1 // x86_64.cc -- x86_64 target support for gold.
2 
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45 
46 namespace
47 {
48 
49 using namespace gold;
50 
51 // A class to handle the .got.plt section.
52 
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60 
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65 
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70 
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75 
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81 
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86 
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92 
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94 			 Output_data_got<64, false>* got,
95 			 Output_data_got_plt_x86_64* got_plt,
96 			 Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102 
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104 			 Output_data_got<64, false>* got,
105 			 Output_data_got_plt_x86_64* got_plt,
106 			 Output_data_space* got_irelative,
107 			 unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109 			  plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115 
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120 
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124 
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128 
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132 			Sized_relobj_file<size, false>* relobj,
133 			unsigned int local_sym_index);
134 
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138 		 unsigned int got_offset);
139 
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144 
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149 
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154 
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160 	    * this->get_plt_entry_size());
161   }
162 
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167 
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171 
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176 
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181 
182   // Get count of regular PLT entries.
183   unsigned int
184   regular_count() const
185   { return this->count_; }
186 
187   // Return the total number of PLT entries.
188   unsigned int
189   entry_count() const
190   { return this->count_ + this->irelative_count_; }
191 
192   // Return the offset of the first non-reserved PLT entry.
193   unsigned int
194   first_plt_entry_offset()
195   { return this->get_plt_entry_size(); }
196 
197   // Return the size of a PLT entry.
198   unsigned int
199   get_plt_entry_size() const
200   { return this->do_get_plt_entry_size(); }
201 
202   // Reserve a slot in the PLT for an existing symbol in an incremental update.
203   void
204   reserve_slot(unsigned int plt_index)
205   {
206     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
207 			    (plt_index + 2) * this->get_plt_entry_size());
208   }
209 
210   // Return the PLT address to use for a global symbol.
211   uint64_t
212   address_for_global(const Symbol* sym)
213   { return do_address_for_global(sym); }
214 
215   // Return the PLT address to use for a local symbol.
216   uint64_t
217   address_for_local(const Relobj* obj, unsigned int symndx)
218   { return do_address_for_local(obj, symndx); }
219 
220   // Add .eh_frame information for the PLT.
221   void
222   add_eh_frame(Layout* layout)
223   { this->do_add_eh_frame(layout); }
224 
225  protected:
226   Output_data_got<64, false>*
227   got() const
228   { return this->got_; }
229 
230   Output_data_got_plt_x86_64*
231   got_plt() const
232   { return this->got_plt_; }
233 
234   Output_data_space*
235   got_irelative() const
236   { return this->got_irelative_; }
237 
238   // Fill in the first PLT entry.
239   void
240   fill_first_plt_entry(unsigned char* pov,
241 		       typename elfcpp::Elf_types<size>::Elf_Addr got_address,
242 		       typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
243   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
244 
245   // Fill in a normal PLT entry.  Returns the offset into the entry that
246   // should be the initial GOT slot value.
247   unsigned int
248   fill_plt_entry(unsigned char* pov,
249 		 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
250 		 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
251 		 unsigned int got_offset,
252 		 unsigned int plt_offset,
253 		 unsigned int plt_index)
254   {
255     return this->do_fill_plt_entry(pov, got_address, plt_address,
256 				   got_offset, plt_offset, plt_index);
257   }
258 
259   // Fill in the reserved TLSDESC PLT entry.
260   void
261   fill_tlsdesc_entry(unsigned char* pov,
262 		     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
263 		     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
264 		     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
265 		     unsigned int tlsdesc_got_offset,
266 		     unsigned int plt_offset)
267   {
268     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
269 				tlsdesc_got_offset, plt_offset);
270   }
271 
272   virtual unsigned int
273   do_get_plt_entry_size() const = 0;
274 
275   virtual void
276   do_fill_first_plt_entry(unsigned char* pov,
277 			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
278 			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
279     = 0;
280 
281   virtual unsigned int
282   do_fill_plt_entry(unsigned char* pov,
283 		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
284 		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
285 		    unsigned int got_offset,
286 		    unsigned int plt_offset,
287 		    unsigned int plt_index) = 0;
288 
289   virtual void
290   do_fill_tlsdesc_entry(unsigned char* pov,
291 			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
292 			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
293 			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
294 			unsigned int tlsdesc_got_offset,
295 			unsigned int plt_offset) = 0;
296 
297   // Return the PLT address to use for a global symbol.
298   virtual uint64_t
299   do_address_for_global(const Symbol* sym);
300 
301   // Return the PLT address to use for a local symbol.
302   virtual uint64_t
303   do_address_for_local(const Relobj* obj, unsigned int symndx);
304 
305   virtual void
306   do_add_eh_frame(Layout* layout) = 0;
307 
308   void
309   do_adjust_output_section(Output_section* os);
310 
311   // Write to a map file.
312   void
313   do_print_to_mapfile(Mapfile* mapfile) const
314   { mapfile->print_output_data(this, _("** PLT")); }
315 
316   // The CIE of the .eh_frame unwind information for the PLT.
317   static const int plt_eh_frame_cie_size = 16;
318   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
319 
320  private:
321   // Set the final size.
322   void
323   set_final_data_size();
324 
325   // Write out the PLT data.
326   void
327   do_write(Output_file*);
328 
329   // The reloc section.
330   Reloc_section* rel_;
331   // The TLSDESC relocs, if necessary.  These must follow the regular
332   // PLT relocs.
333   Reloc_section* tlsdesc_rel_;
334   // The IRELATIVE relocs, if necessary.  These must follow the
335   // regular PLT relocations and the TLSDESC relocations.
336   Reloc_section* irelative_rel_;
337   // The .got section.
338   Output_data_got<64, false>* got_;
339   // The .got.plt section.
340   Output_data_got_plt_x86_64* got_plt_;
341   // The part of the .got.plt section used for IRELATIVE relocs.
342   Output_data_space* got_irelative_;
343   // The number of PLT entries.
344   unsigned int count_;
345   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
346   // follow the regular PLT entries.
347   unsigned int irelative_count_;
348   // Offset of the reserved TLSDESC_GOT entry when needed.
349   unsigned int tlsdesc_got_offset_;
350   // List of available regions within the section, for incremental
351   // update links.
352   Free_list free_list_;
353 };
354 
355 template<int size>
356 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
357 {
358  public:
359   Output_data_plt_x86_64_standard(Layout* layout,
360 				  Output_data_got<64, false>* got,
361 				  Output_data_got_plt_x86_64* got_plt,
362 				  Output_data_space* got_irelative)
363     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
364 				   got, got_plt, got_irelative)
365   { }
366 
367   Output_data_plt_x86_64_standard(Layout* layout,
368 				  Output_data_got<64, false>* got,
369 				  Output_data_got_plt_x86_64* got_plt,
370 				  Output_data_space* got_irelative,
371 				  unsigned int plt_count)
372     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
373 				   got, got_plt, got_irelative,
374 				   plt_count)
375   { }
376 
377  protected:
378   virtual unsigned int
379   do_get_plt_entry_size() const
380   { return plt_entry_size; }
381 
382   virtual void
383   do_add_eh_frame(Layout* layout)
384   {
385     layout->add_eh_frame_for_plt(this,
386 				 this->plt_eh_frame_cie,
387 				 this->plt_eh_frame_cie_size,
388 				 plt_eh_frame_fde,
389 				 plt_eh_frame_fde_size);
390   }
391 
392   virtual void
393   do_fill_first_plt_entry(unsigned char* pov,
394 			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
395 			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
396 
397   virtual unsigned int
398   do_fill_plt_entry(unsigned char* pov,
399 		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
400 		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
401 		    unsigned int got_offset,
402 		    unsigned int plt_offset,
403 		    unsigned int plt_index);
404 
405   virtual void
406   do_fill_tlsdesc_entry(unsigned char* pov,
407 			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
408 			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
409 			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
410 			unsigned int tlsdesc_got_offset,
411 			unsigned int plt_offset);
412 
413  private:
414   // The size of an entry in the PLT.
415   static const int plt_entry_size = 16;
416 
417   // The first entry in the PLT.
418   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
419   // procedure linkage table for both programs and shared objects."
420   static const unsigned char first_plt_entry[plt_entry_size];
421 
422   // Other entries in the PLT for an executable.
423   static const unsigned char plt_entry[plt_entry_size];
424 
425   // The reserved TLSDESC entry in the PLT for an executable.
426   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
427 
428   // The .eh_frame unwind information for the PLT.
429   static const int plt_eh_frame_fde_size = 32;
430   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
431 };
432 
433 class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
434 {
435  public:
436   Output_data_plt_x86_64_bnd(Layout* layout,
437 			     Output_data_got<64, false>* got,
438 			     Output_data_got_plt_x86_64* got_plt,
439 			     Output_data_space* got_irelative)
440     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
441 				 got, got_plt, got_irelative),
442       aplt_offset_(0)
443   { }
444 
445   Output_data_plt_x86_64_bnd(Layout* layout,
446 			     Output_data_got<64, false>* got,
447 			     Output_data_got_plt_x86_64* got_plt,
448 			     Output_data_space* got_irelative,
449 			     unsigned int plt_count)
450     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
451 				 got, got_plt, got_irelative,
452 				 plt_count),
453       aplt_offset_(0)
454   { }
455 
456  protected:
457   virtual unsigned int
458   do_get_plt_entry_size() const
459   { return plt_entry_size; }
460 
461   // Return the PLT address to use for a global symbol.
462   uint64_t
463   do_address_for_global(const Symbol*);
464 
465   // Return the PLT address to use for a local symbol.
466   uint64_t
467   do_address_for_local(const Relobj*, unsigned int symndx);
468 
469   virtual void
470   do_add_eh_frame(Layout* layout)
471   {
472     layout->add_eh_frame_for_plt(this,
473 				 this->plt_eh_frame_cie,
474 				 this->plt_eh_frame_cie_size,
475 				 plt_eh_frame_fde,
476 				 plt_eh_frame_fde_size);
477   }
478 
479   virtual void
480   do_fill_first_plt_entry(unsigned char* pov,
481 			  elfcpp::Elf_types<64>::Elf_Addr got_addr,
482 			  elfcpp::Elf_types<64>::Elf_Addr plt_addr);
483 
484   virtual unsigned int
485   do_fill_plt_entry(unsigned char* pov,
486 		    elfcpp::Elf_types<64>::Elf_Addr got_address,
487 		    elfcpp::Elf_types<64>::Elf_Addr plt_address,
488 		    unsigned int got_offset,
489 		    unsigned int plt_offset,
490 		    unsigned int plt_index);
491 
492   virtual void
493   do_fill_tlsdesc_entry(unsigned char* pov,
494 			elfcpp::Elf_types<64>::Elf_Addr got_address,
495 			elfcpp::Elf_types<64>::Elf_Addr plt_address,
496 			elfcpp::Elf_types<64>::Elf_Addr got_base,
497 			unsigned int tlsdesc_got_offset,
498 			unsigned int plt_offset);
499 
500   void
501   fill_aplt_entry(unsigned char* pov,
502 		  elfcpp::Elf_types<64>::Elf_Addr got_address,
503 		  elfcpp::Elf_types<64>::Elf_Addr plt_address,
504 		  unsigned int got_offset,
505 		  unsigned int plt_offset,
506 		  unsigned int plt_index);
507 
508  private:
509   // Set the final size.
510   void
511   set_final_data_size();
512 
513   // Write out the BND PLT data.
514   void
515   do_write(Output_file*);
516 
517   // Offset of the Additional PLT (if using -z bndplt).
518   unsigned int aplt_offset_;
519 
520   // The size of an entry in the PLT.
521   static const int plt_entry_size = 16;
522 
523   // The size of an entry in the additional PLT.
524   static const int aplt_entry_size = 8;
525 
526   // The first entry in the PLT.
527   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
528   // procedure linkage table for both programs and shared objects."
529   static const unsigned char first_plt_entry[plt_entry_size];
530 
531   // Other entries in the PLT for an executable.
532   static const unsigned char plt_entry[plt_entry_size];
533 
534   // Entries in the additional PLT.
535   static const unsigned char aplt_entry[aplt_entry_size];
536 
537   // The reserved TLSDESC entry in the PLT for an executable.
538   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
539 
540   // The .eh_frame unwind information for the PLT.
541   static const int plt_eh_frame_fde_size = 32;
542   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
543 };
544 
545 // We use this PLT when Indirect Branch Tracking (IBT) is enabled.
546 
547 template <int size>
548 class Output_data_plt_x86_64_ibt : public Output_data_plt_x86_64<size>
549 {
550  public:
551   Output_data_plt_x86_64_ibt(Layout* layout,
552 			     Output_data_got<64, false>* got,
553 			     Output_data_got_plt_x86_64* got_plt,
554 			     Output_data_space* got_irelative)
555     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
556 				   got, got_plt, got_irelative),
557       aplt_offset_(0)
558   { }
559 
560   Output_data_plt_x86_64_ibt(Layout* layout,
561 			     Output_data_got<64, false>* got,
562 			     Output_data_got_plt_x86_64* got_plt,
563 			     Output_data_space* got_irelative,
564 			     unsigned int plt_count)
565     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
566 				   got, got_plt, got_irelative,
567 				   plt_count),
568       aplt_offset_(0)
569   { }
570 
571  protected:
572   virtual unsigned int
573   do_get_plt_entry_size() const
574   { return plt_entry_size; }
575 
576   // Return the PLT address to use for a global symbol.
577   uint64_t
578   do_address_for_global(const Symbol*);
579 
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_address_for_local(const Relobj*, unsigned int symndx);
583 
584   virtual void
585   do_add_eh_frame(Layout* layout)
586   {
587     layout->add_eh_frame_for_plt(this,
588 				 this->plt_eh_frame_cie,
589 				 this->plt_eh_frame_cie_size,
590 				 plt_eh_frame_fde,
591 				 plt_eh_frame_fde_size);
592   }
593 
594   virtual void
595   do_fill_first_plt_entry(unsigned char* pov,
596 			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
597 			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
598 
599   virtual unsigned int
600   do_fill_plt_entry(unsigned char* pov,
601 		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
602 		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
603 		    unsigned int got_offset,
604 		    unsigned int plt_offset,
605 		    unsigned int plt_index);
606 
607   virtual void
608   do_fill_tlsdesc_entry(unsigned char* pov,
609 			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
610 			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
611 			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
612 			unsigned int tlsdesc_got_offset,
613 			unsigned int plt_offset);
614 
615   void
616   fill_aplt_entry(unsigned char* pov,
617 		  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
618 		  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
619 		  unsigned int got_offset,
620 		  unsigned int plt_offset,
621 		  unsigned int plt_index);
622 
623  private:
624   // Set the final size.
625   void
626   set_final_data_size();
627 
628   // Write out the BND PLT data.
629   void
630   do_write(Output_file*);
631 
632   // Offset of the Additional PLT (if using -z bndplt).
633   unsigned int aplt_offset_;
634 
635   // The size of an entry in the PLT.
636   static const int plt_entry_size = 16;
637 
638   // The size of an entry in the additional PLT.
639   static const int aplt_entry_size = 16;
640 
641   // The first entry in the PLT.
642   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
643   // procedure linkage table for both programs and shared objects."
644   static const unsigned char first_plt_entry[plt_entry_size];
645 
646   // Other entries in the PLT for an executable.
647   static const unsigned char plt_entry[plt_entry_size];
648 
649   // Entries in the additional PLT.
650   static const unsigned char aplt_entry[aplt_entry_size];
651 
652   // The reserved TLSDESC entry in the PLT for an executable.
653   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
654 
655   // The .eh_frame unwind information for the PLT.
656   static const int plt_eh_frame_fde_size = 32;
657   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
658 };
659 
660 template<int size>
661 class Lazy_view
662 {
663  public:
664   Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
665     : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
666   { }
667 
668   inline unsigned char
669   operator[](size_t offset)
670   {
671     if (this->view_ == NULL)
672       this->view_ = this->object_->section_contents(this->data_shndx_,
673                                                     &this->view_size_,
674                                                     true);
675     if (offset >= this->view_size_)
676       return 0;
677     return this->view_[offset];
678   }
679 
680  private:
681   Sized_relobj_file<size, false>* object_;
682   unsigned int data_shndx_;
683   const unsigned char* view_;
684   section_size_type view_size_;
685 };
686 
687 // The x86_64 target class.
688 // See the ABI at
689 //   http://www.x86-64.org/documentation/abi.pdf
690 // TLS info comes from
691 //   http://people.redhat.com/drepper/tls.pdf
692 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
693 
694 template<int size>
695 class Target_x86_64 : public Sized_target<size, false>
696 {
697  public:
698   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
699   // uses only Elf64_Rela relocation entries with explicit addends."
700   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
701 
702   Target_x86_64(const Target::Target_info* info = &x86_64_info)
703     : Sized_target<size, false>(info),
704       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
705       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
706       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
707       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
708       tls_base_symbol_defined_(false), isa_1_used_(0), isa_1_needed_(0),
709       feature_1_(0), object_isa_1_used_(0), object_feature_1_(0),
710       seen_first_object_(false)
711   { }
712 
713   // Hook for a new output section.
714   void
715   do_new_output_section(Output_section*) const;
716 
717   // Scan the relocations to look for symbol adjustments.
718   void
719   gc_process_relocs(Symbol_table* symtab,
720 		    Layout* layout,
721 		    Sized_relobj_file<size, false>* object,
722 		    unsigned int data_shndx,
723 		    unsigned int sh_type,
724 		    const unsigned char* prelocs,
725 		    size_t reloc_count,
726 		    Output_section* output_section,
727 		    bool needs_special_offset_handling,
728 		    size_t local_symbol_count,
729 		    const unsigned char* plocal_symbols);
730 
731   // Scan the relocations to look for symbol adjustments.
732   void
733   scan_relocs(Symbol_table* symtab,
734 	      Layout* layout,
735 	      Sized_relobj_file<size, false>* object,
736 	      unsigned int data_shndx,
737 	      unsigned int sh_type,
738 	      const unsigned char* prelocs,
739 	      size_t reloc_count,
740 	      Output_section* output_section,
741 	      bool needs_special_offset_handling,
742 	      size_t local_symbol_count,
743 	      const unsigned char* plocal_symbols);
744 
745   // Finalize the sections.
746   void
747   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
748 
749   // Return the value to use for a dynamic which requires special
750   // treatment.
751   uint64_t
752   do_dynsym_value(const Symbol*) const;
753 
754   // Relocate a section.
755   void
756   relocate_section(const Relocate_info<size, false>*,
757 		   unsigned int sh_type,
758 		   const unsigned char* prelocs,
759 		   size_t reloc_count,
760 		   Output_section* output_section,
761 		   bool needs_special_offset_handling,
762 		   unsigned char* view,
763 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
764 		   section_size_type view_size,
765 		   const Reloc_symbol_changes*);
766 
767   // Scan the relocs during a relocatable link.
768   void
769   scan_relocatable_relocs(Symbol_table* symtab,
770 			  Layout* layout,
771 			  Sized_relobj_file<size, false>* object,
772 			  unsigned int data_shndx,
773 			  unsigned int sh_type,
774 			  const unsigned char* prelocs,
775 			  size_t reloc_count,
776 			  Output_section* output_section,
777 			  bool needs_special_offset_handling,
778 			  size_t local_symbol_count,
779 			  const unsigned char* plocal_symbols,
780 			  Relocatable_relocs*);
781 
782   // Scan the relocs for --emit-relocs.
783   void
784   emit_relocs_scan(Symbol_table* symtab,
785 		   Layout* layout,
786 		   Sized_relobj_file<size, false>* object,
787 		   unsigned int data_shndx,
788 		   unsigned int sh_type,
789 		   const unsigned char* prelocs,
790 		   size_t reloc_count,
791 		   Output_section* output_section,
792 		   bool needs_special_offset_handling,
793 		   size_t local_symbol_count,
794 		   const unsigned char* plocal_syms,
795 		   Relocatable_relocs* rr);
796 
797   // Emit relocations for a section.
798   void
799   relocate_relocs(
800       const Relocate_info<size, false>*,
801       unsigned int sh_type,
802       const unsigned char* prelocs,
803       size_t reloc_count,
804       Output_section* output_section,
805       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
806       unsigned char* view,
807       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
808       section_size_type view_size,
809       unsigned char* reloc_view,
810       section_size_type reloc_view_size);
811 
812   // Return a string used to fill a code section with nops.
813   std::string
814   do_code_fill(section_size_type length) const;
815 
816   // Return whether SYM is defined by the ABI.
817   bool
818   do_is_defined_by_abi(const Symbol* sym) const
819   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
820 
821   // Return the symbol index to use for a target specific relocation.
822   // The only target specific relocation is R_X86_64_TLSDESC for a
823   // local symbol, which is an absolute reloc.
824   unsigned int
825   do_reloc_symbol_index(void*, unsigned int r_type) const
826   {
827     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
828     return 0;
829   }
830 
831   // Return the addend to use for a target specific relocation.
832   uint64_t
833   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
834 
835   // Return the PLT section.
836   uint64_t
837   do_plt_address_for_global(const Symbol* gsym) const
838   { return this->plt_section()->address_for_global(gsym); }
839 
840   uint64_t
841   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
842   { return this->plt_section()->address_for_local(relobj, symndx); }
843 
844   // This function should be defined in targets that can use relocation
845   // types to determine (implemented in local_reloc_may_be_function_pointer
846   // and global_reloc_may_be_function_pointer)
847   // if a function's pointer is taken.  ICF uses this in safe mode to only
848   // fold those functions whose pointer is defintely not taken.  For x86_64
849   // pie binaries, safe ICF cannot be done by looking at only relocation
850   // types, and for certain cases (e.g. R_X86_64_PC32), the instruction
851   // opcode is checked as well to distinguish a function call from taking
852   // a function's pointer.
853   bool
854   do_can_check_for_function_pointers() const
855   { return true; }
856 
857   // Return the base for a DW_EH_PE_datarel encoding.
858   uint64_t
859   do_ehframe_datarel_base() const;
860 
861   // Adjust -fsplit-stack code which calls non-split-stack code.
862   void
863   do_calls_non_split(Relobj* object, unsigned int shndx,
864 		     section_offset_type fnoffset, section_size_type fnsize,
865 		     const unsigned char* prelocs, size_t reloc_count,
866 		     unsigned char* view, section_size_type view_size,
867 		     std::string* from, std::string* to) const;
868 
869   // Return the size of the GOT section.
870   section_size_type
871   got_size() const
872   {
873     gold_assert(this->got_ != NULL);
874     return this->got_->data_size();
875   }
876 
877   // Return the number of entries in the GOT.
878   unsigned int
879   got_entry_count() const
880   {
881     if (this->got_ == NULL)
882       return 0;
883     return this->got_size() / 8;
884   }
885 
886   // Return the number of entries in the PLT.
887   unsigned int
888   plt_entry_count() const;
889 
890   // Return the offset of the first non-reserved PLT entry.
891   unsigned int
892   first_plt_entry_offset() const;
893 
894   // Return the size of each PLT entry.
895   unsigned int
896   plt_entry_size() const;
897 
898   // Return the size of each GOT entry.
899   unsigned int
900   got_entry_size() const
901   { return 8; };
902 
903   // Create the GOT section for an incremental update.
904   Output_data_got_base*
905   init_got_plt_for_update(Symbol_table* symtab,
906 			  Layout* layout,
907 			  unsigned int got_count,
908 			  unsigned int plt_count);
909 
910   // Reserve a GOT entry for a local symbol, and regenerate any
911   // necessary dynamic relocations.
912   void
913   reserve_local_got_entry(unsigned int got_index,
914 			  Sized_relobj<size, false>* obj,
915 			  unsigned int r_sym,
916 			  unsigned int got_type);
917 
918   // Reserve a GOT entry for a global symbol, and regenerate any
919   // necessary dynamic relocations.
920   void
921   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
922 			   unsigned int got_type);
923 
924   // Register an existing PLT entry for a global symbol.
925   void
926   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
927 			    Symbol* gsym);
928 
929   // Force a COPY relocation for a given symbol.
930   void
931   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
932 
933   // Apply an incremental relocation.
934   void
935   apply_relocation(const Relocate_info<size, false>* relinfo,
936 		   typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
937 		   unsigned int r_type,
938 		   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
939 		   const Symbol* gsym,
940 		   unsigned char* view,
941 		   typename elfcpp::Elf_types<size>::Elf_Addr address,
942 		   section_size_type view_size);
943 
944   // Add a new reloc argument, returning the index in the vector.
945   size_t
946   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
947   {
948     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
949     return this->tlsdesc_reloc_info_.size() - 1;
950   }
951 
952   Output_data_plt_x86_64<size>*
953   make_data_plt(Layout* layout,
954 		Output_data_got<64, false>* got,
955 		Output_data_got_plt_x86_64* got_plt,
956 		Output_data_space* got_irelative)
957   {
958     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
959   }
960 
961   Output_data_plt_x86_64<size>*
962   make_data_plt(Layout* layout,
963 		Output_data_got<64, false>* got,
964 		Output_data_got_plt_x86_64* got_plt,
965 		Output_data_space* got_irelative,
966 		unsigned int plt_count)
967   {
968     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
969 				  plt_count);
970   }
971 
972   virtual Output_data_plt_x86_64<size>*
973   do_make_data_plt(Layout* layout,
974 		   Output_data_got<64, false>* got,
975 		   Output_data_got_plt_x86_64* got_plt,
976 		   Output_data_space* got_irelative);
977 
978   virtual Output_data_plt_x86_64<size>*
979   do_make_data_plt(Layout* layout,
980 		   Output_data_got<64, false>* got,
981 		   Output_data_got_plt_x86_64* got_plt,
982 		   Output_data_space* got_irelative,
983 		   unsigned int plt_count);
984 
985  private:
986   // The class which scans relocations.
