1 /* dfa - DFA construction routines */ 2 3 /* Copyright (c) 1990 The Regents of the University of California. */ 4 /* All rights reserved. */ 5 6 /* This code is derived from software contributed to Berkeley by */ 7 /* Vern Paxson. */ 8 9 /* The United States Government has rights in this work pursuant */ 10 /* to contract no. DE-AC03-76SF00098 between the United States */ 11 /* Department of Energy and the University of California. */ 12 13 /* Redistribution and use in source and binary forms, with or without */ 14 /* modification, are permitted provided that the following conditions */ 15 /* are met: */ 16 17 /* 1. Redistributions of source code must retain the above copyright */ 18 /* notice, this list of conditions and the following disclaimer. */ 19 /* 2. Redistributions in binary form must reproduce the above copyright */ 20 /* notice, this list of conditions and the following disclaimer in the */ 21 /* documentation and/or other materials provided with the distribution. */ 22 23 /* Neither the name of the University nor the names of its contributors */ 24 /* may be used to endorse or promote products derived from this software */ 25 /* without specific prior written permission. */ 26 27 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ 28 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ 29 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ 30 /* PURPOSE. */ 31 32 #include "flexdef.h" 33 #include "tables.h" 34 35 /* declare functions that have forward references */ 36 37 void dump_associated_rules(FILE *, int); 38 void dump_transitions(FILE *, int[]); 39 void sympartition(int[], int, int[], int[]); 40 int symfollowset(int[], int, int, int[]); 41 42 43 /* check_for_backing_up - check a DFA state for backing up 44 * 45 * synopsis 46 * void check_for_backing_up( int ds, int state[numecs] ); 47 * 48 * ds is the number of the state to check and state[] is its out-transitions, 49 * indexed by equivalence class. 50 */ 51 52 void check_for_backing_up (int ds, int state[]) 53 { 54 if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */ 55 ++num_backing_up; 56 57 if (backing_up_report) { 58 fprintf (backing_up_file, 59 _("State #%d is non-accepting -\n"), ds); 60 61 /* identify the state */ 62 dump_associated_rules (backing_up_file, ds); 63 64 /* Now identify it further using the out- and 65 * jam-transitions. 66 */ 67 dump_transitions (backing_up_file, state); 68 69 putc ('\n', backing_up_file); 70 } 71 } 72 } 73 74 75 /* check_trailing_context - check to see if NFA state set constitutes 76 * "dangerous" trailing context 77 * 78 * synopsis 79 * void check_trailing_context( int nfa_states[num_states+1], int num_states, 80 * int accset[nacc+1], int nacc ); 81 * 82 * NOTES 83 * Trailing context is "dangerous" if both the head and the trailing 84 * part are of variable size \and/ there's a DFA state which contains 85 * both an accepting state for the head part of the rule and NFA states 86 * which occur after the beginning of the trailing context. 87 * 88 * When such a rule is matched, it's impossible to tell if having been 89 * in the DFA state indicates the beginning of the trailing context or 90 * further-along scanning of the pattern. In these cases, a warning 91 * message is issued. 92 * 93 * nfa_states[1 .. num_states] is the list of NFA states in the DFA. 94 * accset[1 .. nacc] is the list of accepting numbers for the DFA state. 