1 /* Swing Modulo Scheduling implementation.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3    Free Software Foundation, Inc.
4    Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "cfghooks.h"
43 #include "expr.h"
44 #include "params.h"
45 #include "gcov-io.h"
46 #include "ddg.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "dbgcnt.h"
50 #include "df.h"
51 
52 #ifdef INSN_SCHEDULING
53 
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55    described in the following references:
56    [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57        Lifetime--sensitive modulo scheduling in a production environment.
58        IEEE Trans. on Comps., 50(3), March 2001
59    [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60        Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61        PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
62 
63    The basic structure is:
64    1. Build a data-dependence graph (DDG) for each loop.
65    2. Use the DDG to order the insns of a loop (not in topological order
66       necessarily, but rather) trying to place each insn after all its
67       predecessors _or_ after all its successors.
68    3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69    4. Use the ordering to perform list-scheduling of the loop:
70       1. Set II = MII.  We will try to schedule the loop within II cycles.
71       2. Try to schedule the insns one by one according to the ordering.
72 	 For each insn compute an interval of cycles by considering already-
73 	 scheduled preds and succs (and associated latencies); try to place
74 	 the insn in the cycles of this window checking for potential
75 	 resource conflicts (using the DFA interface).
76 	 Note: this is different from the cycle-scheduling of schedule_insns;
77 	 here the insns are not scheduled monotonically top-down (nor bottom-
78 	 up).
79       3. If failed in scheduling all insns - bump II++ and try again, unless
80 	 II reaches an upper bound MaxII, in which case report failure.
81    5. If we succeeded in scheduling the loop within II cycles, we now
82       generate prolog and epilog, decrease the counter of the loop, and
83       perform modulo variable expansion for live ranges that span more than
84       II cycles (i.e. use register copies to prevent a def from overwriting
85       itself before reaching the use).
86 
87     SMS works with countable loops (1) whose control part can be easily
88     decoupled from the rest of the loop and (2) whose loop count can
89     be easily adjusted.  This is because we peel a constant number of
90     iterations into a prologue and epilogue for which we want to avoid
91     emitting the control part, and a kernel which is to iterate that
92     constant number of iterations less than the original loop.  So the
93     control part should be a set of insns clearly identified and having
94     its own iv, not otherwise used in the loop (at-least for now), which
95     initializes a register before the loop to the number of iterations.
96     Currently SMS relies on the do-loop pattern to recognize such loops,
97     where (1) the control part comprises of all insns defining and/or
98     using a certain 'count' register and (2) the loop count can be
99     adjusted by modifying this register prior to the loop.
100     TODO: Rely on cfgloop analysis instead.  */
101 
102 /* This page defines partial-schedule structures and functions for
103    modulo scheduling.  */
104 
105 typedef struct partial_schedule *partial_schedule_ptr;
106 typedef struct ps_insn *ps_insn_ptr;
107 
108 /* The minimum (absolute) cycle that a node of ps was scheduled in.  */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
110 
111 /* The maximum (absolute) cycle that a node of ps was scheduled in.  */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
113 
114 /* Perform signed modulo, always returning a non-negative value.  */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
116 
117 /* The number of different iterations the nodes in ps span, assuming
118    the stage boundaries are placed efficiently.  */
119 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
120                          + 1 + ii - 1) / ii)
121 /* The stage count of ps.  */
122 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
123 
124 /* A single instruction in the partial schedule.  */
125 struct ps_insn
126 {
127   /* Identifies the instruction to be scheduled.  Values smaller than
128      the ddg's num_nodes refer directly to ddg nodes.  A value of
129      X - num_nodes refers to register move X.  */
130   int id;
131 
132   /* The (absolute) cycle in which the PS instruction is scheduled.
133      Same as SCHED_TIME (node).  */
134   int cycle;
135 
136   /* The next/prev PS_INSN in the same row.  */
137   ps_insn_ptr next_in_row,
138 	      prev_in_row;
139 
140 };
141 
142 /* Information about a register move that has been added to a partial
143    schedule.  */
144 struct ps_reg_move_info
145 {
146   /* The source of the move is defined by the ps_insn with id DEF.
147      The destination is used by the ps_insns with the ids in USES.  */
148   int def;
149   sbitmap uses;
150 
151   /* The original form of USES' instructions used OLD_REG, but they
152      should now use NEW_REG.  */
153   rtx old_reg;
154   rtx new_reg;
155 
156   /* The number of consecutive stages that the move occupies.  */
157   int num_consecutive_stages;
158 
159   /* An instruction that sets NEW_REG to the correct value.  The first
160      move associated with DEF will have an rhs of OLD_REG; later moves
161      use the result of the previous move.  */
162   rtx insn;
163 };
164 
165 typedef struct ps_reg_move_info ps_reg_move_info;
166 DEF_VEC_O (ps_reg_move_info);
167 DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
168 
169 /* Holds the partial schedule as an array of II rows.  Each entry of the
170    array points to a linked list of PS_INSNs, which represents the
171    instructions that are scheduled for that row.  */
172 struct partial_schedule
173 {
174   int ii;	/* Number of rows in the partial schedule.  */
175   int history;  /* Threshold for conflict checking using DFA.  */
176 
177   /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii).  */
178   ps_insn_ptr *rows;
179 
180   /* All the moves added for this partial schedule.  Index X has
181      a ps_insn id of X + g->num_nodes.  */
182   VEC (ps_reg_move_info, heap) *reg_moves;
183 
184   /*  rows_length[i] holds the number of instructions in the row.
185       It is used only (as an optimization) to back off quickly from
186       trying to schedule a node in a full row; that is, to avoid running
187       through futile DFA state transitions.  */
188   int *rows_length;
189 
190   /* The earliest absolute cycle of an insn in the partial schedule.  */
191   int min_cycle;
192 
193   /* The latest absolute cycle of an insn in the partial schedule.  */
194   int max_cycle;
195 
196   ddg_ptr g;	/* The DDG of the insns in the partial schedule.  */
197 
198   int stage_count;  /* The stage count of the partial schedule.  */
199 };
200 
201 
202 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
203 static void free_partial_schedule (partial_schedule_ptr);
204 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
205 void print_partial_schedule (partial_schedule_ptr, FILE *);
206 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
207 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
208 						int, int, sbitmap, sbitmap);
209 static void rotate_partial_schedule (partial_schedule_ptr, int);
210 void set_row_column_for_ps (partial_schedule_ptr);
211 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
212 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
213 
214 
215 /* This page defines constants and structures for the modulo scheduling
216    driver.  */
217 
218 static int sms_order_nodes (ddg_ptr, int, int *, int *);
219 static void set_node_sched_params (ddg_ptr);
220 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
221 static void permute_partial_schedule (partial_schedule_ptr, rtx);
222 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
223                                     rtx, rtx);
224 static int calculate_stage_count (partial_schedule_ptr, int);
225 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
226 					   int, int, sbitmap, sbitmap, sbitmap);
227 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
228 			     sbitmap, int, int *, int *, int *);
229 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
230 					  sbitmap, int *, sbitmap, sbitmap);
231 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
232 
233 #define NODE_ASAP(node) ((node)->aux.count)
234 
235 #define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
236 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
237 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
238 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
239 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
240 
241 /* The scheduling parameters held for each node.  */
242 typedef struct node_sched_params
243 {
244   int time;	/* The absolute scheduling cycle.  */
245 
246   int row;    /* Holds time % ii.  */
247   int stage;  /* Holds time / ii.  */
248 
249   /* The column of a node inside the ps.  If nodes u, v are on the same row,
250      u will precede v if column (u) < column (v).  */
251   int column;
252 } *node_sched_params_ptr;
253 
254 typedef struct node_sched_params node_sched_params;
255 DEF_VEC_O (node_sched_params);
256 DEF_VEC_ALLOC_O (node_sched_params, heap);
257 
258 /* The following three functions are copied from the current scheduler
259    code in order to use sched_analyze() for computing the dependencies.
260    They are used when initializing the sched_info structure.  */
261 static const char *
262 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
263 {
264   static char tmp[80];
265 
266   sprintf (tmp, "i%4d", INSN_UID (insn));
267   return tmp;
268 }
269 
270 static void
271 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
272 			       regset used ATTRIBUTE_UNUSED)
273 {
274 }
275 
276 static struct common_sched_info_def sms_common_sched_info;
277 
278 static struct sched_deps_info_def sms_sched_deps_info =
279   {
280     compute_jump_reg_dependencies,
281     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
282     NULL,
283     0, 0, 0
284   };
285 
286 static struct haifa_sched_info sms_sched_info =
287 {
288   NULL,
289   NULL,
290   NULL,
291   NULL,
292   NULL,
293   sms_print_insn,
294   NULL,
295   NULL, /* insn_finishes_block_p */
296   NULL, NULL,
297   NULL, NULL,
298   0, 0,
299 
300   NULL, NULL, NULL, NULL,
301   NULL, NULL,
302   0
303 };
304 
305 /* Partial schedule instruction ID in PS is a register move.  Return
306    information about it.  */
307 static struct ps_reg_move_info *
308 ps_reg_move (partial_schedule_ptr ps, int id)
309 {
310   gcc_checking_assert (id >= ps->g->num_nodes);
311   return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
312 }
313 
314 /* Return the rtl instruction that is being scheduled by partial schedule
315    instruction ID, which belongs to schedule PS.  */
316 static rtx
317 ps_rtl_insn (partial_schedule_ptr ps, int id)
318 {
319   if (id < ps->g->num_nodes)
320     return ps->g->nodes[id].insn;
321   else
322     return ps_reg_move (ps, id)->insn;
323 }
324 
325 /* Partial schedule instruction ID, which belongs to PS, occured in
326    the original (unscheduled) loop.  Return the first instruction
327    in the loop that was associated with ps_rtl_insn (PS, ID).
