1 /* Allocation for dataflow support routines. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 3 2008, 2009, 2010, 2011 Free Software Foundation, Inc. 4 Originally contributed by Michael P. Hayes 5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com) 6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org) 7 and Kenneth Zadeck (zadeck@naturalbridge.com). 8 9 This file is part of GCC. 10 11 GCC is free software; you can redistribute it and/or modify it under 12 the terms of the GNU General Public License as published by the Free 13 Software Foundation; either version 3, or (at your option) any later 14 version. 15 16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 17 WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 19 for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with GCC; see the file COPYING3. If not see 23 <http://www.gnu.org/licenses/>. */ 24 25 /* 26 OVERVIEW: 27 28 The files in this collection (df*.c,df.h) provide a general framework 29 for solving dataflow problems. The global dataflow is performed using 30 a good implementation of iterative dataflow analysis. 31 32 The file df-problems.c provides problem instance for the most common 33 dataflow problems: reaching defs, upward exposed uses, live variables, 34 uninitialized variables, def-use chains, and use-def chains. However, 35 the interface allows other dataflow problems to be defined as well. 36 37 Dataflow analysis is available in most of the rtl backend (the parts 38 between pass_df_initialize and pass_df_finish). It is quite likely 39 that these boundaries will be expanded in the future. The only 40 requirement is that there be a correct control flow graph. 41 42 There are three variations of the live variable problem that are 43 available whenever dataflow is available. The LR problem finds the 44 areas that can reach a use of a variable, the UR problems finds the 45 areas that can be reached from a definition of a variable. The LIVE 46 problem finds the intersection of these two areas. 47 48 There are several optional problems. These can be enabled when they 49 are needed and disabled when they are not needed. 50 51 Dataflow problems are generally solved in three layers. The bottom 52 layer is called scanning where a data structure is built for each rtl 53 insn that describes the set of defs and uses of that insn. Scanning 54 is generally kept up to date, i.e. as the insns changes, the scanned 55 version of that insn changes also. There are various mechanisms for 56 making this happen and are described in the INCREMENTAL SCANNING 57 section. 58 59 In the middle layer, basic blocks are scanned to produce transfer 60 functions which describe the effects of that block on the global 61 dataflow solution. The transfer functions are only rebuilt if the 62 some instruction within the block has changed. 63 64 The top layer is the dataflow solution itself. The dataflow solution 65 is computed by using an efficient iterative solver and the transfer 66 functions. The dataflow solution must be recomputed whenever the 67 control changes or if one of the transfer function changes. 68 69 70 USAGE: 71 72 Here is an example of using the dataflow routines. 73 74 df_[chain,live,note,rd]_add_problem (flags); 75 76 df_set_blocks (blocks); 77 78 df_analyze (); 79 80 df_dump (stderr); 81 82 df_finish_pass (false); 83 84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an 85 instance to struct df_problem, to the set of problems solved in this 86 instance of df. All calls to add a problem for a given instance of df 87 must occur before the first call to DF_ANALYZE. 88 89 Problems can be dependent on other problems. For instance, solving 90 def-use or use-def chains is dependent on solving reaching 91 definitions. As long as these dependencies are listed in the problem 92 definition, the order of adding the problems is not material. 93 Otherwise, the problems will be solved in the order of calls to 94 df_add_problem. Note that it is not necessary to have a problem. In 95 that case, df will just be used to do the scanning. 96 97 98 99 DF_SET_BLOCKS is an optional call used to define a region of the 100 function on which the analysis will be performed. The normal case is 101 to analyze the entire function and no call to df_set_blocks is made. 102 DF_SET_BLOCKS only effects the blocks that are effected when computing 103 the transfer functions and final solution. The insn level information 104 is always kept up to date. 105 106 When a subset is given, the analysis behaves as if the function only 107 contains those blocks and any edges that occur directly between the 108 blocks in the set. Care should be taken to call df_set_blocks right 109 before the call to analyze in order to eliminate the possibility that 110 optimizations that reorder blocks invalidate the bitvector. 111 112 DF_ANALYZE causes all of the defined problems to be (re)solved. When 113 DF_ANALYZE is completes, the IN and OUT sets for each basic block 114 contain the computer information. The DF_*_BB_INFO macros can be used 115 to access these bitvectors. All deferred rescannings are down before 116 the transfer functions are recomputed. 117 118 DF_DUMP can then be called to dump the information produce to some 119 file. This calls DF_DUMP_START, to print the information that is not 120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM 121 for each block to print the basic specific information. These parts 122 can all be called separately as part of a larger dump function. 123 124 125 DF_FINISH_PASS causes df_remove_problem to be called on all of the 126 optional problems. It also causes any insns whose scanning has been 127 deferred to be rescanned as well as clears all of the changeable flags. 128 Setting the pass manager TODO_df_finish flag causes this function to 129 be run. However, the pass manager will call df_finish_pass AFTER the 130 pass dumping has been done, so if you want to see the results of the 131 optional problems in the pass dumps, use the TODO flag rather than 132 calling the function yourself. 133 134 INCREMENTAL SCANNING 135 136 There are four ways of doing the incremental scanning: 137 138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan, 139 df_bb_delete, df_insn_change_bb have been added to most of 140 the low level service functions that maintain the cfg and change 141 rtl. Calling and of these routines many cause some number of insns 142 to be rescanned. 143 144 For most modern rtl passes, this is certainly the easiest way to 145 manage rescanning the insns. This technique also has the advantage 146 that the scanning information is always correct and can be relied 147 upon even after changes have been made to the instructions. This 148 technique is contra indicated in several cases: 149 150 a) If def-use chains OR use-def chains (but not both) are built, 151 using this is SIMPLY WRONG. The problem is that when a ref is 152 deleted that is the target of an edge, there is not enough 153 information to efficiently find the source of the edge and 154 delete the edge. This leaves a dangling reference that may 155 cause problems. 156 157 b) If def-use chains AND use-def chains are built, this may 158 produce unexpected results. The problem is that the incremental 159 scanning of an insn does not know how to repair the chains that 160 point into an insn when the insn changes. So the incremental 161 scanning just deletes the chains that enter and exit the insn 162 being changed. The dangling reference issue in (a) is not a 163 problem here, but if the pass is depending on the chains being 164 maintained after insns have been modified, this technique will 165 not do the correct thing. 166 167 c) If the pass modifies insns several times, this incremental 168 updating may be expensive. 169 170 d) If the pass modifies all of the insns, as does register 171 allocation, it is simply better to rescan the entire function. 172 173 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and 174 df_insn_delete do not immediately change the insn but instead make 175 a note that the insn needs to be rescanned. The next call to 176 df_analyze, df_finish_pass, or df_process_deferred_rescans will 177 cause all of the pending rescans to be processed. 178 179 This is the technique of choice if either 1a, 1b, or 1c are issues 180 in the pass. In the case of 1a or 1b, a call to df_finish_pass 181 (either manually or via TODO_df_finish) should be made before the 182 next call to df_analyze or df_process_deferred_rescans. 