95 */ 96 97 void check_trailing_context (int *nfa_states, int num_states, int *accset, int nacc) 98 { 99 int i, j; 100 101 for (i = 1; i <= num_states; ++i) { 102 int ns = nfa_states[i]; 103 int type = state_type[ns]; 104 int ar = assoc_rule[ns]; 105 106 if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */ 107 } 108 109 else if (type == STATE_TRAILING_CONTEXT) { 110 /* Potential trouble. Scan set of accepting numbers 111 * for the one marking the end of the "head". We 112 * assume that this looping will be fairly cheap 113 * since it's rare that an accepting number set 114 * is large. 115 */ 116 for (j = 1; j <= nacc; ++j) 117 if (accset[j] & YY_TRAILING_HEAD_MASK) { 118 line_warning (_ 119 ("dangerous trailing context"), 120 rule_linenum[ar]); 121 return; 122 } 123 } 124 } 125 } 126 127 128 /* dump_associated_rules - list the rules associated with a DFA state 129 * 130 * Goes through the set of NFA states associated with the DFA and 131 * extracts the first MAX_ASSOC_RULES unique rules, sorts them, 132 * and writes a report to the given file. 133 */ 134 135 void dump_associated_rules (FILE *file, int ds) 136 { 137 int i, j; 138 int num_associated_rules = 0; 139 int rule_set[MAX_ASSOC_RULES + 1]; 140 int *dset = dss[ds]; 141 int size = dfasiz[ds]; 142 143 for (i = 1; i <= size; ++i) { 144 int rule_num = rule_linenum[assoc_rule[dset[i]]]; 145 146 for (j = 1; j <= num_associated_rules; ++j) 147 if (rule_num == rule_set[j]) 148 break; 149 150 if (j > num_associated_rules) { /* new rule */ 151 if (num_associated_rules < MAX_ASSOC_RULES) 152 rule_set[++num_associated_rules] = 153 rule_num; 154 } 155 } 156 157 qsort (&rule_set [1], (size_t) num_associated_rules, sizeof (rule_set [1]), intcmp); 158 159 fprintf (file, _(" associated rule line numbers:")); 160 161 for (i = 1; i <= num_associated_rules; ++i) { 162 if (i % 8 == 1) 163 putc ('\n', file); 164 165 fprintf (file, "\t%d", rule_set[i]); 166 } 167 168 putc ('\n', file); 169 } 170 171 172 /* dump_transitions - list the transitions associated with a DFA state 173 * 174 * synopsis 175 * dump_transitions( FILE *file, int state[numecs] ); 176 * 177 * Goes through the set of out-transitions and lists them in human-readable 178 * form (i.e., not as equivalence classes); also lists jam transitions 179 * (i.e., all those which are not out-transitions, plus EOF). The dump 180 * is done to the given file. 181 */ 182 183 void dump_transitions (FILE *file, int state[]) 184 { 185 int i, ec; 186 int out_char_set[CSIZE]; 187 188 for (i = 0; i < csize; ++i) { 189 ec = ABS (ecgroup[i]); 190 out_char_set[i] = state[ec]; 191 } 192 193 fprintf (file, _(" out-transitions: ")); 194 195 list_character_set (file, out_char_set); 196 197 /* now invert the members of the set to get the jam transitions */ 198 for (i = 0; i < csize; ++i) 199 out_char_set[i] = !out_char_set[i]; 200 201 fprintf (file, _("\n jam-transitions: EOF ")); 202 203 list_character_set (file, out_char_set); 204 205 putc ('\n', file); 206 } 207 208 209 /* epsclosure - construct the epsilon closure of a set of ndfa states 210 * 211 * synopsis 212 * int *epsclosure( int t[num_states], int *numstates_addr, 213 * int accset[num_rules+1], int *nacc_addr, 214 * int *hashval_addr ); 215 * 216 * NOTES 217 * The epsilon closure is the set of all states reachable by an arbitrary 218 * number of epsilon transitions, which themselves do not have epsilon 219 * transitions going out, unioned with the set of states which have non-null 220 * accepting numbers. t is an array of size numstates of nfa state numbers. 221 * Upon return, t holds the epsilon closure and *numstates_addr is updated. 