1 /* "Bag-of-pages" garbage collector for the GNU compiler. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 3 2010, 2011 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "rtl.h" 27 #include "tm_p.h" 28 #include "diagnostic-core.h" 29 #include "flags.h" 30 #include "ggc.h" 31 #include "ggc-internal.h" 32 #include "timevar.h" 33 #include "params.h" 34 #include "tree-flow.h" 35 #include "cfgloop.h" 36 #include "plugin.h" 37 38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a 39 file open. Prefer either to valloc. */ 40 #ifdef HAVE_MMAP_ANON 41 # undef HAVE_MMAP_DEV_ZERO 42 # define USING_MMAP 43 #endif 44 45 #ifdef HAVE_MMAP_DEV_ZERO 46 # define USING_MMAP 47 #endif 48 49 #ifndef USING_MMAP 50 #define USING_MALLOC_PAGE_GROUPS 51 #endif 52 53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \ 54 && defined(USING_MMAP) 55 # define USING_MADVISE 56 #endif 57 58 /* Strategy: 59 60 This garbage-collecting allocator allocates objects on one of a set 61 of pages. Each page can allocate objects of a single size only; 62 available sizes are powers of two starting at four bytes. The size 63 of an allocation request is rounded up to the next power of two 64 (`order'), and satisfied from the appropriate page. 65 66 Each page is recorded in a page-entry, which also maintains an 67 in-use bitmap of object positions on the page. This allows the 68 allocation state of a particular object to be flipped without 69 touching the page itself. 70 71 Each page-entry also has a context depth, which is used to track 72 pushing and popping of allocation contexts. Only objects allocated 73 in the current (highest-numbered) context may be collected. 74 75 Page entries are arranged in an array of singly-linked lists. The 76 array is indexed by the allocation size, in bits, of the pages on 77 it; i.e. all pages on a list allocate objects of the same size. 78 Pages are ordered on the list such that all non-full pages precede 79 all full pages, with non-full pages arranged in order of decreasing 80 context depth. 81 82 Empty pages (of all orders) are kept on a single page cache list, 83 and are considered first when new pages are required; they are 84 deallocated at the start of the next collection if they haven't 85 been recycled by then. */ 86 87 /* Define GGC_DEBUG_LEVEL to print debugging information. 88 0: No debugging output. 89 1: GC statistics only. 90 2: Page-entry allocations/deallocations as well. 91 3: Object allocations as well. 92 4: Object marks as well. */ 93 #define GGC_DEBUG_LEVEL (0) 94 95 #ifndef HOST_BITS_PER_PTR 96 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG 97 #endif 98 99 100 /* A two-level tree is used to look up the page-entry for a given 101 pointer. Two chunks of the pointer's bits are extracted to index 102 the first and second levels of the tree, as follows: 103 104 HOST_PAGE_SIZE_BITS 105 32 | | 106 msb +----------------+----+------+------+ lsb 107 | | | 108 PAGE_L1_BITS | 109 | | 110 PAGE_L2_BITS 111 112 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry 113 pages are aligned on system page boundaries. The next most 114 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first 115 index values in the lookup table, respectively. 116 117 For 32-bit architectures and the settings below, there are no 118 leftover bits. For architectures with wider pointers, the lookup 119 tree points to a list of pages, which must be scanned to find the 120 correct one. */ 121 122 #define PAGE_L1_BITS (8) 123 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize) 124 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS) 125 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS) 126 127 #define LOOKUP_L1(p) \ 128 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1)) 129 130 #define LOOKUP_L2(p) \ 131 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1)) 132 133 /* The number of objects per allocation page, for objects on a page of 134 the indicated ORDER. */ 135 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER] 136 137 /* The number of objects in P. */ 138 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order)) 139 140 /* The size of an object on a page of the indicated ORDER. */ 141 #define OBJECT_SIZE(ORDER) object_size_table[ORDER] 142 143 /* For speed, we avoid doing a general integer divide to locate the 144 offset in the allocation bitmap, by precalculating numbers M, S 145 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O 146 within the page which is evenly divisible by the object size Z. */ 147 #define DIV_MULT(ORDER) inverse_table[ORDER].mult 148 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift 149 #define OFFSET_TO_BIT(OFFSET, ORDER) \ 150 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER)) 151 152 /* We use this structure to determine the alignment required for 153 allocations. For power-of-two sized allocations, that's not a 154 problem, but it does matter for odd-sized allocations. 155 We do not care about alignment for floating-point types. */ 156 157 struct max_alignment { 158 char c; 159 union { 160 HOST_WIDEST_INT i; 161 void *p; 162 } u; 163 }; 164 165 /* The biggest alignment required. */ 166 167 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u)) 168 169 170 /* The number of extra orders, not corresponding to power-of-two sized 171 objects. */ 172 173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table) 174 175 #define RTL_SIZE(NSLOTS) \ 176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion)) 177 178 #define TREE_EXP_SIZE(OPS) \ 179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree)) 180 181 /* The Ith entry is the maximum size of an object to be stored in the 182 Ith extra order. Adding a new entry to this array is the *only* 183 thing you need to do to add a new special allocation size. */ 184 185 static const size_t extra_order_size_table[] = { 186 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT. 187 There are a lot of structures with these sizes and explicitly 188 listing them risks orders being dropped because they changed size. */ 189 MAX_ALIGNMENT * 3, 190 MAX_ALIGNMENT * 5, 191 MAX_ALIGNMENT * 6, 192 MAX_ALIGNMENT * 7, 193 MAX_ALIGNMENT * 9, 194 MAX_ALIGNMENT * 10, 195 MAX_ALIGNMENT * 11, 196 MAX_ALIGNMENT * 12, 197 MAX_ALIGNMENT * 13, 198 MAX_ALIGNMENT * 14, 199 MAX_ALIGNMENT * 15, 200 sizeof (struct tree_decl_non_common), 201 sizeof (struct tree_field_decl), 202 sizeof (struct tree_parm_decl), 203 sizeof (struct tree_var_decl), 204 sizeof (struct tree_type_non_common), 205 sizeof (struct function), 206 sizeof (struct basic_block_def), 207 sizeof (struct cgraph_node), 208 sizeof (struct loop), 209 }; 210 211 /* The total number of orders. */ 212 213 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS) 214 215 /* Compute the smallest nonnegative number which when added to X gives 216 a multiple of F. */ 217 218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f)) 219 220 /* Compute the smallest multiple of F that is >= X. */ 221 222 #define ROUND_UP(x, f) (CEIL (x, f) * (f)) 223 224 /* Round X to next multiple of the page size */ 225 226 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1)) 227 228 /* The Ith entry is the number of objects on a page or order I. */ 229 230 static unsigned objects_per_page_table[NUM_ORDERS]; 231 232 /* The Ith entry is the size of an object on a page of order I. */ 233 234 static size_t object_size_table[NUM_ORDERS]; 235 236 /* The Ith entry is a pair of numbers (mult, shift) such that 237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32, 238 for all k evenly divisible by OBJECT_SIZE(I). */ 239 240 static struct 241 { 242 size_t mult; 243 unsigned int shift; 244 } 245 inverse_table[NUM_ORDERS]; 246 247 /* A page_entry records the status of an allocation page. This 248 structure is dynamically sized to fit the bitmap in_use_p. */ 249 typedef struct page_entry 250 { 251 /* The next page-entry with objects of the same size, or NULL if 252 this is the last page-entry. */ 253 struct page_entry *next; 254 255 /* The previous page-entry with objects of the same size, or NULL if 256 this is the first page-entry. The PREV pointer exists solely to 257 keep the cost of ggc_free manageable. */ 258 struct page_entry *prev; 259 260 /* The number of bytes allocated. (This will always be a multiple 261 of the host system page size.) */ 262 size_t bytes; 263 264 /* The address at which the memory is allocated. */ 265 char *page; 266 267 #ifdef USING_MALLOC_PAGE_GROUPS 268 /* Back pointer to the page group this page came from. */ 269 struct page_group *group; 270 #endif 271 272 /* This is the index in the by_depth varray where this page table 273 can be found. */ 274 unsigned long index_by_depth; 275 276 /* Context depth of this page. */ 277 unsigned short context_depth; 278 279 /* The number of free objects remaining on this page. */ 280 unsigned short num_free_objects; 281 282 /* A likely candidate for the bit position of a free object for the 283 next allocation from this page. */ 284 unsigned short next_bit_hint; 285 286 /* The lg of size of objects allocated from this page. */ 287 unsigned char order; 288 289 /* Discarded page? */ 290 bool discarded; 291 292 /* A bit vector indicating whether