183 184 This mode is also used by a few passes that still rely on note_uses, 185 note_stores and for_each_rtx instead of using the DF data. This 186 can be said to fall under case 1c. 187 188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN). 189 (This mode can be cleared by calling df_clear_flags 190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to 191 be rescanned. 192 193 3) Total rescanning - In this mode the rescanning is disabled. 194 Only when insns are deleted is the df information associated with 195 it also deleted. At the end of the pass, a call must be made to 196 df_insn_rescan_all. This method is used by the register allocator 197 since it generally changes each insn multiple times (once for each ref) 198 and does not need to make use of the updated scanning information. 199 200 4) Do it yourself - In this mechanism, the pass updates the insns 201 itself using the low level df primitives. Currently no pass does 202 this, but it has the advantage that it is quite efficient given 203 that the pass generally has exact knowledge of what it is changing. 204 205 DATA STRUCTURES 206 207 Scanning produces a `struct df_ref' data structure (ref) is allocated 208 for every register reference (def or use) and this records the insn 209 and bb the ref is found within. The refs are linked together in 210 chains of uses and defs for each insn and for each register. Each ref 211 also has a chain field that links all the use refs for a def or all 212 the def refs for a use. This is used to create use-def or def-use 213 chains. 214 215 Different optimizations have different needs. Ultimately, only 216 register allocation and schedulers should be using the bitmaps 217 produced for the live register and uninitialized register problems. 218 The rest of the backend should be upgraded to using and maintaining 219 the linked information such as def use or use def chains. 220 221 222 PHILOSOPHY: 223 224 While incremental bitmaps are not worthwhile to maintain, incremental 225 chains may be perfectly reasonable. The fastest way to build chains 226 from scratch or after significant modifications is to build reaching 227 definitions (RD) and build the chains from this. 228 229 However, general algorithms for maintaining use-def or def-use chains 230 are not practical. The amount of work to recompute the chain any 231 chain after an arbitrary change is large. However, with a modest 232 amount of work it is generally possible to have the application that 233 uses the chains keep them up to date. The high level knowledge of 234 what is really happening is essential to crafting efficient 235 incremental algorithms. 236 237 As for the bit vector problems, there is no interface to give a set of 238 blocks over with to resolve the iteration. In general, restarting a 239 dataflow iteration is difficult and expensive. Again, the best way to 240 keep the dataflow information up to data (if this is really what is 241 needed) it to formulate a problem specific solution. 242 243 There are fine grained calls for creating and deleting references from 244 instructions in df-scan.c. However, these are not currently connected 245 to the engine that resolves the dataflow equations. 246 247 248 DATA STRUCTURES: 249 250 The basic object is a DF_REF (reference) and this may either be a 251 DEF (definition) or a USE of a register. 252 253 These are linked into a variety of lists; namely reg-def, reg-use, 254 insn-def, insn-use, def-use, and use-def lists. For example, the 255 reg-def lists contain all the locations that define a given register 256 while the insn-use lists contain all the locations that use a 257 register. 258 259 Note that the reg-def and reg-use chains are generally short for 260 pseudos and long for the hard registers. 261 262 ACCESSING INSNS: 263 264 1) The df insn information is kept in an array of DF_INSN_INFO objects. 265 The array is indexed by insn uid, and every DF_REF points to the 266 DF_INSN_INFO object of the insn that contains the reference. 267 268 2) Each insn has three sets of refs, which are linked into one of three 269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS, 270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list 271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or 272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the 273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros). 274 The latter list are the list of references in REG_EQUAL or REG_EQUIV 275 notes. These macros produce a ref (or NULL), the rest of the list 276 can be obtained by traversal of the NEXT_REF field (accessed by the 277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of 278 the uses or refs in an instruction. 279 280 3) Each insn has a logical uid field (LUID) which is stored in the 281 DF_INSN_INFO object for the insn. The LUID field is accessed by 282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros. 283 When properly set, the LUID is an integer that numbers each insn in 284 the basic block, in order from the start of the block. 285 The numbers are only correct after a call to df_analyze. They will 286 rot after insns are added deleted or moved round. 287 288 ACCESSING REFS: 289 290 There are 4 ways to obtain access to refs: 291 292 1) References are divided into two categories, REAL and ARTIFICIAL. 293 294 REAL refs are associated with instructions. 295 296 ARTIFICIAL refs are associated with basic blocks. The heads of 297 these lists can be accessed by calling df_get_artificial_defs or 298 df_get_artificial_uses for the particular basic block. 299 300 Artificial defs and uses occur both at the beginning and ends of blocks. 301 302 For blocks that area at the destination of eh edges, the 303 artificial uses and defs occur at the beginning. The defs relate 304 to the registers specified in EH_RETURN_DATA_REGNO and the uses 305 relate to the registers specified in ED_USES. Logically these 306 defs and uses should really occur along the eh edge, but there is 307 no convenient way to do this. Artificial edges that occur at the 308 beginning of the block have the DF_REF_AT_TOP flag set. 309 310 Artificial uses occur at the end of all blocks. These arise from 311 the hard registers that are always live, such as the stack 312 register and are put there to keep the code from forgetting about 313 them. 314 315 Artificial defs occur at the end of the entry block. These arise 316 from registers that are live at entry to the function. 317 318 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are 319 uses that appear inside a REG_EQUAL or REG_EQUIV note.) 320 321 All of the eq_uses, uses and defs associated with each pseudo or 322 hard register may be linked in a bidirectional chain. These are 323 called reg-use or reg_def chains. If the changeable flag 324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be 325 treated like uses. If it is not set they are ignored. 326 327 The first use, eq_use or def for a register can be obtained using 328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN 329 macros. Subsequent uses for the same regno can be obtained by 330 following the next_reg field of the ref. The number of elements in 331 each of the chains can be found by using the DF_REG_USE_COUNT, 332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros. 333 334 In previous versions of this code, these chains were ordered. It 335 has not been practical to continue this practice. 336 337 3) If def-use or use-def chains are built, these can be traversed to 338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains 339 include the eq_uses. Otherwise these are ignored when building the 340 chains. 341 342 4) An array of all of the uses (and an array of all of the defs) can 343 be built. These arrays are indexed by the value in the id 344 structure. These arrays are only lazily kept up to date, and that 345 process can be expensive. To have these arrays built, call 346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES 347 has been set the array will contain the eq_uses. Otherwise these 348 are ignored when building the array and assigning the ids. Note 349 that the values in the id field of a ref may change across calls to 350 df_analyze or df_reorganize_defs or df_reorganize_uses. 351 352 If the only use of this array is to find all of the refs, it is 353 better to traverse all of the registers and then traverse all of 354 reg-use or reg-def chains. 