222 * accset holds a list of the accepting numbers, and the size of accset is 223 * given by *nacc_addr. t may be subjected to reallocation if it is not 224 * large enough to hold the epsilon closure. 225 * 226 * hashval is the hash value for the dfa corresponding to the state set. 227 */ 228 229 int *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, int *hv_addr) 230 { 231 int stkpos, ns, tsp; 232 int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum; 233 int stkend, nstate; 234 static int did_stk_init = false, *stk; 235 236 #define MARK_STATE(state) \ 237 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0) 238 239 #define IS_MARKED(state) (trans1[state] < 0) 240 241 #define UNMARK_STATE(state) \ 242 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0) 243 244 #define CHECK_ACCEPT(state) \ 245 do{ \ 246 nfaccnum = accptnum[state]; \ 247 if ( nfaccnum != NIL ) \ 248 accset[++nacc] = nfaccnum; \ 249 }while(0) 250 251 #define DO_REALLOCATION() \ 252 do { \ 253 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \ 254 ++num_reallocs; \ 255 t = reallocate_integer_array( t, current_max_dfa_size ); \ 256 stk = reallocate_integer_array( stk, current_max_dfa_size ); \ 257 }while(0) \ 258 259 #define PUT_ON_STACK(state) \ 260 do { \ 261 if ( ++stkend >= current_max_dfa_size ) \ 262 DO_REALLOCATION(); \ 263 stk[stkend] = state; \ 264 MARK_STATE(state); \ 265 }while(0) 266 267 #define ADD_STATE(state) \ 268 do { \ 269 if ( ++numstates >= current_max_dfa_size ) \ 270 DO_REALLOCATION(); \ 271 t[numstates] = state; \ 272 hashval += state; \ 273 }while(0) 274 275 #define STACK_STATE(state) \ 276 do { \ 277 PUT_ON_STACK(state); \ 278 CHECK_ACCEPT(state); \ 279 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \ 280 ADD_STATE(state); \ 281 }while(0) 282 283 284 if (!did_stk_init) { 285 stk = allocate_integer_array (current_max_dfa_size); 286 did_stk_init = true; 287 } 288 289 nacc = stkend = hashval = 0; 290 291 for (nstate = 1; nstate <= numstates; ++nstate) { 292 ns = t[nstate]; 293 294 /* The state could be marked if we've already pushed it onto 295 * the stack. 296 */ 297 if (!IS_MARKED (ns)) { 298 PUT_ON_STACK (ns); 299 CHECK_ACCEPT (ns); 300 hashval += ns; 301 } 302 } 303 304 for (stkpos = 1; stkpos <= stkend; ++stkpos) { 305 ns = stk[stkpos]; 306 transsym = transchar[ns]; 307 308 if (transsym == SYM_EPSILON) { 309 tsp = trans1[ns] + MARKER_DIFFERENCE; 310 311 if (tsp != NO_TRANSITION) { 312 if (!IS_MARKED (tsp)) 313 STACK_STATE (tsp); 314 315 tsp = trans2[ns]; 316 317 if (tsp != NO_TRANSITION 318 && !IS_MARKED (tsp)) 319 STACK_STATE (tsp); 320 } 321 } 322 } 323 324 /* Clear out "visit" markers. */ 325 326 for (stkpos = 1; stkpos <= stkend; ++stkpos) { 327 if (IS_MARKED (stk[stkpos])) 328 UNMARK_STATE (stk[stkpos]); 329 else 330 flexfatal (_ 331 ("consistency check failed in epsclosure()")); 332 } 333 334 *ns_addr = numstates; 335 *hv_addr = hashval; 336 *nacc_addr = nacc; 337 338 return t; 339 } 340 341 342 /* increase_max_dfas - increase the maximum number of DFAs */ 343 344 void increase_max_dfas (void) 345 { 346 current_max_dfas += MAX_DFAS_INCREMENT; 347 348 ++num_reallocs; 349 350 base = reallocate_integer_array (base, current_max_dfas); 351 def = reallocate_integer_array (def, current_max_dfas); 352 dfasiz = reallocate_integer_array (dfasiz, current_max_dfas); 353 accsiz = reallocate_integer_array (accsiz, current_max_dfas); 354 dhash = reallocate_integer_array (dhash, current_max_dfas); 355 dss = reallocate_int_ptr_array (dss, current_max_dfas); 356 dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas); 357 358 if (nultrans) 359 nultrans = 360 reallocate_integer_array (nultrans, 361 current_max_dfas); 362 } 363 364 365 /* ntod - convert an ndfa to a dfa 366 * 367 * Creates the dfa corresponding to the ndfa we've constructed. The 368 * dfa starts out in state #1. 