or not objects are in use. The 293 Nth bit is one if the Nth object on this page is allocated. This 294 array is dynamically sized. */ 295 unsigned long in_use_p[1]; 296 } page_entry; 297 298 #ifdef USING_MALLOC_PAGE_GROUPS 299 /* A page_group describes a large allocation from malloc, from which 300 we parcel out aligned pages. */ 301 typedef struct page_group 302 { 303 /* A linked list of all extant page groups. */ 304 struct page_group *next; 305 306 /* The address we received from malloc. */ 307 char *allocation; 308 309 /* The size of the block. */ 310 size_t alloc_size; 311 312 /* A bitmask of pages in use. */ 313 unsigned int in_use; 314 } page_group; 315 #endif 316 317 #if HOST_BITS_PER_PTR <= 32 318 319 /* On 32-bit hosts, we use a two level page table, as pictured above. */ 320 typedef page_entry **page_table[PAGE_L1_SIZE]; 321 322 #else 323 324 /* On 64-bit hosts, we use the same two level page tables plus a linked 325 list that disambiguates the top 32-bits. There will almost always be 326 exactly one entry in the list. */ 327 typedef struct page_table_chain 328 { 329 struct page_table_chain *next; 330 size_t high_bits; 331 page_entry **table[PAGE_L1_SIZE]; 332 } *page_table; 333 334 #endif 335 336 #ifdef ENABLE_GC_ALWAYS_COLLECT 337 /* List of free objects to be verified as actually free on the 338 next collection. */ 339 struct free_object 340 { 341 void *object; 342 struct free_object *next; 343 }; 344 #endif 345 346 /* The rest of the global variables. */ 347 static struct globals 348 { 349 /* The Nth element in this array is a page with objects of size 2^N. 350 If there are any pages with free objects, they will be at the 351 head of the list. NULL if there are no page-entries for this 352 object size. */ 353 page_entry *pages[NUM_ORDERS]; 354 355 /* The Nth element in this array is the last page with objects of 356 size 2^N. NULL if there are no page-entries for this object 357 size. */ 358 page_entry *page_tails[NUM_ORDERS]; 359 360 /* Lookup table for associating allocation pages with object addresses. */ 361 page_table lookup; 362 363 /* The system's page size. */ 364 size_t pagesize; 365 size_t lg_pagesize; 366 367 /* Bytes currently allocated. */ 368 size_t allocated; 369 370 /* Bytes currently allocated at the end of the last collection. */ 371 size_t allocated_last_gc; 372 373 /* Total amount of memory mapped. */ 374 size_t bytes_mapped; 375 376 /* Bit N set if any allocations have been done at context depth N. */ 377 unsigned long context_depth_allocations; 378 379 /* Bit N set if any collections have been done at context depth N. */ 380 unsigned long context_depth_collections; 381 382 /* The current depth in the context stack. */ 383 unsigned short context_depth; 384 385 /* A file descriptor open to /dev/zero for reading. */ 386 #if defined (HAVE_MMAP_DEV_ZERO) 387 int dev_zero_fd; 388 #endif 389 390 /* A cache of free system pages. */ 391 page_entry *free_pages; 392 393 #ifdef USING_MALLOC_PAGE_GROUPS 394 page_group *page_groups; 395 #endif 396 397 /* The file descriptor for debugging output. */ 398 FILE *debug_file; 399 400 /* Current number of elements in use in depth below. */ 401 unsigned int depth_in_use; 402 403 /* Maximum number of elements that can be used before resizing. */ 404 unsigned int depth_max; 405 406 /* Each element of this array is an index in by_depth where the given 407 depth starts. This structure is indexed by that given depth we 408 are interested in. */ 409 unsigned int *depth; 410 411 /* Current number of elements in use in by_depth below. */ 412 unsigned int by_depth_in_use; 413 414 /* Maximum number of elements that can be used before resizing. */ 415 unsigned int by_depth_max; 416 417 /* Each element of this array is a pointer to a page_entry, all 418 page_entries can be found in here by increasing depth. 419 index_by_depth in the page_entry is the index into this data 420 structure where that page_entry can be found. This is used to 421 speed up finding all page_entries at a particular depth. */ 422 page_entry **by_depth; 423 424 /* Each element is a pointer to the saved in_use_p bits, if any, 425 zero otherwise. We allocate them all together, to enable a 426 better runtime data access pattern. */ 427 unsigned long **save_in_use; 428 429 #ifdef ENABLE_GC_ALWAYS_COLLECT 430 /* List of free objects to be verified as actually free on the 431 next collection. */ 432 struct free_object *free_object_list; 433 #endif 434 435 #ifdef GATHER_STATISTICS 436 struct 437 { 438 /* Total GC-allocated memory. */ 439 unsigned long long total_allocated; 440 /* Total overhead for GC-allocated memory. */ 441 unsigned long long total_overhead; 442 443 /* Total allocations and overhead for sizes less than 32, 64 and 128. 444 These sizes are interesting because they are typical cache line 445 sizes. */ 446 447 unsigned long long total_allocated_under32; 448 unsigned long long total_overhead_under32; 449 450 unsigned long long total_allocated_under64; 451 unsigned long long total_overhead_under64; 452 453 unsigned long long total_allocated_under128; 454 unsigned long long total_overhead_under128; 455 456 /* The allocations for each of the allocation orders. */ 457 unsigned long long total_allocated_per_order[NUM_ORDERS]; 458 459 /* The overhead for each of the allocation orders. */ 460 unsigned long long total_overhead_per_order[NUM_ORDERS]; 461 } stats; 462 #endif 463 } G; 464 465 /* The size in bytes required to maintain a bitmap for the objects 466 on a page-entry. */ 467 #define BITMAP_SIZE(Num_objects) \ 468 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long)) 469 470 /* Allocate pages in chunks of this size, to throttle calls to memory 471 allocation routines. The first page is used, the rest go onto the 472 free list. This cannot be larger than HOST_BITS_PER_INT for the 473 in_use bitmask for page_group. Hosts that need a different value 474 can override this by defining GGC_QUIRE_SIZE explicitly. */ 475 #ifndef GGC_QUIRE_SIZE 476 # ifdef USING_MMAP 477 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */ 478 # else 479 # define GGC_QUIRE_SIZE 16 480 # endif 481 #endif 482 483 /* Initial guess as to how many page table entries we might need. */ 484 #define INITIAL_PTE_COUNT 128 485 486 static int ggc_allocated_p (const void *); 487 static page_entry *lookup_page_table_entry (const void *); 488 static void set_page_table_entry (void *, page_entry *); 489 #ifdef USING_MMAP 490 static char *alloc_anon (char *, size_t, bool check); 491 #endif 492 #ifdef USING_MALLOC_PAGE_GROUPS 493 static size_t page_group_index (char *, char *); 494 static void set_page_group_in_use (page_group *, char *); 495 static void clear_page_group_in_use (page_group *, char *); 496 #endif 497 static struct page_entry * alloc_page (unsigned); 498 static void free_page (struct page_entry *); 499 static void release_pages (void); 500 static void clear_marks (void); 501 static void sweep_pages (void); 502 static void ggc_recalculate_in_use_p (page_entry *); 503 static void compute_inverse (unsigned); 504 static inline void adjust_depth (void); 505 static void move_ptes_to_front (int, int); 506 507 void debug_print_page_list (int); 508 static void push_depth (unsigned int); 509 static void push_by_depth (page_entry *, unsigned long *); 510 511 /* Push an entry onto G.depth. */ 512 513 inline static void 514 push_depth (unsigned int i) 515 { 516 if (G.depth_in_use >= G.depth_max) 517 { 518 G.depth_max *= 2; 519 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max); 520 } 521 G.depth[G.depth_in_use++] = i; 522 } 523 524 /* Push an entry onto G.by_depth and G.save_in_use. */ 525 526 inline static void 527 push_by_depth (page_entry *p, unsigned long *s) 528 { 529 if (G.by_depth_in_use >= G.by_depth_max) 530 { 531 G.by_depth_max *= 2; 532 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max); 533 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use, 534 G.by_depth_max); 535 } 536 G.by_depth[G.by_depth_in_use] = p; 537 G.save_in_use[G.by_depth_in_use++] = s; 538 } 539 540 #if (GCC_VERSION < 3001) 541 #define prefetch(X) ((void) X) 542 #else 543 #define prefetch(X) __builtin_prefetch (X) 544 #endif 545 546 #define save_in_use_p_i(__i) \ 547 (G.save_in_use[__i]) 548 #define save_in_use_p(__p) \ 549 (save_in_use_p_i (__p->index_by_depth)) 550 551 /* Returns nonzero if P was allocated in GC'able memory. */ 552 553 static inline int 554 ggc_allocated_p (const void *p) 555 { 556 page_entry ***base; 557 size_t L1, L2; 558 559 #if HOST_BITS_PER_PTR <= 32 560 base = &G.lookup[0]; 561 #else 562 page_table table = G.lookup; 563 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 564 while (1) 565 { 566 if (table == NULL) 567 return 0; 568 if (table->high_bits == high_bits) 569 break; 570 table = table->next; 571 } 572 base = &table->table[0]; 573 #endif 574 575 /* Extract the level 1 and 2 indices. */ 576 L1 = LOOKUP_L1 (p); 577 L2 = LOOKUP_L2 (p); 578 579 return base[L1] && base[L1][L2]; 580 } 581 582 /* Traverse the page table and find the entry for a page. 583 Die (probably) if the object wasn't allocated via GC. */ 584 585 static inline page_entry * 586 lookup_page_table_entry (const void *p) 587 { 588 page_entry ***base; 589 size_t L1, L2; 590 591 #if HOST_BITS_PER_PTR <= 32 592 base = &G.lookup[0]; 593 #else 594 page_table table = G.lookup; 595 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 596 while (table->high_bits != high_bits) 597 table = table->next; 598 base = &table->table[0]; 599 #endif 600 601 /* Extract the level 1 and 2 indices. */ 602 L1 = LOOKUP_L1 (p); 603 L2 = LOOKUP_L2 (p); 604 605 return base[L1][L2]; 606 } 607 608 /* Set the page table entry for a page. */ 609 610 static void 611 set_page_table_entry (void *p, page_entry *entry) 612 { 613 page_entry ***base; 614 size_t L1, L2; 615 616 #if HOST_BITS_PER_PTR <= 32 617 base = &G.lookup[0]; 618 #else 619 page_table table; 620 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 621 for (table = G.lookup; table; table = table->next) 622 if (table->high_bits == high_bits) 623 goto found; 624 625 /* Not found -- allocate a new table. */ 626 table = XCNEW (struct page_table_chain); 627 table->next = G.lookup; 628 table->high_bits = high_bits; 629 G.lookup = table; 630 found: 631 base = &table->table[0]; 632 #endif 633 634 /* Extract the level 1 and 2 indices. */ 635 L1 = LOOKUP_L1 (p); 636 L2 = LOOKUP_L2 (p); 637 638 if (base[L1] == NULL) 639 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE); 640 641 base[L1][L2] = entry; 642 } 643 644 /* Prints the page-entry for object size ORDER, for debugging. */ 645 646 DEBUG_FUNCTION void 647 debug_print_page_list (int order) 648 { 649 page_entry *p; 650 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order], 651 (void *) G.page_tails[order]); 652 p = G.pages[order]; 653 while (p != NULL) 654 { 655 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth, 656 p->num_free_objects); 657 p = p->next; 658 } 659 printf ("NULL\n"); 660 fflush (stdout); 661 } 662 663 #ifdef USING_MMAP 664 /* Allocate SIZE bytes of anonymous memory, preferably near PREF, 665 (if non-null). The ifdef structure here is intended to cause a 666 compile error unless exactly one of the HAVE_* is defined. */ 667 668 static inline char * 669 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check) 670 { 671 #ifdef HAVE_MMAP_ANON 672 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 673 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 674 #endif 675 #ifdef HAVE_MMAP_DEV_ZERO 676 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 677 MAP_PRIVATE, G.dev_zero_fd, 0); 678 #endif 679 680 if (page == (char *) MAP_FAILED) 681 { 682 if (!check) 683 return NULL; 684 perror ("virtual memory exhausted"); 685 exit (FATAL_EXIT_CODE); 686 } 687 688 /* Remember that we allocated this memory. */ 689 G.bytes_mapped += size; 690 691 /* Pretend we don't have access to the allocated pages. We'll enable 692 access to smaller pieces of the area in ggc_internal_alloc. Discard the 693 handle to avoid handle leak. */ 694 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size)); 695 696 return page; 697 } 698 #endif 699 #ifdef USING_MALLOC_PAGE_GROUPS 700 /* Compute the index for this page into the page group. */ 701 702 static inline size_t 703 page_group_index (char *allocation, char *page) 704 { 705 return (size_t) (page - allocation) >> G.lg_pagesize; 706 } 707 708 /* Set and clear the in_use bit for this page in the page group. */ 709 710 static inline void 711 set_page_group_in_use (page_group *group, char *page) 712 { 713 group->in_use |= 1 << page_group_index (group->allocation, page); 714 } 715 716 static inline void 717 clear_page_group_in_use (page_group *group, char *page) 718 { 719 group->in_use &= ~(1 << page_group_index (group->allocation, page)); 720 } 721 #endif 722 723 /* Allocate a new page for allocating objects of size 2^ORDER, 724 and return an entry for it. The entry is not added to the 725 appropriate page_table list. */ 726 727 static inline struct page_entry * 728 alloc_page (unsigned order) 729 { 730 struct page_entry *entry, *p, **pp; 731 char *page; 732 size_t num_objects; 733 size_t bitmap_size; 734 size_t page_entry_size; 735 size_t entry_size; 736 #ifdef USING_MALLOC_PAGE_GROUPS 737 page_group *group; 738 #endif 739 740 num_objects = OBJECTS_PER_PAGE (order); 741 bitmap_size = BITMAP_SIZE (num_objects + 1); 742 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size; 743 entry_size = num_objects * OBJECT_SIZE (order); 744 if (entry_size < G.pagesize) 745 entry_size = G.pagesize; 746 entry_size = PAGE_ALIGN (entry_size); 747 748 entry = NULL; 749 page = NULL; 750 751 /* Check the list of free pages for one we can use. */ 752 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp) 753 if (p->bytes == entry_size) 754 break; 755 756 if (p != NULL) 757 { 758 if (p->discarded) 759 G.bytes_mapped += p->bytes; 760 p->discarded = false; 761 762 /* Recycle the allocated memory from this page ... */ 763 *pp = p->next; 764 page = p->page; 765 766 #ifdef USING_MALLOC_PAGE_GROUPS 767 group = p->group; 768 #endif 769 770 /* ... and, if possible, the page entry itself. */ 771 if (p->order == order) 772 { 773 entry = p; 774 memset (entry, 0, page_entry_size); 775 } 776 else 777 free (p); 778 } 779 #ifdef USING_MMAP 780 else if (entry_size == G.pagesize) 781 { 782 /* We want just one page. Allocate a bunch of them and put the 783 extras on the freelist. (Can only do this optimization with 784 mmap for backing store.) */ 785 struct page_entry *e, *f = G.free_pages; 786 int i, entries = GGC_QUIRE_SIZE; 787 788 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false); 789 if (page == NULL) 790 { 791 page = alloc_anon(NULL, G.pagesize, true); 792 entries = 1; 793 } 794 795 /* This loop counts down so that the chain will be in ascending 796 memory order. */ 797 for (i = entries - 1; i >= 1; i--) 798 { 799 e = XCNEWVAR (struct page_entry, page_entry_size); 800 e->order = order; 801 e->bytes = G.pagesize; 802 e->page = page + (i << G.lg_pagesize); 803 e->next = f; 804 f = e; 805 } 806 807 G.free_pages = f; 808 } 809 else 810 page = alloc_anon (NULL, entry_size, true); 811 #endif 812 #ifdef USING_MALLOC_PAGE_GROUPS 813 else 814 { 815 /* Allocate a large block of memory and serve out the aligned 816 pages therein. This results in much less memory wastage 817 than the traditional implementation of valloc. */ 818 819 char *allocation, *a, *enda; 820 size_t alloc_size, head_slop, tail_slop; 821 int multiple_pages = (entry_size == G.pagesize); 822 823 if (multiple_pages) 824 alloc_size = GGC_QUIRE_SIZE * G.pagesize; 825 else 826 alloc_size = entry_size + G.pagesize - 1; 827 allocation = XNEWVEC (char, alloc_size); 828 829 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize); 830 head_slop = page - allocation; 831 if (multiple_pages) 832 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1); 833 else 834 tail_slop = alloc_size - entry_size - head_slop; 835 enda = allocation + alloc_size - tail_slop; 836 837 /* We allocated N pages, which are likely not aligned, leaving 838 us with N-1 usable pages. We plan to place the page_group 839 structure somewhere in the slop. */ 840 if (head_slop >= sizeof (page_group)) 841 group = (page_group *)page - 1; 842 else 843 { 844 /* We magically got an aligned allocation. Too bad, we have 845 to waste a page anyway. */ 846 if (tail_slop == 0) 847 { 848 enda -= G.pagesize; 849 tail_slop += G.pagesize; 850 } 851 gcc_assert (tail_slop >= sizeof (page_group)); 852 group = (page_group *)enda; 853 tail_slop -= sizeof (page_group); 854 } 855 856 /* Remember that we allocated this memory. */ 857 group->next = G.page_groups; 858 group->allocation = allocation; 859 group->alloc_size = alloc_size; 860 group->in_use = 0; 861 G.page_groups = group; 862 G.bytes_mapped += alloc_size; 863 864 /* If we allocated multiple pages, put the rest on the free list. */ 865 if (multiple_pages) 866 { 867 struct page_entry *e, *f = G.free_pages; 868 for (a = enda - G.pagesize; a != page; a -= G.pagesize) 869 { 870 e = XCNEWVAR (struct page_entry, page_entry_size); 871 e->order = order; 872 e->bytes = G.pagesize; 873 e->page = a; 874 e->group = group; 875 e->next = f; 876 f = e; 877 } 878 G.free_pages = f; 879 } 880 } 881 #endif 882 883 if (entry == NULL) 884 entry = XCNEWVAR (struct page_entry, page_entry_size); 885 886 entry->bytes = entry_size; 887 entry->page = page; 888 entry->context_depth = G.context_depth; 889 entry->order = order; 890 entry->num_free_objects = num_objects; 891 entry->next_bit_hint = 1; 892 893 G.context_depth_allocations |= (unsigned long)1 << G.context_depth; 894 895 #ifdef USING_MALLOC_PAGE_GROUPS 896 entry->group = group; 897 set_page_group_in_use (group, page); 898 #endif 899 900 /* Set the one-past-the-end in-use bit. This acts as a sentry as we 901 increment the hint. */ 902 entry->in_use_p[num_objects / HOST_BITS_PER_LONG] 903 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG); 904 905 set_page_table_entry (page, entry); 906 907 if (GGC_DEBUG_LEVEL >= 2) 908 fprintf (G.debug_file, 909 "Allocating page at %p, object size=%lu, data %p-%p\n", 910 (void *) entry, (unsigned long) OBJECT_SIZE (order), page, 911 page + entry_size - 1); 912 913 return entry; 914 } 915 916 /* Adjust the size of G.depth so that no index greater than the one 917 used by the top of the G.by_depth is used. */ 918 919 static inline void 