328    If the instruction had some notes before it, this is the first
329    of those notes.  */
330 static rtx
331 ps_first_note (partial_schedule_ptr ps, int id)
332 {
333   gcc_assert (id < ps->g->num_nodes);
334   return ps->g->nodes[id].first_note;
335 }
336 
337 /* Return the number of consecutive stages that are occupied by
338    partial schedule instruction ID in PS.  */
339 static int
340 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
341 {
342   if (id < ps->g->num_nodes)
343     return 1;
344   else
345     return ps_reg_move (ps, id)->num_consecutive_stages;
346 }
347 
348 /* Given HEAD and TAIL which are the first and last insns in a loop;
349    return the register which controls the loop.  Return zero if it has
350    more than one occurrence in the loop besides the control part or the
351    do-loop pattern is not of the form we expect.  */
352 static rtx
353 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
354 {
355 #ifdef HAVE_doloop_end
356   rtx reg, condition, insn, first_insn_not_to_check;
357 
358   if (!JUMP_P (tail))
359     return NULL_RTX;
360 
361   /* TODO: Free SMS's dependence on doloop_condition_get.  */
362   condition = doloop_condition_get (tail);
363   if (! condition)
364     return NULL_RTX;
365 
366   if (REG_P (XEXP (condition, 0)))
367     reg = XEXP (condition, 0);
368   else if (GET_CODE (XEXP (condition, 0)) == PLUS
369 	   && REG_P (XEXP (XEXP (condition, 0), 0)))
370     reg = XEXP (XEXP (condition, 0), 0);
371   else
372     gcc_unreachable ();
373 
374   /* Check that the COUNT_REG has no other occurrences in the loop
375      until the decrement.  We assume the control part consists of
376      either a single (parallel) branch-on-count or a (non-parallel)
377      branch immediately preceded by a single (decrement) insn.  */
378   first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
379                              : prev_nondebug_insn (tail));
380 
381   for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
382     if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
383       {
384         if (dump_file)
385         {
386           fprintf (dump_file, "SMS count_reg found ");
387           print_rtl_single (dump_file, reg);
388           fprintf (dump_file, " outside control in insn:\n");
389           print_rtl_single (dump_file, insn);
390         }
391 
392         return NULL_RTX;
393       }
394 
395   return reg;
396 #else
397   return NULL_RTX;
398 #endif
399 }
400 
401 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
402    that the number of iterations is a compile-time constant.  If so,
403    return the rtx that sets COUNT_REG to a constant, and set COUNT to
404    this constant.  Otherwise return 0.  */
405 static rtx
406 const_iteration_count (rtx count_reg, basic_block pre_header,
407 		       HOST_WIDEST_INT * count)
408 {
409   rtx insn;
410   rtx head, tail;
411 
412   if (! pre_header)
413     return NULL_RTX;
414 
415   get_ebb_head_tail (pre_header, pre_header, &head, &tail);
416 
417   for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
418     if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
419 	rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
420       {
421 	rtx pat = single_set (insn);
422 
423 	if (CONST_INT_P (SET_SRC (pat)))
424 	  {
425 	    *count = INTVAL (SET_SRC (pat));
426 	    return insn;
427 	  }
428 
429 	return NULL_RTX;
430       }
431 
432   return NULL_RTX;
433 }
434 
435 /* A very simple resource-based lower bound on the initiation interval.
436    ??? Improve the accuracy of this bound by considering the
437    utilization of various units.  */
438 static int
439 res_MII (ddg_ptr g)
440 {
441   if (targetm.sched.sms_res_mii)
442     return targetm.sched.sms_res_mii (g);
443 
444   return ((g->num_nodes - g->num_debug) / issue_rate);
445 }
446 
447 
448 /* A vector that contains the sched data for each ps_insn.  */
449 static VEC (node_sched_params, heap) *node_sched_param_vec;
450 
451 /* Allocate sched_params for each node and initialize it.  */
452 static void
453 set_node_sched_params (ddg_ptr g)
454 {
455   VEC_truncate (node_sched_params, node_sched_param_vec, 0);
456   VEC_safe_grow_cleared (node_sched_params, heap,
457 			 node_sched_param_vec, g->num_nodes);
458 }
459 
460 /* Make sure that node_sched_param_vec has an entry for every move in PS.  */
461 static void
462 extend_node_sched_params (partial_schedule_ptr ps)
463 {
464   VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
465 			 ps->g->num_nodes + VEC_length (ps_reg_move_info,
466 							ps->reg_moves));
467 }
468 
469 /* Update the sched_params (time, row and stage) for node U using the II,
470    the CYCLE of U and MIN_CYCLE.
471    We're not simply taking the following
472    SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
473    because the stages may not be aligned on cycle 0.  */
474 static void
475 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
476 {
477   int sc_until_cycle_zero;
478   int stage;
479 
480   SCHED_TIME (u) = cycle;
481   SCHED_ROW (u) = SMODULO (cycle, ii);
482 
483   /* The calculation of stage count is done adding the number
484      of stages before cycle zero and after cycle zero.  */
485   sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
486 
487   if (SCHED_TIME (u) < 0)
488     {
489       stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
490       SCHED_STAGE (u) = sc_until_cycle_zero - stage;
491     }
492   else
493     {
494       stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
495       SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
496     }
497 }
498 
499 static void
500 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
501 {
502   int i;
503 
504   if (! file)
505     return;
506   for (i = 0; i < num_nodes; i++)
507     {
508       node_sched_params_ptr nsp = SCHED_PARAMS (i);
509 
510       fprintf (file, "Node = %d; INSN = %d\n", i,
511 	       INSN_UID (ps_rtl_insn (ps, i)));
512       fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
513       fprintf (file, " time = %d:\n", nsp->time);
514       fprintf (file, " stage = %d:\n", nsp->stage);
515     }
516 }
517 
518 /* Set SCHED_COLUMN for each instruction in row ROW of PS.  */
519 static void
520 set_columns_for_row (partial_schedule_ptr ps, int row)
521 {
522   ps_insn_ptr cur_insn;
523   int column;
524 
525   column = 0;
526   for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
527     SCHED_COLUMN (cur_insn->id) = column++;
528 }
529 
530 /* Set SCHED_COLUMN for each instruction in PS.  */
531 static void
532 set_columns_for_ps (partial_schedule_ptr ps)
533 {
534   int row;
535 
536   for (row = 0; row < ps->ii; row++)
537     set_columns_for_row (ps, row);
538 }
539 
540 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
541    Its single predecessor has already been scheduled, as has its
542    ddg node successors.  (The move may have also another move as its
543    successor, in which case that successor will be scheduled later.)
544 
545    The move is part of a chain that satisfies register dependencies
546    between a producing ddg node and various consuming ddg nodes.
547    If some of these dependencies have a distance of 1 (meaning that
548    the use is upward-exposed) then DISTANCE1_USES is nonnull and
549    contains the set of uses with distance-1 dependencies.
550    DISTANCE1_USES is null otherwise.
551 
552    MUST_FOLLOW is a scratch bitmap that is big enough to hold
553    all current ps_insn ids.
554 
555    Return true on success.  */
556 static bool
557 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
558 		   sbitmap distance1_uses, sbitmap must_follow)
559 {
560   unsigned int u;
561   int this_time, this_distance, this_start, this_end, this_latency;
562   int start, end, c, ii;
563   sbitmap_iterator sbi;
564   ps_reg_move_info *move;
565   rtx this_insn;
566   ps_insn_ptr psi;
567 
568   move = ps_reg_move (ps, i_reg_move);
569   ii = ps->ii;
570   if (dump_file)
571     {
572       fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
573 	       ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
574 	       PS_MIN_CYCLE (ps));
575       print_rtl_single (dump_file, move->insn);
576       fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
577       fprintf (dump_file, "=========== =========== =====\n");
578     }
579 
580   start = INT_MIN;
581   end = INT_MAX;
582 
583   /* For dependencies of distance 1 between a producer ddg node A
584      and consumer ddg node B, we have a chain of dependencies:
585 
586         A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
587 
588      where Mi is the ith move.  For dependencies of distance 0 between
589      a producer ddg node A and consumer ddg node C, we have a chain of
590      dependencies:
591 
592         A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
593 
594      where Mi' occupies the same position as Mi but occurs a stage later.
595      We can only schedule each move once, so if we have both types of
596      chain, we model the second as:
597 
598         A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
599 
600      First handle the dependencies between the previously-scheduled
601      predecessor and the move.  */
602   this_insn = ps_rtl_insn (ps, move->def);
603   this_latency = insn_latency (this_insn, move->insn);
604   this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
605   this_time = SCHED_TIME (move->def) - this_distance * ii;
606   this_start = this_time + this_latency;
607   this_end = this_time + ii;
608   if (dump_file)
609     fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
610 	     this_start, this_end, SCHED_TIME (move->def),
611 	     INSN_UID (this_insn), this_latency, this_distance,
612 	     INSN_UID (move->insn));
613 
614   if (start < this_start)
615     start = this_start;
616   if (end > this_end)
617     end = this_end;
618 
619   /* Handle the dependencies between the move and previously-scheduled
620      successors.  */
621   EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
622     {
623       this_insn = ps_rtl_insn (ps, u);
624       this_latency = insn_latency (move->insn, this_insn);
625       if (distance1_uses && !TEST_BIT (distance1_uses, u))
626 	this_distance = -1;
627       else
628 	this_distance = 0;
629       this_time = SCHED_TIME (u) + this_distance * ii;
630       this_start = this_time - ii;
631       this_end = this_time - this_latency;
632       if (dump_file)
633 	fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
634 		 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
635 		 this_latency, this_distance, INSN_UID (this_insn));
636 
637       if (start < this_start)
638 	start = this_start;
639       if (end > this_end)
640 	end = this_end;
641     }
642 
643   if (dump_file)
644     {
645       fprintf (dump_file, "----------- ----------- -----\n");
646       fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
647     }
648 
649   sbitmap_zero (must_follow);
650   SET_BIT (must_follow, move->def);
651 
652   start = MAX (start, end - (ii - 1));
653   for (c = end; c >= start; c--)
654     {
655       psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
656 					 move->uses, must_follow);
657       if (psi)
658 	{
659 	  update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
660 	  if (dump_file)
661 	    fprintf (dump_file, "\nScheduled register move INSN %d at"
662 		     " time %d, row %d\n\n", INSN_UID (move->insn), c,
663 		     SCHED_ROW (i_reg_move));
664 	  return true;
665 	}
666     }
667 
668   if (dump_file)
669     fprintf (dump_file, "\nNo available slot\n\n");
670 
671   return false;
672 }
673 
674 /*
675    Breaking intra-loop register anti-dependences:
676    Each intra-loop register anti-dependence implies a cross-iteration true
677    dependence of distance 1. Therefore, we can remove such false dependencies
678    and figure out if the partial schedule broke them by checking if (for a
679    true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
680    if so generate a register move.   The number of such moves is equal to:
681               SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
682    nreg_moves = ----------------------------------- + 1 - {   dependence.
