954 FIXME: This is quite broken. Modifying the 10955 symbol here means we will be changing all later 10956 uses of the symbol, not just in this section. */ 10957 if (action_discarded & PRETEND) 10958 { 10959 asection *kept; 10960 10961 kept = _bfd_elf_check_kept_section (sec, 10962 flinfo->info); 10963 if (kept != NULL) 10964 { 10965 *ps = kept; 10966 continue; 10967 } 10968 } 10969 } 10970 } 10971 } 10972 10973 /* Relocate the section by invoking a back end routine. 10974 10975 The back end routine is responsible for adjusting the 10976 section contents as necessary, and (if using Rela relocs 10977 and generating a relocatable output file) adjusting the 10978 reloc addend as necessary. 10979 10980 The back end routine does not have to worry about setting 10981 the reloc address or the reloc symbol index. 10982 10983 The back end routine is given a pointer to the swapped in 10984 internal symbols, and can access the hash table entries 10985 for the external symbols via elf_sym_hashes (input_bfd). 10986 10987 When generating relocatable output, the back end routine 10988 must handle STB_LOCAL/STT_SECTION symbols specially. The 10989 output symbol is going to be a section symbol 10990 corresponding to the output section, which will require 10991 the addend to be adjusted. */ 10992 10993 ret = (*relocate_section) (output_bfd, flinfo->info, 10994 input_bfd, o, contents, 10995 internal_relocs, 10996 isymbuf, 10997 flinfo->sections); 10998 if (!ret) 10999 return FALSE; 11000 11001 if (ret == 2 11002 || bfd_link_relocatable (flinfo->info) 11003 || flinfo->info->emitrelocations) 11004 { 11005 Elf_Internal_Rela *irela; 11006 Elf_Internal_Rela *irelaend, *irelamid; 11007 bfd_vma last_offset; 11008 struct elf_link_hash_entry **rel_hash; 11009 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; 11010 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; 11011 unsigned int next_erel; 11012 bfd_boolean rela_normal; 11013 struct bfd_elf_section_data *esdi, *esdo; 11014 11015 esdi = elf_section_data (o); 11016 esdo = elf_section_data (o->output_section); 11017 rela_normal = FALSE; 11018 11019 /* Adjust the reloc addresses and symbol indices. */ 11020 11021 irela = internal_relocs; 11022 irelaend = irela + o->reloc_count; 11023 rel_hash = esdo->rel.hashes + esdo->rel.count; 11024 /* We start processing the REL relocs, if any. When we reach 11025 IRELAMID in the loop, we switch to the RELA relocs. */ 11026 irelamid = irela; 11027 if (esdi->rel.hdr != NULL) 11028 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) 11029 * bed->s->int_rels_per_ext_rel); 11030 rel_hash_list = rel_hash; 11031 rela_hash_list = NULL; 11032 last_offset = o->output_offset; 11033 if (!bfd_link_relocatable (flinfo->info)) 11034 last_offset += o->output_section->vma; 11035 for (next_erel = 0; irela < irelaend; irela++, next_erel++) 11036 { 11037 unsigned long r_symndx; 11038 asection *sec; 11039 Elf_Internal_Sym sym; 11040 11041 if (next_erel == bed->s->int_rels_per_ext_rel) 11042 { 11043 rel_hash++; 11044 next_erel = 0; 11045 } 11046 11047 if (irela == irelamid) 11048 { 11049 rel_hash = esdo->rela.hashes + esdo->rela.count; 11050 rela_hash_list = rel_hash; 11051 rela_normal = bed->rela_normal; 11052 } 11053 11054 irela->r_offset = _bfd_elf_section_offset (output_bfd, 11055 flinfo->info, o, 11056 irela->r_offset); 11057 if (irela->r_offset >= (bfd_vma) -2) 11058 { 11059 /* This is a reloc for a deleted entry or somesuch. 11060 Turn it into an R_*_NONE reloc, at the same 11061 offset as the last reloc. elf_eh_frame.c and 11062 bfd_elf_discard_info rely on reloc offsets 11063 being ordered. */ 11064 irela->r_offset = last_offset; 11065 irela->r_info = 0; 11066 irela->r_addend = 0; 11067 continue; 11068 } 11069 11070 irela->r_offset += o->output_offset; 11071 11072 /* Relocs in an executable have to be virtual addresses. */ 11073 if (!bfd_link_relocatable (flinfo->info)) 11074 irela->r_offset += o->output_section->vma; 11075 11076 last_offset = irela->r_offset; 11077 11078 r_symndx = irela->r_info >> r_sym_shift; 11079 if (r_symndx == STN_UNDEF) 11080 continue; 11081 11082 if (r_symndx >= locsymcount 11083 || (elf_bad_symtab (input_bfd) 11084 && flinfo->sections[r_symndx] == NULL)) 11085 { 11086 struct elf_link_hash_entry *rh; 11087 unsigned long indx; 11088 11089 /* This is a reloc against a global symbol. We 11090 have not yet output all the local symbols, so 11091 we do not know the symbol index of any global 11092 symbol. We set the rel_hash entry for this 11093 reloc to point to the global hash table entry 11094 for this symbol. The symbol index is then 11095 set at the end of bfd_elf_final_link. */ 11096 indx = r_symndx - extsymoff; 11097 rh = elf_sym_hashes (input_bfd)[indx]; 11098 while (rh->root.type == bfd_link_hash_indirect 11099 || rh->root.type == bfd_link_hash_warning) 11100 rh = (struct elf_link_hash_entry *) rh->root.u.i.link; 11101 11102 /* Setting the index to -2 tells 11103 elf_link_output_extsym that this symbol is 11104 used by a reloc. */ 11105 BFD_ASSERT (rh->indx < 0); 11106 rh->indx = -2; 11107 *rel_hash = rh; 11108 11109 continue; 11110 } 11111 11112 /* This is a reloc against a local symbol. */ 11113 11114 *rel_hash = NULL; 11115 sym = isymbuf[r_symndx]; 11116 sec = flinfo->sections[r_symndx]; 11117 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) 11118 { 11119 /* I suppose the backend ought to fill in the 11120 section of any STT_SECTION symbol against a 11121 processor specific section. */ 11122 r_symndx = STN_UNDEF; 11123 if (bfd_is_abs_section (sec)) 11124 ; 11125 else if (sec == NULL || sec->owner == NULL) 11126 { 11127 bfd_set_error (bfd_error_bad_value); 11128 return FALSE; 11129 } 11130 else 11131 { 11132 asection *osec = sec->output_section; 11133 11134 /* If we have discarded a section, the output 11135 section will be the absolute section. In 11136 case of discarded SEC_MERGE sections, use 11137 the kept section. relocate_section should 11138 have already handled discarded linkonce 11139 sections. */ 11140 if (bfd_is_abs_section (osec) 11141 && sec->kept_section != NULL 11142 && sec->kept_section->output_section != NULL) 11143 { 11144 osec = sec->kept_section->output_section; 11145 irela->r_addend -= osec->vma; 11146 } 11147 11148 if (!bfd_is_abs_section (osec)) 11149 { 11150 r_symndx = osec->target_index; 11151 if (r_symndx == STN_UNDEF) 11152 { 11153 irela->r_addend += osec->vma; 11154 osec = _bfd_nearby_section (output_bfd, osec, 11155 osec->vma); 11156 irela->r_addend -= osec->vma; 11157 r_symndx = osec->target_index; 11158 } 11159 } 11160 } 11161 11162 /* Adjust the addend according to where the 11163 section winds up in the output section. */ 11164 if (rela_normal) 11165 irela->r_addend += sec->output_offset; 11166 } 11167 else 11168 { 11169 if (flinfo->indices[r_symndx] == -1) 11170 { 11171 unsigned long shlink; 11172 const char *name; 11173 asection *osec; 11174 long indx; 11175 11176 if (flinfo->info->strip == strip_all) 11177 { 11178 /* You can't do ld -r -s. */ 11179 bfd_set_error (bfd_error_invalid_operation); 11180 return FALSE; 11181 } 11182 11183 /* This symbol was skipped earlier, but 11184 since it is needed by a reloc, we 11185 must output it now. */ 11186 shlink = symtab_hdr->sh_link; 11187 name = (bfd_elf_string_from_elf_section 11188 (input_bfd, shlink, sym.st_name)); 11189 if (name == NULL) 11190 return FALSE; 11191 11192 osec = sec->output_section; 11193 sym.st_shndx = 11194 _bfd_elf_section_from_bfd_section (output_bfd, 11195 osec); 11196 if (sym.st_shndx == SHN_BAD) 11197 return FALSE; 11198 11199 sym.st_value += sec->output_offset; 11200 if (!bfd_link_relocatable (flinfo->info)) 11201 { 11202 sym.st_value += osec->vma; 11203 if (ELF_ST_TYPE (sym.st_info) == STT_TLS) 11204 { 11205 struct elf_link_hash_table *htab 11206 = elf_hash_table (flinfo->info); 11207 11208 /* STT_TLS symbols are relative to PT_TLS 11209 segment base. */ 11210 if (htab->tls_sec != NULL) 11211 sym.st_value -= htab->tls_sec->vma; 11212 else 11213 sym.st_info 11214 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), 11215 STT_NOTYPE); 11216 } 11217 } 11218 11219 indx = bfd_get_symcount (output_bfd); 11220 ret = elf_link_output_symstrtab (flinfo, name, 11221 &sym, sec, 11222 NULL); 11223 if (ret == 0) 11224 return FALSE; 11225 else if (ret == 1) 11226 flinfo->indices[r_symndx] = indx; 11227 else 11228 abort (); 11229 } 11230 11231 r_symndx = flinfo->indices[r_symndx]; 11232 } 11233 11234 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift 11235 | (irela->r_info & r_type_mask)); 11236 } 11237 11238 /* Swap out the relocs. */ 11239 input_rel_hdr = esdi->rel.hdr; 11240 if (input_rel_hdr && input_rel_hdr->sh_size != 0) 11241 { 11242 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11243 input_rel_hdr, 11244 internal_relocs, 11245 rel_hash_list)) 11246 return FALSE; 11247 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) 11248 * bed->s->int_rels_per_ext_rel); 11249 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); 11250 } 11251 11252 input_rela_hdr = esdi->rela.hdr; 11253 if (input_rela_hdr && input_rela_hdr->sh_size != 0) 11254 { 11255 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11256 input_rela_hdr, 11257 internal_relocs, 11258 rela_hash_list)) 11259 return FALSE; 11260 } 11261 } 11262 } 11263 11264 /* Write out the modified section contents. */ 11265 if (bed->elf_backend_write_section 11266 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, 11267 contents)) 11268 { 11269 /* Section written out. */ 11270 } 11271 else switch (o->sec_info_type) 11272 { 11273 case SEC_INFO_TYPE_STABS: 11274 if (! (_bfd_write_section_stabs 11275 (output_bfd, 11276 &elf_hash_table (flinfo->info)->stab_info, 11277 o, &elf_section_data (o)->sec_info, contents))) 11278 return FALSE; 11279 break; 11280 case SEC_INFO_TYPE_MERGE: 11281 if (! _bfd_write_merged_section (output_bfd, o, 11282 elf_section_data (o)->sec_info)) 11283 return FALSE; 11284 break; 11285 case SEC_INFO_TYPE_EH_FRAME: 11286 { 11287 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, 11288 o, contents)) 11289 return FALSE; 11290 } 11291 break; 11292 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 11293 { 11294 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, 11295 flinfo->info, 11296 o, contents)) 11297 return FALSE; 11298 } 11299 break; 11300 default: 11301 { 11302 if (! (o->flags & SEC_EXCLUDE)) 11303 { 11304 file_ptr offset = (file_ptr) o->output_offset; 11305 bfd_size_type todo = o->size; 11306 11307 offset *= bfd_octets_per_byte (output_bfd, o); 11308 11309 if ((o->flags & SEC_ELF_REVERSE_COPY)) 11310 { 11311 /* Reverse-copy input section to output. */ 11312 do 11313 { 11314 todo -= address_size; 11315 if (! bfd_set_section_contents (output_bfd, 11316 o->output_section, 11317 contents + todo, 11318 offset, 11319 address_size)) 11320 return FALSE; 11321 if (todo == 0) 11322 break; 11323 offset += address_size; 11324 } 11325 while (1); 11326 } 11327 else if (! bfd_set_section_contents (output_bfd, 11328 o->output_section, 11329 contents, 11330 offset, todo)) 11331 return FALSE; 11332 } 11333 } 11334 break; 11335 } 11336 } 11337 11338 return TRUE; 11339 } 11340 11341 /* Generate a reloc when linking an ELF file. This is a reloc 11342 requested by the linker, and does not come from any input file. This 11343 is used to build constructor and destructor tables when linking 11344 with -Ur. */ 11345 11346 static bfd_boolean 11347 elf_reloc_link_order (bfd *output_bfd, 11348 struct bfd_link_info *info, 11349 asection *output_section, 11350 struct bfd_link_order *link_order) 11351 { 11352 reloc_howto_type *howto; 11353 long indx; 11354 bfd_vma offset; 11355 bfd_vma addend; 11356 struct bfd_elf_section_reloc_data *reldata; 11357 struct elf_link_hash_entry **rel_hash_ptr; 11358 Elf_Internal_Shdr *rel_hdr; 11359 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 11360 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; 11361 bfd_byte *erel; 11362 unsigned int i; 11363 struct bfd_elf_section_data *esdo = elf_section_data (output_section); 11364 11365 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); 11366 if (howto == NULL) 11367 { 11368 bfd_set_error (bfd_error_bad_value); 11369 return FALSE; 11370 } 11371 11372 addend = link_order->u.reloc.p->addend; 11373 11374 if (esdo->rel.hdr) 11375 reldata = &esdo->rel; 11376 else if (esdo->rela.hdr) 11377 reldata = &esdo->rela; 11378 else 11379 { 11380 reldata = NULL; 11381 BFD_ASSERT (0); 11382 } 11383 11384 /* Figure out the symbol index. */ 11385 rel_hash_ptr = reldata->hashes + reldata->count; 11386 if (link_order->type == bfd_section_reloc_link_order) 11387 { 11388 indx = link_order->u.reloc.p->u.section->target_index; 11389 BFD_ASSERT (indx != 0); 11390 *rel_hash_ptr = NULL; 11391 } 11392 else 11393 { 11394 struct elf_link_hash_entry *h; 11395 11396 /* Treat a reloc against a defined symbol as though it were 11397 actually against the section. */ 11398 h = ((struct elf_link_hash_entry *) 11399 bfd_wrapped_link_hash_lookup (output_bfd, info, 11400 link_order->u.reloc.p->u.name, 11401 FALSE, FALSE, TRUE)); 11402 if (h != NULL 11403 && (h->root.type == bfd_link_hash_defined 11404 || h->root.type == bfd_link_hash_defweak)) 11405 { 11406 asection *section; 11407 11408 section = h->root.u.def.section; 11409 indx = section->output_section->target_index; 11410 *rel_hash_ptr = NULL; 11411 /* It seems that we ought to add the symbol value to the 11412 addend here, but in practice it has already been added 11413 because it was passed to constructor_callback. */ 11414 addend += section->output_section->vma + section->output_offset; 11415 } 11416 else if (h != NULL) 11417 { 11418 /* Setting the index to -2 tells elf_link_output_extsym that 11419 this symbol is used by a reloc. */ 11420 h->indx = -2; 11421 *rel_hash_ptr = h; 11422 indx = 0; 11423 } 11424 else 11425 { 11426 (*info->callbacks->unattached_reloc) 11427 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 11428 indx = 0; 11429 } 11430 } 11431 11432 /* If this is an inplace reloc, we must write the addend into the 11433 object file. */ 11434 if (howto->partial_inplace && addend != 0) 11435 { 11436 bfd_size_type size; 11437 bfd_reloc_status_type rstat; 11438 bfd_byte *buf; 11439 bfd_boolean ok; 11440 const char *sym_name; 11441 bfd_size_type octets; 11442 11443 size = (bfd_size_type) bfd_get_reloc_size (howto); 11444 buf = (bfd_byte *) bfd_zmalloc (size); 11445 if (buf == NULL && size != 