987   class Scan
988   {
989   public:
990     Scan()
991       : issued_non_pic_error_(false)
992     { }
993 
994     static inline int
995     get_reference_flags(unsigned int r_type);
996 
997     inline void
998     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
999 	  Sized_relobj_file<size, false>* object,
1000 	  unsigned int data_shndx,
1001 	  Output_section* output_section,
1002 	  const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1003 	  const elfcpp::Sym<size, false>& lsym,
1004 	  bool is_discarded);
1005 
1006     inline void
1007     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
1008 	   Sized_relobj_file<size, false>* object,
1009 	   unsigned int data_shndx,
1010 	   Output_section* output_section,
1011 	   const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
1012 	   Symbol* gsym);
1013 
1014     inline bool
1015     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1016 					Target_x86_64* target,
1017 					Sized_relobj_file<size, false>* object,
1018 					unsigned int data_shndx,
1019 					Output_section* output_section,
1020 					const elfcpp::Rela<size, false>& reloc,
1021 					unsigned int r_type,
1022 					const elfcpp::Sym<size, false>& lsym);
1023 
1024     inline bool
1025     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
1026 					 Target_x86_64* target,
1027 					 Sized_relobj_file<size, false>* object,
1028 					 unsigned int data_shndx,
1029 					 Output_section* output_section,
1030 					 const elfcpp::Rela<size, false>& reloc,
1031 					 unsigned int r_type,
1032 					 Symbol* gsym);
1033 
1034   private:
1035     static void
1036     unsupported_reloc_local(Sized_relobj_file<size, false>*,
1037 			    unsigned int r_type);
1038 
1039     static void
1040     unsupported_reloc_global(Sized_relobj_file<size, false>*,
1041 			     unsigned int r_type, Symbol*);
1042 
1043     void
1044     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
1045 
1046     inline bool
1047     possible_function_pointer_reloc(Sized_relobj_file<size, false>* src_obj,
1048                                     unsigned int src_indx,
1049                                     unsigned int r_offset,
1050                                     unsigned int r_type);
1051 
1052     bool
1053     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
1054 			      unsigned int r_type);
1055 
1056     // Whether we have issued an error about a non-PIC compilation.
1057     bool issued_non_pic_error_;
1058   };
1059 
1060   // The class which implements relocation.
1061   class Relocate
1062   {
1063    public:
1064     Relocate()
1065       : skip_call_tls_get_addr_(false)
1066     { }
1067 
1068     ~Relocate()
1069     {
1070       if (this->skip_call_tls_get_addr_)
1071 	{
1072 	  // FIXME: This needs to specify the location somehow.
1073 	  gold_error(_("missing expected TLS relocation"));
1074 	}
1075     }
1076 
1077     // Do a relocation.  Return false if the caller should not issue
1078     // any warnings about this relocation.
1079     inline bool
1080     relocate(const Relocate_info<size, false>*, unsigned int,
1081 	     Target_x86_64*, Output_section*, size_t, const unsigned char*,
1082 	     const Sized_symbol<size>*, const Symbol_value<size>*,
1083 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1084 	     section_size_type);
1085 
1086    private:
1087     // Do a TLS relocation.
1088     inline void
1089     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
1090 		 size_t relnum, const elfcpp::Rela<size, false>&,
1091 		 unsigned int r_type, const Sized_symbol<size>*,
1092 		 const Symbol_value<size>*,
1093 		 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094 		 section_size_type);
1095 
1096     // Do a TLS General-Dynamic to Initial-Exec transition.
1097     inline void
1098     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1099 		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1100 		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1101 		 unsigned char* view,
1102 		 typename elfcpp::Elf_types<size>::Elf_Addr,
1103 		 section_size_type view_size);
1104 
1105     // Do a TLS General-Dynamic to Local-Exec transition.
1106     inline void
1107     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1108 		 Output_segment* tls_segment,
1109 		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1110 		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1111 		 unsigned char* view,
1112 		 section_size_type view_size);
1113 
1114     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
1115     inline void
1116     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1117 		      const elfcpp::Rela<size, false>&, unsigned int r_type,
1118 		      typename elfcpp::Elf_types<size>::Elf_Addr value,
1119 		      unsigned char* view,
1120 		      typename elfcpp::Elf_types<size>::Elf_Addr,
1121 		      section_size_type view_size);
1122 
1123     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
1124     inline void
1125     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1126 		      Output_segment* tls_segment,
1127 		      const elfcpp::Rela<size, false>&, unsigned int r_type,
1128 		      typename elfcpp::Elf_types<size>::Elf_Addr value,
1129 		      unsigned char* view,
1130 		      section_size_type view_size);
1131 
1132     // Do a TLS Local-Dynamic to Local-Exec transition.
1133     inline void
1134     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
1135 		 Output_segment* tls_segment,
1136 		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1137 		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1138 		 unsigned char* view,
1139 		 section_size_type view_size);
1140 
1141     // Do a TLS Initial-Exec to Local-Exec transition.
1142     static inline void
1143     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
1144 		 Output_segment* tls_segment,
1145 		 const elfcpp::Rela<size, false>&, unsigned int r_type,
1146 		 typename elfcpp::Elf_types<size>::Elf_Addr value,
1147 		 unsigned char* view,
1148 		 section_size_type view_size);
1149 
1150     // This is set if we should skip the next reloc, which should be a
1151     // PLT32 reloc against ___tls_get_addr.
1152     bool skip_call_tls_get_addr_;
1153   };
1154 
1155   // Check if relocation against this symbol is a candidate for
1156   // conversion from
1157   // mov foo@GOTPCREL(%rip), %reg
1158   // to lea foo(%rip), %reg.
1159   template<class View_type>
1160   static inline bool
1161   can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
1162                          size_t r_offset, View_type* view)
1163   {
1164     gold_assert(gsym != NULL);
1165     // We cannot do the conversion unless it's one of these relocations.
1166     if (r_type != elfcpp::R_X86_64_GOTPCREL
1167         && r_type != elfcpp::R_X86_64_GOTPCRELX
1168         && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
1169       return false;
1170     // We cannot convert references to IFUNC symbols, or to symbols that
1171     // are not local to the current module.
1172     // We can't do predefined symbols because they may become undefined
1173     // (e.g., __ehdr_start when the headers aren't mapped to a segment).
1174     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1175         || gsym->is_undefined()
1176         || gsym->is_predefined()
1177         || gsym->is_from_dynobj()
1178         || gsym->is_preemptible())
1179       return false;
1180     // If we are building a shared object and the symbol is protected, we may
1181     // need to go through the GOT.
1182     if (parameters->options().shared()
1183         && gsym->visibility() == elfcpp::STV_PROTECTED)
1184       return false;
1185     // We cannot convert references to the _DYNAMIC symbol.
1186     if (strcmp(gsym->name(), "_DYNAMIC") == 0)
1187       return false;
1188     // Check for a MOV opcode.
1189     return (*view)[r_offset - 2] == 0x8b;
1190   }
1191 
1192   // Convert
1193   // callq *foo@GOTPCRELX(%rip) to
1194   // addr32 callq foo
1195   // and jmpq *foo@GOTPCRELX(%rip) to
1196   // jmpq foo
1197   // nop
1198   template<class View_type>
1199   static inline bool
1200   can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
1201 			      size_t r_offset, View_type* view)
1202   {
1203     gold_assert(gsym != NULL);
1204     // We cannot do the conversion unless it's a GOTPCRELX relocation.
1205     if (r_type != elfcpp::R_X86_64_GOTPCRELX)
1206       return false;
1207     // We cannot convert references to IFUNC symbols, or to symbols that
1208     // are not local to the current module.
1209     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1210         || gsym->is_undefined ()
1211         || gsym->is_from_dynobj()
1212         || gsym->is_preemptible())
1213       return false;
1214     // Check for a CALLQ or JMPQ opcode.
1215     return ((*view)[r_offset - 2] == 0xff
1216             && ((*view)[r_offset - 1] == 0x15
1217                 || (*view)[r_offset - 1] == 0x25));
1218   }
1219 
1220   // Adjust TLS relocation type based on the options and whether this
1221   // is a local symbol.
1222   static tls::Tls_optimization
1223   optimize_tls_reloc(bool is_final, int r_type);
1224 
1225   // Get the GOT section, creating it if necessary.
1226   Output_data_got<64, false>*
1227   got_section(Symbol_table*, Layout*);
1228 
1229   // Get the GOT PLT section.
1230   Output_data_got_plt_x86_64*
1231   got_plt_section() const
1232   {
1233     gold_assert(this->got_plt_ != NULL);
1234     return this->got_plt_;
1235   }
1236 
1237   // Get the GOT section for TLSDESC entries.
1238   Output_data_got<64, false>*
1239   got_tlsdesc_section() const
1240   {
1241     gold_assert(this->got_tlsdesc_ != NULL);
1242     return this->got_tlsdesc_;
1243   }
1244 
1245   // Create the PLT section.
1246   void
1247   make_plt_section(Symbol_table* symtab, Layout* layout);
1248 
1249   // Create a PLT entry for a global symbol.
1250   void
1251   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1252 
1253   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
1254   void
1255   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1256 			     Sized_relobj_file<size, false>* relobj,
1257 			     unsigned int local_sym_index);
1258 
1259   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1260   void
1261   define_tls_base_symbol(Symbol_table*, Layout*);
1262 
1263   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1264   void
1265   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1266 
1267   // Create a GOT entry for the TLS module index.
1268   unsigned int
1269   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1270 		      Sized_relobj_file<size, false>* object);
1271 
1272   // Get the PLT section.
1273   Output_data_plt_x86_64<size>*
1274   plt_section() const
1275   {
1276     gold_assert(this->plt_ != NULL);
1277     return this->plt_;
1278   }
1279 
1280   // Get the dynamic reloc section, creating it if necessary.
1281   Reloc_section*
1282   rela_dyn_section(Layout*);
1283 
1284   // Get the section to use for TLSDESC relocations.
1285   Reloc_section*
1286   rela_tlsdesc_section(Layout*) const;
1287 
1288   // Get the section to use for IRELATIVE relocations.
1289   Reloc_section*
1290   rela_irelative_section(Layout*);
1291 
1292   // Add a potential copy relocation.
1293   void
1294   copy_reloc(Symbol_table* symtab, Layout* layout,
1295 	     Sized_relobj_file<size, false>* object,
1296 	     unsigned int shndx, Output_section* output_section,
1297 	     Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1298   {
1299     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1300     this->copy_relocs_.copy_reloc(symtab, layout,
1301 				  symtab->get_sized_symbol<size>(sym),
1302 				  object, shndx, output_section,
1303 				  r_type, reloc.get_r_offset(),
1304 				  reloc.get_r_addend(),
1305 				  this->rela_dyn_section(layout));
1306   }
1307 
1308   // Record a target-specific program property in the .note.gnu.property
1309   // section.
1310   void
1311   record_gnu_property(unsigned int, unsigned int, size_t,
1312 		      const unsigned char*, const Object*);
1313 
1314   // Merge the target-specific program properties from the current object.
1315   void
1316   merge_gnu_properties(const Object*);
1317 
1318   // Finalize the target-specific program properties and add them back to
1319   // the layout.
1320   void
1321   do_finalize_gnu_properties(Layout*) const;
1322 
1323   // Information about this specific target which we pass to the
1324   // general Target structure.
1325   static const Target::Target_info x86_64_info;
1326 
1327   // The types of GOT entries needed for this platform.
1328   // These values are exposed to the ABI in an incremental link.
1329   // Do not renumber existing values without changing the version
1330   // number of the .gnu_incremental_inputs section.
1331   enum Got_type
1332   {
1333     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
1334     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
1335     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
1336     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
1337   };
1338 
1339   // This type is used as the argument to the target specific
1340   // relocation routines.  The only target specific reloc is
1341   // R_X86_64_TLSDESC against a local symbol.
1342   struct Tlsdesc_info
1343   {
1344     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1345       : object(a_object), r_sym(a_r_sym)
1346     { }
1347 
1348     // The object in which the local symbol is defined.
1349     Sized_relobj_file<size, false>* object;
1350     // The local symbol index in the object.
1351     unsigned int r_sym;
1352   };
1353 
1354   // The GOT section.
1355   Output_data_got<64, false>* got_;
1356   // The PLT section.
1357   Output_data_plt_x86_64<size>* plt_;
1358   // The GOT PLT section.
1359   Output_data_got_plt_x86_64* got_plt_;
1360   // The GOT section for IRELATIVE relocations.
1361   Output_data_space* got_irelative_;
1362   // The GOT section for TLSDESC relocations.
1363   Output_data_got<64, false>* got_tlsdesc_;
1364   // The _GLOBAL_OFFSET_TABLE_ symbol.
1365   Symbol* global_offset_table_;
1366   // The dynamic reloc section.
1367   Reloc_section* rela_dyn_;
1368   // The section to use for IRELATIVE relocs.
1369   Reloc_section* rela_irelative_;
1370   // Relocs saved to avoid a COPY reloc.
1371   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1372   // Offset of the GOT entry for the TLS module index.
1373   unsigned int got_mod_index_offset_;
1374   // We handle R_X86_64_TLSDESC against a local symbol as a target
1375   // specific relocation.  Here we store the object and local symbol
1376   // index for the relocation.
1377   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1378   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1379   bool tls_base_symbol_defined_;
1380   // Target-specific program properties, from .note.gnu.property section.
1381   // Each bit represents a specific feature.
1382   uint32_t isa_1_used_;
1383   uint32_t isa_1_needed_;
1384   uint32_t feature_1_;
1385   // Target-specific properties from the current object.
1386   // These bits get ORed into ISA_1_USED_ after all properties for the object
1387   // have been processed. But if either is all zeroes (as when the property
1388   // is absent from an object), the result should be all zeroes.
1389   // (See PR ld/23486.)
1390   uint32_t object_isa_1_used_;
1391   // These bits get ANDed into FEATURE_1_ after all properties for the object
1392   // have been processed.
1393   uint32_t object_feature_1_;
1394   // Whether we have seen our first object, for use in initializing FEATURE_1_.
1395   bool seen_first_object_;
1396 };
1397 
1398 template<>
1399 const Target::Target_info Target_x86_64<64>::x86_64_info =
1400 {
1401   64,			// size
1402   false,		// is_big_endian
1403   elfcpp::EM_X86_64,	// machine_code
1404   false,		// has_make_symbol
1405   false,		// has_resolve
1406   true,			// has_code_fill
1407   true,			// is_default_stack_executable
1408   true,			// can_icf_inline_merge_sections
1409   '\0',			// wrap_char
1410   "/libexec/ld-elf.so.2",     // program interpreter
1411   0x400000,		// default_text_segment_address
1412   0x1000,		// abi_pagesize (overridable by -z max-page-size)
1413   0x1000,		// common_pagesize (overridable by -z common-page-size)
1414   false,                // isolate_execinstr
1415   0,                    // rosegment_gap
1416   elfcpp::SHN_UNDEF,	// small_common_shndx
1417   elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
1418   0,			// small_common_section_flags
1419   elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
1420   NULL,			// attributes_section
1421   NULL,			// attributes_vendor
1422   "_start",		// entry_symbol_name
1423   32,			// hash_entry_size
1424   elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
1425 };
1426 
1427 template<>
1428 const Target::Target_info Target_x86_64<32>::x86_64_info =
1429 {
1430   32,			// size
1431   false,		// is_big_endian
1432   elfcpp::EM_X86_64,	// machine_code
1433   false,		// has_make_symbol
1434   false,		// has_resolve
1435   true,			// has_code_fill
1436   true,			// is_default_stack_executable
1437   true,			// can_icf_inline_merge_sections
1438   '\0',			// wrap_char
1439   "/libexec/ldx32.so.1", // program interpreter
1440   0x400000,		// default_text_segment_address
1441   0x1000,		// abi_pagesize (overridable by -z max-page-size)
1442   0x1000,		// common_pagesize (overridable by -z common-page-size)
1443   false,                // isolate_execinstr
1444   0,                    // rosegment_gap
1445   elfcpp::SHN_UNDEF,	// small_common_shndx
1446   elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
1447   0,			// small_common_section_flags
1448   elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
1449   NULL,			// attributes_section
1450   NULL,			// attributes_vendor
1451   "_start",		// entry_symbol_name
1452   32,			// hash_entry_size
1453   elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
1454 };
1455 
1456 // This is called when a new output section is created.  This is where
1457 // we handle the SHF_X86_64_LARGE.
1458 
1459 template<int size>
1460 void
1461 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1462 {
1463   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1464     os->set_is_large_section();
1465 }
1466 
1467 // Get the GOT section, creating it if necessary.
1468 
1469 template<int size>
1470 Output_data_got<64, false>*
1471 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1472 {
1473   if (this->got_ == NULL)
1474     {
1475       gold_assert(symtab != NULL && layout != NULL);
1476 
1477       // When using -z now, we can treat .got.plt as a relro section.
1478       // Without -z now, it is modified after program startup by lazy
1479       // PLT relocations.
1480       bool is_got_plt_relro = parameters->options().now();
1481       Output_section_order got_order = (is_got_plt_relro
1482 					? ORDER_RELRO
1483 					: ORDER_RELRO_LAST);
1484       Output_section_order got_plt_order = (is_got_plt_relro
1485 					    ? ORDER_RELRO
1486 					    : ORDER_NON_RELRO_FIRST);
1487 
1488       this->got_ = new Output_data_got<64, false>();
1489 
1490       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1491 				      (elfcpp::SHF_ALLOC
1492 				       | elfcpp::SHF_WRITE),
1493 				      this->got_, got_order, true);
1494 
1495       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1496       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1497 				      (elfcpp::SHF_ALLOC
1498 				       | elfcpp::SHF_WRITE),
1499 				      this->got_plt_, got_plt_order,
1500 				      is_got_plt_relro);
1501 
1502       // The first three entries are reserved.
1503       this->got_plt_->set_current_data_size(3 * 8);
1504 
1505       if (!is_got_plt_relro)
1506 	{
1507 	  // Those bytes can go into the relro segment.
1508 	  layout->increase_relro(3 * 8);
1509 	}
1510 
1511       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1512       this->global_offset_table_ =
1513 	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1514 				      Symbol_table::PREDEFINED,
1515 				      this->got_plt_,
1516 				      0, 0, elfcpp::STT_OBJECT,
1517 				      elfcpp::STB_LOCAL,
1518 				      elfcpp::STV_HIDDEN, 0,
1519 				      false, false);
1520 
1521       // If there are any IRELATIVE relocations, they get GOT entries
1522       // in .got.plt after the jump slot entries.
1523       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1524       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1525 				      (elfcpp::SHF_ALLOC
1526 				       | elfcpp::SHF_WRITE),
1527 				      this->got_irelative_,
1528 				      got_plt_order, is_got_plt_relro);
1529 
1530       // If there are any TLSDESC relocations, they get GOT entries in
1531       // .got.plt after the jump slot and IRELATIVE entries.
1532       this->got_tlsdesc_ = new Output_data_got<64, false>();
1533       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1534 				      (elfcpp::SHF_ALLOC
1535 				       | elfcpp::SHF_WRITE),
1536 				      this->got_tlsdesc_,
1537 				      got_plt_order, is_got_plt_relro);
1538     }
1539 
1540   return this->got_;
1541 }
1542 
1543 // Get the dynamic reloc section, creating it if necessary.
1544 
1545 template<int size>
1546 typename Target_x86_64<size>::Reloc_section*
1547 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1548 {
1549   if (this->rela_dyn_ == NULL)
1550     {
1551       gold_assert(layout != NULL);
1552       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1553       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1554 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
1555 				      ORDER_DYNAMIC_RELOCS, false);
1556     }
1557   return this->rela_dyn_;
1558 }
1559 
1560 // Get the section to use for IRELATIVE relocs, creating it if
1561 // necessary.  These go in .rela.dyn, but only after all other dynamic
1562 // relocations.  They need to follow the other dynamic relocations so
1563 // that they can refer to global variables initialized by those
1564 // relocs.
1565 
1566 template<int size>
1567 typename Target_x86_64<size>::Reloc_section*
1568 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1569 {
1570   if (this->rela_irelative_ == NULL)
1571     {
1572       // Make sure we have already created the dynamic reloc section.
1573       this->rela_dyn_section(layout);
1574       this->rela_irelative_ = new Reloc_section(false);
1575       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1576 				      elfcpp::SHF_ALLOC, this->rela_irelative_,
1577 				      ORDER_DYNAMIC_RELOCS, false);
1578       gold_assert(this->rela_dyn_->output_section()
1579 		  == this->rela_irelative_->output_section());
1580     }
1581   return this->rela_irelative_;
1582 }
1583 
1584 // Record a target-specific program property from the .note.gnu.property
1585 // section.
1586 template<int size>
1587 void
1588 Target_x86_64<size>::record_gnu_property(
1589     unsigned int, unsigned int pr_type,
1590     size_t pr_datasz, const unsigned char* pr_data,
1591     const Object* object)
1592 {
1593   uint32_t val = 0;
1594 
1595   switch (pr_type)
1596     {
1597     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1598     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1599     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1600       if (pr_datasz != 4)
1601 	{
1602 	  gold_warning(_("%s: corrupt .note.gnu.property section "
1603 			 "(pr_datasz for property %d is not 4)"),
1604 		       object->name().c_str(), pr_type);
1605 	  return;
1606 	}
1607       val = elfcpp::Swap<32, false>::readval(pr_data);
1608       break;
1609     default:
1610       gold_warning(_("%s: unknown program property type 0x%x "
1611 		     "in .note.gnu.property section"),
1612 		   object->name().c_str(), pr_type);
1613       break;
1614     }
1615 
1616   switch (pr_type)
1617     {
1618     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
1619       this->object_isa_1_used_ |= val;
1620       break;
1621     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
1622       this->isa_1_needed_ |= val;
1623       break;
1624     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
1625       // If we see multiple feature props in one object, OR them together.
1626       this->object_feature_1_ |= val;
1627       break;
1628     }
1629 }
1630 
1631 // Merge the target-specific program properties from the current object.
1632 template<int size>
1633 void
1634 Target_x86_64<size>::merge_gnu_properties(const Object*)
1635 {
1636   if (this->seen_first_object_)
1637     {
1638       // If any object is missing the ISA_1_USED property, we must omit
1639       // it from the output file.
1640       if (this->object_isa_1_used_ == 0)
1641 	this->isa_1_used_ = 0;
1642       else if (this->isa_1_used_ != 0)
1643 	this->isa_1_used_ |= this->object_isa_1_used_;
1644       this->feature_1_ &= this->object_feature_1_;
1645     }
1646   else
1647     {
1648       this->isa_1_used_ = this->object_isa_1_used_;
1649       this->feature_1_ = this->object_feature_1_;
1650       this->seen_first_object_ = true;
1651     }
1652   this->object_isa_1_used_ = 0;
1653   this->object_feature_1_ = 0;
1654 }
1655 
1656 static inline void
1657 add_property(Layout* layout, unsigned int pr_type, uint32_t val)
1658 {
1659   unsigned char buf[4];
1660   elfcpp::Swap<32, false>::writeval(buf, val);
1661   layout->add_gnu_property(elfcpp::NT_GNU_PROPERTY_TYPE_0, pr_type, 4, buf);
1662 }
1663 
1664 // Finalize the target-specific program properties and add them back to
1665 // the layout.
1666 template<int size>
1667 void
1668 Target_x86_64<size>::do_finalize_gnu_properties(Layout* layout) const
1669 {
1670   if (this->isa_1_used_ != 0)
1671     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_USED,
1672 		 this->isa_1_used_);
1673   if (this->isa_1_needed_ != 0)
1674     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED,
1675 		 this->isa_1_needed_);
1676   if (this->feature_1_ != 0)
1677     add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND,
1678 		 this->feature_1_);
1679 }
1680 
1681 // Write the first three reserved words of the .got.plt section.
1682 // The remainder of the section is written while writing the PLT
1683 // in Output_data_plt_i386::do_write.
1684 
1685 void
1686 Output_data_got_plt_x86_64::do_write(Output_file* of)
1687 {
1688   // The first entry in the GOT is the address of the .dynamic section
1689   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1690   // We saved space for them when we created the section in
1691   // Target_x86_64::got_section.
1692   const off_t got_file_offset = this->offset();
1693   gold_assert(this->data_size() >= 24);
1694   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1695   Output_section* dynamic = this->layout_->dynamic_section();
1696   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1697   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1698   memset(got_view + 8, 0, 16);
1699   of->write_output_view(got_file_offset, 24, got_view);
1700 }
1701 
1702 // Initialize the PLT section.
1703 
1704 template<int size>
1705 void
1706 Output_data_plt_x86_64<size>::init(Layout* layout)
1707 {
1708   this->rel_ = new Reloc_section(false);
1709   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1710 				  elfcpp::SHF_ALLOC, this->rel_,
1711 				  ORDER_DYNAMIC_PLT_RELOCS, false);
1712 }
1713 
1714 template<int size>
1715 void
1716 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1717 {
1718   os->set_entsize(this->get_plt_entry_size());
1719 }
1720 
1721 // Add an entry to the PLT.
1722 
1723 template<int size>
1724 void
1725 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1726 					Symbol* gsym)
1727 {
1728   gold_assert(!gsym->has_plt_offset());
1729 
1730   unsigned int plt_index;
1731   off_t plt_offset;
1732   section_offset_type got_offset;
1733 
1734   unsigned int* pcount;
1735   unsigned int offset;
1736   unsigned int reserved;
1737   Output_section_data_build* got;
1738   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1739       && gsym->can_use_relative_reloc(false))
1740     {
1741       pcount = &this->irelative_count_;
1742       offset = 0;
1743       reserved = 0;
1744       got = this->got_irelative_;
1745     }
1746   else
1747     {
1748       pcount = &this->count_;
1749       offset = 1;
1750       reserved = 3;
1751       got = this->got_plt_;
1752     }
1753 
1754   if (!this->is_data_size_valid())
1755     {
1756       // Note that when setting the PLT offset for a non-IRELATIVE
1757       // entry we skip the initial reserved PLT entry.
1758       plt_index = *pcount + offset;
1759       plt_offset = plt_index * this->get_plt_entry_size();
1760 
1761       ++*pcount;
1762 
1763       got_offset = (plt_index - offset + reserved) * 8;
1764       gold_assert(got_offset == got->current_data_size());
1765 
1766       // Every PLT entry needs a GOT entry which points back to the PLT
1767       // entry (this will be changed by the dynamic linker, normally
1768       // lazily when the function is called).
1769       got->set_current_data_size(got_offset + 8);
1770     }
1771   else
1772     {
1773       // FIXME: This is probably not correct for IRELATIVE relocs.
