1 /* linker.c -- BFD linker routines 2 Copyright (C) 1993-2020 Free Software Foundation, Inc. 3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "bfdlink.h" 26 #include "genlink.h" 27 28 /* 29 SECTION 30 Linker Functions 31 32 @cindex Linker 33 The linker uses three special entry points in the BFD target 34 vector. It is not necessary to write special routines for 35 these entry points when creating a new BFD back end, since 36 generic versions are provided. However, writing them can 37 speed up linking and make it use significantly less runtime 38 memory. 39 40 The first routine creates a hash table used by the other 41 routines. The second routine adds the symbols from an object 42 file to the hash table. The third routine takes all the 43 object files and links them together to create the output 44 file. These routines are designed so that the linker proper 45 does not need to know anything about the symbols in the object 46 files that it is linking. The linker merely arranges the 47 sections as directed by the linker script and lets BFD handle 48 the details of symbols and relocs. 49 50 The second routine and third routines are passed a pointer to 51 a <<struct bfd_link_info>> structure (defined in 52 <<bfdlink.h>>) which holds information relevant to the link, 53 including the linker hash table (which was created by the 54 first routine) and a set of callback functions to the linker 55 proper. 56 57 The generic linker routines are in <<linker.c>>, and use the 58 header file <<genlink.h>>. As of this writing, the only back 59 ends which have implemented versions of these routines are 60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out 61 routines are used as examples throughout this section. 62 63 @menu 64 @* Creating a Linker Hash Table:: 65 @* Adding Symbols to the Hash Table:: 66 @* Performing the Final Link:: 67 @end menu 68 69 INODE 70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions 71 SUBSECTION 72 Creating a linker hash table 73 74 @cindex _bfd_link_hash_table_create in target vector 75 @cindex target vector (_bfd_link_hash_table_create) 76 The linker routines must create a hash table, which must be 77 derived from <<struct bfd_link_hash_table>> described in 78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to 79 create a derived hash table. This entry point is called using 80 the target vector of the linker output file. 81 82 The <<_bfd_link_hash_table_create>> entry point must allocate 83 and initialize an instance of the desired hash table. If the 84 back end does not require any additional information to be 85 stored with the entries in the hash table, the entry point may 86 simply create a <<struct bfd_link_hash_table>>. Most likely, 87 however, some additional information will be needed. 88 89 For example, with each entry in the hash table the a.out 90 linker keeps the index the symbol has in the final output file 91 (this index number is used so that when doing a relocatable 92 link the symbol index used in the output file can be quickly 93 filled in when copying over a reloc). The a.out linker code 94 defines the required structures and functions for a hash table 95 derived from <<struct bfd_link_hash_table>>. The a.out linker 96 hash table is created by the function 97 <<NAME(aout,link_hash_table_create)>>; it simply allocates 98 space for the hash table, initializes it, and returns a 99 pointer to it. 100 101 When writing the linker routines for a new back end, you will 102 generally not know exactly which fields will be required until 103 you have finished. You should simply create a new hash table 104 which defines no additional fields, and then simply add fields 105 as they become necessary. 106 107 INODE 108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions 109 SUBSECTION 110 Adding symbols to the hash table 111 112 @cindex _bfd_link_add_symbols in target vector 113 @cindex target vector (_bfd_link_add_symbols) 114 The linker proper will call the <<_bfd_link_add_symbols>> 115 entry point for each object file or archive which is to be 116 linked (typically these are the files named on the command 117 line, but some may also come from the linker script). The 118 entry point is responsible for examining the file. For an 119 object file, BFD must add any relevant symbol information to 120 the hash table. For an archive, BFD must determine which 121 elements of the archive should be used and adding them to the 122 link. 123 124 The a.out version of this entry point is 125 <<NAME(aout,link_add_symbols)>>. 126 127 @menu 128 @* Differing file formats:: 129 @* Adding symbols from an object file:: 130 @* Adding symbols from an archive:: 131 @end menu 132 133 INODE 134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table 135 SUBSUBSECTION 136 Differing file formats 137 138 Normally all the files involved in a link will be of the same 139 format, but it is also possible to link together different 140 format object files, and the back end must support that. The 141 <<_bfd_link_add_symbols>> entry point is called via the target 142 vector of the file to be added. This has an important 143 consequence: the function may not assume that the hash table 144 is the type created by the corresponding 145 <<_bfd_link_hash_table_create>> vector. All the 146 <<_bfd_link_add_symbols>> function can assume about the hash 147 table is that it is derived from <<struct 148 bfd_link_hash_table>>. 149 150 Sometimes the <<_bfd_link_add_symbols>> function must store 151 some information in the hash table entry to be used by the 152 <<_bfd_final_link>> function. In such a case the output bfd 153 xvec must be checked to make sure that the hash table was 154 created by an object file of the same format. 155 156 The <<_bfd_final_link>> routine must be prepared to handle a 157 hash entry without any extra information added by the 158 <<_bfd_link_add_symbols>> function. A hash entry without 159 extra information will also occur when the linker script 160 directs the linker to create a symbol. Note that, regardless 161 of how a hash table entry is added, all the fields will be 162 initialized to some sort of null value by the hash table entry 163 initialization function. 164 165 See <<ecoff_link_add_externals>> for an example of how to 166 check the output bfd before saving information (in this 167 case, the ECOFF external symbol debugging information) in a 168 hash table entry. 169 170 INODE 171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table 172 SUBSUBSECTION 173 Adding symbols from an object file 174 175 When the <<_bfd_link_add_symbols>> routine is passed an object 176 file, it must add all externally visible symbols in that 177 object file to the hash table. The actual work of adding the 178 symbol to the hash table is normally handled by the function 179 <<_bfd_generic_link_add_one_symbol>>. The 180 <<_bfd_link_add_symbols>> routine is responsible for reading 181 all the symbols from the object file and passing the correct 182 information to <<_bfd_generic_link_add_one_symbol>>. 183 184 The <<_bfd_link_add_symbols>> routine should not use 185 <<bfd_canonicalize_symtab>> to read the symbols. The point of 186 providing this routine is to avoid the overhead of converting 187 the symbols into generic <<asymbol>> structures. 188 189 @findex _bfd_generic_link_add_one_symbol 190 <<_bfd_generic_link_add_one_symbol>> handles the details of 191 combining common symbols, warning about multiple definitions, 192 and so forth. It takes arguments which describe the symbol to 193 add, notably symbol flags, a section, and an offset. The 194 symbol flags include such things as <<BSF_WEAK>> or 195 <<BSF_INDIRECT>>. The section is a section in the object 196 file, or something like <<bfd_und_section_ptr>> for an undefined 197 symbol or <<bfd_com_section_ptr>> for a common symbol. 198 199 If the <<_bfd_final_link>> routine is also going to need to 200 read the symbol information, the <<_bfd_link_add_symbols>> 201 routine should save it somewhere attached to the object file 202 BFD. However, the information should only be saved if the 203 <<keep_memory>> field of the <<info>> argument is TRUE, so 204 that the <<-no-keep-memory>> linker switch is effective. 205 206 The a.out function which adds symbols from an object file is 207 <<aout_link_add_object_symbols>>, and most of the interesting 208 work is in <<aout_link_add_symbols>>. The latter saves 209 pointers to the hash tables entries created by 210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number, 211 so that the <<_bfd_final_link>> routine does not have to call 212 the hash table lookup routine to locate the entry. 213 214 INODE 215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table 216 SUBSUBSECTION 217 Adding symbols from an archive 218 219 When the <<_bfd_link_add_symbols>> routine is passed an 220 archive, it must look through the symbols defined by the 221 archive and decide which elements of the archive should be 222 included in the link. For each such element it must call the 223 <<add_archive_element>> linker callback, and it must add the 224 symbols from the object file to the linker hash table. (The 225 callback may in fact indicate that a replacement BFD should be 226 used, in which case the symbols from that BFD should be added 227 to the linker hash table instead.) 228 229 @findex _bfd_generic_link_add_archive_symbols 230 In most cases the work of looking through the symbols in the 231 archive should be done by the 232 <<_bfd_generic_link_add_archive_symbols>> function. 233 <<_bfd_generic_link_add_archive_symbols>> is passed a function 234 to call to make the final decision about adding an archive 235 element to the link and to do the actual work of adding the 236 symbols to the linker hash table. If the element is to 237 be included, the <<add_archive_element>> linker callback 238 routine must be called with the element as an argument, and 239 the element's symbols must be added to the linker hash table 240 just as though the element had itself been passed to the 241 <<_bfd_link_add_symbols>> function. 242 243 When the a.out <<_bfd_link_add_symbols>> function receives an 244 archive, it calls <<_bfd_generic_link_add_archive_symbols>> 245 passing <<aout_link_check_archive_element>> as the function 246 argument. <<aout_link_check_archive_element>> calls 247 <<aout_link_check_ar_symbols>>. If the latter decides to add 248 the element (an element is only added if it provides a real, 249 non-common, definition for a previously undefined or common 250 symbol) it calls the <<add_archive_element>> callback and then 251 <<aout_link_check_archive_element>> calls 252 <<aout_link_add_symbols>> to actually add the symbols to the 253 linker hash table - possibly those of a substitute BFD, if the 254 <<add_archive_element>> callback avails itself of that option. 255 256 The ECOFF back end is unusual in that it does not normally 257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF 258 archives already contain a hash table of symbols. The ECOFF 259 back end searches the archive itself to avoid the overhead of 260 creating a new hash table. 261 262 INODE 263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions 264 SUBSECTION 265 Performing the final link 266 267 @cindex _bfd_link_final_link in target vector 268 @cindex target vector (_bfd_final_link) 269 When all the input files have been processed, the linker calls 270 the <<_bfd_final_link>> entry point of the output BFD. This 271 routine is responsible for producing the final output file, 272 which has several aspects. It must relocate the contents of 273 the input sections and copy the data into the output sections. 274 It must build an output symbol table including any local 275 symbols from the input files and the global symbols from the 276 hash table. When producing relocatable output, it must 277 modify the input relocs and write them into the output file. 278 There may also be object format dependent work to be done. 279 280 The linker will also call the <<write_object_contents>> entry 281 point when the BFD is closed. The two entry points must work 282 together in order to produce the correct output file. 283 284 The details of how this works are inevitably dependent upon 285 the specific object file format. The a.out 286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>. 287 288 @menu 289 @* Information provided by the linker:: 290 @* Relocating the section contents:: 291 @* Writing the symbol table:: 292 @end menu 293 294 INODE 295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link 296 SUBSUBSECTION 297 Information provided by the linker 298 299 Before the linker calls the <<_bfd_final_link>> entry point, 300 it sets up some data structures for the function to use. 301 302 The <<input_bfds>> field of the <<bfd_link_info>> structure 303 will point to a list of all the input files included in the 304 link. These files are linked through the <<link.next>> field 305 of the <<bfd>> structure. 306 307 Each section in the output file will have a list of 308 <<link_order>> structures attached to the <<map_head.link_order>> 309 field (the <<link_order>> structure is defined in 310 <<bfdlink.h>>). These structures describe how to create the 311 contents of the output section in terms of the contents of 312 various input sections, fill constants, and, eventually, other 313 types of information. They also describe relocs that must be 314 created by the BFD backend, but do not correspond to any input 315 file; this is used to support -Ur, which builds constructors 316 while generating a relocatable object file. 317 318 INODE 319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link 320 SUBSUBSECTION 321 Relocating the section contents 322 323 The <<_bfd_final_link>> function should look through the 324 <<link_order>> structures attached to each section of the 325 output file. Each <<link_order>> structure should either be 326 handled specially, or it should be passed to the function 327 <<_bfd_default_link_order>> which will do the right thing 328 (<<_bfd_default_link_order>> is defined in <<linker.c>>). 