0) 11446 return FALSE; 11447 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); 11448 switch (rstat) 11449 { 11450 case bfd_reloc_ok: 11451 break; 11452 11453 default: 11454 case bfd_reloc_outofrange: 11455 abort (); 11456 11457 case bfd_reloc_overflow: 11458 if (link_order->type == bfd_section_reloc_link_order) 11459 sym_name = bfd_section_name (link_order->u.reloc.p->u.section); 11460 else 11461 sym_name = link_order->u.reloc.p->u.name; 11462 (*info->callbacks->reloc_overflow) (info, NULL, sym_name, 11463 howto->name, addend, NULL, NULL, 11464 (bfd_vma) 0); 11465 break; 11466 } 11467 11468 octets = link_order->offset * bfd_octets_per_byte (output_bfd, 11469 output_section); 11470 ok = bfd_set_section_contents (output_bfd, output_section, buf, 11471 octets, size); 11472 free (buf); 11473 if (! ok) 11474 return FALSE; 11475 } 11476 11477 /* The address of a reloc is relative to the section in a 11478 relocatable file, and is a virtual address in an executable 11479 file. */ 11480 offset = link_order->offset; 11481 if (! bfd_link_relocatable (info)) 11482 offset += output_section->vma; 11483 11484 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) 11485 { 11486 irel[i].r_offset = offset; 11487 irel[i].r_info = 0; 11488 irel[i].r_addend = 0; 11489 } 11490 if (bed->s->arch_size == 32) 11491 irel[0].r_info = ELF32_R_INFO (indx, howto->type); 11492 else 11493 irel[0].r_info = ELF64_R_INFO (indx, howto->type); 11494 11495 rel_hdr = reldata->hdr; 11496 erel = rel_hdr->contents; 11497 if (rel_hdr->sh_type == SHT_REL) 11498 { 11499 erel += reldata->count * bed->s->sizeof_rel; 11500 (*bed->s->swap_reloc_out) (output_bfd, irel, erel); 11501 } 11502 else 11503 { 11504 irel[0].r_addend = addend; 11505 erel += reldata->count * bed->s->sizeof_rela; 11506 (*bed->s->swap_reloca_out) (output_bfd, irel, erel); 11507 } 11508 11509 ++reldata->count; 11510 11511 return TRUE; 11512 } 11513 11514 11515 /* Compare two sections based on the locations of the sections they are 11516 linked to. Used by elf_fixup_link_order. */ 11517 11518 static int 11519 compare_link_order (const void *a, const void *b) 11520 { 11521 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a; 11522 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b; 11523 asection *asec = elf_linked_to_section (alo->u.indirect.section); 11524 asection *bsec = elf_linked_to_section (blo->u.indirect.section); 11525 bfd_vma apos = asec->output_section->lma + asec->output_offset; 11526 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset; 11527 11528 if (apos < bpos) 11529 return -1; 11530 if (apos > bpos) 11531 return 1; 11532 11533 /* The only way we should get matching LMAs is when the first of two 11534 sections has zero size. */ 11535 if (asec->size < bsec->size) 11536 return -1; 11537 if (asec->size > bsec->size) 11538 return 1; 11539 11540 /* If they are both zero size then they almost certainly have the same 11541 VMA and thus are not ordered with respect to each other. Test VMA 11542 anyway, and fall back to id to make the result reproducible across 11543 qsort implementations. */ 11544 apos = asec->output_section->vma + asec->output_offset; 11545 bpos = bsec->output_section->vma + bsec->output_offset; 11546 if (apos < bpos) 11547 return -1; 11548 if (apos > bpos) 11549 return 1; 11550 11551 return asec->id - bsec->id; 11552 } 11553 11554 11555 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same 11556 order as their linked sections. Returns false if this could not be done 11557 because an output section includes both ordered and unordered 11558 sections. Ideally we'd do this in the linker proper. */ 11559 11560 static bfd_boolean 11561 elf_fixup_link_order (bfd *abfd, asection *o) 11562 { 11563 size_t seen_linkorder; 11564 size_t seen_other; 11565 size_t n; 11566 struct bfd_link_order *p; 11567 bfd *sub; 11568 struct bfd_link_order **sections; 11569 asection *s, *other_sec, *linkorder_sec; 11570 bfd_vma offset; 11571 11572 other_sec = NULL; 11573 linkorder_sec = NULL; 11574 seen_other = 0; 11575 seen_linkorder = 0; 11576 for (p = o->map_head.link_order; p != NULL; p = p->next) 11577 { 11578 if (p->type == bfd_indirect_link_order) 11579 { 11580 s = p->u.indirect.section; 11581 sub = s->owner; 11582 if ((s->flags & SEC_LINKER_CREATED) == 0 11583 && bfd_get_flavour (sub) == bfd_target_elf_flavour 11584 && elf_section_data (s) != NULL 11585 && elf_linked_to_section (s) != NULL) 11586 { 11587 seen_linkorder++; 11588 linkorder_sec = s; 11589 } 11590 else 11591 { 11592 seen_other++; 11593 other_sec = s; 11594 } 11595 } 11596 else 11597 seen_other++; 11598 11599 if (seen_other && seen_linkorder) 11600 { 11601 if (other_sec && linkorder_sec) 11602 _bfd_error_handler 11603 /* xgettext:c-format */ 11604 (_("%pA has both ordered [`%pA' in %pB] " 11605 "and unordered [`%pA' in %pB] sections"), 11606 o, linkorder_sec, linkorder_sec->owner, 11607 other_sec, other_sec->owner); 11608 else 11609 _bfd_error_handler 11610 (_("%pA has both ordered and unordered sections"), o); 11611 bfd_set_error (bfd_error_bad_value); 11612 return FALSE; 11613 } 11614 } 11615 11616 if (!seen_linkorder) 11617 return TRUE; 11618 11619 sections = bfd_malloc (seen_linkorder * sizeof (*sections)); 11620 if (sections == NULL) 11621 return FALSE; 11622 11623 seen_linkorder = 0; 11624 for (p = o->map_head.link_order; p != NULL; p = p->next) 11625 sections[seen_linkorder++] = p; 11626 11627 /* Sort the input sections in the order of their linked section. */ 11628 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order); 11629 11630 /* Change the offsets of the sections. */ 11631 offset = 0; 11632 for (n = 0; n < seen_linkorder; n++) 11633 { 11634 bfd_vma mask; 11635 s = sections[n]->u.indirect.section; 11636 mask = ~(bfd_vma) 0 << s->alignment_power; 11637 offset = (offset + ~mask) & mask; 11638 s->output_offset = offset / bfd_octets_per_byte (abfd, s); 11639 sections[n]->offset = offset; 11640 offset += sections[n]->size; 11641 } 11642 11643 free (sections); 11644 return TRUE; 11645 } 11646 11647 /* Generate an import library in INFO->implib_bfd from symbols in ABFD. 11648 Returns TRUE upon success, FALSE otherwise. */ 11649 11650 static bfd_boolean 11651 elf_output_implib (bfd *abfd, struct bfd_link_info *info) 11652 { 11653 bfd_boolean ret = FALSE; 11654 bfd *implib_bfd; 11655 const struct elf_backend_data *bed; 11656 flagword flags; 11657 enum bfd_architecture arch; 11658 unsigned int mach; 11659 asymbol **sympp = NULL; 11660 long symsize; 11661 long symcount; 11662 long src_count; 11663 elf_symbol_type *osymbuf; 11664 11665 implib_bfd = info->out_implib_bfd; 11666 bed = get_elf_backend_data (abfd); 11667 11668 if (!bfd_set_format (implib_bfd, bfd_object)) 11669 return FALSE; 11670 11671 /* Use flag from executable but make it a relocatable object. */ 11672 flags = bfd_get_file_flags (abfd); 11673 flags &= ~HAS_RELOC; 11674 if (!bfd_set_start_address (implib_bfd, 0) 11675 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) 11676 return FALSE; 11677 11678 /* Copy architecture of output file to import library file. */ 11679 arch = bfd_get_arch (abfd); 11680 mach = bfd_get_mach (abfd); 11681 if (!bfd_set_arch_mach (implib_bfd, arch, mach) 11682 && (abfd->target_defaulted 11683 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) 11684 return FALSE; 11685 11686 /* Get symbol table size. */ 11687 symsize = bfd_get_symtab_upper_bound (abfd); 11688 if (symsize < 0) 11689 return FALSE; 11690 11691 /* Read in the symbol table. */ 11692 sympp = (asymbol **) bfd_malloc (symsize); 11693 if (sympp == NULL) 11694 return FALSE; 11695 11696 symcount = bfd_canonicalize_symtab (abfd, sympp); 11697 if (symcount < 0) 11698 goto free_sym_buf; 11699 11700 /* Allow the BFD backend to copy any private header data it 11701 understands from the output BFD to the import library BFD. */ 11702 if (! bfd_copy_private_header_data (abfd, implib_bfd)) 11703 goto free_sym_buf; 11704 11705 /* Filter symbols to appear in the import library. */ 11706 if (bed->elf_backend_filter_implib_symbols) 11707 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, 11708 symcount); 11709 else 11710 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); 11711 if (symcount == 0) 11712 { 11713 bfd_set_error (bfd_error_no_symbols); 11714 _bfd_error_handler (_("%pB: no symbol found for import library"), 11715 implib_bfd); 11716 goto free_sym_buf; 11717 } 11718 11719 11720 /* Make symbols absolute. */ 11721 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount, 11722 sizeof (*osymbuf)); 11723 if (osymbuf == NULL) 11724 goto free_sym_buf; 11725 11726 for (src_count = 0; src_count < symcount; src_count++) 11727 { 11728 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], 11729 sizeof (*osymbuf)); 11730 osymbuf[src_count].symbol.section = bfd_abs_section_ptr; 11731 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; 11732 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; 11733 osymbuf[src_count].internal_elf_sym.st_value = 11734 osymbuf[src_count].symbol.value; 11735 sympp[src_count] = &osymbuf[src_count].symbol; 11736 } 11737 11738 bfd_set_symtab (implib_bfd, sympp, symcount); 11739 11740 /* Allow the BFD backend to copy any private data it understands 11741 from the output BFD to the import library BFD. This is done last 11742 to permit the routine to look at the filtered symbol table. */ 11743 if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) 11744 goto free_sym_buf; 11745 11746 if (!bfd_close (implib_bfd)) 11747 goto free_sym_buf; 11748 11749 ret = TRUE; 11750 11751 free_sym_buf: 11752 free (sympp); 11753 return ret; 11754 } 11755 11756 static void 11757 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) 11758 { 11759 asection *o; 11760 11761 if (flinfo->symstrtab != NULL) 11762 _bfd_elf_strtab_free (flinfo->symstrtab); 11763 if (flinfo->contents != NULL) 11764 free (flinfo->contents); 11765 if (flinfo->external_relocs != NULL) 11766 free (flinfo->external_relocs); 11767 if (flinfo->internal_relocs != NULL) 11768 free (flinfo->internal_relocs); 11769 if (flinfo->external_syms != NULL) 11770 free (flinfo->external_syms); 11771 if (flinfo->locsym_shndx != NULL) 11772 free (flinfo->locsym_shndx); 11773 if (flinfo->internal_syms != NULL) 11774 free (flinfo->internal_syms); 11775 if (flinfo->indices != NULL) 11776 free (flinfo->indices); 11777 if (flinfo->sections != NULL) 11778 free (flinfo->sections); 11779 if (flinfo->symshndxbuf != NULL 11780 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) 11781 free (flinfo->symshndxbuf); 11782 for (o = obfd->sections; o != NULL; o = o->next) 11783 { 11784 struct bfd_elf_section_data *esdo = elf_section_data (o); 11785 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) 11786 free (esdo->rel.hashes); 11787 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) 11788 free (esdo->rela.hashes); 11789 } 11790 } 11791 11792 /* Do the final step of an ELF link. */ 11793 11794 bfd_boolean 11795 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) 11796 { 11797 bfd_boolean dynamic; 11798 bfd_boolean emit_relocs; 11799 bfd *dynobj; 11800 struct elf_final_link_info flinfo; 11801 asection *o; 11802 struct bfd_link_order *p; 11803 bfd *sub; 11804 bfd_size_type max_contents_size; 11805 bfd_size_type max_external_reloc_size; 11806 bfd_size_type max_internal_reloc_count; 11807 bfd_size_type max_sym_count; 11808 bfd_size_type max_sym_shndx_count; 11809 Elf_Internal_Sym elfsym; 11810 unsigned int i; 11811 Elf_Internal_Shdr *symtab_hdr; 11812 Elf_Internal_Shdr *symtab_shndx_hdr; 11813 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 11814 struct elf_outext_info eoinfo; 11815 bfd_boolean merged; 11816 size_t relativecount = 0; 11817 asection *reldyn = 0; 11818 bfd_size_type amt; 11819 asection *attr_section = NULL; 11820 bfd_vma attr_size = 0; 11821 const char *std_attrs_section; 11822 struct elf_link_hash_table *htab = elf_hash_table (info); 11823 bfd_boolean sections_removed; 11824 11825 if (!is_elf_hash_table (htab)) 11826 return FALSE; 11827 11828 if (bfd_link_pic (info)) 11829 abfd->flags |= DYNAMIC; 11830 11831 dynamic = htab->dynamic_sections_created; 11832 dynobj = htab->dynobj; 11833 11834 emit_relocs = (bfd_link_relocatable (info) 11835 || info->emitrelocations); 11836 11837 flinfo.info = info; 11838 flinfo.output_bfd = abfd; 11839 flinfo.symstrtab = _bfd_elf_strtab_init (); 11840 if (flinfo.symstrtab == NULL) 11841 return FALSE; 11842 11843 if (! dynamic) 11844 { 11845 flinfo.hash_sec = NULL; 11846 flinfo.symver_sec = NULL; 11847 } 11848 else 11849 { 11850 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); 11851 /* Note that dynsym_sec can be NULL (on VMS). */ 11852 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); 11853 /* Note that it is OK if symver_sec is NULL. */ 11854 } 11855 11856 flinfo.contents = NULL; 11857 flinfo.external_relocs = NULL; 11858 flinfo.internal_relocs = NULL; 11859 flinfo.external_syms = NULL; 11860 flinfo.locsym_shndx = NULL; 11861 flinfo.internal_syms = NULL; 11862 flinfo.indices = NULL; 11863 flinfo.sections = NULL; 11864 flinfo.symshndxbuf = NULL; 11865 flinfo.filesym_count = 0; 11866 11867 /* The object attributes have been merged. Remove the input 11868 sections from the link, and set the contents of the output 11869 section. */ 11870 sections_removed = FALSE; 11871 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; 11872 for (o = abfd->sections; o != NULL; o = o->next) 11873 { 11874 bfd_boolean remove_section = FALSE; 11875 11876 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) 11877 || strcmp (o->name, ".gnu.attributes") == 0) 11878 { 11879 for (p = o->map_head.link_order; p != NULL; p = p->next) 11880 { 11881 asection *input_section; 11882 11883 if (p->type != bfd_indirect_link_order) 11884 continue; 11885 input_section = p->u.indirect.section; 11886 /* Hack: reset the SEC_HAS_CONTENTS flag so that 11887 elf_link_input_bfd ignores this section. */ 11888 input_section->flags &= ~SEC_HAS_CONTENTS; 11889 } 11890 11891 attr_size = bfd_elf_obj_attr_size (abfd); 11892 bfd_set_section_size (o, attr_size); 11893 /* Skip this section later on. */ 11894 o->map_head.link_order = NULL; 11895 if (attr_size) 11896 attr_section = o; 11897 else 11898 remove_section = TRUE; 11899 } 11900 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) 11901 { 11902 /* Remove empty group section from linker output. */ 11903 remove_section = TRUE; 11904 } 11905 if (remove_section) 11906 { 11907 o->flags |= SEC_EXCLUDE; 11908 bfd_section_list_remove (abfd, o); 11909 abfd->section_count--; 11910 sections_removed = TRUE; 11911 } 11912 } 11913 if (sections_removed) 11914 _bfd_fix_excluded_sec_syms (abfd, info); 11915 11916 /* Count up the number of relocations we will output for each output 11917 section, so that we know the sizes of the reloc sections. We 11918 also figure out some maximum sizes. */ 11919 max_contents_size = 0; 11920 max_external_reloc_size = 0; 11921 max_internal_reloc_count = 0; 11922 max_sym_count = 0; 11923 max_sym_shndx_count = 0; 11924 merged = FALSE; 11925 for (o = abfd->sections; o != NULL; o = o->next) 11926 { 11927 struct bfd_elf_section_data *esdo = elf_section_data (o); 11928 o->reloc_count = 0; 11929 11930 for (p = o->map_head.link_order; p != NULL; p = p->next) 11931 { 11932 unsigned int reloc_count = 0; 11933 unsigned int additional_reloc_count = 0; 11934 struct bfd_elf_section_data *esdi = NULL; 11935 11936 if (p->type == bfd_section_reloc_link_order 11937 || p->type == bfd_symbol_reloc_link_order) 11938 reloc_count = 1; 11939 else if (p->type == bfd_indirect_link_order) 11940 { 11941 asection *sec; 11942 11943 sec = p->u.indirect.section; 11944 11945 /* Mark all sections which are to be included in the 11946 link. This will normally be every section. We need 11947 to do this so that we can identify any sections which 11948 the linker has decided to not include. */ 11949 sec->linker_mark = TRUE; 11950 11951 if (sec->flags & SEC_MERGE) 11952 merged = TRUE; 11953 11954 if (sec->rawsize > max_contents_size) 11955 max_contents_size = sec->rawsize; 11956 if (sec->size > max_contents_size) 11957 max_contents_size = sec->size; 11958 11959 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour 11960 && (sec->owner->flags & DYNAMIC) == 0) 11961 { 11962 size_t sym_count; 11963 11964 /* We are interested in just local symbols, not all 11965 symbols. */ 11966 if (elf_bad_symtab (sec->owner)) 11967 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size 11968 / bed->s->sizeof_sym); 11969 else 11970 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; 11971 11972 if (sym_count > max_sym_count) 11973 max_sym_count = sym_count; 11974 11975 if (sym_count > max_sym_shndx_count 11976 && elf_symtab_shndx_list (sec->owner) != NULL) 11977 max_sym_shndx_count = sym_count; 11978 11979 if (esdo->this_hdr.sh_type == SHT_REL 11980 || esdo->this_hdr.sh_type == SHT_RELA) 11981 /* Some backends use reloc_count in relocation sections 11982 to count particular types of relocs. Of course, 11983 reloc sections themselves can't have relocations. */ 11984 ; 11985 else if (emit_relocs) 11986 { 11987 reloc_count = sec->reloc_count; 11988 if (bed->elf_backend_count_additional_relocs) 11989 { 11990 int c; 11991 c = (*bed->elf_backend_count_additional_relocs) (sec); 11992 additional_reloc_count += c; 11993 } 11994 } 11995 else if (bed->elf_backend_count_relocs) 11996 reloc_count = (*bed->elf_backend_count_relocs) (info, sec); 11997 11998 esdi = elf_section_data (sec); 11999 12000 if ((sec->flags & SEC_RELOC) != 0) 12001 { 12002 size_t ext_size = 0; 12003 12004 if (esdi->rel.hdr != NULL) 12005 ext_size = esdi->rel.hdr->sh_size; 12006 if (esdi->rela.hdr != NULL) 12007 ext_size += esdi->rela.hdr->sh_size; 12008 12009 if (ext_size > max_external_reloc_size) 12010 max_external_reloc_size = ext_size; 12011 if (sec->reloc_count > max_internal_reloc_count) 12012 max_internal_reloc_count = sec->reloc_count; 12013 } 12014 } 12015 } 12016 12017 if (reloc_count == 0) 12018 continue; 12019 12020 reloc_count += additional_reloc_count; 12021 o->reloc_count += reloc_count; 12022 12023 if (p->type == bfd_indirect_link_order && emit_relocs) 12024 { 12025 if (esdi->rel.hdr) 12026 { 12027 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); 12028 esdo->rel.count += additional_reloc_count; 12029 } 12030 if (esdi->rela.hdr) 12031 { 12032 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); 12033 esdo->rela.count += additional_reloc_count; 12034 } 12035 } 12036 else 12037 { 12038 if (o->use_rela_p) 12039 esdo->rela.count += reloc_count; 12040 else 12041 esdo->rel.count += reloc_count; 12042 } 12043 } 12044 12045 if (o->reloc_count > 0) 12046 o->flags |= SEC_RELOC; 12047 else 12048 { 12049 /* Explicitly clear the SEC_RELOC flag. The linker tends to 12050 set it (this is probably a bug) and if it is set 12051 assign_section_numbers will create a reloc section. */ 12052 o->flags &=~ SEC_RELOC; 12053 } 12054 12055 /* If the SEC_ALLOC flag is not set, force the section VMA to 12056 zero. This is done in elf_fake_sections as well, but forcing 12057 the VMA to 0 here will ensure that relocs against these 12058 sections are handled correctly. */ 12059 if ((o->flags & SEC_ALLOC) == 0 12060 && ! o->user_set_vma) 12061 o->vma = 0; 12062 } 12063 12064 if (! bfd_link_relocatable (info) && merged) 12065 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); 12066 12067 /* Figure out the file positions for everything but the symbol table 12068 and the relocs. We set symcount to force assign_section_numbers 12069 to create a symbol table. */ 12070 abfd->symcount = info->strip != strip_all || emit_relocs; 12071 BFD_ASSERT (! abfd->output_has_begun); 12072 if (! _bfd_elf_compute_section_file_positions (abfd, info)) 12073 goto error_return; 12074 12075 /* Set sizes, and assign file positions for reloc sections. */ 12076 for (o = abfd->sections; o != NULL; o = o->next) 12077 { 12078 struct bfd_elf_section_data *esdo = elf_section_data (o); 12079 if ((o->flags & SEC_RELOC) != 0) 12080 { 12081 if (esdo->rel.hdr 12082 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) 12083 goto error_return; 12084 12085 if (esdo->rela.hdr 12086 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) 12087 goto error_return; 12088 } 12089 12090 /* _bfd_elf_compute_section_file_positions makes temporary use 12091 of target_index. Reset it. */ 12092 o->target_index = 0; 12093 12094 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them 12095 to count upwards while actually outputting the relocations. */ 12096 esdo->rel.count = 0; 12097 esdo->rela.count = 0; 12098 12099 if ((esdo->this_hdr.sh_offset == (file_ptr) -1) 12100 && !bfd_section_is_ctf (o)) 12101 { 12102 /* Cache the section contents so that they can be compressed 12103 later. Use bfd_malloc since it will be freed by 12104 bfd_compress_section_contents. */ 12105 unsigned char *contents = esdo->this_hdr.contents; 12106 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL) 12107 abort (); 12108 contents 12109 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); 12110 if (contents == NULL) 12111 goto error_return; 12112 esdo->this_hdr.contents = contents; 12113 } 12114 } 12115 12116 /* We have now assigned file positions for all the sections except .symtab, 12117 .strtab, and non-loaded reloc and compressed debugging sections. We start 12118 the .symtab section at the current file position, and write directly to it. 12119 We build the .strtab section in memory. */ 12120 abfd->symcount = 0; 12121 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12122 /* sh_name is set in prep_headers. */ 12123 symtab_hdr->sh_type = SHT_SYMTAB; 12124 /* sh_flags, sh_addr and sh_size all start off zero. */ 12125 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 12126 /* sh_link is set in assign_section_numbers. */ 12127 /* sh_info is set below. */ 12128 /* sh_offset is set just below. */ 12129 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 12130 12131 if (max_sym_count < 20) 12132 max_sym_count = 20; 12133 htab->strtabsize = max_sym_count; 12134 amt = max_sym_count * sizeof (struct elf_sym_strtab); 12135 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); 12136 if (htab->strtab == NULL) 12137 goto error_return; 12138 /* The real buffer will be allocated in elf_link_swap_symbols_out. */ 12139 flinfo.symshndxbuf 12140 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) 12141 ? (Elf_External_Sym_Shndx *) -1 : NULL); 12142 12143 if (info->strip != strip_all || emit_relocs) 12144 { 12145 file_ptr off = elf_next_file_pos (abfd); 12146 12147 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); 12148 12149 /* Note that at this point elf_next_file_pos (abfd) is 12150 incorrect. We do not yet know the size of the .symtab section. 12151 We correct next_file_pos below, after we do know the size. */ 12152 12153 /* Start writing out the symbol table. The first symbol is always a 12154 dummy symbol. */ 12155 elfsym.st_value = 0; 12156 elfsym.st_size = 0; 12157 elfsym.st_info = 0; 12158 elfsym.st_other = 0; 12159 elfsym.st_shndx = SHN_UNDEF; 12160 elfsym.st_target_internal = 0; 12161 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, 12162 bfd_und_section_ptr, NULL) != 1) 12163 goto error_return; 12164 12165 /* Output a symbol for each section. We output these even if we are 12166 discarding local symbols, since they are used for relocs. These 12167 symbols have no names. We store the index of each one in the 12168 index field of the section, so that we can find it again when 12169 outputting relocs. */ 12170 12171 elfsym.st_size = 0; 12172 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12173 elfsym.st_other = 0; 12174 elfsym.st_value = 0; 12175 elfsym.st_target_internal = 0; 12176 for (i = 1; i < elf_numsections (abfd); i++) 12177 { 12178 o = bfd_section_from_elf_index (abfd, i); 12179 if (o != NULL) 12180 { 12181 o->target_index = bfd_get_symcount (abfd); 12182 elfsym.st_shndx = i; 12183 if (!bfd_link_relocatable (info)) 12184 elfsym.st_value = o->vma; 12185 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o, 12186 NULL) != 1) 12187 goto error_return; 12188 } 12189 } 12190 } 12191 12192 /* Allocate some memory to hold information read in from the input 12193 files. */ 12194 if (max_contents_size != 0) 12195 { 12196 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); 12197 if (flinfo.contents == NULL) 12198 goto error_return; 12199 } 12200 12201 if (max_external_reloc_size != 0) 12202 { 12203 flinfo.external_relocs = bfd_malloc (max_external_reloc_size); 12204 if (flinfo.external_relocs == NULL) 12205 goto error_return; 12206 } 12207 12208 if (max_internal_reloc_count != 0) 12209 { 12210 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); 12211 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); 12212 if (flinfo.internal_relocs == NULL) 12213 goto error_return; 12214 } 12215 12216 if (max_sym_count != 0) 12217 { 12218 amt = max_sym_count * bed->s->sizeof_sym; 12219 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); 12220 if (flinfo.external_syms == NULL) 12221 goto error_return; 12222 12223 amt = max_sym_count * sizeof (Elf_Internal_Sym); 12224 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); 12225 if (flinfo.internal_syms == NULL) 12226 goto error_return; 12227 12228 amt = max_sym_count * sizeof (long); 12229 flinfo.indices = (long int *) bfd_malloc (amt); 12230 if (flinfo.indices == NULL) 12231 goto error_return; 12232 12233 amt = max_sym_count * sizeof (asection *); 12234 flinfo.sections = (asection **) bfd_malloc (amt); 12235 if (flinfo.sections == NULL) 12236 goto error_return; 12237 } 12238 12239 if (max_sym_shndx_count != 0) 12240 { 12241 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); 12242 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); 12243 if (flinfo.locsym_shndx == NULL) 12244 goto error_return; 12245 } 12246 12247 if (htab->tls_sec) 12248 { 12249 bfd_vma base, end = 0; 12250 asection *sec; 12251 12252 for (sec = htab->tls_sec; 12253 sec && (sec->flags & SEC_THREAD_LOCAL); 12254 sec = sec->next) 12255 { 12256 bfd_size_type size = sec->size; 12257 12258 if (size == 0 12259 && (sec->flags & SEC_HAS_CONTENTS) == 0) 12260 { 12261 struct bfd_link_order *ord = sec->map_tail.link_order; 12262 12263 if (ord != NULL) 12264 size = ord->offset + ord->size; 12265 } 12266 end = sec->vma + size; 12267 } 12268 base = htab->tls_sec->vma; 12269 /* Only align end of TLS section if static TLS doesn't have special 12270 alignment requirements. */ 12271 if (bed->static_tls_alignment == 1) 12272 end = align_power (end, htab->tls_sec->alignment_power); 12273 htab->tls_size = end - base; 12274 } 12275 12276 /* Reorder SHF_LINK_ORDER sections. */ 12277 for (o = abfd->sections; o != NULL; o = o->next) 12278 { 12279 if (!elf_fixup_link_order (abfd, o)) 12280 return FALSE; 12281 } 12282 12283 if (!_bfd_elf_fixup_eh_frame_hdr (info)) 12284 return FALSE; 12285 12286 /* Since ELF permits relocations to be against local symbols, we 12287 must have the local symbols available when we do the relocations. 12288 Since we would rather only read the local symbols once, and we 12289 would rather not keep them in memory, we handle all the 12290 relocations for a single input file at the same time. 12291 12292 Unfortunately, there is no way to know the total number of local 12293 symbols until we have seen all of them, and the local symbol 12294 indices precede the global symbol indices. This means that when 12295 we are generating relocatable output, and we see a reloc against 12296 a global symbol, we can not know the symbol index until we have 12297 finished examining all the local symbols to see which ones we are 12298 going to output. To deal with this, we keep the relocations in 12299 memory, and don't output them until the end of the link. This is 12300 an unfortunate waste of memory, but I don't see a good way around 12301 it. Fortunately, it only happens when performing a relocatable 12302 link, which is not the common case. FIXME: If keep_memory is set 12303 we could write the relocs out and then read them again; I don't 12304 know how bad the memory loss will be. */ 12305 12306 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12307 sub->output_has_begun = FALSE; 12308 for (o = abfd->sections; o != NULL; o = o->next) 12309 { 12310 for (p = o->map_head.link_order; p != NULL; p = p->next) 12311 { 12312 if (p->type == bfd_indirect_link_order 12313 && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) 12314 == bfd_target_elf_flavour) 12315 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) 12316 { 12317 if (! sub->output_has_begun) 12318 { 12319 if (! elf_link_input_bfd (&flinfo, sub)) 12320 goto error_return; 12321 sub->output_has_begun = TRUE; 12322 } 12323 } 12324 else if (p->type == bfd_section_reloc_link_order 12325 || p->type == bfd_symbol_reloc_link_order) 12326 { 12327 if (! elf_reloc_link_order (abfd, info, o, p)) 12328 goto error_return; 12329 } 12330 else 12331 { 12332 if (! _bfd_default_link_order (abfd, info, o, p)) 12333 { 12334 if (p->type == bfd_indirect_link_order 12335 && (bfd_get_flavour (sub) 12336 == bfd_target_elf_flavour) 12337 && (elf_elfheader (sub)->e_ident[EI_CLASS] 12338 != bed->s->elfclass)) 12339 { 12340 const char *iclass, *oclass; 12341 12342 switch (bed->s->elfclass) 12343 { 12344 case ELFCLASS64: oclass = "ELFCLASS64"; break; 12345 case ELFCLASS32: oclass = "ELFCLASS32"; break; 12346 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; 12347 default: abort (); 12348 } 12349 12350 switch (elf_elfheader (sub)->e_ident[EI_CLASS]) 12351 { 12352 case ELFCLASS64: iclass = "ELFCLASS64"; break; 12353 case ELFCLASS32: iclass = "ELFCLASS32"; break; 12354 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; 12355 default: abort (); 12356 } 12357 12358 bfd_set_error (bfd_error_wrong_format); 12359 _bfd_error_handler 12360 /* xgettext:c-format */ 12361 (_("%pB: file class %s incompatible with %s"), 12362 sub, iclass, oclass); 12363 } 12364 12365 goto error_return; 12366 } 12367 } 12368 } 12369 } 12370 12371 /* Free symbol buffer if needed. */ 12372 if (!info->reduce_memory_overheads) 12373 { 12374 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12375 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 12376 && elf_tdata (sub)->symbuf) 12377 { 12378 free (elf_tdata (sub)->symbuf); 12379 elf_tdata (sub)->symbuf = NULL; 12380 } 12381 } 12382 12383 /* Output any global symbols that got converted to local in a 12384 version script or due to symbol visibility. We do this in a 12385 separate step since ELF requires all local symbols to appear 12386 prior to any global symbols. FIXME: We should only do this if 12387 some global symbols were, in fact, converted to become local. 