xref: /dragonfly/contrib/gcc-4.7/gcc/df-core.c (revision 25a2db75)
1 /* Allocation for dataflow support routines.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3    2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4    Originally contributed by Michael P. Hayes
5              (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6    Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7              and Kenneth Zadeck (zadeck@naturalbridge.com).
8 
9 This file is part of GCC.
10 
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15 
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 for more details.
20 
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /*
26 OVERVIEW:
27 
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems.  The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
31 
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains.  However,
35 the interface allows other dataflow problems to be defined as well.
36 
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish).  It is quite likely
39 that these boundaries will be expanded in the future.  The only
40 requirement is that there be a correct control flow graph.
41 
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available.  The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas that can be reached from a definition of a variable.  The LIVE
46 problem finds the intersection of these two areas.
47 
48 There are several optional problems.  These can be enabled when they
49 are needed and disabled when they are not needed.
50 
51 Dataflow problems are generally solved in three layers.  The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn.  Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also.  There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
58 
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the global
61 dataflow solution.  The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
63 
64 The top layer is the dataflow solution itself.  The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions.  The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
68 
69 
70 USAGE:
71 
72 Here is an example of using the dataflow routines.
73 
74       df_[chain,live,note,rd]_add_problem (flags);
75 
76       df_set_blocks (blocks);
77 
78       df_analyze ();
79 
80       df_dump (stderr);
81 
82       df_finish_pass (false);
83 
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df.  All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
88 
89 Problems can be dependent on other problems.  For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem.  Note that it is not necessary to have a problem.  In
95 that case, df will just be used to do the scanning.
96 
97 
98 
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed.  The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution.  The insn level information
104 is always kept up to date.
105 
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set.  Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
111 
112 DF_ANALYZE causes all of the defined problems to be (re)solved.  When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information.  The DF_*_BB_INFO macros can be used
115 to access these bitvectors.  All deferred rescannings are down before
116 the transfer functions are recomputed.
117 
118 DF_DUMP can then be called to dump the information produce to some
119 file.  This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information.  These parts
122 can all be called separately as part of a larger dump function.
123 
124 
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems.  It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run.  However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
133 
134 INCREMENTAL SCANNING
135 
136 There are four ways of doing the incremental scanning:
137 
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139    df_bb_delete, df_insn_change_bb have been added to most of
140    the low level service functions that maintain the cfg and change
141    rtl.  Calling and of these routines many cause some number of insns
142    to be rescanned.
143 
144    For most modern rtl passes, this is certainly the easiest way to
145    manage rescanning the insns.  This technique also has the advantage
146    that the scanning information is always correct and can be relied
147    upon even after changes have been made to the instructions.  This
148    technique is contra indicated in several cases:
149 
150    a) If def-use chains OR use-def chains (but not both) are built,
151       using this is SIMPLY WRONG.  The problem is that when a ref is
152       deleted that is the target of an edge, there is not enough
153       information to efficiently find the source of the edge and
154       delete the edge.  This leaves a dangling reference that may
155       cause problems.
156 
157    b) If def-use chains AND use-def chains are built, this may
158       produce unexpected results.  The problem is that the incremental
159       scanning of an insn does not know how to repair the chains that
160       point into an insn when the insn changes.  So the incremental
161       scanning just deletes the chains that enter and exit the insn
162       being changed.  The dangling reference issue in (a) is not a
163       problem here, but if the pass is depending on the chains being
164       maintained after insns have been modified, this technique will
165       not do the correct thing.
166 
167    c) If the pass modifies insns several times, this incremental
168       updating may be expensive.
169 
170    d) If the pass modifies all of the insns, as does register
171       allocation, it is simply better to rescan the entire function.
172 
173 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
174    df_insn_delete do not immediately change the insn but instead make
175    a note that the insn needs to be rescanned.  The next call to
176    df_analyze, df_finish_pass, or df_process_deferred_rescans will
177    cause all of the pending rescans to be processed.
178 
179    This is the technique of choice if either 1a, 1b, or 1c are issues
180    in the pass.  In the case of 1a or 1b, a call to df_finish_pass
181    (either manually or via TODO_df_finish) should be made before the
182    next call to df_analyze or df_process_deferred_rescans.
183 
184    This mode is also used by a few passes that still rely on note_uses,
185    note_stores and for_each_rtx instead of using the DF data.  This
186    can be said to fall under case 1c.
187 
188    To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189    (This mode can be cleared by calling df_clear_flags
190    (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
191    be rescanned.
192 
193 3) Total rescanning - In this mode the rescanning is disabled.
194    Only when insns are deleted is the df information associated with
195    it also deleted.  At the end of the pass, a call must be made to
196    df_insn_rescan_all.  This method is used by the register allocator
197    since it generally changes each insn multiple times (once for each ref)
198    and does not need to make use of the updated scanning information.
199 
200 4) Do it yourself - In this mechanism, the pass updates the insns
201    itself using the low level df primitives.  Currently no pass does
202    this, but it has the advantage that it is quite efficient given
203    that the pass generally has exact knowledge of what it is changing.
204 
205 DATA STRUCTURES
206 
207 Scanning produces a `struct df_ref' data structure (ref) is allocated
208 for every register reference (def or use) and this records the insn
209 and bb the ref is found within.  The refs are linked together in
210 chains of uses and defs for each insn and for each register.  Each ref
211 also has a chain field that links all the use refs for a def or all
212 the def refs for a use.  This is used to create use-def or def-use
213 chains.
214 
215 Different optimizations have different needs.  Ultimately, only
216 register allocation and schedulers should be using the bitmaps
217 produced for the live register and uninitialized register problems.
218 The rest of the backend should be upgraded to using and maintaining
219 the linked information such as def use or use def chains.
220 
221 
222 PHILOSOPHY:
223 
224 While incremental bitmaps are not worthwhile to maintain, incremental
225 chains may be perfectly reasonable.  The fastest way to build chains
226 from scratch or after significant modifications is to build reaching
227 definitions (RD) and build the chains from this.
228 
229 However, general algorithms for maintaining use-def or def-use chains
230 are not practical.  The amount of work to recompute the chain any
231 chain after an arbitrary change is large.  However, with a modest
232 amount of work it is generally possible to have the application that
233 uses the chains keep them up to date.  The high level knowledge of
234 what is really happening is essential to crafting efficient
235 incremental algorithms.
236 
237 As for the bit vector problems, there is no interface to give a set of
238 blocks over with to resolve the iteration.  In general, restarting a
239 dataflow iteration is difficult and expensive.  Again, the best way to
240 keep the dataflow information up to data (if this is really what is
241 needed) it to formulate a problem specific solution.
242 
243 There are fine grained calls for creating and deleting references from
244 instructions in df-scan.c.  However, these are not currently connected
245 to the engine that resolves the dataflow equations.
246 
247 
248 DATA STRUCTURES:
249 
250 The basic object is a DF_REF (reference) and this may either be a
251 DEF (definition) or a USE of a register.
252 
253 These are linked into a variety of lists; namely reg-def, reg-use,
254 insn-def, insn-use, def-use, and use-def lists.  For example, the
255 reg-def lists contain all the locations that define a given register
256 while the insn-use lists contain all the locations that use a
257 register.
258 
259 Note that the reg-def and reg-use chains are generally short for
260 pseudos and long for the hard registers.
261 
262 ACCESSING INSNS:
263 
264 1) The df insn information is kept in an array of DF_INSN_INFO objects.
265    The array is indexed by insn uid, and every DF_REF points to the
266    DF_INSN_INFO object of the insn that contains the reference.
267 
268 2) Each insn has three sets of refs, which are linked into one of three
269    lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270    DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271    (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272    DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273    DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274    The latter list are the list of references in REG_EQUAL or REG_EQUIV
275    notes.  These macros produce a ref (or NULL), the rest of the list
276    can be obtained by traversal of the NEXT_REF field (accessed by the
277    DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
278    the uses or refs in an instruction.
279 
280 3) Each insn has a logical uid field (LUID) which is stored in the
281    DF_INSN_INFO object for the insn.  The LUID field is accessed by
282    the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283    When properly set, the LUID is an integer that numbers each insn in
284    the basic block, in order from the start of the block.
285    The numbers are only correct after a call to df_analyze.  They will
286    rot after insns are added deleted or moved round.
287 
288 ACCESSING REFS:
289 
290 There are 4 ways to obtain access to refs:
291 
292 1) References are divided into two categories, REAL and ARTIFICIAL.
293 
294    REAL refs are associated with instructions.
295 
296    ARTIFICIAL refs are associated with basic blocks.  The heads of
297    these lists can be accessed by calling df_get_artificial_defs or
298    df_get_artificial_uses for the particular basic block.