355 356 NOTES: 357 358 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate 359 both a use and a def. These are both marked read/write to show that they 360 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42)))) 361 will generate a use of reg 42 followed by a def of reg 42 (both marked 362 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41)))) 363 generates a use of reg 41 then a def of reg 41 (both marked read/write), 364 even though reg 41 is decremented before it is used for the memory 365 address in this second example. 366 367 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG 368 for which the number of word_mode units covered by the outer mode is 369 smaller than that covered by the inner mode, invokes a read-modify-write 370 operation. We generate both a use and a def and again mark them 371 read/write. 372 373 Paradoxical subreg writes do not leave a trace of the old content, so they 374 are write-only operations. 375 */ 376 377 378 #include "config.h" 379 #include "system.h" 380 #include "coretypes.h" 381 #include "tm.h" 382 #include "rtl.h" 383 #include "tm_p.h" 384 #include "insn-config.h" 385 #include "recog.h" 386 #include "function.h" 387 #include "regs.h" 388 #include "output.h" 389 #include "alloc-pool.h" 390 #include "flags.h" 391 #include "hard-reg-set.h" 392 #include "basic-block.h" 393 #include "sbitmap.h" 394 #include "bitmap.h" 395 #include "timevar.h" 396 #include "df.h" 397 #include "tree-pass.h" 398 #include "params.h" 399 400 static void *df_get_bb_info (struct dataflow *, unsigned int); 401 static void df_set_bb_info (struct dataflow *, unsigned int, void *); 402 static void df_clear_bb_info (struct dataflow *, unsigned int); 403 #ifdef DF_DEBUG_CFG 404 static void df_set_clean_cfg (void); 405 #endif 406 407 /* An obstack for bitmap not related to specific dataflow problems. 408 This obstack should e.g. be used for bitmaps with a short life time 409 such as temporary bitmaps. */ 410 411 bitmap_obstack df_bitmap_obstack; 412 413 414 /*---------------------------------------------------------------------------- 415 Functions to create, destroy and manipulate an instance of df. 416 ----------------------------------------------------------------------------*/ 417 418 struct df_d *df; 419 420 /* Add PROBLEM (and any dependent problems) to the DF instance. */ 421 422 void 423 df_add_problem (struct df_problem *problem) 424 { 425 struct dataflow *dflow; 426 int i; 427 428 /* First try to add the dependent problem. */ 429 if (problem->dependent_problem) 430 df_add_problem (problem->dependent_problem); 431 432 /* Check to see if this problem has already been defined. If it 433 has, just return that instance, if not, add it to the end of the 434 vector. */ 435 dflow = df->problems_by_index[problem->id]; 436 if (dflow) 437 return; 438 439 /* Make a new one and add it to the end. */ 440 dflow = XCNEW (struct dataflow); 441 dflow->problem = problem; 442 dflow->computed = false; 443 dflow->solutions_dirty = true; 444 df->problems_by_index[dflow->problem->id] = dflow; 445 446 /* Keep the defined problems ordered by index. This solves the 447 problem that RI will use the information from UREC if UREC has 448 been defined, or from LIVE if LIVE is defined and otherwise LR. 449 However for this to work, the computation of RI must be pushed 450 after which ever of those problems is defined, but we do not 451 require any of those except for LR to have actually been 452 defined. */ 453 df->num_problems_defined++; 454 for (i = df->num_problems_defined - 2; i >= 0; i--) 455 { 456 if (problem->id < df->problems_in_order[i]->problem->id) 457 df->problems_in_order[i+1] = df->problems_in_order[i]; 458 else 459 { 460 df->problems_in_order[i+1] = dflow; 461 return; 462 } 463 } 464 df->problems_in_order[0] = dflow; 465 } 466 467 468 /* Set the MASK flags in the DFLOW problem. The old flags are 469 returned. If a flag is not allowed to be changed this will fail if 470 checking is enabled. */ 471 int 472 df_set_flags (int changeable_flags) 473 { 474 int old_flags = df->changeable_flags; 475 df->changeable_flags |= changeable_flags; 476 return old_flags; 477 } 478 479 480 /* Clear the MASK flags in the DFLOW problem. The old flags are 481 returned. If a flag is not allowed to be changed this will fail if 482 checking is enabled. */ 483 int 484 df_clear_flags (int changeable_flags) 485 { 486 int old_flags = df->changeable_flags; 487 df->changeable_flags &= ~changeable_flags; 488 return old_flags; 489 } 490 491 492 /* Set the blocks that are to be considered for analysis. If this is 493 not called or is called with null, the entire function in 494 analyzed. */ 495 496 void 497 df_set_blocks (bitmap blocks) 498 { 499 if (blocks) 500 { 501 if (dump_file) 502 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n"); 503 if (df->blocks_to_analyze) 504 { 505 /* This block is called to change the focus from one subset 506 to another. */ 507 int p; 508 bitmap_head diff; 509 bitmap_initialize (&diff, &df_bitmap_obstack); 510 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks); 511 for (p = 0; p < df->num_problems_defined; p++) 512 { 513 struct dataflow *dflow = df->problems_in_order[p]; 514 if (dflow->optional_p && dflow->problem->reset_fun) 515 dflow->problem->reset_fun (df->blocks_to_analyze); 516 else if (dflow->problem->free_blocks_on_set_blocks) 517 { 518 bitmap_iterator bi; 519 unsigned int bb_index; 520 521 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi) 522 { 523 basic_block bb = BASIC_BLOCK (bb_index); 524 if (bb) 525 { 526 void *bb_info = df_get_bb_info (dflow, bb_index); 527 dflow->problem->free_bb_fun (bb, bb_info); 528 df_clear_bb_info (dflow, bb_index); 529 } 530 } 531 } 532 } 533 534 bitmap_clear (&diff); 535 } 536 else 537 { 538 /* This block of code is executed to change the focus from 539 the entire function to a subset. */ 540 bitmap_head blocks_to_reset; 541 bool initialized = false; 542 int p; 543 for (p = 0; p < df->num_problems_defined; p++) 544 { 545 struct dataflow *dflow = df->problems_in_order[p]; 546 if (dflow->optional_p && dflow->problem->reset_fun) 547 { 548 if (!initialized) 549 { 550 basic_block bb; 551 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack); 552 FOR_ALL_BB(bb) 553 { 554 bitmap_set_bit (&blocks_to_reset, bb->index); 555 } 556 } 557 dflow->problem->reset_fun (&blocks_to_reset); 558 } 559 } 560 if (initialized) 561 bitmap_clear (&blocks_to_reset); 562 563 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack); 564 } 565 bitmap_copy (df->blocks_to_analyze, blocks); 566 df->analyze_subset = true; 567 } 568 else 569 { 570 /* This block is executed to reset the focus to the entire 571 function. */ 572 if (dump_file) 573 fprintf (dump_file, "clearing blocks_to_analyze\n"); 574 if (df->blocks_to_analyze) 575 { 576 BITMAP_FREE (df->blocks_to_analyze); 577 df->blocks_to_analyze = NULL; 578 } 579 df->analyze_subset = false; 580 } 581 582 /* Setting the blocks causes the refs to be unorganized since only 583 the refs in the blocks are seen. */ 584 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE); 585 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE); 586 df_mark_solutions_dirty (); 587 } 588 589 590 /* Delete a DFLOW problem (and any problems that depend on this 591 problem). */ 592 593 void 594 df_remove_problem (struct dataflow *dflow) 595 { 596 struct df_problem *problem; 597 int i; 598 599 if (!dflow) 600 return; 601 602 problem = dflow->problem; 603 gcc_assert (problem->remove_problem_fun); 604 605 /* Delete any problems that depended on this problem first. */ 606 for (i = 0; i < df->num_problems_defined; i++) 607 if (df->problems_in_order[i]->problem->dependent_problem == problem) 608 df_remove_problem (df->problems_in_order[i]); 609 610 /* Now remove this problem. */ 611 for (i = 0; i < df->num_problems_defined; i++) 612 if (df->problems_in_order[i] == dflow) 613 { 614 int j; 615 for (j = i + 1; j < df->num_problems_defined; j++) 616 df->problems_in_order[j-1] = df->problems_in_order[j]; 617 df->problems_in_order[j-1] = NULL; 618 df->num_problems_defined--; 619 break; 620 } 621 622 (problem->remove_problem_fun) (); 623 df->problems_by_index[problem->id] = NULL; 624 } 625 626 627 /* Remove all of the problems that are not permanent. Scanning, LR 628 and (at -O2 or higher) LIVE are permanent, the rest are removable. 