369 */ 370 371 void ntod (void) 372 { 373 int *accset, ds, nacc, newds; 374 int sym, hashval, numstates, dsize; 375 int num_full_table_rows=0; /* used only for -f */ 376 int *nset, *dset; 377 int targptr, totaltrans, i, comstate, comfreq, targ; 378 int symlist[CSIZE + 1]; 379 int num_start_states; 380 int todo_head, todo_next; 381 382 struct yytbl_data *yynxt_tbl = 0; 383 flex_int32_t *yynxt_data = 0, yynxt_curr = 0; 384 385 /* Note that the following are indexed by *equivalence classes* 386 * and not by characters. Since equivalence classes are indexed 387 * beginning with 1, even if the scanner accepts NUL's, this 388 * means that (since every character is potentially in its own 389 * equivalence class) these arrays must have room for indices 390 * from 1 to CSIZE, so their size must be CSIZE + 1. 391 */ 392 int duplist[CSIZE + 1], state[CSIZE + 1]; 393 int targfreq[CSIZE + 1] = {0}, targstate[CSIZE + 1]; 394 395 /* accset needs to be large enough to hold all of the rules present 396 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants. 397 */ 398 accset = allocate_integer_array ((num_rules + 1) * 2); 399 nset = allocate_integer_array (current_max_dfa_size); 400 401 /* The "todo" queue is represented by the head, which is the DFA 402 * state currently being processed, and the "next", which is the 403 * next DFA state number available (not in use). We depend on the 404 * fact that snstods() returns DFA's \in increasing order/, and thus 405 * need only know the bounds of the dfas to be processed. 406 */ 407 todo_head = todo_next = 0; 408 409 for (i = 0; i <= csize; ++i) { 410 duplist[i] = NIL; 411 symlist[i] = false; 412 } 413 414 for (i = 0; i <= num_rules; ++i) 415 accset[i] = NIL; 416 417 if (trace) { 418 dumpnfa (scset[1]); 419 fputs (_("\n\nDFA Dump:\n\n"), stderr); 420 } 421 422 inittbl (); 423 424 /* Check to see whether we should build a separate table for 425 * transitions on NUL characters. We don't do this for full-speed 426 * (-F) scanners, since for them we don't have a simple state 427 * number lying around with which to index the table. We also 428 * don't bother doing it for scanners unless (1) NUL is in its own 429 * equivalence class (indicated by a positive value of 430 * ecgroup[NUL]), (2) NUL's equivalence class is the last 431 * equivalence class, and (3) the number of equivalence classes is 432 * the same as the number of characters. This latter case comes 433 * about when useecs is false or when it's true but every character 434 * still manages to land in its own class (unlikely, but it's 435 * cheap to check for). If all these things are true then the 436 * character code needed to represent NUL's equivalence class for 437 * indexing the tables is going to take one more bit than the 438 * number of characters, and therefore we won't be assured of 439 * being able to fit it into a YY_CHAR variable. This rules out 440 * storing the transitions in a compressed table, since the code 441 * for interpreting them uses a YY_CHAR variable (perhaps it 442 * should just use an integer, though; this is worth pondering ... 443 * ###). 