920 adjust_depth (void) 921 { 922 page_entry *top; 923 924 if (G.by_depth_in_use) 925 { 926 top = G.by_depth[G.by_depth_in_use-1]; 927 928 /* Peel back indices in depth that index into by_depth, so that 929 as new elements are added to by_depth, we note the indices 930 of those elements, if they are for new context depths. */ 931 while (G.depth_in_use > (size_t)top->context_depth+1) 932 --G.depth_in_use; 933 } 934 } 935 936 /* For a page that is no longer needed, put it on the free page list. */ 937 938 static void 939 free_page (page_entry *entry) 940 { 941 if (GGC_DEBUG_LEVEL >= 2) 942 fprintf (G.debug_file, 943 "Deallocating page at %p, data %p-%p\n", (void *) entry, 944 entry->page, entry->page + entry->bytes - 1); 945 946 /* Mark the page as inaccessible. Discard the handle to avoid handle 947 leak. */ 948 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes)); 949 950 set_page_table_entry (entry->page, NULL); 951 952 #ifdef USING_MALLOC_PAGE_GROUPS 953 clear_page_group_in_use (entry->group, entry->page); 954 #endif 955 956 if (G.by_depth_in_use > 1) 957 { 958 page_entry *top = G.by_depth[G.by_depth_in_use-1]; 959 int i = entry->index_by_depth; 960 961 /* We cannot free a page from a context deeper than the current 962 one. */ 963 gcc_assert (entry->context_depth == top->context_depth); 964 965 /* Put top element into freed slot. */ 966 G.by_depth[i] = top; 967 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1]; 968 top->index_by_depth = i; 969 } 970 --G.by_depth_in_use; 971 972 adjust_depth (); 973 974 entry->next = G.free_pages; 975 G.free_pages = entry; 976 } 977 978 /* Release the free page cache to the system. */ 979 980 static void 981 release_pages (void) 982 { 983 #ifdef USING_MADVISE 984 page_entry *p, *start_p; 985 char *start; 986 size_t len; 987 size_t mapped_len; 988 page_entry *next, *prev, *newprev; 989 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize; 990 991 /* First free larger continuous areas to the OS. 992 This allows other allocators to grab these areas if needed. 993 This is only done on larger chunks to avoid fragmentation. 994 This does not always work because the free_pages list is only 995 approximately sorted. */ 996 997 p = G.free_pages; 998 prev = NULL; 999 while (p) 1000 { 1001 start = p->page; 1002 start_p = p; 1003 len = 0; 1004 mapped_len = 0; 1005 newprev = prev; 1006 while (p && p->page == start + len) 1007 { 1008 len += p->bytes; 1009 if (!p->discarded) 1010 mapped_len += p->bytes; 1011 newprev = p; 1012 p = p->next; 1013 } 1014 if (len >= free_unit) 1015 { 1016 while (start_p != p) 1017 { 1018 next = start_p->next; 1019 free (start_p); 1020 start_p = next; 1021 } 1022 munmap (start, len); 1023 if (prev) 1024 prev->next = p; 1025 else 1026 G.free_pages = p; 1027 G.bytes_mapped -= mapped_len; 1028 continue; 1029 } 1030 prev = newprev; 1031 } 1032 1033 /* Now give back the fragmented pages to the OS, but keep the address 1034 space to reuse it next time. */ 1035 1036 for (p = G.free_pages; p; ) 1037 { 1038 if (p->discarded) 1039 { 1040 p = p->next; 1041 continue; 1042 } 1043 start = p->page; 1044 len = p->bytes; 1045 start_p = p; 1046 p = p->next; 1047 while (p && p->page == start + len) 1048 { 1049 len += p->bytes; 1050 p = p->next; 1051 } 1052 /* Give the page back to the kernel, but don't free the mapping. 1053 This avoids fragmentation in the virtual memory map of the 1054 process. Next time we can reuse it by just touching it. */ 1055 madvise (start, len, MADV_DONTNEED); 1056 /* Don't count those pages as mapped to not touch the garbage collector 1057 unnecessarily. */ 1058 G.bytes_mapped -= len; 1059 while (start_p != p) 1060 { 1061 start_p->discarded = true; 1062 start_p = start_p->next; 1063 } 1064 } 1065 #endif 1066 #if defined(USING_MMAP) && !defined(USING_MADVISE) 1067 page_entry *p, *next; 1068 char *start; 1069 size_t len; 1070 1071 /* Gather up adjacent pages so they are unmapped together. */ 1072 p = G.free_pages; 1073 1074 while (p) 1075 { 1076 start = p->page; 1077 next = p->next; 1078 len = p->bytes; 1079 free (p); 1080 p = next; 1081 1082 while (p && p->page == start + len) 1083 { 1084 next = p->next; 1085 len += p->bytes; 1086 free (p); 1087 p = next; 1088 } 1089 1090 munmap (start, len); 1091 G.bytes_mapped -= len; 1092 } 1093 1094 G.free_pages = NULL; 1095 #endif 1096 #ifdef USING_MALLOC_PAGE_GROUPS 1097 page_entry **pp, *p; 1098 page_group **gp, *g; 1099 1100 /* Remove all pages from free page groups from the list. */ 1101 pp = &G.free_pages; 1102 while ((p = *pp) != NULL) 1103 if (p->group->in_use == 0) 1104 { 1105 *pp = p->next; 1106 free (p); 1107 } 1108 else 1109 pp = &p->next; 1110 1111 /* Remove all free page groups, and release the storage. */ 1112 gp = &G.page_groups; 1113 while ((g = *gp) != NULL) 1114 if (g->in_use == 0) 1115 { 1116 *gp = g->next; 1117 G.bytes_mapped -= g->alloc_size; 1118 free (g->allocation); 1119 } 1120 else 1121 gp = &g->next; 1122 #endif 1123 } 1124 1125 /* This table provides a fast way to determine ceil(log_2(size)) for 1126 allocation requests. The minimum allocation size is eight bytes. */ 1127 #define NUM_SIZE_LOOKUP 512 1128 static unsigned char size_lookup[NUM_SIZE_LOOKUP] = 1129 { 1130 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 1131 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1132 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1133 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1134 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1135 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1136 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1137 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1138 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1143 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1144 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1145 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1146 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1159 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1160 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1161 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 1162 }; 1163 1164 /* For a given size of memory requested for allocation, return the 1165 actual size that is going to be allocated, as well as the size 1166 order. */ 1167 1168 static void 1169 ggc_round_alloc_size_1 (size_t requested_size, 1170 size_t *size_order, 1171 size_t *alloced_size) 1172 { 1173 size_t order, object_size; 1174 1175 if (requested_size < NUM_SIZE_LOOKUP) 1176 { 1177 order = size_lookup[requested_size]; 1178 object_size = OBJECT_SIZE (order); 1179 } 1180 else 1181 { 1182 order = 10; 1183 while (requested_size > (object_size = OBJECT_SIZE (order))) 1184 order++; 1185 } 1186 1187 if (size_order) 1188 *size_order = order; 1189 if (alloced_size) 1190 *alloced_size = object_size; 1191 } 1192 1193 /* For a given size of memory requested for allocation, return the 1194 actual size that is going to be allocated. */ 1195 1196 size_t 1197 ggc_round_alloc_size (size_t requested_size) 1198 { 1199 size_t size = 0; 1200 1201 ggc_round_alloc_size_1 (requested_size, NULL, &size); 1202 return size; 1203 } 1204 1205 /* Typed allocation function. Does nothing special in this collector. */ 1206 1207 void * 1208 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size 1209 MEM_STAT_DECL) 1210 { 1211 return ggc_internal_alloc_stat (size PASS_MEM_STAT); 1212 } 1213 1214 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */ 1215 1216 void * 1217 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL) 1218 { 1219 size_t order, word, bit, object_offset, object_size; 1220 struct page_entry *entry; 1221 void *result; 1222 1223 ggc_round_alloc_size_1 (size, &order, &object_size); 1224 1225 /* If there are non-full pages for this size allocation, they are at 1226 the head of the list. */ 1227 entry = G.pages[order]; 1228 1229 /* If there is no page for this object size, or all pages in this 1230 context are full, allocate a new page. */ 1231 if (entry == NULL || entry->num_free_objects == 0) 1232 { 1233 struct page_entry *new_entry; 1234 new_entry = alloc_page (order); 1235 1236 new_entry->index_by_depth = G.by_depth_in_use; 1237 push_by_depth (new_entry, 0); 1238 1239 /* We can skip context depths, if we do, make sure we go all the 1240 way to the new depth. */ 1241 while (new_entry->context_depth >= G.depth_in_use) 1242 push_depth (G.by_depth_in_use-1); 1243 1244 /* If this is the only entry, it's also the tail. If it is not 1245 the only entry, then we must update the PREV pointer of the 1246 ENTRY (G.pages[order]) to point to our new page entry. */ 1247 if (entry == NULL) 1248 G.page_tails[order] = new_entry; 1249 else 1250 entry->prev = new_entry; 1251 1252 /* Put new pages at the head of the page list. By definition the 1253 entry at the head of the list always has a NULL pointer. */ 1254 new_entry->next = entry; 1255 new_entry->prev = NULL; 1256 entry = new_entry; 1257 G.pages[order] = new_entry; 1258 1259 /* For a new page, we know the word and bit positions (in the 1260 in_use bitmap) of the first available object -- they're zero. */ 1261 new_entry->next_bit_hint = 1; 1262 word = 0; 1263 bit = 0; 1264 object_offset = 0; 