1774 
1775       // For incremental updates, find an available slot.
1776       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1777 					     this->get_plt_entry_size(), 0);
1778       if (plt_offset == -1)
1779 	gold_fallback(_("out of patch space (PLT);"
1780 			" relink with --incremental-full"));
1781 
1782       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1783       // can be calculated from the PLT index, adjusting for the three
1784       // reserved entries at the beginning of the GOT.
1785       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1786       got_offset = (plt_index - offset + reserved) * 8;
1787     }
1788 
1789   gsym->set_plt_offset(plt_offset);
1790 
1791   // Every PLT entry needs a reloc.
1792   this->add_relocation(symtab, layout, gsym, got_offset);
1793 
1794   // Note that we don't need to save the symbol.  The contents of the
1795   // PLT are independent of which symbols are used.  The symbols only
1796   // appear in the relocations.
1797 }
1798 
1799 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1800 // the PLT offset.
1801 
1802 template<int size>
1803 unsigned int
1804 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1805     Symbol_table* symtab,
1806     Layout* layout,
1807     Sized_relobj_file<size, false>* relobj,
1808     unsigned int local_sym_index)
1809 {
1810   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1811   ++this->irelative_count_;
1812 
1813   section_offset_type got_offset = this->got_irelative_->current_data_size();
1814 
1815   // Every PLT entry needs a GOT entry which points back to the PLT
1816   // entry.
1817   this->got_irelative_->set_current_data_size(got_offset + 8);
1818 
1819   // Every PLT entry needs a reloc.
1820   Reloc_section* rela = this->rela_irelative(symtab, layout);
1821   rela->add_symbolless_local_addend(relobj, local_sym_index,
1822 				    elfcpp::R_X86_64_IRELATIVE,
1823 				    this->got_irelative_, got_offset, 0);
1824 
1825   return plt_offset;
1826 }
1827 
1828 // Add the relocation for a PLT entry.
1829 
1830 template<int size>
1831 void
1832 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1833 					     Layout* layout,
1834 					     Symbol* gsym,
1835 					     unsigned int got_offset)
1836 {
1837   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1838       && gsym->can_use_relative_reloc(false))
1839     {
1840       Reloc_section* rela = this->rela_irelative(symtab, layout);
1841       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1842 					 this->got_irelative_, got_offset, 0);
1843     }
1844   else
1845     {
1846       gsym->set_needs_dynsym_entry();
1847       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1848 			     got_offset, 0);
1849     }
1850 }
1851 
1852 // Return where the TLSDESC relocations should go, creating it if
1853 // necessary.  These follow the JUMP_SLOT relocations.
1854 
1855 template<int size>
1856 typename Output_data_plt_x86_64<size>::Reloc_section*
1857 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1858 {
1859   if (this->tlsdesc_rel_ == NULL)
1860     {
1861       this->tlsdesc_rel_ = new Reloc_section(false);
1862       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1863 				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1864 				      ORDER_DYNAMIC_PLT_RELOCS, false);
1865       gold_assert(this->tlsdesc_rel_->output_section()
1866 		  == this->rel_->output_section());
1867     }
1868   return this->tlsdesc_rel_;
1869 }
1870 
1871 // Return where the IRELATIVE relocations should go in the PLT.  These
1872 // follow the JUMP_SLOT and the TLSDESC relocations.
1873 
1874 template<int size>
1875 typename Output_data_plt_x86_64<size>::Reloc_section*
1876 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1877 					     Layout* layout)
1878 {
1879   if (this->irelative_rel_ == NULL)
1880     {
1881       // Make sure we have a place for the TLSDESC relocations, in
1882       // case we see any later on.
1883       this->rela_tlsdesc(layout);
1884       this->irelative_rel_ = new Reloc_section(false);
1885       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1886 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
1887 				      ORDER_DYNAMIC_PLT_RELOCS, false);
1888       gold_assert(this->irelative_rel_->output_section()
1889 		  == this->rel_->output_section());
1890 
1891       if (parameters->doing_static_link())
1892 	{
1893 	  // A statically linked executable will only have a .rela.plt
1894 	  // section to hold R_X86_64_IRELATIVE relocs for
1895 	  // STT_GNU_IFUNC symbols.  The library will use these
1896 	  // symbols to locate the IRELATIVE relocs at program startup
1897 	  // time.
1898 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
1899 					Symbol_table::PREDEFINED,
1900 					this->irelative_rel_, 0, 0,
1901 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1902 					elfcpp::STV_HIDDEN, 0, false, true);
1903 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
1904 					Symbol_table::PREDEFINED,
1905 					this->irelative_rel_, 0, 0,
1906 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1907 					elfcpp::STV_HIDDEN, 0, true, true);
1908 	}
1909     }
1910   return this->irelative_rel_;
1911 }
1912 
1913 // Return the PLT address to use for a global symbol.
1914 
1915 template<int size>
1916 uint64_t
1917 Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
1918 {
1919   uint64_t offset = 0;
1920   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1921       && gsym->can_use_relative_reloc(false))
1922     offset = (this->count_ + 1) * this->get_plt_entry_size();
1923   return this->address() + offset + gsym->plt_offset();
1924 }
1925 
1926 // Return the PLT address to use for a local symbol.  These are always
1927 // IRELATIVE relocs.
1928 
1929 template<int size>
1930 uint64_t
1931 Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
1932 						   unsigned int r_sym)
1933 {
1934   return (this->address()
1935 	  + (this->count_ + 1) * this->get_plt_entry_size()
1936 	  + object->local_plt_offset(r_sym));
1937 }
1938 
1939 // Set the final size.
1940 template<int size>
1941 void
1942 Output_data_plt_x86_64<size>::set_final_data_size()
1943 {
1944   // Number of regular and IFUNC PLT entries, plus the first entry.
1945   unsigned int count = this->count_ + this->irelative_count_ + 1;
1946   // Count the TLSDESC entry, if present.
1947   if (this->has_tlsdesc_entry())
1948     ++count;
1949   this->set_data_size(count * this->get_plt_entry_size());
1950 }
1951 
1952 // The first entry in the PLT for an executable.
1953 
1954 template<int size>
1955 const unsigned char
1956 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1957 {
1958   // From AMD64 ABI Draft 0.98, page 76
1959   0xff, 0x35,	// pushq contents of memory address
1960   0, 0, 0, 0,	// replaced with address of .got + 8
1961   0xff, 0x25,	// jmp indirect
1962   0, 0, 0, 0,	// replaced with address of .got + 16
1963   0x90, 0x90, 0x90, 0x90   // noop (x4)
1964 };
1965 
1966 template<int size>
1967 void
1968 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1969     unsigned char* pov,
1970     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1971     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1972 {
1973   memcpy(pov, first_plt_entry, plt_entry_size);
1974   // We do a jmp relative to the PC at the end of this instruction.
1975   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1976 					      (got_address + 8
1977 					       - (plt_address + 6)));
1978   elfcpp::Swap<32, false>::writeval(pov + 8,
1979 				    (got_address + 16
1980 				     - (plt_address + 12)));
1981 }
1982 
1983 // Subsequent entries in the PLT for an executable.
1984 
1985 template<int size>
1986 const unsigned char
1987 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1988 {
1989   // From AMD64 ABI Draft 0.98, page 76
1990   0xff, 0x25,	// jmpq indirect
1991   0, 0, 0, 0,	// replaced with address of symbol in .got
1992   0x68,		// pushq immediate
1993   0, 0, 0, 0,	// replaced with offset into relocation table
1994   0xe9,		// jmpq relative
1995   0, 0, 0, 0	// replaced with offset to start of .plt
1996 };
1997 
1998 template<int size>
1999 unsigned int
2000 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
2001     unsigned char* pov,
2002     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2003     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2004     unsigned int got_offset,
2005     unsigned int plt_offset,
2006     unsigned int plt_index)
2007 {
2008   // Check PC-relative offset overflow in PLT entry.
2009   uint64_t plt_got_pcrel_offset = (got_address + got_offset
2010 				   - (plt_address + plt_offset + 6));
2011   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2012     gold_error(_("PC-relative offset overflow in PLT entry %d"),
2013 	       plt_index + 1);
2014 
2015   memcpy(pov, plt_entry, plt_entry_size);
2016   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2017 					      plt_got_pcrel_offset);
2018 
2019   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
2020   elfcpp::Swap<32, false>::writeval(pov + 12,
2021 				    - (plt_offset + plt_entry_size));
2022 
2023   return 6;
2024 }
2025 
2026 // The reserved TLSDESC entry in the PLT for an executable.
2027 
2028 template<int size>
2029 const unsigned char
2030 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
2031 {
2032   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2033   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2034   0xff, 0x35,	// pushq x(%rip)
2035   0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2036   0xff,	0x25,	// jmpq *y(%rip)
2037   0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
2038   0x0f,	0x1f,	// nop
2039   0x40, 0
2040 };
2041 
2042 template<int size>
2043 void
2044 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
2045     unsigned char* pov,
2046     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2047     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2048     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2049     unsigned int tlsdesc_got_offset,
2050     unsigned int plt_offset)
2051 {
2052   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2053   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2054 					      (got_address + 8
2055 					       - (plt_address + plt_offset
2056 						  + 6)));
2057   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
2058 					      (got_base
2059 					       + tlsdesc_got_offset
2060 					       - (plt_address + plt_offset
2061 						  + 12)));
2062 }
2063 
2064 // Return the APLT address to use for a global symbol (for -z bndplt).
2065 
2066 uint64_t
2067 Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
2068 {
2069   uint64_t offset = this->aplt_offset_;
2070   // Convert the PLT offset into an APLT offset.
2071   unsigned int plt_offset = gsym->plt_offset();
2072   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2073       && gsym->can_use_relative_reloc(false))
2074     offset += this->regular_count() * aplt_entry_size;
2075   else
2076     plt_offset -= plt_entry_size;
2077   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2078   return this->address() + offset + plt_offset;
2079 }
2080 
2081 // Return the PLT address to use for a local symbol.  These are always
2082 // IRELATIVE relocs.
2083 
2084 uint64_t
2085 Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
2086 						 unsigned int r_sym)
2087 {
2088   // Convert the PLT offset into an APLT offset.
2089   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
2090 			     / (plt_entry_size / aplt_entry_size));
2091   return (this->address()
2092 	  + this->aplt_offset_
2093 	  + this->regular_count() * aplt_entry_size
2094 	  + plt_offset);
2095 }
2096 
2097 // Set the final size.
2098 void
2099 Output_data_plt_x86_64_bnd::set_final_data_size()
2100 {
2101   // Number of regular and IFUNC PLT entries.
2102   unsigned int count = this->entry_count();
2103   // Count the first entry and the TLSDESC entry, if present.
2104   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2105   unsigned int plt_size = (count + extra) * plt_entry_size;
2106   // Offset of the APLT.
2107   this->aplt_offset_ = plt_size;
2108   // Size of the APLT.
2109   plt_size += count * aplt_entry_size;
2110   this->set_data_size(plt_size);
2111 }
2112 
2113 // The first entry in the BND PLT.
2114 
2115 const unsigned char
2116 Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
2117 {
2118   // From AMD64 ABI Draft 0.98, page 76
2119   0xff, 0x35,		// pushq contents of memory address
2120   0, 0, 0, 0,		// replaced with address of .got + 8
2121   0xf2, 0xff, 0x25,	// bnd jmp indirect
2122   0, 0, 0, 0,		// replaced with address of .got + 16
2123   0x0f, 0x1f, 0x00   	// nop
2124 };
2125 
2126 void
2127 Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
2128     unsigned char* pov,
2129     elfcpp::Elf_types<64>::Elf_Addr got_address,
2130     elfcpp::Elf_types<64>::Elf_Addr plt_address)
2131 {
2132   memcpy(pov, first_plt_entry, plt_entry_size);
2133   // We do a jmp relative to the PC at the end of this instruction.
2134   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2135 					      (got_address + 8
2136 					       - (plt_address + 6)));
2137   elfcpp::Swap<32, false>::writeval(pov + 9,
2138 				    (got_address + 16
2139 				     - (plt_address + 13)));
2140 }
2141 
2142 // Subsequent entries in the BND PLT.
2143 
2144 const unsigned char
2145 Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
2146 {
2147   // From AMD64 ABI Draft 0.99.8, page 139
2148   0x68,				// pushq immediate
2149   0, 0, 0, 0,			// replaced with offset into relocation table
2150   0xf2, 0xe9,			// bnd jmpq relative
2151   0, 0, 0, 0,			// replaced with offset to start of .plt
2152   0x0f, 0x1f, 0x44, 0, 0	// nop
2153 };
2154 
2155 // Entries in the BND Additional PLT.
2156 
2157 const unsigned char
2158 Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
2159 {
2160   // From AMD64 ABI Draft 0.99.8, page 139
2161   0xf2, 0xff, 0x25,	// bnd jmpq indirect
2162   0, 0, 0, 0,		// replaced with address of symbol in .got
2163   0x90,			// nop
2164 };
2165 
2166 unsigned int
2167 Output_data_plt_x86_64_bnd::do_fill_plt_entry(
2168     unsigned char* pov,
2169     elfcpp::Elf_types<64>::Elf_Addr,
2170     elfcpp::Elf_types<64>::Elf_Addr,
2171     unsigned int,
2172     unsigned int plt_offset,
2173     unsigned int plt_index)
2174 {
2175   memcpy(pov, plt_entry, plt_entry_size);
2176   elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
2177   elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
2178   return 0;
2179 }
2180 
2181 void
2182 Output_data_plt_x86_64_bnd::fill_aplt_entry(
2183     unsigned char* pov,
2184     elfcpp::Elf_types<64>::Elf_Addr got_address,
2185     elfcpp::Elf_types<64>::Elf_Addr plt_address,
2186     unsigned int got_offset,
2187     unsigned int plt_offset,
2188     unsigned int plt_index)
2189 {
2190   // Check PC-relative offset overflow in PLT entry.
2191   uint64_t plt_got_pcrel_offset = (got_address + got_offset
2192 				   - (plt_address + plt_offset + 7));
2193   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2194     gold_error(_("PC-relative offset overflow in APLT entry %d"),
2195 	       plt_index + 1);
2196 
2197   memcpy(pov, aplt_entry, aplt_entry_size);
2198   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
2199 }
2200 
2201 // The reserved TLSDESC entry in the PLT for an executable.
2202 
2203 const unsigned char
2204 Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
2205 {
2206   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2207   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2208   0xff, 0x35,		// pushq x(%rip)
2209   0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2210   0xf2, 0xff, 0x25,	// jmpq *y(%rip)
2211   0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
2212   0x0f,	0x1f, 0		// nop
2213 };
2214 
2215 void
2216 Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
2217     unsigned char* pov,
2218     elfcpp::Elf_types<64>::Elf_Addr got_address,
2219     elfcpp::Elf_types<64>::Elf_Addr plt_address,
2220     elfcpp::Elf_types<64>::Elf_Addr got_base,
2221     unsigned int tlsdesc_got_offset,
2222     unsigned int plt_offset)
2223 {
2224   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2225   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2226 					      (got_address + 8
2227 					       - (plt_address + plt_offset
2228 						  + 6)));
2229   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
2230 					      (got_base
2231 					       + tlsdesc_got_offset
2232 					       - (plt_address + plt_offset
2233 						  + 13)));
2234 }
2235 
2236 // Return the APLT address to use for a global symbol (for IBT).
2237 
2238 template<int size>
2239 uint64_t
2240 Output_data_plt_x86_64_ibt<size>::do_address_for_global(const Symbol* gsym)
2241 {
2242   uint64_t offset = this->aplt_offset_;
2243   // Convert the PLT offset into an APLT offset.
2244   unsigned int plt_offset = gsym->plt_offset();
2245   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2246       && gsym->can_use_relative_reloc(false))
2247     offset += this->regular_count() * aplt_entry_size;
2248   else
2249     plt_offset -= plt_entry_size;
2250   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
2251   return this->address() + offset + plt_offset;
2252 }
2253 
2254 // Return the PLT address to use for a local symbol.  These are always
2255 // IRELATIVE relocs.
2256 
2257 template<int size>
2258 uint64_t
2259 Output_data_plt_x86_64_ibt<size>::do_address_for_local(const Relobj* object,
2260 						 unsigned int r_sym)
2261 {
2262   // Convert the PLT offset into an APLT offset.
2263   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
2264 			     / (plt_entry_size / aplt_entry_size));
2265   return (this->address()
2266 	  + this->aplt_offset_
2267 	  + this->regular_count() * aplt_entry_size
2268 	  + plt_offset);
2269 }
2270 
2271 // Set the final size.
2272 
2273 template<int size>
2274 void
2275 Output_data_plt_x86_64_ibt<size>::set_final_data_size()
2276 {
2277   // Number of regular and IFUNC PLT entries.
2278   unsigned int count = this->entry_count();
2279   // Count the first entry and the TLSDESC entry, if present.
2280   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
2281   unsigned int plt_size = (count + extra) * plt_entry_size;
2282   // Offset of the APLT.
2283   this->aplt_offset_ = plt_size;
2284   // Size of the APLT.
2285   plt_size += count * aplt_entry_size;
2286   this->set_data_size(plt_size);
2287 }
2288 
2289 // The first entry in the IBT PLT.
2290 
2291 template<>
2292 const unsigned char
2293 Output_data_plt_x86_64_ibt<32>::first_plt_entry[plt_entry_size] =
2294 {
2295   // MPX isn't supported for x32, so we don't need the BND prefix.
2296   // From AMD64 ABI Draft 0.98, page 76
2297   0xff, 0x35,		 // pushq contents of memory address
2298   0, 0, 0, 0,		 // replaced with address of .got + 8
2299   0xff, 0x25,		 // jmp indirect
2300   0, 0, 0, 0,		 // replaced with address of .got + 16
2301   0x90, 0x90, 0x90, 0x90 // noop (x4)
2302 };
2303 
2304 template<>
2305 const unsigned char
2306 Output_data_plt_x86_64_ibt<64>::first_plt_entry[plt_entry_size] =
2307 {
2308   // Use the BND prefix so that IBT is compatible with MPX.
2309   0xff, 0x35,		// pushq contents of memory address
2310   0, 0, 0, 0,		// replaced with address of .got + 8
2311   0xf2, 0xff, 0x25,	// bnd jmp indirect
2312   0, 0, 0, 0,		// replaced with address of .got + 16
2313   0x0f, 0x1f, 0x00   	// nop
2314 };
2315 
2316 template<int size>
2317 void
2318 Output_data_plt_x86_64_ibt<size>::do_fill_first_plt_entry(
2319     unsigned char* pov,
2320     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2321     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
2322 {
2323   // Offsets to the addresses needing relocation.
2324   const unsigned int roff1 = 2;
2325   const unsigned int roff2 = (size == 32) ? 8 : 9;
2326 
2327   memcpy(pov, first_plt_entry, plt_entry_size);
2328   // We do a jmp relative to the PC at the end of this instruction.
2329   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1,
2330 					      (got_address + 8
2331 					       - (plt_address + roff1 + 4)));
2332   elfcpp::Swap<32, false>::writeval(pov + roff2,
2333 				    (got_address + 16
2334 				     - (plt_address + roff2 + 4)));
2335 }
2336 
2337 // Subsequent entries in the IBT PLT.
2338 
2339 template<>
2340 const unsigned char
2341 Output_data_plt_x86_64_ibt<32>::plt_entry[plt_entry_size] =
2342 {
2343   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2344   0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2345   0x68,				// pushq immediate
2346   0, 0, 0, 0,			// replaced with offset into relocation table
2347   0xe9,				// jmpq relative
2348   0, 0, 0, 0,			// replaced with offset to start of .plt
2349   0x90, 0x90			// nop
2350 };
2351 
2352 template<>
2353 const unsigned char
2354 Output_data_plt_x86_64_ibt<64>::plt_entry[plt_entry_size] =
2355 {
2356   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2357   0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2358   0x68,				// pushq immediate
2359   0, 0, 0, 0,			// replaced with offset into relocation table
2360   0xf2, 0xe9,			// bnd jmpq relative
2361   0, 0, 0, 0,			// replaced with offset to start of .plt
2362   0x90				// nop
2363 };
2364 
2365 // Entries in the IBT Additional PLT.
2366 
2367 template<>
2368 const unsigned char
2369 Output_data_plt_x86_64_ibt<32>::aplt_entry[aplt_entry_size] =
2370 {
2371   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2372   0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2373   0xff, 0x25,			// jmpq indirect
2374   0, 0, 0, 0,			// replaced with address of symbol in .got
2375   0x0f, 0x1f, 0x04, 0x00,	// nop
2376   0x90, 0x90			// nop
2377 };
2378 
2379 template<>
2380 const unsigned char
2381 Output_data_plt_x86_64_ibt<64>::aplt_entry[aplt_entry_size] =
2382 {
2383   // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
2384   0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
2385   0xf2, 0xff, 0x25,		// bnd jmpq indirect
2386   0, 0, 0, 0,			// replaced with address of symbol in .got
2387   0x0f, 0x1f, 0x04, 0x00,	// nop
2388   0x90,				// nop
2389 };
2390 
2391 template<int size>
2392 unsigned int
2393 Output_data_plt_x86_64_ibt<size>::do_fill_plt_entry(
2394     unsigned char* pov,
2395     typename elfcpp::Elf_types<size>::Elf_Addr,
2396     typename elfcpp::Elf_types<size>::Elf_Addr,
2397     unsigned int,
2398     unsigned int plt_offset,
2399     unsigned int plt_index)
2400 {
2401   // Offsets to the addresses needing relocation.
2402   const unsigned int roff1 = 5;
2403   const unsigned int roff2 = (size == 32) ? 10 : 11;
2404 
2405   memcpy(pov, plt_entry, plt_entry_size);
2406   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1, plt_index);
2407   elfcpp::Swap<32, false>::writeval(pov + roff2, -(plt_offset + roff2 + 4));
2408   return 0;
2409 }
2410 
2411 template<int size>
2412 void
2413 Output_data_plt_x86_64_ibt<size>::fill_aplt_entry(
2414     unsigned char* pov,
2415     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2416     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2417     unsigned int got_offset,
2418     unsigned int plt_offset,
2419     unsigned int plt_index)
2420 {
2421   // Offset to the address needing relocation.
2422   const unsigned int roff = (size == 32) ? 6 : 7;
2423 
2424   // Check PC-relative offset overflow in PLT entry.
2425   uint64_t plt_got_pcrel_offset = (got_address + got_offset
2426 				   - (plt_address + plt_offset + roff + 4));
2427   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
2428     gold_error(_("PC-relative offset overflow in APLT entry %d"),
2429 	       plt_index + 1);
2430 
2431   memcpy(pov, aplt_entry, aplt_entry_size);
2432   elfcpp::Swap_unaligned<32, false>::writeval(pov + roff, plt_got_pcrel_offset);
2433 }
2434 
2435 // The reserved TLSDESC entry in the IBT PLT for an executable.
2436 
2437 template<int size>
2438 const unsigned char
2439 Output_data_plt_x86_64_ibt<size>::tlsdesc_plt_entry[plt_entry_size] =
2440 {
2441   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
2442   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
2443   0xff, 0x35,		// pushq x(%rip)
2444   0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
2445   0xf2, 0xff, 0x25,	// jmpq *y(%rip)
2446   0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
2447   0x0f,	0x1f, 0		// nop
2448 };
2449 
2450 template<int size>
2451 void
2452 Output_data_plt_x86_64_ibt<size>::do_fill_tlsdesc_entry(
2453     unsigned char* pov,
2454     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
2455     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
2456     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
2457     unsigned int tlsdesc_got_offset,
2458     unsigned int plt_offset)
2459 {
2460   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
2461   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
2462 					      (got_address + 8
2463 					       - (plt_address + plt_offset
2464 						  + 6)));
2465   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
2466 					      (got_base
2467 					       + tlsdesc_got_offset
2468 					       - (plt_address + plt_offset
2469 						  + 13)));
2470 }
2471 
2472 // The .eh_frame unwind information for the PLT.
2473 
2474 template<int size>
2475 const unsigned char
2476 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
2477 {
2478   1,				// CIE version.
2479   'z',				// Augmentation: augmentation size included.
2480   'R',				// Augmentation: FDE encoding included.
2481   '\0',				// End of augmentation string.
2482   1,				// Code alignment factor.
2483   0x78,				// Data alignment factor.
2484   16,				// Return address column.
2485   1,				// Augmentation size.
2486   (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
2487    | elfcpp::DW_EH_PE_sdata4),
2488   elfcpp::DW_CFA_def_cfa, 7, 8,	// DW_CFA_def_cfa: r7 (rsp) ofs 8.
2489   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
2490   elfcpp::DW_CFA_nop,		// Align to 16 bytes.
2491   elfcpp::DW_CFA_nop
2492 };
2493 
2494 template<int size>
2495 const unsigned char
2496 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2497 {
2498   0, 0, 0, 0,				// Replaced with offset to .plt.
2499   0, 0, 0, 0,				// Replaced with size of .plt.
2500   0,					// Augmentation size.
2501   elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2502   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2503   elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2504   elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2505   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2506   11,					// Block length.
2507   elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2508   elfcpp::DW_OP_breg16, 0,		// Push %rip.
2509   elfcpp::DW_OP_lit15,			// Push 0xf.
2510   elfcpp::DW_OP_and,			// & (%rip & 0xf).
2511   elfcpp::DW_OP_lit11,			// Push 0xb.
2512   elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 0xb)
2513   elfcpp::DW_OP_lit3,			// Push 3.
2514   elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 0xb) << 3)
2515   elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
2516   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2517   elfcpp::DW_CFA_nop,
2518   elfcpp::DW_CFA_nop,
2519   elfcpp::DW_CFA_nop
2520 };
2521 
2522 // The .eh_frame unwind information for the BND PLT.
2523 const unsigned char
2524 Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2525 {
2526   0, 0, 0, 0,				// Replaced with offset to .plt.
2527   0, 0, 0, 0,				// Replaced with size of .plt.
2528   0,					// Augmentation size.
2529   elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2530   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2531   elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2532   elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2533   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2534   11,					// Block length.
2535   elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2536   elfcpp::DW_OP_breg16, 0,		// Push %rip.
2537   elfcpp::DW_OP_lit15,			// Push 0xf.