299 
300    Artificial defs and uses occur both at the beginning and ends of blocks.
301 
302      For blocks that area at the destination of eh edges, the
303      artificial uses and defs occur at the beginning.  The defs relate
304      to the registers specified in EH_RETURN_DATA_REGNO and the uses
305      relate to the registers specified in ED_USES.  Logically these
306      defs and uses should really occur along the eh edge, but there is
307      no convenient way to do this.  Artificial edges that occur at the
308      beginning of the block have the DF_REF_AT_TOP flag set.
309 
310      Artificial uses occur at the end of all blocks.  These arise from
311      the hard registers that are always live, such as the stack
312      register and are put there to keep the code from forgetting about
313      them.
314 
315      Artificial defs occur at the end of the entry block.  These arise
316      from registers that are live at entry to the function.
317 
318 2) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
319    uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 
321    All of the eq_uses, uses and defs associated with each pseudo or
322    hard register may be linked in a bidirectional chain.  These are
323    called reg-use or reg_def chains.  If the changeable flag
324    DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325    treated like uses.  If it is not set they are ignored.
326 
327    The first use, eq_use or def for a register can be obtained using
328    the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329    macros.  Subsequent uses for the same regno can be obtained by
330    following the next_reg field of the ref.  The number of elements in
331    each of the chains can be found by using the DF_REG_USE_COUNT,
332    DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 
334    In previous versions of this code, these chains were ordered.  It
335    has not been practical to continue this practice.
336 
337 3) If def-use or use-def chains are built, these can be traversed to
338    get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
339    include the eq_uses.  Otherwise these are ignored when building the
340    chains.
341 
342 4) An array of all of the uses (and an array of all of the defs) can
343    be built.  These arrays are indexed by the value in the id
344    structure.  These arrays are only lazily kept up to date, and that
345    process can be expensive.  To have these arrays built, call
346    df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
347    has been set the array will contain the eq_uses.  Otherwise these
348    are ignored when building the array and assigning the ids.  Note
349    that the values in the id field of a ref may change across calls to
350    df_analyze or df_reorganize_defs or df_reorganize_uses.
351 
352    If the only use of this array is to find all of the refs, it is
353    better to traverse all of the registers and then traverse all of
354    reg-use or reg-def chains.
355 
356 NOTES:
357 
358 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359 both a use and a def.  These are both marked read/write to show that they
360 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361 will generate a use of reg 42 followed by a def of reg 42 (both marked
362 read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363 generates a use of reg 41 then a def of reg 41 (both marked read/write),
364 even though reg 41 is decremented before it is used for the memory
365 address in this second example.
366 
367 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368 for which the number of word_mode units covered by the outer mode is
369 smaller than that covered by the inner mode, invokes a read-modify-write
370 operation.  We generate both a use and a def and again mark them
371 read/write.
372 
373 Paradoxical subreg writes do not leave a trace of the old content, so they
374 are write-only operations.
375 */
376 
377 
378 #include "config.h"
379 #include "system.h"
380 #include "coretypes.h"
381 #include "tm.h"
382 #include "rtl.h"
383 #include "tm_p.h"
384 #include "insn-config.h"
385 #include "recog.h"
386 #include "function.h"
387 #include "regs.h"
388 #include "output.h"
389 #include "alloc-pool.h"
390 #include "flags.h"
391 #include "hard-reg-set.h"
392 #include "basic-block.h"
393 #include "sbitmap.h"
394 #include "bitmap.h"
395 #include "timevar.h"
396 #include "df.h"
397 #include "tree-pass.h"
398 #include "params.h"
399 
400 static void *df_get_bb_info (struct dataflow *, unsigned int);
401 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
402 static void df_clear_bb_info (struct dataflow *, unsigned int);
403 #ifdef DF_DEBUG_CFG
404 static void df_set_clean_cfg (void);
405 #endif
406 
407 /* An obstack for bitmap not related to specific dataflow problems.
408    This obstack should e.g. be used for bitmaps with a short life time
409    such as temporary bitmaps.  */
410 
411 bitmap_obstack df_bitmap_obstack;
412 
413 
414 /*----------------------------------------------------------------------------
415   Functions to create, destroy and manipulate an instance of df.
416 ----------------------------------------------------------------------------*/
417 
418 struct df_d *df;
419 
420 /* Add PROBLEM (and any dependent problems) to the DF instance.  */
421 
422 void
423 df_add_problem (struct df_problem *problem)
424 {
425   struct dataflow *dflow;
426   int i;
427 
428   /* First try to add the dependent problem. */
429   if (problem->dependent_problem)
430     df_add_problem (problem->dependent_problem);
431 
432   /* Check to see if this problem has already been defined.  If it
433      has, just return that instance, if not, add it to the end of the
434      vector.  */
435   dflow = df->problems_by_index[problem->id];
436   if (dflow)
437     return;
438 
439   /* Make a new one and add it to the end.  */
440   dflow = XCNEW (struct dataflow);
441   dflow->problem = problem;
442   dflow->computed = false;
443   dflow->solutions_dirty = true;
444   df->problems_by_index[dflow->problem->id] = dflow;
445 
446   /* Keep the defined problems ordered by index.  This solves the
447      problem that RI will use the information from UREC if UREC has
448      been defined, or from LIVE if LIVE is defined and otherwise LR.
449      However for this to work, the computation of RI must be pushed
450      after which ever of those problems is defined, but we do not
451      require any of those except for LR to have actually been
452      defined.  */
453   df->num_problems_defined++;
454   for (i = df->num_problems_defined - 2; i >= 0; i--)
455     {
456       if (problem->id < df->problems_in_order[i]->problem->id)
457 	df->problems_in_order[i+1] = df->problems_in_order[i];
458       else
459 	{
460 	  df->problems_in_order[i+1] = dflow;
461 	  return;
462 	}
463     }
464   df->problems_in_order[0] = dflow;
465 }
466 
467 
468 /* Set the MASK flags in the DFLOW problem.  The old flags are
469    returned.  If a flag is not allowed to be changed this will fail if
470    checking is enabled.  */
471 int
472 df_set_flags (int changeable_flags)
473 {
474   int old_flags = df->changeable_flags;
475   df->changeable_flags |= changeable_flags;
476   return old_flags;
477 }
478 
479 
480 /* Clear the MASK flags in the DFLOW problem.  The old flags are
481    returned.  If a flag is not allowed to be changed this will fail if
482    checking is enabled.  */
483 int
484 df_clear_flags (int changeable_flags)
485 {
486   int old_flags = df->changeable_flags;
487   df->changeable_flags &= ~changeable_flags;
488   return old_flags;
489 }
490 
491 
492 /* Set the blocks that are to be considered for analysis.  If this is
493    not called or is called with null, the entire function in
494    analyzed.  */
495 
496 void
497 df_set_blocks (bitmap blocks)
498 {
499   if (blocks)
500     {
501       if (dump_file)
502 	bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
503       if (df->blocks_to_analyze)
504 	{
505 	  /* This block is called to change the focus from one subset
506 	     to another.  */
507 	  int p;
508 	  bitmap_head diff;
509 	  bitmap_initialize (&diff, &df_bitmap_obstack);
510 	  bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
511 	  for (p = 0; p < df->num_problems_defined; p++)
512 	    {
513 	      struct dataflow *dflow = df->problems_in_order[p];
514 	      if (dflow->optional_p && dflow->problem->reset_fun)
515 		dflow->problem->reset_fun (df->blocks_to_analyze);
516 	      else if (dflow->problem->free_blocks_on_set_blocks)
517 		{
518 		  bitmap_iterator bi;
519 		  unsigned int bb_index;
520 
521 		  EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
522 		    {
523 		      basic_block bb = BASIC_BLOCK (bb_index);
524 		      if (bb)
525 			{
526 			  void *bb_info = df_get_bb_info (dflow, bb_index);
527 			  dflow->problem->free_bb_fun (bb, bb_info);
528 			  df_clear_bb_info (dflow, bb_index);
529 			}
530 		    }
531 		}
532 	    }
533 
534 	   bitmap_clear (&diff);
535 	}
536       else
537 	{
538 	  /* This block of code is executed to change the focus from
539 	     the entire function to a subset.  */
540 	  bitmap_head blocks_to_reset;
541 	  bool initialized = false;
542 	  int p;
543 	  for (p = 0; p < df->num_problems_defined; p++)
544 	    {
545 	      struct dataflow *dflow = df->problems_in_order[p];
546 	      if (dflow->optional_p && dflow->problem->reset_fun)
547 		{
548 		  if (!initialized)
549 		    {
550 		      basic_block bb;
551 		      bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
552 		      FOR_ALL_BB(bb)
553 			{
554 			  bitmap_set_bit (&blocks_to_reset, bb->index);
555 			}
556 		    }
557 		  dflow->problem->reset_fun (&blocks_to_reset);
558 		}
559 	    }
560 	  if (initialized)
561 	    bitmap_clear (&blocks_to_reset);
562 
563 	  df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
564 	}
565       bitmap_copy (df->blocks_to_analyze, blocks);
566       df->analyze_subset = true;
567     }
568   else
569     {
570       /* This block is executed to reset the focus to the entire
571 	 function.  */
572       if (dump_file)
573 	fprintf (dump_file, "clearing blocks_to_analyze\n");
574       if (df->blocks_to_analyze)
575 	{
576 	  BITMAP_FREE (df->blocks_to_analyze);
577 	  df->blocks_to_analyze = NULL;
578 	}
579       df->analyze_subset = false;
580     }
581 
582   /* Setting the blocks causes the refs to be unorganized since only
583      the refs in the blocks are seen.  */
584   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586   df_mark_solutions_dirty ();
587 }
588 
589 
590 /* Delete a DFLOW problem (and any problems that depend on this
591    problem).  */
592 
593 void
594 df_remove_problem (struct dataflow *dflow)
595 {
596   struct df_problem *problem;
597   int i;
598 
599   if (!dflow)
600     return;
601 
602   problem = dflow->problem;
603   gcc_assert (problem->remove_problem_fun);
604 
605   /* Delete any problems that depended on this problem first.  */
606   for (i = 0; i < df->num_problems_defined; i++)
607     if (df->problems_in_order[i]->problem->dependent_problem == problem)
608       df_remove_problem (df->problems_in_order[i]);
609 
610   /* Now remove this problem.  */
611   for (i = 0; i < df->num_problems_defined; i++)
612     if (df->problems_in_order[i] == dflow)
613       {
614 	int j;
615 	for (j = i + 1; j < df->num_problems_defined; j++)
616 	  df->problems_in_order[j-1] = df->problems_in_order[j];
617 	df->problems_in_order[j-1] = NULL;
618 	df->num_problems_defined--;
619 	break;
620       }
621 
622   (problem->remove_problem_fun) ();
623   df->problems_by_index[problem->id] = NULL;
624 }
625 
626 
627 /* Remove all of the problems that are not permanent.  Scanning, LR
628    and (at -O2 or higher) LIVE are permanent, the rest are removable.