444 * 445 * Finally, for full tables, we want the number of entries in the 446 * table to be a power of two so the array references go fast (it 447 * will just take a shift to compute the major index). If 448 * encoding NUL's transitions in the table will spoil this, we 449 * give it its own table (note that this will be the case if we're 450 * not using equivalence classes). 451 */ 452 453 /* Note that the test for ecgroup[0] == numecs below accomplishes 454 * both (1) and (2) above 455 */ 456 if (!fullspd && ecgroup[0] == numecs) { 457 /* NUL is alone in its equivalence class, which is the 458 * last one. 459 */ 460 int use_NUL_table = (numecs == csize); 461 462 if (fulltbl && !use_NUL_table) { 463 /* We still may want to use the table if numecs 464 * is a power of 2. 465 */ 466 if (numecs <= csize && is_power_of_2(numecs)) { 467 use_NUL_table = true; 468 } 469 } 470 471 if (use_NUL_table) 472 nultrans = 473 allocate_integer_array (current_max_dfas); 474 475 /* From now on, nultrans != nil indicates that we're 476 * saving null transitions for later, separate encoding. 477 */ 478 } 479 480 481 if (fullspd) { 482 for (i = 0; i <= numecs; ++i) 483 state[i] = 0; 484 485 place_state (state, 0, 0); 486 dfaacc[0].dfaacc_state = 0; 487 } 488 489 else if (fulltbl) { 490 if (nultrans) 491 /* We won't be including NUL's transitions in the 492 * table, so build it for entries from 0 .. numecs - 1. 493 */ 494 num_full_table_rows = numecs; 495 496 else 497 /* Take into account the fact that we'll be including 498 * the NUL entries in the transition table. Build it 499 * from 0 .. numecs. 500 */ 501 num_full_table_rows = numecs + 1; 502 503 /* Begin generating yy_nxt[][] 504 * This spans the entire LONG function. 505 * This table is tricky because we don't know how big it will be. 506 * So we'll have to realloc() on the way... 507 * we'll wait until we can calculate yynxt_tbl->td_hilen. 508 */ 509 yynxt_tbl = calloc(1, sizeof (struct yytbl_data)); 510 511 yytbl_data_init (yynxt_tbl, YYTD_ID_NXT); 512 yynxt_tbl->td_hilen = 1; 513 yynxt_tbl->td_lolen = (flex_uint32_t) num_full_table_rows; 514 yynxt_tbl->td_data = yynxt_data = 515 calloc(yynxt_tbl->td_lolen * 516 yynxt_tbl->td_hilen, 517 sizeof (flex_int32_t)); 518 yynxt_curr = 0; 519 520 buf_prints (&yydmap_buf, 521 "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n", 522 long_align ? "flex_int32_t" : "flex_int16_t"); 523 524 /* Unless -Ca, declare it "short" because it's a real 525 * long-shot that that won't be large enough. 526 */ 527 if (gentables) 528 out_str_dec 529 ("static const %s yy_nxt[][%d] =\n {\n", 530 long_align ? "flex_int32_t" : "flex_int16_t", 531 num_full_table_rows); 532 else { 533 out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows); 534 out_str ("static const %s *yy_nxt =0;\n", 535 long_align ? "flex_int32_t" : "flex_int16_t"); 536 } 537 538 539 if (gentables) 540 outn (" {"); 541 542 /* Generate 0 entries for state #0. */ 543 for (i = 0; i < num_full_table_rows; ++i) { 544 mk2data (0); 545 yynxt_data[yynxt_curr++] = 0; 546 } 547 548 dataflush (); 549 if (gentables) 550 outn (" },\n"); 551 } 552 553 /* Create the first states. */ 554 555 num_start_states = lastsc * 2; 556 557 for (i = 1; i <= num_start_states; ++i) { 558 numstates = 1; 559 560 /* For each start condition, make one state for the case when 561 * we're at the beginning of the line (the '^' operator) and 562 * one for the case when we're not. 563 */ 564 if (i % 2 == 1) 565 nset[numstates] = scset[(i / 2) + 1]; 566 else 567 nset[numstates] = 568 mkbranch (scbol[i / 2], scset[i / 2]); 569 570 nset = epsclosure (nset, &numstates, accset, &nacc, 571 &hashval); 572 