2538   elfcpp::DW_OP_and,			// & (%rip & 0xf).
2539   elfcpp::DW_OP_lit5,			// Push 5.
2540   elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 5)
2541   elfcpp::DW_OP_lit3,			// Push 3.
2542   elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 5) << 3)
2543   elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=5)<<3)+%rsp+8
2544   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2545   elfcpp::DW_CFA_nop,
2546   elfcpp::DW_CFA_nop,
2547   elfcpp::DW_CFA_nop
2548 };
2549 
2550 // The .eh_frame unwind information for the BND PLT.
2551 template<int size>
2552 const unsigned char
2553 Output_data_plt_x86_64_ibt<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2554 {
2555   0, 0, 0, 0,				// Replaced with offset to .plt.
2556   0, 0, 0, 0,				// Replaced with size of .plt.
2557   0,					// Augmentation size.
2558   elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
2559   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
2560   elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
2561   elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
2562   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
2563   11,					// Block length.
2564   elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
2565   elfcpp::DW_OP_breg16, 0,		// Push %rip.
2566   elfcpp::DW_OP_lit15,			// Push 0xf.
2567   elfcpp::DW_OP_and,			// & (%rip & 0xf).
2568   elfcpp::DW_OP_lit9,			// Push 9.
2569   elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 9)
2570   elfcpp::DW_OP_lit3,			// Push 3.
2571   elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 9) << 3)
2572   elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=9)<<3)+%rsp+8
2573   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
2574   elfcpp::DW_CFA_nop,
2575   elfcpp::DW_CFA_nop,
2576   elfcpp::DW_CFA_nop
2577 };
2578 
2579 // Write out the PLT.  This uses the hand-coded instructions above,
2580 // and adjusts them as needed.  This is specified by the AMD64 ABI.
2581 
2582 template<int size>
2583 void
2584 Output_data_plt_x86_64<size>::do_write(Output_file* of)
2585 {
2586   const off_t offset = this->offset();
2587   const section_size_type oview_size =
2588     convert_to_section_size_type(this->data_size());
2589   unsigned char* const oview = of->get_output_view(offset, oview_size);
2590 
2591   const off_t got_file_offset = this->got_plt_->offset();
2592   gold_assert(parameters->incremental_update()
2593 	      || (got_file_offset + this->got_plt_->data_size()
2594 		  == this->got_irelative_->offset()));
2595   const section_size_type got_size =
2596     convert_to_section_size_type(this->got_plt_->data_size()
2597 				 + this->got_irelative_->data_size());
2598   unsigned char* const got_view = of->get_output_view(got_file_offset,
2599 						      got_size);
2600 
2601   unsigned char* pov = oview;
2602 
2603   // The base address of the .plt section.
2604   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2605   // The base address of the .got section.
2606   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
2607   // The base address of the PLT portion of the .got section,
2608   // which is where the GOT pointer will point, and where the
2609   // three reserved GOT entries are located.
2610   typename elfcpp::Elf_types<size>::Elf_Addr got_address
2611     = this->got_plt_->address();
2612 
2613   this->fill_first_plt_entry(pov, got_address, plt_address);
2614   pov += this->get_plt_entry_size();
2615 
2616   // The first three entries in the GOT are reserved, and are written
2617   // by Output_data_got_plt_x86_64::do_write.
2618   unsigned char* got_pov = got_view + 24;
2619 
2620   unsigned int plt_offset = this->get_plt_entry_size();
2621   unsigned int got_offset = 24;
2622   const unsigned int count = this->count_ + this->irelative_count_;
2623   for (unsigned int plt_index = 0;
2624        plt_index < count;
2625        ++plt_index,
2626 	 pov += this->get_plt_entry_size(),
2627 	 got_pov += 8,
2628 	 plt_offset += this->get_plt_entry_size(),
2629 	 got_offset += 8)
2630     {
2631       // Set and adjust the PLT entry itself.
2632       unsigned int lazy_offset = this->fill_plt_entry(pov,
2633 						      got_address, plt_address,
2634 						      got_offset, plt_offset,
2635 						      plt_index);
2636 
2637       // Set the entry in the GOT.
2638       elfcpp::Swap<64, false>::writeval(got_pov,
2639 					plt_address + plt_offset + lazy_offset);
2640     }
2641 
2642   if (this->has_tlsdesc_entry())
2643     {
2644       // Set and adjust the reserved TLSDESC PLT entry.
2645       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2646       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2647 			       tlsdesc_got_offset, plt_offset);
2648       pov += this->get_plt_entry_size();
2649     }
2650 
2651   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2652   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2653 
2654   of->write_output_view(offset, oview_size, oview);
2655   of->write_output_view(got_file_offset, got_size, got_view);
2656 }
2657 
2658 // Write out the BND PLT.
2659 
2660 void
2661 Output_data_plt_x86_64_bnd::do_write(Output_file* of)
2662 {
2663   const off_t offset = this->offset();
2664   const section_size_type oview_size =
2665     convert_to_section_size_type(this->data_size());
2666   unsigned char* const oview = of->get_output_view(offset, oview_size);
2667 
2668   Output_data_got<64, false>* got = this->got();
2669   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2670   Output_data_space* got_irelative = this->got_irelative();
2671 
2672   const off_t got_file_offset = got_plt->offset();
2673   gold_assert(parameters->incremental_update()
2674 	      || (got_file_offset + got_plt->data_size()
2675 		  == got_irelative->offset()));
2676   const section_size_type got_size =
2677     convert_to_section_size_type(got_plt->data_size()
2678 				 + got_irelative->data_size());
2679   unsigned char* const got_view = of->get_output_view(got_file_offset,
2680 						      got_size);
2681 
2682   unsigned char* pov = oview;
2683 
2684   // The base address of the .plt section.
2685   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2686   // The base address of the .got section.
2687   elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2688   // The base address of the PLT portion of the .got section,
2689   // which is where the GOT pointer will point, and where the
2690   // three reserved GOT entries are located.
2691   elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2692 
2693   this->fill_first_plt_entry(pov, got_address, plt_address);
2694   pov += plt_entry_size;
2695 
2696   // The first three entries in the GOT are reserved, and are written
2697   // by Output_data_got_plt_x86_64::do_write.
2698   unsigned char* got_pov = got_view + 24;
2699 
2700   unsigned int plt_offset = plt_entry_size;
2701   unsigned int got_offset = 24;
2702   const unsigned int count = this->entry_count();
2703   for (unsigned int plt_index = 0;
2704        plt_index < count;
2705        ++plt_index,
2706 	 pov += plt_entry_size,
2707 	 got_pov += 8,
2708 	 plt_offset += plt_entry_size,
2709 	 got_offset += 8)
2710     {
2711       // Set and adjust the PLT entry itself.
2712       unsigned int lazy_offset = this->fill_plt_entry(pov,
2713 						      got_address, plt_address,
2714 						      got_offset, plt_offset,
2715 						      plt_index);
2716 
2717       // Set the entry in the GOT.
2718       elfcpp::Swap<64, false>::writeval(got_pov,
2719 					plt_address + plt_offset + lazy_offset);
2720     }
2721 
2722   if (this->has_tlsdesc_entry())
2723     {
2724       // Set and adjust the reserved TLSDESC PLT entry.
2725       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2726       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2727 			       tlsdesc_got_offset, plt_offset);
2728       pov += this->get_plt_entry_size();
2729     }
2730 
2731   // Write the additional PLT.
2732   got_offset = 24;
2733   for (unsigned int plt_index = 0;
2734        plt_index < count;
2735        ++plt_index,
2736 	 pov += aplt_entry_size,
2737 	 plt_offset += aplt_entry_size,
2738 	 got_offset += 8)
2739     {
2740       // Set and adjust the APLT entry.
2741       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2742 			    plt_offset, plt_index);
2743     }
2744 
2745   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2746   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2747 
2748   of->write_output_view(offset, oview_size, oview);
2749   of->write_output_view(got_file_offset, got_size, got_view);
2750 }
2751 
2752 // Write out the IBT PLT.
2753 
2754 template<int size>
2755 void
2756 Output_data_plt_x86_64_ibt<size>::do_write(Output_file* of)
2757 {
2758   const off_t offset = this->offset();
2759   const section_size_type oview_size =
2760     convert_to_section_size_type(this->data_size());
2761   unsigned char* const oview = of->get_output_view(offset, oview_size);
2762 
2763   Output_data_got<64, false>* got = this->got();
2764   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2765   Output_data_space* got_irelative = this->got_irelative();
2766 
2767   const off_t got_file_offset = got_plt->offset();
2768   gold_assert(parameters->incremental_update()
2769 	      || (got_file_offset + got_plt->data_size()
2770 		  == got_irelative->offset()));
2771   const section_size_type got_size =
2772     convert_to_section_size_type(got_plt->data_size()
2773 				 + got_irelative->data_size());
2774   unsigned char* const got_view = of->get_output_view(got_file_offset,
2775 						      got_size);
2776 
2777   unsigned char* pov = oview;
2778 
2779   // The base address of the .plt section.
2780   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2781   // The base address of the .got section.
2782   elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2783   // The base address of the PLT portion of the .got section,
2784   // which is where the GOT pointer will point, and where the
2785   // three reserved GOT entries are located.
2786   elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2787 
2788   this->fill_first_plt_entry(pov, got_address, plt_address);
2789   pov += plt_entry_size;
2790 
2791   // The first three entries in the GOT are reserved, and are written
2792   // by Output_data_got_plt_x86_64::do_write.
2793   unsigned char* got_pov = got_view + 24;
2794 
2795   unsigned int plt_offset = plt_entry_size;
2796   unsigned int got_offset = 24;
2797   const unsigned int count = this->entry_count();
2798   for (unsigned int plt_index = 0;
2799        plt_index < count;
2800        ++plt_index,
2801 	 pov += plt_entry_size,
2802 	 got_pov += 8,
2803 	 plt_offset += plt_entry_size,
2804 	 got_offset += 8)
2805     {
2806       // Set and adjust the PLT entry itself.
2807       unsigned int lazy_offset = this->fill_plt_entry(pov,
2808 						      got_address, plt_address,
2809 						      got_offset, plt_offset,
2810 						      plt_index);
2811 
2812       // Set the entry in the GOT.
2813       elfcpp::Swap<64, false>::writeval(got_pov,
2814 					plt_address + plt_offset + lazy_offset);
2815     }
2816 
2817   if (this->has_tlsdesc_entry())
2818     {
2819       // Set and adjust the reserved TLSDESC PLT entry.
2820       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2821       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2822 			       tlsdesc_got_offset, plt_offset);
2823       pov += this->get_plt_entry_size();
2824     }
2825 
2826   // Write the additional PLT.
2827   got_offset = 24;
2828   for (unsigned int plt_index = 0;
2829        plt_index < count;
2830        ++plt_index,
2831 	 pov += aplt_entry_size,
2832 	 plt_offset += aplt_entry_size,
2833 	 got_offset += 8)
2834     {
2835       // Set and adjust the APLT entry.
2836       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2837 			    plt_offset, plt_index);
2838     }
2839 
2840   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2841   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2842 
2843   of->write_output_view(offset, oview_size, oview);
2844   of->write_output_view(got_file_offset, got_size, got_view);
2845 }
2846 
2847 // Create the PLT section.
2848 
2849 template<int size>
2850 void
2851 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
2852 {
2853   if (this->plt_ == NULL)
2854     {
2855       // Create the GOT sections first.
2856       this->got_section(symtab, layout);
2857 
2858       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
2859 				       this->got_irelative_);
2860 
2861       // Add unwind information if requested.
2862       if (parameters->options().ld_generated_unwind_info())
2863 	this->plt_->add_eh_frame(layout);
2864 
2865       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2866 				      (elfcpp::SHF_ALLOC
2867 				       | elfcpp::SHF_EXECINSTR),
2868 				      this->plt_, ORDER_PLT, false);
2869 
2870       // Make the sh_info field of .rela.plt point to .plt.
2871       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2872       rela_plt_os->set_info_section(this->plt_->output_section());
2873     }
2874 }
2875 
2876 template<>
2877 Output_data_plt_x86_64<32>*
2878 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2879 				    Output_data_got<64, false>* got,
2880 				    Output_data_got_plt_x86_64* got_plt,
2881 				    Output_data_space* got_irelative)
2882 {
2883   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2884     return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2885 					      got_irelative);
2886   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2887 						 got_irelative);
2888 }
2889 
2890 template<>
2891 Output_data_plt_x86_64<64>*
2892 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2893 				    Output_data_got<64, false>* got,
2894 				    Output_data_got_plt_x86_64* got_plt,
2895 				    Output_data_space* got_irelative)
2896 {
2897   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2898     return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2899 					      got_irelative);
2900   else if (parameters->options().bndplt())
2901     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2902 					  got_irelative);
2903   else
2904     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2905 						   got_irelative);
2906 }
2907 
2908 template<>
2909 Output_data_plt_x86_64<32>*
2910 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2911 				    Output_data_got<64, false>* got,
2912 				    Output_data_got_plt_x86_64* got_plt,
2913 				    Output_data_space* got_irelative,
2914 				    unsigned int plt_count)
2915 {
2916   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2917     return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
2918 					      got_irelative, plt_count);
2919   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2920 						 got_irelative, plt_count);
2921 }
2922 
2923 template<>
2924 Output_data_plt_x86_64<64>*
2925 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2926 				    Output_data_got<64, false>* got,
2927 				    Output_data_got_plt_x86_64* got_plt,
2928 				    Output_data_space* got_irelative,
2929 				    unsigned int plt_count)
2930 {
2931   if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
2932     return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
2933 					      got_irelative, plt_count);
2934   else if (parameters->options().bndplt())
2935     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2936 					  got_irelative, plt_count);
2937   else
2938     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2939 						   got_irelative,
2940 						   plt_count);
2941 }
2942 
2943 // Return the section for TLSDESC relocations.
2944 
2945 template<int size>
2946 typename Target_x86_64<size>::Reloc_section*
2947 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
2948 {
2949   return this->plt_section()->rela_tlsdesc(layout);
2950 }
2951 
2952 // Create a PLT entry for a global symbol.
2953 
2954 template<int size>
2955 void
2956 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
2957 				    Symbol* gsym)
2958 {
2959   if (gsym->has_plt_offset())
2960     return;
2961 
2962   if (this->plt_ == NULL)
2963     this->make_plt_section(symtab, layout);
2964 
2965   this->plt_->add_entry(symtab, layout, gsym);
2966 }
2967 
2968 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2969 
2970 template<int size>
2971 void
2972 Target_x86_64<size>::make_local_ifunc_plt_entry(
2973     Symbol_table* symtab, Layout* layout,
2974     Sized_relobj_file<size, false>* relobj,
2975     unsigned int local_sym_index)
2976 {
2977   if (relobj->local_has_plt_offset(local_sym_index))
2978     return;
2979   if (this->plt_ == NULL)
2980     this->make_plt_section(symtab, layout);
2981   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2982 							      relobj,
2983 							      local_sym_index);
2984   relobj->set_local_plt_offset(local_sym_index, plt_offset);
2985 }
2986 
2987 // Return the number of entries in the PLT.
2988 
2989 template<int size>
2990 unsigned int
2991 Target_x86_64<size>::plt_entry_count() const
2992 {
2993   if (this->plt_ == NULL)
2994     return 0;
2995   return this->plt_->entry_count();
2996 }
2997 
2998 // Return the offset of the first non-reserved PLT entry.
2999 
3000 template<int size>
3001 unsigned int
3002 Target_x86_64<size>::first_plt_entry_offset() const
3003 {
3004   if (this->plt_ == NULL)
3005     return 0;
3006   return this->plt_->first_plt_entry_offset();
3007 }
3008 
3009 // Return the size of each PLT entry.
3010 
3011 template<int size>
3012 unsigned int
3013 Target_x86_64<size>::plt_entry_size() const
3014 {
3015   if (this->plt_ == NULL)
3016     return 0;
3017   return this->plt_->get_plt_entry_size();
3018 }
3019 
3020 // Create the GOT and PLT sections for an incremental update.
3021 
3022 template<int size>
3023 Output_data_got_base*
3024 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
3025 				       Layout* layout,
3026 				       unsigned int got_count,
3027 				       unsigned int plt_count)
3028 {
3029   gold_assert(this->got_ == NULL);
3030 
3031   this->got_ = new Output_data_got<64, false>(got_count * 8);
3032   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3033 				  (elfcpp::SHF_ALLOC
3034 				   | elfcpp::SHF_WRITE),
3035 				  this->got_, ORDER_RELRO_LAST,
3036 				  true);
3037 
3038   // Add the three reserved entries.
3039   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
3040   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3041 				  (elfcpp::SHF_ALLOC
3042 				   | elfcpp::SHF_WRITE),
3043 				  this->got_plt_, ORDER_NON_RELRO_FIRST,
3044 				  false);
3045 
3046   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3047   this->global_offset_table_ =
3048     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3049 				  Symbol_table::PREDEFINED,
3050 				  this->got_plt_,
3051 				  0, 0, elfcpp::STT_OBJECT,
3052 				  elfcpp::STB_LOCAL,
3053 				  elfcpp::STV_HIDDEN, 0,
3054 				  false, false);
3055 
3056   // If there are any TLSDESC relocations, they get GOT entries in
3057   // .got.plt after the jump slot entries.
3058   // FIXME: Get the count for TLSDESC entries.
3059   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
3060   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3061 				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3062 				  this->got_tlsdesc_,
3063 				  ORDER_NON_RELRO_FIRST, false);
3064 
3065   // If there are any IRELATIVE relocations, they get GOT entries in
3066   // .got.plt after the jump slot and TLSDESC entries.
3067   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
3068   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3069 				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3070 				  this->got_irelative_,
3071 				  ORDER_NON_RELRO_FIRST, false);
3072 
3073   // Create the PLT section.
3074   this->plt_ = this->make_data_plt(layout, this->got_,
3075 				   this->got_plt_,
3076 				   this->got_irelative_,
3077 				   plt_count);
3078 
3079   // Add unwind information if requested.
3080   if (parameters->options().ld_generated_unwind_info())
3081     this->plt_->add_eh_frame(layout);
3082 
3083   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
3084 				  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
3085 				  this->plt_, ORDER_PLT, false);
3086 
3087   // Make the sh_info field of .rela.plt point to .plt.
3088   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
3089   rela_plt_os->set_info_section(this->plt_->output_section());
3090 
3091   // Create the rela_dyn section.
3092   this->rela_dyn_section(layout);
3093 
3094   return this->got_;
3095 }
3096 
3097 // Reserve a GOT entry for a local symbol, and regenerate any
3098 // necessary dynamic relocations.
3099 
3100 template<int size>
3101 void
3102 Target_x86_64<size>::reserve_local_got_entry(
3103     unsigned int got_index,
3104     Sized_relobj<size, false>* obj,
3105     unsigned int r_sym,
3106     unsigned int got_type)
3107 {
3108   unsigned int got_offset = got_index * 8;
3109   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3110 
3111   this->got_->reserve_local(got_index, obj, r_sym, got_type);
3112   switch (got_type)
3113     {
3114     case GOT_TYPE_STANDARD:
3115       if (parameters->options().output_is_position_independent())
3116 	rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
3117 				     this->got_, got_offset, 0, false);
3118       break;
3119     case GOT_TYPE_TLS_OFFSET:
3120       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
3121 			  this->got_, got_offset, 0);
3122       break;
3123     case GOT_TYPE_TLS_PAIR:
3124       this->got_->reserve_slot(got_index + 1);
3125       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
3126 			  this->got_, got_offset, 0);
3127       break;
3128     case GOT_TYPE_TLS_DESC:
3129       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
3130       // this->got_->reserve_slot(got_index + 1);
3131       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3132       //			       this->got_, got_offset, 0);
3133       break;
3134     default:
3135       gold_unreachable();
3136     }
3137 }
3138 
3139 // Reserve a GOT entry for a global symbol, and regenerate any
3140 // necessary dynamic relocations.
3141 
3142 template<int size>
3143 void
3144 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
3145 					      Symbol* gsym,
3146 					      unsigned int got_type)
3147 {
3148   unsigned int got_offset = got_index * 8;
3149   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
3150 
3151   this->got_->reserve_global(got_index, gsym, got_type);
3152   switch (got_type)
3153     {
3154     case GOT_TYPE_STANDARD:
3155       if (!gsym->final_value_is_known())
3156 	{
3157 	  if (gsym->is_from_dynobj()
3158 	      || gsym->is_undefined()
3159 	      || gsym->is_preemptible()
3160 	      || gsym->type() == elfcpp::STT_GNU_IFUNC)
3161 	    rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
3162 				 this->got_, got_offset, 0);
3163 	  else
3164 	    rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
3165 					  this->got_, got_offset, 0, false);
3166 	}
3167       break;
3168     case GOT_TYPE_TLS_OFFSET:
3169       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
3170 				    this->got_, got_offset, 0, false);
3171       break;
3172     case GOT_TYPE_TLS_PAIR:
3173       this->got_->reserve_slot(got_index + 1);
3174       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
3175 				    this->got_, got_offset, 0, false);
3176       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
3177 				    this->got_, got_offset + 8, 0, false);
3178       break;
3179     case GOT_TYPE_TLS_DESC:
3180       this->got_->reserve_slot(got_index + 1);
3181       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
3182 				    this->got_, got_offset, 0, false);
3183       break;
3184     default:
3185       gold_unreachable();
3186     }
3187 }
3188 
3189 // Register an existing PLT entry for a global symbol.
3190 
3191 template<int size>
3192 void
3193 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
3194 					       Layout* layout,
3195 					       unsigned int plt_index,
3196 					       Symbol* gsym)
3197 {
3198   gold_assert(this->plt_ != NULL);
3199   gold_assert(!gsym->has_plt_offset());
3200 
3201   this->plt_->reserve_slot(plt_index);
3202 
3203   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
3204 
3205   unsigned int got_offset = (plt_index + 3) * 8;
3206   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
3207 }
3208 
3209 // Force a COPY relocation for a given symbol.
3210 
3211 template<int size>
3212 void
3213 Target_x86_64<size>::emit_copy_reloc(
3214     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
3215 {
3216   this->copy_relocs_.emit_copy_reloc(symtab,
3217 				     symtab->get_sized_symbol<size>(sym),
3218 				     os,
3219 				     offset,
3220 				     this->rela_dyn_section(NULL));
3221 }
3222 
3223 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3224 
3225 template<int size>
3226 void
3227 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
3228 					    Layout* layout)
3229 {
3230   if (this->tls_base_symbol_defined_)
3231     return;
3232 
3233   Output_segment* tls_segment = layout->tls_segment();
3234   if (tls_segment != NULL)
3235     {
3236       bool is_exec = parameters->options().output_is_executable();
3237       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
3238 				       Symbol_table::PREDEFINED,
3239 				       tls_segment, 0, 0,
3240 				       elfcpp::STT_TLS,
3241 				       elfcpp::STB_LOCAL,
3242 				       elfcpp::STV_HIDDEN, 0,
3243 				       (is_exec
3244 					? Symbol::SEGMENT_END
3245 					: Symbol::SEGMENT_START),
3246 				       true);
3247     }
3248   this->tls_base_symbol_defined_ = true;
3249 }
3250 
3251 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3252 
3253 template<int size>
3254 void
3255 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
3256 					     Layout* layout)
3257 {
3258   if (this->plt_ == NULL)
3259     this->make_plt_section(symtab, layout);
3260 
3261   if (!this->plt_->has_tlsdesc_entry())
3262     {
3263       // Allocate the TLSDESC_GOT entry.
3264       Output_data_got<64, false>* got = this->got_section(symtab, layout);
3265       unsigned int got_offset = got->add_constant(0);
3266 
3267       // Allocate the TLSDESC_PLT entry.
3268       this->plt_->reserve_tlsdesc_entry(got_offset);
3269     }
3270 }
3271 
3272 // Create a GOT entry for the TLS module index.
3273 
3274 template<int size>
3275 unsigned int
3276 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3277 					 Sized_relobj_file<size, false>* object)
3278 {
3279   if (this->got_mod_index_offset_ == -1U)
3280     {
3281       gold_assert(symtab != NULL && layout != NULL && object != NULL);
3282       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
3283       Output_data_got<64, false>* got = this->got_section(symtab, layout);
3284       unsigned int got_offset = got->add_constant(0);
3285       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
3286 			  got_offset, 0);
3287       got->add_constant(0);
3288       this->got_mod_index_offset_ = got_offset;
3289     }
3290   return this->got_mod_index_offset_;
3291 }
3292 
3293 // Optimize the TLS relocation type based on what we know about the
3294 // symbol.  IS_FINAL is true if the final address of this symbol is
3295 // known at link time.
3296 
3297 template<int size>
3298 tls::Tls_optimization
3299 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
3300 {
3301   // If we are generating a shared library, then we can't do anything
3302   // in the linker.
3303   if (parameters->options().shared())
3304     return tls::TLSOPT_NONE;
3305 
3306   switch (r_type)
3307     {
3308     case elfcpp::R_X86_64_TLSGD:
3309     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3310     case elfcpp::R_X86_64_TLSDESC_CALL:
3311       // These are General-Dynamic which permits fully general TLS
3312       // access.  Since we know that we are generating an executable,
3313       // we can convert this to Initial-Exec.  If we also know that
3314       // this is a local symbol, we can further switch to Local-Exec.
3315       if (is_final)
3316 	return tls::TLSOPT_TO_LE;
3317       return tls::TLSOPT_TO_IE;
3318 
3319     case elfcpp::R_X86_64_TLSLD:
3320       // This is Local-Dynamic, which refers to a local symbol in the
3321       // dynamic TLS block.  Since we know that we generating an
3322       // executable, we can switch to Local-Exec.
3323       return tls::TLSOPT_TO_LE;
3324 
3325     case elfcpp::R_X86_64_DTPOFF32:
3326     case elfcpp::R_X86_64_DTPOFF64:
3327       // Another Local-Dynamic reloc.
3328       return tls::TLSOPT_TO_LE;
3329 
3330     case elfcpp::R_X86_64_GOTTPOFF:
3331       // These are Initial-Exec relocs which get the thread offset
3332       // from the GOT.  If we know that we are linking against the
3333       // local symbol, we can switch to Local-Exec, which links the
3334       // thread offset into the instruction.