683                             ii                          { 1 if not.
684 */
685 static bool
686 schedule_reg_moves (partial_schedule_ptr ps)
687 {
688   ddg_ptr g = ps->g;
689   int ii = ps->ii;
690   int i;
691 
692   for (i = 0; i < g->num_nodes; i++)
693     {
694       ddg_node_ptr u = &g->nodes[i];
695       ddg_edge_ptr e;
696       int nreg_moves = 0, i_reg_move;
697       rtx prev_reg, old_reg;
698       int first_move;
699       int distances[2];
700       sbitmap must_follow;
701       sbitmap distance1_uses;
702       rtx set = single_set (u->insn);
703 
704       /* Skip instructions that do not set a register.  */
705       if ((set && !REG_P (SET_DEST (set))))
706         continue;
707 
708       /* Compute the number of reg_moves needed for u, by looking at life
709 	 ranges started at u (excluding self-loops).  */
710       distances[0] = distances[1] = false;
711       for (e = u->out; e; e = e->next_out)
712 	if (e->type == TRUE_DEP && e->dest != e->src)
713 	  {
714 	    int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
715 				- SCHED_TIME (e->src->cuid)) / ii;
716 
717             if (e->distance == 1)
718               nreg_moves4e = (SCHED_TIME (e->dest->cuid)
719 			      - SCHED_TIME (e->src->cuid) + ii) / ii;
720 
721 	    /* If dest precedes src in the schedule of the kernel, then dest
722 	       will read before src writes and we can save one reg_copy.  */
723 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
724 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
725 	      nreg_moves4e--;
726 
727             if (nreg_moves4e >= 1)
728 	      {
729 		/* !single_set instructions are not supported yet and
730 		   thus we do not except to encounter them in the loop
731 		   except from the doloop part.  For the latter case
732 		   we assume no regmoves are generated as the doloop
733 		   instructions are tied to the branch with an edge.  */
734 		gcc_assert (set);
735 		/* If the instruction contains auto-inc register then
736 		   validate that the regmov is being generated for the
737 		   target regsiter rather then the inc'ed register.	*/
738 		gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
739 	      }
740 
741 	    if (nreg_moves4e)
742 	      {
743 		gcc_assert (e->distance < 2);
744 		distances[e->distance] = true;
745 	      }
746 	    nreg_moves = MAX (nreg_moves, nreg_moves4e);
747 	  }
748 
749       if (nreg_moves == 0)
750 	continue;
751 
752       /* Create NREG_MOVES register moves.  */
753       first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
754       VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
755 			     first_move + nreg_moves);
756       extend_node_sched_params (ps);
757 
758       /* Record the moves associated with this node.  */
759       first_move += ps->g->num_nodes;
760 
761       /* Generate each move.  */
762       old_reg = prev_reg = SET_DEST (single_set (u->insn));
763       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
764 	{
765 	  ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
766 
767 	  move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
768 	  move->uses = sbitmap_alloc (first_move + nreg_moves);
769 	  move->old_reg = old_reg;
770 	  move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
771 	  move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
772 	  move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
773 	  sbitmap_zero (move->uses);
774 
775 	  prev_reg = move->new_reg;
776 	}
777 
778       distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
779 
780       /* Every use of the register defined by node may require a different
781 	 copy of this register, depending on the time the use is scheduled.
782 	 Record which uses require which move results.  */
783       for (e = u->out; e; e = e->next_out)
784 	if (e->type == TRUE_DEP && e->dest != e->src)
785 	  {
786 	    int dest_copy = (SCHED_TIME (e->dest->cuid)
787 			     - SCHED_TIME (e->src->cuid)) / ii;
788 
789 	    if (e->distance == 1)
790 	      dest_copy = (SCHED_TIME (e->dest->cuid)
791 			   - SCHED_TIME (e->src->cuid) + ii) / ii;
792 
793 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
794 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
795 	      dest_copy--;
796 
797 	    if (dest_copy)
798 	      {
799 		ps_reg_move_info *move;
800 
801 		move = ps_reg_move (ps, first_move + dest_copy - 1);
802 		SET_BIT (move->uses, e->dest->cuid);
803 		if (e->distance == 1)
804 		  SET_BIT (distance1_uses, e->dest->cuid);
805 	      }
806 	  }
807 
808       must_follow = sbitmap_alloc (first_move + nreg_moves);
809       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
810 	if (!schedule_reg_move (ps, first_move + i_reg_move,
811 				distance1_uses, must_follow))
812 	  break;
813       sbitmap_free (must_follow);
814       if (distance1_uses)
815 	sbitmap_free (distance1_uses);
816       if (i_reg_move < nreg_moves)
817 	return false;
818     }
819   return true;
820 }
821 
822 /* Emit the moves associatied with PS.  Apply the substitutions
823    associated with them.  */
824 static void
825 apply_reg_moves (partial_schedule_ptr ps)
826 {
827   ps_reg_move_info *move;
828   int i;
829 
830   FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
831     {
832       unsigned int i_use;
833       sbitmap_iterator sbi;
834 
835       EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
836 	{
837 	  replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
838 	  df_insn_rescan (ps->g->nodes[i_use].insn);
839 	}
840     }
841 }
842 
843 /* Bump the SCHED_TIMEs of all nodes by AMOUNT.  Set the values of
844    SCHED_ROW and SCHED_STAGE.  Instruction scheduled on cycle AMOUNT
845    will move to cycle zero.  */
846 static void
847 reset_sched_times (partial_schedule_ptr ps, int amount)
848 {
849   int row;
850   int ii = ps->ii;
851   ps_insn_ptr crr_insn;
852 
853   for (row = 0; row < ii; row++)
854     for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
855       {
856 	int u = crr_insn->id;
857 	int normalized_time = SCHED_TIME (u) - amount;
858 	int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
859 
860         if (dump_file)
861           {
862             /* Print the scheduling times after the rotation.  */
863 	    rtx insn = ps_rtl_insn (ps, u);
864 
865             fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
866                      "crr_insn->cycle=%d, min_cycle=%d", u,
867                      INSN_UID (insn), normalized_time, new_min_cycle);
868             if (JUMP_P (insn))
869               fprintf (dump_file, " (branch)");
870             fprintf (dump_file, "\n");
871           }
872 
873 	gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
874 	gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
875 
876 	crr_insn->cycle = normalized_time;
877 	update_node_sched_params (u, ii, normalized_time, new_min_cycle);
878       }
879 }
880 
881 /* Permute the insns according to their order in PS, from row 0 to
882    row ii-1, and position them right before LAST.  This schedules
883    the insns of the loop kernel.  */
884 static void
885 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
886 {
887   int ii = ps->ii;
888   int row;
889   ps_insn_ptr ps_ij;
890 
891   for (row = 0; row < ii ; row++)
892     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
893       {
894 	rtx insn = ps_rtl_insn (ps, ps_ij->id);
895 
896 	if (PREV_INSN (last) != insn)
897 	  {
898 	    if (ps_ij->id < ps->g->num_nodes)
899 	      reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
900 				  PREV_INSN (last));
901 	    else
902 	      add_insn_before (insn, last, NULL);
903 	  }
904       }
905 }
906 
907 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
908    respectively only if cycle C falls on the border of the scheduling
909    window boundaries marked by START and END cycles.  STEP is the
910    direction of the window.  */
911 static inline void
912 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
913 			 sbitmap *tmp_precede, sbitmap must_precede, int c,
914 			 int start, int end, int step)
915 {
916   *tmp_precede = NULL;
917   *tmp_follow = NULL;
918 
919   if (c == start)
920     {
921       if (step == 1)
922 	*tmp_precede = must_precede;
923       else			/* step == -1.  */
924 	*tmp_follow = must_follow;
925     }
926   if (c == end - step)
927     {
928       if (step == 1)
929 	*tmp_follow = must_follow;
930       else			/* step == -1.  */
931 	*tmp_precede = must_precede;
932     }
933 
934 }
935 
936 /* Return True if the branch can be moved to row ii-1 while
937    normalizing the partial schedule PS to start from cycle zero and thus
938    optimize the SC.  Otherwise return False.  */
939 static bool
940 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
941 {
942   int amount = PS_MIN_CYCLE (ps);
943   sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
944   int start, end, step;
945   int ii = ps->ii;
946   bool ok = false;
947   int stage_count, stage_count_curr;
948 
949   /* Compare the SC after normalization and SC after bringing the branch
950      to row ii-1.  If they are equal just bail out.  */
951   stage_count = calculate_stage_count (ps, amount);
952   stage_count_curr =
953     calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
954 
955   if (stage_count == stage_count_curr)
956     {
957       if (dump_file)
958 	fprintf (dump_file, "SMS SC already optimized.\n");
959 
960       ok = false;
961       goto clear;
962     }
963 
964   if (dump_file)
965     {
966       fprintf (dump_file, "SMS Trying to optimize branch location\n");
967       fprintf (dump_file, "SMS partial schedule before trial:\n");
968       print_partial_schedule (ps, dump_file);
969     }
970 