1265 } 1266 else 1267 { 1268 /* First try to use the hint left from the previous allocation 1269 to locate a clear bit in the in-use bitmap. We've made sure 1270 that the one-past-the-end bit is always set, so if the hint 1271 has run over, this test will fail. */ 1272 unsigned hint = entry->next_bit_hint; 1273 word = hint / HOST_BITS_PER_LONG; 1274 bit = hint % HOST_BITS_PER_LONG; 1275 1276 /* If the hint didn't work, scan the bitmap from the beginning. */ 1277 if ((entry->in_use_p[word] >> bit) & 1) 1278 { 1279 word = bit = 0; 1280 while (~entry->in_use_p[word] == 0) 1281 ++word; 1282 1283 #if GCC_VERSION >= 3004 1284 bit = __builtin_ctzl (~entry->in_use_p[word]); 1285 #else 1286 while ((entry->in_use_p[word] >> bit) & 1) 1287 ++bit; 1288 #endif 1289 1290 hint = word * HOST_BITS_PER_LONG + bit; 1291 } 1292 1293 /* Next time, try the next bit. */ 1294 entry->next_bit_hint = hint + 1; 1295 1296 object_offset = hint * object_size; 1297 } 1298 1299 /* Set the in-use bit. */ 1300 entry->in_use_p[word] |= ((unsigned long) 1 << bit); 1301 1302 /* Keep a running total of the number of free objects. If this page 1303 fills up, we may have to move it to the end of the list if the 1304 next page isn't full. If the next page is full, all subsequent 1305 pages are full, so there's no need to move it. */ 1306 if (--entry->num_free_objects == 0 1307 && entry->next != NULL 1308 && entry->next->num_free_objects > 0) 1309 { 1310 /* We have a new head for the list. */ 1311 G.pages[order] = entry->next; 1312 1313 /* We are moving ENTRY to the end of the page table list. 1314 The new page at the head of the list will have NULL in 1315 its PREV field and ENTRY will have NULL in its NEXT field. */ 1316 entry->next->prev = NULL; 1317 entry->next = NULL; 1318 1319 /* Append ENTRY to the tail of the list. */ 1320 entry->prev = G.page_tails[order]; 1321 G.page_tails[order]->next = entry; 1322 G.page_tails[order] = entry; 1323 } 1324 1325 /* Calculate the object's address. */ 1326 result = entry->page + object_offset; 1327 #ifdef GATHER_STATISTICS 1328 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size, 1329 result PASS_MEM_STAT); 1330 #endif 1331 1332 #ifdef ENABLE_GC_CHECKING 1333 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the 1334 exact same semantics in presence of memory bugs, regardless of 1335 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the 1336 handle to avoid handle leak. */ 1337 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size)); 1338 1339 /* `Poison' the entire allocated object, including any padding at 1340 the end. */ 1341 memset (result, 0xaf, object_size); 1342 1343 /* Make the bytes after the end of the object unaccessible. Discard the 1344 handle to avoid handle leak. */ 1345 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size, 1346 object_size - size)); 1347 #endif 1348 1349 /* Tell Valgrind that the memory is there, but its content isn't 1350 defined. The bytes at the end of the object are still marked 1351 unaccessible. */ 1352 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size)); 1353 1354 /* Keep track of how many bytes are being allocated. This 1355 information is used in deciding when to collect. */ 1356 G.allocated += object_size; 1357 1358 /* For timevar statistics. */ 1359 timevar_ggc_mem_total += object_size; 1360 1361 #ifdef GATHER_STATISTICS 1362 { 1363 size_t overhead = object_size - size; 1364 1365 G.stats.total_overhead += overhead; 1366 G.stats.total_allocated += object_size; 1367 G.stats.total_overhead_per_order[order] += overhead; 1368 G.stats.total_allocated_per_order[order] += object_size; 1369 1370 if (size <= 32) 1371 { 1372 G.stats.total_overhead_under32 += overhead; 1373 G.stats.total_allocated_under32 += object_size; 1374 } 1375 if (size <= 64) 1376 { 1377 G.stats.total_overhead_under64 += overhead; 1378 G.stats.total_allocated_under64 += object_size; 1379 } 1380 if (size <= 128) 1381 { 1382 G.stats.total_overhead_under128 += overhead; 1383 G.stats.total_allocated_under128 += object_size; 1384 } 1385 } 1386 #endif 1387 1388 if (GGC_DEBUG_LEVEL >= 3) 1389 fprintf (G.debug_file, 1390 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n", 1391 (unsigned long) size, (unsigned long) object_size, result, 1392 (void *) entry); 1393 1394 return result; 1395 } 1396 1397 /* Mark function for strings. */ 1398 1399 void 1400 gt_ggc_m_S (const void *p) 1401 { 1402 page_entry *entry; 1403 unsigned bit, word; 1404 unsigned long mask; 1405 unsigned long offset; 1406 1407 if (!p || !ggc_allocated_p (p)) 1408 return; 1409 1410 /* Look up the page on which the object is alloced. . */ 1411 entry = lookup_page_table_entry (p); 1412 gcc_assert (entry); 1413 1414 /* Calculate the index of the object on the page; this is its bit 1415 position in the in_use_p bitmap. Note that because a char* might 1416 point to the middle of an object, we need special code here to 1417 make sure P points to the start of an object. */ 1418 offset = ((const char *) p - entry->page) % object_size_table[entry->order]; 1419 if (offset) 1420 { 1421 /* Here we've seen a char* which does not point to the beginning 1422 of an allocated object. We assume it points to the middle of 1423 a STRING_CST. */ 1424 gcc_assert (offset == offsetof (struct tree_string, str)); 1425 p = ((const char *) p) - offset; 1426 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p)); 1427 return; 1428 } 1429 1430 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1431 word = bit / HOST_BITS_PER_LONG; 1432 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1433 1434 /* If the bit was previously set, skip it. */ 1435 if (entry->in_use_p[word] & mask) 1436 return; 1437 1438 /* Otherwise set it, and decrement the free object count. */ 1439 entry->in_use_p[word] |= mask; 1440 entry->num_free_objects -= 1; 1441 1442 if (GGC_DEBUG_LEVEL >= 4) 1443 fprintf (G.debug_file, "Marking %p\n", p); 1444 1445 return; 1446 } 1447 1448 /* If P is not marked, marks it and return false. Otherwise return true. 1449 P must have been allocated by the GC allocator; it mustn't point to 1450 static objects, stack variables, or memory allocated with malloc. */ 1451 1452 int 1453 ggc_set_mark (const void *p) 1454 { 1455 page_entry *entry; 1456 unsigned bit, word; 1457 unsigned long mask; 1458 1459 /* Look up the page on which the object is alloced. If the object 1460 wasn't allocated by the collector, we'll probably die. */ 1461 entry = lookup_page_table_entry (p); 1462 gcc_assert (entry); 1463 1464 /* Calculate the index of the object on the page; this is its bit 1465 position in the in_use_p bitmap. */ 1466 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1467 word = bit / HOST_BITS_PER_LONG; 1468 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1469 1470 /* If the bit was previously set, skip it. */ 1471 if (entry->in_use_p[word] & mask) 1472 return 1; 1473 1474 /* Otherwise set it, and decrement the free object count. */ 1475 entry->in_use_p[word] |= mask; 1476 entry->num_free_objects -= 1; 1477 1478 if (GGC_DEBUG_LEVEL >= 4) 1479 fprintf (G.debug_file, "Marking %p\n", p); 1480 1481 return 0; 1482 } 1483 1484 /* Return 1 if P has been marked, zero otherwise. 1485 P must have been allocated by the GC allocator; it mustn't point to 1486 static objects, stack variables, or memory allocated with malloc. */ 1487 1488 int 1489 ggc_marked_p (const void *p) 1490 { 1491 page_entry *entry; 1492 unsigned bit, word; 1493 unsigned long mask; 1494 1495 /* Look up the page on which the object is alloced. If the object 1496 wasn't allocated by the collector, we'll probably die. */ 1497 entry = lookup_page_table_entry (p); 1498 gcc_assert (entry); 1499 1500 /* Calculate the index of the object on the page; this is its bit 1501 position in the in_use_p bitmap. */ 1502 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1503 word = bit / HOST_BITS_PER_LONG; 1504 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1505 1506 return (entry->in_use_p[word] & mask) != 0; 1507 } 1508 1509 /* Return the size of the gc-able object P. */ 1510 1511 size_t 1512 ggc_get_size (const void *p) 1513 { 1514 page_entry *pe = lookup_page_table_entry (p); 1515 return OBJECT_SIZE (pe->order); 1516 } 1517 1518 /* Release the memory for object P. */ 1519 1520 void 1521 ggc_free (void *p) 1522 { 1523 page_entry *pe = lookup_page_table_entry (p); 1524 size_t order = pe->order; 1525 size_t size = OBJECT_SIZE (order); 1526 1527 #ifdef GATHER_STATISTICS 1528 ggc_free_overhead (p); 1529 #endif 1530 1531 if (GGC_DEBUG_LEVEL >= 3) 1532 fprintf (G.debug_file, 1533 "Freeing object, actual size=%lu, at %p on %p\n", 1534 (unsigned long) size, p, (void *) pe); 1535 1536 #ifdef ENABLE_GC_CHECKING 1537 /* Poison the data, to indicate the data is garbage. */ 1538 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size)); 1539 memset (p, 0xa5, size); 1540 #endif 1541 /* Let valgrind know the object is free. */ 1542 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size)); 1543 1544 #ifdef ENABLE_GC_ALWAYS_COLLECT 1545 /* In the completely-anal-checking mode, we do *not* immediately free 1546 the data, but instead verify that the data is *actually* not 1547 reachable the next time we collect. */ 1548 { 1549 struct free_object *fo = XNEW (struct free_object); 1550 fo->object = p; 1551 fo->next = G.free_object_list; 1552 G.free_object_list = fo; 1553 } 1554 #else 1555 { 1556 unsigned int bit_offset, word, bit; 1557 1558 G.allocated -= size; 1559 1560 /* Mark the object not-in-use. */ 1561 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order); 1562 word = bit_offset / HOST_BITS_PER_LONG; 1563 bit = bit_offset % HOST_BITS_PER_LONG; 1564 pe->in_use_p[word] &= ~(1UL << bit); 1565 1566 if (pe->num_free_objects++ == 0) 1567 { 1568 page_entry *p, *q; 1569 1570 /* If the page is completely full, then it's supposed to 1571 be after all pages that aren't. Since we've freed one 1572 object from a page that was full, we need to move the 1573 page to the head of the list. 1574 1575 PE is the node we want to move. Q is the previous node 1576 and P is the next node in the list. */ 1577 q = pe->prev; 1578 if (q && q->num_free_objects == 0) 1579 { 1580 p = pe->next; 1581 1582 q->next = p; 1583 1584 /* If PE was at the end of the list, then Q becomes the 1585 new end of the list. If PE was not the end of the 1586 list, then we need to update the PREV field for P. */ 1587 if (!p) 1588 G.page_tails[order] = q; 1589 else 1590 p->prev = q; 1591 1592 /* Move PE to the head of the list. */ 1593 pe->next = G.pages[order]; 1594 pe->prev = NULL; 1595 G.pages[order]->prev = pe; 1596 G.pages[order] = pe; 1597 } 1598 1599 /* Reset the hint bit to point to the only free object. */ 1600 pe->next_bit_hint = bit_offset; 1601 } 1602 } 1603 #endif 1604 } 1605 1606 /* Subroutine of init_ggc which computes the pair of numbers used to 1607 perform division by OBJECT_SIZE (order) and fills in inverse_table[]. 1608 1609 This algorithm is taken from Granlund and Montgomery's paper 1610 "Division by Invariant Integers using Multiplication" 1611 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by 1612 constants). */ 1613 1614 static void 1615 compute_inverse (unsigned order) 1616 { 1617 size_t size, inv; 1618 unsigned int e; 1619 1620 size = OBJECT_SIZE (order); 1621 e = 0; 1622 while (size % 2 == 0) 1623 { 1624 e++; 1625 size >>= 1; 1626 } 1627 1628 inv = size; 1629 while (inv * size != 1) 1630 inv = inv * (2 - inv*size); 1631 1632 DIV_MULT (order) = inv; 1633 DIV_SHIFT (order) = e; 1634 } 1635 1636 /* Initialize the ggc-mmap allocator. */ 1637 void 1638 init_ggc (void) 1639 { 1640 unsigned order; 1641 1642 G.pagesize = getpagesize(); 1643 G.lg_pagesize = exact_log2 (G.pagesize); 1644 1645 #ifdef HAVE_MMAP_DEV_ZERO 1646 G.dev_zero_fd = open ("/dev/zero", O_RDONLY); 1647 if (G.dev_zero_fd == -1) 1648 internal_error ("open /dev/zero: %m"); 1649 #endif 1650 1651 #if 0 1652 G.debug_file = fopen ("ggc-mmap.debug", "w"); 1653 #else 1654 G.debug_file = stdout; 1655 #endif 1656 1657 #ifdef USING_MMAP 1658 /* StunOS has an amazing off-by-one error for the first mmap allocation 1659 after fiddling with RLIMIT_STACK. The result, as hard as it is to 1660 believe, is an unaligned page allocation, which would cause us to 1661 hork badly if we tried to use it. */ 1662 { 1663 char *p = alloc_anon (NULL, G.pagesize, true); 1664 struct page_entry *e; 1665 if ((size_t)p & (G.pagesize - 1)) 1666 { 1667 /* How losing. Discard this one and try another. If we still 1668 can't get something useful, give up. */ 1669 1670 p = alloc_anon (NULL, G.pagesize, true); 1671 gcc_assert (!((size_t)p & (G.pagesize - 1))); 1672 } 1673 1674 /* We have a good page, might as well hold onto it... */ 1675 e = XCNEW (struct page_entry); 1676 e->bytes = G.pagesize; 1677 e->page = p; 1678 e->next = G.free_pages; 1679 G.free_pages = e; 1680 } 1681 #endif 1682 1683 /* Initialize the object size table. */ 1684 for (order = 0; order < HOST_BITS_PER_PTR; ++order) 1685 object_size_table[order] = (size_t) 1 << order; 1686 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1687 { 1688 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR]; 1689 1690 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up 1691 so that we're sure of getting aligned memory. */ 1692 s = ROUND_UP (s, MAX_ALIGNMENT); 1693 object_size_table[order] = s; 1694 } 1695 1696 /* Initialize the objects-per-page and inverse tables. */ 1697 for (order = 0; order < NUM_ORDERS; ++order) 1698 { 1699 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order); 1700 if (objects_per_page_table[order] == 0) 1701 objects_per_page_table[order] = 1; 1702 compute_inverse (order); 1703 } 1704 1705 /* Reset the size_lookup array to put appropriately sized objects in 1706 the special orders. All objects bigger than the previous power 1707 of two, but no greater than the special size, should go in the 1708 new order. */ 1709 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1710 { 1711 int o; 1712 int i; 1713 1714 i = OBJECT_SIZE (order); 1715 if (i >= NUM_SIZE_LOOKUP) 1716 continue; 1717 1718 for (o = size_lookup[i]; o == size_lookup [i]; --i) 1719 size_lookup[i] = order; 1720 } 1721 1722 G.depth_in_use = 0; 1723 G.depth_max = 10; 1724 G.depth = XNEWVEC (unsigned int, G.depth_max); 1725 1726 G.by_depth_in_use = 0; 1727 G.by_depth_max = INITIAL_PTE_COUNT; 1728 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max); 1729 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 1730 } 1731 1732 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P 1733 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */ 1734 1735 static void 1736 ggc_recalculate_in_use_p (page_entry *p) 1737 { 1738 unsigned int i; 1739 size_t num_objects; 1740 1741 /* Because the past-the-end bit in in_use_p is always set, we 1742 pretend there is one additional object. */ 1743 num_objects = OBJECTS_IN_PAGE (p) + 1; 1744 1745 /* Reset the free object count. */ 1746 p->num_free_objects = num_objects; 1747 1748 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */ 1749 for (i = 0; 1750 i < CEIL (BITMAP_SIZE (num_objects), 1751 sizeof (*p->in_use_p)); 1752 ++i) 1753 { 1754 unsigned long j; 1755 1756 /* Something is in use if it is marked, or if it was in use in a 1757 context further down the context stack. */ 1758 p->in_use_p[i] |= save_in_use_p (p)[i]; 1759 1760 /* Decrement the free object count for every object allocated. */ 1761 for (j = p->in_use_p[i]; j; j >>= 1) 1762 p->num_free_objects -= (j & 1); 1763 } 1764 1765 gcc_assert (p->num_free_objects < num_objects); 1766 } 1767 1768 /* Unmark all objects. */ 1769 1770 static void 1771 clear_marks (void) 1772 { 1773 unsigned order; 1774 1775 for (order = 2; order < NUM_ORDERS; order++) 1776 { 1777 page_entry *p; 1778 1779 for (p = G.pages[order]; p != NULL; p = p->next) 1780 { 1781 size_t num_objects = OBJECTS_IN_PAGE (p); 1782 size_t bitmap_size = BITMAP_SIZE (num_objects + 1); 1783 1784 /* The data should be page-aligned. */ 1785 gcc_assert (!((size_t) p->page & (G.pagesize - 1))); 1786 1787 /* Pages that aren't in the topmost context are not collected; 1788 nevertheless, we need their in-use bit vectors to store GC 1789 marks. So, back them up first. */ 1790 if (p->context_depth < G.context_depth) 1791 { 1792 if (! save_in_use_p (p)) 1793 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size); 1794 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size); 1795 } 1796 1797 /* Reset reset the number of free objects and clear the 1798 in-use bits. These will be adjusted by mark_obj. */ 1799 p->num_free_objects = num_objects; 1800 memset (p->in_use_p, 0, bitmap_size); 1801 1802 /* Make sure the one-past-the-end bit is always set. */ 1803 p->in_use_p[num_objects / HOST_BITS_PER_LONG] 1804 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG)); 1805 } 1806 } 1807 } 1808 1809 /* Free all empty pages. Partially empty pages need no attention 1810 because the `mark' bit doubles as an `unused' bit. */ 1811 1812 static void 1813 sweep_pages (void) 1814 { 1815 unsigned order; 1816 1817 for (order = 2; order < NUM_ORDERS; order++) 1818 { 1819 /* The last page-entry to consider, regardless of entries 1820 placed at the end of the list. */ 1821 page_entry * const last = G.page_tails[order]; 1822 1823 size_t num_objects; 1824 size_t live_objects; 1825 page_entry *p, *previous; 1826 int done; 1827 1828 p = G.pages[order]; 1829 if (p == NULL) 1830 continue; 1831 1832 previous = NULL; 1833 do 1834 { 1835 page_entry *next = p->next; 1836 1837 /* Loop until all entries have been examined. */ 1838 done = (p == last); 1839 1840 num_objects = OBJECTS_IN_PAGE (p); 1841 1842 /* Add all live objects on this page to the count of 1843 allocated memory. */ 1844 live_objects = num_objects - p->num_free_objects; 1845 1846 G.allocated += OBJECT_SIZE (order) * live_objects; 1847 1848 /* Only objects on pages in the topmost context should get 1849 collected. */ 1850 if (p->context_depth < G.context_depth) 1851 ; 1852 1853 /* Remove the page if it's empty. */ 1854 else if (live_objects == 0) 1855 { 1856 /* If P was the first page in the list, then NEXT 1857 becomes the new first page in the list, otherwise 1858 splice P out of the forward pointers. */ 1859 if (! previous) 1860 G.pages[order] = next; 1861 else 1862 previous->next = next; 1863 1864 /* Splice P out of the back pointers too. */ 1865 if (next) 1866 next->prev = previous; 1867 1868 /* Are we removing