3335       if (is_final)
3336 	return tls::TLSOPT_TO_LE;
3337       return tls::TLSOPT_NONE;
3338 
3339     case elfcpp::R_X86_64_TPOFF32:
3340       // When we already have Local-Exec, there is nothing further we
3341       // can do.
3342       return tls::TLSOPT_NONE;
3343 
3344     default:
3345       gold_unreachable();
3346     }
3347 }
3348 
3349 // Get the Reference_flags for a particular relocation.
3350 
3351 template<int size>
3352 int
3353 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
3354 {
3355   switch (r_type)
3356     {
3357     case elfcpp::R_X86_64_NONE:
3358     case elfcpp::R_X86_64_GNU_VTINHERIT:
3359     case elfcpp::R_X86_64_GNU_VTENTRY:
3360     case elfcpp::R_X86_64_GOTPC32:
3361     case elfcpp::R_X86_64_GOTPC64:
3362       // No symbol reference.
3363       return 0;
3364 
3365     case elfcpp::R_X86_64_64:
3366     case elfcpp::R_X86_64_32:
3367     case elfcpp::R_X86_64_32S:
3368     case elfcpp::R_X86_64_16:
3369     case elfcpp::R_X86_64_8:
3370       return Symbol::ABSOLUTE_REF;
3371 
3372     case elfcpp::R_X86_64_PC64:
3373     case elfcpp::R_X86_64_PC32:
3374     case elfcpp::R_X86_64_PC32_BND:
3375     case elfcpp::R_X86_64_PC16:
3376     case elfcpp::R_X86_64_PC8:
3377     case elfcpp::R_X86_64_GOTOFF64:
3378       return Symbol::RELATIVE_REF;
3379 
3380     case elfcpp::R_X86_64_PLT32:
3381     case elfcpp::R_X86_64_PLT32_BND:
3382     case elfcpp::R_X86_64_PLTOFF64:
3383       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3384 
3385     case elfcpp::R_X86_64_GOT64:
3386     case elfcpp::R_X86_64_GOT32:
3387     case elfcpp::R_X86_64_GOTPCREL64:
3388     case elfcpp::R_X86_64_GOTPCREL:
3389     case elfcpp::R_X86_64_GOTPCRELX:
3390     case elfcpp::R_X86_64_REX_GOTPCRELX:
3391     case elfcpp::R_X86_64_GOTPLT64:
3392       // Absolute in GOT.
3393       return Symbol::ABSOLUTE_REF;
3394 
3395     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3396     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3397     case elfcpp::R_X86_64_TLSDESC_CALL:
3398     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3399     case elfcpp::R_X86_64_DTPOFF32:
3400     case elfcpp::R_X86_64_DTPOFF64:
3401     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3402     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3403       return Symbol::TLS_REF;
3404 
3405     case elfcpp::R_X86_64_COPY:
3406     case elfcpp::R_X86_64_GLOB_DAT:
3407     case elfcpp::R_X86_64_JUMP_SLOT:
3408     case elfcpp::R_X86_64_RELATIVE:
3409     case elfcpp::R_X86_64_IRELATIVE:
3410     case elfcpp::R_X86_64_TPOFF64:
3411     case elfcpp::R_X86_64_DTPMOD64:
3412     case elfcpp::R_X86_64_TLSDESC:
3413     case elfcpp::R_X86_64_SIZE32:
3414     case elfcpp::R_X86_64_SIZE64:
3415     default:
3416       // Not expected.  We will give an error later.
3417       return 0;
3418     }
3419 }
3420 
3421 // Report an unsupported relocation against a local symbol.
3422 
3423 template<int size>
3424 void
3425 Target_x86_64<size>::Scan::unsupported_reloc_local(
3426      Sized_relobj_file<size, false>* object,
3427      unsigned int r_type)
3428 {
3429   gold_error(_("%s: unsupported reloc %u against local symbol"),
3430 	     object->name().c_str(), r_type);
3431 }
3432 
3433 // We are about to emit a dynamic relocation of type R_TYPE.  If the
3434 // dynamic linker does not support it, issue an error.  The GNU linker
3435 // only issues a non-PIC error for an allocated read-only section.
3436 // Here we know the section is allocated, but we don't know that it is
3437 // read-only.  But we check for all the relocation types which the
3438 // glibc dynamic linker supports, so it seems appropriate to issue an
3439 // error even if the section is not read-only.  If GSYM is not NULL,
3440 // it is the symbol the relocation is against; if it is NULL, the
3441 // relocation is against a local symbol.
3442 
3443 template<int size>
3444 void
3445 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
3446 					 Symbol* gsym)
3447 {
3448   switch (r_type)
3449     {
3450       // These are the relocation types supported by glibc for x86_64
3451       // which should always work.
3452     case elfcpp::R_X86_64_RELATIVE:
3453     case elfcpp::R_X86_64_IRELATIVE:
3454     case elfcpp::R_X86_64_GLOB_DAT:
3455     case elfcpp::R_X86_64_JUMP_SLOT:
3456     case elfcpp::R_X86_64_DTPMOD64:
3457     case elfcpp::R_X86_64_DTPOFF64:
3458     case elfcpp::R_X86_64_TPOFF64:
3459     case elfcpp::R_X86_64_64:
3460     case elfcpp::R_X86_64_COPY:
3461       return;
3462 
3463       // glibc supports these reloc types, but they can overflow.
3464     case elfcpp::R_X86_64_PC32:
3465     case elfcpp::R_X86_64_PC32_BND:
3466       // A PC relative reference is OK against a local symbol or if
3467       // the symbol is defined locally.
3468       if (gsym == NULL
3469 	  || (!gsym->is_from_dynobj()
3470 	      && !gsym->is_undefined()
3471 	      && !gsym->is_preemptible()))
3472 	return;
3473       // Fall through.
3474     case elfcpp::R_X86_64_32:
3475       // R_X86_64_32 is OK for x32.
3476       if (size == 32 && r_type == elfcpp::R_X86_64_32)
3477 	return;
3478       if (this->issued_non_pic_error_)
3479 	return;
3480       gold_assert(parameters->options().output_is_position_independent());
3481       if (gsym == NULL)
3482 	object->error(_("requires dynamic R_X86_64_32 reloc which may "
3483 			"overflow at runtime; recompile with -fPIC"));
3484       else
3485 	{
3486 	  const char *r_name;
3487 	  switch (r_type)
3488 	    {
3489 	    case elfcpp::R_X86_64_32:
3490 	      r_name = "R_X86_64_32";
3491 	      break;
3492 	    case elfcpp::R_X86_64_PC32:
3493 	      r_name = "R_X86_64_PC32";
3494 	      break;
3495 	    case elfcpp::R_X86_64_PC32_BND:
3496 	      r_name = "R_X86_64_PC32_BND";
3497 	      break;
3498 	    default:
3499 	      gold_unreachable();
3500 	      break;
3501 	    }
3502 	  object->error(_("requires dynamic %s reloc against '%s' "
3503 			  "which may overflow at runtime; recompile "
3504 			  "with -fPIC"),
3505 			r_name, gsym->name());
3506 	}
3507       this->issued_non_pic_error_ = true;
3508       return;
3509 
3510     default:
3511       // This prevents us from issuing more than one error per reloc
3512       // section.  But we can still wind up issuing more than one
3513       // error per object file.
3514       if (this->issued_non_pic_error_)
3515 	return;
3516       gold_assert(parameters->options().output_is_position_independent());
3517       object->error(_("requires unsupported dynamic reloc %u; "
3518 		      "recompile with -fPIC"),
3519 		    r_type);
3520       this->issued_non_pic_error_ = true;
3521       return;
3522 
3523     case elfcpp::R_X86_64_NONE:
3524       gold_unreachable();
3525     }
3526 }
3527 
3528 // Return whether we need to make a PLT entry for a relocation of the
3529 // given type against a STT_GNU_IFUNC symbol.
3530 
3531 template<int size>
3532 bool
3533 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
3534      Sized_relobj_file<size, false>* object,
3535      unsigned int r_type)
3536 {
3537   int flags = Scan::get_reference_flags(r_type);
3538   if (flags & Symbol::TLS_REF)
3539     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3540 	       object->name().c_str(), r_type);
3541   return flags != 0;
3542 }
3543 
3544 // Scan a relocation for a local symbol.
3545 
3546 template<int size>
3547 inline void
3548 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
3549 				 Layout* layout,
3550 				 Target_x86_64<size>* target,
3551 				 Sized_relobj_file<size, false>* object,
3552 				 unsigned int data_shndx,
3553 				 Output_section* output_section,
3554 				 const elfcpp::Rela<size, false>& reloc,
3555 				 unsigned int r_type,
3556 				 const elfcpp::Sym<size, false>& lsym,
3557 				 bool is_discarded)
3558 {
3559   if (is_discarded)
3560     return;
3561 
3562   // A local STT_GNU_IFUNC symbol may require a PLT entry.
3563   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3564   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3565     {
3566       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3567       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3568     }
3569 
3570   switch (r_type)
3571     {
3572     case elfcpp::R_X86_64_NONE:
3573     case elfcpp::R_X86_64_GNU_VTINHERIT:
3574     case elfcpp::R_X86_64_GNU_VTENTRY:
3575       break;
3576 
3577     case elfcpp::R_X86_64_64:
3578       // If building a shared library (or a position-independent
3579       // executable), we need to create a dynamic relocation for this
3580       // location.  The relocation applied at link time will apply the
3581       // link-time value, so we flag the location with an
3582       // R_X86_64_RELATIVE relocation so the dynamic loader can
3583       // relocate it easily.
3584       if (parameters->options().output_is_position_independent())
3585 	{
3586 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3587 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3588 	  rela_dyn->add_local_relative(object, r_sym,
3589 				       (size == 32
3590 					? elfcpp::R_X86_64_RELATIVE64
3591 					: elfcpp::R_X86_64_RELATIVE),
3592 				       output_section, data_shndx,
3593 				       reloc.get_r_offset(),
3594 				       reloc.get_r_addend(), is_ifunc);
3595 	}
3596       break;
3597 
3598     case elfcpp::R_X86_64_32:
3599     case elfcpp::R_X86_64_32S:
3600     case elfcpp::R_X86_64_16:
3601     case elfcpp::R_X86_64_8:
3602       // If building a shared library (or a position-independent
3603       // executable), we need to create a dynamic relocation for this
3604       // location.  We can't use an R_X86_64_RELATIVE relocation
3605       // because that is always a 64-bit relocation.
3606       if (parameters->options().output_is_position_independent())
3607 	{
3608 	  // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
3609 	  if (size == 32 && r_type == elfcpp::R_X86_64_32)
3610 	    {
3611 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3612 	      Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3613 	      rela_dyn->add_local_relative(object, r_sym,
3614 					   elfcpp::R_X86_64_RELATIVE,
3615 					   output_section, data_shndx,
3616 					   reloc.get_r_offset(),
3617 					   reloc.get_r_addend(), is_ifunc);
3618 	      break;
3619 	    }
3620 
3621 	  this->check_non_pic(object, r_type, NULL);
3622 
3623 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3624 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3625 	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
3626 	    rela_dyn->add_local(object, r_sym, r_type, output_section,
3627 				data_shndx, reloc.get_r_offset(),
3628 				reloc.get_r_addend());
3629 	  else
3630 	    {
3631 	      gold_assert(lsym.get_st_value() == 0);
3632 	      unsigned int shndx = lsym.get_st_shndx();
3633 	      bool is_ordinary;
3634 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
3635 					       &is_ordinary);
3636 	      if (!is_ordinary)
3637 		object->error(_("section symbol %u has bad shndx %u"),
3638 			      r_sym, shndx);
3639 	      else
3640 		rela_dyn->add_local_section(object, shndx,
3641 					    r_type, output_section,
3642 					    data_shndx, reloc.get_r_offset(),
3643 					    reloc.get_r_addend());
3644 	    }
3645 	}
3646       break;
3647 
3648     case elfcpp::R_X86_64_PC64:
3649     case elfcpp::R_X86_64_PC32:
3650     case elfcpp::R_X86_64_PC32_BND:
3651     case elfcpp::R_X86_64_PC16:
3652     case elfcpp::R_X86_64_PC8:
3653       break;
3654 
3655     case elfcpp::R_X86_64_PLT32:
3656     case elfcpp::R_X86_64_PLT32_BND:
3657       // Since we know this is a local symbol, we can handle this as a
3658       // PC32 reloc.
3659       break;
3660 
3661     case elfcpp::R_X86_64_GOTPC32:
3662     case elfcpp::R_X86_64_GOTOFF64:
3663     case elfcpp::R_X86_64_GOTPC64:
3664     case elfcpp::R_X86_64_PLTOFF64:
3665       // We need a GOT section.
3666       target->got_section(symtab, layout);
3667       // For PLTOFF64, we'd normally want a PLT section, but since we
3668       // know this is a local symbol, no PLT is needed.
3669       break;
3670 
3671     case elfcpp::R_X86_64_GOT64:
3672     case elfcpp::R_X86_64_GOT32:
3673     case elfcpp::R_X86_64_GOTPCREL64:
3674     case elfcpp::R_X86_64_GOTPCREL:
3675     case elfcpp::R_X86_64_GOTPCRELX:
3676     case elfcpp::R_X86_64_REX_GOTPCRELX:
3677     case elfcpp::R_X86_64_GOTPLT64:
3678       {
3679 	// The symbol requires a GOT section.
3680 	Output_data_got<64, false>* got = target->got_section(symtab, layout);
3681 
3682 	// If the relocation symbol isn't IFUNC,
3683 	// and is local, then we will convert
3684 	// mov foo@GOTPCREL(%rip), %reg
3685 	// to lea foo(%rip), %reg.
3686 	// in Relocate::relocate.
3687 	if (!parameters->incremental()
3688 	    && (r_type == elfcpp::R_X86_64_GOTPCREL
3689 		|| r_type == elfcpp::R_X86_64_GOTPCRELX
3690 		|| r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
3691 	    && reloc.get_r_offset() >= 2
3692 	    && !is_ifunc)
3693 	  {
3694 	    section_size_type stype;
3695 	    const unsigned char* view = object->section_contents(data_shndx,
3696 								 &stype, true);
3697 	    if (view[reloc.get_r_offset() - 2] == 0x8b)
3698 	      break;
3699 	  }
3700 
3701 	// The symbol requires a GOT entry.
3702 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3703 
3704 	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3705 	// lets function pointers compare correctly with shared
3706 	// libraries.  Otherwise we would need an IRELATIVE reloc.
3707 	bool is_new;
3708 	if (is_ifunc)
3709 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3710 	else
3711 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3712 	if (is_new)
3713 	  {
3714 	    // If we are generating a shared object, we need to add a
3715 	    // dynamic relocation for this symbol's GOT entry.
3716 	    if (parameters->options().output_is_position_independent())
3717 	      {
3718 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3719 		// R_X86_64_RELATIVE assumes a 64-bit relocation.
3720 		if (r_type != elfcpp::R_X86_64_GOT32)
3721 		  {
3722 		    unsigned int got_offset =
3723 		      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3724 		    rela_dyn->add_local_relative(object, r_sym,
3725 						 elfcpp::R_X86_64_RELATIVE,
3726 						 got, got_offset, 0, is_ifunc);
3727 		  }
3728 		else
3729 		  {
3730 		    this->check_non_pic(object, r_type, NULL);
3731 
3732 		    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3733 		    rela_dyn->add_local(
3734 			object, r_sym, r_type, got,
3735 			object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
3736 		  }
3737 	      }
3738 	  }
3739 	// For GOTPLT64, we'd normally want a PLT section, but since
3740 	// we know this is a local symbol, no PLT is needed.
3741       }
3742       break;
3743 
3744     case elfcpp::R_X86_64_COPY:
3745     case elfcpp::R_X86_64_GLOB_DAT:
3746     case elfcpp::R_X86_64_JUMP_SLOT:
3747     case elfcpp::R_X86_64_RELATIVE:
3748     case elfcpp::R_X86_64_IRELATIVE:
3749       // These are outstanding tls relocs, which are unexpected when linking
3750     case elfcpp::R_X86_64_TPOFF64:
3751     case elfcpp::R_X86_64_DTPMOD64:
3752     case elfcpp::R_X86_64_TLSDESC:
3753       gold_error(_("%s: unexpected reloc %u in object file"),
3754 		 object->name().c_str(), r_type);
3755       break;
3756 
3757       // These are initial tls relocs, which are expected when linking
3758     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3759     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3760     case elfcpp::R_X86_64_TLSDESC_CALL:
3761     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3762     case elfcpp::R_X86_64_DTPOFF32:
3763     case elfcpp::R_X86_64_DTPOFF64:
3764     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3765     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3766       {
3767 	bool output_is_shared = parameters->options().shared();
3768 	const tls::Tls_optimization optimized_type
3769 	    = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
3770 						      r_type);
3771 	switch (r_type)
3772 	  {
3773 	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3774 	    if (optimized_type == tls::TLSOPT_NONE)
3775 	      {
3776 		// Create a pair of GOT entries for the module index and
3777 		// dtv-relative offset.
3778 		Output_data_got<64, false>* got
3779 		    = target->got_section(symtab, layout);
3780 		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3781 		unsigned int shndx = lsym.get_st_shndx();
3782 		bool is_ordinary;
3783 		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
3784 		if (!is_ordinary)
3785 		  object->error(_("local symbol %u has bad shndx %u"),
3786 			      r_sym, shndx);
3787 		else
3788 		  got->add_local_pair_with_rel(object, r_sym,
3789 					       shndx,
3790 					       GOT_TYPE_TLS_PAIR,
3791 					       target->rela_dyn_section(layout),
3792 					       elfcpp::R_X86_64_DTPMOD64);
3793 	      }
3794 	    else if (optimized_type != tls::TLSOPT_TO_LE)
3795 	      unsupported_reloc_local(object, r_type);
3796 	    break;
3797 
3798 	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3799 	    target->define_tls_base_symbol(symtab, layout);
3800 	    if (optimized_type == tls::TLSOPT_NONE)
3801 	      {
3802 		// Create reserved PLT and GOT entries for the resolver.
3803 		target->reserve_tlsdesc_entries(symtab, layout);
3804 
3805 		// Generate a double GOT entry with an
3806 		// R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
3807 		// is resolved lazily, so the GOT entry needs to be in
3808 		// an area in .got.plt, not .got.  Call got_section to
3809 		// make sure the section has been created.
3810 		target->got_section(symtab, layout);
3811 		Output_data_got<64, false>* got = target->got_tlsdesc_section();
3812 		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3813 		if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
3814 		  {
3815 		    unsigned int got_offset = got->add_constant(0);
3816 		    got->add_constant(0);
3817 		    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
3818 						 got_offset);
3819 		    Reloc_section* rt = target->rela_tlsdesc_section(layout);
3820 		    // We store the arguments we need in a vector, and
3821 		    // use the index into the vector as the parameter
3822 		    // to pass to the target specific routines.
3823 		    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
3824 		    void* arg = reinterpret_cast<void*>(intarg);
3825 		    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3826 					    got, got_offset, 0);
3827 		  }
3828 	      }
3829 	    else if (optimized_type != tls::TLSOPT_TO_LE)
3830 	      unsupported_reloc_local(object, r_type);
3831 	    break;
3832 
3833 	  case elfcpp::R_X86_64_TLSDESC_CALL:
3834 	    break;
3835 
3836 	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3837 	    if (optimized_type == tls::TLSOPT_NONE)
3838 	      {
3839 		// Create a GOT entry for the module index.
3840 		target->got_mod_index_entry(symtab, layout, object);
3841 	      }
3842 	    else if (optimized_type != tls::TLSOPT_TO_LE)
3843 	      unsupported_reloc_local(object, r_type);
3844 	    break;
3845 
3846 	  case elfcpp::R_X86_64_DTPOFF32:
3847 	  case elfcpp::R_X86_64_DTPOFF64:
3848 	    break;
3849 
3850 	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3851 	    layout->set_has_static_tls();
3852 	    if (optimized_type == tls::TLSOPT_NONE)
3853 	      {
3854 		// Create a GOT entry for the tp-relative offset.
3855 		Output_data_got<64, false>* got
3856 		    = target->got_section(symtab, layout);
3857 		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3858 		got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
3859 					target->rela_dyn_section(layout),
3860 					elfcpp::R_X86_64_TPOFF64);
3861 	      }
3862 	    else if (optimized_type != tls::TLSOPT_TO_LE)
3863 	      unsupported_reloc_local(object, r_type);
3864 	    break;
3865 
3866 	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3867 	    layout->set_has_static_tls();
3868 	    if (output_is_shared)
3869 	      unsupported_reloc_local(object, r_type);
3870 	    break;
3871 
3872 	  default:
3873 	    gold_unreachable();
3874 	  }
3875       }
3876       break;
3877 
3878     case elfcpp::R_X86_64_SIZE32:
3879     case elfcpp::R_X86_64_SIZE64:
3880     default:
3881       gold_error(_("%s: unsupported reloc %u against local symbol"),
3882 		 object->name().c_str(), r_type);
3883       break;
3884     }
3885 }
3886 
3887 
3888 // Report an unsupported relocation against a global symbol.
3889 
3890 template<int size>
3891 void
3892 Target_x86_64<size>::Scan::unsupported_reloc_global(
3893     Sized_relobj_file<size, false>* object,
3894     unsigned int r_type,
3895     Symbol* gsym)
3896 {
3897   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3898 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
3899 }
3900 
3901 // Returns true if this relocation type could be that of a function pointer.
3902 template<int size>
3903 inline bool
3904 Target_x86_64<size>::Scan::possible_function_pointer_reloc(
3905     Sized_relobj_file<size, false>* src_obj,
3906     unsigned int src_indx,
3907     unsigned int r_offset,
3908     unsigned int r_type)
3909 {
3910   switch (r_type)
3911     {
3912     case elfcpp::R_X86_64_64:
3913     case elfcpp::R_X86_64_32:
3914     case elfcpp::R_X86_64_32S:
3915     case elfcpp::R_X86_64_16:
3916     case elfcpp::R_X86_64_8:
3917     case elfcpp::R_X86_64_GOT64:
3918     case elfcpp::R_X86_64_GOT32:
3919     case elfcpp::R_X86_64_GOTPCREL64:
3920     case elfcpp::R_X86_64_GOTPCREL:
3921     case elfcpp::R_X86_64_GOTPCRELX:
3922     case elfcpp::R_X86_64_REX_GOTPCRELX:
3923     case elfcpp::R_X86_64_GOTPLT64:
3924       {
3925 	return true;
3926       }
3927     case elfcpp::R_X86_64_PC32:
3928       {
3929         // This relocation may be used both for function calls and
3930         // for taking address of a function. We distinguish between
3931         // them by checking the opcodes.
3932         uint64_t sh_flags = src_obj->section_flags(src_indx);
3933         bool is_executable = (sh_flags & elfcpp::SHF_EXECINSTR) != 0;
3934         if (is_executable)
3935           {
3936             section_size_type stype;
3937             const unsigned char* view = src_obj->section_contents(src_indx,
3938                                                                   &stype,
3939                                                                   true);
3940 
3941             // call
3942             if (r_offset >= 1
3943                 && view[r_offset - 1] == 0xe8)
3944               return false;
3945 
3946             // jmp
3947             if (r_offset >= 1
3948                 && view[r_offset - 1] == 0xe9)
3949               return false;
3950 
3951             // jo/jno/jb/jnb/je/jne/jna/ja/js/jns/jp/jnp/jl/jge/jle/jg
3952             if (r_offset >= 2
3953                 && view[r_offset - 2] == 0x0f
3954                 && view[r_offset - 1] >= 0x80
3955                 && view[r_offset - 1] <= 0x8f)
3956               return false;
3957           }
3958 
3959         // Be conservative and treat all others as function pointers.
3960         return true;
3961       }
3962     }
3963   return false;
3964 }
3965 
3966 // For safe ICF, scan a relocation for a local symbol to check if it
3967 // corresponds to a function pointer being taken.  In that case mark
3968 // the function whose pointer was taken as not foldable.
3969 
3970 template<int size>
3971 inline bool
3972 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
3973   Symbol_table* ,
3974   Layout* ,
3975   Target_x86_64<size>* ,
3976   Sized_relobj_file<size, false>* src_obj,
3977   unsigned int src_indx,
3978   Output_section* ,
3979   const elfcpp::Rela<size, false>& reloc,
3980   unsigned int r_type,
3981   const elfcpp::Sym<size, false>&)
3982 {
3983   // When building a shared library, do not fold any local symbols as it is
3984   // not possible to distinguish pointer taken versus a call by looking at
3985   // the relocation types.
3986   if (parameters->options().shared())
3987     return true;
3988 
3989   return possible_function_pointer_reloc(src_obj, src_indx,
3990                                          reloc.get_r_offset(), r_type);
3991 }
3992 
3993 // For safe ICF, scan a relocation for a global symbol to check if it
3994 // corresponds to a function pointer being taken.  In that case mark
3995 // the function whose pointer was taken as not foldable.
3996 
3997 template<int size>
3998 inline bool
3999 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
4000   Symbol_table*,
4001   Layout* ,
4002   Target_x86_64<size>* ,
4003   Sized_relobj_file<size, false>* src_obj,
4004   unsigned int src_indx,
4005   Output_section* ,
4006   const elfcpp::Rela<size, false>& reloc,
4007   unsigned int r_type,
4008   Symbol* gsym)
4009 {
4010   // When building a shared library, do not fold symbols whose visibility
4011   // is hidden, internal or protected.
4012   if (parameters->options().shared()
4013       && (gsym->visibility() == elfcpp::STV_INTERNAL
4014 	  || gsym->visibility() == elfcpp::STV_PROTECTED
4015 	  || gsym->visibility() == elfcpp::STV_HIDDEN))
4016     return true;
4017 
4018   return possible_function_pointer_reloc(src_obj, src_indx,
4019                                          reloc.get_r_offset(), r_type);
4020 }
4021 
4022 // Scan a relocation for a global symbol.