329 330 For efficiency, a <<link_order>> of type 331 <<bfd_indirect_link_order>> whose associated section belongs 332 to a BFD of the same format as the output BFD must be handled 333 specially. This type of <<link_order>> describes part of an 334 output section in terms of a section belonging to one of the 335 input files. The <<_bfd_final_link>> function should read the 336 contents of the section and any associated relocs, apply the 337 relocs to the section contents, and write out the modified 338 section contents. If performing a relocatable link, the 339 relocs themselves must also be modified and written out. 340 341 @findex _bfd_relocate_contents 342 @findex _bfd_final_link_relocate 343 The functions <<_bfd_relocate_contents>> and 344 <<_bfd_final_link_relocate>> provide some general support for 345 performing the actual relocations, notably overflow checking. 346 Their arguments include information about the symbol the 347 relocation is against and a <<reloc_howto_type>> argument 348 which describes the relocation to perform. These functions 349 are defined in <<reloc.c>>. 350 351 The a.out function which handles reading, relocating, and 352 writing section contents is <<aout_link_input_section>>. The 353 actual relocation is done in <<aout_link_input_section_std>> 354 and <<aout_link_input_section_ext>>. 355 356 INODE 357 Writing the symbol table, , Relocating the section contents, Performing the Final Link 358 SUBSUBSECTION 359 Writing the symbol table 360 361 The <<_bfd_final_link>> function must gather all the symbols 362 in the input files and write them out. It must also write out 363 all the symbols in the global hash table. This must be 364 controlled by the <<strip>> and <<discard>> fields of the 365 <<bfd_link_info>> structure. 366 367 The local symbols of the input files will not have been 368 entered into the linker hash table. The <<_bfd_final_link>> 369 routine must consider each input file and include the symbols 370 in the output file. It may be convenient to do this when 371 looking through the <<link_order>> structures, or it may be 372 done by stepping through the <<input_bfds>> list. 373 374 The <<_bfd_final_link>> routine must also traverse the global 375 hash table to gather all the externally visible symbols. It 376 is possible that most of the externally visible symbols may be 377 written out when considering the symbols of each input file, 378 but it is still necessary to traverse the hash table since the 379 linker script may have defined some symbols that are not in 380 any of the input files. 381 382 The <<strip>> field of the <<bfd_link_info>> structure 383 controls which symbols are written out. The possible values 384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>, 385 then the <<keep_hash>> field of the <<bfd_link_info>> 386 structure is a hash table of symbols to keep; each symbol 387 should be looked up in this hash table, and only symbols which 388 are present should be included in the output file. 389 390 If the <<strip>> field of the <<bfd_link_info>> structure 391 permits local symbols to be written out, the <<discard>> field 392 is used to further controls which local symbols are included 393 in the output file. If the value is <<discard_l>>, then all 394 local symbols which begin with a certain prefix are discarded; 395 this is controlled by the <<bfd_is_local_label_name>> entry point. 396 397 The a.out backend handles symbols by calling 398 <<aout_link_write_symbols>> on each input BFD and then 399 traversing the global hash table with the function 400 <<aout_link_write_other_symbol>>. It builds a string table 401 while writing out the symbols, which is written to the output 402 file at the end of <<NAME(aout,final_link)>>. 403 */ 404 405 static bfd_boolean generic_link_add_object_symbols 406 (bfd *, struct bfd_link_info *); 407 static bfd_boolean generic_link_check_archive_element 408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *, 409 bfd_boolean *); 410 static bfd_boolean generic_link_add_symbol_list 411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **); 412 static bfd_boolean generic_add_output_symbol 413 (bfd *, size_t *psymalloc, asymbol *); 414 static bfd_boolean default_data_link_order 415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *); 416 static bfd_boolean default_indirect_link_order 417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *, 418 bfd_boolean); 419 420 /* The link hash table structure is defined in bfdlink.h. It provides 421 a base hash table which the backend specific hash tables are built 422 upon. */ 423 424 /* Routine to create an entry in the link hash table. */ 425 426 struct bfd_hash_entry * 427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry, 428 struct bfd_hash_table *table, 429 const char *string) 430 { 431 /* Allocate the structure if it has not already been allocated by a 432 subclass. */ 433 if (entry == NULL) 434 { 435 entry = (struct bfd_hash_entry *) 436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)); 437 if (entry == NULL) 438 return entry; 439 } 440 441 /* Call the allocation method of the superclass. */ 442 entry = bfd_hash_newfunc (entry, table, string); 443 if (entry) 444 { 445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry; 446 447 /* Initialize the local fields. */ 448 memset ((char *) &h->root + sizeof (h->root), 0, 449 sizeof (*h) - sizeof (h->root)); 450 } 451 452 return entry; 453 } 454 455 /* Initialize a link hash table. The BFD argument is the one 456 responsible for creating this table. */ 457 458 bfd_boolean 459 _bfd_link_hash_table_init 460 (struct bfd_link_hash_table *table, 461 bfd *abfd ATTRIBUTE_UNUSED, 462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 463 struct bfd_hash_table *, 464 const char *), 465 unsigned int entsize) 466 { 467 bfd_boolean ret; 468 469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash); 470 table->undefs = NULL; 471 table->undefs_tail = NULL; 472 table->type = bfd_link_generic_hash_table; 473 474 ret = bfd_hash_table_init (&table->table, newfunc, entsize); 475 if (ret) 476 { 477 /* Arrange for destruction of this hash table on closing ABFD. */ 478 table->hash_table_free = _bfd_generic_link_hash_table_free; 479 abfd->link.hash = table; 480 abfd->is_linker_output = TRUE; 481 } 482 return ret; 483 } 484 485 /* Look up a symbol in a link hash table. If follow is TRUE, we 486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to 487 the real symbol. 488 489 .{* Return TRUE if the symbol described by a linker hash entry H 490 . is going to be absolute. Linker-script defined symbols can be 491 . converted from absolute to section-relative ones late in the 492 . link. Use this macro to correctly determine whether the symbol 493 . will actually end up absolute in output. *} 494 .#define bfd_is_abs_symbol(H) \ 495 . (((H)->type == bfd_link_hash_defined \ 496 . || (H)->type == bfd_link_hash_defweak) \ 497 . && bfd_is_abs_section ((H)->u.def.section) \ 498 . && !(H)->rel_from_abs) 499 . 500 */ 501 502 struct bfd_link_hash_entry * 503 bfd_link_hash_lookup (struct bfd_link_hash_table *table, 504 const char *string, 505 bfd_boolean create, 506 bfd_boolean copy, 507 bfd_boolean follow) 508 { 509 struct bfd_link_hash_entry *ret; 510 511 if (table == NULL || string == NULL) 512 return NULL; 513 514 ret = ((struct bfd_link_hash_entry *) 515 bfd_hash_lookup (&table->table, string, create, copy)); 516 517 if (follow && ret != NULL) 518 { 519 while (ret->type == bfd_link_hash_indirect 520 || ret->type == bfd_link_hash_warning) 521 ret = ret->u.i.link; 522 } 523 524 return ret; 525 } 526 527 /* Look up a symbol in the main linker hash table if the symbol might 528 be wrapped. This should only be used for references to an 529 undefined symbol, not for definitions of a symbol. */ 530 531 struct bfd_link_hash_entry * 532 bfd_wrapped_link_hash_lookup (bfd *abfd, 533 struct bfd_link_info *info, 534 const char *string, 535 bfd_boolean create, 536 bfd_boolean copy, 537 bfd_boolean follow) 538 { 539 bfd_size_type amt; 540 541 if (info->wrap_hash != NULL) 542 { 543 const char *l; 544 char prefix = '\0'; 545 546 l = string; 547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char) 548 { 549 prefix = *l; 550 ++l; 551 } 552 553 #undef WRAP 554 #define WRAP "__wrap_" 555 556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 557 { 558 char *n; 559 struct bfd_link_hash_entry *h; 560 561 /* This symbol is being wrapped. We want to replace all 562 references to SYM with references to __wrap_SYM. */ 563 564 amt = strlen (l) + sizeof WRAP + 1; 565 n = (char *) bfd_malloc (amt); 566 if (n == NULL) 567 return NULL; 568 569 n[0] = prefix; 570 n[1] = '\0'; 571 strcat (n, WRAP); 572 strcat (n, l); 573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 574 free (n); 575 return h; 576 } 577 578 #undef REAL 579 #define REAL "__real_" 580 581 if (*l == '_' 582 && CONST_STRNEQ (l, REAL) 583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1, 584 FALSE, FALSE) != NULL) 585 { 586 char *n; 587 struct bfd_link_hash_entry *h; 588 589 /* This is a reference to __real_SYM, where SYM is being 590 wrapped. We want to replace all references to __real_SYM 591 with references to SYM. */ 592 593 amt = strlen (l + sizeof REAL - 1) + 2; 594 n = (char *) bfd_malloc (amt); 595 if (n == NULL) 596 return NULL; 597 598 n[0] = prefix; 599 n[1] = '\0'; 600 strcat (n, l + sizeof REAL - 1); 601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow); 602 free (n); 603 return h; 604 } 605 606 #undef REAL 607 } 608 609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow); 610 } 611 612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_" 613 and the remainder is found in wrap_hash, return the real symbol. */ 614 615 struct bfd_link_hash_entry * 616 unwrap_hash_lookup (struct bfd_link_info *info, 617 bfd *input_bfd, 618 struct bfd_link_hash_entry *h) 619 { 620 const char *l = h->root.string; 621 622 if (*l == bfd_get_symbol_leading_char (input_bfd) 623 || *l == info->wrap_char) 624 ++l; 625 626 if (CONST_STRNEQ (l, WRAP)) 627 { 628 l += sizeof WRAP - 1; 629 630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL) 631 { 632 char save = 0; 633 if (l - (sizeof WRAP - 1) != h->root.string) 634 { 635 --l; 636 save = *l; 637 *(char *) l = *h->root.string; 638 } 639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE); 640 if (save) 641 *(char *) l = save; 642 } 643 } 644 return h; 645 } 646 #undef WRAP 647 648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse 649 in the treatment of warning symbols. When warning symbols are 650 created they replace the real symbol, so you don't get to see the 651 real symbol in a bfd_hash_traverse. This traversal calls func with 652 the real symbol. */ 653 654 void 655 bfd_link_hash_traverse 656 (struct bfd_link_hash_table *htab, 657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *), 658 void *info) 659 { 660 unsigned int i; 661 662 htab->table.frozen = 1; 663 for (i = 0; i < htab->table.size; i++) 664 { 665 struct bfd_link_hash_entry *p; 666 667 p = (struct bfd_link_hash_entry *) htab->table.table[i]; 668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next) 669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info)) 670 goto out; 671 } 672 out: 673 htab->table.frozen = 0; 674 } 675 676 /* Add a symbol to the linker hash table undefs list. */ 677 678 void 679 bfd_link_add_undef (struct bfd_link_hash_table *table, 680 struct bfd_link_hash_entry *h) 681 { 682 BFD_ASSERT (h->u.undef.next == NULL); 683 if (table->undefs_tail != NULL) 684 table->undefs_tail->u.undef.next = h; 685 if (table->undefs == NULL) 686 table->undefs = h; 687 table->undefs_tail = h; 688 } 689 690 /* The undefs list was designed so that in normal use we don't need to 691 remove entries. However, if symbols on the list are changed from 692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or 693 bfd_link_hash_new for some reason, then they must be removed from the 694 list. Failure to do so might result in the linker attempting to add 695 the symbol to the list again at a later stage. */ 696 697 void 698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table) 699 { 700 struct bfd_link_hash_entry **pun; 701 702 pun = &table->undefs; 703 while (*pun != NULL) 704 { 705 struct bfd_link_hash_entry *h = *pun; 706 707 if (h->type == bfd_link_hash_new 708 || h->type == bfd_link_hash_undefweak) 709 { 710 *pun = h->u.undef.next; 711 h->u.undef.next = NULL; 712 if (h == table->undefs_tail) 713 { 714 if (pun == &table->undefs) 715 table->undefs_tail = NULL; 716 else 717 /* pun points at an u.undef.next field. Go back to 718 the start of the link_hash_entry. */ 719 table->undefs_tail = (struct bfd_link_hash_entry *) 720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h)); 721 break; 722 } 723 } 724 else 725 pun = &h->u.undef.next; 726 } 727 } 728 729 /* Routine to create an entry in a generic link hash table. */ 730 731 struct bfd_hash_entry * 732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry, 733 struct bfd_hash_table *table, 734 const char *string) 735 { 736 /* Allocate the structure if it has not already been allocated by a 737 subclass. */ 738 if (entry == NULL) 739 { 740 entry = (struct bfd_hash_entry *) 741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)); 