629    Also clear all of the changeable_flags.  */
630 
631 void
632 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
633 {
634   int i;
635   int removed = 0;
636 
637 #ifdef ENABLE_DF_CHECKING
638   int saved_flags;
639 #endif
640 
641   if (!df)
642     return;
643 
644   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646 
647 #ifdef ENABLE_DF_CHECKING
648   saved_flags = df->changeable_flags;
649 #endif
650 
651   for (i = 0; i < df->num_problems_defined; i++)
652     {
653       struct dataflow *dflow = df->problems_in_order[i];
654       struct df_problem *problem = dflow->problem;
655 
656       if (dflow->optional_p)
657 	{
658 	  gcc_assert (problem->remove_problem_fun);
659 	  (problem->remove_problem_fun) ();
660 	  df->problems_in_order[i] = NULL;
661 	  df->problems_by_index[problem->id] = NULL;
662 	  removed++;
663 	}
664     }
665   df->num_problems_defined -= removed;
666 
667   /* Clear all of the flags.  */
668   df->changeable_flags = 0;
669   df_process_deferred_rescans ();
670 
671   /* Set the focus back to the whole function.  */
672   if (df->blocks_to_analyze)
673     {
674       BITMAP_FREE (df->blocks_to_analyze);
675       df->blocks_to_analyze = NULL;
676       df_mark_solutions_dirty ();
677       df->analyze_subset = false;
678     }
679 
680 #ifdef ENABLE_DF_CHECKING
681   /* Verification will fail in DF_NO_INSN_RESCAN.  */
682   if (!(saved_flags & DF_NO_INSN_RESCAN))
683     {
684       df_lr_verify_transfer_functions ();
685       if (df_live)
686 	df_live_verify_transfer_functions ();
687     }
688 
689 #ifdef DF_DEBUG_CFG
690   df_set_clean_cfg ();
691 #endif
692 #endif
693 
694 #ifdef ENABLE_CHECKING
695   if (verify)
696     df->changeable_flags |= DF_VERIFY_SCHEDULED;
697 #endif
698 }
699 
700 
701 /* Set up the dataflow instance for the entire back end.  */
702 
703 static unsigned int
704 rest_of_handle_df_initialize (void)
705 {
706   gcc_assert (!df);
707   df = XCNEW (struct df_d);
708   df->changeable_flags = 0;
709 
710   bitmap_obstack_initialize (&df_bitmap_obstack);
711 
712   /* Set this to a conservative value.  Stack_ptr_mod will compute it
713      correctly later.  */
714   current_function_sp_is_unchanging = 0;
715 
716   df_scan_add_problem ();
717   df_scan_alloc (NULL);
718 
719   /* These three problems are permanent.  */
720   df_lr_add_problem ();
721   if (optimize > 1)
722     df_live_add_problem ();
723 
724   df->postorder = XNEWVEC (int, last_basic_block);
725   df->postorder_inverted = XNEWVEC (int, last_basic_block);
726   df->n_blocks = post_order_compute (df->postorder, true, true);
727   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728   gcc_assert (df->n_blocks == df->n_blocks_inverted);
729 
730   df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
731   memset (df->hard_regs_live_count, 0,
732 	  sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733 
734   df_hard_reg_init ();
735   /* After reload, some ports add certain bits to regs_ever_live so
736      this cannot be reset.  */
737   df_compute_regs_ever_live (true);
738   df_scan_blocks ();
739   df_compute_regs_ever_live (false);
740   return 0;
741 }
742 
743 
744 static bool
745 gate_opt (void)
746 {
747   return optimize > 0;
748 }
749 
750 
751 struct rtl_opt_pass pass_df_initialize_opt =
752 {
753  {
754   RTL_PASS,
755   "dfinit",                             /* name */
756   gate_opt,                             /* gate */
757   rest_of_handle_df_initialize,         /* execute */
758   NULL,                                 /* sub */
759   NULL,                                 /* next */
760   0,                                    /* static_pass_number */
761   TV_DF_SCAN,                           /* tv_id */
762   0,                                    /* properties_required */
763   0,                                    /* properties_provided */
764   0,                                    /* properties_destroyed */
765   0,                                    /* todo_flags_start */
766   0                                     /* todo_flags_finish */
767  }
768 };
769 
770 
771 static bool
772 gate_no_opt (void)
773 {
774   return optimize == 0;
775 }
776 
777 
778 struct rtl_opt_pass pass_df_initialize_no_opt =
779 {
780  {
781   RTL_PASS,
782   "no-opt dfinit",                      /* name */
783   gate_no_opt,                          /* gate */
784   rest_of_handle_df_initialize,         /* execute */
785   NULL,                                 /* sub */
786   NULL,                                 /* next */
787   0,                                    /* static_pass_number */
788   TV_DF_SCAN,                           /* tv_id */
789   0,                                    /* properties_required */
790   0,                                    /* properties_provided */
791   0,                                    /* properties_destroyed */
792   0,                                    /* todo_flags_start */
793   0                                     /* todo_flags_finish */
794  }
795 };
796 
797 
798 /* Free all the dataflow info and the DF structure.  This should be
799    called from the df_finish macro which also NULLs the parm.  */
800 
801 static unsigned int
802 rest_of_handle_df_finish (void)
803 {
804   int i;
805 
806   gcc_assert (df);
807 
808   for (i = 0; i < df->num_problems_defined; i++)
809     {
810       struct dataflow *dflow = df->problems_in_order[i];
811       dflow->problem->free_fun ();
812     }
813 
814   free (df->postorder);
815   free (df->postorder_inverted);
816   free (df->hard_regs_live_count);
817   free (df);
818   df = NULL;
819 
820   bitmap_obstack_release (&df_bitmap_obstack);
821   return 0;
822 }
823 
824 
825 struct rtl_opt_pass pass_df_finish =
826 {
827  {
828   RTL_PASS,
829   "dfinish",                            /* name */
830   NULL,					/* gate */
831   rest_of_handle_df_finish,             /* execute */
832   NULL,                                 /* sub */
833   NULL,                                 /* next */
834   0,                                    /* static_pass_number */
835   TV_NONE,                              /* tv_id */
836   0,                                    /* properties_required */
837   0,                                    /* properties_provided */
838   0,                                    /* properties_destroyed */
839   0,                                    /* todo_flags_start */
840   0                                     /* todo_flags_finish */
841  }
842 };
843 
844 
845 
846 
847 
848 /*----------------------------------------------------------------------------
849    The general data flow analysis engine.
850 ----------------------------------------------------------------------------*/
851 
852 /* Return time BB when it was visited for last time.  */
853 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
854 
855 /* Helper function for df_worklist_dataflow.