4023 
4024 template<int size>
4025 inline void
4026 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
4027 			    Layout* layout,
4028 			    Target_x86_64<size>* target,
4029 			    Sized_relobj_file<size, false>* object,
4030 			    unsigned int data_shndx,
4031 			    Output_section* output_section,
4032 			    const elfcpp::Rela<size, false>& reloc,
4033 			    unsigned int r_type,
4034 			    Symbol* gsym)
4035 {
4036   // A STT_GNU_IFUNC symbol may require a PLT entry.
4037   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4038       && this->reloc_needs_plt_for_ifunc(object, r_type))
4039     target->make_plt_entry(symtab, layout, gsym);
4040 
4041   switch (r_type)
4042     {
4043     case elfcpp::R_X86_64_NONE:
4044     case elfcpp::R_X86_64_GNU_VTINHERIT:
4045     case elfcpp::R_X86_64_GNU_VTENTRY:
4046       break;
4047 
4048     case elfcpp::R_X86_64_64:
4049     case elfcpp::R_X86_64_32:
4050     case elfcpp::R_X86_64_32S:
4051     case elfcpp::R_X86_64_16:
4052     case elfcpp::R_X86_64_8:
4053       {
4054 	// Make a PLT entry if necessary.
4055 	if (gsym->needs_plt_entry())
4056 	  {
4057 	    target->make_plt_entry(symtab, layout, gsym);
4058 	    // Since this is not a PC-relative relocation, we may be
4059 	    // taking the address of a function. In that case we need to
4060 	    // set the entry in the dynamic symbol table to the address of
4061 	    // the PLT entry.
4062 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
4063 	      gsym->set_needs_dynsym_value();
4064 	  }
4065 	// Make a dynamic relocation if necessary.
4066 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4067 	  {
4068 	    if (!parameters->options().output_is_position_independent()
4069 		&& gsym->may_need_copy_reloc())
4070 	      {
4071 		target->copy_reloc(symtab, layout, object,
4072 				   data_shndx, output_section, gsym, reloc);
4073 	      }
4074 	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4075 		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
4076 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
4077 		     && gsym->can_use_relative_reloc(false)
4078 		     && !gsym->is_from_dynobj()
4079 		     && !gsym->is_undefined()
4080 		     && !gsym->is_preemptible())
4081 	      {
4082 		// Use an IRELATIVE reloc for a locally defined
4083 		// STT_GNU_IFUNC symbol.  This makes a function
4084 		// address in a PIE executable match the address in a
4085 		// shared library that it links against.
4086 		Reloc_section* rela_dyn =
4087 		  target->rela_irelative_section(layout);
4088 		unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
4089 		rela_dyn->add_symbolless_global_addend(gsym, r_type,
4090 						       output_section, object,
4091 						       data_shndx,
4092 						       reloc.get_r_offset(),
4093 						       reloc.get_r_addend());
4094 	      }
4095 	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
4096 		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
4097 		     && gsym->can_use_relative_reloc(false))
4098 	      {
4099 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4100 		rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
4101 					      output_section, object,
4102 					      data_shndx,
4103 					      reloc.get_r_offset(),
4104 					      reloc.get_r_addend(), false);
4105 	      }
4106 	    else
4107 	      {
4108 		this->check_non_pic(object, r_type, gsym);
4109 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4110 		rela_dyn->add_global(gsym, r_type, output_section, object,
4111 				     data_shndx, reloc.get_r_offset(),
4112 				     reloc.get_r_addend());
4113 	      }
4114 	  }
4115       }
4116       break;
4117 
4118     case elfcpp::R_X86_64_PC64:
4119     case elfcpp::R_X86_64_PC32:
4120     case elfcpp::R_X86_64_PC32_BND:
4121     case elfcpp::R_X86_64_PC16:
4122     case elfcpp::R_X86_64_PC8:
4123       {
4124 	// Make a PLT entry if necessary.
4125 	if (gsym->needs_plt_entry())
4126 	  target->make_plt_entry(symtab, layout, gsym);
4127 	// Make a dynamic relocation if necessary.
4128 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
4129 	  {
4130 	    if (parameters->options().output_is_executable()
4131 		&& gsym->may_need_copy_reloc())
4132 	      {
4133 		target->copy_reloc(symtab, layout, object,
4134 				   data_shndx, output_section, gsym, reloc);
4135 	      }
4136 	    else
4137 	      {
4138 		this->check_non_pic(object, r_type, gsym);
4139 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4140 		rela_dyn->add_global(gsym, r_type, output_section, object,
4141 				     data_shndx, reloc.get_r_offset(),
4142 				     reloc.get_r_addend());
4143 	      }
4144 	  }
4145       }
4146       break;
4147 
4148     case elfcpp::R_X86_64_GOT64:
4149     case elfcpp::R_X86_64_GOT32:
4150     case elfcpp::R_X86_64_GOTPCREL64:
4151     case elfcpp::R_X86_64_GOTPCREL:
4152     case elfcpp::R_X86_64_GOTPCRELX:
4153     case elfcpp::R_X86_64_REX_GOTPCRELX:
4154     case elfcpp::R_X86_64_GOTPLT64:
4155       {
4156 	// The symbol requires a GOT entry.
4157 	Output_data_got<64, false>* got = target->got_section(symtab, layout);
4158 
4159 	// If we convert this from
4160 	// mov foo@GOTPCREL(%rip), %reg
4161 	// to lea foo(%rip), %reg.
4162 	// OR
4163 	// if we convert
4164 	// (callq|jmpq) *foo@GOTPCRELX(%rip) to
4165 	// (callq|jmpq) foo
4166 	// in Relocate::relocate, then there is nothing to do here.
4167 	// We cannot make these optimizations in incremental linking mode,
4168 	// because we look at the opcode to decide whether or not to make
4169 	// change, and during an incremental update, the change may have
4170 	// already been applied.
4171 
4172         Lazy_view<size> view(object, data_shndx);
4173         size_t r_offset = reloc.get_r_offset();
4174         if (!parameters->incremental()
4175 	    && r_offset >= 2
4176             && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4177                                                            r_offset, &view))
4178           break;
4179 
4180 	if (!parameters->incremental()
4181 	    && r_offset >= 2
4182 	    && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
4183 								r_offset,
4184 								&view))
4185           break;
4186 
4187 	if (gsym->final_value_is_known())
4188 	  {
4189 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
4190 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4191 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4192 	    else
4193 	      got->add_global(gsym, GOT_TYPE_STANDARD);
4194 	  }
4195 	else
4196 	  {
4197 	    // If this symbol is not fully resolved, we need to add a
4198 	    // dynamic relocation for it.
4199 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4200 
4201 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
4202 	    //
4203 	    // 1) The symbol may be defined in some other module.
4204 	    //
4205 	    // 2) We are building a shared library and this is a
4206 	    // protected symbol; using GLOB_DAT means that the dynamic
4207 	    // linker can use the address of the PLT in the main
4208 	    // executable when appropriate so that function address
4209 	    // comparisons work.
4210 	    //
4211 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
4212 	    // code, again so that function address comparisons work.
4213 	    if (gsym->is_from_dynobj()
4214 		|| gsym->is_undefined()
4215 		|| gsym->is_preemptible()
4216 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
4217 		    && parameters->options().shared())
4218 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
4219 		    && parameters->options().output_is_position_independent()))
4220 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
4221 				       elfcpp::R_X86_64_GLOB_DAT);
4222 	    else
4223 	      {
4224 		// For a STT_GNU_IFUNC symbol we want to write the PLT
4225 		// offset into the GOT, so that function pointer
4226 		// comparisons work correctly.
4227 		bool is_new;
4228 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
4229 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
4230 		else
4231 		  {
4232 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
4233 		    // Tell the dynamic linker to use the PLT address
4234 		    // when resolving relocations.
4235 		    if (gsym->is_from_dynobj()
4236 			&& !parameters->options().shared())
4237 		      gsym->set_needs_dynsym_value();
4238 		  }
4239 		if (is_new)
4240 		  {
4241 		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
4242 		    rela_dyn->add_global_relative(gsym,
4243 						  elfcpp::R_X86_64_RELATIVE,
4244 						  got, got_off, 0, false);
4245 		  }
4246 	      }
4247 	  }
4248       }
4249       break;
4250 
4251     case elfcpp::R_X86_64_PLT32:
4252     case elfcpp::R_X86_64_PLT32_BND:
4253       // If the symbol is fully resolved, this is just a PC32 reloc.
4254       // Otherwise we need a PLT entry.
4255       if (gsym->final_value_is_known())
4256 	break;
4257       // If building a shared library, we can also skip the PLT entry
4258       // if the symbol is defined in the output file and is protected
4259       // or hidden.
4260       if (gsym->is_defined()
4261 	  && !gsym->is_from_dynobj()
4262 	  && !gsym->is_preemptible())
4263 	break;
4264       target->make_plt_entry(symtab, layout, gsym);
4265       break;
4266 
4267     case elfcpp::R_X86_64_GOTPC32:
4268     case elfcpp::R_X86_64_GOTOFF64:
4269     case elfcpp::R_X86_64_GOTPC64:
4270     case elfcpp::R_X86_64_PLTOFF64:
4271       // We need a GOT section.
4272       target->got_section(symtab, layout);
4273       // For PLTOFF64, we also need a PLT entry (but only if the
4274       // symbol is not fully resolved).
4275       if (r_type == elfcpp::R_X86_64_PLTOFF64
4276 	  && !gsym->final_value_is_known())
4277 	target->make_plt_entry(symtab, layout, gsym);
4278       break;
4279 
4280     case elfcpp::R_X86_64_COPY:
4281     case elfcpp::R_X86_64_GLOB_DAT:
4282     case elfcpp::R_X86_64_JUMP_SLOT:
4283     case elfcpp::R_X86_64_RELATIVE:
4284     case elfcpp::R_X86_64_IRELATIVE:
4285       // These are outstanding tls relocs, which are unexpected when linking
4286     case elfcpp::R_X86_64_TPOFF64:
4287     case elfcpp::R_X86_64_DTPMOD64:
4288     case elfcpp::R_X86_64_TLSDESC:
4289       gold_error(_("%s: unexpected reloc %u in object file"),
4290 		 object->name().c_str(), r_type);
4291       break;
4292 
4293       // These are initial tls relocs, which are expected for global()
4294     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4295     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4296     case elfcpp::R_X86_64_TLSDESC_CALL:
4297     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4298     case elfcpp::R_X86_64_DTPOFF32:
4299     case elfcpp::R_X86_64_DTPOFF64:
4300     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4301     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4302       {
4303 	// For the Initial-Exec model, we can treat undef symbols as final
4304 	// when building an executable.
4305 	const bool is_final = (gsym->final_value_is_known() ||
4306 			       (r_type == elfcpp::R_X86_64_GOTTPOFF &&
4307 			        gsym->is_undefined() &&
4308 				parameters->options().output_is_executable()));
4309 	const tls::Tls_optimization optimized_type
4310 	    = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
4311 	switch (r_type)
4312 	  {
4313 	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
4314 	    if (optimized_type == tls::TLSOPT_NONE)
4315 	      {
4316 		// Create a pair of GOT entries for the module index and
4317 		// dtv-relative offset.
4318 		Output_data_got<64, false>* got
4319 		    = target->got_section(symtab, layout);
4320 		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4321 					      target->rela_dyn_section(layout),
4322 					      elfcpp::R_X86_64_DTPMOD64,
4323 					      elfcpp::R_X86_64_DTPOFF64);
4324 	      }
4325 	    else if (optimized_type == tls::TLSOPT_TO_IE)
4326 	      {
4327 		// Create a GOT entry for the tp-relative offset.
4328 		Output_data_got<64, false>* got
4329 		    = target->got_section(symtab, layout);
4330 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4331 					 target->rela_dyn_section(layout),
4332 					 elfcpp::R_X86_64_TPOFF64);
4333 	      }
4334 	    else if (optimized_type != tls::TLSOPT_TO_LE)
4335 	      unsupported_reloc_global(object, r_type, gsym);
4336 	    break;
4337 
4338 	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
4339 	    target->define_tls_base_symbol(symtab, layout);
4340 	    if (optimized_type == tls::TLSOPT_NONE)
4341 	      {
4342 		// Create reserved PLT and GOT entries for the resolver.
4343 		target->reserve_tlsdesc_entries(symtab, layout);
4344 
4345 		// Create a double GOT entry with an R_X86_64_TLSDESC
4346 		// reloc.  The R_X86_64_TLSDESC reloc is resolved
4347 		// lazily, so the GOT entry needs to be in an area in
4348 		// .got.plt, not .got.  Call got_section to make sure
4349 		// the section has been created.
4350 		target->got_section(symtab, layout);
4351 		Output_data_got<64, false>* got = target->got_tlsdesc_section();
4352 		Reloc_section* rt = target->rela_tlsdesc_section(layout);
4353 		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
4354 					      elfcpp::R_X86_64_TLSDESC, 0);
4355 	      }
4356 	    else if (optimized_type == tls::TLSOPT_TO_IE)
4357 	      {
4358 		// Create a GOT entry for the tp-relative offset.
4359 		Output_data_got<64, false>* got
4360 		    = target->got_section(symtab, layout);
4361 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4362 					 target->rela_dyn_section(layout),
4363 					 elfcpp::R_X86_64_TPOFF64);
4364 	      }
4365 	    else if (optimized_type != tls::TLSOPT_TO_LE)
4366 	      unsupported_reloc_global(object, r_type, gsym);
4367 	    break;
4368 
4369 	  case elfcpp::R_X86_64_TLSDESC_CALL:
4370 	    break;
4371 
4372 	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
4373 	    if (optimized_type == tls::TLSOPT_NONE)
4374 	      {
4375 		// Create a GOT entry for the module index.
4376 		target->got_mod_index_entry(symtab, layout, object);
4377 	      }
4378 	    else if (optimized_type != tls::TLSOPT_TO_LE)
4379 	      unsupported_reloc_global(object, r_type, gsym);
4380 	    break;
4381 
4382 	  case elfcpp::R_X86_64_DTPOFF32:
4383 	  case elfcpp::R_X86_64_DTPOFF64:
4384 	    break;
4385 
4386 	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
4387 	    layout->set_has_static_tls();
4388 	    if (optimized_type == tls::TLSOPT_NONE)
4389 	      {
4390 		// Create a GOT entry for the tp-relative offset.
4391 		Output_data_got<64, false>* got
4392 		    = target->got_section(symtab, layout);
4393 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4394 					 target->rela_dyn_section(layout),
4395 					 elfcpp::R_X86_64_TPOFF64);
4396 	      }
4397 	    else if (optimized_type != tls::TLSOPT_TO_LE)
4398 	      unsupported_reloc_global(object, r_type, gsym);
4399 	    break;
4400 
4401 	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
4402 	    layout->set_has_static_tls();
4403 	    if (parameters->options().shared())
4404 	      unsupported_reloc_global(object, r_type, gsym);
4405 	    break;
4406 
4407 	  default:
4408 	    gold_unreachable();
4409 	  }
4410       }
4411       break;
4412 
4413     case elfcpp::R_X86_64_SIZE32:
4414     case elfcpp::R_X86_64_SIZE64:
4415     default:
4416       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4417 		 object->name().c_str(), r_type,
4418 		 gsym->demangled_name().c_str());
4419       break;
4420     }
4421 }
4422 
4423 template<int size>
4424 void
4425 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
4426 				       Layout* layout,
4427 				       Sized_relobj_file<size, false>* object,
4428 				       unsigned int data_shndx,
4429 				       unsigned int sh_type,
4430 				       const unsigned char* prelocs,
4431 				       size_t reloc_count,
4432 				       Output_section* output_section,
4433 				       bool needs_special_offset_handling,
4434 				       size_t local_symbol_count,
4435 				       const unsigned char* plocal_symbols)
4436 {
4437   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4438       Classify_reloc;
4439 
4440   if (sh_type == elfcpp::SHT_REL)
4441     {
4442       return;
4443     }
4444 
4445    gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
4446 			   Classify_reloc>(
4447     symtab,
4448     layout,
4449     this,
4450     object,
4451     data_shndx,
4452     prelocs,
4453     reloc_count,
4454     output_section,
4455     needs_special_offset_handling,
4456     local_symbol_count,
4457     plocal_symbols);
4458 
4459 }
4460 // Scan relocations for a section.
4461 
4462 template<int size>
4463 void
4464 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
4465 				 Layout* layout,
4466 				 Sized_relobj_file<size, false>* object,
4467 				 unsigned int data_shndx,
4468 				 unsigned int sh_type,
4469 				 const unsigned char* prelocs,
4470 				 size_t reloc_count,
4471 				 Output_section* output_section,
4472 				 bool needs_special_offset_handling,
4473 				 size_t local_symbol_count,
4474 				 const unsigned char* plocal_symbols)
4475 {
4476   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4477       Classify_reloc;
4478 
4479   if (sh_type == elfcpp::SHT_REL)
4480     {
4481       gold_error(_("%s: unsupported REL reloc section"),
4482 		 object->name().c_str());
4483       return;
4484     }
4485 
4486   gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
4487     symtab,
4488     layout,
4489     this,
4490     object,
4491     data_shndx,
4492     prelocs,
4493     reloc_count,
4494     output_section,
4495     needs_special_offset_handling,
4496     local_symbol_count,
4497     plocal_symbols);
4498 }
4499 
4500 // Finalize the sections.
4501 
4502 template<int size>
4503 void
4504 Target_x86_64<size>::do_finalize_sections(
4505     Layout* layout,
4506     const Input_objects*,
4507     Symbol_table* symtab)
4508 {
4509   const Reloc_section* rel_plt = (this->plt_ == NULL
4510 				  ? NULL
4511 				  : this->plt_->rela_plt());
4512   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4513 				  this->rela_dyn_, true, false);
4514 
4515   // Fill in some more dynamic tags.
4516   Output_data_dynamic* const odyn = layout->dynamic_data();
4517   if (odyn != NULL)
4518     {
4519       if (this->plt_ != NULL
4520 	  && this->plt_->output_section() != NULL
4521 	  && this->plt_->has_tlsdesc_entry())
4522 	{
4523 	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
4524 	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
4525 	  this->got_->finalize_data_size();
4526 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
4527 					this->plt_, plt_offset);
4528 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
4529 					this->got_, got_offset);
4530 	}
4531     }
4532 
4533   // Emit any relocs we saved in an attempt to avoid generating COPY
4534   // relocs.
4535   if (this->copy_relocs_.any_saved_relocs())
4536     this->copy_relocs_.emit(this->rela_dyn_section(layout));
4537 
4538   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4539   // the .got.plt section.
4540   Symbol* sym = this->global_offset_table_;
4541   if (sym != NULL)
4542     {
4543       uint64_t data_size = this->got_plt_->current_data_size();
4544       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4545     }
4546 
4547   if (parameters->doing_static_link()
4548       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4549     {
4550       // If linking statically, make sure that the __rela_iplt symbols
4551       // were defined if necessary, even if we didn't create a PLT.
4552       static const Define_symbol_in_segment syms[] =
4553 	{
4554 	  {
4555 	    "__rela_iplt_start",	// name
4556 	    elfcpp::PT_LOAD,		// segment_type
4557 	    elfcpp::PF_W,		// segment_flags_set
4558 	    elfcpp::PF(0),		// segment_flags_clear
4559 	    0,				// value
4560 	    0,				// size
4561 	    elfcpp::STT_NOTYPE,		// type
4562 	    elfcpp::STB_GLOBAL,		// binding
4563 	    elfcpp::STV_HIDDEN,		// visibility
4564 	    0,				// nonvis
4565 	    Symbol::SEGMENT_START,	// offset_from_base
4566 	    true			// only_if_ref
4567 	  },
4568 	  {
4569 	    "__rela_iplt_end",		// name
4570 	    elfcpp::PT_LOAD,		// segment_type
4571 	    elfcpp::PF_W,		// segment_flags_set
4572 	    elfcpp::PF(0),		// segment_flags_clear
4573 	    0,				// value
4574 	    0,				// size
4575 	    elfcpp::STT_NOTYPE,		// type
4576 	    elfcpp::STB_GLOBAL,		// binding
4577 	    elfcpp::STV_HIDDEN,		// visibility
4578 	    0,				// nonvis
4579 	    Symbol::SEGMENT_START,	// offset_from_base
4580 	    true			// only_if_ref
4581 	  }
4582 	};
4583 
4584       symtab->define_symbols(layout, 2, syms,
4585 			     layout->script_options()->saw_sections_clause());
4586     }
4587 }
4588 
4589 // For x32, we need to handle PC-relative relocations using full 64-bit
4590 // arithmetic, so that we can detect relocation overflows properly.
4591 // This class overrides the pcrela32_check methods from the defaults in
4592 // Relocate_functions in reloc.h.
4593 
4594 template<int size>
4595 class X86_64_relocate_functions : public Relocate_functions<size, false>
4596 {
4597  public:
4598   typedef Relocate_functions<size, false> Base;
4599 
4600   // Do a simple PC relative relocation with the addend in the
4601   // relocation.
4602   static inline typename Base::Reloc_status
4603   pcrela32_check(unsigned char* view,
4604 		 typename elfcpp::Elf_types<64>::Elf_Addr value,
4605 		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4606 		 typename elfcpp::Elf_types<64>::Elf_Addr address)
4607   {
4608     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4609     Valtype* wv = reinterpret_cast<Valtype*>(view);
4610     value = value + addend - address;
4611     elfcpp::Swap<32, false>::writeval(wv, value);
4612     return (Bits<32>::has_overflow(value)
4613 	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4614   }
4615 
4616   // Do a simple PC relative relocation with a Symbol_value with the
4617   // addend in the relocation.
4618   static inline typename Base::Reloc_status
4619   pcrela32_check(unsigned char* view,
4620 		 const Sized_relobj_file<size, false>* object,
4621 		 const Symbol_value<size>* psymval,
4622 		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4623 		 typename elfcpp::Elf_types<64>::Elf_Addr address)
4624   {
4625     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4626     Valtype* wv = reinterpret_cast<Valtype*>(view);
4627     typename elfcpp::Elf_types<64>::Elf_Addr value;
4628     if (addend >= 0)
4629       value = psymval->value(object, addend);
4630     else
4631       {
4632 	// For negative addends, get the symbol value without
4633 	// the addend, then add the addend using 64-bit arithmetic.
4634 	value = psymval->value(object, 0);
4635 	value += addend;
4636       }
4637     value -= address;
4638     elfcpp::Swap<32, false>::writeval(wv, value);
4639     return (Bits<32>::has_overflow(value)
4640 	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4641   }
4642 };
4643 
4644 // Perform a relocation.
4645 
4646 template<int size>
4647 inline bool
4648 Target_x86_64<size>::Relocate::relocate(
4649     const Relocate_info<size, false>* relinfo,
4650     unsigned int,
4651     Target_x86_64<size>* target,
4652     Output_section*,
4653     size_t relnum,
4654     const unsigned char* preloc,
4655     const Sized_symbol<size>* gsym,
4656     const Symbol_value<size>* psymval,
4657     unsigned char* view,
4658     typename elfcpp::Elf_types<size>::Elf_Addr address,
4659     section_size_type view_size)
4660 {
4661   typedef X86_64_relocate_functions<size> Reloc_funcs;
4662   const elfcpp::Rela<size, false> rela(preloc);
4663   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4664 
4665   if (this->skip_call_tls_get_addr_)
4666     {
4667       if ((r_type != elfcpp::R_X86_64_PLT32
4668 	   && r_type != elfcpp::R_X86_64_GOTPCREL
4669 	   && r_type != elfcpp::R_X86_64_GOTPCRELX
4670 	   && r_type != elfcpp::R_X86_64_PLT32_BND
4671 	   && r_type != elfcpp::R_X86_64_PC32_BND
4672 	   && r_type != elfcpp::R_X86_64_PC32)
4673 	  || gsym == NULL
4674 	  || strcmp(gsym->name(), "__tls_get_addr") != 0)
4675 	{
4676 	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4677 				 _("missing expected TLS relocation"));
4678 	  this->skip_call_tls_get_addr_ = false;
4679 	}
4680       else
4681 	{
4682 	  this->skip_call_tls_get_addr_ = false;
4683 	  return false;
4684 	}
4685     }
4686 
4687   if (view == NULL)
4688     return true;
4689 
4690   const Sized_relobj_file<size, false>* object = relinfo->object;
4691 
4692   // Pick the value to use for symbols defined in the PLT.
4693   Symbol_value<size> symval;
4694   if (gsym != NULL
4695       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4696     {
4697       symval.set_output_value(target->plt_address_for_global(gsym));
4698       psymval = &symval;
4699     }
4700   else if (gsym == NULL && psymval->is_ifunc_symbol())
4701     {
4702       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4703       if (object->local_has_plt_offset(r_sym))
4704 	{
4705 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
4706 	  psymval = &symval;
4707 	}
4708     }
4709 
4710   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4711 
4712   // Get the GOT offset if needed.
4713   // The GOT pointer points to the end of the GOT section.
4714   // We need to subtract the size of the GOT section to get
4715   // the actual offset to use in the relocation.
4716   bool have_got_offset = false;
4717   // Since the actual offset is always negative, we use signed int to
4718   // support 64-bit GOT relocations.