629 Also clear all of the changeable_flags. */ 630 631 void 632 df_finish_pass (bool verify ATTRIBUTE_UNUSED) 633 { 634 int i; 635 int removed = 0; 636 637 #ifdef ENABLE_DF_CHECKING 638 int saved_flags; 639 #endif 640 641 if (!df) 642 return; 643 644 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE); 645 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE); 646 647 #ifdef ENABLE_DF_CHECKING 648 saved_flags = df->changeable_flags; 649 #endif 650 651 for (i = 0; i < df->num_problems_defined; i++) 652 { 653 struct dataflow *dflow = df->problems_in_order[i]; 654 struct df_problem *problem = dflow->problem; 655 656 if (dflow->optional_p) 657 { 658 gcc_assert (problem->remove_problem_fun); 659 (problem->remove_problem_fun) (); 660 df->problems_in_order[i] = NULL; 661 df->problems_by_index[problem->id] = NULL; 662 removed++; 663 } 664 } 665 df->num_problems_defined -= removed; 666 667 /* Clear all of the flags. */ 668 df->changeable_flags = 0; 669 df_process_deferred_rescans (); 670 671 /* Set the focus back to the whole function. */ 672 if (df->blocks_to_analyze) 673 { 674 BITMAP_FREE (df->blocks_to_analyze); 675 df->blocks_to_analyze = NULL; 676 df_mark_solutions_dirty (); 677 df->analyze_subset = false; 678 } 679 680 #ifdef ENABLE_DF_CHECKING 681 /* Verification will fail in DF_NO_INSN_RESCAN. */ 682 if (!(saved_flags & DF_NO_INSN_RESCAN)) 683 { 684 df_lr_verify_transfer_functions (); 685 if (df_live) 686 df_live_verify_transfer_functions (); 687 } 688 689 #ifdef DF_DEBUG_CFG 690 df_set_clean_cfg (); 691 #endif 692 #endif 693 694 #ifdef ENABLE_CHECKING 695 if (verify) 696 df->changeable_flags |= DF_VERIFY_SCHEDULED; 697 #endif 698 } 699 700 701 /* Set up the dataflow instance for the entire back end. */ 702 703 static unsigned int 704 rest_of_handle_df_initialize (void) 705 { 706 gcc_assert (!df); 707 df = XCNEW (struct df_d); 708 df->changeable_flags = 0; 709 710 bitmap_obstack_initialize (&df_bitmap_obstack); 711 712 /* Set this to a conservative value. Stack_ptr_mod will compute it 713 correctly later. */ 714 current_function_sp_is_unchanging = 0; 715 716 df_scan_add_problem (); 717 df_scan_alloc (NULL); 718 719 /* These three problems are permanent. */ 720 df_lr_add_problem (); 721 if (optimize > 1) 722 df_live_add_problem (); 723 724 df->postorder = XNEWVEC (int, last_basic_block); 725 df->postorder_inverted = XNEWVEC (int, last_basic_block); 726 df->n_blocks = post_order_compute (df->postorder, true, true); 727 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted); 728 gcc_assert (df->n_blocks == df->n_blocks_inverted); 729 730 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER); 731 memset (df->hard_regs_live_count, 0, 732 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER); 733 734 df_hard_reg_init (); 735 /* After reload, some ports add certain bits to regs_ever_live so 736 this cannot be reset. */ 737 df_compute_regs_ever_live (true); 738 df_scan_blocks (); 739 df_compute_regs_ever_live (false); 740 return 0; 741 } 742 743 744 static bool 745 gate_opt (void) 746 { 747 return optimize > 0; 748 } 749 750 751 struct rtl_opt_pass pass_df_initialize_opt = 752 { 753 { 754 RTL_PASS, 755 "dfinit", /* name */ 756 gate_opt, /* gate */ 757 rest_of_handle_df_initialize, /* execute */ 758 NULL, /* sub */ 759 NULL, /* next */ 760 0, /* static_pass_number */ 761 TV_DF_SCAN, /* tv_id */ 762 0, /* properties_required */ 763 0, /* properties_provided */ 764 0, /* properties_destroyed */ 765 0, /* todo_flags_start */ 766 0 /* todo_flags_finish */ 767 } 768 }; 769 770 771 static bool 772 gate_no_opt (void) 773 { 774 return optimize == 0; 775 } 776 777 778 struct rtl_opt_pass pass_df_initialize_no_opt = 779 { 780 { 781 RTL_PASS, 782 "no-opt dfinit", /* name */ 783 gate_no_opt, /* gate */ 784 rest_of_handle_df_initialize, /* execute */ 785 NULL, /* sub */ 786 NULL, /* next */ 787 0, /* static_pass_number */ 788 TV_DF_SCAN, /* tv_id */ 789 0, /* properties_required */ 790 0, /* properties_provided */ 791 0, /* properties_destroyed */ 792 0, /* todo_flags_start */ 793 0 /* todo_flags_finish */ 794 } 795 }; 796 797 798 /* Free all the dataflow info and the DF structure. This should be 799 called from the df_finish macro which also NULLs the parm. */ 800 801 static unsigned int 802 rest_of_handle_df_finish (void) 803 { 804 int i; 805 806 gcc_assert (df); 807 808 for (i = 0; i < df->num_problems_defined; i++) 809 { 810 struct dataflow *dflow = df->problems_in_order[i]; 811 dflow->problem->free_fun (); 812 } 813 814 free (df->postorder); 815 free (df->postorder_inverted); 816 free (df->hard_regs_live_count); 817 free (df); 818 df = NULL; 819 820 bitmap_obstack_release (&df_bitmap_obstack); 821 return 0; 822 } 823 824 825 struct rtl_opt_pass pass_df_finish = 826 { 827 { 828 RTL_PASS, 829 "dfinish", /* name */ 830 NULL, /* gate */ 831 rest_of_handle_df_finish, /* execute */ 832 NULL, /* sub */ 833 NULL, /* next */ 834 0, /* static_pass_number */ 835 TV_NONE, /* tv_id */ 836 0, /* properties_required */ 837 0, /* properties_provided */ 838 0, /* properties_destroyed */ 839 0, /* todo_flags_start */ 840 0 /* todo_flags_finish */ 841 } 842 }; 843 844 845 846 847 848 /*---------------------------------------------------------------------------- 849 The general data flow analysis engine. 850 ----------------------------------------------------------------------------*/ 851 852 /* Return time BB when it was visited for last time. */ 853 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux) 854 855 /* Helper function for df_worklist_dataflow. 856 Propagate the dataflow forward. 857 Given a BB_INDEX, do the dataflow propagation 858 and set bits on for successors in PENDING 859 if the out set of the dataflow has changed. 860 861 AGE specify time when BB was visited last time. 862 AGE of 0 means we are visiting for first time and need to 863 compute transfer function to initialize datastructures. 864 Otherwise we re-do transfer function only if something change 865 while computing confluence functions. 866 We need to compute confluence only of basic block that are younger 867 then last visit of the BB. 868 869 Return true if BB info has changed. This is always the case 870 in the first visit. */ 871 872 static bool 873 df_worklist_propagate_forward (struct dataflow *dataflow, 874 unsigned bb_index, 875 unsigned *bbindex_to_postorder, 876 bitmap pending, 877 sbitmap considered, 878 ptrdiff_t age) 879 { 880 edge e; 881 edge_iterator ei; 882 basic_block bb = BASIC_BLOCK (bb_index); 883 bool changed = !age; 884 885 /* Calculate <conf_op> of incoming edges. */ 886 if (EDGE_COUNT (bb->preds) > 0) 887 FOR_EACH_EDGE (e, ei, bb->preds) 888 { 889 if (age <= BB_LAST_CHANGE_AGE (e->src) 890 && TEST_BIT (considered, e->src->index)) 891 changed |= dataflow->problem->con_fun_n (e); 892 } 893 else if (dataflow->problem->con_fun_0) 894 dataflow->problem->con_fun_0 (bb); 895 896 if (changed 897 && dataflow->problem->trans_fun (bb_index)) 898 { 899 /* The out set of this block has changed. 900 Propagate to the outgoing blocks. */ 901 FOR_EACH_EDGE (e, ei, bb->succs) 902 { 903 unsigned ob_index = e->dest->index; 904 905 if (TEST_BIT (considered, ob_index)) 906 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]); 907 } 908 return true; 909 } 910 return false; 911 } 912 913 914 /* Helper function for df_worklist_dataflow. 915 Propagate the dataflow backward. */ 916 917 static bool 918 df_worklist_propagate_backward (struct dataflow *dataflow, 919 unsigned bb_index, 920 unsigned *bbindex_to_postorder, 921 bitmap pending, 922 sbitmap considered, 923 ptrdiff_t age) 924 { 925 edge e; 926 edge_iterator ei; 927 basic_block bb = BASIC_BLOCK (bb_index); 928 bool changed = !age; 929 930 /* Calculate <conf_op> of incoming edges. */ 931 if (EDGE_COUNT (bb->succs) > 0) 932 FOR_EACH_EDGE (e, ei, bb->succs) 933 { 934 if (age <= BB_LAST_CHANGE_AGE (e->dest) 935 && TEST_BIT (considered, e->dest->index)) 936 changed |= dataflow->problem->con_fun_n (e); 937 } 938 else if (dataflow->problem->con_fun_0) 939 dataflow->problem->con_fun_0 (bb); 940 941 if (changed 942 && dataflow->problem->trans_fun (bb_index)) 943 { 944 /* The out set of this block has changed. 945 Propagate to the outgoing blocks. */ 946 FOR_EACH_EDGE (e, ei, bb->preds) 947 { 948 unsigned ob_index = e->src->index; 949 950 if (TEST_BIT (considered, ob_index)) 951 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]); 952 } 953 return true; 954 } 955 return false; 956 } 957 958 /* Main dataflow solver loop. 959 960 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we 961 need to visit. 962 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and 963 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition. 