xref: /dragonfly/contrib/gcc-4.7/gcc/domwalk.c (revision 25a2db75)
1 /* Generic dominator tree walker
2    Copyright (C) 2003, 2004, 2005, 2007, 2008, 2010 Free Software Foundation,
3    Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "basic-block.h"
27 #include "domwalk.h"
28 #include "sbitmap.h"
29 
30 /* This file implements a generic walker for dominator trees.
31 
32   To understand the dominator walker one must first have a grasp of dominators,
33   immediate dominators and the dominator tree.
34 
35   Dominators
36     A block B1 is said to dominate B2 if every path from the entry to B2 must
37     pass through B1.  Given the dominance relationship, we can proceed to
38     compute immediate dominators.  Note it is not important whether or not
39     our definition allows a block to dominate itself.
40 
41   Immediate Dominators:
42     Every block in the CFG has no more than one immediate dominator.  The
43     immediate dominator of block BB must dominate BB and must not dominate
44     any other dominator of BB and must not be BB itself.
45 
46   Dominator tree:
47     If we then construct a tree where each node is a basic block and there
48     is an edge from each block's immediate dominator to the block itself, then
49     we have a dominator tree.
50 
51 
52   [ Note this walker can also walk the post-dominator tree, which is
53     defined in a similar manner.  i.e., block B1 is said to post-dominate
54     block B2 if all paths from B2 to the exit block must pass through
55     B1.  ]
56 
57   For example, given the CFG
58 
59                    1
60                    |
61                    2
62                   / \
63                  3   4
64                     / \
65        +---------->5   6
66        |          / \ /
67        |    +--->8   7
68        |    |   /    |
69        |    +--9    11
70        |      /      |
71        +--- 10 ---> 12
72 
73 
74   We have a dominator tree which looks like
75 
76                    1
77                    |
78                    2
79                   / \
80                  /   \
81                 3     4
82                    / / \ \
83                    | | | |
84                    5 6 7 12
85                    |   |
86                    8   11
87                    |
88                    9
89                    |
90                   10
91 
92 
93 
94   The dominator tree is the basis for a number of analysis, transformation
95   and optimization algorithms that operate on a semi-global basis.
96 
97   The dominator walker is a generic routine which visits blocks in the CFG
98   via a depth first search of the dominator tree.  In the example above
99   the dominator walker might visit blocks in the following order
100   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
101 
102   The dominator walker has a number of callbacks to perform actions
103   during the walk of the dominator tree.  There are two callbacks
104   which walk statements, one before visiting the dominator children,
105   one after visiting the dominator children.  There is a callback
106   before and after each statement walk callback.  In addition, the
107   dominator walker manages allocation/deallocation of data structures
108   which are local to each block visited.
109 
110   The dominator walker is meant to provide a generic means to build a pass
111   which can analyze or transform/optimize a function based on walking
112   the dominator tree.  One simply fills in the dominator walker data
113   structure with the appropriate callbacks and calls the walker.
114 
115   We currently use the dominator walker to prune the set of variables
116   which might need PHI nodes (which can greatly improve compile-time
117   performance in some cases).
118 
119   We also use the dominator walker to rewrite the function into SSA form
120   which reduces code duplication since the rewriting phase is inherently
121   a walk of the dominator tree.
122 
123   And (of course), we use the dominator walker to drive our dominator
124   optimizer, which is a semi-global optimizer.
125 
126   TODO:
127 
128     Walking statements is based on the block statement iterator abstraction,
129     which is currently an abstraction over walking tree statements.  Thus
130     the dominator walker is currently only useful for trees.  */
131 
132 /* Recursively walk the dominator tree.
133 
134    WALK_DATA contains a set of callbacks to perform pass-specific
135    actions during the dominator walk as well as a stack of block local
136    data maintained during the dominator walk.