4719   int got_offset = 0;
4720   switch (r_type)
4721     {
4722     case elfcpp::R_X86_64_GOT32:
4723     case elfcpp::R_X86_64_GOT64:
4724     case elfcpp::R_X86_64_GOTPLT64:
4725     case elfcpp::R_X86_64_GOTPCREL64:
4726       if (gsym != NULL)
4727 	{
4728 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4729 	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4730 	}
4731       else
4732 	{
4733 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4734 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4735 	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4736 			- target->got_size());
4737 	}
4738       have_got_offset = true;
4739       break;
4740 
4741     default:
4742       break;
4743     }
4744 
4745   typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
4746 
4747   switch (r_type)
4748     {
4749     case elfcpp::R_X86_64_NONE:
4750     case elfcpp::R_X86_64_GNU_VTINHERIT:
4751     case elfcpp::R_X86_64_GNU_VTENTRY:
4752       break;
4753 
4754     case elfcpp::R_X86_64_64:
4755       Reloc_funcs::rela64(view, object, psymval, addend);
4756       break;
4757 
4758     case elfcpp::R_X86_64_PC64:
4759       Reloc_funcs::pcrela64(view, object, psymval, addend,
4760 					      address);
4761       break;
4762 
4763     case elfcpp::R_X86_64_32:
4764       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4765 					  Reloc_funcs::CHECK_UNSIGNED);
4766       break;
4767 
4768     case elfcpp::R_X86_64_32S:
4769       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4770 					  Reloc_funcs::CHECK_SIGNED);
4771       break;
4772 
4773     case elfcpp::R_X86_64_PC32:
4774     case elfcpp::R_X86_64_PC32_BND:
4775       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4776 					    address);
4777       break;
4778 
4779     case elfcpp::R_X86_64_16:
4780       Reloc_funcs::rela16(view, object, psymval, addend);
4781       break;
4782 
4783     case elfcpp::R_X86_64_PC16:
4784       Reloc_funcs::pcrela16(view, object, psymval, addend, address);
4785       break;
4786 
4787     case elfcpp::R_X86_64_8:
4788       Reloc_funcs::rela8(view, object, psymval, addend);
4789       break;
4790 
4791     case elfcpp::R_X86_64_PC8:
4792       Reloc_funcs::pcrela8(view, object, psymval, addend, address);
4793       break;
4794 
4795     case elfcpp::R_X86_64_PLT32:
4796     case elfcpp::R_X86_64_PLT32_BND:
4797       gold_assert(gsym == NULL
4798 		  || gsym->has_plt_offset()
4799 		  || gsym->final_value_is_known()
4800 		  || (gsym->is_defined()
4801 		      && !gsym->is_from_dynobj()
4802 		      && !gsym->is_preemptible()));
4803       // Note: while this code looks the same as for R_X86_64_PC32, it
4804       // behaves differently because psymval was set to point to
4805       // the PLT entry, rather than the symbol, in Scan::global().
4806       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4807 					    address);
4808       break;
4809 
4810     case elfcpp::R_X86_64_PLTOFF64:
4811       {
4812 	gold_assert(gsym);
4813 	gold_assert(gsym->has_plt_offset()
4814 		    || gsym->final_value_is_known());
4815 	typename elfcpp::Elf_types<size>::Elf_Addr got_address;
4816 	// This is the address of GLOBAL_OFFSET_TABLE.
4817 	got_address = target->got_plt_section()->address();
4818 	Reloc_funcs::rela64(view, object, psymval, addend - got_address);
4819       }
4820       break;
4821 
4822     case elfcpp::R_X86_64_GOT32:
4823       gold_assert(have_got_offset);
4824       Reloc_funcs::rela32(view, got_offset, addend);
4825       break;
4826 
4827     case elfcpp::R_X86_64_GOTPC32:
4828       {
4829 	gold_assert(gsym);
4830 	typename elfcpp::Elf_types<size>::Elf_Addr value;
4831 	value = target->got_plt_section()->address();
4832 	Reloc_funcs::pcrela32_check(view, value, addend, address);
4833       }
4834       break;
4835 
4836     case elfcpp::R_X86_64_GOT64:
4837     case elfcpp::R_X86_64_GOTPLT64:
4838       // R_X86_64_GOTPLT64 is obsolete and treated the same as
4839       // GOT64.
4840       gold_assert(have_got_offset);
4841       Reloc_funcs::rela64(view, got_offset, addend);
4842       break;
4843 
4844     case elfcpp::R_X86_64_GOTPC64:
4845       {
4846 	gold_assert(gsym);
4847 	typename elfcpp::Elf_types<size>::Elf_Addr value;
4848 	value = target->got_plt_section()->address();
4849 	Reloc_funcs::pcrela64(view, value, addend, address);
4850       }
4851       break;
4852 
4853     case elfcpp::R_X86_64_GOTOFF64:
4854       {
4855 	typename elfcpp::Elf_types<size>::Elf_Addr reladdr;
4856 	reladdr = target->got_plt_section()->address();
4857 	Reloc_funcs::pcrela64(view, object, psymval, addend, reladdr);
4858       }
4859       break;
4860 
4861     case elfcpp::R_X86_64_GOTPCREL:
4862     case elfcpp::R_X86_64_GOTPCRELX:
4863     case elfcpp::R_X86_64_REX_GOTPCRELX:
4864       {
4865       // Convert
4866       // mov foo@GOTPCREL(%rip), %reg
4867       // to lea foo(%rip), %reg.
4868       // if possible.
4869       if (!parameters->incremental()
4870 	  && ((gsym == NULL
4871 	       && rela.get_r_offset() >= 2
4872 	       && view[-2] == 0x8b
4873 	       && !psymval->is_ifunc_symbol())
4874 	      || (gsym != NULL
4875 		  && rela.get_r_offset() >= 2
4876 		  && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4877 								 0, &view))))
4878 	{
4879 	  view[-2] = 0x8d;
4880 	  Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4881 	}
4882       // Convert
4883       // callq *foo@GOTPCRELX(%rip) to
4884       // addr32 callq foo
4885       // and jmpq *foo@GOTPCRELX(%rip) to
4886       // jmpq foo
4887       // nop
4888       else if (!parameters->incremental()
4889 	       && gsym != NULL
4890 	       && rela.get_r_offset() >= 2
4891 	       && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
4892 								   r_type,
4893 								   0, &view))
4894 	{
4895 	  if (view[-1] == 0x15)
4896 	    {
4897 	      // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
4898 	      // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
4899 	      view[-2] = 0x67;
4900 	      view[-1] = 0xe8;
4901 	      // Convert GOTPCRELX to 32-bit pc relative reloc.
4902 	      Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4903 	    }
4904 	  else
4905 	    {
4906 	      // Convert jmpq *foo@GOTPCRELX(%rip) to
4907 	      // jmpq foo
4908 	      // nop
4909 	      // The opcode of direct jmpq is 0xe9.
4910 	      view[-2] = 0xe9;
4911 	      // The opcode of nop is 0x90.
4912 	      view[3] = 0x90;
4913 	      // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq is rip
4914 	      // relative and since the instruction following the jmpq is now
4915 	      // the nop, offset the address by 1 byte.  The start of the
4916               // relocation also moves ahead by 1 byte.
4917 	      Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
4918 				    address - 1);
4919 	    }
4920 	}
4921       else
4922 	{
4923 	  if (gsym != NULL)
4924 	    {
4925 	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4926 	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4927 			    - target->got_size());
4928 	    }
4929 	  else
4930 	    {
4931 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4932 	      gold_assert(object->local_has_got_offset(r_sym,
4933 						       GOT_TYPE_STANDARD));
4934 	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4935 			    - target->got_size());
4936 	    }
4937 	  typename elfcpp::Elf_types<size>::Elf_Addr value;
4938 	  value = target->got_plt_section()->address() + got_offset;
4939 	  Reloc_funcs::pcrela32_check(view, value, addend, address);
4940 	}
4941       }
4942       break;
4943 
4944     case elfcpp::R_X86_64_GOTPCREL64:
4945       {
4946 	gold_assert(have_got_offset);
4947 	typename elfcpp::Elf_types<size>::Elf_Addr value;
4948 	value = target->got_plt_section()->address() + got_offset;
4949 	Reloc_funcs::pcrela64(view, value, addend, address);
4950       }
4951       break;
4952 
4953     case elfcpp::R_X86_64_COPY:
4954     case elfcpp::R_X86_64_GLOB_DAT:
4955     case elfcpp::R_X86_64_JUMP_SLOT:
4956     case elfcpp::R_X86_64_RELATIVE:
4957     case elfcpp::R_X86_64_IRELATIVE:
4958       // These are outstanding tls relocs, which are unexpected when linking
4959     case elfcpp::R_X86_64_TPOFF64:
4960     case elfcpp::R_X86_64_DTPMOD64:
4961     case elfcpp::R_X86_64_TLSDESC:
4962       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4963 			     _("unexpected reloc %u in object file"),
4964 			     r_type);
4965       break;
4966 
4967       // These are initial tls relocs, which are expected when linking
4968     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4969     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4970     case elfcpp::R_X86_64_TLSDESC_CALL:
4971     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4972     case elfcpp::R_X86_64_DTPOFF32:
4973     case elfcpp::R_X86_64_DTPOFF64:
4974     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4975     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4976       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
4977 			 view, address, view_size);
4978       break;
4979 
4980     case elfcpp::R_X86_64_SIZE32:
4981     case elfcpp::R_X86_64_SIZE64:
4982     default:
4983       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4984 			     _("unsupported reloc %u"),
4985 			     r_type);
4986       break;
4987     }
4988 
4989   if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
4990     {
4991       if (gsym == NULL)
4992         {
4993 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4994 	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4995 				 _("relocation overflow: "
4996 				   "reference to local symbol %u in %s"),
4997 				 r_sym, object->name().c_str());
4998         }
4999       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
5000         {
5001 	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5002 				 _("relocation overflow: "
5003 				   "reference to '%s' defined in %s"),
5004 				 gsym->name(),
5005 				 gsym->object()->name().c_str());
5006         }
5007       else
5008         {
5009 	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5010 				 _("relocation overflow: reference to '%s'"),
5011 				 gsym->name());
5012         }
5013     }
5014 
5015   return true;
5016 }
5017 
5018 // Perform a TLS relocation.
5019 
5020 template<int size>
5021 inline void
5022 Target_x86_64<size>::Relocate::relocate_tls(
5023     const Relocate_info<size, false>* relinfo,
5024     Target_x86_64<size>* target,
5025     size_t relnum,
5026     const elfcpp::Rela<size, false>& rela,
5027     unsigned int r_type,
5028     const Sized_symbol<size>* gsym,
5029     const Symbol_value<size>* psymval,
5030     unsigned char* view,
5031     typename elfcpp::Elf_types<size>::Elf_Addr address,
5032     section_size_type view_size)
5033 {
5034   Output_segment* tls_segment = relinfo->layout->tls_segment();
5035 
5036   const Sized_relobj_file<size, false>* object = relinfo->object;
5037   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5038   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
5039   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
5040 
5041   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
5042 
5043   const bool is_final = (gsym == NULL
5044 			 ? !parameters->options().shared()
5045 			 : gsym->final_value_is_known());
5046   tls::Tls_optimization optimized_type
5047       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
5048   switch (r_type)
5049     {
5050     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
5051       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5052 	{
5053 	  // If this code sequence is used in a non-executable section,
5054 	  // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
5055 	  // on the assumption that it's being used by itself in a debug
5056 	  // section.  Therefore, in the unlikely event that the code
5057 	  // sequence appears in a non-executable section, we simply
5058 	  // leave it unoptimized.
5059 	  optimized_type = tls::TLSOPT_NONE;
5060 	}
5061       if (optimized_type == tls::TLSOPT_TO_LE)
5062 	{
5063 	  if (tls_segment == NULL)
5064 	    {
5065 	      gold_assert(parameters->errors()->error_count() > 0
5066 			  || issue_undefined_symbol_error(gsym));
5067 	      return;
5068 	    }
5069 	  this->tls_gd_to_le(relinfo, relnum, tls_segment,
5070 			     rela, r_type, value, view,
5071 			     view_size);
5072 	  break;
5073 	}
5074       else
5075 	{
5076 	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5077 				   ? GOT_TYPE_TLS_OFFSET
5078 				   : GOT_TYPE_TLS_PAIR);
5079 	  unsigned int got_offset;
5080 	  if (gsym != NULL)
5081 	    {
5082 	      gold_assert(gsym->has_got_offset(got_type));
5083 	      got_offset = gsym->got_offset(got_type) - target->got_size();
5084 	    }
5085 	  else
5086 	    {
5087 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5088 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
5089 	      got_offset = (object->local_got_offset(r_sym, got_type)
5090 			    - target->got_size());
5091 	    }
5092 	  if (optimized_type == tls::TLSOPT_TO_IE)
5093 	    {
5094 	      value = target->got_plt_section()->address() + got_offset;
5095 	      this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
5096 				 value, view, address, view_size);
5097 	      break;
5098 	    }
5099 	  else if (optimized_type == tls::TLSOPT_NONE)
5100 	    {
5101 	      // Relocate the field with the offset of the pair of GOT
5102 	      // entries.
5103 	      value = target->got_plt_section()->address() + got_offset;
5104 	      Relocate_functions<size, false>::pcrela32(view, value, addend,
5105 							address);
5106 	      break;
5107 	    }
5108 	}
5109       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5110 			     _("unsupported reloc %u"), r_type);
5111       break;
5112 
5113     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
5114     case elfcpp::R_X86_64_TLSDESC_CALL:
5115       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5116 	{
5117 	  // See above comment for R_X86_64_TLSGD.
5118 	  optimized_type = tls::TLSOPT_NONE;
5119 	}
5120       if (optimized_type == tls::TLSOPT_TO_LE)
5121 	{
5122 	  if (tls_segment == NULL)
5123 	    {
5124 	      gold_assert(parameters->errors()->error_count() > 0
5125 			  || issue_undefined_symbol_error(gsym));
5126 	      return;
5127 	    }
5128 	  this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
5129 				  rela, r_type, value, view,
5130 				  view_size);
5131 	  break;
5132 	}
5133       else
5134 	{
5135 	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
5136 				   ? GOT_TYPE_TLS_OFFSET
5137 				   : GOT_TYPE_TLS_DESC);
5138 	  unsigned int got_offset = 0;
5139 	  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
5140 	      && optimized_type == tls::TLSOPT_NONE)
5141 	    {
5142 	      // We created GOT entries in the .got.tlsdesc portion of
5143 	      // the .got.plt section, but the offset stored in the
5144 	      // symbol is the offset within .got.tlsdesc.
5145 	      got_offset = (target->got_size()
5146 			    + target->got_plt_section()->data_size());
5147 	    }
5148 	  if (gsym != NULL)
5149 	    {
5150 	      gold_assert(gsym->has_got_offset(got_type));
5151 	      got_offset += gsym->got_offset(got_type) - target->got_size();
5152 	    }
5153 	  else
5154 	    {
5155 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5156 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
5157 	      got_offset += (object->local_got_offset(r_sym, got_type)
5158 			     - target->got_size());
5159 	    }
5160 	  if (optimized_type == tls::TLSOPT_TO_IE)
5161 	    {
5162 	      value = target->got_plt_section()->address() + got_offset;
5163 	      this->tls_desc_gd_to_ie(relinfo, relnum,
5164 				      rela, r_type, value, view, address,
5165 				      view_size);
5166 	      break;
5167 	    }
5168 	  else if (optimized_type == tls::TLSOPT_NONE)
5169 	    {
5170 	      if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5171 		{
5172 		  // Relocate the field with the offset of the pair of GOT
5173 		  // entries.
5174 		  value = target->got_plt_section()->address() + got_offset;
5175 		  Relocate_functions<size, false>::pcrela32(view, value, addend,
5176 							    address);
5177 		}
5178 	      break;
5179 	    }
5180 	}
5181       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5182 			     _("unsupported reloc %u"), r_type);
5183       break;
5184 
5185     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
5186       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
5187 	{
5188 	  // See above comment for R_X86_64_TLSGD.
5189 	  optimized_type = tls::TLSOPT_NONE;
5190 	}
5191       if (optimized_type == tls::TLSOPT_TO_LE)
5192 	{
5193 	  if (tls_segment == NULL)
5194 	    {
5195 	      gold_assert(parameters->errors()->error_count() > 0
5196 			  || issue_undefined_symbol_error(gsym));
5197 	      return;
5198 	    }
5199 	  this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
5200 			     value, view, view_size);
5201 	  break;
5202 	}
5203       else if (optimized_type == tls::TLSOPT_NONE)
5204 	{
5205 	  // Relocate the field with the offset of the GOT entry for
5206 	  // the module index.
5207 	  unsigned int got_offset;
5208 	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
5209 			- target->got_size());
5210 	  value = target->got_plt_section()->address() + got_offset;
5211 	  Relocate_functions<size, false>::pcrela32(view, value, addend,
5212 						    address);
5213 	  break;
5214 	}
5215       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5216 			     _("unsupported reloc %u"), r_type);
5217       break;
5218 
5219     case elfcpp::R_X86_64_DTPOFF32:
5220       // This relocation type is used in debugging information.
5221       // In that case we need to not optimize the value.  If the
5222       // section is not executable, then we assume we should not
5223       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
5224       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
5225       // R_X86_64_TLSLD.
5226       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5227 	{
5228 	  if (tls_segment == NULL)
5229 	    {
5230 	      gold_assert(parameters->errors()->error_count() > 0
5231 			  || issue_undefined_symbol_error(gsym));
5232 	      return;
5233 	    }
5234 	  value -= tls_segment->memsz();
5235 	}
5236       Relocate_functions<size, false>::rela32(view, value, addend);
5237       break;
5238 
5239     case elfcpp::R_X86_64_DTPOFF64:
5240       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
5241       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
5242 	{
5243 	  if (tls_segment == NULL)
5244 	    {
5245 	      gold_assert(parameters->errors()->error_count() > 0
5246 			  || issue_undefined_symbol_error(gsym));
5247 	      return;
5248 	    }
5249 	  value -= tls_segment->memsz();
5250 	}
5251       Relocate_functions<size, false>::rela64(view, value, addend);
5252       break;
5253 
5254     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
5255       if (gsym != NULL
5256 	  && gsym->is_undefined()
5257 	  && parameters->options().output_is_executable())
5258 	{
5259 	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5260 						      NULL, rela,
5261 						      r_type, value, view,
5262 						      view_size);
5263 	  break;
5264 	}
5265       else if (optimized_type == tls::TLSOPT_TO_LE)
5266 	{
5267 	  if (tls_segment == NULL)
5268 	    {
5269 	      gold_assert(parameters->errors()->error_count() > 0
5270 			  || issue_undefined_symbol_error(gsym));
5271 	      return;
5272 	    }
5273 	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
5274 						      tls_segment, rela,
5275 						      r_type, value, view,
5276 						      view_size);
5277 	  break;
5278 	}
5279       else if (optimized_type == tls::TLSOPT_NONE)
5280 	{
5281 	  // Relocate the field with the offset of the GOT entry for
5282 	  // the tp-relative offset of the symbol.
5283 	  unsigned int got_offset;
5284 	  if (gsym != NULL)
5285 	    {
5286 	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
5287 	      got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
5288 			    - target->got_size());
5289 	    }
5290 	  else
5291 	    {
5292 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5293 	      gold_assert(object->local_has_got_offset(r_sym,
5294 						       GOT_TYPE_TLS_OFFSET));
5295 	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
5296 			    - target->got_size());
5297 	    }
5298 	  value = target->got_plt_section()->address() + got_offset;
5299 	  Relocate_functions<size, false>::pcrela32(view, value, addend,
5300 						    address);
5301 	  break;
5302 	}
5303       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5304 			     _("unsupported reloc type %u"),
5305 			     r_type);
5306       break;
5307 
5308     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
5309       if (tls_segment == NULL)
5310 	{
5311 	  gold_assert(parameters->errors()->error_count() > 0
5312 		      || issue_undefined_symbol_error(gsym));
5313 	  return;
5314 	}
5315       value -= tls_segment->memsz();
5316       Relocate_functions<size, false>::rela32(view, value, addend);
5317       break;
5318     }
5319 }
5320 
5321 // Do a relocation in which we convert a TLS General-Dynamic to an
5322 // Initial-Exec.
5323 
5324 template<int size>
5325 inline void
5326 Target_x86_64<size>::Relocate::tls_gd_to_ie(
5327     const Relocate_info<size, false>* relinfo,
5328     size_t relnum,
5329     const elfcpp::Rela<size, false>& rela,
5330     unsigned int,
5331     typename elfcpp::Elf_types<size>::Elf_Addr value,
5332     unsigned char* view,
5333     typename elfcpp::Elf_types<size>::Elf_Addr address,
5334     section_size_type view_size)
5335 {
5336   // For SIZE == 64:
5337   //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5338   //	.word 0x6666; rex64; call __tls_get_addr@PLT
5339   //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5340   //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5341   //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5342   //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
5343   // For SIZE == 32:
5344   //	leaq foo@tlsgd(%rip),%rdi;
5345   //	.word 0x6666; rex64; call __tls_get_addr@PLT
5346   //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5347   //	leaq foo@tlsgd(%rip),%rdi;
5348   //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5349   //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
5350 
5351   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5352   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5353 		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5354 		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5355 
5356   if (size == 64)
5357     {
5358       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5359 		       -4);
5360       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5361 		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5362       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5363 	     16);
5364     }
5365   else
5366     {
5367       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5368 		       -3);
5369       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5370 		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5371       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
5372 	     15);
5373     }
5374 
5375   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5376   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
5377 					    address);
5378 
5379   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5380   // We can skip it.
5381   this->skip_call_tls_get_addr_ = true;
5382 }
5383 
5384 // Do a relocation in which we convert a TLS General-Dynamic to a
5385 // Local-Exec.
5386 
5387 template<int size>
5388 inline void
5389 Target_x86_64<size>::Relocate::tls_gd_to_le(
5390     const Relocate_info<size, false>* relinfo,
5391     size_t relnum,
5392     Output_segment* tls_segment,
5393     const elfcpp::Rela<size, false>& rela,
5394     unsigned int,
5395     typename elfcpp::Elf_types<size>::Elf_Addr value,
5396     unsigned char* view,
5397     section_size_type view_size)
5398 {
5399   // For SIZE == 64:
5400   //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5401   //	.word 0x6666; rex64; call __tls_get_addr@PLT
5402   //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5403   //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
5404   //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5405   //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
5406   // For SIZE == 32:
5407   //	leaq foo@tlsgd(%rip),%rdi;
5408   //	.word 0x6666; rex64; call __tls_get_addr@PLT
5409   //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5410   //	leaq foo@tlsgd(%rip),%rdi;
5411   //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
5412   //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
5413 
5414   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
5415   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5416 		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
5417 		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
5418 
5419   if (size == 64)
5420     {
5421       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5422 		       -4);
5423       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5424 		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
5425       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5426 	     16);
5427     }
5428   else
5429     {
5430       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
5431 		       -3);
5432       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5433 		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
5434 
5435       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
5436 	     15);
5437     }
5438 
5439   value -= tls_segment->memsz();
5440   Relocate_functions<size, false>::rela32(view + 8, value, 0);
5441 
5442   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5443   // We can skip it.
5444   this->skip_call_tls_get_addr_ = true;
5445 }
5446 
5447 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
5448 
5449 template<int size>
5450 inline void
5451 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
5452     const Relocate_info<size, false>* relinfo,
5453     size_t relnum,
5454     const elfcpp::Rela<size, false>& rela,
5455     unsigned int r_type,
5456     typename elfcpp::Elf_types<size>::Elf_Addr value,
5457     unsigned char* view,
5458     typename elfcpp::Elf_types<size>::Elf_Addr address,
5459     section_size_type view_size)
5460 {
5461   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5462     {
5463       // leaq foo@tlsdesc(%rip), %rax
5464       // ==> movq foo@gottpoff(%rip), %rax
5465       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5466       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5467       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5468 		     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
5469       view[-2] = 0x8b;
5470       const elfcpp::Elf_Xword addend = rela.get_r_addend();
5471       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
5472     }
5473   else
5474     {
5475       // call *foo@tlscall(%rax)
5476       // ==> nop; nop
5477       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5478       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5479       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5480 		     view[0] == 0xff && view[1] == 0x10);
5481       view[0] = 0x66;
5482       view[1] = 0x90;
5483     }
5484 }
5485 
5486 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
5487 
5488 template<int size>
5489 inline void
5490 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
5491     const Relocate_info<size, false>* relinfo,
5492     size_t relnum,
5493     Output_segment* tls_segment,
5494     const elfcpp::Rela<size, false>& rela,
5495     unsigned int r_type,
5496     typename elfcpp::Elf_types<size>::Elf_Addr value,
5497     unsigned char* view,
5498     section_size_type view_size)
5499 {
5500   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
5501     {
5502       // leaq foo@tlsdesc(%rip), %rax
5503       // ==> movq foo@tpoff, %rax
5504       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5505       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5506       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5507 		     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
5508       view[-2] = 0xc7;
5509       view[-1] = 0xc0;
5510       value -= tls_segment->memsz();
5511       Relocate_functions<size, false>::rela32(view, value, 0);
5512     }
5513   else
5514     {
5515       // call *foo@tlscall(%rax)
5516       // ==> nop; nop
5517       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
5518       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
5519       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5520 		     view[0] == 0xff && view[1] == 0x10);
5521       view[0] = 0x66;
5522       view[1] = 0x90;
5523     }
5524 }
5525 
5526 template<int size>
5527 inline void
5528 Target_x86_64<size>::Relocate::tls_ld_to_le(
5529     const Relocate_info<size, false>* relinfo,
5530     size_t relnum,
5531     Output_segment*,
5532     const elfcpp::Rela<size, false>& rela,
5533     unsigned int,
5534     typename elfcpp::Elf_types<size>::Elf_Addr,
5535     unsigned char* view,
5536     section_size_type view_size)
5537 {
5538   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
5539   // For SIZE == 64:
5540   // ... leq foo@dtpoff(%rax),%reg
5541   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5542   // For SIZE == 32:
5543   // ... leq foo@dtpoff(%rax),%reg
5544   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5545   // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
5546   // For SIZE == 64:
5547   // ... leq foo@dtpoff(%rax),%reg
5548   // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
5549   // For SIZE == 32:
5550   // ... leq foo@dtpoff(%rax),%reg
5551   // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
5552 
5553   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5554   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
5555 
5556   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5557 		 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
5558 
5559   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
5560 		 view[4] == 0xe8 || view[4] == 0xff);
5561 
5562   if (view[4] == 0xe8)
5563     {
5564       if (size == 64)
5565 	memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
5566       else
5567 	memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
5568     }
5569   else
5570     {
5571       if (size == 64)
5572 	memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
5573 	       13);
5574       else
5575 	memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
5576 	       13);
5577     }
5578 
5579   // The next reloc should be a PLT32 reloc against __tls_get_addr.
5580   // We can skip it.
5581   this->skip_call_tls_get_addr_ = true;
5582 }
5583 
5584 // Do a relocation in which we convert a TLS Initial-Exec to a
5585 // Local-Exec.