742 if (entry == NULL) 743 return entry; 744 } 745 746 /* Call the allocation method of the superclass. */ 747 entry = _bfd_link_hash_newfunc (entry, table, string); 748 if (entry) 749 { 750 struct generic_link_hash_entry *ret; 751 752 /* Set local fields. */ 753 ret = (struct generic_link_hash_entry *) entry; 754 ret->written = FALSE; 755 ret->sym = NULL; 756 } 757 758 return entry; 759 } 760 761 /* Create a generic link hash table. */ 762 763 struct bfd_link_hash_table * 764 _bfd_generic_link_hash_table_create (bfd *abfd) 765 { 766 struct generic_link_hash_table *ret; 767 bfd_size_type amt = sizeof (struct generic_link_hash_table); 768 769 ret = (struct generic_link_hash_table *) bfd_malloc (amt); 770 if (ret == NULL) 771 return NULL; 772 if (! _bfd_link_hash_table_init (&ret->root, abfd, 773 _bfd_generic_link_hash_newfunc, 774 sizeof (struct generic_link_hash_entry))) 775 { 776 free (ret); 777 return NULL; 778 } 779 return &ret->root; 780 } 781 782 void 783 _bfd_generic_link_hash_table_free (bfd *obfd) 784 { 785 struct generic_link_hash_table *ret; 786 787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash); 788 ret = (struct generic_link_hash_table *) obfd->link.hash; 789 bfd_hash_table_free (&ret->root.table); 790 free (ret); 791 obfd->link.hash = NULL; 792 obfd->is_linker_output = FALSE; 793 } 794 795 /* Grab the symbols for an object file when doing a generic link. We 796 store the symbols in the outsymbols field. We need to keep them 797 around for the entire link to ensure that we only read them once. 798 If we read them multiple times, we might wind up with relocs and 799 the hash table pointing to different instances of the symbol 800 structure. */ 801 802 bfd_boolean 803 bfd_generic_link_read_symbols (bfd *abfd) 804 { 805 if (bfd_get_outsymbols (abfd) == NULL) 806 { 807 long symsize; 808 long symcount; 809 810 symsize = bfd_get_symtab_upper_bound (abfd); 811 if (symsize < 0) 812 return FALSE; 813 abfd->outsymbols = bfd_alloc (abfd, symsize); 814 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0) 815 return FALSE; 816 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd)); 817 if (symcount < 0) 818 return FALSE; 819 abfd->symcount = symcount; 820 } 821 822 return TRUE; 823 } 824 825 /* Indicate that we are only retrieving symbol values from this 826 section. We want the symbols to act as though the values in the 827 file are absolute. */ 828 829 void 830 _bfd_generic_link_just_syms (asection *sec, 831 struct bfd_link_info *info ATTRIBUTE_UNUSED) 832 { 833 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS; 834 sec->output_section = bfd_abs_section_ptr; 835 sec->output_offset = sec->vma; 836 } 837 838 /* Copy the symbol type and other attributes for a linker script 839 assignment from HSRC to HDEST. 840 The default implementation does nothing. */ 841 void 842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED, 843 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED, 844 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED) 845 { 846 } 847 848 /* Generic function to add symbols from an object file to the 849 global hash table. */ 850 851 bfd_boolean 852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 853 { 854 bfd_boolean ret; 855 856 switch (bfd_get_format (abfd)) 857 { 858 case bfd_object: 859 ret = generic_link_add_object_symbols (abfd, info); 860 break; 861 case bfd_archive: 862 ret = (_bfd_generic_link_add_archive_symbols 863 (abfd, info, generic_link_check_archive_element)); 864 break; 865 default: 866 bfd_set_error (bfd_error_wrong_format); 867 ret = FALSE; 868 } 869 870 return ret; 871 } 872 873 /* Add symbols from an object file to the global hash table. */ 874 875 static bfd_boolean 876 generic_link_add_object_symbols (bfd *abfd, 877 struct bfd_link_info *info) 878 { 879 bfd_size_type symcount; 880 struct bfd_symbol **outsyms; 881 882 if (!bfd_generic_link_read_symbols (abfd)) 883 return FALSE; 884 symcount = _bfd_generic_link_get_symcount (abfd); 885 outsyms = _bfd_generic_link_get_symbols (abfd); 886 return generic_link_add_symbol_list (abfd, info, symcount, outsyms); 887 } 888 889 /* Generic function to add symbols from an archive file to the global 890 hash file. This function presumes that the archive symbol table 891 has already been read in (this is normally done by the 892 bfd_check_format entry point). It looks through the archive symbol 893 table for symbols that are undefined or common in the linker global 894 symbol hash table. When one is found, the CHECKFN argument is used 895 to see if an object file should be included. This allows targets 896 to customize common symbol behaviour. CHECKFN should set *PNEEDED 897 to TRUE if the object file should be included, and must also call 898 the bfd_link_info add_archive_element callback function and handle 899 adding the symbols to the global hash table. CHECKFN must notice 900 if the callback indicates a substitute BFD, and arrange to add 901 those symbols instead if it does so. CHECKFN should only return 902 FALSE if some sort of error occurs. */ 903 904 bfd_boolean 905 _bfd_generic_link_add_archive_symbols 906 (bfd *abfd, 907 struct bfd_link_info *info, 908 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, 909 struct bfd_link_hash_entry *, const char *, 910 bfd_boolean *)) 911 { 912 bfd_boolean loop; 913 bfd_size_type amt; 914 unsigned char *included; 915 916 if (! bfd_has_map (abfd)) 917 { 918 /* An empty archive is a special case. */ 919 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 920 return TRUE; 921 bfd_set_error (bfd_error_no_armap); 922 return FALSE; 923 } 924 925 amt = bfd_ardata (abfd)->symdef_count; 926 if (amt == 0) 927 return TRUE; 928 amt *= sizeof (*included); 929 included = (unsigned char *) bfd_zmalloc (amt); 930 if (included == NULL) 931 return FALSE; 932 933 do 934 { 935 carsym *arsyms; 936 carsym *arsym_end; 937 carsym *arsym; 938 unsigned int indx; 939 file_ptr last_ar_offset = -1; 940 bfd_boolean needed = FALSE; 941 bfd *element = NULL; 942 943 loop = FALSE; 944 arsyms = bfd_ardata (abfd)->symdefs; 945 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count; 946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++) 947 { 948 struct bfd_link_hash_entry *h; 949 struct bfd_link_hash_entry *undefs_tail; 950 951 if (included[indx]) 952 continue; 953 if (needed && arsym->file_offset == last_ar_offset) 954 { 955 included[indx] = 1; 956 continue; 957 } 958 959 if (arsym->name == NULL) 960 goto error_return; 961 962 h = bfd_link_hash_lookup (info->hash, arsym->name, 963 FALSE, FALSE, TRUE); 964 965 if (h == NULL 966 && info->pei386_auto_import 967 && CONST_STRNEQ (arsym->name, "__imp_")) 968 h = bfd_link_hash_lookup (info->hash, arsym->name + 6, 969 FALSE, FALSE, TRUE); 970 if (h == NULL) 971 continue; 972 973 if (h->type != bfd_link_hash_undefined 974 && h->type != bfd_link_hash_common) 975 { 976 if (h->type != bfd_link_hash_undefweak) 977 /* Symbol must be defined. Don't check it again. */ 978 included[indx] = 1; 979 continue; 980 } 981 982 if (last_ar_offset != arsym->file_offset) 983 { 984 last_ar_offset = arsym->file_offset; 985 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset); 986 if (element == NULL 987 || !bfd_check_format (element, bfd_object)) 988 goto error_return; 989 } 990 991 undefs_tail = info->hash->undefs_tail; 992 993 /* CHECKFN will see if this element should be included, and 994 go ahead and include it if appropriate. */ 995 if (! (*checkfn) (element, info, h, arsym->name, &needed)) 996 goto error_return; 997 998 if (needed) 999 { 1000 unsigned int mark; 1001 1002 /* Look backward to mark all symbols from this object file 1003 which we have already seen in this pass. */ 1004 mark = indx; 1005 do 1006 { 1007 included[mark] = 1; 1008 if (mark == 0) 1009 break; 1010 --mark; 1011 } 1012 while (arsyms[mark].file_offset == last_ar_offset); 1013 1014 if (undefs_tail != info->hash->undefs_tail) 1015 loop = TRUE; 1016 } 1017 } 1018 } while (loop); 1019 1020 free (included); 1021 return TRUE; 1022 1023 error_return: 1024 free (included); 1025 return FALSE; 1026 } 1027 1028 /* See if we should include an archive element. */ 1029 1030 static bfd_boolean 1031 generic_link_check_archive_element (bfd *abfd, 1032 struct bfd_link_info *info, 1033 struct bfd_link_hash_entry *h, 1034 const char *name ATTRIBUTE_UNUSED, 1035 bfd_boolean *pneeded) 1036 { 1037 asymbol **pp, **ppend; 1038 1039 *pneeded = FALSE; 1040 1041 if (!bfd_generic_link_read_symbols (abfd)) 1042 return FALSE; 1043 1044 pp = _bfd_generic_link_get_symbols (abfd); 1045 ppend = pp + _bfd_generic_link_get_symcount (abfd); 1046 for (; pp < ppend; pp++) 1047 { 1048 asymbol *p; 1049 1050 p = *pp; 1051 1052 /* We are only interested in globally visible symbols. */ 1053 if (! bfd_is_com_section (p->section) 1054 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0) 1055 continue; 1056 1057 /* We are only interested if we know something about this 1058 symbol, and it is undefined or common. An undefined weak 1059 symbol (type bfd_link_hash_undefweak) is not considered to be 1060 a reference when pulling files out of an archive. See the 1061 SVR4 ABI, p. 4-27. */ 1062 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE, 1063 FALSE, TRUE); 1064 if (h == NULL 1065 || (h->type != bfd_link_hash_undefined 1066 && h->type != bfd_link_hash_common)) 1067 continue; 1068 1069 /* P is a symbol we are looking for. */ 1070 1071 if (! bfd_is_com_section (p->section) 1072 || (h->type == bfd_link_hash_undefined 1073 && h->u.undef.abfd == NULL)) 1074 { 1075 /* P is not a common symbol, or an undefined reference was 1076 created from outside BFD such as from a linker -u option. 1077 This object file defines the symbol, so pull it in. */ 1078 *pneeded = TRUE; 1079 if (!(*info->callbacks 1080 ->add_archive_element) (info, abfd, bfd_asymbol_name (p), 1081 &abfd)) 1082 return FALSE; 1083 /* Potentially, the add_archive_element hook may have set a 1084 substitute BFD for us. */ 1085 return bfd_link_add_symbols (abfd, info); 1086 } 1087 1088 /* P is a common symbol. */ 1089 1090 if (h->type == bfd_link_hash_undefined) 1091 { 1092 bfd *symbfd; 1093 bfd_vma size; 1094 unsigned int power; 1095 1096 /* Turn the symbol into a common symbol but do not link in 1097 the object file. This is how a.out works. Object 1098 formats that require different semantics must implement 1099 this function differently. This symbol is already on the 1100 undefs list. We add the section to a common section 1101 attached to symbfd to ensure that it is in a BFD which 1102 will be linked in. */ 1103 symbfd = h->u.undef.abfd; 1104 h->type = bfd_link_hash_common; 1105 h->u.c.p = (struct bfd_link_hash_common_entry *) 1106 bfd_hash_allocate (&info->hash->table, 1107 sizeof (struct bfd_link_hash_common_entry)); 1108 if (h->u.c.p == NULL) 1109 return FALSE; 1110 1111 size = bfd_asymbol_value (p); 1112 h->u.c.size = size; 1113 1114 power = bfd_log2 (size); 1115 if (power > 4) 1116 power = 4; 1117 h->u.c.p->alignment_power = power; 1118 1119 if (p->section == bfd_com_section_ptr) 1120 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON"); 1121 else 1122 h->u.c.p->section = bfd_make_section_old_way (symbfd, 1123 p->section->name); 1124 h->u.c.p->section->flags |= SEC_ALLOC; 1125 } 1126 else 1127 { 1128 /* Adjust the size of the common symbol if necessary. This 1129 is how a.out works. Object formats that require 1130 different semantics must implement this function 1131 differently. */ 1132 if (bfd_asymbol_value (p) > h->u.c.size) 1133 h->u.c.size = bfd_asymbol_value (p); 1134 } 1135 } 1136 1137 /* This archive element is not needed. */ 1138 return TRUE; 1139 } 1140 1141 /* Add the symbols from an object file to the global hash table. ABFD 1142 is the object file. INFO is the linker information. SYMBOL_COUNT 1143 is the number of symbols. SYMBOLS is the list of symbols. */ 1144 1145 static bfd_boolean 1146 generic_link_add_symbol_list (bfd *abfd, 1147 struct bfd_link_info *info, 1148 bfd_size_type symbol_count, 1149 asymbol **symbols) 1150 { 1151 asymbol **pp, **ppend; 1152 1153 pp = symbols; 1154 ppend = symbols + symbol_count; 1155 for (; pp < ppend; pp++) 1156 { 1157 asymbol *p; 1158 1159 p = *pp; 1160 1161 if ((p->flags & (BSF_INDIRECT 1162 | BSF_WARNING 1163 | BSF_GLOBAL 1164 | BSF_CONSTRUCTOR 1165 | BSF_WEAK)) != 0 1166 || bfd_is_und_section (bfd_asymbol_section (p)) 1167 || bfd_is_com_section (bfd_asymbol_section (p)) 1168 || bfd_is_ind_section (bfd_asymbol_section (p))) 1169 { 1170 const char *name; 1171 const char *string; 1172 struct generic_link_hash_entry *h; 1173 struct bfd_link_hash_entry *bh; 1174 1175 string = name = bfd_asymbol_name (p); 1176 if (((p->flags & BSF_INDIRECT) != 0 1177 || bfd_is_ind_section (p->section)) 1178 && pp + 1 < ppend) 1179 { 1180 pp++; 1181 string = bfd_asymbol_name (*pp); 1182 } 1183 else if ((p->flags & BSF_WARNING) != 0 1184 && pp + 1 < ppend) 1185 { 1186 /* The name of P is actually the warning string, and the 1187 next symbol is the one to warn about. */ 1188 pp++; 1189 name = bfd_asymbol_name (*pp); 1190 } 1191 1192 bh = NULL; 1193 if (! (_bfd_generic_link_add_one_symbol 1194 (info, abfd, name, p->flags, bfd_asymbol_section (p), 1195 p->value, string, FALSE, FALSE, &bh))) 1196 return FALSE; 1197 h = (struct generic_link_hash_entry *) bh; 1198 1199 /* If this is a constructor symbol, and the linker didn't do 1200 anything with it, then we want to just pass the symbol 1201 through to the output file. This will happen when 1202 linking with -r. */ 1203 if ((p->flags & BSF_CONSTRUCTOR) != 0 1204 && (h == NULL || h->root.type == bfd_link_hash_new)) 1205 { 1206 p->udata.p = NULL; 1207 continue; 1208 } 1209 1210 /* Save the BFD symbol so that we don't lose any backend 1211 specific information that may be attached to it. We only 1212 want this one if it gives more information than the 1213 existing one; we don't want to replace a defined symbol 1214 with an undefined one. This routine may be called with a 1215 hash table other than the generic hash table, so we only 1216 do this if we are certain that the hash table is a 1217 generic one. */ 1218 if (info->output_bfd->xvec == abfd->xvec) 1219 { 1220 if (h->sym == NULL 1221 || (! bfd_is_und_section (bfd_asymbol_section (p)) 1222 && (! bfd_is_com_section (bfd_asymbol_section (p)) 1223 || bfd_is_und_section (bfd_asymbol_section (h->sym))))) 1224 { 1225 h->sym = p; 1226 /* BSF_OLD_COMMON is a hack to support COFF reloc 1227 reading, and it should go away when the COFF 1228 linker is switched to the new version. */ 1229 if (bfd_is_com_section (bfd_asymbol_section (p))) 1230 p->flags |= BSF_OLD_COMMON; 1231 } 1232 } 1233 1234 /* Store a back pointer from the symbol to the hash 1235 table entry for the benefit of relaxation code until 1236 it gets rewritten to not use asymbol structures. 