the last element? */ 1869 if (p == G.page_tails[order]) 1870 G.page_tails[order] = previous; 1871 free_page (p); 1872 p = previous; 1873 } 1874 1875 /* If the page is full, move it to the end. */ 1876 else if (p->num_free_objects == 0) 1877 { 1878 /* Don't move it if it's already at the end. */ 1879 if (p != G.page_tails[order]) 1880 { 1881 /* Move p to the end of the list. */ 1882 p->next = NULL; 1883 p->prev = G.page_tails[order]; 1884 G.page_tails[order]->next = p; 1885 1886 /* Update the tail pointer... */ 1887 G.page_tails[order] = p; 1888 1889 /* ... and the head pointer, if necessary. */ 1890 if (! previous) 1891 G.pages[order] = next; 1892 else 1893 previous->next = next; 1894 1895 /* And update the backpointer in NEXT if necessary. */ 1896 if (next) 1897 next->prev = previous; 1898 1899 p = previous; 1900 } 1901 } 1902 1903 /* If we've fallen through to here, it's a page in the 1904 topmost context that is neither full nor empty. Such a 1905 page must precede pages at lesser context depth in the 1906 list, so move it to the head. */ 1907 else if (p != G.pages[order]) 1908 { 1909 previous->next = p->next; 1910 1911 /* Update the backchain in the next node if it exists. */ 1912 if (p->next) 1913 p->next->prev = previous; 1914 1915 /* Move P to the head of the list. */ 1916 p->next = G.pages[order]; 1917 p->prev = NULL; 1918 G.pages[order]->prev = p; 1919 1920 /* Update the head pointer. */ 1921 G.pages[order] = p; 1922 1923 /* Are we moving the last element? */ 1924 if (G.page_tails[order] == p) 1925 G.page_tails[order] = previous; 1926 p = previous; 1927 } 1928 1929 previous = p; 1930 p = next; 1931 } 1932 while (! done); 1933 1934 /* Now, restore the in_use_p vectors for any pages from contexts 1935 other than the current one. */ 1936 for (p = G.pages[order]; p; p = p->next) 1937 if (p->context_depth != G.context_depth) 1938 ggc_recalculate_in_use_p (p); 1939 } 1940 } 1941 1942 #ifdef ENABLE_GC_CHECKING 1943 /* Clobber all free objects. */ 1944 1945 static void 1946 poison_pages (void) 1947 { 1948 unsigned order; 1949 1950 for (order = 2; order < NUM_ORDERS; order++) 1951 { 1952 size_t size = OBJECT_SIZE (order); 1953 page_entry *p; 1954 1955 for (p = G.pages[order]; p != NULL; p = p->next) 1956 { 1957 size_t num_objects; 1958 size_t i; 1959 1960 if (p->context_depth != G.context_depth) 1961 /* Since we don't do any collection for pages in pushed 1962 contexts, there's no need to do any poisoning. And 1963 besides, the IN_USE_P array isn't valid until we pop 1964 contexts. */ 1965 continue; 1966 1967 num_objects = OBJECTS_IN_PAGE (p); 1968 for (i = 0; i < num_objects; i++) 1969 { 1970 size_t word, bit; 1971 word = i / HOST_BITS_PER_LONG; 1972 bit = i % HOST_BITS_PER_LONG; 1973 if (((p->in_use_p[word] >> bit) & 1) == 0) 1974 { 1975 char *object = p->page + i * size; 1976 1977 /* Keep poison-by-write when we expect to use Valgrind, 1978 so the exact same memory semantics is kept, in case 1979 there are memory errors. We override this request 1980 below. */ 1981 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object, 1982 size)); 1983 memset (object, 0xa5, size); 1984 1985 /* Drop the handle to avoid handle leak. */ 1986 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size)); 1987 } 1988 } 1989 } 1990 } 1991 } 1992 #else 1993 #define poison_pages() 1994 #endif 1995 1996 #ifdef ENABLE_GC_ALWAYS_COLLECT 1997 /* Validate that the reportedly free objects actually are. */ 1998 1999 static void 2000 validate_free_objects (void) 2001 { 2002 struct free_object *f, *next, *still_free = NULL; 2003 2004 for (f = G.free_object_list; f ; f = next) 2005 { 2006 page_entry *pe = lookup_page_table_entry (f->object); 2007 size_t bit, word; 2008 2009 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order); 2010 word = bit / HOST_BITS_PER_LONG; 2011 bit = bit % HOST_BITS_PER_LONG; 2012 next = f->next; 2013 2014 /* Make certain it isn't visible from any root. Notice that we 2015 do this check before sweep_pages merges save_in_use_p. */ 2016 gcc_assert (!(pe->in_use_p[word] & (1UL << bit))); 2017 2018 /* If the object comes from an outer context, then retain the 2019 free_object entry, so that we can verify that the address 2020 isn't live on the stack in some outer context. */ 2021 if (pe->context_depth != G.context_depth) 2022 { 2023 f->next = still_free; 2024 still_free = f; 2025 } 2026 else 2027 free (f); 2028 } 2029 2030 G.free_object_list = still_free; 2031 } 2032 #else 2033 #define validate_free_objects() 2034 #endif 2035 2036 /* Top level mark-and-sweep routine. */ 2037 2038 void 2039 ggc_collect (void) 2040 { 2041 /* Avoid frequent unnecessary work by skipping collection if the 2042 total allocations haven't expanded much since the last 2043 collection. */ 2044 float allocated_last_gc = 2045 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024); 2046 2047 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100; 2048 2049 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect) 2050 return; 2051 2052 timevar_push (TV_GC); 2053 if (!quiet_flag) 2054 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024); 2055 if (GGC_DEBUG_LEVEL >= 2) 2056 fprintf (G.debug_file, "BEGIN COLLECTING\n"); 2057 2058 /* Zero the total allocated bytes. This will be recalculated in the 2059 sweep phase. */ 2060 G.allocated = 0; 2061 2062 /* Release the pages we freed the last time we collected, but didn't 2063 reuse in the interim. */ 2064 release_pages (); 2065 2066 /* Indicate that we've seen collections at this context depth. */ 2067 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1; 2068 2069 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL); 2070 2071 clear_marks (); 2072 ggc_mark_roots (); 2073 #ifdef GATHER_STATISTICS 2074 ggc_prune_overhead_list (); 2075 #endif 2076 poison_pages (); 2077 validate_free_objects (); 2078 sweep_pages (); 2079 2080 G.allocated_last_gc = G.allocated; 2081 2082 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL); 2083 2084 timevar_pop (TV_GC); 2085 2086 if (!quiet_flag) 2087 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024); 2088 if (GGC_DEBUG_LEVEL >= 2) 2089 fprintf (G.debug_file, "END COLLECTING\n"); 2090 } 2091 2092 /* Print allocation statistics. */ 2093 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 2094 ? (x) \ 2095 : ((x) < 1024*1024*10 \ 2096 ? (x) / 1024 \ 2097 : (x) / (1024*1024)))) 2098 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 2099 2100 void 2101 ggc_print_statistics (void) 2102 { 2103 struct ggc_statistics stats; 2104 unsigned int i; 2105 size_t total_overhead = 0; 2106 2107 /* Clear the statistics. */ 2108 memset (&stats, 0, sizeof (stats)); 2109 2110 /* Make sure collection will really occur. */ 2111 G.allocated_last_gc = 0; 2112 2113 /* Collect and print the statistics common across collectors. */ 2114 ggc_print_common_statistics (stderr, &stats); 2115 2116 /* Release free pages so that we will not count the bytes allocated 2117 there as part of the total allocated memory. */ 2118 release_pages (); 2119 2120 /* Collect some information about the various sizes of 2121 allocation. */ 2122 fprintf (stderr, 2123 "Memory still allocated at the end of the compilation process\n"); 2124 fprintf (stderr, "%-5s %10s %10s %10s\n", 2125 "Size", "Allocated", "Used", "Overhead"); 2126 for (i = 0; i < NUM_ORDERS; ++i) 2127 { 2128 page_entry *p; 2129 size_t allocated; 2130 size_t in_use; 2131 size_t overhead; 2132 2133 /* Skip empty entries. */ 2134 if (!G.pages[i]) 2135 continue; 2136 2137 overhead = allocated = in_use = 0; 2138 2139 /* Figure out the total number of bytes allocated for objects of 2140 this size, and how many of them are actually in use. Also figure 2141 out how much memory the page table is using. */ 2142 for (p = G.pages[i]; p; p = p->next) 2143 { 2144 allocated += p->bytes; 2145 in_use += 2146 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i); 2147 2148 overhead += (sizeof (page_entry) - sizeof (long) 2149 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1)); 2150 } 2151 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n", 2152 (unsigned long) OBJECT_SIZE (i), 2153 SCALE (allocated), STAT_LABEL (allocated), 2154 SCALE (in_use), STAT_LABEL (in_use), 2155 SCALE (overhead), STAT_LABEL (overhead)); 2156 total_overhead += overhead; 2157 } 2158 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total", 2159 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped), 2160 SCALE (G.allocated), STAT_LABEL(G.allocated), 2161 SCALE (total_overhead), STAT_LABEL (total_overhead)); 2162 2163 #ifdef GATHER_STATISTICS 2164 { 2165 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n"); 2166 2167 fprintf (stderr, "Total Overhead: %10lld\n", 2168 G.stats.total_overhead); 2169 fprintf (stderr, "Total Allocated: %10lld\n", 2170 G.stats.total_allocated); 2171 2172 fprintf (stderr, "Total Overhead under 32B: %10lld\n", 2173 G.stats.total_overhead_under32); 2174 fprintf (stderr, "Total Allocated under 32B: %10lld\n", 2175 G.stats.total_allocated_under32); 2176 fprintf (stderr, "Total Overhead under 64B: %10lld\n", 2177 G.stats.total_overhead_under64); 2178 fprintf (stderr, "Total Allocated under 64B: %10lld\n", 2179 G.stats.total_allocated_under64); 