573 if (snstods (nset, numstates, accset, nacc, hashval, &ds)) { 574 numas += nacc; 575 totnst += numstates; 576 ++todo_next; 577 578 if (variable_trailing_context_rules && nacc > 0) 579 check_trailing_context (nset, numstates, 580 accset, nacc); 581 } 582 } 583 584 if (!fullspd) { 585 if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state)) 586 flexfatal (_ 587 ("could not create unique end-of-buffer state")); 588 589 ++numas; 590 ++num_start_states; 591 ++todo_next; 592 } 593 594 595 while (todo_head < todo_next) { 596 targptr = 0; 597 totaltrans = 0; 598 599 for (i = 1; i <= numecs; ++i) 600 state[i] = 0; 601 602 ds = ++todo_head; 603 604 dset = dss[ds]; 605 dsize = dfasiz[ds]; 606 607 if (trace) 608 fprintf (stderr, _("state # %d:\n"), ds); 609 610 sympartition (dset, dsize, symlist, duplist); 611 612 for (sym = 1; sym <= numecs; ++sym) { 613 if (symlist[sym]) { 614 symlist[sym] = 0; 615 616 if (duplist[sym] == NIL) { 617 /* Symbol has unique out-transitions. */ 618 numstates = 619 symfollowset (dset, dsize, 620 sym, nset); 621 nset = epsclosure (nset, 622 &numstates, 623 accset, &nacc, 624 &hashval); 625 626 if (snstods 627 (nset, numstates, accset, nacc, 628 hashval, &newds)) { 629 totnst = totnst + 630 numstates; 631 ++todo_next; 632 numas += nacc; 633 634 if (variable_trailing_context_rules && nacc > 0) 635 check_trailing_context 636 (nset, 637 numstates, 638 accset, 639 nacc); 640 } 641 642 state[sym] = newds; 643 644 if (trace) 645 fprintf (stderr, 646 "\t%d\t%d\n", sym, 647 newds); 648 649 targfreq[++targptr] = 1; 650 targstate[targptr] = newds; 651 ++numuniq; 652 } 653 654 else { 655 /* sym's equivalence class has the same 656 * transitions as duplist(sym)'s 657 * equivalence class. 658 */ 659 targ = state[duplist[sym]]; 660 state[sym] = targ; 661 662 if (trace) 663 fprintf (stderr, 664 "\t%d\t%d\n", sym, 665 targ); 666 667 /* Update frequency count for 668 * destination state. 669 */ 670 671 i = 0; 672 while (targstate[++i] != targ) ; 673 674 ++targfreq[i]; 675 ++numdup; 676 } 677 678 ++totaltrans; 679 duplist[sym] = NIL; 680 } 681 } 682 683 684 numsnpairs += totaltrans; 685 686 if (ds > num_start_states) 687 check_for_backing_up (ds, state); 688 689 if (nultrans) { 690 nultrans[ds] = state[NUL_ec]; 691 state[NUL_ec] = 0; /* remove transition */ 692 } 693 694 if (fulltbl) { 695 696 /* Each time we hit here, it's another td_hilen, so we realloc. */ 697 yynxt_tbl->td_hilen++; 698 yynxt_tbl->td_data = yynxt_data = 699 realloc (yynxt_data, 700 yynxt_tbl->td_hilen * 701 yynxt_tbl->td_lolen * 702 sizeof (flex_int32_t)); 703 704 705 if (gentables) 706 outn (" {"); 707 708 /* Supply array's 0-element. */ 709 if (ds == end_of_buffer_state) { 710 mk2data (-end_of_buffer_state); 711 yynxt_data[yynxt_curr++] = 712 -end_of_buffer_state; 713 } 714 else { 715 mk2data (end_of_buffer_state); 716 yynxt_data[yynxt_curr++] = 717 end_of_buffer_state; 718 } 719 720 for (i = 1; i < num_full_table_rows; ++i) { 721 /* Jams are marked by negative of state 722 * number. 723 */ 724 mk2data (state[i] ? state[i] : -ds); 725 yynxt_data[yynxt_curr++] = 726 state[i] ? state[i] : -ds; 727 } 728 729 dataflush (); 730 if (gentables) 731 outn (" },\n"); 732 } 733 734 else if (fullspd) 735 place_state (state, ds, totaltrans); 736 737 else if (ds == end_of_buffer_state) 738 /* Special case this state to make sure it does what 739 * it's supposed to, i.e., jam on end-of-buffer. 