1237 Setting this is also used to check whether these 1238 symbols were set up by the generic linker. */ 1239 p->udata.p = h; 1240 } 1241 } 1242 1243 return TRUE; 1244 } 1245 1246 /* We use a state table to deal with adding symbols from an object 1247 file. The first index into the state table describes the symbol 1248 from the object file. The second index into the state table is the 1249 type of the symbol in the hash table. */ 1250 1251 /* The symbol from the object file is turned into one of these row 1252 values. */ 1253 1254 enum link_row 1255 { 1256 UNDEF_ROW, /* Undefined. */ 1257 UNDEFW_ROW, /* Weak undefined. */ 1258 DEF_ROW, /* Defined. */ 1259 DEFW_ROW, /* Weak defined. */ 1260 COMMON_ROW, /* Common. */ 1261 INDR_ROW, /* Indirect. */ 1262 WARN_ROW, /* Warning. */ 1263 SET_ROW /* Member of set. */ 1264 }; 1265 1266 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */ 1267 #undef FAIL 1268 1269 /* The actions to take in the state table. */ 1270 1271 enum link_action 1272 { 1273 FAIL, /* Abort. */ 1274 UND, /* Mark symbol undefined. */ 1275 WEAK, /* Mark symbol weak undefined. */ 1276 DEF, /* Mark symbol defined. */ 1277 DEFW, /* Mark symbol weak defined. */ 1278 COM, /* Mark symbol common. */ 1279 REF, /* Mark defined symbol referenced. */ 1280 CREF, /* Possibly warn about common reference to defined symbol. */ 1281 CDEF, /* Define existing common symbol. */ 1282 NOACT, /* No action. */ 1283 BIG, /* Mark symbol common using largest size. */ 1284 MDEF, /* Multiple definition error. */ 1285 MIND, /* Multiple indirect symbols. */ 1286 IND, /* Make indirect symbol. */ 1287 CIND, /* Make indirect symbol from existing common symbol. */ 1288 SET, /* Add value to set. */ 1289 MWARN, /* Make warning symbol. */ 1290 WARN, /* Warn if referenced, else MWARN. */ 1291 CYCLE, /* Repeat with symbol pointed to. */ 1292 REFC, /* Mark indirect symbol referenced and then CYCLE. */ 1293 WARNC /* Issue warning and then CYCLE. */ 1294 }; 1295 1296 /* The state table itself. The first index is a link_row and the 1297 second index is a bfd_link_hash_type. */ 1298 1299 static const enum link_action link_action[8][8] = 1300 { 1301 /* current\prev new undef undefw def defw com indr warn */ 1302 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC }, 1303 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC }, 1304 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE }, 1305 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE }, 1306 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC }, 1307 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE }, 1308 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT }, 1309 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE } 1310 }; 1311 1312 /* Most of the entries in the LINK_ACTION table are straightforward, 1313 but a few are somewhat subtle. 1314 1315 A reference to an indirect symbol (UNDEF_ROW/indr or 1316 UNDEFW_ROW/indr) is counted as a reference both to the indirect 1317 symbol and to the symbol the indirect symbol points to. 1318 1319 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn) 1320 causes the warning to be issued. 1321 1322 A common definition of an indirect symbol (COMMON_ROW/indr) is 1323 treated as a multiple definition error. Likewise for an indirect 1324 definition of a common symbol (INDR_ROW/com). 1325 1326 An indirect definition of a warning (INDR_ROW/warn) does not cause 1327 the warning to be issued. 1328 1329 If a warning is created for an indirect symbol (WARN_ROW/indr) no 1330 warning is created for the symbol the indirect symbol points to. 1331 1332 Adding an entry to a set does not count as a reference to a set, 1333 and no warning is issued (SET_ROW/warn). */ 1334 1335 /* Return the BFD in which a hash entry has been defined, if known. */ 1336 1337 static bfd * 1338 hash_entry_bfd (struct bfd_link_hash_entry *h) 1339 { 1340 while (h->type == bfd_link_hash_warning) 1341 h = h->u.i.link; 1342 switch (h->type) 1343 { 1344 default: 1345 return NULL; 1346 case bfd_link_hash_undefined: 1347 case bfd_link_hash_undefweak: 1348 return h->u.undef.abfd; 1349 case bfd_link_hash_defined: 1350 case bfd_link_hash_defweak: 1351 return h->u.def.section->owner; 1352 case bfd_link_hash_common: 1353 return h->u.c.p->section->owner; 1354 } 1355 /*NOTREACHED*/ 1356 } 1357 1358 /* Add a symbol to the global hash table. 1359 ABFD is the BFD the symbol comes from. 1360 NAME is the name of the symbol. 1361 FLAGS is the BSF_* bits associated with the symbol. 1362 SECTION is the section in which the symbol is defined; this may be 1363 bfd_und_section_ptr or bfd_com_section_ptr. 1364 VALUE is the value of the symbol, relative to the section. 1365 STRING is used for either an indirect symbol, in which case it is 1366 the name of the symbol to indirect to, or a warning symbol, in 1367 which case it is the warning string. 1368 COPY is TRUE if NAME or STRING must be copied into locally 1369 allocated memory if they need to be saved. 1370 COLLECT is TRUE if we should automatically collect gcc constructor 1371 or destructor names as collect2 does. 1372 HASHP, if not NULL, is a place to store the created hash table 1373 entry; if *HASHP is not NULL, the caller has already looked up 1374 the hash table entry, and stored it in *HASHP. */ 1375 1376 bfd_boolean 1377 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info, 1378 bfd *abfd, 1379 const char *name, 1380 flagword flags, 1381 asection *section, 1382 bfd_vma value, 1383 const char *string, 1384 bfd_boolean copy, 1385 bfd_boolean collect, 1386 struct bfd_link_hash_entry **hashp) 1387 { 1388 enum link_row row; 1389 struct bfd_link_hash_entry *h; 1390 struct bfd_link_hash_entry *inh = NULL; 1391 bfd_boolean cycle; 1392 1393 BFD_ASSERT (section != NULL); 1394 1395 if (bfd_is_ind_section (section) 1396 || (flags & BSF_INDIRECT) != 0) 1397 { 1398 row = INDR_ROW; 1399 /* Create the indirect symbol here. This is for the benefit of 1400 the plugin "notice" function. 1401 STRING is the name of the symbol we want to indirect to. */ 1402 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE, 1403 copy, FALSE); 1404 if (inh == NULL) 1405 return FALSE; 1406 } 1407 else if ((flags & BSF_WARNING) != 0) 1408 row = WARN_ROW; 1409 else if ((flags & BSF_CONSTRUCTOR) != 0) 1410 row = SET_ROW; 1411 else if (bfd_is_und_section (section)) 1412 { 1413 if ((flags & BSF_WEAK) != 0) 1414 row = UNDEFW_ROW; 1415 else 1416 row = UNDEF_ROW; 1417 } 1418 else if ((flags & BSF_WEAK) != 0) 1419 row = DEFW_ROW; 1420 else if (bfd_is_com_section (section)) 1421 { 1422 row = COMMON_ROW; 1423 if (!bfd_link_relocatable (info) 1424 && name[0] == '_' 1425 && name[1] == '_' 1426 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0) 1427 _bfd_error_handler 1428 (_("%pB: plugin needed to handle lto object"), abfd); 1429 } 1430 else 1431 row = DEF_ROW; 1432 1433 if (hashp != NULL && *hashp != NULL) 1434 h = *hashp; 1435 else 1436 { 1437 if (row == UNDEF_ROW || row == UNDEFW_ROW) 1438 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE); 1439 else 1440 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE); 1441 if (h == NULL) 1442 { 1443 if (hashp != NULL) 1444 *hashp = NULL; 1445 return FALSE; 1446 } 1447 } 1448 1449 if (info->notice_all 1450 || (info->notice_hash != NULL 1451 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL)) 1452 { 1453 if (! (*info->callbacks->notice) (info, h, inh, 1454 abfd, section, value, flags)) 1455 return FALSE; 1456 } 1457 1458 if (hashp != NULL) 1459 *hashp = h; 1460 1461 do 1462 { 1463 enum link_action action; 1464 int prev; 1465 1466 prev = h->type; 1467 /* Treat symbols defined by early linker script pass as undefined. */ 1468 if (h->ldscript_def) 1469 prev = bfd_link_hash_undefined; 1470 cycle = FALSE; 1471 action = link_action[(int) row][prev]; 1472 switch (action) 1473 { 1474 case FAIL: 1475 abort (); 1476 1477 case NOACT: 1478 /* Do nothing. */ 1479 break; 1480 1481 case UND: 1482 /* Make a new undefined symbol. */ 1483 h->type = bfd_link_hash_undefined; 1484 h->u.undef.abfd = abfd; 1485 bfd_link_add_undef (info->hash, h); 1486 break; 1487 1488 case WEAK: 1489 /* Make a new weak undefined symbol. */ 1490 h->type = bfd_link_hash_undefweak; 1491 h->u.undef.abfd = abfd; 1492 break; 1493 1494 case CDEF: 1495 /* We have found a definition for a symbol which was 1496 previously common. */ 1497 BFD_ASSERT (h->type == bfd_link_hash_common); 1498 (*info->callbacks->multiple_common) (info, h, abfd, 1499 bfd_link_hash_defined, 0); 1500 /* Fall through. */ 1501 case DEF: 1502 case DEFW: 1503 { 1504 enum bfd_link_hash_type oldtype; 1505 1506 /* Define a symbol. */ 1507 oldtype = h->type; 1508 if (action == DEFW) 1509 h->type = bfd_link_hash_defweak; 1510 else 1511 h->type = bfd_link_hash_defined; 1512 h->u.def.section = section; 1513 h->u.def.value = value; 1514 h->linker_def = 0; 1515 h->ldscript_def = 0; 1516 1517 /* If we have been asked to, we act like collect2 and 1518 identify all functions that might be global 1519 constructors and destructors and pass them up in a 1520 callback. We only do this for certain object file 1521 types, since many object file types can handle this 1522 automatically. */ 1523 if (collect && name[0] == '_') 1524 { 1525 const char *s; 1526 1527 /* A constructor or destructor name starts like this: 1528 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and 1529 the second are the same character (we accept any 1530 character there, in case a new object file format 1531 comes along with even worse naming restrictions). */ 1532 1533 #define CONS_PREFIX "GLOBAL_" 1534 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1) 1535 1536 s = name + 1; 1537 while (*s == '_') 1538 ++s; 1539 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX)) 1540 { 1541 char c; 1542 1543 c = s[CONS_PREFIX_LEN + 1]; 1544 if ((c == 'I' || c == 'D') 1545 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2]) 1546 { 1547 /* If this is a definition of a symbol which 1548 was previously weakly defined, we are in 1549 trouble. We have already added a 1550 constructor entry for the weak defined 1551 symbol, and now we are trying to add one 1552 for the new symbol. Fortunately, this case 1553 should never arise in practice. */ 1554 if (oldtype == bfd_link_hash_defweak) 1555 abort (); 1556 1557 (*info->callbacks->constructor) (info, c == 'I', 1558 h->root.string, abfd, 1559 section, value); 1560 } 1561 } 1562 } 1563 } 1564 1565 break; 1566 1567 case COM: 1568 /* We have found a common definition for a symbol. */ 1569 if (h->type == bfd_link_hash_new) 1570 bfd_link_add_undef (info->hash, h); 1571 h->type = bfd_link_hash_common; 1572 h->u.c.p = (struct bfd_link_hash_common_entry *) 1573 bfd_hash_allocate (&info->hash->table, 1574 sizeof (struct bfd_link_hash_common_entry)); 1575 if (h->u.c.p == NULL) 1576 return FALSE; 1577 1578 h->u.c.size = value; 1579 1580 /* Select a default alignment based on the size. This may 1581 be overridden by the caller. */ 1582 { 1583 unsigned int power; 1584 1585 power = bfd_log2 (value); 1586 if (power > 4) 1587 power = 4; 1588 h->u.c.p->alignment_power = power; 1589 } 1590 1591 /* The section of a common symbol is only used if the common 1592 symbol is actually allocated. It basically provides a 1593 hook for the linker script to decide which output section 1594 the common symbols should be put in. In most cases, the 1595 section of a common symbol will be bfd_com_section_ptr, 1596 the code here will choose a common symbol section named 1597 "COMMON", and the linker script will contain *(COMMON) in 1598 the appropriate place. A few targets use separate common 1599 sections for small symbols, and they require special 1600 handling. */ 1601 if (section == bfd_com_section_ptr) 1602 { 1603 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON"); 1604 h->u.c.p->section->flags |= SEC_ALLOC; 1605 } 1606 else if (section->owner != abfd) 1607 { 1608 h->u.c.p->section = bfd_make_section_old_way (abfd, 1609 section->name); 1610 h->u.c.p->section->flags |= SEC_ALLOC; 1611 } 1612 else 1613 h->u.c.p->section = section; 1614 h->linker_def = 0; 1615 h->ldscript_def = 0; 1616 break; 1617 1618 case REF: 1619 /* A reference to a defined symbol. */ 1620 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1621 h->u.undef.next = h; 1622 break; 1623 1624 case BIG: 1625 /* We have found a common definition for a symbol which 1626 already had a common definition. Use the maximum of the 1627 two sizes, and use the section required by the larger symbol. */ 1628 BFD_ASSERT (h->type == bfd_link_hash_common); 1629 (*info->callbacks->multiple_common) (info, h, abfd, 