971   /* First, normalize the partial scheduling.  */
972   reset_sched_times (ps, amount);
973   rotate_partial_schedule (ps, amount);
974   if (dump_file)
975     {
976       fprintf (dump_file,
977 	       "SMS partial schedule after normalization (ii, %d, SC %d):\n",
978 	       ii, stage_count);
979       print_partial_schedule (ps, dump_file);
980     }
981 
982   if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
983     {
984       ok = true;
985       goto clear;
986     }
987 
988   sbitmap_ones (sched_nodes);
989 
990   /* Calculate the new placement of the branch.  It should be in row
991      ii-1 and fall into it's scheduling window.  */
992   if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
993 			&step, &end) == 0)
994     {
995       bool success;
996       ps_insn_ptr next_ps_i;
997       int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
998       int row = SMODULO (branch_cycle, ps->ii);
999       int num_splits = 0;
1000       sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
1001       int c;
1002 
1003       if (dump_file)
1004 	fprintf (dump_file, "\nTrying to schedule node %d "
1005 		 "INSN = %d  in (%d .. %d) step %d\n",
1006 		 g->closing_branch->cuid,
1007 		 (INSN_UID (g->closing_branch->insn)), start, end, step);
1008 
1009       gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1010       if (step == 1)
1011 	{
1012 	  c = start + ii - SMODULO (start, ii) - 1;
1013 	  gcc_assert (c >= start);
1014 	  if (c >= end)
1015 	    {
1016 	      ok = false;
1017 	      if (dump_file)
1018 		fprintf (dump_file,
1019 			 "SMS failed to schedule branch at cycle: %d\n", c);
1020 	      goto clear;
1021 	    }
1022 	}
1023       else
1024 	{
1025 	  c = start - SMODULO (start, ii) - 1;
1026 	  gcc_assert (c <= start);
1027 
1028 	  if (c <= end)
1029 	    {
1030 	      if (dump_file)
1031 		fprintf (dump_file,
1032 			 "SMS failed to schedule branch at cycle: %d\n", c);
1033 	      ok = false;
1034 	      goto clear;
1035 	    }
1036 	}
1037 
1038       must_precede = sbitmap_alloc (g->num_nodes);
1039       must_follow = sbitmap_alloc (g->num_nodes);
1040 
1041       /* Try to schedule the branch is it's new cycle.  */
1042       calculate_must_precede_follow (g->closing_branch, start, end,
1043 				     step, ii, sched_nodes,
1044 				     must_precede, must_follow);
1045 
1046       set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1047 			       must_precede, c, start, end, step);
1048 
1049       /* Find the element in the partial schedule related to the closing
1050          branch so we can remove it from it's current cycle.  */
1051       for (next_ps_i = ps->rows[row];
1052 	   next_ps_i; next_ps_i = next_ps_i->next_in_row)
1053 	if (next_ps_i->id == g->closing_branch->cuid)
1054 	  break;
1055 
1056       remove_node_from_ps (ps, next_ps_i);
1057       success =
1058 	try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1059 				      sched_nodes, &num_splits,
1060 				      tmp_precede, tmp_follow);
1061       gcc_assert (num_splits == 0);
1062       if (!success)
1063 	{
1064 	  if (dump_file)
1065 	    fprintf (dump_file,
1066 		     "SMS failed to schedule branch at cycle: %d, "
1067 		     "bringing it back to cycle %d\n", c, branch_cycle);
1068 
1069 	  /* The branch was failed to be placed in row ii - 1.
1070 	     Put it back in it's original place in the partial
1071 	     schedualing.  */
1072 	  set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1073 				   must_precede, branch_cycle, start, end,
1074 				   step);
1075 	  success =
1076 	    try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1077 					  branch_cycle, sched_nodes,
1078 					  &num_splits, tmp_precede,
1079 					  tmp_follow);
1080 	  gcc_assert (success && (num_splits == 0));
1081 	  ok = false;
1082 	}
1083       else
1084 	{
1085 	  /* The branch is placed in row ii - 1.  */
1086 	  if (dump_file)
1087 	    fprintf (dump_file,
1088 		     "SMS success in moving branch to cycle %d\n", c);
1089 
1090 	  update_node_sched_params (g->closing_branch->cuid, ii, c,
1091 				    PS_MIN_CYCLE (ps));
1092 	  ok = true;
1093 	}
1094 
1095       free (must_precede);
1096       free (must_follow);
1097     }
1098 
1099 clear:
1100   free (sched_nodes);
1101   return ok;
1102 }
1103 
1104 static void
1105 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1106 			   int to_stage, rtx count_reg)
1107 {
1108   int row;
1109   ps_insn_ptr ps_ij;
1110 
1111   for (row = 0; row < ps->ii; row++)
1112     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1113       {
1114 	int u = ps_ij->id;
1115 	int first_u, last_u;
1116 	rtx u_insn;
1117 
1118         /* Do not duplicate any insn which refers to count_reg as it
1119            belongs to the control part.
1120            The closing branch is scheduled as well and thus should
1121            be ignored.
1122            TODO: This should be done by analyzing the control part of
1123            the loop.  */
1124 	u_insn = ps_rtl_insn (ps, u);
1125         if (reg_mentioned_p (count_reg, u_insn)
1126             || JUMP_P (u_insn))
1127           continue;
1128 
1129 	first_u = SCHED_STAGE (u);
1130 	last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1131 	if (from_stage <= last_u && to_stage >= first_u)
1132 	  {
1133 	    if (u < ps->g->num_nodes)
1134 	      duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1135 	    else
1136 	      emit_insn (copy_rtx (PATTERN (u_insn)));
1137 	  }
1138       }
1139 }
1140 
1141 
1142 /* Generate the instructions (including reg_moves) for prolog & epilog.  */
1143 static void
1144 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1145                         rtx count_reg, rtx count_init)
1146 {
1147   int i;
1148   int last_stage = PS_STAGE_COUNT (ps) - 1;
1149   edge e;
1150 
1151   /* Generate the prolog, inserting its insns on the loop-entry edge.  */
1152   start_sequence ();
1153 
1154   if (!count_init)
1155     {
1156       /* Generate instructions at the beginning of the prolog to
1157          adjust the loop count by STAGE_COUNT.  If loop count is constant
1158          (count_init), this constant is adjusted by STAGE_COUNT in
1159          generate_prolog_epilog function.  */
1160       rtx sub_reg = NULL_RTX;
1161 
1162       sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
1163                                      count_reg, GEN_INT (last_stage),
1164                                      count_reg, 1, OPTAB_DIRECT);
1165       gcc_assert (REG_P (sub_reg));
1166       if (REGNO (sub_reg) != REGNO (count_reg))
1167         emit_move_insn (count_reg, sub_reg);
1168     }
1169 
1170   for (i = 0; i < last_stage; i++)
1171     duplicate_insns_of_cycles (ps, 0, i, count_reg);
1172 
1173   /* Put the prolog on the entry edge.  */
1174   e = loop_preheader_edge (loop);
1175   split_edge_and_insert (e, get_insns ());
1176   if (!flag_resched_modulo_sched)
1177     e->dest->flags |= BB_DISABLE_SCHEDULE;
1178 
1179   end_sequence ();
1180 
1181   /* Generate the epilog, inserting its insns on the loop-exit edge.  */
1182   start_sequence ();
1183 
1184   for (i = 0; i < last_stage; i++)
1185     duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1186 
1187   /* Put the epilogue on the exit edge.  */
1188   gcc_assert (single_exit (loop));
1189   e = single_exit (loop);
1190   split_edge_and_insert (e, get_insns ());
1191   if (!flag_resched_modulo_sched)
1192     e->dest->flags |= BB_DISABLE_SCHEDULE;
1193 
1194   end_sequence ();
1195 }
1196 
1197 /* Mark LOOP as software pipelined so the later
1198    scheduling passes don't touch it.  */
1199 static void
1200 mark_loop_unsched (struct loop *loop)
1201 {
1202   unsigned i;
1203   basic_block *bbs = get_loop_body (loop);
1204 
1205   for (i = 0; i < loop->num_nodes; i++)
1206     bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1207 
1208   free (bbs);
1209 }
1210 
1211 /* Return true if all the BBs of the loop are empty except the
1212    loop header.  */
1213 static bool
1214 loop_single_full_bb_p (struct loop *loop)
1215 {
1216   unsigned i;
1217   basic_block *bbs = get_loop_body (loop);
1218 
1219   for (i = 0; i < loop->num_nodes ; i++)
1220     {
1221       rtx head, tail;
1222       bool empty_bb = true;
1223 
1224       if (bbs[i] == loop->header)
1225         continue;
1226 
1227       /* Make sure that basic blocks other than the header
1228          have only notes labels or jumps.  */
1229       get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1230       for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1231         {
1232           if (NOTE_P (head) || LABEL_P (head)
1233  	      || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1234  	    continue;
1235  	  empty_bb = false;
1236  	  break;
1237         }
1238 
1239       if (! empty_bb)
1240         {
1241           free (bbs);
1242           return false;
1243         }
1244     }
1245   free (bbs);
1246   return true;
1247 }
1248 
1249 /* Dump file:line from INSN's location info to dump_file.  */
1250 
1251 static void
1252 dump_insn_locator (rtx insn)
1253 {
1254   if (dump_file && INSN_LOCATOR (insn))
1255     {
1256       const char *file = insn_file (insn);
1257       if (file)
1258 	fprintf (dump_file, " %s:%i", file, insn_line (insn));
1259     }
1260 }
1261 
1262 /* A simple loop from SMS point of view; it is a loop that is composed of
1263    either a single basic block or two BBs - a header and a latch.  */
1264 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) 		    \
1265 				  && (EDGE_COUNT (loop->latch->preds) == 1) \
1266                                   && (EDGE_COUNT (loop->latch->succs) == 1))
1267 
1268 /* Return true if the loop is in its canonical form and false if not.