137 
138    BB is the basic block we are currently visiting.  */
139 
140 void
141 walk_dominator_tree (struct dom_walk_data *walk_data, basic_block bb)
142 {
143   void *bd = NULL;
144   basic_block dest;
145   basic_block *worklist = XNEWVEC (basic_block, n_basic_blocks * 2);
146   int sp = 0;
147   sbitmap visited = sbitmap_alloc (last_basic_block + 1);
148   sbitmap_zero (visited);
149   SET_BIT (visited, ENTRY_BLOCK_PTR->index);
150 
151   while (true)
152     {
153       /* Don't worry about unreachable blocks.  */
154       if (EDGE_COUNT (bb->preds) > 0
155 	  || bb == ENTRY_BLOCK_PTR
156 	  || bb == EXIT_BLOCK_PTR)
157 	{
158 	  /* Callback to initialize the local data structure.  */
159 	  if (walk_data->initialize_block_local_data)
160 	    {
161 	      bool recycled;
162 
163 	      /* First get some local data, reusing any local data
164 		 pointer we may have saved.  */
165 	      if (VEC_length (void_p, walk_data->free_block_data) > 0)
166 		{
167 		  bd = VEC_pop (void_p, walk_data->free_block_data);
168 		  recycled = 1;
169 		}
170 	      else
171 		{
172 		  bd = xcalloc (1, walk_data->block_local_data_size);
173 		  recycled = 0;
174 		}
175 
176 	      /* Push the local data into the local data stack.  */
177 	      VEC_safe_push (void_p, heap, walk_data->block_data_stack, bd);
178 
179 	      /* Call the initializer.  */
180 	      walk_data->initialize_block_local_data (walk_data, bb,
181 						      recycled);
182 
183 	    }
184 
185 	  /* Callback for operations to execute before we have walked the
186 	     dominator children, but before we walk statements.  */
187 	  if (walk_data->before_dom_children)
188 	    (*walk_data->before_dom_children) (walk_data, bb);
189 
190 	  SET_BIT (visited, bb->index);
191 
192 	  /* Mark the current BB to be popped out of the recursion stack
193 	     once children are processed.  */
194 	  worklist[sp++] = bb;
195 	  worklist[sp++] = NULL;
196 
197 	  for (dest = first_dom_son (walk_data->dom_direction, bb);
198 	       dest; dest = next_dom_son (walk_data->dom_direction, dest))
199 	    worklist[sp++] = dest;
200 	}
201       /* NULL is used to mark pop operations in the recursion stack.  */
202       while (sp > 0 && !worklist[sp - 1])
203 	{
204 	  --sp;
205 	  bb = worklist[--sp];
206 
207 	  /* Callback for operations to execute after we have walked the
208 	     dominator children, but before we walk statements.  */
209 	  if (walk_data->after_dom_children)
210 	    (*walk_data->after_dom_children) (walk_data, bb);
211 
212 	  if (walk_data->initialize_block_local_data)
213 	    {
214 	      /* And finally pop the record off the block local data stack.  */
215 	      bd = VEC_pop (void_p, walk_data->block_data_stack);
216 	      /* And save the block data so that we can re-use it.  */
217 	      VEC_safe_push (void_p, heap, walk_data->free_block_data, bd);
218 	    }
219 	}
220       if (sp)
221 	{
222 	  int spp;
223 	  spp = sp - 1;
224 	  if (walk_data->dom_direction == CDI_DOMINATORS)
225 	    /* Find the dominator son that has all its predecessors
226 	       visited and continue with that.  */
227 	    while (1)
228 	      {
229 		edge_iterator ei;
230 		edge e;
231 		bool found = true;
232 		bb = worklist[spp];
233 		FOR_EACH_EDGE (e, ei, bb->preds)
234 		  {
235 		    if (!dominated_by_p (CDI_DOMINATORS, e->src, e->dest)
236 			&& !TEST_BIT (visited, e->src->index))
237 		      {
238 			found = false;
239 			break;
240 		      }
241 		  }
242 		if (found)
243 		  break;
244 		/* If we didn't find a dom child with all visited
245 		   predecessors just use the candidate we were checking.
246 		   This happens for candidates in irreducible loops.  */
247 		if (!worklist[spp - 1])
248 		  break;
249 		--spp;
250 	      }
251 	  bb = worklist[spp];
252 	  worklist[spp] = worklist[--sp];
253 	}
254       else
255 	break;
256     }
257   free (worklist);
258   sbitmap_free (visited);
259 }
260 
261 void
262 init_walk_dominator_tree (struct dom_walk_data *walk_data)
263 {
264   walk_data->free_block_data = NULL;
265   walk_data->block_data_stack = NULL;
266 }
267 
268 void
269 fini_walk_dominator_tree (struct dom_walk_data *walk_data)
270 {
271   if (walk_data->initialize_block_local_data)
272     {
273       while (VEC_length (void_p, walk_data->free_block_data) > 0)
274 	free (VEC_pop (void_p, walk_data->free_block_data));
275     }
276 
277   VEC_free (void_p, heap, walk_data->free_block_data);
278   VEC_free (void_p, heap, walk_data->block_data_stack);
279 }
280