856    Propagate the dataflow forward.
857    Given a BB_INDEX, do the dataflow propagation
858    and set bits on for successors in PENDING
859    if the out set of the dataflow has changed.
860 
861    AGE specify time when BB was visited last time.
862    AGE of 0 means we are visiting for first time and need to
863    compute transfer function to initialize datastructures.
864    Otherwise we re-do transfer function only if something change
865    while computing confluence functions.
866    We need to compute confluence only of basic block that are younger
867    then last visit of the BB.
868 
869    Return true if BB info has changed.  This is always the case
870    in the first visit.  */
871 
872 static bool
873 df_worklist_propagate_forward (struct dataflow *dataflow,
874                                unsigned bb_index,
875                                unsigned *bbindex_to_postorder,
876                                bitmap pending,
877                                sbitmap considered,
878 			       ptrdiff_t age)
879 {
880   edge e;
881   edge_iterator ei;
882   basic_block bb = BASIC_BLOCK (bb_index);
883   bool changed = !age;
884 
885   /*  Calculate <conf_op> of incoming edges.  */
886   if (EDGE_COUNT (bb->preds) > 0)
887     FOR_EACH_EDGE (e, ei, bb->preds)
888       {
889         if (age <= BB_LAST_CHANGE_AGE (e->src)
890 	    && TEST_BIT (considered, e->src->index))
891           changed |= dataflow->problem->con_fun_n (e);
892       }
893   else if (dataflow->problem->con_fun_0)
894     dataflow->problem->con_fun_0 (bb);
895 
896   if (changed
897       && dataflow->problem->trans_fun (bb_index))
898     {
899       /* The out set of this block has changed.
900          Propagate to the outgoing blocks.  */
901       FOR_EACH_EDGE (e, ei, bb->succs)
902         {
903           unsigned ob_index = e->dest->index;
904 
905           if (TEST_BIT (considered, ob_index))
906             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
907         }
908       return true;
909     }
910   return false;
911 }
912 
913 
914 /* Helper function for df_worklist_dataflow.
915    Propagate the dataflow backward.  */
916 
917 static bool
918 df_worklist_propagate_backward (struct dataflow *dataflow,
919                                 unsigned bb_index,
920                                 unsigned *bbindex_to_postorder,
921                                 bitmap pending,
922                                 sbitmap considered,
923 			        ptrdiff_t age)
924 {
925   edge e;
926   edge_iterator ei;
927   basic_block bb = BASIC_BLOCK (bb_index);
928   bool changed = !age;
929 
930   /*  Calculate <conf_op> of incoming edges.  */
931   if (EDGE_COUNT (bb->succs) > 0)
932     FOR_EACH_EDGE (e, ei, bb->succs)
933       {
934         if (age <= BB_LAST_CHANGE_AGE (e->dest)
935 	    && TEST_BIT (considered, e->dest->index))
936           changed |= dataflow->problem->con_fun_n (e);
937       }
938   else if (dataflow->problem->con_fun_0)
939     dataflow->problem->con_fun_0 (bb);
940 
941   if (changed
942       && dataflow->problem->trans_fun (bb_index))
943     {
944       /* The out set of this block has changed.
945          Propagate to the outgoing blocks.  */
946       FOR_EACH_EDGE (e, ei, bb->preds)
947         {
948           unsigned ob_index = e->src->index;
949 
950           if (TEST_BIT (considered, ob_index))
951             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
952         }
953       return true;
954     }
955   return false;
956 }
957 
958 /* Main dataflow solver loop.
959 
960    DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
961    need to visit.
962    BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
963    BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
964    PENDING will be freed.
965 
966    The worklists are bitmaps indexed by postorder positions.
967 
968    The function implements standard algorithm for dataflow solving with two
969    worklists (we are processing WORKLIST and storing new BBs to visit in
970    PENDING).
971 
972    As an optimization we maintain ages when BB was changed (stored in bb->aux)
973    and when it was last visited (stored in last_visit_age).  This avoids need
974    to re-do confluence function for edges to basic blocks whose source
975    did not change since destination was visited last time.  */
976 
977 static void
978 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
979 			  	  bitmap pending,
980                                   sbitmap considered,
981                                   int *blocks_in_postorder,
982 				  unsigned *bbindex_to_postorder,
983 				  int n_blocks)
984 {
985   enum df_flow_dir dir = dataflow->problem->dir;
986   int dcount = 0;
987   bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
988   int age = 0;
989   bool changed;
990   VEC(int, heap) *last_visit_age = NULL;
991   int prev_age;
992   basic_block bb;
993   int i;
994 
995   VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
996 
997   /* Double-queueing. Worklist is for the current iteration,
998      and pending is for the next. */
999   while (!bitmap_empty_p (pending))
1000     {
1001       bitmap_iterator bi;
1002       unsigned int index;
1003 
1004       /* Swap pending and worklist. */
1005       bitmap temp = worklist;
1006       worklist = pending;
1007       pending = temp;
1008 
1009       EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1010 	{
1011 	  unsigned bb_index;
1012 	  dcount++;
1013 
1014 	  bitmap_clear_bit (pending, index);
1015 	  bb_index = blocks_in_postorder[index];
1016 	  bb = BASIC_BLOCK (bb_index);
1017 	  prev_age = VEC_index (int, last_visit_age, index);
1018 	  if (dir == DF_FORWARD)
1019 	    changed = df_worklist_propagate_forward (dataflow, bb_index,
1020 						     bbindex_to_postorder,
1021 						     pending, considered,
1022 						     prev_age);
1023 	  else
1024 	    changed = df_worklist_propagate_backward (dataflow, bb_index,
1025 						      bbindex_to_postorder,
1026 						      pending, considered,
1027 						      prev_age);
1028 	  VEC_replace (int, last_visit_age, index, ++age);
1029 	  if (changed)
1030 	    bb->aux = (void *)(ptrdiff_t)age;
1031 	}
1032       bitmap_clear (worklist);
1033     }
1034   for (i = 0; i < n_blocks; i++)
1035     BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1036 
1037   BITMAP_FREE (worklist);
1038   BITMAP_FREE (pending);
1039   VEC_free (int, heap, last_visit_age);
1040 
1041   /* Dump statistics. */
1042   if (dump_file)
1043     fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1044 	     "n_basic_blocks %d n_edges %d"
1045 	     " count %d (%5.2g)\n",
1046 	     n_basic_blocks, n_edges,
1047 	     dcount, dcount / (float)n_basic_blocks);
1048 }
1049 
1050 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1051    with "n"-th bit representing the n-th block in the reverse-postorder order.
1052    The solver is a double-queue algorithm similar to the "double stack" solver
1053    from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1054    The only significant difference is that the worklist in this implementation
1055    is always sorted in RPO of the CFG visiting direction.  */
1056 
1057 void
1058 df_worklist_dataflow (struct dataflow *dataflow,
1059                       bitmap blocks_to_consider,
1060                       int *blocks_in_postorder,
1061                       int n_blocks)
1062 {
1063   bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1064   sbitmap considered = sbitmap_alloc (last_basic_block);
1065   bitmap_iterator bi;
1066   unsigned int *bbindex_to_postorder;
1067   int i;
1068   unsigned int index;
1069   enum df_flow_dir dir = dataflow->problem->dir;
1070 
1071   gcc_assert (dir != DF_NONE);
1072 
1073   /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1074   bbindex_to_postorder =
1075     (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1076 
1077   /* Initialize the array to an out-of-bound value.  */
1078   for (i = 0; i < last_basic_block; i++)
1079     bbindex_to_postorder[i] = last_basic_block;
1080 
1081   /* Initialize the considered map.  */
1082   sbitmap_zero (considered);
1083   EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1084     {
1085       SET_BIT (considered, index);
1086     }
1087 
1088   /* Initialize the mapping of block index to postorder.  */
1089   for (i = 0; i < n_blocks; i++)
1090     {
1091       bbindex_to_postorder[blocks_in_postorder[i]] = i;
1092       /* Add all blocks to the worklist.  */
1093       bitmap_set_bit (pending, i);
1094     }
1095 
1096   /* Initialize the problem. */
1097   if (dataflow->problem->init_fun)
1098     dataflow->problem->init_fun (blocks_to_consider);
1099 
1100   /* Solve it.  */
1101   df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1102 				    blocks_in_postorder,
1103 				    bbindex_to_postorder,
1104 				    n_blocks);
1105   sbitmap_free (considered);
1106   free (bbindex_to_postorder);
1107 }
1108 
1109 
1110 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1111    the order of the remaining entries.  Returns the length of the resulting
1112    list.  */
1113 
1114 static unsigned
1115 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1116 {
1117   unsigned act, last;
1118 
1119   for (act = 0, last = 0; act < len; act++)
1120     if (bitmap_bit_p (blocks, list[act]))
1121       list[last++] = list[act];
1122 
1123   return last;
1124 }
1125 
1126 
1127 /* Execute dataflow analysis on a single dataflow problem.