1269    i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
1270 static bool
1271 loop_canon_p (struct loop *loop)
1272 {
1273 
1274   if (loop->inner || !loop_outer (loop))
1275   {
1276     if (dump_file)
1277       fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1278     return false;
1279   }
1280 
1281   if (!single_exit (loop))
1282     {
1283       if (dump_file)
1284 	{
1285 	  rtx insn = BB_END (loop->header);
1286 
1287 	  fprintf (dump_file, "SMS loop many exits");
1288 	  dump_insn_locator (insn);
1289 	  fprintf (dump_file, "\n");
1290 	}
1291       return false;
1292     }
1293 
1294   if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1295     {
1296       if (dump_file)
1297 	{
1298 	  rtx insn = BB_END (loop->header);
1299 
1300 	  fprintf (dump_file, "SMS loop many BBs.");
1301 	  dump_insn_locator (insn);
1302 	  fprintf (dump_file, "\n");
1303 	}
1304       return false;
1305     }
1306 
1307     return true;
1308 }
1309 
1310 /* If there are more than one entry for the loop,
1311    make it one by splitting the first entry edge and
1312    redirecting the others to the new BB.  */
1313 static void
1314 canon_loop (struct loop *loop)
1315 {
1316   edge e;
1317   edge_iterator i;
1318 
1319   /* Avoid annoying special cases of edges going to exit
1320      block.  */
1321   FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1322     if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1323       split_edge (e);
1324 
1325   if (loop->latch == loop->header
1326       || EDGE_COUNT (loop->latch->succs) > 1)
1327     {
1328       FOR_EACH_EDGE (e, i, loop->header->preds)
1329         if (e->src == loop->latch)
1330           break;
1331       split_edge (e);
1332     }
1333 }
1334 
1335 /* Setup infos.  */
1336 static void
1337 setup_sched_infos (void)
1338 {
1339   memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1340 	  sizeof (sms_common_sched_info));
1341   sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1342   common_sched_info = &sms_common_sched_info;
1343 
1344   sched_deps_info = &sms_sched_deps_info;
1345   current_sched_info = &sms_sched_info;
1346 }
1347 
1348 /* Probability in % that the sms-ed loop rolls enough so that optimized
1349    version may be entered.  Just a guess.  */
1350 #define PROB_SMS_ENOUGH_ITERATIONS 80
1351 
1352 /* Used to calculate the upper bound of ii.  */
1353 #define MAXII_FACTOR 2
1354 
1355 /* Main entry point, perform SMS scheduling on the loops of the function
1356    that consist of single basic blocks.  */
1357 static void
1358 sms_schedule (void)
1359 {
1360   rtx insn;
1361   ddg_ptr *g_arr, g;
1362   int * node_order;
1363   int maxii, max_asap;
1364   loop_iterator li;
1365   partial_schedule_ptr ps;
1366   basic_block bb = NULL;
1367   struct loop *loop;
1368   basic_block condition_bb = NULL;
1369   edge latch_edge;
1370   gcov_type trip_count = 0;
1371 
1372   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1373 		       | LOOPS_HAVE_RECORDED_EXITS);
1374   if (number_of_loops () <= 1)
1375     {
1376       loop_optimizer_finalize ();
1377       return;  /* There are no loops to schedule.  */
1378     }
1379 
1380   /* Initialize issue_rate.  */
1381   if (targetm.sched.issue_rate)
1382     {
1383       int temp = reload_completed;
1384 
1385       reload_completed = 1;
1386       issue_rate = targetm.sched.issue_rate ();
1387       reload_completed = temp;
1388     }
1389   else
1390     issue_rate = 1;
1391 
1392   /* Initialize the scheduler.  */
1393   setup_sched_infos ();
1394   haifa_sched_init ();
1395 
1396   /* Allocate memory to hold the DDG array one entry for each loop.
1397      We use loop->num as index into this array.  */
1398   g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
1399 
1400   if (dump_file)
1401   {
1402     fprintf (dump_file, "\n\nSMS analysis phase\n");
1403     fprintf (dump_file, "===================\n\n");
1404   }
1405 
1406   /* Build DDGs for all the relevant loops and hold them in G_ARR
1407      indexed by the loop index.  */
1408   FOR_EACH_LOOP (li, loop, 0)
1409     {
1410       rtx head, tail;
1411       rtx count_reg;
1412 
1413       /* For debugging.  */
1414       if (dbg_cnt (sms_sched_loop) == false)
1415         {
1416           if (dump_file)
1417             fprintf (dump_file, "SMS reached max limit... \n");
1418 
1419 	  FOR_EACH_LOOP_BREAK (li);
1420         }
1421 
1422       if (dump_file)
1423 	{
1424 	  rtx insn = BB_END (loop->header);
1425 
1426 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1427 	  dump_insn_locator (insn);
1428 	  fprintf (dump_file, "\n");
1429 	}
1430 
1431       if (! loop_canon_p (loop))
1432         continue;
1433 
1434       if (! loop_single_full_bb_p (loop))
1435       {
1436         if (dump_file)
1437           fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1438 	continue;
1439       }
1440 
1441       bb = loop->header;
1442 
1443       get_ebb_head_tail (bb, bb, &head, &tail);
1444       latch_edge = loop_latch_edge (loop);
1445       gcc_assert (single_exit (loop));
1446       if (single_exit (loop)->count)
1447 	trip_count = latch_edge->count / single_exit (loop)->count;
1448 
1449       /* Perform SMS only on loops that their average count is above threshold.  */
1450 
1451       if ( latch_edge->count
1452           && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1453 	{
1454 	  if (dump_file)
1455 	    {
1456 	      dump_insn_locator (tail);
1457 	      fprintf (dump_file, "\nSMS single-bb-loop\n");
1458 	      if (profile_info && flag_branch_probabilities)
1459 	    	{
1460 	      	  fprintf (dump_file, "SMS loop-count ");
1461 	      	  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1462 	             	   (HOST_WIDEST_INT) bb->count);
1463 	      	  fprintf (dump_file, "\n");
1464                   fprintf (dump_file, "SMS trip-count ");
1465                   fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1466                            (HOST_WIDEST_INT) trip_count);
1467                   fprintf (dump_file, "\n");
1468 	      	  fprintf (dump_file, "SMS profile-sum-max ");
1469 	      	  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1470 	          	   (HOST_WIDEST_INT) profile_info->sum_max);
1471 	      	  fprintf (dump_file, "\n");
1472 	    	}
1473 	    }
1474           continue;
1475         }
1476 
1477       /* Make sure this is a doloop.  */
1478       if ( !(count_reg = doloop_register_get (head, tail)))
1479       {
1480         if (dump_file)
1481           fprintf (dump_file, "SMS doloop_register_get failed\n");
1482 	continue;
1483       }
1484 
1485       /* Don't handle BBs with calls or barriers
1486 	 or !single_set with the exception of instructions that include
1487 	 count_reg---these instructions are part of the control part
1488 	 that do-loop recognizes.
1489          ??? Should handle insns defining subregs.  */
1490      for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1491       {
1492          rtx set;
1493 
1494         if (CALL_P (insn)
1495             || BARRIER_P (insn)
1496             || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1497                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1498                 && !reg_mentioned_p (count_reg, insn))
1499             || (INSN_P (insn) && (set = single_set (insn))
1500                 && GET_CODE (SET_DEST (set)) == SUBREG))
1501         break;
1502       }
1503 
1504       if (insn != NEXT_INSN (tail))
1505 	{
1506 	  if (dump_file)
1507 	    {
1508 	      if (CALL_P (insn))
1509 		fprintf (dump_file, "SMS loop-with-call\n");
1510 	      else if (BARRIER_P (insn))
1511 		fprintf (dump_file, "SMS loop-with-barrier\n");
1512               else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1513                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1514                 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1515               else
1516                fprintf (dump_file, "SMS loop with subreg in lhs\n");
1517 	      print_rtl_single (dump_file, insn);
1518 	    }
1519 
1520 	  continue;
1521 	}
1522 
1523       /* Always schedule the closing branch with the rest of the
1524          instructions. The branch is rotated to be in row ii-1 at the
1525          end of the scheduling procedure to make sure it's the last
1526          instruction in the iteration.  */
1527       if (! (g = create_ddg (bb, 1)))
1528         {
1529           if (dump_file)
1530 	    fprintf (dump_file, "SMS create_ddg failed\n");
1531 	  continue;
1532         }
1533 
1534       g_arr[loop->num] = g;
1535       if (dump_file)
1536         fprintf (dump_file, "...OK\n");
1537 
1538     }
1539   if (dump_file)
1540   {
1541     fprintf (dump_file, "\nSMS transformation phase\n");
1542     fprintf (dump_file, "=========================\n\n");
1543   }
1544 
1545   /* We don't want to perform SMS on new loops - created by versioning.  */
1546   FOR_EACH_LOOP (li, loop, 0)
1547     {
1548       rtx head, tail;
1549       rtx count_reg, count_init;
1550       int mii, rec_mii, stage_count, min_cycle;
1551       HOST_WIDEST_INT loop_count = 0;
1552       bool opt_sc_p;
1553 
1554       if (! (g = g_arr[loop->num]))
1555         continue;
1556 
1557       if (dump_file)
1558 	{
1559 	  rtx insn = BB_END (loop->header);
1560 
1561 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1562 	  dump_insn_locator (insn);
1563 	  fprintf (dump_file, "\n");
1564 
1565 	  print_ddg (dump_file, g);
1566 	}
1567 
1568       get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1569 
1570       latch_edge = loop_latch_edge (loop);
1571       gcc_assert (single_exit (loop));
1572       if (single_exit (loop)->count)
1573 	trip_count = latch_edge->count / single_exit (loop)->count;
1574 
1575       if (dump_file)
1576 	{
1577 	  dump_insn_locator (tail);
1578 	  fprintf (dump_file, "\nSMS single-bb-loop\n");
1579 	  if (profile_info && flag_branch_probabilities)
1580 	    {
1581 	      fprintf (dump_file, "SMS loop-count ");
1582 	      fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1583 	               (HOST_WIDEST_INT) bb->count);
1584 	      fprintf (dump_file, "\n");
1585 	      fprintf (dump_file, "SMS profile-sum-max ");
1586 	      fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1587 	               (HOST_WIDEST_INT) profile_info->sum_max);
1588 	      fprintf (dump_file, "\n");
1589 	    }
1590 	  fprintf (dump_file, "SMS doloop\n");
1591 	  fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1592           fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1593           fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1594 	}
1595 
1596 
1597       /* In case of th loop have doloop register it gets special
1598 	 handling.  */
1599       count_init = NULL_RTX;
1600       if ((count_reg = doloop_register_get (head, tail)))
1601 	{
1602 	  basic_block pre_header;
1603 
1604 	  pre_header = loop_preheader_edge (loop)->src;
1605 	  count_init = const_iteration_count (count_reg, pre_header,
1606 					      &loop_count);
1607 	}
1608       gcc_assert (count_reg);
1609 
1610       if (dump_file && count_init)
1611         {
1612           fprintf (dump_file, "SMS const-doloop ");
1613           fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1614 		     loop_count);
1615           fprintf (dump_file, "\n");
1616         }
1617 
1618       node_order = XNEWVEC (int, g->num_nodes);
1619 
1620       mii = 1; /* Need to pass some estimate of mii.  */
1621       rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1622       mii = MAX (res_MII (g), rec_mii);
1623       maxii = MAX (max_asap, MAXII_FACTOR * mii);
1624 
1625       if (dump_file)
1626 	fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1627 		 rec_mii, mii, maxii);
1628 
1629       for (;;)
1630 	{
1631 	  set_node_sched_params (g);
1632 
1633 	  stage_count = 0;
1634 	  opt_sc_p = false;
1635 	  ps = sms_schedule_by_order (g, mii, maxii, node_order);
1636 
1637 	  if (ps)
1638 	    {
1639 	      /* Try to achieve optimized SC by normalizing the partial
1640 		 schedule (having the cycles start from cycle zero).