964 PENDING will be freed. 965 966 The worklists are bitmaps indexed by postorder positions. 967 968 The function implements standard algorithm for dataflow solving with two 969 worklists (we are processing WORKLIST and storing new BBs to visit in 970 PENDING). 971 972 As an optimization we maintain ages when BB was changed (stored in bb->aux) 973 and when it was last visited (stored in last_visit_age). This avoids need 974 to re-do confluence function for edges to basic blocks whose source 975 did not change since destination was visited last time. */ 976 977 static void 978 df_worklist_dataflow_doublequeue (struct dataflow *dataflow, 979 bitmap pending, 980 sbitmap considered, 981 int *blocks_in_postorder, 982 unsigned *bbindex_to_postorder, 983 int n_blocks) 984 { 985 enum df_flow_dir dir = dataflow->problem->dir; 986 int dcount = 0; 987 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack); 988 int age = 0; 989 bool changed; 990 VEC(int, heap) *last_visit_age = NULL; 991 int prev_age; 992 basic_block bb; 993 int i; 994 995 VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks); 996 997 /* Double-queueing. Worklist is for the current iteration, 998 and pending is for the next. */ 999 while (!bitmap_empty_p (pending)) 1000 { 1001 bitmap_iterator bi; 1002 unsigned int index; 1003 1004 /* Swap pending and worklist. */ 1005 bitmap temp = worklist; 1006 worklist = pending; 1007 pending = temp; 1008 1009 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi) 1010 { 1011 unsigned bb_index; 1012 dcount++; 1013 1014 bitmap_clear_bit (pending, index); 1015 bb_index = blocks_in_postorder[index]; 1016 bb = BASIC_BLOCK (bb_index); 1017 prev_age = VEC_index (int, last_visit_age, index); 1018 if (dir == DF_FORWARD) 1019 changed = df_worklist_propagate_forward (dataflow, bb_index, 1020 bbindex_to_postorder, 1021 pending, considered, 1022 prev_age); 1023 else 1024 changed = df_worklist_propagate_backward (dataflow, bb_index, 1025 bbindex_to_postorder, 1026 pending, considered, 1027 prev_age); 1028 VEC_replace (int, last_visit_age, index, ++age); 1029 if (changed) 1030 bb->aux = (void *)(ptrdiff_t)age; 1031 } 1032 bitmap_clear (worklist); 1033 } 1034 for (i = 0; i < n_blocks; i++) 1035 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL; 1036 1037 BITMAP_FREE (worklist); 1038 BITMAP_FREE (pending); 1039 VEC_free (int, heap, last_visit_age); 1040 1041 /* Dump statistics. */ 1042 if (dump_file) 1043 fprintf (dump_file, "df_worklist_dataflow_doublequeue:" 1044 "n_basic_blocks %d n_edges %d" 1045 " count %d (%5.2g)\n", 1046 n_basic_blocks, n_edges, 1047 dcount, dcount / (float)n_basic_blocks); 1048 } 1049 1050 /* Worklist-based dataflow solver. It uses sbitmap as a worklist, 1051 with "n"-th bit representing the n-th block in the reverse-postorder order. 1052 The solver is a double-queue algorithm similar to the "double stack" solver 1053 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited". 1054 The only significant difference is that the worklist in this implementation 1055 is always sorted in RPO of the CFG visiting direction. */ 1056 1057 void 1058 df_worklist_dataflow (struct dataflow *dataflow, 1059 bitmap blocks_to_consider, 1060 int *blocks_in_postorder, 1061 int n_blocks) 1062 { 1063 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack); 1064 sbitmap considered = sbitmap_alloc (last_basic_block); 1065 bitmap_iterator bi; 1066 unsigned int *bbindex_to_postorder; 1067 int i; 1068 unsigned int index; 1069 enum df_flow_dir dir = dataflow->problem->dir; 1070 1071 gcc_assert (dir != DF_NONE); 1072 1073 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */ 1074 bbindex_to_postorder = 1075 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int)); 1076 1077 /* Initialize the array to an out-of-bound value. */ 1078 for (i = 0; i < last_basic_block; i++) 1079 bbindex_to_postorder[i] = last_basic_block; 1080 1081 /* Initialize the considered map. */ 1082 sbitmap_zero (considered); 1083 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi) 1084 { 1085 SET_BIT (considered, index); 1086 } 1087 1088 /* Initialize the mapping of block index to postorder. */ 1089 for (i = 0; i < n_blocks; i++) 1090 { 1091 bbindex_to_postorder[blocks_in_postorder[i]] = i; 1092 /* Add all blocks to the worklist. */ 1093 bitmap_set_bit (pending, i); 1094 } 1095 1096 /* Initialize the problem. */ 1097 if (dataflow->problem->init_fun) 1098 dataflow->problem->init_fun (blocks_to_consider); 1099 1100 /* Solve it. */ 1101 df_worklist_dataflow_doublequeue (dataflow, pending, considered, 1102 blocks_in_postorder, 1103 bbindex_to_postorder, 1104 n_blocks); 1105 sbitmap_free (considered); 1106 free (bbindex_to_postorder); 1107 } 1108 1109 1110 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving 1111 the order of the remaining entries. Returns the length of the resulting 1112 list. */ 1113 1114 static unsigned 1115 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks) 1116 { 1117 unsigned act, last; 1118 1119 for (act = 0, last = 0; act < len; act++) 1120 if (bitmap_bit_p (blocks, list[act])) 1121 list[last++] = list[act]; 1122 1123 return last; 1124 } 1125 1126 1127 /* Execute dataflow analysis on a single dataflow problem. 1128 1129 BLOCKS_TO_CONSIDER are the blocks whose solution can either be 1130 examined or will be computed. For calls from DF_ANALYZE, this is 1131 the set of blocks that has been passed to DF_SET_BLOCKS. 1132 */ 1133 1134 void 1135 df_analyze_problem (struct dataflow *dflow, 1136 bitmap blocks_to_consider, 1137 int *postorder, int n_blocks) 1138 { 1139 timevar_push (dflow->problem->tv_id); 1140 1141 /* (Re)Allocate the datastructures necessary to solve the problem. */ 1142 if (dflow->problem->alloc_fun) 1143 dflow->problem->alloc_fun (blocks_to_consider); 1144 1145 #ifdef ENABLE_DF_CHECKING 1146 if (dflow->problem->verify_start_fun) 1147 dflow->problem->verify_start_fun (); 1148 #endif 1149 1150 /* Set up the problem and compute the local information. */ 1151 if (dflow->problem->local_compute_fun) 1152 dflow->problem->local_compute_fun (blocks_to_consider); 1153 1154 /* Solve the equations. */ 1155 if (dflow->problem->dataflow_fun) 1156 dflow->problem->dataflow_fun (dflow, blocks_to_consider, 1157 postorder, n_blocks); 1158 1159 /* Massage the solution. */ 1160 if (dflow->problem->finalize_fun) 1161 dflow->problem->finalize_fun (blocks_to_consider); 1162 1163 #ifdef ENABLE_DF_CHECKING 1164 if (dflow->problem->verify_end_fun) 1165 dflow->problem->verify_end_fun (); 1166 #endif 1167 1168 timevar_pop (dflow->problem->tv_id); 1169 1170 dflow->computed = true; 1171 } 1172 1173 1174 /* Analyze dataflow info for the basic blocks specified by the bitmap 1175 BLOCKS, or for the whole CFG if BLOCKS is zero. */ 1176 1177 void 1178 df_analyze (void) 1179 { 1180 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack); 1181 bool everything; 1182 int i; 1183 1184 free (df->postorder); 1185 free (df->postorder_inverted); 1186 df->postorder = XNEWVEC (int, last_basic_block); 1187 df->postorder_inverted = XNEWVEC (int, last_basic_block); 1188 df->n_blocks = post_order_compute (df->postorder, true, true); 1189 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted); 1190 1191 /* These should be the same. */ 1192 gcc_assert (df->n_blocks == df->n_blocks_inverted); 1193 1194 /* We need to do this before the df_verify_all because this is 1195 not kept incrementally up to date. */ 1196 df_compute_regs_ever_live (false); 1197 df_process_deferred_rescans (); 1198 1199 if (dump_file) 1200 fprintf (dump_file, "df_analyze called\n"); 1201 1202 #ifndef ENABLE_DF_CHECKING 1203 if (df->changeable_flags & DF_VERIFY_SCHEDULED) 1204 #endif 1205 df_verify (); 1206 1207 for (i = 0; i < df->n_blocks; i++) 1208 bitmap_set_bit (current_all_blocks, df->postorder[i]); 1209 1210 #ifdef ENABLE_CHECKING 1211 /* Verify that POSTORDER_INVERTED only contains blocks reachable from 1212 the ENTRY block. */ 1213 for (i = 0; i < df->n_blocks_inverted; i++) 1214 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i])); 1215 #endif 1216 1217 /* Make sure that we have pruned any unreachable blocks from these 1218 sets. */ 1219 if (df->analyze_subset) 1220 { 1221 everything = false; 1222 bitmap_and_into (df->blocks_to_analyze, current_all_blocks); 1223 df->n_blocks = df_prune_to_subcfg (df->postorder, 1224 df->n_blocks, df->blocks_to_analyze); 1225 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted, 1226 df->n_blocks_inverted, 1227 df->blocks_to_analyze); 1228 BITMAP_FREE (current_all_blocks); 