5586 
5587 template<int size>
5588 inline void
5589 Target_x86_64<size>::Relocate::tls_ie_to_le(
5590     const Relocate_info<size, false>* relinfo,
5591     size_t relnum,
5592     Output_segment* tls_segment,
5593     const elfcpp::Rela<size, false>& rela,
5594     unsigned int,
5595     typename elfcpp::Elf_types<size>::Elf_Addr value,
5596     unsigned char* view,
5597     section_size_type view_size)
5598 {
5599   // We need to examine the opcodes to figure out which instruction we
5600   // are looking at.
5601 
5602   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
5603   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
5604 
5605   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
5606   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
5607 
5608   unsigned char op1 = view[-3];
5609   unsigned char op2 = view[-2];
5610   unsigned char op3 = view[-1];
5611   unsigned char reg = op3 >> 3;
5612 
5613   if (op2 == 0x8b)
5614     {
5615       // movq
5616       if (op1 == 0x4c)
5617 	view[-3] = 0x49;
5618       else if (size == 32 && op1 == 0x44)
5619 	view[-3] = 0x41;
5620       view[-2] = 0xc7;
5621       view[-1] = 0xc0 | reg;
5622     }
5623   else if (reg == 4)
5624     {
5625       // Special handling for %rsp.
5626       if (op1 == 0x4c)
5627 	view[-3] = 0x49;
5628       else if (size == 32 && op1 == 0x44)
5629 	view[-3] = 0x41;
5630       view[-2] = 0x81;
5631       view[-1] = 0xc0 | reg;
5632     }
5633   else
5634     {
5635       // addq
5636       if (op1 == 0x4c)
5637 	view[-3] = 0x4d;
5638       else if (size == 32 && op1 == 0x44)
5639 	view[-3] = 0x45;
5640       view[-2] = 0x8d;
5641       view[-1] = 0x80 | reg | (reg << 3);
5642     }
5643 
5644   if (tls_segment != NULL)
5645     value -= tls_segment->memsz();
5646   Relocate_functions<size, false>::rela32(view, value, 0);
5647 }
5648 
5649 // Relocate section data.
5650 
5651 template<int size>
5652 void
5653 Target_x86_64<size>::relocate_section(
5654     const Relocate_info<size, false>* relinfo,
5655     unsigned int sh_type,
5656     const unsigned char* prelocs,
5657     size_t reloc_count,
5658     Output_section* output_section,
5659     bool needs_special_offset_handling,
5660     unsigned char* view,
5661     typename elfcpp::Elf_types<size>::Elf_Addr address,
5662     section_size_type view_size,
5663     const Reloc_symbol_changes* reloc_symbol_changes)
5664 {
5665   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5666       Classify_reloc;
5667 
5668   gold_assert(sh_type == elfcpp::SHT_RELA);
5669 
5670   gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
5671 			 gold::Default_comdat_behavior, Classify_reloc>(
5672     relinfo,
5673     this,
5674     prelocs,
5675     reloc_count,
5676     output_section,
5677     needs_special_offset_handling,
5678     view,
5679     address,
5680     view_size,
5681     reloc_symbol_changes);
5682 }
5683 
5684 // Apply an incremental relocation.  Incremental relocations always refer
5685 // to global symbols.
5686 
5687 template<int size>
5688 void
5689 Target_x86_64<size>::apply_relocation(
5690     const Relocate_info<size, false>* relinfo,
5691     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
5692     unsigned int r_type,
5693     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
5694     const Symbol* gsym,
5695     unsigned char* view,
5696     typename elfcpp::Elf_types<size>::Elf_Addr address,
5697     section_size_type view_size)
5698 {
5699   gold::apply_relocation<size, false, Target_x86_64<size>,
5700 			 typename Target_x86_64<size>::Relocate>(
5701     relinfo,
5702     this,
5703     r_offset,
5704     r_type,
5705     r_addend,
5706     gsym,
5707     view,
5708     address,
5709     view_size);
5710 }
5711 
5712 // Scan the relocs during a relocatable link.
5713 
5714 template<int size>
5715 void
5716 Target_x86_64<size>::scan_relocatable_relocs(
5717     Symbol_table* symtab,
5718     Layout* layout,
5719     Sized_relobj_file<size, false>* object,
5720     unsigned int data_shndx,
5721     unsigned int sh_type,
5722     const unsigned char* prelocs,
5723     size_t reloc_count,
5724     Output_section* output_section,
5725     bool needs_special_offset_handling,
5726     size_t local_symbol_count,
5727     const unsigned char* plocal_symbols,
5728     Relocatable_relocs* rr)
5729 {
5730   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5731       Classify_reloc;
5732   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
5733       Scan_relocatable_relocs;
5734 
5735   gold_assert(sh_type == elfcpp::SHT_RELA);
5736 
5737   gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
5738     symtab,
5739     layout,
5740     object,
5741     data_shndx,
5742     prelocs,
5743     reloc_count,
5744     output_section,
5745     needs_special_offset_handling,
5746     local_symbol_count,
5747     plocal_symbols,
5748     rr);
5749 }
5750 
5751 // Scan the relocs for --emit-relocs.
5752 
5753 template<int size>
5754 void
5755 Target_x86_64<size>::emit_relocs_scan(
5756     Symbol_table* symtab,
5757     Layout* layout,
5758     Sized_relobj_file<size, false>* object,
5759     unsigned int data_shndx,
5760     unsigned int sh_type,
5761     const unsigned char* prelocs,
5762     size_t reloc_count,
5763     Output_section* output_section,
5764     bool needs_special_offset_handling,
5765     size_t local_symbol_count,
5766     const unsigned char* plocal_syms,
5767     Relocatable_relocs* rr)
5768 {
5769   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5770       Classify_reloc;
5771   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
5772       Emit_relocs_strategy;
5773 
5774   gold_assert(sh_type == elfcpp::SHT_RELA);
5775 
5776   gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
5777     symtab,
5778     layout,
5779     object,
5780     data_shndx,
5781     prelocs,
5782     reloc_count,
5783     output_section,
5784     needs_special_offset_handling,
5785     local_symbol_count,
5786     plocal_syms,
5787     rr);
5788 }
5789 
5790 // Relocate a section during a relocatable link.
5791 
5792 template<int size>
5793 void
5794 Target_x86_64<size>::relocate_relocs(
5795     const Relocate_info<size, false>* relinfo,
5796     unsigned int sh_type,
5797     const unsigned char* prelocs,
5798     size_t reloc_count,
5799     Output_section* output_section,
5800     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5801     unsigned char* view,
5802     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
5803     section_size_type view_size,
5804     unsigned char* reloc_view,
5805     section_size_type reloc_view_size)
5806 {
5807   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5808       Classify_reloc;
5809 
5810   gold_assert(sh_type == elfcpp::SHT_RELA);
5811 
5812   gold::relocate_relocs<size, false, Classify_reloc>(
5813     relinfo,
5814     prelocs,
5815     reloc_count,
5816     output_section,
5817     offset_in_output_section,
5818     view,
5819     view_address,
5820     view_size,
5821     reloc_view,
5822     reloc_view_size);
5823 }
5824 
5825 // Return the value to use for a dynamic which requires special
5826 // treatment.  This is how we support equality comparisons of function
5827 // pointers across shared library boundaries, as described in the
5828 // processor specific ABI supplement.
5829 
5830 template<int size>
5831 uint64_t
5832 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
5833 {
5834   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5835   return this->plt_address_for_global(gsym);
5836 }
5837 
5838 // Return a string used to fill a code section with nops to take up
5839 // the specified length.
5840 
5841 template<int size>
5842 std::string
5843 Target_x86_64<size>::do_code_fill(section_size_type length) const
5844 {
5845   if (length >= 16)
5846     {
5847       // Build a jmpq instruction to skip over the bytes.
5848       unsigned char jmp[5];
5849       jmp[0] = 0xe9;
5850       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
5851       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
5852 	      + std::string(length - 5, static_cast<char>(0x90)));
5853     }
5854 
5855   // Nop sequences of various lengths.
5856   const char nop1[1] = { '\x90' };                 // nop
5857   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
5858   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
5859   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
5860 			 '\x00'};
5861   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
5862 			 '\x00', '\x00' };
5863   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
5864 			 '\x44', '\x00', '\x00' };
5865   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
5866 			 '\x00', '\x00', '\x00',
5867 			 '\x00' };
5868   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
5869 			 '\x00', '\x00', '\x00',
5870 			 '\x00', '\x00' };
5871   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
5872 			 '\x84', '\x00', '\x00',
5873 			 '\x00', '\x00', '\x00' };
5874   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5875 			   '\x1f', '\x84', '\x00',
5876 			   '\x00', '\x00', '\x00',
5877 			   '\x00' };
5878   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
5879 			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5880 			   '\x00', '\x00', '\x00',
5881 			   '\x00', '\x00' };
5882   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
5883 			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5884 			   '\x84', '\x00', '\x00',
5885 			   '\x00', '\x00', '\x00' };
5886   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
5887 			   '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5888 			   '\x1f', '\x84', '\x00',
5889 			   '\x00', '\x00', '\x00',
5890 			   '\x00' };
5891   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
5892 			   '\x66', '\x66', '\x2e', // data16
5893 			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5894 			   '\x00', '\x00', '\x00',
5895 			   '\x00', '\x00' };
5896   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
5897 			   '\x66', '\x66', '\x66', // data16; data16
5898 			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5899 			   '\x84', '\x00', '\x00',
5900 			   '\x00', '\x00', '\x00' };
5901 
5902   const char* nops[16] = {
5903     NULL,
5904     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
5905     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
5906   };
5907 
5908   return std::string(nops[length], length);
5909 }
5910 
5911 // Return the addend to use for a target specific relocation.  The
5912 // only target specific relocation is R_X86_64_TLSDESC for a local
5913 // symbol.  We want to set the addend is the offset of the local
5914 // symbol in the TLS segment.
5915 
5916 template<int size>
5917 uint64_t
5918 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
5919 				     uint64_t) const
5920 {
5921   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
5922   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5923   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5924   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5925   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5926   gold_assert(psymval->is_tls_symbol());
5927   // The value of a TLS symbol is the offset in the TLS segment.
5928   return psymval->value(ti.object, 0);
5929 }
5930 
5931 // Return the value to use for the base of a DW_EH_PE_datarel offset
5932 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
5933 // assembler can not write out the difference between two labels in
5934 // different sections, so instead of using a pc-relative value they
5935 // use an offset from the GOT.
5936 
5937 template<int size>
5938 uint64_t
5939 Target_x86_64<size>::do_ehframe_datarel_base() const
5940 {
5941   gold_assert(this->global_offset_table_ != NULL);
5942   Symbol* sym = this->global_offset_table_;
5943   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
5944   return ssym->value();
5945 }
5946 
5947 // FNOFFSET in section SHNDX in OBJECT is the start of a function
5948 // compiled with -fsplit-stack.  The function calls non-split-stack
5949 // code.  We have to change the function so that it always ensures
5950 // that it has enough stack space to run some random function.
5951 
5952 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
5953 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
5954 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
5955 
5956 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
5957 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
5958 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
5959 
5960 template<int size>
5961 void
5962 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
5963 					section_offset_type fnoffset,
5964 					section_size_type fnsize,
5965 					const unsigned char*,
5966 					size_t,
5967 					unsigned char* view,
5968 					section_size_type view_size,
5969 					std::string* from,
5970 					std::string* to) const
5971 {
5972   const char* const cmp_insn = reinterpret_cast<const char*>
5973       (size == 32 ? cmp_insn_32 : cmp_insn_64);
5974   const char* const lea_r10_insn = reinterpret_cast<const char*>
5975       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
5976   const char* const lea_r11_insn = reinterpret_cast<const char*>
5977       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
5978 
5979   const size_t cmp_insn_len =
5980       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
5981   const size_t lea_r10_insn_len =
5982       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
5983   const size_t lea_r11_insn_len =
5984       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
5985   const size_t nop_len = (size == 32 ? 7 : 8);
5986 
5987   // The function starts with a comparison of the stack pointer and a
5988   // field in the TCB.  This is followed by a jump.
5989 
5990   // cmp %fs:NN,%rsp
5991   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
5992       && fnsize > nop_len + 1)
5993     {
5994       // We will call __morestack if the carry flag is set after this
5995       // comparison.  We turn the comparison into an stc instruction
5996       // and some nops.
5997       view[fnoffset] = '\xf9';
5998       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
5999     }
6000   // lea NN(%rsp),%r10
6001   // lea NN(%rsp),%r11
6002   else if ((this->match_view(view, view_size, fnoffset,
6003 			     lea_r10_insn, lea_r10_insn_len)
6004 	    || this->match_view(view, view_size, fnoffset,
6005 				lea_r11_insn, lea_r11_insn_len))
6006 	   && fnsize > 8)
6007     {
6008       // This is loading an offset from the stack pointer for a
6009       // comparison.  The offset is negative, so we decrease the
6010       // offset by the amount of space we need for the stack.  This
6011       // means we will avoid calling __morestack if there happens to
6012       // be plenty of space on the stack already.
6013       unsigned char* pval = view + fnoffset + 4;
6014       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
6015       val -= parameters->options().split_stack_adjust_size();
6016       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
6017     }
6018   else
6019     {
6020       if (!object->has_no_split_stack())
6021 	object->error(_("failed to match split-stack sequence at "
6022 			"section %u offset %0zx"),
6023 		      shndx, static_cast<size_t>(fnoffset));
6024       return;
6025     }
6026 
6027   // We have to change the function so that it calls
6028   // __morestack_non_split instead of __morestack.  The former will
6029   // allocate additional stack space.
6030   *from = "__morestack";
6031   *to = "__morestack_non_split";
6032 }
6033 
6034 // The selector for x86_64 object files.  Note this is never instantiated
6035 // directly.  It's only used in Target_selector_x86_64_nacl, below.
6036 
6037 template<int size>
6038 class Target_selector_x86_64 : public Target_selector_freebsd
6039 {
6040 public:
6041   Target_selector_x86_64()
6042     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
6043 			      (size == 64
6044 			       ? "elf64-x86-64" : "elf32-x86-64"),
6045 			      (size == 64
6046 			       ? "elf64-x86-64-freebsd"
6047 			       : "elf32-x86-64-freebsd"),
6048 			      (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
6049   { }
6050 
6051   Target*
6052   do_instantiate_target()
6053   { return new Target_x86_64<size>(); }
6054 
6055 };
6056 
6057 // NaCl variant.  It uses different PLT contents.
6058 
6059 template<int size>
6060 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
6061 {
6062  public:
6063   Output_data_plt_x86_64_nacl(Layout* layout,
6064 			      Output_data_got<64, false>* got,
6065 			      Output_data_got_plt_x86_64* got_plt,
6066 			      Output_data_space* got_irelative)
6067     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6068 				   got, got_plt, got_irelative)
6069   { }
6070 
6071   Output_data_plt_x86_64_nacl(Layout* layout,
6072 			      Output_data_got<64, false>* got,
6073 			      Output_data_got_plt_x86_64* got_plt,
6074 			      Output_data_space* got_irelative,
6075 			      unsigned int plt_count)
6076     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
6077 				   got, got_plt, got_irelative,
6078 				   plt_count)
6079   { }
6080 
6081  protected:
6082   virtual unsigned int
6083   do_get_plt_entry_size() const
6084   { return plt_entry_size; }
6085 
6086   virtual void
6087   do_add_eh_frame(Layout* layout)
6088   {
6089     layout->add_eh_frame_for_plt(this,
6090 				 this->plt_eh_frame_cie,
6091 				 this->plt_eh_frame_cie_size,
6092 				 plt_eh_frame_fde,
6093 				 plt_eh_frame_fde_size);
6094   }
6095 
6096   virtual void
6097   do_fill_first_plt_entry(unsigned char* pov,
6098 			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
6099 			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
6100 
6101   virtual unsigned int
6102   do_fill_plt_entry(unsigned char* pov,
6103 		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6104 		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6105 		    unsigned int got_offset,
6106 		    unsigned int plt_offset,
6107 		    unsigned int plt_index);
6108 
6109   virtual void
6110   do_fill_tlsdesc_entry(unsigned char* pov,
6111 			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6112 			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6113 			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6114 			unsigned int tlsdesc_got_offset,
6115 			unsigned int plt_offset);
6116 
6117  private:
6118   // The size of an entry in the PLT.
6119   static const int plt_entry_size = 64;
6120 
6121   // The first entry in the PLT.
6122   static const unsigned char first_plt_entry[plt_entry_size];
6123 
6124   // Other entries in the PLT for an executable.
6125   static const unsigned char plt_entry[plt_entry_size];
6126 
6127   // The reserved TLSDESC entry in the PLT for an executable.
6128   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
6129 
6130   // The .eh_frame unwind information for the PLT.
6131   static const int plt_eh_frame_fde_size = 32;
6132   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
6133 };
6134 
6135 template<int size>
6136 class Target_x86_64_nacl : public Target_x86_64<size>
6137 {
6138  public:
6139   Target_x86_64_nacl()
6140     : Target_x86_64<size>(&x86_64_nacl_info)
6141   { }
6142 
6143   virtual Output_data_plt_x86_64<size>*
6144   do_make_data_plt(Layout* layout,
6145 		   Output_data_got<64, false>* got,
6146 		   Output_data_got_plt_x86_64* got_plt,
6147 		   Output_data_space* got_irelative)
6148   {
6149     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6150 						 got_irelative);
6151   }
6152 
6153   virtual Output_data_plt_x86_64<size>*
6154   do_make_data_plt(Layout* layout,
6155 		   Output_data_got<64, false>* got,
6156 		   Output_data_got_plt_x86_64* got_plt,
6157 		   Output_data_space* got_irelative,
6158 		   unsigned int plt_count)
6159   {
6160     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
6161 						 got_irelative,
6162 						 plt_count);
6163   }
6164 
6165   virtual std::string
6166   do_code_fill(section_size_type length) const;
6167 
6168  private:
6169   static const Target::Target_info x86_64_nacl_info;
6170 };
6171 
6172 template<>
6173 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
6174 {
6175   64,			// size
6176   false,		// is_big_endian
6177   elfcpp::EM_X86_64,	// machine_code
6178   false,		// has_make_symbol
6179   false,		// has_resolve
6180   true,			// has_code_fill
6181   true,			// is_default_stack_executable
6182   true,			// can_icf_inline_merge_sections
6183   '\0',			// wrap_char
6184   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
6185   0x20000,		// default_text_segment_address
6186   0x10000,		// abi_pagesize (overridable by -z max-page-size)
6187   0x10000,		// common_pagesize (overridable by -z common-page-size)
6188   true,                 // isolate_execinstr
6189   0x10000000,           // rosegment_gap
6190   elfcpp::SHN_UNDEF,	// small_common_shndx
6191   elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
6192   0,			// small_common_section_flags
6193   elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
6194   NULL,			// attributes_section
6195   NULL,			// attributes_vendor
6196   "_start",		// entry_symbol_name
6197   32,			// hash_entry_size
6198   elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
6199 };
6200 
6201 template<>
6202 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
6203 {
6204   32,			// size
6205   false,		// is_big_endian
6206   elfcpp::EM_X86_64,	// machine_code
6207   false,		// has_make_symbol
6208   false,		// has_resolve
6209   true,			// has_code_fill
6210   true,			// is_default_stack_executable
6211   true,			// can_icf_inline_merge_sections
6212   '\0',			// wrap_char
6213   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
6214   0x20000,		// default_text_segment_address
6215   0x10000,		// abi_pagesize (overridable by -z max-page-size)
6216   0x10000,		// common_pagesize (overridable by -z common-page-size)
6217   true,                 // isolate_execinstr
6218   0x10000000,           // rosegment_gap
6219   elfcpp::SHN_UNDEF,	// small_common_shndx
6220   elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
6221   0,			// small_common_section_flags
6222   elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
6223   NULL,			// attributes_section
6224   NULL,			// attributes_vendor
6225   "_start",		// entry_symbol_name
6226   32,			// hash_entry_size
6227   elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
6228 };
6229 
6230 #define	NACLMASK	0xe0            // 32-byte alignment mask.
6231 
6232 // The first entry in the PLT.
6233 
6234 template<int size>
6235 const unsigned char
6236 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
6237 {
6238   0xff, 0x35,                         // pushq contents of memory address
6239   0, 0, 0, 0,                         // replaced with address of .got + 8
6240   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
6241   0, 0, 0, 0,                         // replaced with address of .got + 16
6242   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
6243   0x4d, 0x01, 0xfb,                   // add %r15, %r11
6244   0x41, 0xff, 0xe3,                   // jmpq *%r11
6245 
6246   // 9-byte nop sequence to pad out to the next 32-byte boundary.
6247   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
6248 
6249   // 32 bytes of nop to pad out to the standard size
6250   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6251   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6252   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6253   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6254   0x66,                                  // excess data32 prefix
6255   0x90                                   // nop
6256 };
6257 
6258 template<int size>
6259 void
6260 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
6261     unsigned char* pov,
6262     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6263     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
6264 {
6265   memcpy(pov, first_plt_entry, plt_entry_size);
6266   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6267 					      (got_address + 8
6268 					       - (plt_address + 2 + 4)));
6269   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6270 					      (got_address + 16
6271 					       - (plt_address + 9 + 4)));
6272 }
6273 
6274 // Subsequent entries in the PLT.
6275 
6276 template<int size>
6277 const unsigned char
6278 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
6279 {
6280   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
6281   0, 0, 0, 0,                    // replaced with address of symbol in .got
6282   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
6283   0x4d, 0x01, 0xfb,              // add %r15, %r11
6284   0x41, 0xff, 0xe3,              // jmpq *%r11
6285 
6286   // 15-byte nop sequence to pad out to the next 32-byte boundary.
6287   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6288   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6289 
6290   // Lazy GOT entries point here (32-byte aligned).
6291   0x68,                       // pushq immediate
6292   0, 0, 0, 0,                 // replaced with index into relocation table
6293   0xe9,                       // jmp relative
6294   0, 0, 0, 0,                 // replaced with offset to start of .plt0
6295 
6296   // 22 bytes of nop to pad out to the standard size.
6297   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6298   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6299   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
6300 };
6301 
6302 template<int size>
6303 unsigned int
6304 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
6305     unsigned char* pov,
6306     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6307     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6308     unsigned int got_offset,
6309     unsigned int plt_offset,
6310     unsigned int plt_index)
6311 {
6312   memcpy(pov, plt_entry, plt_entry_size);
6313   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
6314 					      (got_address + got_offset
6315 					       - (plt_address + plt_offset
6316 						  + 3 + 4)));
6317 
6318   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
6319   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
6320 					      - (plt_offset + 38 + 4));
6321 
6322   return 32;
6323 }
6324 
6325 // The reserved TLSDESC entry in the PLT.
6326 
6327 template<int size>
6328 const unsigned char
6329 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
6330 {
6331   0xff, 0x35,			// pushq x(%rip)
6332   0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
6333   0x4c, 0x8b, 0x1d,		// mov y(%rip),%r11
6334   0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
6335   0x41, 0x83, 0xe3, NACLMASK,	// and $-32, %r11d
6336   0x4d, 0x01, 0xfb,             // add %r15, %r11
6337   0x41, 0xff, 0xe3,             // jmpq *%r11
6338 
6339   // 41 bytes of nop to pad out to the standard size.
6340   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6341   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6342   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
6343   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6344   0x66, 0x66,                            // excess data32 prefixes
6345   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
6346 };
6347 
6348 template<int size>
6349 void
6350 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
6351     unsigned char* pov,
6352     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
6353     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
6354     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
6355     unsigned int tlsdesc_got_offset,
6356     unsigned int plt_offset)
6357 {
6358   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
6359   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
6360 					      (got_address + 8
6361 					       - (plt_address + plt_offset
6362 						  + 2 + 4)));
6363   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
6364 					      (got_base
6365 					       + tlsdesc_got_offset
6366 					       - (plt_address + plt_offset
6367 						  + 9 + 4)));
6368 }
6369 
6370 // The .eh_frame unwind information for the PLT.
6371 
6372 template<int size>
6373 const unsigned char
6374 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
6375 {
6376   0, 0, 0, 0,				// Replaced with offset to .plt.
6377   0, 0, 0, 0,				// Replaced with size of .plt.
6378   0,					// Augmentation size.
6379   elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
6380   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
6381   elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
6382   elfcpp::DW_CFA_advance_loc + 58,	// Advance 58 to __PLT__ + 64.
6383   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
6384   13,					// Block length.
6385   elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
6386   elfcpp::DW_OP_breg16, 0,		// Push %rip.
6387   elfcpp::DW_OP_const1u, 63,		// Push 0x3f.
6388   elfcpp::DW_OP_and,			// & (%rip & 0x3f).
6389   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
6390   elfcpp::DW_OP_ge,			// >= ((%rip & 0x3f) >= 0x25)
6391   elfcpp::DW_OP_lit3,			// Push 3.
6392   elfcpp::DW_OP_shl,			// << (((%rip & 0x3f) >= 0x25) << 3)
6393   elfcpp::DW_OP_plus,			// + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
6394   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
6395   elfcpp::DW_CFA_nop
6396 };
6397 
6398 // Return a string used to fill a code section with nops.
6399 // For NaCl, long NOPs are only valid if they do not cross
6400 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
6401 template<int size>
6402 std::string
6403 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
6404 {
6405   return std::string(length, static_cast<char>(0x90));
6406 }
6407 
6408 // The selector for x86_64-nacl object files.
6409 
6410 template<int size>
6411 class Target_selector_x86_64_nacl
6412   : public Target_selector_nacl<Target_selector_x86_64<size>,
6413 				Target_x86_64_nacl<size> >
6414 {
6415  public:
6416   Target_selector_x86_64_nacl()
6417     : Target_selector_nacl<Target_selector_x86_64<size>,
6418 			   Target_x86_64_nacl<size> >("x86-64",
6419 						      size == 64
6420 						      ? "elf64-x86-64-nacl"
6421 						      : "elf32-x86-64-nacl",
6422 						      size == 64
6423 						      ? "elf_x86_64_nacl"
6424 						      : "elf32_x86_64_nacl")
6425   { }
6426 };
6427 
6428 Target_selector_x86_64_nacl<64> target_selector_x86_64;
6429 Target_selector_x86_64_nacl<32> target_selector_x32;
6430 
6431 } // End anonymous namespace.
6432