1128 
1129    BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1130    examined or will be computed.  For calls from DF_ANALYZE, this is
1131    the set of blocks that has been passed to DF_SET_BLOCKS.
1132 */
1133 
1134 void
1135 df_analyze_problem (struct dataflow *dflow,
1136 		    bitmap blocks_to_consider,
1137 		    int *postorder, int n_blocks)
1138 {
1139   timevar_push (dflow->problem->tv_id);
1140 
1141   /* (Re)Allocate the datastructures necessary to solve the problem.  */
1142   if (dflow->problem->alloc_fun)
1143     dflow->problem->alloc_fun (blocks_to_consider);
1144 
1145 #ifdef ENABLE_DF_CHECKING
1146   if (dflow->problem->verify_start_fun)
1147     dflow->problem->verify_start_fun ();
1148 #endif
1149 
1150   /* Set up the problem and compute the local information.  */
1151   if (dflow->problem->local_compute_fun)
1152     dflow->problem->local_compute_fun (blocks_to_consider);
1153 
1154   /* Solve the equations.  */
1155   if (dflow->problem->dataflow_fun)
1156     dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1157 				  postorder, n_blocks);
1158 
1159   /* Massage the solution.  */
1160   if (dflow->problem->finalize_fun)
1161     dflow->problem->finalize_fun (blocks_to_consider);
1162 
1163 #ifdef ENABLE_DF_CHECKING
1164   if (dflow->problem->verify_end_fun)
1165     dflow->problem->verify_end_fun ();
1166 #endif
1167 
1168   timevar_pop (dflow->problem->tv_id);
1169 
1170   dflow->computed = true;
1171 }
1172 
1173 
1174 /* Analyze dataflow info for the basic blocks specified by the bitmap
1175    BLOCKS, or for the whole CFG if BLOCKS is zero.  */
1176 
1177 void
1178 df_analyze (void)
1179 {
1180   bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1181   bool everything;
1182   int i;
1183 
1184   free (df->postorder);
1185   free (df->postorder_inverted);
1186   df->postorder = XNEWVEC (int, last_basic_block);
1187   df->postorder_inverted = XNEWVEC (int, last_basic_block);
1188   df->n_blocks = post_order_compute (df->postorder, true, true);
1189   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1190 
1191   /* These should be the same.  */
1192   gcc_assert (df->n_blocks == df->n_blocks_inverted);
1193 
1194   /* We need to do this before the df_verify_all because this is
1195      not kept incrementally up to date.  */
1196   df_compute_regs_ever_live (false);
1197   df_process_deferred_rescans ();
1198 
1199   if (dump_file)
1200     fprintf (dump_file, "df_analyze called\n");
1201 
1202 #ifndef ENABLE_DF_CHECKING
1203   if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1204 #endif
1205     df_verify ();
1206 
1207   for (i = 0; i < df->n_blocks; i++)
1208     bitmap_set_bit (current_all_blocks, df->postorder[i]);
1209 
1210 #ifdef ENABLE_CHECKING
1211   /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1212      the ENTRY block.  */
1213   for (i = 0; i < df->n_blocks_inverted; i++)
1214     gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1215 #endif
1216 
1217   /* Make sure that we have pruned any unreachable blocks from these
1218      sets.  */
1219   if (df->analyze_subset)
1220     {
1221       everything = false;
1222       bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1223       df->n_blocks = df_prune_to_subcfg (df->postorder,
1224 					 df->n_blocks, df->blocks_to_analyze);
1225       df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1226 			                          df->n_blocks_inverted,
1227                                                   df->blocks_to_analyze);
1228       BITMAP_FREE (current_all_blocks);
1229     }
1230   else
1231     {
1232       everything = true;
1233       df->blocks_to_analyze = current_all_blocks;
1234       current_all_blocks = NULL;
1235     }
1236 
1237   /* Skip over the DF_SCAN problem. */
1238   for (i = 1; i < df->num_problems_defined; i++)
1239     {
1240       struct dataflow *dflow = df->problems_in_order[i];
1241       if (dflow->solutions_dirty)
1242         {
1243           if (dflow->problem->dir == DF_FORWARD)
1244             df_analyze_problem (dflow,
1245                                 df->blocks_to_analyze,
1246                                 df->postorder_inverted,
1247                                 df->n_blocks_inverted);
1248           else
1249             df_analyze_problem (dflow,
1250                                 df->blocks_to_analyze,
1251                                 df->postorder,
1252                                 df->n_blocks);
1253         }
1254     }
1255 
1256   if (everything)
1257     {
1258       BITMAP_FREE (df->blocks_to_analyze);
1259       df->blocks_to_analyze = NULL;
1260     }
1261 
1262 #ifdef DF_DEBUG_CFG
1263   df_set_clean_cfg ();
1264 #endif
1265 }
1266 
1267 
1268 /* Return the number of basic blocks from the last call to df_analyze.  */
1269 
1270 int
1271 df_get_n_blocks (enum df_flow_dir dir)
1272 {
1273   gcc_assert (dir != DF_NONE);
1274 
1275   if (dir == DF_FORWARD)
1276     {
1277       gcc_assert (df->postorder_inverted);
1278       return df->n_blocks_inverted;
1279     }
1280 
1281   gcc_assert (df->postorder);
1282   return df->n_blocks;
1283 }
1284 
1285 
1286 /* Return a pointer to the array of basic blocks in the reverse postorder.
1287    Depending on the direction of the dataflow problem,
1288    it returns either the usual reverse postorder array
1289    or the reverse postorder of inverted traversal. */
1290 int *
1291 df_get_postorder (enum df_flow_dir dir)
1292 {
1293   gcc_assert (dir != DF_NONE);
1294 
1295   if (dir == DF_FORWARD)
1296     {
1297       gcc_assert (df->postorder_inverted);
1298       return df->postorder_inverted;
1299     }
1300   gcc_assert (df->postorder);
1301   return df->postorder;
1302 }
1303 
1304 static struct df_problem user_problem;
1305 static struct dataflow user_dflow;
1306 
1307 /* Interface for calling iterative dataflow with user defined
1308    confluence and transfer functions.  All that is necessary is to
1309    supply DIR, a direction, CONF_FUN_0, a confluence function for
1310    blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1311    confluence function, TRANS_FUN, the basic block transfer function,
1312    and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1313    postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1314 
1315 void
1316 df_simple_dataflow (enum df_flow_dir dir,
1317 		    df_init_function init_fun,
1318 		    df_confluence_function_0 con_fun_0,
1319 		    df_confluence_function_n con_fun_n,
1320 		    df_transfer_function trans_fun,
1321 		    bitmap blocks, int * postorder, int n_blocks)
1322 {
1323   memset (&user_problem, 0, sizeof (struct df_problem));
1324   user_problem.dir = dir;
1325   user_problem.init_fun = init_fun;
1326   user_problem.con_fun_0 = con_fun_0;
1327   user_problem.con_fun_n = con_fun_n;
1328   user_problem.trans_fun = trans_fun;
1329   user_dflow.problem = &user_problem;
1330   df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1331 }
1332 
1333 
1334 
1335 /*----------------------------------------------------------------------------