1641 		 The branch location must be placed in row ii-1 in the
1642 		 final scheduling.	If failed, shift all instructions to
1643 		 position the branch in row ii-1.  */
1644 	      opt_sc_p = optimize_sc (ps, g);
1645 	      if (opt_sc_p)
1646 		stage_count = calculate_stage_count (ps, 0);
1647 	      else
1648 		{
1649 		  /* Bring the branch to cycle ii-1.  */
1650 		  int amount = (SCHED_TIME (g->closing_branch->cuid)
1651 				- (ps->ii - 1));
1652 
1653 		  if (dump_file)
1654 		    fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1655 
1656 		  stage_count = calculate_stage_count (ps, amount);
1657 		}
1658 
1659 	      gcc_assert (stage_count >= 1);
1660 	    }
1661 
1662 	  /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1663 	     1 means that there is no interleaving between iterations thus
1664 	     we let the scheduling passes do the job in this case.  */
1665 	  if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1666 	      || (count_init && (loop_count <= stage_count))
1667 	      || (flag_branch_probabilities && (trip_count <= stage_count)))
1668 	    {
1669 	      if (dump_file)
1670 		{
1671 		  fprintf (dump_file, "SMS failed... \n");
1672 		  fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1673 			   " loop-count=", stage_count);
1674 		  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1675 		  fprintf (dump_file, ", trip-count=");
1676 		  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1677 		  fprintf (dump_file, ")\n");
1678 		}
1679 	      break;
1680 	    }
1681 
1682           if (!opt_sc_p)
1683             {
1684 	      /* Rotate the partial schedule to have the branch in row ii-1.  */
1685               int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1686 
1687               reset_sched_times (ps, amount);
1688               rotate_partial_schedule (ps, amount);
1689             }
1690 
1691 	  set_columns_for_ps (ps);
1692 
1693 	  min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1694 	  if (!schedule_reg_moves (ps))
1695 	    {
1696 	      mii = ps->ii + 1;
1697 	      free_partial_schedule (ps);
1698 	      continue;
1699 	    }
1700 
1701 	  /* Moves that handle incoming values might have been added
1702 	     to a new first stage.  Bump the stage count if so.
1703 
1704 	     ??? Perhaps we could consider rotating the schedule here
1705 	     instead?  */
1706 	  if (PS_MIN_CYCLE (ps) < min_cycle)
1707 	    {
1708 	      reset_sched_times (ps, 0);
1709 	      stage_count++;
1710 	    }
1711 
1712 	  /* The stage count should now be correct without rotation.  */
1713 	  gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1714 	  PS_STAGE_COUNT (ps) = stage_count;
1715 
1716 	  canon_loop (loop);
1717 
1718           if (dump_file)
1719             {
1720 	      dump_insn_locator (tail);
1721 	      fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1722 		       ps->ii, stage_count);
1723 	      print_partial_schedule (ps, dump_file);
1724 	    }
1725 
1726           /* case the BCT count is not known , Do loop-versioning */
1727 	  if (count_reg && ! count_init)
1728             {
1729 	      rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1730 	  				     GEN_INT(stage_count));
1731 	      unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1732 			       * REG_BR_PROB_BASE) / 100;
1733 
1734 	      loop_version (loop, comp_rtx, &condition_bb,
1735 	  		    prob, prob, REG_BR_PROB_BASE - prob,
1736 			    true);
1737 	     }
1738 
1739 	  /* Set new iteration count of loop kernel.  */
1740           if (count_reg && count_init)
1741 	    SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1742 						     - stage_count + 1);
1743 
1744 	  /* Now apply the scheduled kernel to the RTL of the loop.  */
1745 	  permute_partial_schedule (ps, g->closing_branch->first_note);
1746 
1747           /* Mark this loop as software pipelined so the later
1748 	     scheduling passes don't touch it.  */
1749 	  if (! flag_resched_modulo_sched)
1750 	    mark_loop_unsched (loop);
1751 
1752 	  /* The life-info is not valid any more.  */
1753 	  df_set_bb_dirty (g->bb);
1754 
1755 	  apply_reg_moves (ps);
1756 	  if (dump_file)
1757 	    print_node_sched_params (dump_file, g->num_nodes, ps);
1758 	  /* Generate prolog and epilog.  */
1759           generate_prolog_epilog (ps, loop, count_reg, count_init);
1760 	  break;
1761 	}
1762 
1763       free_partial_schedule (ps);
1764       VEC_free (node_sched_params, heap, node_sched_param_vec);
1765       free (node_order);
1766       free_ddg (g);
1767     }
1768 
1769   free (g_arr);
1770 
1771   /* Release scheduler data, needed until now because of DFA.  */
1772   haifa_sched_finish ();
1773   loop_optimizer_finalize ();
1774 }
1775 
1776 /* The SMS scheduling algorithm itself
1777    -----------------------------------
1778    Input: 'O' an ordered list of insns of a loop.
1779    Output: A scheduling of the loop - kernel, prolog, and epilogue.
1780 
1781    'Q' is the empty Set
1782    'PS' is the partial schedule; it holds the currently scheduled nodes with
1783 	their cycle/slot.
1784    'PSP' previously scheduled predecessors.
1785    'PSS' previously scheduled successors.
1786    't(u)' the cycle where u is scheduled.
1787    'l(u)' is the latency of u.
1788    'd(v,u)' is the dependence distance from v to u.
1789    'ASAP(u)' the earliest time at which u could be scheduled as computed in
1790 	     the node ordering phase.
1791    'check_hardware_resources_conflicts(u, PS, c)'
1792 			     run a trace around cycle/slot through DFA model
1793 			     to check resource conflicts involving instruction u
1794 			     at cycle c given the partial schedule PS.
1795    'add_to_partial_schedule_at_time(u, PS, c)'
1796 			     Add the node/instruction u to the partial schedule
1797 			     PS at time c.
1798    'calculate_register_pressure(PS)'
1799 			     Given a schedule of instructions, calculate the register
1800 			     pressure it implies.  One implementation could be the
1801 			     maximum number of overlapping live ranges.
1802    'maxRP' The maximum allowed register pressure, it is usually derived from the number
1803 	   registers available in the hardware.
1804 
1805    1. II = MII.
1806    2. PS = empty list
1807    3. for each node u in O in pre-computed order
1808    4.   if (PSP(u) != Q && PSS(u) == Q) then
1809    5.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1810    6.     start = Early_start; end = Early_start + II - 1; step = 1
1811    11.  else if (PSP(u) == Q && PSS(u) != Q) then
1812    12.      Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1813    13.     start = Late_start; end = Late_start - II + 1; step = -1
1814    14.  else if (PSP(u) != Q && PSS(u) != Q) then
1815    15.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1816    16.     Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1817    17.     start = Early_start;
1818    18.     end = min(Early_start + II - 1 , Late_start);
1819    19.     step = 1
1820    20.     else "if (PSP(u) == Q && PSS(u) == Q)"
1821    21.	  start = ASAP(u); end = start + II - 1; step = 1
1822    22.  endif
1823 
1824    23.  success = false
1825    24.  for (c = start ; c != end ; c += step)
1826    25.     if check_hardware_resources_conflicts(u, PS, c) then
1827    26.       add_to_partial_schedule_at_time(u, PS, c)
1828    27.       success = true
1829    28.       break
1830    29.     endif
1831    30.  endfor
1832    31.  if (success == false) then
1833    32.    II = II + 1
1834    33.    if (II > maxII) then
1835    34.       finish - failed to schedule
1836    35.	 endif
1837    36.    goto 2.
1838    37.  endif
1839    38. endfor
1840    39. if (calculate_register_pressure(PS) > maxRP) then
1841    40.    goto 32.
1842    41. endif
1843    42. compute epilogue & prologue
1844    43. finish - succeeded to schedule
1845 
1846    ??? The algorithm restricts the scheduling window to II cycles.