12388 FIXME: Will this work correctly with the Irix 5 linker? */ 12389 eoinfo.failed = FALSE; 12390 eoinfo.flinfo = &flinfo; 12391 eoinfo.localsyms = TRUE; 12392 eoinfo.file_sym_done = FALSE; 12393 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12394 if (eoinfo.failed) 12395 return FALSE; 12396 12397 /* If backend needs to output some local symbols not present in the hash 12398 table, do it now. */ 12399 if (bed->elf_backend_output_arch_local_syms 12400 && (info->strip != strip_all || emit_relocs)) 12401 { 12402 typedef int (*out_sym_func) 12403 (void *, const char *, Elf_Internal_Sym *, asection *, 12404 struct elf_link_hash_entry *); 12405 12406 if (! ((*bed->elf_backend_output_arch_local_syms) 12407 (abfd, info, &flinfo, 12408 (out_sym_func) elf_link_output_symstrtab))) 12409 return FALSE; 12410 } 12411 12412 /* That wrote out all the local symbols. Finish up the symbol table 12413 with the global symbols. Even if we want to strip everything we 12414 can, we still need to deal with those global symbols that got 12415 converted to local in a version script. */ 12416 12417 /* The sh_info field records the index of the first non local symbol. */ 12418 symtab_hdr->sh_info = bfd_get_symcount (abfd); 12419 12420 if (dynamic 12421 && htab->dynsym != NULL 12422 && htab->dynsym->output_section != bfd_abs_section_ptr) 12423 { 12424 Elf_Internal_Sym sym; 12425 bfd_byte *dynsym = htab->dynsym->contents; 12426 12427 o = htab->dynsym->output_section; 12428 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; 12429 12430 /* Write out the section symbols for the output sections. */ 12431 if (bfd_link_pic (info) 12432 || htab->is_relocatable_executable) 12433 { 12434 asection *s; 12435 12436 sym.st_size = 0; 12437 sym.st_name = 0; 12438 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12439 sym.st_other = 0; 12440 sym.st_target_internal = 0; 12441 12442 for (s = abfd->sections; s != NULL; s = s->next) 12443 { 12444 int indx; 12445 bfd_byte *dest; 12446 long dynindx; 12447 12448 dynindx = elf_section_data (s)->dynindx; 12449 if (dynindx <= 0) 12450 continue; 12451 indx = elf_section_data (s)->this_idx; 12452 BFD_ASSERT (indx > 0); 12453 sym.st_shndx = indx; 12454 if (! check_dynsym (abfd, &sym)) 12455 return FALSE; 12456 sym.st_value = s->vma; 12457 dest = dynsym + dynindx * bed->s->sizeof_sym; 12458 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12459 } 12460 } 12461 12462 /* Write out the local dynsyms. */ 12463 if (htab->dynlocal) 12464 { 12465 struct elf_link_local_dynamic_entry *e; 12466 for (e = htab->dynlocal; e ; e = e->next) 12467 { 12468 asection *s; 12469 bfd_byte *dest; 12470 12471 /* Copy the internal symbol and turn off visibility. 12472 Note that we saved a word of storage and overwrote 12473 the original st_name with the dynstr_index. */ 12474 sym = e->isym; 12475 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 12476 12477 s = bfd_section_from_elf_index (e->input_bfd, 12478 e->isym.st_shndx); 12479 if (s != NULL) 12480 { 12481 sym.st_shndx = 12482 elf_section_data (s->output_section)->this_idx; 12483 if (! check_dynsym (abfd, &sym)) 12484 return FALSE; 12485 sym.st_value = (s->output_section->vma 12486 + s->output_offset 12487 + e->isym.st_value); 12488 } 12489 12490 dest = dynsym + e->dynindx * bed->s->sizeof_sym; 12491 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12492 } 12493 } 12494 } 12495 12496 /* We get the global symbols from the hash table. */ 12497 eoinfo.failed = FALSE; 12498 eoinfo.localsyms = FALSE; 12499 eoinfo.flinfo = &flinfo; 12500 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12501 if (eoinfo.failed) 12502 return FALSE; 12503 12504 /* If backend needs to output some symbols not present in the hash 12505 table, do it now. */ 12506 if (bed->elf_backend_output_arch_syms 12507 && (info->strip != strip_all || emit_relocs)) 12508 { 12509 typedef int (*out_sym_func) 12510 (void *, const char *, Elf_Internal_Sym *, asection *, 12511 struct elf_link_hash_entry *); 12512 12513 if (! ((*bed->elf_backend_output_arch_syms) 12514 (abfd, info, &flinfo, 12515 (out_sym_func) elf_link_output_symstrtab))) 12516 return FALSE; 12517 } 12518 12519 /* Finalize the .strtab section. */ 12520 _bfd_elf_strtab_finalize (flinfo.symstrtab); 12521 12522 /* Swap out the .strtab section. */ 12523 if (!elf_link_swap_symbols_out (&flinfo)) 12524 return FALSE; 12525 12526 /* Now we know the size of the symtab section. */ 12527 if (bfd_get_symcount (abfd) > 0) 12528 { 12529 /* Finish up and write out the symbol string table (.strtab) 12530 section. */ 12531 Elf_Internal_Shdr *symstrtab_hdr = NULL; 12532 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; 12533 12534 if (elf_symtab_shndx_list (abfd)) 12535 { 12536 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 12537 12538 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) 12539 { 12540 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 12541 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 12542 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 12543 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); 12544 symtab_shndx_hdr->sh_size = amt; 12545 12546 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, 12547 off, TRUE); 12548 12549 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 12550 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) 12551 return FALSE; 12552 } 12553 } 12554 12555 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 12556 /* sh_name was set in prep_headers. */ 12557 symstrtab_hdr->sh_type = SHT_STRTAB; 12558 symstrtab_hdr->sh_flags = bed->elf_strtab_flags; 12559 symstrtab_hdr->sh_addr = 0; 12560 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); 12561 symstrtab_hdr->sh_entsize = 0; 12562 symstrtab_hdr->sh_link = 0; 12563 symstrtab_hdr->sh_info = 0; 12564 /* sh_offset is set just below. */ 12565 symstrtab_hdr->sh_addralign = 1; 12566 12567 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, 12568 off, TRUE); 12569 elf_next_file_pos (abfd) = off; 12570 12571 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 12572 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) 12573 return FALSE; 12574 } 12575 12576 if (info->out_implib_bfd && !elf_output_implib (abfd, info)) 12577 { 12578 _bfd_error_handler (_("%pB: failed to generate import library"), 12579 info->out_implib_bfd); 12580 return FALSE; 12581 } 12582 12583 /* Adjust the relocs to have the correct symbol indices. */ 12584 for (o = abfd->sections; o != NULL; o = o->next) 12585 { 12586 struct bfd_elf_section_data *esdo = elf_section_data (o); 12587 bfd_boolean sort; 12588 12589 if ((o->flags & SEC_RELOC) == 0) 12590 continue; 12591 12592 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); 12593 if (esdo->rel.hdr != NULL 12594 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) 12595 return FALSE; 12596 if (esdo->rela.hdr != NULL 12597 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) 12598 return FALSE; 12599 12600 /* Set the reloc_count field to 0 to prevent write_relocs from 12601 trying to swap the relocs out itself. */ 12602 o->reloc_count = 0; 12603 } 12604 12605 if (dynamic && info->combreloc && dynobj != NULL) 12606 relativecount = elf_link_sort_relocs (abfd, info, &reldyn); 12607 12608 /* If we are linking against a dynamic object, or generating a 12609 shared library, finish up the dynamic linking information. */ 12610 if (dynamic) 12611 { 12612 bfd_byte *dyncon, *dynconend; 12613 12614 /* Fix up .dynamic entries. */ 12615 o = bfd_get_linker_section (dynobj, ".dynamic"); 12616 BFD_ASSERT (o != NULL); 12617 12618 dyncon = o->contents; 12619 dynconend = o->contents + o->size; 12620 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12621 { 12622 Elf_Internal_Dyn dyn; 12623 const char *name; 12624 unsigned int type; 12625 bfd_size_type sh_size; 12626 bfd_vma sh_addr; 12627 12628 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12629 12630 switch (dyn.d_tag) 12631 { 12632 default: 12633 continue; 12634 case DT_NULL: 12635 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) 12636 { 12637 switch (elf_section_data (reldyn)->this_hdr.sh_type) 12638 { 12639 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; 12640 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; 12641 default: continue; 12642 } 12643 dyn.d_un.d_val = relativecount; 12644 relativecount = 0; 12645 break; 12646 } 12647 continue; 12648 12649 case DT_INIT: 12650 name = info->init_function; 12651 goto get_sym; 12652 case DT_FINI: 12653 name = info->fini_function; 12654 get_sym: 12655 { 12656 struct elf_link_hash_entry *h; 12657 12658 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 12659 if (h != NULL 12660 && (h->root.type == bfd_link_hash_defined 12661 || h->root.type == bfd_link_hash_defweak)) 12662 { 12663 dyn.d_un.d_ptr = h->root.u.def.value; 12664 o = h->root.u.def.section; 12665 if (o->output_section != NULL) 12666 dyn.d_un.d_ptr += (o->output_section->vma 12667 + o->output_offset); 12668 else 12669 { 12670 /* The symbol is imported from another shared 12671 library and does not apply to this one. */ 12672 dyn.d_un.d_ptr = 0; 12673 } 12674 break; 12675 } 12676 } 12677 continue; 12678 12679 case DT_PREINIT_ARRAYSZ: 12680 name = ".preinit_array"; 12681 goto get_out_size; 12682 case DT_INIT_ARRAYSZ: 12683 name = ".init_array"; 12684 goto get_out_size; 12685 case DT_FINI_ARRAYSZ: 12686 name = ".fini_array"; 12687 get_out_size: 12688 o = bfd_get_section_by_name (abfd, name); 12689 if (o == NULL) 12690 { 12691 _bfd_error_handler 12692 (_("could not find section %s"), name); 12693 goto error_return; 12694 } 12695 if (o->size == 0) 12696 _bfd_error_handler 12697 (_("warning: %s section has zero size"), name); 12698 dyn.d_un.d_val = o->size; 12699 break; 12700 12701 case DT_PREINIT_ARRAY: 12702 name = ".preinit_array"; 12703 goto get_out_vma; 12704 case DT_INIT_ARRAY: 12705 name = ".init_array"; 12706 goto get_out_vma; 12707 case DT_FINI_ARRAY: 12708 name = ".fini_array"; 12709 get_out_vma: 12710 o = bfd_get_section_by_name (abfd, name); 12711 goto do_vma; 12712 12713 case DT_HASH: 12714 name = ".hash"; 12715 goto get_vma; 12716 case DT_GNU_HASH: 12717 name = ".gnu.hash"; 12718 goto get_vma; 12719 case DT_STRTAB: 12720 name = ".dynstr"; 12721 goto get_vma; 12722 case DT_SYMTAB: 12723 name = ".dynsym"; 12724 goto get_vma; 12725 case DT_VERDEF: 12726 name = ".gnu.version_d"; 12727 goto get_vma; 12728 case DT_VERNEED: 12729 name = ".gnu.version_r"; 12730 goto get_vma; 12731 case DT_VERSYM: 12732 name = ".gnu.version"; 12733 get_vma: 12734 o = bfd_get_linker_section (dynobj, name); 12735 do_vma: 12736 if (o == NULL || bfd_is_abs_section (o->output_section)) 12737 { 12738 _bfd_error_handler 12739 (_("could not find section %s"), name); 12740 goto error_return; 12741 } 12742 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) 12743 { 12744 _bfd_error_handler 12745 (_("warning: section '%s' is being made into a note"), name); 12746 bfd_set_error (bfd_error_nonrepresentable_section); 12747 goto error_return; 12748 } 12749 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; 12750 break; 12751 12752 case DT_REL: 12753 case DT_RELA: 12754 case DT_RELSZ: 12755 case DT_RELASZ: 12756 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 12757 type = SHT_REL; 12758 else 12759 type = SHT_RELA; 12760 sh_size = 0; 12761 sh_addr = 0; 12762 for (i = 1; i < elf_numsections (abfd); i++) 12763 { 12764 Elf_Internal_Shdr *hdr; 12765 12766 hdr = elf_elfsections (abfd)[i]; 12767 if (hdr->sh_type == type 12768 && (hdr->sh_flags & SHF_ALLOC) != 0) 12769 { 12770 sh_size += hdr->sh_size; 12771 if (sh_addr == 0 12772 || sh_addr > hdr->sh_addr) 12773 sh_addr = hdr->sh_addr; 12774 } 12775 } 12776 12777 if (bed->dtrel_excludes_plt && htab->srelplt != NULL) 12778 { 12779 /* Don't count procedure linkage table relocs in the 12780 overall reloc count. */ 12781 sh_size -= htab->srelplt->size; 12782 if (sh_size == 0) 12783 /* If the size is zero, make the address zero too. 12784 This is to avoid a glibc bug. If the backend 12785 emits DT_RELA/DT_RELASZ even when DT_RELASZ is 12786 zero, then we'll put DT_RELA at the end of 12787 DT_JMPREL. glibc will interpret the end of 12788 DT_RELA matching the end of DT_JMPREL as the 12789 case where DT_RELA includes DT_JMPREL, and for 12790 LD_BIND_NOW will decide that processing DT_RELA 12791 will process the PLT relocs too. Net result: 12792 No PLT relocs applied. */ 12793 sh_addr = 0; 12794 12795 /* If .rela.plt is the first .rela section, exclude 12796 it from DT_RELA. */ 12797 else if (sh_addr == (htab->srelplt->output_section->vma 12798 + htab->srelplt->output_offset)) 12799 sh_addr += htab->srelplt->size; 