1336    Functions to support limited incremental change.
1337 ----------------------------------------------------------------------------*/
1338 
1339 
1340 /* Get basic block info.  */
1341 
1342 static void *
1343 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1344 {
1345   if (dflow->block_info == NULL)
1346     return NULL;
1347   if (index >= dflow->block_info_size)
1348     return NULL;
1349   return (void *)((char *)dflow->block_info
1350 		  + index * dflow->problem->block_info_elt_size);
1351 }
1352 
1353 
1354 /* Set basic block info.  */
1355 
1356 static void
1357 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1358 		void *bb_info)
1359 {
1360   gcc_assert (dflow->block_info);
1361   memcpy ((char *)dflow->block_info
1362 	  + index * dflow->problem->block_info_elt_size,
1363 	  bb_info, dflow->problem->block_info_elt_size);
1364 }
1365 
1366 
1367 /* Clear basic block info.  */
1368 
1369 static void
1370 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1371 {
1372   gcc_assert (dflow->block_info);
1373   gcc_assert (dflow->block_info_size > index);
1374   memset ((char *)dflow->block_info
1375 	  + index * dflow->problem->block_info_elt_size,
1376 	  0, dflow->problem->block_info_elt_size);
1377 }
1378 
1379 
1380 /* Mark the solutions as being out of date.  */
1381 
1382 void
1383 df_mark_solutions_dirty (void)
1384 {
1385   if (df)
1386     {
1387       int p;
1388       for (p = 1; p < df->num_problems_defined; p++)
1389 	df->problems_in_order[p]->solutions_dirty = true;
1390     }
1391 }
1392 
1393 
1394 /* Return true if BB needs it's transfer functions recomputed.  */
1395 
1396 bool
1397 df_get_bb_dirty (basic_block bb)
1398 {
1399   return bitmap_bit_p ((df_live
1400 			? df_live : df_lr)->out_of_date_transfer_functions,
1401 		       bb->index);
1402 }
1403 
1404 
1405 /* Mark BB as needing it's transfer functions as being out of
1406    date.  */
1407 
1408 void
1409 df_set_bb_dirty (basic_block bb)
1410 {
1411   bb->flags |= BB_MODIFIED;
1412   if (df)
1413     {
1414       int p;
1415       for (p = 1; p < df->num_problems_defined; p++)
1416 	{
1417 	  struct dataflow *dflow = df->problems_in_order[p];
1418 	  if (dflow->out_of_date_transfer_functions)
1419 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1420 	}
1421       df_mark_solutions_dirty ();
1422     }
1423 }
1424 
1425 
1426 /* Grow the bb_info array.  */
1427 
1428 void
1429 df_grow_bb_info (struct dataflow *dflow)
1430 {
1431   unsigned int new_size = last_basic_block + 1;
1432   if (dflow->block_info_size < new_size)
1433     {
1434       new_size += new_size / 4;
1435       dflow->block_info
1436          = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1437 			       new_size
1438 			       * dflow->problem->block_info_elt_size);
1439       memset ((char *)dflow->block_info
1440 	      + dflow->block_info_size
1441 	      * dflow->problem->block_info_elt_size,
1442 	      0,
1443 	      (new_size - dflow->block_info_size)
1444 	      * dflow->problem->block_info_elt_size);
1445       dflow->block_info_size = new_size;
1446     }
1447 }
1448 
1449 
1450 /* Clear the dirty bits.  This is called from places that delete
1451    blocks.  */
1452 static void
1453 df_clear_bb_dirty (basic_block bb)
1454 {
1455   int p;
1456   for (p = 1; p < df->num_problems_defined; p++)
1457     {
1458       struct dataflow *dflow = df->problems_in_order[p];
1459       if (dflow->out_of_date_transfer_functions)
1460 	bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1461     }
1462 }
1463 
1464 /* Called from the rtl_compact_blocks to reorganize the problems basic
1465    block info.  */
1466 
1467 void
1468 df_compact_blocks (void)
1469 {
1470   int i, p;
1471   basic_block bb;
1472   void *problem_temps;
1473   bitmap_head tmp;
1474 
1475   bitmap_initialize (&tmp, &df_bitmap_obstack);
1476   for (p = 0; p < df->num_problems_defined; p++)
1477     {
1478       struct dataflow *dflow = df->problems_in_order[p];
1479 
1480       /* Need to reorganize the out_of_date_transfer_functions for the
1481 	 dflow problem.  */
1482       if (dflow->out_of_date_transfer_functions)
1483 	{
1484 	  bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1485 	  bitmap_clear (dflow->out_of_date_transfer_functions);
1486 	  if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1487 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1488 	  if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1489 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1490 
1491 	  i = NUM_FIXED_BLOCKS;
1492 	  FOR_EACH_BB (bb)
1493 	    {
1494 	      if (bitmap_bit_p (&tmp, bb->index))
1495 		bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1496 	      i++;
1497 	    }
1498 	}
1499 
1500       /* Now shuffle the block info for the problem.  */
1501       if (dflow->problem->free_bb_fun)
1502 	{
1503 	  int size = last_basic_block * dflow->problem->block_info_elt_size;
1504 	  problem_temps = XNEWVAR (char, size);
1505 	  df_grow_bb_info (dflow);
1506 	  memcpy (problem_temps, dflow->block_info, size);
1507 
1508 	  /* Copy the bb info from the problem tmps to the proper
1509 	     place in the block_info vector.  Null out the copied
1510 	     item.  The entry and exit blocks never move.  */
1511 	  i = NUM_FIXED_BLOCKS;
1512 	  FOR_EACH_BB (bb)
1513 	    {
1514 	      df_set_bb_info (dflow, i,
1515 			      (char *)problem_temps
1516 			      + bb->index * dflow->problem->block_info_elt_size);
1517 	      i++;
1518 	    }
1519 	  memset ((char *)dflow->block_info
1520 		  + i * dflow->problem->block_info_elt_size, 0,
1521 		  (last_basic_block - i)
1522 		  * dflow->problem->block_info_elt_size);
1523 	  free (problem_temps);
1524 	}
1525     }
1526 
1527   /* Shuffle the bits in the basic_block indexed arrays.  */
1528 
1529   if (df->blocks_to_analyze)
1530     {
1531       if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1532 	bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1533       if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1534 	bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1535       bitmap_copy (&tmp, df->blocks_to_analyze);
1536       bitmap_clear (df->blocks_to_analyze);
1537       i = NUM_FIXED_BLOCKS;
1538       FOR_EACH_BB (bb)
1539 	{
1540 	  if (bitmap_bit_p (&tmp, bb->index))
1541 	    bitmap_set_bit (df->blocks_to_analyze, i);
1542 	  i++;
1543 	}
1544     }
1545 
1546   bitmap_clear (&tmp);
1547 
1548   i = NUM_FIXED_BLOCKS;
1549   FOR_EACH_BB (bb)
1550     {
1551       SET_BASIC_BLOCK (i, bb);
1552       bb->index = i;
1553       i++;
1554     }
1555 
1556   gcc_assert (i == n_basic_blocks);
1557 
1558   for (; i < last_basic_block; i++)
1559     SET_BASIC_BLOCK (i, NULL);
1560 
1561 #ifdef DF_DEBUG_CFG
1562   if (!df_lr->solutions_dirty)
1563     df_set_clean_cfg ();
1564 #endif
1565 }
1566 
1567 
1568 /* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1569    block.  There is no excuse for people to do this kind of thing.  */
1570 
1571 void
1572 df_bb_replace (int old_index, basic_block new_block)
1573 {
1574   int new_block_index = new_block->index;
1575   int p;
1576 
1577   if (dump_file)
1578     fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1579 
1580   gcc_assert (df);
1581   gcc_assert (BASIC_BLOCK (old_index) == NULL);
1582 
1583   for (p = 0; p < df->num_problems_defined; p++)
1584     {
1585       struct dataflow *dflow = df->problems_in_order[p];
1586       if (dflow->block_info)
1587 	{
1588 	  df_grow_bb_info (dflow);
1589 	  df_set_bb_info (dflow, old_index,
1590 			  df_get_bb_info (dflow, new_block_index));
1591 	}
1592     }
1593 
1594   df_clear_bb_dirty (new_block);
1595   SET_BASIC_BLOCK (old_index, new_block);
1596   new_block->index = old_index;
1597   df_set_bb_dirty (BASIC_BLOCK (old_index));
1598   SET_BASIC_BLOCK (new_block_index, NULL);
1599 }
1600 
1601 
1602 /* Free all of the per basic block dataflow from all of the problems.