1229 } 1230 else 1231 { 1232 everything = true; 1233 df->blocks_to_analyze = current_all_blocks; 1234 current_all_blocks = NULL; 1235 } 1236 1237 /* Skip over the DF_SCAN problem. */ 1238 for (i = 1; i < df->num_problems_defined; i++) 1239 { 1240 struct dataflow *dflow = df->problems_in_order[i]; 1241 if (dflow->solutions_dirty) 1242 { 1243 if (dflow->problem->dir == DF_FORWARD) 1244 df_analyze_problem (dflow, 1245 df->blocks_to_analyze, 1246 df->postorder_inverted, 1247 df->n_blocks_inverted); 1248 else 1249 df_analyze_problem (dflow, 1250 df->blocks_to_analyze, 1251 df->postorder, 1252 df->n_blocks); 1253 } 1254 } 1255 1256 if (everything) 1257 { 1258 BITMAP_FREE (df->blocks_to_analyze); 1259 df->blocks_to_analyze = NULL; 1260 } 1261 1262 #ifdef DF_DEBUG_CFG 1263 df_set_clean_cfg (); 1264 #endif 1265 } 1266 1267 1268 /* Return the number of basic blocks from the last call to df_analyze. */ 1269 1270 int 1271 df_get_n_blocks (enum df_flow_dir dir) 1272 { 1273 gcc_assert (dir != DF_NONE); 1274 1275 if (dir == DF_FORWARD) 1276 { 1277 gcc_assert (df->postorder_inverted); 1278 return df->n_blocks_inverted; 1279 } 1280 1281 gcc_assert (df->postorder); 1282 return df->n_blocks; 1283 } 1284 1285 1286 /* Return a pointer to the array of basic blocks in the reverse postorder. 1287 Depending on the direction of the dataflow problem, 1288 it returns either the usual reverse postorder array 1289 or the reverse postorder of inverted traversal. */ 1290 int * 1291 df_get_postorder (enum df_flow_dir dir) 1292 { 1293 gcc_assert (dir != DF_NONE); 1294 1295 if (dir == DF_FORWARD) 1296 { 1297 gcc_assert (df->postorder_inverted); 1298 return df->postorder_inverted; 1299 } 1300 gcc_assert (df->postorder); 1301 return df->postorder; 1302 } 1303 1304 static struct df_problem user_problem; 1305 static struct dataflow user_dflow; 1306 1307 /* Interface for calling iterative dataflow with user defined 1308 confluence and transfer functions. All that is necessary is to 1309 supply DIR, a direction, CONF_FUN_0, a confluence function for 1310 blocks with no logical preds (or NULL), CONF_FUN_N, the normal 1311 confluence function, TRANS_FUN, the basic block transfer function, 1312 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in 1313 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */ 1314 1315 void 1316 df_simple_dataflow (enum df_flow_dir dir, 1317 df_init_function init_fun, 1318 df_confluence_function_0 con_fun_0, 1319 df_confluence_function_n con_fun_n, 1320 df_transfer_function trans_fun, 1321 bitmap blocks, int * postorder, int n_blocks) 1322 { 1323 memset (&user_problem, 0, sizeof (struct df_problem)); 1324 user_problem.dir = dir; 1325 user_problem.init_fun = init_fun; 1326 user_problem.con_fun_0 = con_fun_0; 1327 user_problem.con_fun_n = con_fun_n; 1328 user_problem.trans_fun = trans_fun; 1329 user_dflow.problem = &user_problem; 1330 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks); 1331 } 1332 1333 1334 1335 /*---------------------------------------------------------------------------- 1336 Functions to support limited incremental change. 1337 ----------------------------------------------------------------------------*/ 1338 1339 1340 /* Get basic block info. */ 1341 1342 static void * 1343 df_get_bb_info (struct dataflow *dflow, unsigned int index) 1344 { 1345 if (dflow->block_info == NULL) 1346 return NULL; 1347 if (index >= dflow->block_info_size) 1348 return NULL; 1349 return (void *)((char *)dflow->block_info 1350 + index * dflow->problem->block_info_elt_size); 1351 } 1352 1353 1354 /* Set basic block info. */ 1355 1356 static void 1357 df_set_bb_info (struct dataflow *dflow, unsigned int index, 1358 void *bb_info) 1359 { 1360 gcc_assert (dflow->block_info); 1361 memcpy ((char *)dflow->block_info 1362 + index * dflow->problem->block_info_elt_size, 1363 bb_info, dflow->problem->block_info_elt_size); 1364 } 1365 1366 1367 /* Clear basic block info. */ 1368 1369 static void 1370 df_clear_bb_info (struct dataflow *dflow, unsigned int index) 1371 { 1372 gcc_assert (dflow->block_info); 1373 gcc_assert (dflow->block_info_size > index); 1374 memset ((char *)dflow->block_info 1375 + index * dflow->problem->block_info_elt_size, 1376 0, dflow->problem->block_info_elt_size); 1377 } 1378 1379 1380 /* Mark the solutions as being out of date. */ 1381 1382 void 1383 df_mark_solutions_dirty (void) 1384 { 1385 if (df) 1386 { 1387 int p; 1388 for (p = 1; p < df->num_problems_defined; p++) 1389 df->problems_in_order[p]->solutions_dirty = true; 1390 } 1391 } 1392 1393 1394 /* Return true if BB needs it's transfer functions recomputed. */ 1395 1396 bool 1397 df_get_bb_dirty (basic_block bb) 1398 { 1399 return bitmap_bit_p ((df_live 1400 ? df_live : df_lr)->out_of_date_transfer_functions, 1401 bb->index); 1402 } 1403 1404 1405 /* Mark BB as needing it's transfer functions as being out of 1406 date. */ 1407 1408 void 1409 df_set_bb_dirty (basic_block bb) 1410 { 1411 bb->flags |= BB_MODIFIED; 1412 if (df) 1413 { 1414 int p; 1415 for (p = 1; p < df->num_problems_defined; p++) 1416 { 1417 struct dataflow *dflow = df->problems_in_order[p]; 1418 if (dflow->out_of_date_transfer_functions) 1419 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index); 1420 } 1421 df_mark_solutions_dirty (); 1422 } 1423 } 1424 1425 1426 /* Grow the bb_info array. */ 1427 1428 void 1429 df_grow_bb_info (struct dataflow *dflow) 1430 { 1431 unsigned int new_size = last_basic_block + 1; 1432 if (dflow->block_info_size < new_size) 1433 { 1434 new_size += new_size / 4; 1435 dflow->block_info 1436 = (void *)XRESIZEVEC (char, (char *)dflow->block_info, 1437 new_size 1438 * dflow->problem->block_info_elt_size); 1439 memset ((char *)dflow->block_info 1440 + dflow->block_info_size 1441 * dflow->problem->block_info_elt_size, 1442 0, 1443 (new_size - dflow->block_info_size) 1444 * dflow->problem->block_info_elt_size); 1445 dflow->block_info_size = new_size; 1446 } 1447 } 1448 1449 1450 /* Clear the dirty bits. This is called from places that delete 1451 blocks. */ 1452 static void 1453 df_clear_bb_dirty (basic_block bb) 1454 { 1455 int p; 1456 for (p = 1; p < df->num_problems_defined; p++) 1457 { 1458 struct dataflow *dflow = df->problems_in_order[p]; 1459 if (dflow->out_of_date_transfer_functions) 1460 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index); 1461 } 1462 } 1463 1464 /* Called from the rtl_compact_blocks to reorganize the problems basic 1465 block info. */ 1466 1467 void 1468 df_compact_blocks (void) 1469 { 1470 int i, p; 1471 basic_block bb; 1472 void *problem_temps; 1473 bitmap_head tmp; 1474 1475 bitmap_initialize (&tmp, &df_bitmap_obstack); 1476 for (p = 0; p < df->num_problems_defined; p++) 1477 { 1478 struct dataflow *dflow = df->problems_in_order[p]; 1479 1480 /* Need to reorganize the out_of_date_transfer_functions for the 1481 dflow problem. */ 1482 if (dflow->out_of_date_transfer_functions) 1483 { 1484 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions); 1485 bitmap_clear (dflow->out_of_date_transfer_functions); 1486 if (bitmap_bit_p (&tmp, ENTRY_BLOCK)) 1487 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK); 1488 if (bitmap_bit_p (&tmp, EXIT_BLOCK)) 1489 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK); 1490 1491 i = NUM_FIXED_BLOCKS; 1492 FOR_EACH_BB (bb) 1493 { 1494 if (bitmap_bit_p (&tmp, bb->index)) 1495 bitmap_set_bit (dflow->out_of_date_transfer_functions, i); 1496 i++; 1497 } 1498 } 1499 1500 /* Now shuffle the block info for the problem. */ 1501 if (dflow->problem->free_bb_fun) 1502 { 1503 int size = last_basic_block * dflow->problem->block_info_elt_size; 1504 problem_temps = XNEWVAR (char, size); 1505 df_grow_bb_info (dflow); 1506 memcpy (problem_temps, dflow->block_info, size); 1507 1508 /* Copy the bb info from the problem tmps to the proper 1509 place in the block_info vector. Null out the copied 1510 item. The entry and exit blocks never move. */ 1511 i = NUM_FIXED_BLOCKS; 1512 FOR_EACH_BB (bb) 1513 { 1514 df_set_bb_info (dflow, i, 1515 (char *)problem_temps 1516 + bb->index * dflow->problem->block_info_elt_size); 1517 i++; 1518 } 1519 memset ((char *)dflow->block_info 1520 + i * dflow->problem->block_info_elt_size, 0, 1521 (last_basic_block - i) 1522 * dflow->problem->block_info_elt_size); 1523 free (problem_temps); 1524 } 1525 } 1526 1527 /* Shuffle the bits in the basic_block indexed arrays. */ 1528 1529 if (df->blocks_to_analyze) 1530 { 1531 if (bitmap_bit_p (&tmp, ENTRY_BLOCK)) 1532 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK); 