12800 } 12801 12802 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) 12803 dyn.d_un.d_val = sh_size; 12804 else 12805 dyn.d_un.d_ptr = sh_addr; 12806 break; 12807 } 12808 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 12809 } 12810 } 12811 12812 /* If we have created any dynamic sections, then output them. */ 12813 if (dynobj != NULL) 12814 { 12815 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) 12816 goto error_return; 12817 12818 /* Check for DT_TEXTREL (late, in case the backend removes it). */ 12819 if (((info->warn_shared_textrel && bfd_link_pic (info)) 12820 || info->error_textrel) 12821 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL) 12822 { 12823 bfd_byte *dyncon, *dynconend; 12824 12825 dyncon = o->contents; 12826 dynconend = o->contents + o->size; 12827 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12828 { 12829 Elf_Internal_Dyn dyn; 12830 12831 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12832 12833 if (dyn.d_tag == DT_TEXTREL) 12834 { 12835 if (info->error_textrel) 12836 info->callbacks->einfo 12837 (_("%P%X: read-only segment has dynamic relocations\n")); 12838 else 12839 info->callbacks->einfo 12840 (_("%P: warning: creating a DT_TEXTREL in a shared object\n")); 12841 break; 12842 } 12843 } 12844 } 12845 12846 for (o = dynobj->sections; o != NULL; o = o->next) 12847 { 12848 if ((o->flags & SEC_HAS_CONTENTS) == 0 12849 || o->size == 0 12850 || o->output_section == bfd_abs_section_ptr) 12851 continue; 12852 if ((o->flags & SEC_LINKER_CREATED) == 0) 12853 { 12854 /* At this point, we are only interested in sections 12855 created by _bfd_elf_link_create_dynamic_sections. */ 12856 continue; 12857 } 12858 if (htab->stab_info.stabstr == o) 12859 continue; 12860 if (htab->eh_info.hdr_sec == o) 12861 continue; 12862 if (strcmp (o->name, ".dynstr") != 0) 12863 { 12864 bfd_size_type octets = ((file_ptr) o->output_offset 12865 * bfd_octets_per_byte (abfd, o)); 12866 if (!bfd_set_section_contents (abfd, o->output_section, 12867 o->contents, octets, o->size)) 12868 goto error_return; 12869 } 12870 else 12871 { 12872 /* The contents of the .dynstr section are actually in a 12873 stringtab. */ 12874 file_ptr off; 12875 12876 off = elf_section_data (o->output_section)->this_hdr.sh_offset; 12877 if (bfd_seek (abfd, off, SEEK_SET) != 0 12878 || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) 12879 goto error_return; 12880 } 12881 } 12882 } 12883 12884 if (!info->resolve_section_groups) 12885 { 12886 bfd_boolean failed = FALSE; 12887 12888 BFD_ASSERT (bfd_link_relocatable (info)); 12889 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 12890 if (failed) 12891 goto error_return; 12892 } 12893 12894 /* If we have optimized stabs strings, output them. */ 12895 if (htab->stab_info.stabstr != NULL) 12896 { 12897 if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) 12898 goto error_return; 12899 } 12900 12901 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) 12902 goto error_return; 12903 12904 if (info->callbacks->emit_ctf) 12905 info->callbacks->emit_ctf (); 12906 12907 elf_final_link_free (abfd, &flinfo); 12908 12909 if (attr_section) 12910 { 12911 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); 12912 if (contents == NULL) 12913 return FALSE; /* Bail out and fail. */ 12914 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); 12915 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); 12916 free (contents); 12917 } 12918 12919 return TRUE; 12920 12921 error_return: 12922 elf_final_link_free (abfd, &flinfo); 12923 return FALSE; 12924 } 12925 12926 /* Initialize COOKIE for input bfd ABFD. */ 12927 12928 static bfd_boolean 12929 init_reloc_cookie (struct elf_reloc_cookie *cookie, 12930 struct bfd_link_info *info, bfd *abfd) 12931 { 12932 Elf_Internal_Shdr *symtab_hdr; 12933 const struct elf_backend_data *bed; 12934 12935 bed = get_elf_backend_data (abfd); 12936 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12937 12938 cookie->abfd = abfd; 12939 cookie->sym_hashes = elf_sym_hashes (abfd); 12940 cookie->bad_symtab = elf_bad_symtab (abfd); 12941 if (cookie->bad_symtab) 12942 { 12943 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 12944 cookie->extsymoff = 0; 12945 } 12946 else 12947 { 12948 cookie->locsymcount = symtab_hdr->sh_info; 12949 cookie->extsymoff = symtab_hdr->sh_info; 12950 } 12951 12952 if (bed->s->arch_size == 32) 12953 cookie->r_sym_shift = 8; 12954 else 12955 cookie->r_sym_shift = 32; 12956 12957 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 12958 if (cookie->locsyms == NULL && cookie->locsymcount != 0) 12959 { 12960 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 12961 cookie->locsymcount, 0, 12962 NULL, NULL, NULL); 12963 if (cookie->locsyms == NULL) 12964 { 12965 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); 12966 return FALSE; 12967 } 12968 if (info->keep_memory) 12969 symtab_hdr->contents = (bfd_byte *) cookie->locsyms; 12970 } 12971 return TRUE; 12972 } 12973 12974 /* Free the memory allocated by init_reloc_cookie, if appropriate. */ 12975 12976 static void 12977 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) 12978 { 12979 Elf_Internal_Shdr *symtab_hdr; 12980 12981 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12982 if (cookie->locsyms != NULL 12983 && symtab_hdr->contents != (unsigned char *) cookie->locsyms) 12984 free (cookie->locsyms); 12985 } 12986 12987 /* Initialize the relocation information in COOKIE for input section SEC 12988 of input bfd ABFD. */ 12989 12990 static bfd_boolean 12991 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 12992 struct bfd_link_info *info, bfd *abfd, 12993 asection *sec) 12994 { 12995 if (sec->reloc_count == 0) 12996 { 12997 cookie->rels = NULL; 12998 cookie->relend = NULL; 12999 } 13000 else 13001 { 13002 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 13003 info->keep_memory); 13004 if (cookie->rels == NULL) 13005 return FALSE; 13006 cookie->rel = cookie->rels; 13007 cookie->relend = cookie->rels + sec->reloc_count; 13008 } 13009 cookie->rel = cookie->rels; 13010 return TRUE; 13011 } 13012 13013 /* Free the memory allocated by init_reloc_cookie_rels, 13014 if appropriate. */ 13015 13016 static void 13017 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 13018 asection *sec) 13019 { 13020 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels) 13021 free (cookie->rels); 13022 } 13023 13024 /* Initialize the whole of COOKIE for input section SEC. */ 13025 13026 static bfd_boolean 13027 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13028 struct bfd_link_info *info, 13029 asection *sec) 13030 { 13031 if (!init_reloc_cookie (cookie, info, sec->owner)) 13032 goto error1; 13033 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) 13034 goto error2; 13035 return TRUE; 13036 13037 error2: 13038 fini_reloc_cookie (cookie, sec->owner); 13039 error1: 13040 return FALSE; 13041 } 13042 13043 /* Free the memory allocated by init_reloc_cookie_for_section, 13044 if appropriate. */ 13045 13046 static void 13047 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13048 asection *sec) 13049 { 13050 fini_reloc_cookie_rels (cookie, sec); 13051 fini_reloc_cookie (cookie, sec->owner); 13052 } 13053 13054 /* Garbage collect unused sections. */ 13055 13056 /* Default gc_mark_hook. */ 13057 13058 asection * 13059 _bfd_elf_gc_mark_hook (asection *sec, 13060 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13061 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13062 struct elf_link_hash_entry *h, 13063 Elf_Internal_Sym *sym) 13064 { 13065 if (h != NULL) 13066 { 13067 switch (h->root.type) 13068 { 13069 case bfd_link_hash_defined: 13070 case bfd_link_hash_defweak: 13071 return h->root.u.def.section; 13072 13073 case bfd_link_hash_common: 13074 return h->root.u.c.p->section; 13075 13076 default: 13077 break; 13078 } 13079 } 13080 else 13081 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 13082 13083 return NULL; 13084 } 13085 13086 /* Return the debug definition section. */ 13087 13088 static asection * 13089 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, 13090 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13091 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13092 struct elf_link_hash_entry *h, 13093 Elf_Internal_Sym *sym) 13094 { 13095 if (h != NULL) 13096 { 13097 /* Return the global debug definition section. */ 13098 if ((h->root.type == bfd_link_hash_defined 13099 || h->root.type == bfd_link_hash_defweak) 13100 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) 13101 return h->root.u.def.section; 13102 } 13103 else 13104 { 13105 /* Return the local debug definition section. */ 13106 asection *isec = bfd_section_from_elf_index (sec->owner, 13107 sym->st_shndx); 13108 if ((isec->flags & SEC_DEBUGGING) != 0) 13109 return isec; 13110 } 13111 13112 return NULL; 13113 } 13114 13115 /* COOKIE->rel describes a relocation against section SEC, which is 13116 a section we've decided to keep. Return the section that contains 13117 the relocation symbol, or NULL if no section contains it. */ 13118 13119 asection * 13120 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, 13121 elf_gc_mark_hook_fn gc_mark_hook, 13122 struct elf_reloc_cookie *cookie, 13123 bfd_boolean *start_stop) 13124 { 13125 unsigned long r_symndx; 13126 struct elf_link_hash_entry *h, *hw; 13127 13128 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; 13129 if (r_symndx == STN_UNDEF) 13130 return NULL; 13131 13132 if (r_symndx >= cookie->locsymcount 13133 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 13134 { 13135 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 13136 if (h == NULL) 13137 { 13138 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"), 13139 sec->owner); 13140 return NULL; 13141 } 13142 while (h->root.type == bfd_link_hash_indirect 13143 || h->root.type == bfd_link_hash_warning) 13144 h = (struct elf_link_hash_entry *) h->root.u.i.link; 13145 h->mark = 1; 13146 /* Keep all aliases of the symbol too. If an object symbol 13147 needs to be copied into .dynbss then all of its aliases 13148 should be present as dynamic symbols, not just the one used 13149 on the copy relocation. */ 13150 hw = h; 13151 while (hw->is_weakalias) 13152 { 13153 hw = hw->u.alias; 13154 hw->mark = 1; 13155 } 13156 13157 if (start_stop != NULL) 13158 { 13159 /* To work around a glibc bug, mark XXX input sections 13160 when there is a reference to __start_XXX or __stop_XXX 13161 symbols. */ 13162 if (h->start_stop) 13163 { 13164 asection *s = h->u2.start_stop_section; 13165 *start_stop = !s->gc_mark; 13166 return s; 13167 } 13168 } 13169 13170 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); 13171 } 13172 13173 return (*gc_mark_hook) (sec, info, cookie->rel, NULL, 13174 &cookie->locsyms[r_symndx]); 13175 } 13176 13177 /* COOKIE->rel describes a relocation against section SEC, which is 13178 a section we've decided to keep. Mark the section that contains 13179 the relocation symbol. */ 13180 13181 bfd_boolean 13182 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, 13183 asection *sec, 13184 elf_gc_mark_hook_fn gc_mark_hook, 13185 struct elf_reloc_cookie *cookie) 13186 { 13187 asection *rsec; 13188 bfd_boolean start_stop = FALSE; 13189 13190 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); 13191 while (rsec != NULL) 13192 { 13193 if (!rsec->gc_mark) 13194 { 13195 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour 13196 || (rsec->owner->flags & DYNAMIC) != 0) 13197 rsec->gc_mark = 1; 13198 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) 13199 return FALSE; 13200 } 13201 if (!start_stop) 13202 break; 13203 rsec = bfd_get_next_section_by_name (rsec->owner, rsec); 13204 } 13205 return TRUE; 13206 } 13207 13208 /* The mark phase of garbage collection. For a given section, mark 13209 it and any sections in this section's group, and all the sections 13210 which define symbols to which it refers. */ 13211 13212 bfd_boolean 13213 _bfd_elf_gc_mark (struct bfd_link_info *info, 13214 asection *sec, 13215 elf_gc_mark_hook_fn gc_mark_hook) 13216 { 13217 bfd_boolean ret; 13218 asection *group_sec, *eh_frame; 13219 13220 sec->gc_mark = 1; 13221 13222 /* Mark all the sections in the group. */ 13223 group_sec = elf_section_data (sec)->next_in_group; 13224 if (group_sec && !group_sec->gc_mark) 13225 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) 13226 return FALSE; 13227 13228 /* Look through the section relocs. */ 13229 ret = TRUE; 13230 eh_frame = elf_eh_frame_section (sec->owner); 13231 if ((sec->flags & SEC_RELOC) != 0 13232 && sec->reloc_count > 0 13233 && sec != eh_frame) 13234 { 13235 struct elf_reloc_cookie cookie; 13236 13237 if (!init_reloc_cookie_for_section (&cookie, info, sec)) 13238 ret = FALSE; 13239 else 13240 { 13241 for (; cookie.rel < cookie.relend; cookie.rel++) 13242 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) 13243 { 13244 ret = FALSE; 13245 break; 13246 } 13247 fini_reloc_cookie_for_section (&cookie, sec); 13248 } 13249 } 13250 13251 if (ret && eh_frame && elf_fde_list (sec)) 13252 { 13253 struct elf_reloc_cookie cookie; 13254 13255 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) 13256 ret = FALSE; 13257 else 13258 { 13259 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, 13260 gc_mark_hook, &cookie)) 13261 ret = FALSE; 13262 fini_reloc_cookie_for_section (&cookie, eh_frame); 13263 } 13264 } 13265 13266 eh_frame = elf_section_eh_frame_entry (sec); 13267 if (ret && eh_frame && !eh_frame->gc_mark) 13268 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) 13269 ret = FALSE; 13270 13271 return ret; 13272 } 13273 13274 /* Scan and mark sections in a special or debug section group. */ 13275 13276 static void 13277 _bfd_elf_gc_mark_debug_special_section_group (asection *grp) 13278 { 13279 /* Point to first section of section group. */ 13280 asection *ssec; 13281 /* Used to iterate the section group. */ 13282 asection *msec; 13283 13284 bfd_boolean is_special_grp = TRUE; 13285 bfd_boolean is_debug_grp = TRUE; 13286 13287 /* First scan to see if group contains any section other than debug 13288 and special section. */ 13289 ssec = msec = elf_next_in_group (grp); 13290 do 13291 { 13292 if ((msec->flags & SEC_DEBUGGING) == 0) 13293 is_debug_grp = FALSE; 13294 13295 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) 13296 is_special_grp = FALSE; 13297 13298 msec = elf_next_in_group (msec); 13299 } 13300 while (msec != ssec); 13301 13302 /* If this is a pure debug section group or pure special section group, 13303 keep all sections in this group. */ 13304 if (is_debug_grp || is_special_grp) 13305 { 13306 do 13307 { 13308 msec->gc_mark = 1; 13309 msec = elf_next_in_group (msec); 13310 } 13311 while (msec != ssec); 13312 } 13313 } 13314 13315 /* Keep debug and special sections. */ 13316 13317 bfd_boolean 13318 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, 13319 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED) 13320 { 13321 bfd *ibfd; 13322 13323 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13324 { 13325 asection *isec; 13326 bfd_boolean some_kept; 13327 bfd_boolean debug_frag_seen; 13328 bfd_boolean has_kept_debug_info; 13329 13330 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13331 continue; 13332 isec = ibfd->sections; 13333 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13334 continue; 13335 13336 /* Ensure all linker created sections are kept, 13337 see if any other section is already marked, 13338 and note if we have any fragmented debug sections. */ 13339 debug_frag_seen = some_kept = has_kept_debug_info = FALSE; 13340 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13341 { 13342 if ((isec->flags & SEC_LINKER_CREATED) != 0) 13343 isec->gc_mark = 1; 13344 else if (isec->gc_mark 13345 && (isec->flags & SEC_ALLOC) != 0 13346 && elf_section_type (isec) != SHT_NOTE) 13347 some_kept = TRUE; 13348 13349 if (!debug_frag_seen 13350 && (isec->flags & SEC_DEBUGGING) 13351 && CONST_STRNEQ (isec->name, ".debug_line.")) 13352 debug_frag_seen = TRUE; 13353 } 13354 13355 /* If no non-note alloc section in this file will be kept, then 13356 we can toss out the debug and special sections. */ 13357 if (!some_kept) 13358 continue; 13359 13360 /* Keep debug and special sections like .comment when they are 13361 not part of a group. Also keep section groups that contain 13362 just debug sections or special sections. */ 13363 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13364 { 13365 if ((isec->flags & SEC_GROUP) != 0) 13366 _bfd_elf_gc_mark_debug_special_section_group (isec); 13367 else if (((isec->flags & SEC_DEBUGGING) != 0 13368 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) 13369 && elf_next_in_group (isec) == NULL) 13370 isec->gc_mark = 1; 13371 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) 13372 has_kept_debug_info = TRUE; 13373 } 13374 13375 /* Look for CODE sections which are going to be discarded, 13376 and find and discard any fragmented debug sections which 13377 are associated with that code section. */ 13378 if (debug_frag_seen) 13379 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13380 if ((isec->flags & SEC_CODE) != 0 13381 && isec->gc_mark == 0) 13382 { 13383 unsigned int ilen; 13384 asection *dsec; 13385 13386 ilen = strlen (isec->name); 13387 13388 /* Association is determined by the name of the debug 13389 section containing the name of the code section as 13390 a suffix. For example .debug_line.text.foo is a 13391 debug section associated with .text.foo. */ 13392 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) 13393 { 13394 unsigned int dlen; 13395 13396 if (dsec->gc_mark == 0 13397 || (dsec->flags & SEC_DEBUGGING) == 0) 13398 continue; 13399 13400 dlen = strlen (dsec->name); 13401 13402 if (dlen > ilen 13403 && strncmp (dsec->name + (dlen - ilen), 13404 isec->name, ilen) == 0) 13405 dsec->gc_mark = 0; 13406 } 13407 } 13408 13409 /* Mark debug sections referenced by kept debug sections. */ 13410 if (has_kept_debug_info) 13411 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13412 if (isec->gc_mark 13413 && (isec->flags & SEC_DEBUGGING) != 0) 13414 if (!_bfd_elf_gc_mark (info, isec, 13415 elf_gc_mark_debug_section)) 13416 return FALSE; 13417 } 13418 return TRUE; 13419 } 13420 13421 static bfd_boolean 13422 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) 13423 { 13424 bfd *sub; 13425 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13426 13427 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13428 { 13429 asection *o; 13430 13431 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 13432 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) 13433 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 13434 continue; 13435 o = sub->sections; 13436 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13437 continue; 13438 13439 for (o = sub->sections; o != NULL; o = o->next) 13440 { 13441 /* When any section in a section group is kept, we keep all 13442 sections in the section group. If the first member of 13443 the section group is excluded, we will also exclude the 13444 group section. */ 13445 if (o->flags & SEC_GROUP) 13446 { 13447 asection *first = elf_next_in_group (o); 13448 o->gc_mark = first->gc_mark; 13449 } 13450 13451 if (o->gc_mark) 13452 continue; 13453 13454 /* Skip sweeping sections already excluded. */ 13455 if (o->flags & SEC_EXCLUDE) 13456 continue; 13457 13458 /* Since this is early in the link process, it is simple 13459 to remove a section from the output. */ 13460 o->flags |= SEC_EXCLUDE; 13461 13462 if (info->print_gc_sections && o->size != 0) 13463 /* xgettext:c-format */ 13464 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), 13465 o, sub); 13466 } 13467 } 13468 13469 return TRUE; 13470 } 13471 13472 /* Propagate collected vtable information. This is called through 13473 elf_link_hash_traverse. */ 13474 13475 static bfd_boolean 13476 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) 13477 { 13478 /* Those that are not vtables. */ 13479 if (h->start_stop 13480 || h->u2.vtable == NULL 13481 || h->u2.vtable->parent == NULL) 13482 return TRUE; 13483 13484 /* Those vtables that do not have parents, we cannot merge. */ 13485 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) 13486 return TRUE; 13487 13488 /* If we've already been done, exit. */ 13489 if (h->u2.vtable->used && h->u2.vtable->used[-1]) 13490 return TRUE; 13491 13492 /* Make sure the parent's table is up to date. */ 13493 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); 13494 13495 if (h->u2.vtable->used == NULL) 13496 { 13497 /* None of this table's entries were referenced. Re-use the 13498 parent's table. */ 13499 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; 13500 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; 13501 } 13502 else 13503 { 13504 size_t n; 13505 bfd_boolean *cu, *pu; 13506 13507 /* Or the parent's entries into ours. */ 13508 cu = h->u2.vtable->used; 13509 cu[-1] = TRUE; 13510 pu = h->u2.vtable->parent->u2.vtable->used; 13511 if (pu != NULL) 13512 { 13513 const struct elf_backend_data *bed; 13514 unsigned int log_file_align; 13515 13516 bed = get_elf_backend_data (h->root.u.def.section->owner); 13517 log_file_align = bed->s->log_file_align; 13518 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; 13519 while (n--) 13520 { 13521 if (*pu) 13522 *cu = TRUE; 13523 pu++; 13524 cu++; 13525 } 13526 } 13527 } 13528 13529 return TRUE; 13530 } 13531 13532 static bfd_boolean 13533 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) 13534 { 13535 asection *sec; 13536 bfd_vma hstart, hend; 13537 Elf_Internal_Rela *relstart, *relend, *rel; 13538 const struct elf_backend_data *bed; 13539 unsigned int log_file_align; 13540 13541 /* Take care of both those symbols that do not describe vtables as 13542 well as those that are not loaded. */ 13543 if (h->start_stop 13544 || h->u2.vtable == NULL 13545 || h->u2.vtable->parent == NULL) 13546 return TRUE; 13547 13548 BFD_ASSERT (h->root.type == bfd_link_hash_defined 13549 || h->root.type == bfd_link_hash_defweak); 13550 13551 sec = h->root.u.def.section; 13552 hstart = h->root.u.def.value; 13553 hend = hstart + h->size; 13554 13555 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); 13556 if (!relstart) 13557 return *(bfd_boolean *) okp = FALSE; 13558 bed = get_elf_backend_data (sec->owner); 13559 log_file_align = bed->s->log_file_align; 13560 13561 relend = relstart + sec->reloc_count; 13562 13563 for (rel = relstart; rel < relend; ++rel) 13564 if (rel->r_offset >= hstart && rel->r_offset < hend) 13565 { 13566 /* If the entry is in use, do nothing. */ 13567 if (h->u2.vtable->used 13568 && (rel->r_offset - hstart) < h->u2.vtable->size) 13569 { 13570 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; 13571 if (h->u2.vtable->used[entry]) 13572 continue; 13573 } 13574 /* Otherwise, kill it. */ 13575 rel->r_offset = rel->r_info = rel->r_addend = 0; 13576 } 13577 13578 return TRUE; 13579 } 13580 13581 /* Mark sections containing dynamically referenced symbols. When 13582 building shared libraries, we must assume that any visible symbol is 13583 referenced. */ 13584 13585 bfd_boolean 13586 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) 13587 { 13588 struct bfd_link_info *info = (struct bfd_link_info *) inf; 13589 struct bfd_elf_dynamic_list *d = info->dynamic_list; 13590 13591 if ((h->root.type == bfd_link_hash_defined 13592 || h->root.type == bfd_link_hash_defweak) 13593 && ((h->ref_dynamic && !h->forced_local) 13594 || ((h->def_regular || ELF_COMMON_DEF_P (h)) 13595 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 13596 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 13597 && (!bfd_link_executable (info) 13598 || info->gc_keep_exported 13599 || info->export_dynamic 13600 || (h->dynamic 13601 && d != NULL 13602 && (*d->match) (&d->head, NULL, h->root.root.string))) 13603 && (h->versioned >= versioned 13604 || !bfd_hide_sym_by_version (info->version_info, 13605 h->root.root.string))))) 13606 h->root.u.def.section->flags |= SEC_KEEP; 13607 13608 return TRUE; 13609 } 13610 13611 /* Keep all sections containing symbols undefined on the command-line, 13612 and the section containing the entry symbol. */ 13613 13614 void 13615 _bfd_elf_gc_keep (struct bfd_link_info *info) 13616 { 13617 struct bfd_sym_chain *sym; 13618 13619 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) 13620 { 13621 struct elf_link_hash_entry *h; 13622 13623 h = elf_link_hash_lookup (elf_hash_table (info), sym->name, 13624 FALSE, FALSE, FALSE); 13625 13626 if (h != NULL 13627 && (h->root.type == bfd_link_hash_defined 13628 || h->root.type == bfd_link_hash_defweak) 13629 && !bfd_is_abs_section (h->root.u.def.section) 13630 && !bfd_is_und_section (h->root.u.def.section)) 13631 h->root.u.def.section->flags |= SEC_KEEP; 13632 } 13633 } 13634 13635 bfd_boolean 13636 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, 13637 struct bfd_link_info *info) 13638 { 13639 bfd *ibfd = info->input_bfds; 13640 13641 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13642 { 13643 asection *sec; 13644 struct elf_reloc_cookie cookie; 13645 13646 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13647 continue; 13648 sec = ibfd->sections; 13649 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13650 continue; 13651 13652 if (!init_reloc_cookie (&cookie, info, ibfd)) 13653 return FALSE; 13654 13655 for (sec = ibfd->sections; sec; sec = sec->next) 13656 { 13657 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry") 13658 && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) 13659 { 13660 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); 13661 fini_reloc_cookie_rels (&cookie, sec); 13662 } 13663 } 13664 } 13665 return TRUE; 13666 } 13667 13668 /* Do mark and sweep of unused sections. */ 13669 13670 bfd_boolean 13671 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) 13672 { 13673 bfd_boolean ok = TRUE; 13674 bfd *sub; 13675 elf_gc_mark_hook_fn gc_mark_hook; 13676 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13677 struct elf_link_hash_table *htab; 13678 13679 if (!bed->can_gc_sections 13680 || !is_elf_hash_table (info->hash)) 13681 { 13682 _bfd_error_handler(_("warning: gc-sections option ignored")); 13683 return TRUE; 13684 } 13685 13686 bed->gc_keep (info); 13687 htab = elf_hash_table (info); 13688 13689 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section 13690 at the .eh_frame section if we can mark the FDEs individually. */ 13691 for (sub = info->input_bfds; 13692 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; 13693 sub = sub->link.next) 13694 { 13695 asection *sec; 13696 struct elf_reloc_cookie cookie; 13697 13698 sec = sub->sections; 13699 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13700 continue; 13701 sec = bfd_get_section_by_name (sub, ".eh_frame"); 13702 while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) 13703 { 13704 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); 13705 if (elf_section_data (sec)->sec_info 13706 && (sec->flags & SEC_LINKER_CREATED) == 0) 13707 elf_eh_frame_section (sub) = sec; 13708 fini_reloc_cookie_for_section (&cookie, sec); 13709 sec = bfd_get_next_section_by_name (NULL, sec); 13710 } 13711 } 13712 13713 /* Apply transitive closure to the vtable entry usage info. */ 13714 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); 13715 if (!ok) 13716 return FALSE; 13717 13718 /* Kill the vtable relocations that were not used. */ 13719 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok); 13720 if (!ok) 13721 return FALSE; 13722 13723 /* Mark dynamically referenced symbols. */ 13724 if (htab->dynamic_sections_created || info->gc_keep_exported) 13725 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); 13726 13727 /* Grovel through relocs to find out who stays ... */ 13728 gc_mark_hook = bed->gc_mark_hook; 13729 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13730 { 13731 asection *o; 13732 13733 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 13734 || elf_object_id (sub) != elf_hash_table_id (htab) 13735 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 13736 continue; 13737 13738 o = sub->sections; 13739 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13740 continue; 13741 13742 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). 