1603    This is typically called before a basic block is deleted and the
1604    problem will be reanalyzed.  */
1605 
1606 void
1607 df_bb_delete (int bb_index)
1608 {
1609   basic_block bb = BASIC_BLOCK (bb_index);
1610   int i;
1611 
1612   if (!df)
1613     return;
1614 
1615   for (i = 0; i < df->num_problems_defined; i++)
1616     {
1617       struct dataflow *dflow = df->problems_in_order[i];
1618       if (dflow->problem->free_bb_fun)
1619 	{
1620 	  void *bb_info = df_get_bb_info (dflow, bb_index);
1621 	  if (bb_info)
1622 	    {
1623 	      dflow->problem->free_bb_fun (bb, bb_info);
1624 	      df_clear_bb_info (dflow, bb_index);
1625 	    }
1626 	}
1627     }
1628   df_clear_bb_dirty (bb);
1629   df_mark_solutions_dirty ();
1630 }
1631 
1632 
1633 /* Verify that there is a place for everything and everything is in
1634    its place.  This is too expensive to run after every pass in the
1635    mainline.  However this is an excellent debugging tool if the
1636    dataflow information is not being updated properly.  You can just
1637    sprinkle calls in until you find the place that is changing an
1638    underlying structure without calling the proper updating
1639    routine.  */
1640 
1641 void
1642 df_verify (void)
1643 {
1644   df_scan_verify ();
1645 #ifdef ENABLE_DF_CHECKING
1646   df_lr_verify_transfer_functions ();
1647   if (df_live)
1648     df_live_verify_transfer_functions ();
1649 #endif
1650 }
1651 
1652 #ifdef DF_DEBUG_CFG
1653 
1654 /* Compute an array of ints that describes the cfg.  This can be used
1655    to discover places where the cfg is modified by the appropriate
1656    calls have not been made to the keep df informed.  The internals of
1657    this are unexciting, the key is that two instances of this can be
1658    compared to see if any changes have been made to the cfg.  */
1659 
1660 static int *
1661 df_compute_cfg_image (void)
1662 {
1663   basic_block bb;
1664   int size = 2 + (2 * n_basic_blocks);
1665   int i;
1666   int * map;
1667 
1668   FOR_ALL_BB (bb)
1669     {
1670       size += EDGE_COUNT (bb->succs);
1671     }
1672 
1673   map = XNEWVEC (int, size);
1674   map[0] = size;
1675   i = 1;
1676   FOR_ALL_BB (bb)
1677     {
1678       edge_iterator ei;
1679       edge e;
1680 
1681       map[i++] = bb->index;
1682       FOR_EACH_EDGE (e, ei, bb->succs)
1683 	map[i++] = e->dest->index;
1684       map[i++] = -1;
1685     }
1686   map[i] = -1;
1687   return map;
1688 }
1689 
1690 static int *saved_cfg = NULL;
1691 
1692 
1693 /* This function compares the saved version of the cfg with the
1694    current cfg and aborts if the two are identical.  The function
1695    silently returns if the cfg has been marked as dirty or the two are
1696    the same.  */
1697 
1698 void
1699 df_check_cfg_clean (void)
1700 {
1701   int *new_map;
1702 
1703   if (!df)
1704     return;
1705 
1706   if (df_lr->solutions_dirty)
1707     return;
1708 
1709   if (saved_cfg == NULL)
1710     return;
1711 
1712   new_map = df_compute_cfg_image ();
1713   gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1714   free (new_map);
1715 }
1716 
1717 
1718 /* This function builds a cfg fingerprint and squirrels it away in
1719    saved_cfg.  */
1720 
1721 static void
1722 df_set_clean_cfg (void)
1723 {
1724   free (saved_cfg);
1725   saved_cfg = df_compute_cfg_image ();
1726 }
1727 
1728 #endif /* DF_DEBUG_CFG  */
1729 /*----------------------------------------------------------------------------
1730    PUBLIC INTERFACES TO QUERY INFORMATION.
1731 ----------------------------------------------------------------------------*/
1732 
1733 
1734 /* Return first def of REGNO within BB.  */
1735 
1736 df_ref
1737 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1738 {
1739   rtx insn;
1740   df_ref *def_rec;
1741   unsigned int uid;
1742 
1743   FOR_BB_INSNS (bb, insn)
1744     {
1745       if (!INSN_P (insn))
1746 	continue;
1747 
1748       uid = INSN_UID (insn);
1749       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1750 	{
1751 	  df_ref def = *def_rec;
1752 	  if (DF_REF_REGNO (def) == regno)
1753 	    return def;
1754 	}
1755     }
1756   return NULL;
1757 }
1758 
1759 
1760 /* Return last def of REGNO within BB.  */
1761 
1762 df_ref
1763 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1764 {
1765   rtx insn;
1766   df_ref *def_rec;
1767   unsigned int uid;
1768 
1769   FOR_BB_INSNS_REVERSE (bb, insn)
1770     {
1771       if (!INSN_P (insn))
1772 	continue;
1773 
1774       uid = INSN_UID (insn);
1775       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1776 	{
1777 	  df_ref def = *def_rec;
1778 	  if (DF_REF_REGNO (def) == regno)
1779 	    return def;
1780 	}
1781     }
1782 
1783   return NULL;
1784 }
1785 
1786 /* Finds the reference corresponding to the definition of REG in INSN.
1787    DF is the dataflow object.  */
1788 
1789 df_ref
1790 df_find_def (rtx insn, rtx reg)
1791 {
1792   unsigned int uid;
1793   df_ref *def_rec;
1794 
1795   if (GET_CODE (reg) == SUBREG)
1796     reg = SUBREG_REG (reg);
1797   gcc_assert (REG_P (reg));
1798 
1799   uid = INSN_UID (insn);
1800   for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1801     {
1802       df_ref def = *def_rec;
1803       if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1804 	return def;
1805     }
1806 
1807   return NULL;
1808 }
1809 
1810 
1811 /* Return true if REG is defined in INSN, zero otherwise.  */
1812 
1813 bool
1814 df_reg_defined (rtx insn, rtx reg)
1815 {
1816   return df_find_def (insn, reg) != NULL;
1817 }
1818 
1819 
1820 /* Finds the reference corresponding to the use of REG in INSN.
1821    DF is the dataflow object.  */
1822 
1823 df_ref
1824 df_find_use (rtx insn, rtx reg)
1825 {
1826   unsigned int uid;
1827   df_ref *use_rec;
1828 
1829   if (GET_CODE (reg) == SUBREG)
1830     reg = SUBREG_REG (reg);
1831   gcc_assert (REG_P (reg));
1832 
1833   uid = INSN_UID (insn);
1834   for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1835     {
1836       df_ref use = *use_rec;
1837       if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1838 	return use;
1839     }
1840   if (df->changeable_flags & DF_EQ_NOTES)
1841     for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1842       {
1843 	df_ref use = *use_rec;
1844 	if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1845 	  return use;
1846       }
1847   return NULL;
1848 }
1849 
1850 
1851 /* Return true if REG is referenced in INSN, zero otherwise.  */
1852 
1853 bool
1854 df_reg_used (rtx insn, rtx reg)
1855 {
1856   return df_find_use (insn, reg) != NULL;
1857 }
1858 
1859 
1860 /*----------------------------------------------------------------------------
1861    Debugging and printing functions.
1862 ----------------------------------------------------------------------------*/
1863 
1864 
1865 /* Write information about registers and basic blocks into FILE.