1533 if (bitmap_bit_p (&tmp, EXIT_BLOCK)) 1534 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK); 1535 bitmap_copy (&tmp, df->blocks_to_analyze); 1536 bitmap_clear (df->blocks_to_analyze); 1537 i = NUM_FIXED_BLOCKS; 1538 FOR_EACH_BB (bb) 1539 { 1540 if (bitmap_bit_p (&tmp, bb->index)) 1541 bitmap_set_bit (df->blocks_to_analyze, i); 1542 i++; 1543 } 1544 } 1545 1546 bitmap_clear (&tmp); 1547 1548 i = NUM_FIXED_BLOCKS; 1549 FOR_EACH_BB (bb) 1550 { 1551 SET_BASIC_BLOCK (i, bb); 1552 bb->index = i; 1553 i++; 1554 } 1555 1556 gcc_assert (i == n_basic_blocks); 1557 1558 for (; i < last_basic_block; i++) 1559 SET_BASIC_BLOCK (i, NULL); 1560 1561 #ifdef DF_DEBUG_CFG 1562 if (!df_lr->solutions_dirty) 1563 df_set_clean_cfg (); 1564 #endif 1565 } 1566 1567 1568 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a 1569 block. There is no excuse for people to do this kind of thing. */ 1570 1571 void 1572 df_bb_replace (int old_index, basic_block new_block) 1573 { 1574 int new_block_index = new_block->index; 1575 int p; 1576 1577 if (dump_file) 1578 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index); 1579 1580 gcc_assert (df); 1581 gcc_assert (BASIC_BLOCK (old_index) == NULL); 1582 1583 for (p = 0; p < df->num_problems_defined; p++) 1584 { 1585 struct dataflow *dflow = df->problems_in_order[p]; 1586 if (dflow->block_info) 1587 { 1588 df_grow_bb_info (dflow); 1589 df_set_bb_info (dflow, old_index, 1590 df_get_bb_info (dflow, new_block_index)); 1591 } 1592 } 1593 1594 df_clear_bb_dirty (new_block); 1595 SET_BASIC_BLOCK (old_index, new_block); 1596 new_block->index = old_index; 1597 df_set_bb_dirty (BASIC_BLOCK (old_index)); 1598 SET_BASIC_BLOCK (new_block_index, NULL); 1599 } 1600 1601 1602 /* Free all of the per basic block dataflow from all of the problems. 1603 This is typically called before a basic block is deleted and the 1604 problem will be reanalyzed. */ 1605 1606 void 1607 df_bb_delete (int bb_index) 1608 { 1609 basic_block bb = BASIC_BLOCK (bb_index); 1610 int i; 1611 1612 if (!df) 1613 return; 1614 1615 for (i = 0; i < df->num_problems_defined; i++) 1616 { 1617 struct dataflow *dflow = df->problems_in_order[i]; 1618 if (dflow->problem->free_bb_fun) 1619 { 1620 void *bb_info = df_get_bb_info (dflow, bb_index); 1621 if (bb_info) 1622 { 1623 dflow->problem->free_bb_fun (bb, bb_info); 1624 df_clear_bb_info (dflow, bb_index); 1625 } 1626 } 1627 } 1628 df_clear_bb_dirty (bb); 1629 df_mark_solutions_dirty (); 1630 } 1631 1632 1633 /* Verify that there is a place for everything and everything is in 1634 its place. This is too expensive to run after every pass in the 1635 mainline. However this is an excellent debugging tool if the 1636 dataflow information is not being updated properly. You can just 1637 sprinkle calls in until you find the place that is changing an 1638 underlying structure without calling the proper updating 1639 routine. */ 1640 1641 void 1642 df_verify (void) 1643 { 1644 df_scan_verify (); 1645 #ifdef ENABLE_DF_CHECKING 1646 df_lr_verify_transfer_functions (); 1647 if (df_live) 1648 df_live_verify_transfer_functions (); 1649 #endif 1650 } 1651 1652 #ifdef DF_DEBUG_CFG 1653 1654 /* Compute an array of ints that describes the cfg. This can be used 1655 to discover places where the cfg is modified by the appropriate 1656 calls have not been made to the keep df informed. The internals of 1657 this are unexciting, the key is that two instances of this can be 1658 compared to see if any changes have been made to the cfg. */ 1659 1660 static int * 1661 df_compute_cfg_image (void) 1662 { 1663 basic_block bb; 1664 int size = 2 + (2 * n_basic_blocks); 1665 int i; 1666 int * map; 1667 1668 FOR_ALL_BB (bb) 1669 { 1670 size += EDGE_COUNT (bb->succs); 1671 } 1672 1673 map = XNEWVEC (int, size); 1674 map[0] = size; 1675 i = 1; 1676 FOR_ALL_BB (bb) 1677 { 1678 edge_iterator ei; 1679 edge e; 1680 1681 map[i++] = bb->index; 1682 FOR_EACH_EDGE (e, ei, bb->succs) 1683 map[i++] = e->dest->index; 1684 map[i++] = -1; 1685 } 1686 map[i] = -1; 1687 return map; 1688 } 1689 1690 static int *saved_cfg = NULL; 1691 1692 1693 /* This function compares the saved version of the cfg with the 1694 current cfg and aborts if the two are identical. The function 1695 silently returns if the cfg has been marked as dirty or the two are 1696 the same. */ 1697 1698 void 1699 df_check_cfg_clean (void) 1700 { 1701 int *new_map; 1702 1703 if (!df) 1704 return; 1705 1706 if (df_lr->solutions_dirty) 1707 return; 1708 1709 if (saved_cfg == NULL) 1710 return; 1711 1712 new_map = df_compute_cfg_image (); 1713 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0); 1714 free (new_map); 1715 } 1716 1717 1718 /* This function builds a cfg fingerprint and squirrels it away in 1719 saved_cfg. */ 1720 1721 static void 1722 df_set_clean_cfg (void) 1723 { 1724 free (saved_cfg); 1725 saved_cfg = df_compute_cfg_image (); 1726 } 1727 1728 #endif /* DF_DEBUG_CFG */ 1729 /*---------------------------------------------------------------------------- 1730 PUBLIC INTERFACES TO QUERY INFORMATION. 1731 ----------------------------------------------------------------------------*/ 1732 1733 1734 /* Return first def of REGNO within BB. */ 1735 1736 df_ref 1737 df_bb_regno_first_def_find (basic_block bb, unsigned int regno) 1738 { 1739 rtx insn; 1740 df_ref *def_rec; 1741 unsigned int uid; 1742 1743 FOR_BB_INSNS (bb, insn) 1744 { 1745 if (!INSN_P (insn)) 1746 continue; 1747 1748 uid = INSN_UID (insn); 1749 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) 1750 { 1751 df_ref def = *def_rec; 1752 if (DF_REF_REGNO (def) == regno) 1753 return def; 1754 } 1755 } 1756 return NULL; 1757 } 1758 1759 1760 /* Return last def of REGNO within BB. */ 1761 1762 df_ref 1763 df_bb_regno_last_def_find (basic_block bb, unsigned int regno) 1764 { 1765 rtx insn; 1766 df_ref *def_rec; 1767 unsigned int uid; 1768 1769 FOR_BB_INSNS_REVERSE (bb, insn) 1770 { 1771 if (!INSN_P (insn)) 1772 continue; 1773 1774 uid = INSN_UID (insn); 1775 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) 1776 { 1777 df_ref def = *def_rec; 1778 if (DF_REF_REGNO (def) == regno) 1779 return def; 1780 } 1781 } 1782 1783 return NULL; 1784 } 1785 1786 /* Finds the reference corresponding to the definition of REG in INSN. 1787 DF is the dataflow object. */ 1788 1789 df_ref 1790 df_find_def (rtx insn, rtx reg) 1791 { 1792 unsigned int uid; 1793 df_ref *def_rec; 1794 1795 if (GET_CODE (reg) == SUBREG) 1796 reg = SUBREG_REG (reg); 1797 gcc_assert (REG_P (reg)); 1798 1799 uid = INSN_UID (insn); 1800 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) 1801 { 1802 df_ref def = *def_rec; 1803 if (rtx_equal_p (DF_REF_REAL_REG (def), reg)) 1804 return def; 1805 } 1806 1807 return NULL; 1808 } 1809 1810 1811 /* Return true if REG is defined in INSN, zero otherwise. */ 1812 1813 bool 1814 df_reg_defined (rtx insn, rtx reg) 1815 { 1816 return df_find_def (insn, reg) != NULL; 1817 } 1818 1819 1820 /* Finds the reference corresponding to the use of REG in INSN. 1821 DF is the dataflow object. */ 1822 1823 df_ref 1824 df_find_use (rtx insn, rtx reg) 1825 { 1826 unsigned int uid; 1827 df_ref *use_rec; 1828 1829 if (GET_CODE (reg) == SUBREG) 1830 reg = SUBREG_REG (reg); 1831 gcc_assert (REG_P (reg)); 1832 1833 uid = INSN_UID (insn); 1834 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) 1835 { 1836 df_ref use = *use_rec; 1837 if (rtx_equal_p (DF_REF_REAL_REG (use), reg)) 1838 return use; 1839 } 1840 if (df->changeable_flags & DF_EQ_NOTES) 1841 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++) 1842 { 1843 df_ref use = *use_rec; 1844 if (rtx_equal_p (DF_REF_REAL_REG (use), reg)) 1845 return use; 1846 } 1847 return NULL; 1848 } 1849 1850 1851 /* Return true if REG is referenced in INSN, zero otherwise. */ 1852 1853 bool 1854 df_reg_used (rtx insn, rtx reg) 1855 { 1856 return df_find_use (insn, reg) != NULL; 1857 } 1858 1859 1860 /*---------------------------------------------------------------------------- 1861 Debugging and printing functions. 