1630 bfd_link_hash_common, value); 1631 if (value > h->u.c.size) 1632 { 1633 unsigned int power; 1634 1635 h->u.c.size = value; 1636 1637 /* Select a default alignment based on the size. This may 1638 be overridden by the caller. */ 1639 power = bfd_log2 (value); 1640 if (power > 4) 1641 power = 4; 1642 h->u.c.p->alignment_power = power; 1643 1644 /* Some systems have special treatment for small commons, 1645 hence we want to select the section used by the larger 1646 symbol. This makes sure the symbol does not go in a 1647 small common section if it is now too large. */ 1648 if (section == bfd_com_section_ptr) 1649 { 1650 h->u.c.p->section 1651 = bfd_make_section_old_way (abfd, "COMMON"); 1652 h->u.c.p->section->flags |= SEC_ALLOC; 1653 } 1654 else if (section->owner != abfd) 1655 { 1656 h->u.c.p->section 1657 = bfd_make_section_old_way (abfd, section->name); 1658 h->u.c.p->section->flags |= SEC_ALLOC; 1659 } 1660 else 1661 h->u.c.p->section = section; 1662 } 1663 break; 1664 1665 case CREF: 1666 /* We have found a common definition for a symbol which 1667 was already defined. */ 1668 (*info->callbacks->multiple_common) (info, h, abfd, 1669 bfd_link_hash_common, value); 1670 break; 1671 1672 case MIND: 1673 /* Multiple indirect symbols. This is OK if they both point 1674 to the same symbol. */ 1675 if (strcmp (h->u.i.link->root.string, string) == 0) 1676 break; 1677 /* Fall through. */ 1678 case MDEF: 1679 /* Handle a multiple definition. */ 1680 (*info->callbacks->multiple_definition) (info, h, 1681 abfd, section, value); 1682 break; 1683 1684 case CIND: 1685 /* Create an indirect symbol from an existing common symbol. */ 1686 BFD_ASSERT (h->type == bfd_link_hash_common); 1687 (*info->callbacks->multiple_common) (info, h, abfd, 1688 bfd_link_hash_indirect, 0); 1689 /* Fall through. */ 1690 case IND: 1691 if (inh->type == bfd_link_hash_indirect 1692 && inh->u.i.link == h) 1693 { 1694 _bfd_error_handler 1695 /* xgettext:c-format */ 1696 (_("%pB: indirect symbol `%s' to `%s' is a loop"), 1697 abfd, name, string); 1698 bfd_set_error (bfd_error_invalid_operation); 1699 return FALSE; 1700 } 1701 if (inh->type == bfd_link_hash_new) 1702 { 1703 inh->type = bfd_link_hash_undefined; 1704 inh->u.undef.abfd = abfd; 1705 bfd_link_add_undef (info->hash, inh); 1706 } 1707 1708 /* If the indirect symbol has been referenced, we need to 1709 push the reference down to the symbol we are referencing. */ 1710 if (h->type != bfd_link_hash_new) 1711 { 1712 /* ??? If inh->type == bfd_link_hash_undefweak this 1713 converts inh to bfd_link_hash_undefined. */ 1714 row = UNDEF_ROW; 1715 cycle = TRUE; 1716 } 1717 1718 h->type = bfd_link_hash_indirect; 1719 h->u.i.link = inh; 1720 /* Not setting h = h->u.i.link here means that when cycle is 1721 set above we'll always go to REFC, and then cycle again 1722 to the indirected symbol. This means that any successful 1723 change of an existing symbol to indirect counts as a 1724 reference. ??? That may not be correct when the existing 1725 symbol was defweak. */ 1726 break; 1727 1728 case SET: 1729 /* Add an entry to a set. */ 1730 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR, 1731 abfd, section, value); 1732 break; 1733 1734 case WARNC: 1735 /* Issue a warning and cycle, except when the reference is 1736 in LTO IR. */ 1737 if (h->u.i.warning != NULL 1738 && (abfd->flags & BFD_PLUGIN) == 0) 1739 { 1740 (*info->callbacks->warning) (info, h->u.i.warning, 1741 h->root.string, abfd, NULL, 0); 1742 /* Only issue a warning once. */ 1743 h->u.i.warning = NULL; 1744 } 1745 /* Fall through. */ 1746 case CYCLE: 1747 /* Try again with the referenced symbol. */ 1748 h = h->u.i.link; 1749 cycle = TRUE; 1750 break; 1751 1752 case REFC: 1753 /* A reference to an indirect symbol. */ 1754 if (h->u.undef.next == NULL && info->hash->undefs_tail != h) 1755 h->u.undef.next = h; 1756 h = h->u.i.link; 1757 cycle = TRUE; 1758 break; 1759 1760 case WARN: 1761 /* Warn if this symbol has been referenced already from non-IR, 1762 otherwise add a warning. */ 1763 if ((!info->lto_plugin_active 1764 && (h->u.undef.next != NULL || info->hash->undefs_tail == h)) 1765 || h->non_ir_ref_regular 1766 || h->non_ir_ref_dynamic) 1767 { 1768 (*info->callbacks->warning) (info, string, h->root.string, 1769 hash_entry_bfd (h), NULL, 0); 1770 break; 1771 } 1772 /* Fall through. */ 1773 case MWARN: 1774 /* Make a warning symbol. */ 1775 { 1776 struct bfd_link_hash_entry *sub; 1777 1778 /* STRING is the warning to give. */ 1779 sub = ((struct bfd_link_hash_entry *) 1780 ((*info->hash->table.newfunc) 1781 (NULL, &info->hash->table, h->root.string))); 1782 if (sub == NULL) 1783 return FALSE; 1784 *sub = *h; 1785 sub->type = bfd_link_hash_warning; 1786 sub->u.i.link = h; 1787 if (! copy) 1788 sub->u.i.warning = string; 1789 else 1790 { 1791 char *w; 1792 size_t len = strlen (string) + 1; 1793 1794 w = (char *) bfd_hash_allocate (&info->hash->table, len); 1795 if (w == NULL) 1796 return FALSE; 1797 memcpy (w, string, len); 1798 sub->u.i.warning = w; 1799 } 1800 1801 bfd_hash_replace (&info->hash->table, 1802 (struct bfd_hash_entry *) h, 1803 (struct bfd_hash_entry *) sub); 1804 if (hashp != NULL) 1805 *hashp = sub; 1806 } 1807 break; 1808 } 1809 } 1810 while (cycle); 1811 1812 return TRUE; 1813 } 1814 1815 /* Generic final link routine. */ 1816 1817 bfd_boolean 1818 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info) 1819 { 1820 bfd *sub; 1821 asection *o; 1822 struct bfd_link_order *p; 1823 size_t outsymalloc; 1824 struct generic_write_global_symbol_info wginfo; 1825 1826 abfd->outsymbols = NULL; 1827 abfd->symcount = 0; 1828 outsymalloc = 0; 1829 1830 /* Mark all sections which will be included in the output file. */ 1831 for (o = abfd->sections; o != NULL; o = o->next) 1832 for (p = o->map_head.link_order; p != NULL; p = p->next) 1833 if (p->type == bfd_indirect_link_order) 1834 p->u.indirect.section->linker_mark = TRUE; 1835 1836 /* Build the output symbol table. */ 1837 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 1838 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc)) 1839 return FALSE; 1840 1841 /* Accumulate the global symbols. */ 1842 wginfo.info = info; 1843 wginfo.output_bfd = abfd; 1844 wginfo.psymalloc = &outsymalloc; 1845 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info), 1846 _bfd_generic_link_write_global_symbol, 1847 &wginfo); 1848 1849 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We 1850 shouldn't really need one, since we have SYMCOUNT, but some old 1851 code still expects one. */ 1852 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL)) 1853 return FALSE; 1854 1855 if (bfd_link_relocatable (info)) 1856 { 1857 /* Allocate space for the output relocs for each section. */ 1858 for (o = abfd->sections; o != NULL; o = o->next) 1859 { 1860 o->reloc_count = 0; 1861 for (p = o->map_head.link_order; p != NULL; p = p->next) 1862 { 1863 if (p->type == bfd_section_reloc_link_order 1864 || p->type == bfd_symbol_reloc_link_order) 1865 ++o->reloc_count; 1866 else if (p->type == bfd_indirect_link_order) 1867 { 1868 asection *input_section; 1869 bfd *input_bfd; 1870 long relsize; 1871 arelent **relocs; 1872 asymbol **symbols; 1873 long reloc_count; 1874 1875 input_section = p->u.indirect.section; 1876 input_bfd = input_section->owner; 1877 relsize = bfd_get_reloc_upper_bound (input_bfd, 1878 input_section); 1879 if (relsize < 0) 1880 return FALSE; 1881 relocs = (arelent **) bfd_malloc (relsize); 1882 if (!relocs && relsize != 0) 1883 return FALSE; 1884 symbols = _bfd_generic_link_get_symbols (input_bfd); 1885 reloc_count = bfd_canonicalize_reloc (input_bfd, 1886 input_section, 1887 relocs, 1888 symbols); 1889 free (relocs); 1890 if (reloc_count < 0) 1891 return FALSE; 1892 BFD_ASSERT ((unsigned long) reloc_count 1893 == input_section->reloc_count); 1894 o->reloc_count += reloc_count; 1895 } 1896 } 1897 if (o->reloc_count > 0) 1898 { 1899 bfd_size_type amt; 1900 1901 amt = o->reloc_count; 1902 amt *= sizeof (arelent *); 1903 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt); 1904 if (!o->orelocation) 1905 return FALSE; 1906 o->flags |= SEC_RELOC; 1907 /* Reset the count so that it can be used as an index 1908 when putting in the output relocs. */ 1909 o->reloc_count = 0; 1910 } 1911 } 1912 } 1913 1914 /* Handle all the link order information for the sections. */ 1915 for (o = abfd->sections; o != NULL; o = o->next) 1916 { 1917 for (p = o->map_head.link_order; p != NULL; p = p->next) 1918 { 1919 switch (p->type) 1920 { 1921 case bfd_section_reloc_link_order: 1922 case bfd_symbol_reloc_link_order: 1923 if (! _bfd_generic_reloc_link_order (abfd, info, o, p)) 1924 return FALSE; 1925 break; 1926 case bfd_indirect_link_order: 1927 if (! default_indirect_link_order (abfd, info, o, p, TRUE)) 1928 return FALSE; 1929 break; 1930 default: 1931 if (! _bfd_default_link_order (abfd, info, o, p)) 1932 return FALSE; 1933 break; 1934 } 1935 } 1936 } 1937 1938 return TRUE; 1939 } 1940 1941 /* Add an output symbol to the output BFD. */ 1942 1943 static bfd_boolean 1944 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym) 1945 { 1946 if (bfd_get_symcount (output_bfd) >= *psymalloc) 1947 { 1948 asymbol **newsyms; 1949 bfd_size_type amt; 1950 1951 if (*psymalloc == 0) 1952 *psymalloc = 124; 1953 else 1954 *psymalloc *= 2; 1955 amt = *psymalloc; 1956 amt *= sizeof (asymbol *); 1957 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt); 1958 if (newsyms == NULL) 1959 return FALSE; 1960 output_bfd->outsymbols = newsyms; 1961 } 1962 1963 output_bfd->outsymbols[output_bfd->symcount] = sym; 1964 if (sym != NULL) 1965 ++output_bfd->symcount; 1966 1967 return TRUE; 1968 } 1969 1970 /* Handle the symbols for an input BFD. */ 1971 1972 bfd_boolean 1973 _bfd_generic_link_output_symbols (bfd *output_bfd, 1974 bfd *input_bfd, 1975 struct bfd_link_info *info, 1976 size_t *psymalloc) 1977 { 1978 asymbol **sym_ptr; 1979 asymbol **sym_end; 1980 1981 if (!bfd_generic_link_read_symbols (input_bfd)) 1982 return FALSE; 1983 1984 /* Create a filename symbol if we are supposed to. */ 1985 if (info->create_object_symbols_section != NULL) 1986 { 1987 asection *sec; 1988 1989 for (sec = input_bfd->sections; sec != NULL; sec = sec->next) 1990 { 1991 if (sec->output_section == info->create_object_symbols_section) 1992 { 1993 asymbol *newsym; 1994 1995 newsym = bfd_make_empty_symbol (input_bfd); 1996 if (!newsym) 1997 return FALSE; 1998 newsym->name = input_bfd->filename; 1999 newsym->value = 0; 2000 newsym->flags = BSF_LOCAL | BSF_FILE; 2001 newsym->section = sec; 2002 2003 if (! generic_add_output_symbol (output_bfd, psymalloc, 2004 newsym)) 2005 return FALSE; 2006 2007 break; 2008 } 2009 } 2010 } 2011 2012 /* Adjust the values of the globally visible symbols, and write out 2013 local symbols. */ 2014 sym_ptr = _bfd_generic_link_get_symbols (input_bfd); 2015 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd); 2016 for (; sym_ptr < sym_end; sym_ptr++) 2017 { 2018 asymbol *sym; 2019 struct generic_link_hash_entry *h; 2020 bfd_boolean output; 2021 2022 h = NULL; 2023 sym = *sym_ptr; 2024 if ((sym->flags & (BSF_INDIRECT 2025 | BSF_WARNING 2026 | BSF_GLOBAL 2027 | BSF_CONSTRUCTOR 2028 | BSF_WEAK)) != 0 2029 || bfd_is_und_section (bfd_asymbol_section (sym)) 2030 || bfd_is_com_section (bfd_asymbol_section (sym)) 2031 || bfd_is_ind_section (bfd_asymbol_section (sym))) 2032 { 2033 if (sym->udata.p != NULL) 2034 h = (struct generic_link_hash_entry *) sym->udata.p; 2035 else if ((sym->flags & BSF_CONSTRUCTOR) != 0) 2036 { 2037 /* This case normally means that the main linker code 2038 deliberately ignored this constructor symbol. We 2039 should just pass it through. This will screw up if 2040 the constructor symbol is from a different, 2041 non-generic, object file format, but the case will 2042 only arise when linking with -r, which will probably 2043 fail anyhow, since there will be no way to represent 2044 the relocs in the output format being used. */ 2045 h = NULL; 2046 } 2047 else if (bfd_is_und_section (bfd_asymbol_section (sym))) 2048 h = ((struct generic_link_hash_entry *) 2049 bfd_wrapped_link_hash_lookup (output_bfd, info, 2050 bfd_asymbol_name (sym), 2051 FALSE, FALSE, TRUE)); 2052 else 2053 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info), 2054 bfd_asymbol_name (sym), 2055 FALSE, FALSE, TRUE); 2056 2057 if (h != NULL) 2058 { 2059 /* Force all references to this symbol to point to 2060 the same area in memory. It is possible that 2061 this routine will be called with a hash table 2062 other than a generic hash table, so we double 2063 check that. */ 2064 if (info->output_bfd->xvec == input_bfd->xvec) 2065 { 2066 if (h->sym != NULL) 2067 *sym_ptr = sym = h->sym; 2068 } 2069 2070 switch (h->root.type) 2071 { 2072 default: 2073 case bfd_link_hash_new: 2074 abort (); 2075 case bfd_link_hash_undefined: 2076 break; 2077 case bfd_link_hash_undefweak: 2078 sym->flags |= BSF_WEAK; 2079 break; 2080 case bfd_link_hash_indirect: 2081 h = (struct generic_link_hash_entry *) h->root.u.i.link; 2082 /* fall through */ 2083 case bfd_link_hash_defined: 2084 sym->flags |= BSF_GLOBAL; 2085 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR); 2086 sym->value = h->root.u.def.value; 2087 sym->section = h->root.u.def.section; 2088 break; 2089 case bfd_link_hash_defweak: 2090 sym->flags |= BSF_WEAK; 2091 sym->flags &=~ BSF_CONSTRUCTOR; 2092 sym->value = h->root.u.def.value; 2093 sym->section = h->root.u.def.section; 2094 break; 2095 case bfd_link_hash_common: 2096 sym->value = h->root.u.c.size; 2097 sym->flags |= BSF_GLOBAL; 2098 if (! bfd_is_com_section (sym->section)) 2099 { 2100 BFD_ASSERT (bfd_is_und_section (sym->section)); 2101 sym->section = bfd_com_section_ptr; 2102 } 2103 /* We do not set the section of the symbol to 2104 h->root.u.c.p->section. That value was saved so 2105 that we would know where to allocate the symbol 2106 if it was defined. In this case the type is 2107 still bfd_link_hash_common, so we did not define 2108 it, so we do not want to use that section. */ 2109 break; 2110 } 2111 } 2112 } 2113 2114 if ((sym->flags & BSF_KEEP) == 0 2115 && (info->strip == strip_all 2116 || (info->strip == strip_some 2117 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym), 2118 FALSE, FALSE) == NULL))) 2119 output = FALSE; 2120 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0) 2121 { 2122 /* If this symbol is marked as occurring now, rather 2123 than at the end, output it now. This is used for 2124 COFF C_EXT FCN symbols. FIXME: There must be a 2125 better way. */ 2126 if (bfd_asymbol_bfd (sym) == input_bfd 2127 && (sym->flags & BSF_NOT_AT_END) != 0) 2128 output = TRUE; 2129 else 2130 output = FALSE; 2131 } 2132 else if ((sym->flags & BSF_KEEP) != 0) 2133 output = TRUE; 2134 else if (bfd_is_ind_section (sym->section)) 2135 output = FALSE; 2136 else if ((sym->flags & BSF_DEBUGGING) != 0) 2137 { 2138 if (info->strip == strip_none) 2139 output = TRUE; 2140 else 2141 output = FALSE; 2142 } 2143 else if (bfd_is_und_section (sym->section) 2144 || bfd_is_com_section (sym->section)) 2145 output = FALSE; 2146 else if ((sym->flags & BSF_LOCAL) != 0) 2147 { 2148 if ((sym->flags & BSF_WARNING) != 0) 2149 output = FALSE; 2150 else 2151 { 2152 switch (info->discard) 2153 { 2154 default: 2155 case discard_all: 2156 output = FALSE; 2157 break; 2158 case discard_sec_merge: 2159 output = TRUE; 2160 if (bfd_link_relocatable (info) 2161 || ! (sym->section->flags & SEC_MERGE)) 2162 break; 2163 /* FALLTHROUGH */ 2164 case discard_l: 2165 if (bfd_is_local_label (input_bfd, sym)) 2166 output = FALSE; 2167 else 2168 output = TRUE; 2169 break; 2170 case discard_none: 2171 output = TRUE; 2172 break; 2173 } 2174 } 2175 } 2176 else if ((sym->flags & BSF_CONSTRUCTOR)) 2177 { 2178 if (info->strip != strip_all) 2179 output = TRUE; 2180 else 2181 output = FALSE; 2182 } 2183 else if (sym->flags == 0 2184 && (sym->section->owner->flags & BFD_PLUGIN) != 0) 2185 /* LTO doesn't set symbol information. We get here with the 2186 generic linker for a symbol that was "common" but no longer 2187 needs to be global. */ 2188 output = FALSE; 2189 else 2190 abort (); 2191 2192 /* If this symbol is in a section which is not being included 2193 in the output file, then we don't want to output the 2194 symbol. */ 2195 if (!bfd_is_abs_section (sym->section) 2196 && bfd_section_removed_from_list (output_bfd, 2197 sym->section->output_section)) 2198 output = FALSE; 2199 2200 if (output) 2201 { 2202 if (! generic_add_output_symbol (output_bfd, psymalloc, sym)) 2203 return FALSE; 2204 if (h != NULL) 2205 h->written = TRUE; 2206 } 2207 } 2208 2209 return TRUE; 2210 } 2211 2212 /* Set the section and value of a generic BFD symbol based on a linker 2213 hash table entry. */ 2214 2215 static void 2216 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h) 2217 { 2218 switch (h->type) 2219 { 2220 default: 2221 abort (); 2222 break; 2223 case bfd_link_hash_new: 2224 /* This can happen when a constructor symbol is seen but we are 2225 not building constructors. */ 2226 if (sym->section != NULL) 2227 { 2228 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0); 2229 } 2230 else 2231 { 2232 sym->flags |= BSF_CONSTRUCTOR; 2233 sym->section = bfd_abs_section_ptr; 2234 sym->value = 0; 2235 } 2236 break; 2237 case bfd_link_hash_undefined: 2238 sym->section = bfd_und_section_ptr; 2239 sym->value = 0; 2240 break; 2241 case bfd_link_hash_undefweak: 2242 sym->section = bfd_und_section_ptr; 2243 sym->value = 0; 2244 sym->flags |= BSF_WEAK; 2245 break; 2246 case bfd_link_hash_defined: 2247 sym->section = h->u.def.section; 2248 sym->value = h->u.def.value; 2249 break; 2250 case bfd_link_hash_defweak: 2251 sym->flags |= BSF_WEAK; 2252 sym->section = h->u.def.section; 2253 sym->value = h->u.def.value; 2254 break; 2255 case bfd_link_hash_common: 2256 sym->value = h->u.c.size; 2257 if (sym->section == NULL) 2258 sym->section = bfd_com_section_ptr; 2259 else if (! bfd_is_com_section (sym->section)) 2260 { 2261 BFD_ASSERT (bfd_is_und_section (sym->section)); 2262 sym->section = bfd_com_section_ptr; 2263 } 2264 /* Do not set the section; see _bfd_generic_link_output_symbols. */ 2265 break; 2266 case bfd_link_hash_indirect: 2267 case bfd_link_hash_warning: 2268 /* FIXME: What should we do here? */ 2269 break; 2270 } 2271 } 2272 2273 /* Write out a global symbol, if it hasn't already been written out. 2274 This is called for each symbol in the hash table. */ 2275 2276 bfd_boolean 2277 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h, 2278 void *data) 2279 { 2280 struct generic_write_global_symbol_info *wginfo = 2281 (struct generic_write_global_symbol_info *) data; 2282 asymbol *sym; 2283 2284 if (h->written) 2285 return TRUE; 2286 2287 h->written = TRUE; 2288 2289 if (wginfo->info->strip == strip_all 2290 || (wginfo->info->strip == strip_some 2291 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string, 2292 FALSE, FALSE) == NULL)) 2293 return TRUE; 2294 2295 if (h->sym != NULL) 2296 sym = h->sym; 2297 else 2298 { 2299 sym = bfd_make_empty_symbol (wginfo->output_bfd); 2300 if (!sym) 2301 return FALSE; 2302 sym->name = h->root.root.string; 2303 sym->flags = 0; 2304 } 2305 2306 set_symbol_from_hash (sym, &h->root); 2307 2308 sym->flags |= BSF_GLOBAL; 2309 2310 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc, 2311 sym)) 2312 { 2313 /* FIXME: No way to return failure. */ 2314 abort (); 2315 } 2316 2317 return TRUE; 2318 } 2319 2320 /* Create a relocation. */ 2321 2322 bfd_boolean 2323 _bfd_generic_reloc_link_order (bfd *abfd, 2324 struct bfd_link_info *info, 2325 asection *sec, 2326 struct bfd_link_order *link_order) 2327 { 2328 arelent *r; 2329 2330 if (! bfd_link_relocatable (info)) 2331 abort (); 2332 if (sec->orelocation == NULL) 2333 abort (); 2334 2335 r = (arelent *) bfd_alloc (abfd, sizeof (arelent)); 2336 if (r == NULL) 2337 return FALSE; 2338 2339 r->address = link_order->offset; 2340 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc); 2341 if (r->howto == 0) 2342 { 2343 bfd_set_error (bfd_error_bad_value); 2344 return FALSE; 2345 } 2346 2347 /* Get the symbol to use for the relocation. */ 2348 if (link_order->type == bfd_section_reloc_link_order) 2349 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr; 2350 else 2351 { 2352 struct generic_link_hash_entry *h; 2353 2354 h = ((struct generic_link_hash_entry *) 2355 bfd_wrapped_link_hash_lookup (abfd, info, 2356 link_order->u.reloc.p->u.name, 2357 FALSE, FALSE, TRUE)); 2358 if (h == NULL 2359 || ! h->written) 2360 { 2361 (*info->callbacks->unattached_reloc) 2362 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 2363 bfd_set_error (bfd_error_bad_value); 2364 return FALSE; 2365 } 2366 r->sym_ptr_ptr = &h->sym; 2367 } 2368 2369 /* If this is an inplace reloc, write the addend to the object file. 2370 Otherwise, store it in the reloc addend. */ 2371 if (! r->howto->partial_inplace) 2372 r->addend = link_order->u.reloc.p->addend; 2373 else 2374 { 2375 bfd_size_type size; 2376 bfd_reloc_status_type rstat; 2377 bfd_byte *buf; 2378 bfd_boolean ok; 2379 file_ptr loc; 2380 2381 size = bfd_get_reloc_size (r->howto); 2382 buf = (bfd_byte *) bfd_zmalloc (size); 2383 if (buf == NULL && size != 0) 2384 return FALSE; 2385 rstat = _bfd_relocate_contents (r->howto, abfd, 2386 (bfd_vma) link_order->u.reloc.p->addend, 2387 buf); 2388 switch (rstat) 2389 { 2390 case bfd_reloc_ok: 2391 break; 2392 default: 2393 case bfd_reloc_outofrange: 2394 abort (); 2395 case bfd_reloc_overflow: 2396 (*info->callbacks->reloc_overflow) 2397 (info, NULL, 2398 (link_order->type == bfd_section_reloc_link_order 2399 ? bfd_section_name (link_order->u.reloc.p->u.section) 2400 : link_order->u.reloc.p->u.name), 2401 r->howto->name, link_order->u.reloc.p->addend, 2402 NULL, NULL, 0); 2403 break; 2404 } 2405 loc = link_order->offset * bfd_octets_per_byte (abfd, sec); 2406 ok = bfd_set_section_contents (abfd, sec, buf, loc, size); 2407 free (buf); 2408 if (! ok) 2409 return FALSE; 2410 2411 r->addend = 0; 2412 } 2413 2414 sec->orelocation[sec->reloc_count] = r; 2415 ++sec->reloc_count; 2416 2417 return TRUE; 2418 } 2419 2420 /* Allocate a new link_order for a section. */ 2421 2422 struct bfd_link_order * 2423 bfd_new_link_order (bfd *abfd, asection *section) 2424 { 2425 bfd_size_type amt = sizeof (struct bfd_link_order); 2426 struct bfd_link_order *new_lo; 2427 2428 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt); 2429 if (!new_lo) 2430 return NULL; 2431 2432 new_lo->type = bfd_undefined_link_order; 2433 2434 if (section->map_tail.link_order != NULL) 2435 section->map_tail.link_order->next = new_lo; 2436 else 2437 section->map_head.link_order = new_lo; 2438 section->map_tail.link_order = new_lo; 2439 2440 return new_lo; 2441 } 2442 2443 /* Default link order processing routine. Note that we can not handle 2444 the reloc_link_order types here, since they depend upon the details 2445 of how the particular backends generates relocs. */ 2446 2447 bfd_boolean 2448 _bfd_default_link_order (bfd *abfd, 2449 struct bfd_link_info *info, 2450 asection *sec, 2451 struct bfd_link_order *link_order) 2452 { 2453 switch (link_order->type) 2454 { 2455 case bfd_undefined_link_order: 2456 case bfd_section_reloc_link_order: 2457 case bfd_symbol_reloc_link_order: 2458 default: 2459 abort (); 2460 case bfd_indirect_link_order: 2461 return default_indirect_link_order (abfd, info, sec, link_order, 2462 FALSE); 2463 case bfd_data_link_order: 2464 return default_data_link_order (abfd, info, sec, link_order); 2465 } 2466 } 2467 2468 /* Default routine to handle a bfd_data_link_order. */ 2469 2470 static bfd_boolean 2471 default_data_link_order (bfd *abfd, 2472 struct bfd_link_info *info, 2473 asection *sec, 2474 struct bfd_link_order *link_order) 2475 { 2476 bfd_size_type size; 2477 size_t fill_size; 2478 bfd_byte *fill; 2479 file_ptr loc; 2480 bfd_boolean result; 2481 2482 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0); 2483 2484 size = link_order->size; 2485 if (size == 0) 2486 return TRUE; 2487 2488 fill = link_order->u.data.contents; 2489 fill_size = link_order->u.data.size; 2490 if (fill_size == 0) 2491 { 2492 fill = abfd->arch_info->fill (size, info->big_endian, 2493 (sec->flags & SEC_CODE) != 0); 2494 if (fill == NULL) 2495 return FALSE; 2496 } 2497 else if (fill_size < size) 2498 { 2499 bfd_byte *p; 2500 fill = (bfd_byte *) bfd_malloc (size); 2501 if (fill == NULL) 2502 return FALSE; 2503 p = fill; 2504 if (fill_size == 1) 2505 memset (p, (int) link_order->u.data.contents[0], (size_t) size); 2506 else 2507 { 2508 do 2509 { 2510 memcpy (p, link_order->u.data.contents, fill_size); 2511 p += fill_size; 2512 size -= fill_size; 2513 } 2514 while (size >= fill_size); 2515 if (size != 0) 2516 memcpy (p, link_order->u.data.contents, (size_t) size); 2517 size = link_order->size; 2518 } 2519 } 2520 2521 loc = link_order->offset * bfd_octets_per_byte (abfd, sec); 2522 result = bfd_set_section_contents (abfd, sec, fill, loc, size); 2523 2524 if (fill != link_order->u.data.contents) 2525 free (fill); 2526 return result; 2527 } 2528 2529 /* Default routine to handle a bfd_indirect_link_order. */ 2530 2531 static bfd_boolean 2532 default_indirect_link_order (bfd *output_bfd, 2533 struct bfd_link_info *info, 2534 asection *output_section, 2535 struct bfd_link_order *link_order, 2536 bfd_boolean generic_linker) 2537 { 2538 asection *input_section; 2539 bfd *input_bfd; 2540 bfd_byte *contents = NULL; 2541 bfd_byte *new_contents; 2542 bfd_size_type sec_size; 2543 file_ptr loc; 2544 2545 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0); 2546 2547 input_section = link_order->u.indirect.section; 2548 input_bfd = input_section->owner; 2549 if (input_section->size == 0) 2550 return TRUE; 2551 2552 BFD_ASSERT (input_section->output_section == output_section); 2553 BFD_ASSERT (input_section->output_offset == link_order->offset); 2554 BFD_ASSERT (input_section->size == link_order->size); 2555 2556 if (bfd_link_relocatable (info) 2557 && input_section->reloc_count > 0 2558 && output_section->orelocation == NULL) 2559 { 2560 /* Space has not been allocated for the output relocations. 