2180 fprintf (stderr, "Total Overhead under 128B: %10lld\n", 2181 G.stats.total_overhead_under128); 2182 fprintf (stderr, "Total Allocated under 128B: %10lld\n", 2183 G.stats.total_allocated_under128); 2184 2185 for (i = 0; i < NUM_ORDERS; i++) 2186 if (G.stats.total_allocated_per_order[i]) 2187 { 2188 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n", 2189 (unsigned long) OBJECT_SIZE (i), 2190 G.stats.total_overhead_per_order[i]); 2191 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n", 2192 (unsigned long) OBJECT_SIZE (i), 2193 G.stats.total_allocated_per_order[i]); 2194 } 2195 } 2196 #endif 2197 } 2198 2199 struct ggc_pch_ondisk 2200 { 2201 unsigned totals[NUM_ORDERS]; 2202 }; 2203 2204 struct ggc_pch_data 2205 { 2206 struct ggc_pch_ondisk d; 2207 size_t base[NUM_ORDERS]; 2208 size_t written[NUM_ORDERS]; 2209 }; 2210 2211 struct ggc_pch_data * 2212 init_ggc_pch (void) 2213 { 2214 return XCNEW (struct ggc_pch_data); 2215 } 2216 2217 void 2218 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2219 size_t size, bool is_string ATTRIBUTE_UNUSED, 2220 enum gt_types_enum type ATTRIBUTE_UNUSED) 2221 { 2222 unsigned order; 2223 2224 if (size < NUM_SIZE_LOOKUP) 2225 order = size_lookup[size]; 2226 else 2227 { 2228 order = 10; 2229 while (size > OBJECT_SIZE (order)) 2230 order++; 2231 } 2232 2233 d->d.totals[order]++; 2234 } 2235 2236 size_t 2237 ggc_pch_total_size (struct ggc_pch_data *d) 2238 { 2239 size_t a = 0; 2240 unsigned i; 2241 2242 for (i = 0; i < NUM_ORDERS; i++) 2243 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2244 return a; 2245 } 2246 2247 void 2248 ggc_pch_this_base (struct ggc_pch_data *d, void *base) 2249 { 2250 size_t a = (size_t) base; 2251 unsigned i; 2252 2253 for (i = 0; i < NUM_ORDERS; i++) 2254 { 2255 d->base[i] = a; 2256 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2257 } 2258 } 2259 2260 2261 char * 2262 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2263 size_t size, bool is_string ATTRIBUTE_UNUSED, 2264 enum gt_types_enum type ATTRIBUTE_UNUSED) 2265 { 2266 unsigned order; 2267 char *result; 2268 2269 if (size < NUM_SIZE_LOOKUP) 2270 order = size_lookup[size]; 2271 else 2272 { 2273 order = 10; 2274 while (size > OBJECT_SIZE (order)) 2275 order++; 2276 } 2277 2278 result = (char *) d->base[order]; 2279 d->base[order] += OBJECT_SIZE (order); 2280 return result; 2281 } 2282 2283 void 2284 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2285 FILE *f ATTRIBUTE_UNUSED) 2286 { 2287 /* Nothing to do. */ 2288 } 2289 2290 void 2291 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2292 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED, 2293 size_t size, bool is_string ATTRIBUTE_UNUSED) 2294 { 2295 unsigned order; 2296 static const char emptyBytes[256] = { 0 }; 2297 2298 if (size < NUM_SIZE_LOOKUP) 2299 order = size_lookup[size]; 2300 else 2301 { 2302 order = 10; 2303 while (size > OBJECT_SIZE (order)) 2304 order++; 2305 } 2306 2307 if (fwrite (x, size, 1, f) != 1) 2308 fatal_error ("can%'t write PCH file: %m"); 2309 2310 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the 2311 object out to OBJECT_SIZE(order). This happens for strings. */ 2312 2313 if (size != OBJECT_SIZE (order)) 2314 { 2315 unsigned padding = OBJECT_SIZE(order) - size; 2316 2317 /* To speed small writes, we use a nulled-out array that's larger 2318 than most padding requests as the source for our null bytes. This 2319 permits us to do the padding with fwrite() rather than fseek(), and 2320 limits the chance the OS may try to flush any outstanding writes. */ 2321 if (padding <= sizeof(emptyBytes)) 2322 { 2323 if (fwrite (emptyBytes, 1, padding, f) != padding) 2324 fatal_error ("can%'t write PCH file"); 2325 } 2326 else 2327 { 2328 /* Larger than our buffer? Just default to fseek. */ 2329 if (fseek (f, padding, SEEK_CUR) != 0) 2330 fatal_error ("can%'t write PCH file"); 2331 } 2332 } 2333 2334 d->written[order]++; 2335 if (d->written[order] == d->d.totals[order] 2336 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order), 2337 G.pagesize), 2338 SEEK_CUR) != 0) 2339 fatal_error ("can%'t write PCH file: %m"); 2340 } 2341 2342 void 2343 ggc_pch_finish (struct ggc_pch_data *d, FILE *f) 2344 { 2345 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1) 2346 fatal_error ("can%'t write PCH file: %m"); 2347 free (d); 2348 } 2349 2350 /* Move the PCH PTE entries just added to the end of by_depth, to the 2351 front. */ 2352 2353 static void 2354 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables) 2355 { 2356 unsigned i; 2357 2358 /* First, we swap the new entries to the front of the varrays. */ 2359 page_entry **new_by_depth; 2360 unsigned long **new_save_in_use; 2361 2362 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max); 2363 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 2364 2365 memcpy (&new_by_depth[0], 2366 &G.by_depth[count_old_page_tables], 2367 count_new_page_tables * sizeof (void *)); 2368 memcpy (&new_by_depth[count_new_page_tables], 2369 &G.by_depth[0], 2370 count_old_page_tables * sizeof (void *)); 2371 memcpy (&new_save_in_use[0], 2372 &G.save_in_use[count_old_page_tables], 2373 count_new_page_tables * sizeof (void *)); 2374 memcpy (&new_save_in_use[count_new_page_tables], 2375 &G.save_in_use[0], 2376 count_old_page_tables * sizeof (void *)); 2377 2378 free (G.by_depth); 2379 free (G.save_in_use); 2380 2381 G.by_depth = new_by_depth; 2382 G.save_in_use = new_save_in_use; 2383 2384 /* Now update all the index_by_depth fields. */ 2385 for (i = G.by_depth_in_use; i > 0; --i) 2386 { 2387 page_entry *p = G.by_depth[i-1]; 2388 p->index_by_depth = i-1; 2389 } 2390 2391 /* And last, we update the depth pointers in G.depth. The first 2392 entry is already 0, and context 0 entries always start at index 2393 0, so there is nothing to update in the first slot. We need a 2394 second slot, only if we have old ptes, and if we do, they start 2395 at index count_new_page_tables. */ 2396 if (count_old_page_tables) 2397 push_depth (count_new_page_tables); 2398 } 2399 2400 void 2401 ggc_pch_read (FILE *f, void *addr) 2402 { 2403 struct ggc_pch_ondisk d; 2404 unsigned i; 2405 char *offs = (char *) addr; 2406 unsigned long count_old_page_tables; 2407 unsigned long count_new_page_tables; 2408 2409 count_old_page_tables = G.by_depth_in_use; 2410 2411 /* We've just read in a PCH file. So, every object that used to be 2412 allocated is now free. */ 2413 clear_marks (); 2414 #ifdef ENABLE_GC_CHECKING 2415 poison_pages (); 2416 #endif 2417 /* Since we free all the allocated objects, the free list becomes 2418 useless. Validate it now, which will also clear it. */ 2419 validate_free_objects(); 2420 2421 /* No object read from a PCH file should ever be freed. So, set the 2422 context depth to 1, and set the depth of all the currently-allocated 2423 pages to be 1 too. PCH pages will have depth 0. */ 2424 gcc_assert (!G.context_depth); 2425 G.context_depth = 1; 2426 for (i = 0; i < NUM_ORDERS; i++) 2427 { 2428 page_entry *p; 2429 for (p = G.pages[i]; p != NULL; p = p->next) 2430 p->context_depth = G.context_depth; 2431 } 2432 2433 /* Allocate the appropriate page-table entries for the pages read from 2434 the PCH file. */ 2435 if (fread (&d, sizeof (d), 1, f) != 1) 2436 fatal_error ("can%'t read PCH file: %m"); 2437 2438 for (i = 0; i < NUM_ORDERS; i++) 2439 { 2440 struct page_entry *entry; 2441 char *pte; 2442 size_t bytes; 2443 size_t num_objs; 2444 size_t j; 2445 2446 if (d.totals[i] == 0) 2447 continue; 2448 2449 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i)); 2450 num_objs = bytes / OBJECT_SIZE (i); 2451 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry) 2452 - sizeof (long) 2453 + BITMAP_SIZE (num_objs + 1))); 2454 entry->bytes = bytes; 2455 entry->page = offs; 2456 entry->context_depth = 0; 2457 offs += bytes; 2458 entry->num_free_objects = 0; 2459 entry->order = i; 2460 2461 for (j = 0; 2462 j + HOST_BITS_PER_LONG <= num_objs + 1; 2463 j += HOST_BITS_PER_LONG) 2464 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1; 2465 for (; j < num_objs + 1; j++) 2466 entry->in_use_p[j / HOST_BITS_PER_LONG] 2467 |= 1L << (j % HOST_BITS_PER_LONG); 2468 2469 for (pte = entry->page; 2470 pte < entry->page + entry->bytes; 2471 pte += G.pagesize) 2472 set_page_table_entry (pte, entry); 2473 2474 if (G.page_tails[i] != NULL) 2475 G.page_tails[i]->next = entry; 2476 else 2477 G.pages[i] = entry; 2478 G.page_tails[i] = entry; 2479 2480 /* We start off by just adding all the new information to the 2481 end of the varrays, later, we will move the new information 2482 to the front of the varrays, as the PCH page tables are at 2483 context 0. */ 2484 push_by_depth (entry, 0); 2485 } 2486 2487 /* Now, we update the various data structures that speed page table 2488 handling. */ 2489 count_new_page_tables = G.by_depth_in_use - count_old_page_tables; 2490 2491 move_ptes_to_front (count_old_page_tables, count_new_page_tables); 2492 2493 /* Update the statistics. */ 2494 G.allocated = G.allocated_last_gc = offs - (char *)addr; 2495 } 2496 2497 struct alloc_zone 2498 { 2499 int dummy; 2500 }; 2501 2502 struct alloc_zone rtl_zone; 2503 struct alloc_zone tree_zone; 2504 struct alloc_zone tree_id_zone; 2505