13743 Also treat note sections as a root, if the section is not part 13744 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as 13745 well as FINI_ARRAY sections for ld -r. */ 13746 for (o = sub->sections; o != NULL; o = o->next) 13747 if (!o->gc_mark 13748 && (o->flags & SEC_EXCLUDE) == 0 13749 && ((o->flags & SEC_KEEP) != 0 13750 || (bfd_link_relocatable (info) 13751 && ((elf_section_data (o)->this_hdr.sh_type 13752 == SHT_PREINIT_ARRAY) 13753 || (elf_section_data (o)->this_hdr.sh_type 13754 == SHT_INIT_ARRAY) 13755 || (elf_section_data (o)->this_hdr.sh_type 13756 == SHT_FINI_ARRAY))) 13757 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE 13758 && elf_next_in_group (o) == NULL ))) 13759 { 13760 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 13761 return FALSE; 13762 } 13763 } 13764 13765 /* Allow the backend to mark additional target specific sections. */ 13766 bed->gc_mark_extra_sections (info, gc_mark_hook); 13767 13768 /* ... and mark SEC_EXCLUDE for those that go. */ 13769 return elf_gc_sweep (abfd, info); 13770 } 13771 13772 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ 13773 13774 bfd_boolean 13775 bfd_elf_gc_record_vtinherit (bfd *abfd, 13776 asection *sec, 13777 struct elf_link_hash_entry *h, 13778 bfd_vma offset) 13779 { 13780 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 13781 struct elf_link_hash_entry **search, *child; 13782 size_t extsymcount; 13783 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13784 13785 /* The sh_info field of the symtab header tells us where the 13786 external symbols start. We don't care about the local symbols at 13787 this point. */ 13788 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; 13789 if (!elf_bad_symtab (abfd)) 13790 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; 13791 13792 sym_hashes = elf_sym_hashes (abfd); 13793 sym_hashes_end = sym_hashes + extsymcount; 13794 13795 /* Hunt down the child symbol, which is in this section at the same 13796 offset as the relocation. */ 13797 for (search = sym_hashes; search != sym_hashes_end; ++search) 13798 { 13799 if ((child = *search) != NULL 13800 && (child->root.type == bfd_link_hash_defined 13801 || child->root.type == bfd_link_hash_defweak) 13802 && child->root.u.def.section == sec 13803 && child->root.u.def.value == offset) 13804 goto win; 13805 } 13806 13807 /* xgettext:c-format */ 13808 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), 13809 abfd, sec, (uint64_t) offset); 13810 bfd_set_error (bfd_error_invalid_operation); 13811 return FALSE; 13812 13813 win: 13814 if (!child->u2.vtable) 13815 { 13816 child->u2.vtable = ((struct elf_link_virtual_table_entry *) 13817 bfd_zalloc (abfd, sizeof (*child->u2.vtable))); 13818 if (!child->u2.vtable) 13819 return FALSE; 13820 } 13821 if (!h) 13822 { 13823 /* This *should* only be the absolute section. It could potentially 13824 be that someone has defined a non-global vtable though, which 13825 would be bad. It isn't worth paging in the local symbols to be 13826 sure though; that case should simply be handled by the assembler. */ 13827 13828 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; 13829 } 13830 else 13831 child->u2.vtable->parent = h; 13832 13833 return TRUE; 13834 } 13835 13836 /* Called from check_relocs to record the existence of a VTENTRY reloc. */ 13837 13838 bfd_boolean 13839 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, 13840 struct elf_link_hash_entry *h, 13841 bfd_vma addend) 13842 { 13843 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13844 unsigned int log_file_align = bed->s->log_file_align; 13845 13846 if (!h) 13847 { 13848 /* xgettext:c-format */ 13849 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), 13850 abfd, sec); 13851 bfd_set_error (bfd_error_bad_value); 13852 return FALSE; 13853 } 13854 13855 if (!h->u2.vtable) 13856 { 13857 h->u2.vtable = ((struct elf_link_virtual_table_entry *) 13858 bfd_zalloc (abfd, sizeof (*h->u2.vtable))); 13859 if (!h->u2.vtable) 13860 return FALSE; 13861 } 13862 13863 if (addend >= h->u2.vtable->size) 13864 { 13865 size_t size, bytes, file_align; 13866 bfd_boolean *ptr = h->u2.vtable->used; 13867 13868 /* While the symbol is undefined, we have to be prepared to handle 13869 a zero size. */ 13870 file_align = 1 << log_file_align; 13871 if (h->root.type == bfd_link_hash_undefined) 13872 size = addend + file_align; 13873 else 13874 { 13875 size = h->size; 13876 if (addend >= size) 13877 { 13878 /* Oops! We've got a reference past the defined end of 13879 the table. This is probably a bug -- shall we warn? */ 13880 size = addend + file_align; 13881 } 13882 } 13883 size = (size + file_align - 1) & -file_align; 13884 13885 /* Allocate one extra entry for use as a "done" flag for the 13886 consolidation pass. */ 13887 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); 13888 13889 if (ptr) 13890 { 13891 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); 13892 13893 if (ptr != NULL) 13894 { 13895 size_t oldbytes; 13896 13897 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) 13898 * sizeof (bfd_boolean)); 13899 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); 13900 } 13901 } 13902 else 13903 ptr = (bfd_boolean *) bfd_zmalloc (bytes); 13904 13905 if (ptr == NULL) 13906 return FALSE; 13907 13908 /* And arrange for that done flag to be at index -1. */ 13909 h->u2.vtable->used = ptr + 1; 13910 h->u2.vtable->size = size; 13911 } 13912 13913 h->u2.vtable->used[addend >> log_file_align] = TRUE; 13914 13915 return TRUE; 13916 } 13917 13918 /* Map an ELF section header flag to its corresponding string. */ 13919 typedef struct 13920 { 13921 char *flag_name; 13922 flagword flag_value; 13923 } elf_flags_to_name_table; 13924 13925 static elf_flags_to_name_table elf_flags_to_names [] = 13926 { 13927 { "SHF_WRITE", SHF_WRITE }, 13928 { "SHF_ALLOC", SHF_ALLOC }, 13929 { "SHF_EXECINSTR", SHF_EXECINSTR }, 13930 { "SHF_MERGE", SHF_MERGE }, 13931 { "SHF_STRINGS", SHF_STRINGS }, 13932 { "SHF_INFO_LINK", SHF_INFO_LINK}, 13933 { "SHF_LINK_ORDER", SHF_LINK_ORDER}, 13934 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, 13935 { "SHF_GROUP", SHF_GROUP }, 13936 { "SHF_TLS", SHF_TLS }, 13937 { "SHF_MASKOS", SHF_MASKOS }, 13938 { "SHF_EXCLUDE", SHF_EXCLUDE }, 13939 }; 13940 13941 /* Returns TRUE if the section is to be included, otherwise FALSE. */ 13942 bfd_boolean 13943 bfd_elf_lookup_section_flags (struct bfd_link_info *info, 13944 struct flag_info *flaginfo, 13945 asection *section) 13946 { 13947 const bfd_vma sh_flags = elf_section_flags (section); 13948 13949 if (!flaginfo->flags_initialized) 13950 { 13951 bfd *obfd = info->output_bfd; 13952 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 13953 struct flag_info_list *tf = flaginfo->flag_list; 13954 int with_hex = 0; 13955 int without_hex = 0; 13956 13957 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) 13958 { 13959 unsigned i; 13960 flagword (*lookup) (char *); 13961 13962 lookup = bed->elf_backend_lookup_section_flags_hook; 13963 if (lookup != NULL) 13964 { 13965 flagword hexval = (*lookup) ((char *) tf->name); 13966 13967 if (hexval != 0) 13968 { 13969 if (tf->with == with_flags) 13970 with_hex |= hexval; 13971 else if (tf->with == without_flags) 13972 without_hex |= hexval; 13973 tf->valid = TRUE; 13974 continue; 13975 } 13976 } 13977 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) 13978 { 13979 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) 13980 { 13981 if (tf->with == with_flags) 13982 with_hex |= elf_flags_to_names[i].flag_value; 13983 else if (tf->with == without_flags) 13984 without_hex |= elf_flags_to_names[i].flag_value; 13985 tf->valid = TRUE; 13986 break; 13987 } 13988 } 13989 if (!tf->valid) 13990 { 13991 info->callbacks->einfo 13992 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); 13993 return FALSE; 13994 } 13995 } 13996 flaginfo->flags_initialized = TRUE; 13997 flaginfo->only_with_flags |= with_hex; 13998 flaginfo->not_with_flags |= without_hex; 13999 } 14000 14001 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) 14002 return FALSE; 14003 14004 if ((flaginfo->not_with_flags & sh_flags) != 0) 14005 return FALSE; 14006 14007 return TRUE; 14008 } 14009 14010 struct alloc_got_off_arg { 14011 bfd_vma gotoff; 14012 struct bfd_link_info *info; 14013 }; 14014 14015 /* We need a special top-level link routine to convert got reference counts 14016 to real got offsets. */ 14017 14018 static bfd_boolean 14019 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) 14020 { 14021 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; 14022 bfd *obfd = gofarg->info->output_bfd; 14023 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 14024 14025 if (h->got.refcount > 0) 14026 { 14027 h->got.offset = gofarg->gotoff; 14028 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); 14029 } 14030 else 14031 h->got.offset = (bfd_vma) -1; 14032 14033 return TRUE; 14034 } 14035 14036 /* And an accompanying bit to work out final got entry offsets once 14037 we're done. Should be called from final_link. */ 14038 14039 bfd_boolean 14040 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, 14041 struct bfd_link_info *info) 14042 { 14043 bfd *i; 14044 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14045 bfd_vma gotoff; 14046 struct alloc_got_off_arg gofarg; 14047 14048 BFD_ASSERT (abfd == info->output_bfd); 14049 14050 if (! is_elf_hash_table (info->hash)) 14051 return FALSE; 14052 14053 /* The GOT offset is relative to the .got section, but the GOT header is 14054 put into the .got.plt section, if the backend uses it. */ 14055 if (bed->want_got_plt) 14056 gotoff = 0; 14057 else 14058 gotoff = bed->got_header_size; 14059 14060 /* Do the local .got entries first. */ 14061 for (i = info->input_bfds; i; i = i->link.next) 14062 { 14063 bfd_signed_vma *local_got; 14064 size_t j, locsymcount; 14065 Elf_Internal_Shdr *symtab_hdr; 14066 14067 if (bfd_get_flavour (i) != bfd_target_elf_flavour) 14068 continue; 14069 14070 local_got = elf_local_got_refcounts (i); 14071 if (!local_got) 14072 continue; 14073 14074 symtab_hdr = &elf_tdata (i)->symtab_hdr; 14075 if (elf_bad_symtab (i)) 14076 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 14077 else 14078 locsymcount = symtab_hdr->sh_info; 14079 14080 for (j = 0; j < locsymcount; ++j) 14081 { 14082 if (local_got[j] > 0) 14083 { 14084 local_got[j] = gotoff; 14085 gotoff += bed->got_elt_size (abfd, info, NULL, i, j); 14086 } 14087 else 14088 local_got[j] = (bfd_vma) -1; 14089 } 14090 } 14091 14092 /* Then the global .got entries. .plt refcounts are handled by 14093 adjust_dynamic_symbol */ 14094 gofarg.gotoff = gotoff; 14095 gofarg.info = info; 14096 elf_link_hash_traverse (elf_hash_table (info), 14097 elf_gc_allocate_got_offsets, 14098 &gofarg); 14099 return TRUE; 14100 } 14101 14102 /* Many folk need no more in the way of final link than this, once 14103 got entry reference counting is enabled. */ 14104 14105 bfd_boolean 14106 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) 14107 { 14108 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) 14109 return FALSE; 14110 14111 /* Invoke the regular ELF backend linker to do all the work. */ 14112 return bfd_elf_final_link (abfd, info); 14113 } 14114 14115 bfd_boolean 14116 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) 14117 { 14118 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; 14119 14120 if (rcookie->bad_symtab) 14121 rcookie->rel = rcookie->rels; 14122 14123 for (; rcookie->rel < rcookie->relend; rcookie->rel++) 14124 { 14125 unsigned long r_symndx; 14126 14127 if (! rcookie->bad_symtab) 14128 if (rcookie->rel->r_offset > offset) 14129 return FALSE; 14130 if (rcookie->rel->r_offset != offset) 14131 continue; 14132 14133 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; 14134 if (r_symndx == STN_UNDEF) 14135 return TRUE; 14136 14137 if (r_symndx >= rcookie->locsymcount 14138 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) 14139 { 14140 struct elf_link_hash_entry *h; 14141 14142 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; 14143 14144 while (h->root.type == bfd_link_hash_indirect 14145 || h->root.type == bfd_link_hash_warning) 14146 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14147 14148 if ((h->root.type == bfd_link_hash_defined 14149 || h->root.type == bfd_link_hash_defweak) 14150 && (h->root.u.def.section->owner != rcookie->abfd 14151 || h->root.u.def.section->kept_section != NULL 14152 || discarded_section (h->root.u.def.section))) 14153 return TRUE; 14154 } 14155 else 14156 { 14157 /* It's not a relocation against a global symbol, 14158 but it could be a relocation against a local 14159 symbol for a discarded section. */ 14160 asection *isec; 14161 Elf_Internal_Sym *isym; 14162 14163 /* Need to: get the symbol; get the section. */ 14164 isym = &rcookie->locsyms[r_symndx]; 14165 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); 14166 if (isec != NULL 14167 && (isec->kept_section != NULL 14168 || discarded_section (isec))) 14169 return TRUE; 14170 } 14171 return FALSE; 14172 } 14173 return FALSE; 14174 } 14175 14176 /* Discard unneeded references to discarded sections. 