740 */ 741 stack1 (ds, 0, 0, JAMSTATE); 742 743 else { /* normal, compressed state */ 744 745 /* Determine which destination state is the most 746 * common, and how many transitions to it there are. 747 */ 748 749 comfreq = 0; 750 comstate = 0; 751 752 for (i = 1; i <= targptr; ++i) 753 if (targfreq[i] > comfreq) { 754 comfreq = targfreq[i]; 755 comstate = targstate[i]; 756 } 757 758 bldtbl (state, ds, totaltrans, comstate, comfreq); 759 } 760 } 761 762 if (fulltbl) { 763 dataend (); 764 if (tablesext) { 765 yytbl_data_compress (yynxt_tbl); 766 if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0) 767 flexerror (_ 768 ("Could not write yynxt_tbl[][]")); 769 } 770 if (yynxt_tbl) { 771 yytbl_data_destroy (yynxt_tbl); 772 yynxt_tbl = 0; 773 } 774 } 775 776 else if (!fullspd) { 777 cmptmps (); /* create compressed template entries */ 778 779 /* Create tables for all the states with only one 780 * out-transition. 781 */ 782 while (onesp > 0) { 783 mk1tbl (onestate[onesp], onesym[onesp], 784 onenext[onesp], onedef[onesp]); 785 --onesp; 786 } 787 788 mkdeftbl (); 789 } 790 791 free(accset); 792 free(nset); 793 } 794 795 796 /* snstods - converts a set of ndfa states into a dfa state 797 * 798 * synopsis 799 * is_new_state = snstods( int sns[numstates], int numstates, 800 * int accset[num_rules+1], int nacc, 801 * int hashval, int *newds_addr ); 802 * 803 * On return, the dfa state number is in newds. 804 */ 805 806 int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, int *newds_addr) 807 { 808 int didsort = 0; 809 int i, j; 810 int newds, *oldsns; 811 812 for (i = 1; i <= lastdfa; ++i) 813 if (hashval == dhash[i]) { 814 if (numstates == dfasiz[i]) { 815 oldsns = dss[i]; 816 817 if (!didsort) { 818 /* We sort the states in sns so we 819 * can compare it to oldsns quickly. 820 */ 821 qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp); 822 didsort = 1; 823 } 824 825 for (j = 1; j <= numstates; ++j) 826 if (sns[j] != oldsns[j]) 827 break; 828 829 if (j > numstates) { 830 ++dfaeql; 831 *newds_addr = i; 832 return 0; 833 } 834 835 ++hshcol; 836 } 837 838 else 839 ++hshsave; 840 } 841 842 /* Make a new dfa. */ 843 844 if (++lastdfa >= current_max_dfas) 845 increase_max_dfas (); 846 847 newds = lastdfa; 848 849 dss[newds] = allocate_integer_array (numstates + 1); 850 851 /* If we haven't already sorted the states in sns, we do so now, 852 * so that future comparisons with it can be made quickly. 853 */ 854 855 if (!didsort) 856 qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp); 857 858 for (i = 1; i <= numstates; ++i) 859 dss[newds][i] = sns[i]; 860 861 dfasiz[newds] = numstates; 862 dhash[newds] = hashval; 863 864 if (nacc == 0) { 865 if (reject) 866 dfaacc[newds].dfaacc_set = NULL; 867 else 868 dfaacc[newds].dfaacc_state = 0; 869 870 accsiz[newds] = 0; 871 } 872 873 else if (reject) { 874 /* We sort the accepting set in increasing order so the 875 * disambiguating rule that the first rule listed is considered 876 * match in the event of ties will work. 877 */ 878 879 qsort (&accset [1], (size_t) nacc, sizeof (accset [1]), intcmp); 880 881 dfaacc[newds].dfaacc_set = 882 allocate_integer_array (nacc + 1); 883 884 /* Save the accepting set for later */ 885 for (i = 1; i <= nacc; ++i) { 886 dfaacc[newds].dfaacc_set[i] = accset[i]; 887 888 if (accset[i] <= num_rules) 889 /* Who knows, perhaps a REJECT can yield 890 * this rule. 891 */ 892 rule_useful[accset[i]] = true; 893 } 894 895 accsiz[newds] = nacc; 896 } 897 898 else { 899 /* Find lowest numbered rule so the disambiguating rule 900 * will work. 901 */ 902 j = num_rules + 1; 903 904 for (i = 1; i <= nacc; ++i) 905 if (accset[i] < j) 906 j = accset[i]; 907 908 dfaacc[newds].dfaacc_state = j; 909 910 if (j <= num_rules) 911 rule_useful[j] = true; 912 } 913 914 *newds_addr = newds; 915 916 return 1; 917 } 918 919 920 /* symfollowset - follow the symbol transitions one step 921 * 922 * synopsis 923 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize, 924 * int transsym, int nset[current_max_dfa_size] ); 925 */ 926 927 int symfollowset (int ds[], int dsize, int transsym, int nset[]) 928 { 929 int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist; 930 931 numstates = 0; 932 933 for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */ 934 ns = ds[i]; 935 sym = transchar[ns]; 936 tsp = trans1[ns]; 937 938 if (sym < 0) { /* it's a character class */ 939 sym = -sym; 940 ccllist = cclmap[sym]; 941 lenccl = ccllen[sym]; 942 943 if (cclng[sym]) { 944 for (j = 0; j < lenccl; ++j) { 945 /* Loop through negated character 946 * class. 947 */ 948 ch = ccltbl[ccllist + j]; 949 950 if (ch == 0) 951 ch = NUL_ec; 952 953 if (ch > transsym) 954 /* Transsym isn't in negated 955 * ccl. 956 */ 957 break; 958 959 else if (ch == transsym) 960 /* next 2 */ 961 goto bottom; 962 } 963 964 /* Didn't find transsym in ccl. */ 965 nset[++numstates] = tsp; 966 } 967 968 else 969 for (j = 0; j < lenccl; ++j) { 970 ch = ccltbl[ccllist + j]; 971 972 if (ch == 0) 973 ch = NUL_ec; 974 975 if (ch > transsym) 976 break; 977 else if (ch == transsym) { 978 nset[++numstates] = tsp; 979 break; 980 } 981 } 982 } 983 984 else if (sym == SYM_EPSILON) { /* do nothing */ 985 } 986 987 else if (ABS (ecgroup[sym]) == transsym) 988 nset[++numstates] = tsp; 989 990 bottom:; 991 } 992 993 return numstates; 994 } 995 996 997 /* sympartition - partition characters with same out-transitions 998 * 999 * synopsis 1000 * sympartition( int ds[current_max_dfa_size], int numstates, 1001 * int symlist[numecs], int duplist[numecs] ); 1002 */ 1003 1004 void sympartition (int ds[], int numstates, int symlist[], int duplist[]) 1005 { 1006 int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich; 1007 1008 /* Partitioning is done by creating equivalence classes for those 1009 * characters which have out-transitions from the given state. Thus 1010 * we are really creating equivalence classes of equivalence classes. 1011 */ 1012 1013 for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */ 1014 duplist[i] = i - 1; 1015 dupfwd[i] = i + 1; 1016 } 1017 1018 duplist[1] = NIL; 1019 dupfwd[numecs] = NIL; 1020 1021 for (i = 1; i <= numstates; ++i) { 1022 ns = ds[i]; 1023 tch = transchar[ns]; 1024 1025 if (tch != SYM_EPSILON) { 1026 if (tch < -lastccl || tch >= csize) { 1027 flexfatal (_ 1028 ("bad transition character detected in sympartition()")); 1029 } 1030 1031 if (tch >= 0) { /* character transition */ 1032 int ec = ecgroup[tch]; 1033 1034 mkechar (ec, dupfwd, duplist); 1035 symlist[ec] = 1; 1036 } 1037 1038 else { /* character class */ 1039 tch = -tch; 1040 1041 lenccl = ccllen[tch]; 1042 cclp = cclmap[tch]; 1043 mkeccl (ccltbl + cclp, lenccl, dupfwd, 1044 duplist, numecs, NUL_ec); 1045 1046 if (cclng[tch]) { 1047 j = 0; 1048 1049 for (k = 0; k < lenccl; ++k) { 1050 ich = ccltbl[cclp + k]; 1051 1052 if (ich == 0) 1053 ich = NUL_ec; 1054 1055 for (++j; j < ich; ++j) 1056 symlist[j] = 1; 1057 } 1058 1059 for (++j; j <= numecs; ++j) 1060 symlist[j] = 1; 1061 } 1062 1063 else 1064 for (k = 0; k < lenccl; ++k) { 1065 ich = ccltbl[cclp + k]; 1066 1067 if (ich == 0) 1068 ich = NUL_ec; 1069 1070 symlist[ich] = 1; 1071 } 1072 } 1073 } 1074 } 1075 } 1076