1862 ----------------------------------------------------------------------------*/ 1863 1864 1865 /* Write information about registers and basic blocks into FILE. 1866 This is part of making a debugging dump. */ 1867 1868 void 1869 df_print_regset (FILE *file, bitmap r) 1870 { 1871 unsigned int i; 1872 bitmap_iterator bi; 1873 1874 if (r == NULL) 1875 fputs (" (nil)", file); 1876 else 1877 { 1878 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi) 1879 { 1880 fprintf (file, " %d", i); 1881 if (i < FIRST_PSEUDO_REGISTER) 1882 fprintf (file, " [%s]", reg_names[i]); 1883 } 1884 } 1885 fprintf (file, "\n"); 1886 } 1887 1888 1889 /* Write information about registers and basic blocks into FILE. The 1890 bitmap is in the form used by df_byte_lr. This is part of making a 1891 debugging dump. */ 1892 1893 void 1894 df_print_word_regset (FILE *file, bitmap r) 1895 { 1896 unsigned int max_reg = max_reg_num (); 1897 1898 if (r == NULL) 1899 fputs (" (nil)", file); 1900 else 1901 { 1902 unsigned int i; 1903 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++) 1904 { 1905 bool found = (bitmap_bit_p (r, 2 * i) 1906 || bitmap_bit_p (r, 2 * i + 1)); 1907 if (found) 1908 { 1909 int word; 1910 const char * sep = ""; 1911 fprintf (file, " %d", i); 1912 fprintf (file, "("); 1913 for (word = 0; word < 2; word++) 1914 if (bitmap_bit_p (r, 2 * i + word)) 1915 { 1916 fprintf (file, "%s%d", sep, word); 1917 sep = ", "; 1918 } 1919 fprintf (file, ")"); 1920 } 1921 } 1922 } 1923 fprintf (file, "\n"); 1924 } 1925 1926 1927 /* Dump dataflow info. */ 1928 1929 void 1930 df_dump (FILE *file) 1931 { 1932 basic_block bb; 1933 df_dump_start (file); 1934 1935 FOR_ALL_BB (bb) 1936 { 1937 df_print_bb_index (bb, file); 1938 df_dump_top (bb, file); 1939 df_dump_bottom (bb, file); 1940 } 1941 1942 fprintf (file, "\n"); 1943 } 1944 1945 1946 /* Dump dataflow info for df->blocks_to_analyze. */ 1947 1948 void 1949 df_dump_region (FILE *file) 1950 { 1951 if (df->blocks_to_analyze) 1952 { 1953 bitmap_iterator bi; 1954 unsigned int bb_index; 1955 1956 fprintf (file, "\n\nstarting region dump\n"); 1957 df_dump_start (file); 1958 1959 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi) 1960 { 1961 basic_block bb = BASIC_BLOCK (bb_index); 1962 1963 df_print_bb_index (bb, file); 1964 df_dump_top (bb, file); 1965 df_dump_bottom (bb, file); 1966 } 1967 fprintf (file, "\n"); 1968 } 1969 else 1970 df_dump (file); 1971 } 1972 1973 1974 /* Dump the introductory information for each problem defined. */ 1975 1976 void 1977 df_dump_start (FILE *file) 1978 { 1979 int i; 1980 1981 if (!df || !file) 1982 return; 1983 1984 fprintf (file, "\n\n%s\n", current_function_name ()); 1985 fprintf (file, "\nDataflow summary:\n"); 1986 if (df->blocks_to_analyze) 1987 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n", 1988 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ()); 1989 1990 for (i = 0; i < df->num_problems_defined; i++) 1991 { 1992 struct dataflow *dflow = df->problems_in_order[i]; 1993 if (dflow->computed) 1994 { 1995 df_dump_problem_function fun = dflow->problem->dump_start_fun; 1996 if (fun) 1997 fun(file); 1998 } 1999 } 2000 } 2001 2002 2003 /* Dump the top of the block information for BB. */ 2004 2005 void 2006 df_dump_top (basic_block bb, FILE *file) 2007 { 2008 int i; 2009 2010 if (!df || !file) 2011 return; 2012 2013 for (i = 0; i < df->num_problems_defined; i++) 2014 { 2015 struct dataflow *dflow = df->problems_in_order[i]; 2016 if (dflow->computed) 2017 { 2018 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun; 2019 if (bbfun) 2020 bbfun (bb, file); 2021 } 2022 } 2023 } 2024 2025 2026 /* Dump the bottom of the block information for BB. */ 2027 2028 void 2029 df_dump_bottom (basic_block bb, FILE *file) 2030 { 2031 int i; 2032 2033 if (!df || !file) 2034 return; 2035 2036 for (i = 0; i < df->num_problems_defined; i++) 2037 { 2038 struct dataflow *dflow = df->problems_in_order[i]; 2039 if (dflow->computed) 2040 { 2041 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun; 2042 if (bbfun) 2043 bbfun (bb, file); 2044 } 2045 } 2046 } 2047 2048 2049 static void 2050 df_ref_dump (df_ref ref, FILE *file) 2051 { 2052 fprintf (file, "%c%d(%d)", 2053 DF_REF_REG_DEF_P (ref) 2054 ? 'd' 2055 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u', 2056 DF_REF_ID (ref), 2057 DF_REF_REGNO (ref)); 2058 } 2059 2060 void 2061 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file) 2062 { 2063 fprintf (file, "{ "); 2064 while (*ref_rec) 2065 { 2066 df_ref ref = *ref_rec; 2067 df_ref_dump (ref, file); 2068 if (follow_chain) 2069 df_chain_dump (DF_REF_CHAIN (ref), file); 2070 ref_rec++; 2071 } 2072 fprintf (file, "}"); 2073 } 2074 2075 2076 /* Dump either a ref-def or reg-use chain. */ 2077 2078 void 2079 df_regs_chain_dump (df_ref ref, FILE *file) 2080 { 2081 fprintf (file, "{ "); 2082 while (ref) 2083 { 2084 df_ref_dump (ref, file); 2085 ref = DF_REF_NEXT_REG (ref); 2086 } 2087 fprintf (file, "}"); 2088 } 2089 2090 2091 static void 2092 df_mws_dump (struct df_mw_hardreg **mws, FILE *file) 2093 { 2094 while (*mws) 2095 { 2096 fprintf (file, "mw %c r[%d..%d]\n", 2097 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u', 2098 (*mws)->start_regno, (*mws)->end_regno); 2099 mws++; 2100 } 2101 } 2102 2103 2104 static void 2105 df_insn_uid_debug (unsigned int uid, 2106 bool follow_chain, FILE *file) 2107 { 2108 fprintf (file, "insn %d luid %d", 2109 uid, DF_INSN_UID_LUID (uid)); 2110 2111 if (DF_INSN_UID_DEFS (uid)) 2112 { 2113 fprintf (file, " defs "); 2114 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file); 2115 } 2116 2117 if (DF_INSN_UID_USES (uid)) 2118 { 2119 fprintf (file, " uses "); 2120 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file); 2121 } 2122 2123 if (DF_INSN_UID_EQ_USES (uid)) 2124 { 2125 fprintf (file, " eq uses "); 2126 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file); 2127 } 2128 2129 if (DF_INSN_UID_MWS (uid)) 2130 { 2131 fprintf (file, " mws "); 2132 df_mws_dump (DF_INSN_UID_MWS (uid), file); 2133 } 2134 fprintf (file, "\n"); 2135 } 2136 2137 2138 DEBUG_FUNCTION void 2139 df_insn_debug (rtx insn, bool follow_chain, FILE *file) 2140 { 2141 df_insn_uid_debug (INSN_UID (insn), follow_chain, file); 2142 } 2143 2144 DEBUG_FUNCTION void 2145 df_insn_debug_regno (rtx insn, FILE *file) 2146 { 2147 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); 2148 2149 fprintf (file, "insn %d bb %d luid %d defs ", 2150 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index, 2151 DF_INSN_INFO_LUID (insn_info)); 2152 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file); 2153 2154 fprintf (file, " uses "); 2155 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file); 2156 2157 fprintf (file, " eq_uses "); 2158 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file); 2159 fprintf (file, "\n"); 2160 } 2161 2162 DEBUG_FUNCTION void 2163 df_regno_debug (unsigned int regno, FILE *file) 2164 { 2165 fprintf (file, "reg %d defs ", regno); 2166 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file); 2167 fprintf (file, " uses "); 2168 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file); 2169 fprintf (file, " eq_uses "); 2170 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file); 2171 fprintf (file, "\n"); 2172 } 2173 2174 2175 DEBUG_FUNCTION void 2176 df_ref_debug (df_ref ref, FILE *file) 2177 { 2178 fprintf (file, "%c%d ", 2179 DF_REF_REG_DEF_P (ref) ? 'd' : 'u', 2180 DF_REF_ID (ref)); 2181 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ", 2182 DF_REF_REGNO (ref), 2183 DF_REF_BBNO (ref), 2184 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref), 2185 DF_REF_FLAGS (ref), 2186 DF_REF_TYPE (ref)); 2187 if (DF_REF_LOC (ref)) 2188 { 2189 if (flag_dump_noaddr) 2190 fprintf (file, "loc #(#) chain "); 2191 else 2192 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref), 2193 (void *)*DF_REF_LOC (ref)); 2194 } 2195 else 2196 fprintf (file, "chain "); 2197 df_chain_dump (DF_REF_CHAIN (ref), file); 2198 fprintf (file, "\n"); 2199 } 2200 2201 /* Functions for debugging from GDB. */ 2202 2203 DEBUG_FUNCTION void 2204 debug_df_insn (rtx insn) 2205 { 2206 df_insn_debug (insn, true, stderr); 2207 debug_rtx (insn); 2208 } 2209 2210 2211 DEBUG_FUNCTION void 2212 debug_df_reg (rtx reg) 2213 { 2214 df_regno_debug (REGNO (reg), stderr); 2215 } 2216 2217 2218 DEBUG_FUNCTION void 2219 debug_df_regno (unsigned int regno) 2220 { 2221 df_regno_debug (regno, stderr); 2222 } 2223 2224 2225 DEBUG_FUNCTION void 2226 debug_df_ref (df_ref ref) 2227 { 2228 df_ref_debug (ref, stderr); 2229 } 2230 2231 2232 DEBUG_FUNCTION void 2233 debug_df_defno (unsigned int defno) 2234 { 2235 df_ref_debug (DF_DEFS_GET (defno), stderr); 2236 } 2237 2238 2239 DEBUG_FUNCTION void 2240 debug_df_useno (unsigned int defno) 2241 { 2242 df_ref_debug (DF_USES_GET (defno), stderr); 2243 } 2244 2245 2246 DEBUG_FUNCTION void 2247 debug_df_chain (struct df_link *link) 2248 { 2249 df_chain_dump (link, stderr); 2250 fputc ('\n', stderr); 2251 } 2252