14177 Returns -1 on error, 1 if any section's size was changed, 0 if 14178 nothing changed. This function assumes that the relocations are in 14179 sorted order, which is true for all known assemblers. */ 14180 14181 int 14182 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) 14183 { 14184 struct elf_reloc_cookie cookie; 14185 asection *o; 14186 bfd *abfd; 14187 int changed = 0; 14188 14189 if (info->traditional_format 14190 || !is_elf_hash_table (info->hash)) 14191 return 0; 14192 14193 o = bfd_get_section_by_name (output_bfd, ".stab"); 14194 if (o != NULL) 14195 { 14196 asection *i; 14197 14198 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14199 { 14200 if (i->size == 0 14201 || i->reloc_count == 0 14202 || i->sec_info_type != SEC_INFO_TYPE_STABS) 14203 continue; 14204 14205 abfd = i->owner; 14206 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14207 continue; 14208 14209 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14210 return -1; 14211 14212 if (_bfd_discard_section_stabs (abfd, i, 14213 elf_section_data (i)->sec_info, 14214 bfd_elf_reloc_symbol_deleted_p, 14215 &cookie)) 14216 changed = 1; 14217 14218 fini_reloc_cookie_for_section (&cookie, i); 14219 } 14220 } 14221 14222 o = NULL; 14223 if (info->eh_frame_hdr_type != COMPACT_EH_HDR) 14224 o = bfd_get_section_by_name (output_bfd, ".eh_frame"); 14225 if (o != NULL) 14226 { 14227 asection *i; 14228 int eh_changed = 0; 14229 unsigned int eh_alignment; 14230 14231 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14232 { 14233 if (i->size == 0) 14234 continue; 14235 14236 abfd = i->owner; 14237 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14238 continue; 14239 14240 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14241 return -1; 14242 14243 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); 14244 if (_bfd_elf_discard_section_eh_frame (abfd, info, i, 14245 bfd_elf_reloc_symbol_deleted_p, 14246 &cookie)) 14247 { 14248 eh_changed = 1; 14249 if (i->size != i->rawsize) 14250 changed = 1; 14251 } 14252 14253 fini_reloc_cookie_for_section (&cookie, i); 14254 } 14255 14256 eh_alignment = 1 << o->alignment_power; 14257 /* Skip over zero terminator, and prevent empty sections from 14258 adding alignment padding at the end. */ 14259 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) 14260 if (i->size == 0) 14261 i->flags |= SEC_EXCLUDE; 14262 else if (i->size > 4) 14263 break; 14264 /* The last non-empty eh_frame section doesn't need padding. */ 14265 if (i != NULL) 14266 i = i->map_tail.s; 14267 /* Any prior sections must pad the last FDE out to the output 14268 section alignment. Otherwise we might have zero padding 14269 between sections, which would be seen as a terminator. */ 14270 for (; i != NULL; i = i->map_tail.s) 14271 if (i->size == 4) 14272 /* All but the last zero terminator should have been removed. */ 14273 BFD_FAIL (); 14274 else 14275 { 14276 bfd_size_type size 14277 = (i->size + eh_alignment - 1) & -eh_alignment; 14278 if (i->size != size) 14279 { 14280 i->size = size; 14281 changed = 1; 14282 eh_changed = 1; 14283 } 14284 } 14285 if (eh_changed) 14286 elf_link_hash_traverse (elf_hash_table (info), 14287 _bfd_elf_adjust_eh_frame_global_symbol, NULL); 14288 } 14289 14290 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 14291 { 14292 const struct elf_backend_data *bed; 14293 asection *s; 14294 14295 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14296 continue; 14297 s = abfd->sections; 14298 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14299 continue; 14300 14301 bed = get_elf_backend_data (abfd); 14302 14303 if (bed->elf_backend_discard_info != NULL) 14304 { 14305 if (!init_reloc_cookie (&cookie, info, abfd)) 14306 return -1; 14307 14308 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) 14309 changed = 1; 14310 14311 fini_reloc_cookie (&cookie, abfd); 14312 } 14313 } 14314 14315 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 14316 _bfd_elf_end_eh_frame_parsing (info); 14317 14318 if (info->eh_frame_hdr_type 14319 && !bfd_link_relocatable (info) 14320 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) 14321 changed = 1; 14322 14323 return changed; 14324 } 14325 14326 bfd_boolean 14327 _bfd_elf_section_already_linked (bfd *abfd, 14328 asection *sec, 14329 struct bfd_link_info *info) 14330 { 14331 flagword flags; 14332 const char *name, *key; 14333 struct bfd_section_already_linked *l; 14334 struct bfd_section_already_linked_hash_entry *already_linked_list; 14335 14336 if (sec->output_section == bfd_abs_section_ptr) 14337 return FALSE; 14338 14339 flags = sec->flags; 14340 14341 /* Return if it isn't a linkonce section. A comdat group section 14342 also has SEC_LINK_ONCE set. */ 14343 if ((flags & SEC_LINK_ONCE) == 0) 14344 return FALSE; 14345 14346 /* Don't put group member sections on our list of already linked 14347 sections. They are handled as a group via their group section. */ 14348 if (elf_sec_group (sec) != NULL) 14349 return FALSE; 14350 14351 /* For a SHT_GROUP section, use the group signature as the key. */ 14352 name = sec->name; 14353 if ((flags & SEC_GROUP) != 0 14354 && elf_next_in_group (sec) != NULL 14355 && elf_group_name (elf_next_in_group (sec)) != NULL) 14356 key = elf_group_name (elf_next_in_group (sec)); 14357 else 14358 { 14359 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ 14360 if (CONST_STRNEQ (name, ".gnu.linkonce.") 14361 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) 14362 key++; 14363 else 14364 /* Must be a user linkonce section that doesn't follow gcc's 14365 naming convention. In this case we won't be matching 14366 single member groups. */ 14367 key = name; 14368 } 14369 14370 already_linked_list = bfd_section_already_linked_table_lookup (key); 14371 14372 for (l = already_linked_list->entry; l != NULL; l = l->next) 14373 { 14374 /* We may have 2 different types of sections on the list: group 14375 sections with a signature of <key> (<key> is some string), 14376 and linkonce sections named .gnu.linkonce.<type>.<key>. 14377 Match like sections. LTO plugin sections are an exception. 14378 They are always named .gnu.linkonce.t.<key> and match either 14379 type of section. */ 14380 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) 14381 && ((flags & SEC_GROUP) != 0 14382 || strcmp (name, l->sec->name) == 0)) 14383 || (l->sec->owner->flags & BFD_PLUGIN) != 0) 14384 { 14385 /* The section has already been linked. See if we should 14386 issue a warning. */ 14387 if (!_bfd_handle_already_linked (sec, l, info)) 14388 return FALSE; 14389 14390 if (flags & SEC_GROUP) 14391 { 14392 asection *first = elf_next_in_group (sec); 14393 asection *s = first; 14394 14395 while (s != NULL) 14396 { 14397 s->output_section = bfd_abs_section_ptr; 14398 /* Record which group discards it. */ 14399 s->kept_section = l->sec; 14400 s = elf_next_in_group (s); 14401 /* These lists are circular. */ 14402 if (s == first) 14403 break; 14404 } 14405 } 14406 14407 return TRUE; 14408 } 14409 } 14410 14411 /* A single member comdat group section may be discarded by a 14412 linkonce section and vice versa. */ 14413 if ((flags & SEC_GROUP) != 0) 14414 { 14415 asection *first = elf_next_in_group (sec); 14416 14417 if (first != NULL && elf_next_in_group (first) == first) 14418 /* Check this single member group against linkonce sections. */ 14419 for (l = already_linked_list->entry; l != NULL; l = l->next) 14420 if ((l->sec->flags & SEC_GROUP) == 0 14421 && bfd_elf_match_symbols_in_sections (l->sec, first, info)) 14422 { 14423 first->output_section = bfd_abs_section_ptr; 14424 first->kept_section = l->sec; 14425 sec->output_section = bfd_abs_section_ptr; 14426 break; 14427 } 14428 } 14429 else 14430 /* Check this linkonce section against single member groups. */ 14431 for (l = already_linked_list->entry; l != NULL; l = l->next) 14432 if (l->sec->flags & SEC_GROUP) 14433 { 14434 asection *first = elf_next_in_group (l->sec); 14435 14436 if (first != NULL 14437 && elf_next_in_group (first) == first 14438 && bfd_elf_match_symbols_in_sections (first, sec, info)) 14439 { 14440 sec->output_section = bfd_abs_section_ptr; 14441 sec->kept_section = first; 14442 break; 14443 } 14444 } 14445 14446 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' 14447 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 14448 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' 14449 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its 14450 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded 14451 but its `.gnu.linkonce.t.F' is discarded means we chose one-only 14452 `.gnu.linkonce.t.F' section from a different bfd not requiring any 14453 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. 14454 The reverse order cannot happen as there is never a bfd with only the 14455 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not 14456 matter as here were are looking only for cross-bfd sections. */ 14457 14458 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) 14459 for (l = already_linked_list->entry; l != NULL; l = l->next) 14460 if ((l->sec->flags & SEC_GROUP) == 0 14461 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) 14462 { 14463 if (abfd != l->sec->owner) 14464 sec->output_section = bfd_abs_section_ptr; 14465 break; 14466 } 14467 14468 /* This is the first section with this name. Record it. */ 14469 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 14470 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 14471 return sec->output_section == bfd_abs_section_ptr; 14472 } 14473 14474 bfd_boolean 14475 _bfd_elf_common_definition (Elf_Internal_Sym *sym) 14476 { 14477 return sym->st_shndx == SHN_COMMON; 14478 } 14479 14480 unsigned int 14481 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) 14482 { 14483 return SHN_COMMON; 14484 } 14485 14486 asection * 14487 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) 14488 { 14489 return bfd_com_section_ptr; 14490 } 14491 14492 bfd_vma 14493 _bfd_elf_default_got_elt_size (bfd *abfd, 14494 struct bfd_link_info *info ATTRIBUTE_UNUSED, 14495 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, 14496 bfd *ibfd ATTRIBUTE_UNUSED, 14497 unsigned long symndx ATTRIBUTE_UNUSED) 14498 { 14499 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14500 return bed->s->arch_size / 8; 14501 } 14502 14503 /* Routines to support the creation of dynamic relocs. */ 14504 14505 /* Returns the name of the dynamic reloc section associated with SEC. */ 14506 14507 static const char * 14508 get_dynamic_reloc_section_name (bfd * abfd, 14509 asection * sec, 14510 bfd_boolean is_rela) 14511 { 14512 char *name; 14513 const char *old_name = bfd_section_name (sec); 14514 const char *prefix = is_rela ? ".rela" : ".rel"; 14515 14516 if (old_name == NULL) 14517 return NULL; 14518 14519 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); 14520 sprintf (name, "%s%s", prefix, old_name); 14521 14522 return name; 14523 } 14524 14525 /* Returns the dynamic reloc section associated with SEC. 14526 If necessary compute the name of the dynamic reloc section based 14527 on SEC's name (looked up in ABFD's string table) and the setting 14528 of IS_RELA. */ 14529 14530 asection * 14531 _bfd_elf_get_dynamic_reloc_section (bfd * abfd, 14532 asection * sec, 14533 bfd_boolean is_rela) 14534 { 14535 asection * reloc_sec = elf_section_data (sec)->sreloc; 14536 14537 if (reloc_sec == NULL) 14538 { 14539 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14540 14541 if (name != NULL) 14542 { 14543 reloc_sec = bfd_get_linker_section (abfd, name); 14544 14545 if (reloc_sec != NULL) 14546 elf_section_data (sec)->sreloc = reloc_sec; 14547 } 14548 } 14549 14550 return reloc_sec; 14551 } 14552 14553 /* Returns the dynamic reloc section associated with SEC. If the 14554 section does not exist it is created and attached to the DYNOBJ 14555 bfd and stored in the SRELOC field of SEC's elf_section_data 14556 structure. 14557 14558 ALIGNMENT is the alignment for the newly created section and 14559 IS_RELA defines whether the name should be .rela.<SEC's name> 14560 or .rel.<SEC's name>. The section name is looked up in the 14561 string table associated with ABFD. */ 14562 14563 asection * 14564 _bfd_elf_make_dynamic_reloc_section (asection *sec, 14565 bfd *dynobj, 14566 unsigned int alignment, 14567 bfd *abfd, 14568 bfd_boolean is_rela) 14569 { 14570 asection * reloc_sec = elf_section_data (sec)->sreloc; 14571 14572 if (reloc_sec == NULL) 14573 { 14574 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14575 14576 if (name == NULL) 14577 return NULL; 14578 14579 reloc_sec = bfd_get_linker_section (dynobj, name); 14580 14581 if (reloc_sec == NULL) 14582 { 14583 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY 14584 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 14585 if ((sec->flags & SEC_ALLOC) != 0) 14586 flags |= SEC_ALLOC | SEC_LOAD; 14587 14588 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); 14589 if (reloc_sec != NULL) 14590 { 14591 /* _bfd_elf_get_sec_type_attr chooses a section type by 14592 name. Override as it may be wrong, eg. for a user 14593 section named "auto" we'll get ".relauto" which is 14594 seen to be a .rela section. */ 14595 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; 14596 if (!bfd_set_section_alignment (reloc_sec, alignment)) 14597 reloc_sec = NULL; 14598 } 14599 } 14600 14601 elf_section_data (sec)->sreloc = reloc_sec; 14602 } 14603 14604 return reloc_sec; 14605 } 14606 14607 /* Copy the ELF symbol type and other attributes for a linker script 14608 assignment from HSRC to HDEST. Generally this should be treated as 14609 if we found a strong non-dynamic definition for HDEST (except that 14610 ld ignores multiple definition errors). */ 14611 void 14612 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, 14613 struct bfd_link_hash_entry *hdest, 14614 struct bfd_link_hash_entry *hsrc) 14615 { 14616 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; 14617 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; 14618 Elf_Internal_Sym isym; 14619 14620 ehdest->type = ehsrc->type; 14621 ehdest->target_internal = ehsrc->target_internal; 14622 14623 isym.st_other = ehsrc->other; 14624 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE); 14625 } 14626 14627 /* Append a RELA relocation REL to section S in BFD. */ 14628 14629 void 14630 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14631 { 14632 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14633 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); 14634 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); 14635 bed->s->swap_reloca_out (abfd, rel, loc); 14636 } 14637 14638 /* Append a REL relocation REL to section S in BFD. */ 14639 14640 void 14641 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14642 { 14643 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14644 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); 14645 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); 14646 bed->s->swap_reloc_out (abfd, rel, loc); 14647 } 14648 14649 /* Define __start, __stop, .startof. or .sizeof. symbol. */ 14650 14651 struct bfd_link_hash_entry * 14652 bfd_elf_define_start_stop (struct bfd_link_info *info, 14653 const char *symbol, asection *sec) 14654 { 14655 struct elf_link_hash_entry *h; 14656 14657 h = elf_link_hash_lookup (elf_hash_table (info), symbol, 14658 FALSE, FALSE, TRUE); 14659 if (h != NULL 14660 && (h->root.type == bfd_link_hash_undefined 14661 || h->root.type == bfd_link_hash_undefweak 14662 || ((h->ref_regular || h->def_dynamic) && !h->def_regular))) 14663 { 14664 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic; 14665 h->root.type = bfd_link_hash_defined; 14666 h->root.u.def.section = sec; 14667 h->root.u.def.value = 0; 14668 h->def_regular = 1; 14669 h->def_dynamic = 0; 14670 h->start_stop = 1; 14671 h->u2.start_stop_section = sec; 14672 if (symbol[0] == '.') 14673 { 14674 /* .startof. and .sizeof. symbols are local. */ 14675 const struct elf_backend_data *bed; 14676 bed = get_elf_backend_data (info->output_bfd); 14677 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 14678 } 14679 else 14680 { 14681 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 14682 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED; 14683 if (was_dynamic) 14684 bfd_elf_link_record_dynamic_symbol (info, h); 14685 } 14686 return &h->root; 14687 } 14688 return NULL; 14689 } 14690