1866    This is part of making a debugging dump.  */
1867 
1868 void
1869 df_print_regset (FILE *file, bitmap r)
1870 {
1871   unsigned int i;
1872   bitmap_iterator bi;
1873 
1874   if (r == NULL)
1875     fputs (" (nil)", file);
1876   else
1877     {
1878       EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1879 	{
1880 	  fprintf (file, " %d", i);
1881 	  if (i < FIRST_PSEUDO_REGISTER)
1882 	    fprintf (file, " [%s]", reg_names[i]);
1883 	}
1884     }
1885   fprintf (file, "\n");
1886 }
1887 
1888 
1889 /* Write information about registers and basic blocks into FILE.  The
1890    bitmap is in the form used by df_byte_lr.  This is part of making a
1891    debugging dump.  */
1892 
1893 void
1894 df_print_word_regset (FILE *file, bitmap r)
1895 {
1896   unsigned int max_reg = max_reg_num ();
1897 
1898   if (r == NULL)
1899     fputs (" (nil)", file);
1900   else
1901     {
1902       unsigned int i;
1903       for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1904 	{
1905 	  bool found = (bitmap_bit_p (r, 2 * i)
1906 			|| bitmap_bit_p (r, 2 * i + 1));
1907 	  if (found)
1908 	    {
1909 	      int word;
1910 	      const char * sep = "";
1911 	      fprintf (file, " %d", i);
1912 	      fprintf (file, "(");
1913 	      for (word = 0; word < 2; word++)
1914 		if (bitmap_bit_p (r, 2 * i + word))
1915 		  {
1916 		    fprintf (file, "%s%d", sep, word);
1917 		    sep = ", ";
1918 		  }
1919 	      fprintf (file, ")");
1920 	    }
1921 	}
1922     }
1923   fprintf (file, "\n");
1924 }
1925 
1926 
1927 /* Dump dataflow info.  */
1928 
1929 void
1930 df_dump (FILE *file)
1931 {
1932   basic_block bb;
1933   df_dump_start (file);
1934 
1935   FOR_ALL_BB (bb)
1936     {
1937       df_print_bb_index (bb, file);
1938       df_dump_top (bb, file);
1939       df_dump_bottom (bb, file);
1940     }
1941 
1942   fprintf (file, "\n");
1943 }
1944 
1945 
1946 /* Dump dataflow info for df->blocks_to_analyze.  */
1947 
1948 void
1949 df_dump_region (FILE *file)
1950 {
1951   if (df->blocks_to_analyze)
1952     {
1953       bitmap_iterator bi;
1954       unsigned int bb_index;
1955 
1956       fprintf (file, "\n\nstarting region dump\n");
1957       df_dump_start (file);
1958 
1959       EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1960 	{
1961 	  basic_block bb = BASIC_BLOCK (bb_index);
1962 
1963 	  df_print_bb_index (bb, file);
1964 	  df_dump_top (bb, file);
1965 	  df_dump_bottom (bb, file);
1966 	}
1967       fprintf (file, "\n");
1968     }
1969   else
1970     df_dump (file);
1971 }
1972 
1973 
1974 /* Dump the introductory information for each problem defined.  */
1975 
1976 void
1977 df_dump_start (FILE *file)
1978 {
1979   int i;
1980 
1981   if (!df || !file)
1982     return;
1983 
1984   fprintf (file, "\n\n%s\n", current_function_name ());
1985   fprintf (file, "\nDataflow summary:\n");
1986   if (df->blocks_to_analyze)
1987     fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1988 	     DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
1989 
1990   for (i = 0; i < df->num_problems_defined; i++)
1991     {
1992       struct dataflow *dflow = df->problems_in_order[i];
1993       if (dflow->computed)
1994 	{
1995 	  df_dump_problem_function fun = dflow->problem->dump_start_fun;
1996 	  if (fun)
1997 	    fun(file);
1998 	}
1999     }
2000 }
2001 
2002 
2003 /* Dump the top of the block information for BB.  */
2004 
2005 void
2006 df_dump_top (basic_block bb, FILE *file)
2007 {
2008   int i;
2009 
2010   if (!df || !file)
2011     return;
2012 
2013   for (i = 0; i < df->num_problems_defined; i++)
2014     {
2015       struct dataflow *dflow = df->problems_in_order[i];
2016       if (dflow->computed)
2017 	{
2018 	  df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2019 	  if (bbfun)
2020 	    bbfun (bb, file);
2021 	}
2022     }
2023 }
2024 
2025 
2026 /* Dump the bottom of the block information for BB.  */
2027 
2028 void
2029 df_dump_bottom (basic_block bb, FILE *file)
2030 {
2031   int i;
2032 
2033   if (!df || !file)
2034     return;
2035 
2036   for (i = 0; i < df->num_problems_defined; i++)
2037     {
2038       struct dataflow *dflow = df->problems_in_order[i];
2039       if (dflow->computed)
2040 	{
2041 	  df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2042 	  if (bbfun)
2043 	    bbfun (bb, file);
2044 	}
2045     }
2046 }
2047 
2048 
2049 static void
2050 df_ref_dump (df_ref ref, FILE *file)
2051 {
2052   fprintf (file, "%c%d(%d)",
2053 	   DF_REF_REG_DEF_P (ref)
2054 	   ? 'd'
2055 	   : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2056 	   DF_REF_ID (ref),
2057 	   DF_REF_REGNO (ref));
2058 }
2059 
2060 void
2061 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2062 {
2063   fprintf (file, "{ ");
2064   while (*ref_rec)
2065     {
2066       df_ref ref = *ref_rec;
2067       df_ref_dump (ref, file);
2068       if (follow_chain)
2069 	df_chain_dump (DF_REF_CHAIN (ref), file);
2070       ref_rec++;
2071     }
2072   fprintf (file, "}");
2073 }
2074 
2075 
2076 /* Dump either a ref-def or reg-use chain.  */
2077 
2078 void
2079 df_regs_chain_dump (df_ref ref,  FILE *file)
2080 {
2081   fprintf (file, "{ ");
2082   while (ref)
2083     {
2084       df_ref_dump (ref, file);
2085       ref = DF_REF_NEXT_REG (ref);
2086     }
2087   fprintf (file, "}");
2088 }
2089 
2090 
2091 static void
2092 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2093 {
2094   while (*mws)
2095     {
2096       fprintf (file, "mw %c r[%d..%d]\n",
2097 	       (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2098 	       (*mws)->start_regno, (*mws)->end_regno);
2099       mws++;
2100     }
2101 }
2102 
2103 
2104 static void
2105 df_insn_uid_debug (unsigned int uid,
2106 		   bool follow_chain, FILE *file)
2107 {
2108   fprintf (file, "insn %d luid %d",
2109 	   uid, DF_INSN_UID_LUID (uid));
2110 
2111   if (DF_INSN_UID_DEFS (uid))
2112     {
2113       fprintf (file, " defs ");
2114       df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2115     }
2116 
2117   if (DF_INSN_UID_USES (uid))
2118     {
2119       fprintf (file, " uses ");
2120       df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2121     }
2122 
2123   if (DF_INSN_UID_EQ_USES (uid))
2124     {
2125       fprintf (file, " eq uses ");
2126       df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2127     }
2128 
2129   if (DF_INSN_UID_MWS (uid))
2130     {
2131       fprintf (file, " mws ");
2132       df_mws_dump (DF_INSN_UID_MWS (uid), file);
2133     }
2134   fprintf (file, "\n");
2135 }
2136 
2137 
2138 DEBUG_FUNCTION void
2139 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2140 {
2141   df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2142 }
2143 
2144 DEBUG_FUNCTION void
2145 df_insn_debug_regno (rtx insn, FILE *file)
2146 {
2147   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2148 
2149   fprintf (file, "insn %d bb %d luid %d defs ",
2150 	   INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2151 	   DF_INSN_INFO_LUID (insn_info));
2152   df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2153 
2154   fprintf (file, " uses ");
2155   df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2156 
2157   fprintf (file, " eq_uses ");
2158   df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2159   fprintf (file, "\n");
2160 }
2161 
2162 DEBUG_FUNCTION void
2163 df_regno_debug (unsigned int regno, FILE *file)
2164 {
2165   fprintf (file, "reg %d defs ", regno);
2166   df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2167   fprintf (file, " uses ");
2168   df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2169   fprintf (file, " eq_uses ");
2170   df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2171   fprintf (file, "\n");
2172 }
2173 
2174 
2175 DEBUG_FUNCTION void
2176 df_ref_debug (df_ref ref, FILE *file)
2177 {
2178   fprintf (file, "%c%d ",
2179 	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2180 	   DF_REF_ID (ref));
2181   fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2182 	   DF_REF_REGNO (ref),
2183 	   DF_REF_BBNO (ref),
2184 	   DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2185 	   DF_REF_FLAGS (ref),
2186 	   DF_REF_TYPE (ref));
2187   if (DF_REF_LOC (ref))
2188     {
2189       if (flag_dump_noaddr)
2190 	fprintf (file, "loc #(#) chain ");
2191       else
2192 	fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2193 		 (void *)*DF_REF_LOC (ref));
2194     }
2195   else
2196     fprintf (file, "chain ");
2197   df_chain_dump (DF_REF_CHAIN (ref), file);
2198   fprintf (file, "\n");
2199 }
2200 
2201 /* Functions for debugging from GDB.  */
2202 
2203 DEBUG_FUNCTION void
2204 debug_df_insn (rtx insn)
2205 {
2206   df_insn_debug (insn, true, stderr);
2207   debug_rtx (insn);
2208 }
2209 
2210 
2211 DEBUG_FUNCTION void
2212 debug_df_reg (rtx reg)
2213 {
2214   df_regno_debug (REGNO (reg), stderr);
2215 }
2216 
2217 
2218 DEBUG_FUNCTION void
2219 debug_df_regno (unsigned int regno)
2220 {
2221   df_regno_debug (regno, stderr);
2222 }
2223 
2224 
2225 DEBUG_FUNCTION void
2226 debug_df_ref (df_ref ref)
2227 {
2228   df_ref_debug (ref, stderr);
2229 }
2230 
2231 
2232 DEBUG_FUNCTION void
2233 debug_df_defno (unsigned int defno)
2234 {
2235   df_ref_debug (DF_DEFS_GET (defno), stderr);
2236 }
2237 
2238 
2239 DEBUG_FUNCTION void
2240 debug_df_useno (unsigned int defno)
2241 {
2242   df_ref_debug (DF_USES_GET (defno), stderr);
2243 }
2244 
2245 
2246 DEBUG_FUNCTION void
2247 debug_df_chain (struct df_link *link)
2248 {
2249   df_chain_dump (link, stderr);
2250   fputc ('\n', stderr);
2251 }
2252