2561 This can happen when we are called by a specific backend 2562 because somebody is attempting to link together different 2563 types of object files. Handling this case correctly is 2564 difficult, and sometimes impossible. */ 2565 _bfd_error_handler 2566 /* xgettext:c-format */ 2567 (_("attempt to do relocatable link with %s input and %s output"), 2568 bfd_get_target (input_bfd), bfd_get_target (output_bfd)); 2569 bfd_set_error (bfd_error_wrong_format); 2570 return FALSE; 2571 } 2572 2573 if (! generic_linker) 2574 { 2575 asymbol **sympp; 2576 asymbol **symppend; 2577 2578 /* Get the canonical symbols. The generic linker will always 2579 have retrieved them by this point, but we are being called by 2580 a specific linker, presumably because we are linking 2581 different types of object files together. */ 2582 if (!bfd_generic_link_read_symbols (input_bfd)) 2583 return FALSE; 2584 2585 /* Since we have been called by a specific linker, rather than 2586 the generic linker, the values of the symbols will not be 2587 right. They will be the values as seen in the input file, 2588 not the values of the final link. We need to fix them up 2589 before we can relocate the section. */ 2590 sympp = _bfd_generic_link_get_symbols (input_bfd); 2591 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd); 2592 for (; sympp < symppend; sympp++) 2593 { 2594 asymbol *sym; 2595 struct bfd_link_hash_entry *h; 2596 2597 sym = *sympp; 2598 2599 if ((sym->flags & (BSF_INDIRECT 2600 | BSF_WARNING 2601 | BSF_GLOBAL 2602 | BSF_CONSTRUCTOR 2603 | BSF_WEAK)) != 0 2604 || bfd_is_und_section (bfd_asymbol_section (sym)) 2605 || bfd_is_com_section (bfd_asymbol_section (sym)) 2606 || bfd_is_ind_section (bfd_asymbol_section (sym))) 2607 { 2608 /* sym->udata may have been set by 2609 generic_link_add_symbol_list. */ 2610 if (sym->udata.p != NULL) 2611 h = (struct bfd_link_hash_entry *) sym->udata.p; 2612 else if (bfd_is_und_section (bfd_asymbol_section (sym))) 2613 h = bfd_wrapped_link_hash_lookup (output_bfd, info, 2614 bfd_asymbol_name (sym), 2615 FALSE, FALSE, TRUE); 2616 else 2617 h = bfd_link_hash_lookup (info->hash, 2618 bfd_asymbol_name (sym), 2619 FALSE, FALSE, TRUE); 2620 if (h != NULL) 2621 set_symbol_from_hash (sym, h); 2622 } 2623 } 2624 } 2625 2626 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP 2627 && input_section->size != 0) 2628 { 2629 /* Group section contents are set by bfd_elf_set_group_contents. */ 2630 if (!output_bfd->output_has_begun) 2631 { 2632 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */ 2633 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1)) 2634 goto error_return; 2635 } 2636 new_contents = output_section->contents; 2637 BFD_ASSERT (new_contents != NULL); 2638 BFD_ASSERT (input_section->output_offset == 0); 2639 } 2640 else 2641 { 2642 /* Get and relocate the section contents. */ 2643 sec_size = (input_section->rawsize > input_section->size 2644 ? input_section->rawsize 2645 : input_section->size); 2646 contents = (bfd_byte *) bfd_malloc (sec_size); 2647 if (contents == NULL && sec_size != 0) 2648 goto error_return; 2649 new_contents = (bfd_get_relocated_section_contents 2650 (output_bfd, info, link_order, contents, 2651 bfd_link_relocatable (info), 2652 _bfd_generic_link_get_symbols (input_bfd))); 2653 if (!new_contents) 2654 goto error_return; 2655 } 2656 2657 /* Output the section contents. */ 2658 loc = (input_section->output_offset 2659 * bfd_octets_per_byte (output_bfd, output_section)); 2660 if (! bfd_set_section_contents (output_bfd, output_section, 2661 new_contents, loc, input_section->size)) 2662 goto error_return; 2663 2664 if (contents != NULL) 2665 free (contents); 2666 return TRUE; 2667 2668 error_return: 2669 if (contents != NULL) 2670 free (contents); 2671 return FALSE; 2672 } 2673 2674 /* A little routine to count the number of relocs in a link_order 2675 list. */ 2676 2677 unsigned int 2678 _bfd_count_link_order_relocs (struct bfd_link_order *link_order) 2679 { 2680 register unsigned int c; 2681 register struct bfd_link_order *l; 2682 2683 c = 0; 2684 for (l = link_order; l != NULL; l = l->next) 2685 { 2686 if (l->type == bfd_section_reloc_link_order 2687 || l->type == bfd_symbol_reloc_link_order) 2688 ++c; 2689 } 2690 2691 return c; 2692 } 2693 2694 /* 2695 FUNCTION 2696 bfd_link_split_section 2697 2698 SYNOPSIS 2699 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); 2700 2701 DESCRIPTION 2702 Return nonzero if @var{sec} should be split during a 2703 reloceatable or final link. 2704 2705 .#define bfd_link_split_section(abfd, sec) \ 2706 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) 2707 . 2708 2709 */ 2710 2711 bfd_boolean 2712 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, 2713 asection *sec ATTRIBUTE_UNUSED) 2714 { 2715 return FALSE; 2716 } 2717 2718 /* 2719 FUNCTION 2720 bfd_section_already_linked 2721 2722 SYNOPSIS 2723 bfd_boolean bfd_section_already_linked (bfd *abfd, 2724 asection *sec, 2725 struct bfd_link_info *info); 2726 2727 DESCRIPTION 2728 Check if @var{data} has been already linked during a reloceatable 2729 or final link. Return TRUE if it has. 2730 2731 .#define bfd_section_already_linked(abfd, sec, info) \ 2732 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) 2733 . 2734 2735 */ 2736 2737 /* Sections marked with the SEC_LINK_ONCE flag should only be linked 2738 once into the output. This routine checks each section, and 2739 arrange to discard it if a section of the same name has already 2740 been linked. This code assumes that all relevant sections have the 2741 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the 2742 section name. bfd_section_already_linked is called via 2743 bfd_map_over_sections. */ 2744 2745 /* The hash table. */ 2746 2747 static struct bfd_hash_table _bfd_section_already_linked_table; 2748 2749 /* Support routines for the hash table used by section_already_linked, 2750 initialize the table, traverse, lookup, fill in an entry and remove 2751 the table. */ 2752 2753 void 2754 bfd_section_already_linked_table_traverse 2755 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *, 2756 void *), void *info) 2757 { 2758 bfd_hash_traverse (&_bfd_section_already_linked_table, 2759 (bfd_boolean (*) (struct bfd_hash_entry *, 2760 void *)) func, 2761 info); 2762 } 2763 2764 struct bfd_section_already_linked_hash_entry * 2765 bfd_section_already_linked_table_lookup (const char *name) 2766 { 2767 return ((struct bfd_section_already_linked_hash_entry *) 2768 bfd_hash_lookup (&_bfd_section_already_linked_table, name, 2769 TRUE, FALSE)); 2770 } 2771 2772 bfd_boolean 2773 bfd_section_already_linked_table_insert 2774 (struct bfd_section_already_linked_hash_entry *already_linked_list, 2775 asection *sec) 2776 { 2777 struct bfd_section_already_linked *l; 2778 2779 /* Allocate the memory from the same obstack as the hash table is 2780 kept in. */ 2781 l = (struct bfd_section_already_linked *) 2782 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l); 2783 if (l == NULL) 2784 return FALSE; 2785 l->sec = sec; 2786 l->next = already_linked_list->entry; 2787 already_linked_list->entry = l; 2788 return TRUE; 2789 } 2790 2791 static struct bfd_hash_entry * 2792 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED, 2793 struct bfd_hash_table *table, 2794 const char *string ATTRIBUTE_UNUSED) 2795 { 2796 struct bfd_section_already_linked_hash_entry *ret = 2797 (struct bfd_section_already_linked_hash_entry *) 2798 bfd_hash_allocate (table, sizeof *ret); 2799 2800 if (ret == NULL) 2801 return NULL; 2802 2803 ret->entry = NULL; 2804 2805 return &ret->root; 2806 } 2807 2808 bfd_boolean 2809 bfd_section_already_linked_table_init (void) 2810 { 2811 return bfd_hash_table_init_n (&_bfd_section_already_linked_table, 2812 already_linked_newfunc, 2813 sizeof (struct bfd_section_already_linked_hash_entry), 2814 42); 2815 } 2816 2817 void 2818 bfd_section_already_linked_table_free (void) 2819 { 2820 bfd_hash_table_free (&_bfd_section_already_linked_table); 2821 } 2822 2823 /* Report warnings as appropriate for duplicate section SEC. 2824 Return FALSE if we decide to keep SEC after all. */ 2825 2826 bfd_boolean 2827 _bfd_handle_already_linked (asection *sec, 2828 struct bfd_section_already_linked *l, 2829 struct bfd_link_info *info) 2830 { 2831 switch (sec->flags & SEC_LINK_DUPLICATES) 2832 { 2833 default: 2834 abort (); 2835 2836 case SEC_LINK_DUPLICATES_DISCARD: 2837 /* If we found an LTO IR match for this comdat group on 2838 the first pass, replace it with the LTO output on the 2839 second pass. We can't simply choose real object 2840 files over IR because the first pass may contain a 2841 mix of LTO and normal objects and we must keep the 2842 first match, be it IR or real. */ 2843 if (sec->owner->lto_output 2844 && (l->sec->owner->flags & BFD_PLUGIN) != 0) 2845 { 2846 l->sec = sec; 2847 return FALSE; 2848 } 2849 break; 2850 2851 case SEC_LINK_DUPLICATES_ONE_ONLY: 2852 info->callbacks->einfo 2853 /* xgettext:c-format */ 2854 (_("%pB: ignoring duplicate section `%pA'\n"), 2855 sec->owner, sec); 2856 break; 2857 2858 case SEC_LINK_DUPLICATES_SAME_SIZE: 2859 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2860 ; 2861 else if (sec->size != l->sec->size) 2862 info->callbacks->einfo 2863 /* xgettext:c-format */ 2864 (_("%pB: duplicate section `%pA' has different size\n"), 2865 sec->owner, sec); 2866 break; 2867 2868 case SEC_LINK_DUPLICATES_SAME_CONTENTS: 2869 if ((l->sec->owner->flags & BFD_PLUGIN) != 0) 2870 ; 2871 else if (sec->size != l->sec->size) 2872 info->callbacks->einfo 2873 /* xgettext:c-format */ 2874 (_("%pB: duplicate section `%pA' has different size\n"), 2875 sec->owner, sec); 2876 else if (sec->size != 0) 2877 { 2878 bfd_byte *sec_contents, *l_sec_contents = NULL; 2879 2880 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents)) 2881 info->callbacks->einfo 2882 /* xgettext:c-format */ 2883 (_("%pB: could not read contents of section `%pA'\n"), 2884 sec->owner, sec); 2885 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec, 2886 &l_sec_contents)) 2887 info->callbacks->einfo 2888 /* xgettext:c-format */ 2889 (_("%pB: could not read contents of section `%pA'\n"), 2890 l->sec->owner, l->sec); 2891 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) 2892 info->callbacks->einfo 2893 /* xgettext:c-format */ 2894 (_("%pB: duplicate section `%pA' has different contents\n"), 2895 sec->owner, sec); 2896 2897 if (sec_contents) 2898 free (sec_contents); 2899 if (l_sec_contents) 2900 free (l_sec_contents); 2901 } 2902 break; 2903 } 2904 2905 /* Set the output_section field so that lang_add_section 2906 does not create a lang_input_section structure for this 2907 section. Since there might be a symbol in the section 2908 being discarded, we must retain a pointer to the section 2909 which we are really going to use. */ 2910 sec->output_section = bfd_abs_section_ptr; 2911 sec->kept_section = l->sec; 2912 return TRUE; 2913 } 2914 2915 /* This is used on non-ELF inputs. */ 2916 2917 bfd_boolean 2918 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED, 2919 asection *sec, 2920 struct bfd_link_info *info) 2921 { 2922 const char *name; 2923 struct bfd_section_already_linked *l; 2924 struct bfd_section_already_linked_hash_entry *already_linked_list; 2925 2926 if ((sec->flags & SEC_LINK_ONCE) == 0) 2927 return FALSE; 2928 2929 /* The generic linker doesn't handle section groups. */ 2930 if ((sec->flags & SEC_GROUP) != 0) 2931 return FALSE; 2932 2933 /* FIXME: When doing a relocatable link, we may have trouble 2934 copying relocations in other sections that refer to local symbols 2935 in the section being discarded. Those relocations will have to 2936 be converted somehow; as of this writing I'm not sure that any of 2937 the backends handle that correctly. 2938 2939 It is tempting to instead not discard link once sections when 2940 doing a relocatable link (technically, they should be discarded 2941 whenever we are building constructors). However, that fails, 2942 because the linker winds up combining all the link once sections 2943 into a single large link once section, which defeats the purpose 2944 of having link once sections in the first place. */ 2945 2946 name = bfd_section_name (sec); 2947 2948 already_linked_list = bfd_section_already_linked_table_lookup (name); 2949 2950 l = already_linked_list->entry; 2951 if (l != NULL) 2952 { 2953 /* The section has already been linked. See if we should 2954 issue a warning. */ 2955 return _bfd_handle_already_linked (sec, l, info); 2956 } 2957 2958 /* This is the first section with this name. Record it. */ 2959 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 2960 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 2961 return FALSE; 2962 } 2963 2964 /* Choose a neighbouring section to S in OBFD that will be output, or 2965 the absolute section if ADDR is out of bounds of the neighbours. */ 2966 2967 asection * 2968 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr) 2969 { 2970 asection *next, *prev, *best; 2971 2972 /* Find preceding kept section. */ 2973 for (prev = s->prev; prev != NULL; prev = prev->prev) 2974 if ((prev->flags & SEC_EXCLUDE) == 0 2975 && !bfd_section_removed_from_list (obfd, prev)) 2976 break; 2977 2978 /* Find following kept section. Start at prev->next because 2979 other sections may have been added after S was removed. */ 2980 if (s->prev != NULL) 2981 next = s->prev->next; 2982 else 2983 next = s->owner->sections; 2984 for (; next != NULL; next = next->next) 2985 if ((next->flags & SEC_EXCLUDE) == 0 2986 && !bfd_section_removed_from_list (obfd, next)) 2987 break; 2988 2989 /* Choose better of two sections, based on flags. The idea 2990 is to choose a section that will be in the same segment 2991 as S would have been if it was kept. */ 2992 best = next; 2993 if (prev == NULL) 2994 { 2995 if (next == NULL) 2996 best = bfd_abs_section_ptr; 2997 } 2998 else if (next == NULL) 2999 best = prev; 3000 else if (((prev->flags ^ next->flags) 3001 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0) 3002 { 3003 if (((next->flags ^ s->flags) 3004 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0 3005 /* We prefer to choose a loaded section. Section S 3006 doesn't have SEC_LOAD set (it being excluded, that 3007 part of the flag processing didn't happen) so we 3008 can't compare that flag to those of NEXT and PREV. */ 3009 || ((prev->flags & SEC_LOAD) != 0 3010 && (next->flags & SEC_LOAD) == 0)) 3011 best = prev; 3012 } 3013 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0) 3014 { 3015 if (((next->flags ^ s->flags) & SEC_READONLY) != 0) 3016 best = prev; 3017 } 3018 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0) 3019 { 3020 if (((next->flags ^ s->flags) & SEC_CODE) != 0) 3021 best = prev; 3022 } 3023 else 3024 { 3025 /* Flags we care about are the same. Prefer the following 3026 section if that will result in a positive valued sym. */ 3027 if (addr < next->vma) 3028 best = prev; 3029 } 3030 3031 return best; 3032 } 3033 3034 /* Convert symbols in excluded output sections to use a kept section. */ 3035 3036 static bfd_boolean 3037 fix_syms (struct bfd_link_hash_entry *h, void *data) 3038 { 3039 bfd *obfd = (bfd *) data; 3040 3041 if (h->type == bfd_link_hash_defined 3042 || h->type == bfd_link_hash_defweak) 3043 { 3044 asection *s = h->u.def.section; 3045 if (s != NULL 3046 && s->output_section != NULL 3047 && (s->output_section->flags & SEC_EXCLUDE) != 0 3048 && bfd_section_removed_from_list (obfd, s->output_section)) 3049 { 3050 asection *op; 3051 3052 h->u.def.value += s->output_offset + s->output_section->vma; 3053 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value); 3054 h->u.def.value -= op->vma; 3055 h->u.def.section = op; 3056 } 3057 } 3058 3059 return TRUE; 3060 } 3061 3062 void 3063 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info) 3064 { 3065 bfd_link_hash_traverse (info->hash, fix_syms, obfd); 3066 } 3067 3068 /* 3069 FUNCTION 3070 bfd_generic_define_common_symbol 3071 3072 SYNOPSIS 3073 bfd_boolean bfd_generic_define_common_symbol 3074 (bfd *output_bfd, struct bfd_link_info *info, 3075 struct bfd_link_hash_entry *h); 3076 3077 DESCRIPTION 3078 Convert common symbol @var{h} into a defined symbol. 3079 Return TRUE on success and FALSE on failure. 3080 3081 .#define bfd_define_common_symbol(output_bfd, info, h) \ 3082 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h)) 3083 . 3084 */ 3085 3086 bfd_boolean 3087 bfd_generic_define_common_symbol (bfd *output_bfd, 3088 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3089 struct bfd_link_hash_entry *h) 3090 { 3091 unsigned int power_of_two; 3092 bfd_vma alignment, size; 3093 asection *section; 3094 3095 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common); 3096 3097 size = h->u.c.size; 3098 power_of_two = h->u.c.p->alignment_power; 3099 section = h->u.c.p->section; 3100 3101 /* Increase the size of the section to align the common symbol. 3102 The alignment must be a power of two. */ 3103 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two; 3104 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment); 3105 section->size += alignment - 1; 3106 section->size &= -alignment; 3107 3108 /* Adjust the section's overall alignment if necessary. */ 3109 if (power_of_two > section->alignment_power) 3110 section->alignment_power = power_of_two; 3111 3112 /* Change the symbol from common to defined. */ 3113 h->type = bfd_link_hash_defined; 3114 h->u.def.section = section; 3115 h->u.def.value = section->size; 3116 3117 /* Increase the size of the section. */ 3118 section->size += size; 3119 3120 /* Make sure the section is allocated in memory, and make sure that 3121 it is no longer a common section. */ 3122 section->flags |= SEC_ALLOC; 3123 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS); 3124 return TRUE; 3125 } 3126 3127 /* 3128 FUNCTION 3129 _bfd_generic_link_hide_symbol 3130 3131 SYNOPSIS 3132 void _bfd_generic_link_hide_symbol 3133 (bfd *output_bfd, struct bfd_link_info *info, 3134 struct bfd_link_hash_entry *h); 3135 3136 DESCRIPTION 3137 Hide symbol @var{h}. 3138 This is an internal function. It should not be called from 3139 outside the BFD library. 3140 3141 .#define bfd_link_hide_symbol(output_bfd, info, h) \ 3142 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h)) 3143 . 3144 */ 3145 3146 void 3147 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3148 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3149 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3150 { 3151 } 3152 3153 /* 3154 FUNCTION 3155 bfd_generic_define_start_stop 3156 3157 SYNOPSIS 3158 struct bfd_link_hash_entry *bfd_generic_define_start_stop 3159 (struct bfd_link_info *info, 3160 const char *symbol, asection *sec); 3161 3162 DESCRIPTION 3163 Define a __start, __stop, .startof. or .sizeof. symbol. 3164 Return the symbol or NULL if no such undefined symbol exists. 3165 3166 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \ 3167 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec)) 3168 . 3169 */ 3170 3171 struct bfd_link_hash_entry * 3172 bfd_generic_define_start_stop (struct bfd_link_info *info, 3173 const char *symbol, asection *sec) 3174 { 3175 struct bfd_link_hash_entry *h; 3176 3177 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE); 3178 if (h != NULL 3179 && (h->type == bfd_link_hash_undefined 3180 || h->type == bfd_link_hash_undefweak)) 3181 { 3182 h->type = bfd_link_hash_defined; 3183 h->u.def.section = sec; 3184 h->u.def.value = 0; 3185 return h; 3186 } 3187 return NULL; 3188 } 3189 3190 /* 3191 FUNCTION 3192 bfd_find_version_for_sym 3193 3194 SYNOPSIS 3195 struct bfd_elf_version_tree * bfd_find_version_for_sym 3196 (struct bfd_elf_version_tree *verdefs, 3197 const char *sym_name, bfd_boolean *hide); 3198 3199 DESCRIPTION 3200 Search an elf version script tree for symbol versioning 3201 info and export / don't-export status for a given symbol. 3202 Return non-NULL on success and NULL on failure; also sets 3203 the output @samp{hide} boolean parameter. 3204 3205 */ 3206 3207 struct bfd_elf_version_tree * 3208 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs, 3209 const char *sym_name, 3210 bfd_boolean *hide) 3211 { 3212 struct bfd_elf_version_tree *t; 3213 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver; 3214 struct bfd_elf_version_tree *star_local_ver, *star_global_ver; 3215 3216 local_ver = NULL; 3217 global_ver = NULL; 3218 star_local_ver = NULL; 3219 star_global_ver = NULL; 3220 exist_ver = NULL; 3221 for (t = verdefs; t != NULL; t = t->next) 3222 { 3223 if (t->globals.list != NULL) 3224 { 3225 struct bfd_elf_version_expr *d = NULL; 3226 3227 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL) 3228 { 3229 if (d->literal || strcmp (d->pattern, "*") != 0) 3230 global_ver = t; 3231 else 3232 star_global_ver = t; 3233 if (d->symver) 3234 exist_ver = t; 3235 d->script = 1; 3236 /* If the match is a wildcard pattern, keep looking for 3237 a more explicit, perhaps even local, match. */ 3238 if (d->literal) 3239 break; 3240 } 3241 3242 if (d != NULL) 3243 break; 3244 } 3245 3246 if (t->locals.list != NULL) 3247 { 3248 struct bfd_elf_version_expr *d = NULL; 3249 3250 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL) 3251 { 3252 if (d->literal || strcmp (d->pattern, "*") != 0) 3253 local_ver = t; 3254 else 3255 star_local_ver = t; 3256 /* If the match is a wildcard pattern, keep looking for 3257 a more explicit, perhaps even global, match. */ 3258 if (d->literal) 3259 { 3260 /* An exact match overrides a global wildcard. */ 3261 global_ver = NULL; 3262 star_global_ver = NULL; 3263 break; 3264 } 3265 } 3266 3267 if (d != NULL) 3268 break; 3269 } 3270 } 3271 3272 if (global_ver == NULL && local_ver == NULL) 3273 global_ver = star_global_ver; 3274 3275 if (global_ver != NULL) 3276 { 3277 /* If we already have a versioned symbol that matches the 3278 node for this symbol, then we don't want to create a 3279 duplicate from the unversioned symbol. Instead hide the 3280 unversioned symbol. */ 3281 *hide = exist_ver == global_ver; 3282 return global_ver; 3283 } 3284 3285 if (local_ver == NULL) 3286 local_ver = star_local_ver; 3287 3288 if (local_ver != NULL) 3289 { 3290 *hide = TRUE; 3291 return local_ver; 3292 } 3293 3294 return NULL; 3295 } 3296 3297 /* 3298 FUNCTION 3299 bfd_hide_sym_by_version 3300 3301 SYNOPSIS 3302 bfd_boolean bfd_hide_sym_by_version 3303 (struct bfd_elf_version_tree *verdefs, const char *sym_name); 3304 3305 DESCRIPTION 3306 Search an elf version script tree for symbol versioning 3307 info for a given symbol. Return TRUE if the symbol is hidden. 3308 3309 */ 3310 3311 bfd_boolean 3312 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs, 3313 const char *sym_name) 3314 { 3315 bfd_boolean hidden = FALSE; 3316 bfd_find_version_for_sym (verdefs, sym_name, &hidden); 3317 return hidden; 3318 } 3319 3320 /* 3321 FUNCTION 3322 bfd_link_check_relocs 3323 3324 SYNOPSIS 3325 bfd_boolean bfd_link_check_relocs 3326 (bfd *abfd, struct bfd_link_info *info); 3327 3328 DESCRIPTION 3329 Checks the relocs in ABFD for validity. 3330 Does not execute the relocs. 3331 Return TRUE if everything is OK, FALSE otherwise. 3332 This is the external entry point to this code. 3333 */ 3334 3335 bfd_boolean 3336 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3337 { 3338 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info)); 3339 } 3340 3341 /* 3342 FUNCTION 3343 _bfd_generic_link_check_relocs 3344 3345 SYNOPSIS 3346 bfd_boolean _bfd_generic_link_check_relocs 3347 (bfd *abfd, struct bfd_link_info *info); 3348 3349 DESCRIPTION 3350 Stub function for targets that do not implement reloc checking. 3351 Return TRUE. 3352 This is an internal function. It should not be called from 3353 outside the BFD library. 3354 */ 3355 3356 bfd_boolean 3357 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED, 3358 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3359 { 3360 return TRUE; 3361 } 3362 3363 /* 3364 FUNCTION 3365 bfd_merge_private_bfd_data 3366 3367 SYNOPSIS 3368 bfd_boolean bfd_merge_private_bfd_data 3369 (bfd *ibfd, struct bfd_link_info *info); 3370 3371 DESCRIPTION 3372 Merge private BFD information from the BFD @var{ibfd} to the 3373 the output file BFD when linking. Return <<TRUE>> on success, 3374 <<FALSE>> on error. Possible error returns are: 3375 3376 o <<bfd_error_no_memory>> - 3377 Not enough memory exists to create private data for @var{obfd}. 3378 3379 .#define bfd_merge_private_bfd_data(ibfd, info) \ 3380 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \ 3381 . (ibfd, info)) 3382 */ 3383 3384 /* 3385 INTERNAL_FUNCTION 3386 _bfd_generic_verify_endian_match 3387 3388 SYNOPSIS 3389 bfd_boolean _bfd_generic_verify_endian_match 3390 (bfd *ibfd, struct bfd_link_info *info); 3391 3392 DESCRIPTION 3393 Can be used from / for bfd_merge_private_bfd_data to check that 3394 endianness matches between input and output file. Returns 3395 TRUE for a match, otherwise returns FALSE and emits an error. 3396 */ 3397 3398 bfd_boolean 3399 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info) 3400 { 3401 bfd *obfd = info->output_bfd; 3402 3403 if (ibfd->xvec->byteorder != obfd->xvec->byteorder 3404 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN 3405 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) 3406 { 3407 if (bfd_big_endian (ibfd)) 3408 _bfd_error_handler (_("%pB: compiled for a big endian system " 3409 "and target is little endian"), ibfd); 3410 else 3411 _bfd_error_handler (_("%pB: compiled for a little endian system " 3412 "and target is big endian"), ibfd); 3413 bfd_set_error (bfd_error_wrong_format); 3414 return FALSE; 3415 } 3416 3417 return TRUE; 3418 } 3419 3420 int 3421 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, 3422 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3423 { 3424 return 0; 3425 } 3426 3427 bfd_boolean 3428 _bfd_nolink_bfd_relax_section (bfd *abfd, 3429 asection *section ATTRIBUTE_UNUSED, 3430 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3431 bfd_boolean *again ATTRIBUTE_UNUSED) 3432 { 3433 return _bfd_bool_bfd_false_error (abfd); 3434 } 3435 3436 bfd_byte * 3437 _bfd_nolink_bfd_get_relocated_section_contents 3438 (bfd *abfd, 3439 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 3440 struct bfd_link_order *link_order ATTRIBUTE_UNUSED, 3441 bfd_byte *data ATTRIBUTE_UNUSED, 3442 bfd_boolean relocatable ATTRIBUTE_UNUSED, 3443 asymbol **symbols ATTRIBUTE_UNUSED) 3444 { 3445 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd); 3446 } 3447 3448 bfd_boolean 3449 _bfd_nolink_bfd_lookup_section_flags 3450 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3451 struct flag_info *flaginfo ATTRIBUTE_UNUSED, 3452 asection *section) 3453 { 3454 return _bfd_bool_bfd_false_error (section->owner); 3455 } 3456 3457 bfd_boolean 3458 _bfd_nolink_bfd_is_group_section (bfd *abfd, 3459 const asection *sec ATTRIBUTE_UNUSED) 3460 { 3461 return _bfd_bool_bfd_false_error (abfd); 3462 } 3463 3464 const char * 3465 _bfd_nolink_bfd_group_name (bfd *abfd, 3466 const asection *sec ATTRIBUTE_UNUSED) 3467 { 3468 return _bfd_ptr_bfd_null_error (abfd); 3469 } 3470 3471 bfd_boolean 3472 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3473 { 3474 return _bfd_bool_bfd_false_error (abfd); 3475 } 3476 3477 struct bfd_link_hash_table * 3478 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd) 3479 { 3480 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd); 3481 } 3482 3483 void 3484 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED, 3485 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3486 { 3487 } 3488 3489 void 3490 _bfd_nolink_bfd_copy_link_hash_symbol_type 3491 (bfd *abfd ATTRIBUTE_UNUSED, 3492 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED, 3493 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED) 3494 { 3495 } 3496 3497 bfd_boolean 3498 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED) 3499 { 3500 return _bfd_bool_bfd_false_error (abfd); 3501 } 3502 3503 bfd_boolean 3504 _bfd_nolink_section_already_linked (bfd *abfd, 3505 asection *sec ATTRIBUTE_UNUSED, 3506 struct bfd_link_info *info ATTRIBUTE_UNUSED) 3507 { 3508 return _bfd_bool_bfd_false_error (abfd); 3509 } 3510 3511 bfd_boolean 3512 _bfd_nolink_bfd_define_common_symbol 3513 (bfd *abfd, 3514 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3515 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED) 3516 { 3517 return _bfd_bool_bfd_false_error (abfd); 3518 } 3519 3520 struct bfd_link_hash_entry * 3521 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3522 const char *name ATTRIBUTE_UNUSED, 3523 asection *sec) 3524 { 3525 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner); 3526 } 3527