1847    In rare cases, it may be better to allow windows of II+1 cycles.
1848    The window would then start and end on the same row, but with
1849    different "must precede" and "must follow" requirements.  */
1850 
1851 /* A limit on the number of cycles that resource conflicts can span.  ??? Should
1852    be provided by DFA, and be dependent on the type of insn scheduled.  Currently
1853    set to 0 to save compile time.  */
1854 #define DFA_HISTORY SMS_DFA_HISTORY
1855 
1856 /* A threshold for the number of repeated unsuccessful attempts to insert
1857    an empty row, before we flush the partial schedule and start over.  */
1858 #define MAX_SPLIT_NUM 10
1859 /* Given the partial schedule PS, this function calculates and returns the
1860    cycles in which we can schedule the node with the given index I.
1861    NOTE: Here we do the backtracking in SMS, in some special cases. We have
1862    noticed that there are several cases in which we fail    to SMS the loop
1863    because the sched window of a node is empty    due to tight data-deps. In
1864    such cases we want to unschedule    some of the predecessors/successors
1865    until we get non-empty    scheduling window.  It returns -1 if the
1866    scheduling window is empty and zero otherwise.  */
1867 
1868 static int
1869 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1870 		  sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1871 		  int *end_p)
1872 {
1873   int start, step, end;
1874   int early_start, late_start;
1875   ddg_edge_ptr e;
1876   sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1877   sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1878   sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1879   sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1880   int psp_not_empty;
1881   int pss_not_empty;
1882   int count_preds;
1883   int count_succs;
1884 
1885   /* 1. compute sched window for u (start, end, step).  */
1886   sbitmap_zero (psp);
1887   sbitmap_zero (pss);
1888   psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1889   pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1890 
1891   /* We first compute a forward range (start <= end), then decide whether
1892      to reverse it.  */
1893   early_start = INT_MIN;
1894   late_start = INT_MAX;
1895   start = INT_MIN;
1896   end = INT_MAX;
1897   step = 1;
1898 
1899   count_preds = 0;
1900   count_succs = 0;
1901 
1902   if (dump_file && (psp_not_empty || pss_not_empty))
1903     {
1904       fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1905 	       "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1906       fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1907 	       "start", "early start", "late start", "end", "time");
1908       fprintf (dump_file, "=========== =========== =========== ==========="
1909 	       " =====\n");
1910     }
1911   /* Calculate early_start and limit end.  Both bounds are inclusive.  */
1912   if (psp_not_empty)
1913     for (e = u_node->in; e != 0; e = e->next_in)
1914       {
1915 	int v = e->src->cuid;
1916 
1917 	if (TEST_BIT (sched_nodes, v))
1918 	  {
1919 	    int p_st = SCHED_TIME (v);
1920 	    int earliest = p_st + e->latency - (e->distance * ii);
1921 	    int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1922 
1923 	    if (dump_file)
1924 	      {
1925 		fprintf (dump_file, "%11s %11d %11s %11d %5d",
1926 			 "", earliest, "", latest, p_st);
1927 		print_ddg_edge (dump_file, e);
1928 		fprintf (dump_file, "\n");
1929 	      }
1930 
1931 	    early_start = MAX (early_start, earliest);
1932 	    end = MIN (end, latest);
1933 
1934 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1935 	      count_preds++;
1936 	  }
1937       }
1938 
1939   /* Calculate late_start and limit start.  Both bounds are inclusive.  */
1940   if (pss_not_empty)
1941     for (e = u_node->out; e != 0; e = e->next_out)
1942       {
1943 	int v = e->dest->cuid;
1944 
1945 	if (TEST_BIT (sched_nodes, v))
1946 	  {
1947 	    int s_st = SCHED_TIME (v);
1948 	    int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1949 	    int latest = s_st - e->latency + (e->distance * ii);
1950 
1951 	    if (dump_file)
1952 	      {
1953 		fprintf (dump_file, "%11d %11s %11d %11s %5d",
1954 			 earliest, "", latest, "", s_st);
1955 		print_ddg_edge (dump_file, e);
1956 		fprintf (dump_file, "\n");
1957 	      }
1958 
1959 	    start = MAX (start, earliest);
1960 	    late_start = MIN (late_start, latest);
1961 
1962 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1963 	      count_succs++;
1964 	  }
1965       }
1966 
1967   if (dump_file && (psp_not_empty || pss_not_empty))
1968     {
1969       fprintf (dump_file, "----------- ----------- ----------- -----------"
1970 	       " -----\n");
1971       fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1972 	       start, early_start, late_start, end, "",
1973 	       "(max, max, min, min)");
1974     }
1975 
1976   /* Get a target scheduling window no bigger than ii.  */
1977   if (early_start == INT_MIN && late_start == INT_MAX)
1978     early_start = NODE_ASAP (u_node);
1979   else if (early_start == INT_MIN)
1980     early_start = late_start - (ii - 1);
1981   late_start = MIN (late_start, early_start + (ii - 1));
1982 
1983   /* Apply memory dependence limits.  */
1984   start = MAX (start, early_start);
1985   end = MIN (end, late_start);
1986 
1987   if (dump_file && (psp_not_empty || pss_not_empty))
1988     fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1989 	     "", start, end, "", "");
1990 
1991   /* If there are at least as many successors as predecessors, schedule the
1992      node close to its successors.  */
1993   if (pss_not_empty && count_succs >= count_preds)
1994     {
1995       int tmp = end;
1996       end = start;
1997       start = tmp;
1998       step = -1;
1999     }
2000 
2001   /* Now that we've finalized the window, make END an exclusive rather
2002      than an inclusive bound.  */
2003   end += step;
2004 
2005   *start_p = start;
2006   *step_p = step;
2007   *end_p = end;
2008   sbitmap_free (psp);
2009   sbitmap_free (pss);
2010 
2011   if ((start >= end && step == 1) || (start <= end && step == -1))
2012     {
2013       if (dump_file)
2014 	fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2015 		 start, end, step);
2016       return -1;
2017     }
2018 
2019   return 0;
2020 }
2021 
2022 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2023    node currently been scheduled.  At the end of the calculation
2024    MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2025    U_NODE which are (1) already scheduled in the first/last row of
2026    U_NODE's scheduling window, (2) whose dependence inequality with U
2027    becomes an equality when U is scheduled in this same row, and (3)
2028    whose dependence latency is zero.
2029 
2030    The first and last rows are calculated using the following parameters:
2031    START/END rows - The cycles that begins/ends the traversal on the window;
2032    searching for an empty cycle to schedule U_NODE.
2033    STEP - The direction in which we traverse the window.
2034    II - The initiation interval.  */
2035 
2036 static void
2037 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2038 			       int step, int ii, sbitmap sched_nodes,
2039 			       sbitmap must_precede, sbitmap must_follow)
2040 {
2041   ddg_edge_ptr e;
2042   int first_cycle_in_window, last_cycle_in_window;
2043 
2044   gcc_assert (must_precede && must_follow);
2045 
2046   /* Consider the following scheduling window:
2047      {first_cycle_in_window, first_cycle_in_window+1, ...,
2048      last_cycle_in_window}.  If step is 1 then the following will be
2049      the order we traverse the window: {start=first_cycle_in_window,
2050      first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2051      or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2052      end=first_cycle_in_window-1} if step is -1.  */
2053   first_cycle_in_window = (step == 1) ? start : end - step;
2054   last_cycle_in_window = (step == 1) ? end - step : start;
2055 
2056   sbitmap_zero (must_precede);
2057   sbitmap_zero (must_follow);
2058 
2059   if (dump_file)
2060     fprintf (dump_file, "\nmust_precede: ");
2061 
2062   /* Instead of checking if:
2063       (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2064       && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2065              first_cycle_in_window)
2066       && e->latency == 0
2067      we use the fact that latency is non-negative:
2068       SCHED_TIME (e->src) - (e->distance * ii) <=
2069       SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2070       first_cycle_in_window
2071      and check only if
2072       SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
2073   for (e = u_node->in; e != 0; e = e->next_in)
2074     if (TEST_BIT (sched_nodes, e->src->cuid)
2075 	&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2076              first_cycle_in_window))
2077       {
2078 	if (dump_file)
2079 	  fprintf (dump_file, "%d ", e->src->cuid);
2080 
2081 	SET_BIT (must_precede, e->src->cuid);
2082       }
2083 
2084   if (dump_file)
2085     fprintf (dump_file, "\nmust_follow: ");
2086 
2087   /* Instead of checking if:
2088       (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2089       && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2090              last_cycle_in_window)
2091       && e->latency == 0
2092      we use the fact that latency is non-negative:
2093       SCHED_TIME (e->dest) + (e->distance * ii) >=
2094       SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2095       last_cycle_in_window
2096      and check only if
2097       SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
2098   for (e = u_node->out; e != 0; e = e->next_out)
2099     if (TEST_BIT (sched_nodes, e->dest->cuid)
2100 	&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2101              last_cycle_in_window))
2102       {
2103 	if (dump_file)
2104 	  fprintf (dump_file, "%d ", e->dest->cuid);
2105 
2106 	SET_BIT (must_follow, e->dest->cuid);
2107       }
2108 
2109   if (dump_file)
2110     fprintf (dump_file, "\n");
2111 }
2112 
2113 /* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
2114    parameters to decide if that's possible:
2115    PS - The partial schedule.
2116    U - The serial number of U_NODE.
2117    NUM_SPLITS - The number of row splits made so far.
2118    MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2119    the first row of the scheduling window)
2120    MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2121    last row of the scheduling window)  */
2122 
2123 static bool
2124 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2125 			      int u, int cycle, sbitmap sched_nodes,
2126 			      int *num_splits, sbitmap must_precede,
2127 			      sbitmap must_follow)
2128 {
2129   ps_insn_ptr psi;
2130   bool success = 0;
2131 
2132   verify_partial_schedule (ps, sched_nodes);
2133   psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2134   if (psi)
2135     {
2136       SCHED_TIME (u) = cycle;
2137       SET_BIT (sched_nodes, u);
2138       success = 1;
2139       *num_splits = 0;
2140       if (dump_file)
2141 	fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2142 
2143     }
2144 
2145   return success;
2146 }
2147 
2148 /* This function implements the scheduling algorithm for SMS according to the
2149    above algorithm.  */
2150 static partial_schedule_ptr
2151 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2152 {
2153   int ii = mii;
2154   int i, c, success, num_splits = 0;
2155   int flush_and_start_over = true;
2156   int num_nodes = g->num_nodes;
2157   int start, end, step; /* Place together into one struct?  */
2158   sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2159   sbitmap must_precede = sbitmap_alloc (num_nodes);
2160   sbitmap must_follow = sbitmap_alloc (num_nodes);
2161   sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2162 
2163   partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2164 
2165   sbitmap_ones (tobe_scheduled);
2166   sbitmap_zero (sched_nodes);
2167 
2168   while (flush_and_start_over && (ii < maxii))
2169     {
2170 
2171       if (dump_file)
2172 	fprintf (dump_file, "Starting with ii=%d\n", ii);
2173       flush_and_start_over = false;
2174       sbitmap_zero (sched_nodes);
2175 
2176       for (i = 0; i < num_nodes; i++)
2177 	{
2178 	  int u = nodes_order[i];
2179   	  ddg_node_ptr u_node = &ps->g->nodes[u];
2180 	  rtx insn = u_node->insn;
2181 
2182 	  if (!NONDEBUG_INSN_P (insn))
2183 	    {
2184 	      RESET_BIT (tobe_scheduled, u);
2185 	      continue;
2186 	    }
2187 
2188 	  if (TEST_BIT (sched_nodes, u))
2189 	    continue;
2190 
2191 	  /* Try to get non-empty scheduling window.  */
2192 	 success = 0;
2193          if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2194                                 &step, &end) == 0)
2195             {
2196               if (dump_file)
2197                 fprintf (dump_file, "\nTrying to schedule node %d "
2198 			 "INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
2199                         (g->nodes[u].insn)), start, end, step);
2200 
2201               gcc_assert ((step > 0 && start < end)
2202                           || (step < 0 && start > end));
2203 
2204               calculate_must_precede_follow (u_node, start, end, step, ii,
2205                                              sched_nodes, must_precede,
2206                                              must_follow);
2207 
2208               for (c = start; c != end; c += step)
2209                 {
2210 		  sbitmap tmp_precede, tmp_follow;
2211 
2212                   set_must_precede_follow (&tmp_follow, must_follow,
2213 		                           &tmp_precede, must_precede,
2214                                            c, start, end, step);
2215                   success =
2216                     try_scheduling_node_in_cycle (ps, u, c,
2217                                                   sched_nodes,
2218                                                   &num_splits, tmp_precede,
2219                                                   tmp_follow);
2220                   if (success)
2221                     break;
2222                 }
2223 
2224               verify_partial_schedule (ps, sched_nodes);
2225             }
2226             if (!success)
2227             {
2228               int split_row;
2229 
2230               if (ii++ == maxii)
2231                 break;
2232 
2233               if (num_splits >= MAX_SPLIT_NUM)
2234                 {
2235                   num_splits = 0;
2236                   flush_and_start_over = true;
2237                   verify_partial_schedule (ps, sched_nodes);
2238                   reset_partial_schedule (ps, ii);
2239                   verify_partial_schedule (ps, sched_nodes);
2240                   break;
2241                 }
2242 
2243               num_splits++;
2244               /* The scheduling window is exclusive of 'end'
2245                  whereas compute_split_window() expects an inclusive,
2246                  ordered range.  */
2247               if (step == 1)
2248                 split_row = compute_split_row (sched_nodes, start, end - 1,
2249                                                ps->ii, u_node);
2250               else
2251                 split_row = compute_split_row (sched_nodes, end + 1, start,
2252                                                ps->ii, u_node);
2253 
2254               ps_insert_empty_row (ps, split_row, sched_nodes);
2255               i--;              /* Go back and retry node i.  */
2256 
2257               if (dump_file)
2258                 fprintf (dump_file, "num_splits=%d\n", num_splits);
2259             }
2260 
2261           /* ??? If (success), check register pressure estimates.  */
2262         }                       /* Continue with next node.  */
2263     }                           /* While flush_and_start_over.  */
2264   if (ii >= maxii)
2265     {
2266       free_partial_schedule (ps);
2267       ps = NULL;
2268     }
2269   else
2270     gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
2271 
2272   sbitmap_free (sched_nodes);
2273   sbitmap_free (must_precede);
2274   sbitmap_free (must_follow);
2275   sbitmap_free (tobe_scheduled);
2276 
2277   return ps;
2278 }
2279 
2280 /* This function inserts a new empty row into PS at the position
2281    according to SPLITROW, keeping all already scheduled instructions
2282    intact and updating their SCHED_TIME and cycle accordingly.  */
2283 static void
2284 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2285 		     sbitmap sched_nodes)
2286 {
2287   ps_insn_ptr crr_insn;
2288   ps_insn_ptr *rows_new;
2289   int ii = ps->ii;
2290   int new_ii = ii + 1;
2291   int row;
2292   int *rows_length_new;
2293 
2294   verify_partial_schedule (ps, sched_nodes);
2295 
2296   /* We normalize sched_time and rotate ps to have only non-negative sched
2297      times, for simplicity of updating cycles after inserting new row.  */
2298   split_row -= ps->min_cycle;
2299   split_row = SMODULO (split_row, ii);
2300   if (dump_file)
2301     fprintf (dump_file, "split_row=%d\n", split_row);
2302 
2303   reset_sched_times (ps, PS_MIN_CYCLE (ps));
2304   rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2305 
2306   rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2307   rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2308   for (row = 0; row < split_row; row++)
2309     {
2310       rows_new[row] = ps->rows[row];
2311       rows_length_new[row] = ps->rows_length[row];
2312       ps->rows[row] = NULL;
2313       for (crr_insn = rows_new[row];
2314 	   crr_insn; crr_insn = crr_insn->next_in_row)
2315 	{
2316 	  int u = crr_insn->id;
2317 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2318 
2319 	  SCHED_TIME (u) = new_time;
2320 	  crr_insn->cycle = new_time;
2321 	  SCHED_ROW (u) = new_time % new_ii;
2322 	  SCHED_STAGE (u) = new_time / new_ii;
2323 	}
2324 
2325     }
2326 
2327   rows_new[split_row] = NULL;
2328 
2329   for (row = split_row; row < ii; row++)
2330     {
2331       rows_new[row + 1] = ps->rows[row];
2332       rows_length_new[row + 1] = ps->rows_length[row];
2333       ps->rows[row] = NULL;
2334       for (crr_insn = rows_new[row + 1];
2335 	   crr_insn; crr_insn = crr_insn->next_in_row)
2336 	{
2337 	  int u = crr_insn->id;
2338 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2339 
2340 	  SCHED_TIME (u) = new_time;
2341 	  crr_insn->cycle = new_time;
2342 	  SCHED_ROW (u) = new_time % new_ii;
2343 	  SCHED_STAGE (u) = new_time / new_ii;
2344 	}
2345     }
2346 
2347   /* Updating ps.  */
2348   ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2349     + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2350   ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2351     + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2352   free (ps->rows);
2353   ps->rows = rows_new;
2354   free (ps->rows_length);
2355   ps->rows_length = rows_length_new;
2356   ps->ii = new_ii;
2357   gcc_assert (ps->min_cycle >= 0);
2358 
2359   verify_partial_schedule (ps, sched_nodes);
2360 
2361   if (dump_file)
2362     fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2363 	     ps->max_cycle);
2364 }
2365 
2366 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2367    UP which are the boundaries of it's scheduling window; compute using
2368    SCHED_NODES and II a row in the partial schedule that can be split
2369    which will separate a critical predecessor from a critical successor
2370    thereby expanding the window, and return it.  */
2371 static int
2372 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2373 		   ddg_node_ptr u_node)
2374 {
2375   ddg_edge_ptr e;
2376   int lower = INT_MIN, upper = INT_MAX;
2377   int crit_pred = -1;
2378   int crit_succ = -1;
2379   int crit_cycle;
2380 
2381   for (e = u_node->in; e != 0; e = e->next_in)
2382     {
2383       int v = e->src->cuid;
2384 
2385       if (TEST_BIT (sched_nodes, v)
2386 	  && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2387 	if (SCHED_TIME (v) > lower)
2388 	  {
2389 	    crit_pred = v;
2390 	    lower = SCHED_TIME (v);
2391 	  }
2392     }
2393 
2394   if (crit_pred >= 0)
2395     {
2396       crit_cycle = SCHED_TIME (crit_pred) + 1;
2397       return SMODULO (crit_cycle, ii);
2398     }
2399 
2400   for (e = u_node->out; e != 0; e = e->next_out)
2401     {
2402       int v = e->dest->cuid;
2403 
2404       if (TEST_BIT (sched_nodes, v)
2405 	  && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2406 	if (SCHED_TIME (v) < upper)
2407 	  {
2408 	    crit_succ = v;
2409 	    upper = SCHED_TIME (v);
2410 	  }
2411     }
2412 
2413   if (crit_succ >= 0)
2414     {
2415       crit_cycle = SCHED_TIME (crit_succ);
2416       return SMODULO (crit_cycle, ii);
2417     }
2418 
2419   if (dump_file)
2420     fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2421 
2422   return SMODULO ((low + up + 1) / 2, ii);
2423 }
2424 
2425 static void
2426 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2427 {
2428   int row;
2429   ps_insn_ptr crr_insn;
2430 
2431   for (row = 0; row < ps->ii; row++)
2432     {
2433       int length = 0;
2434 
2435       for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2436 	{
2437 	  int u = crr_insn->id;
2438 
2439 	  length++;
2440 	  gcc_assert (TEST_BIT (sched_nodes, u));
2441 	  /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2442 	     popcount (sched_nodes) == number of insns in ps.  */
2443 	  gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2444 	  gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2445 	}
2446 
2447       gcc_assert (ps->rows_length[row] == length);
2448     }
2449 }
2450 
2451 
2452 /* This page implements the algorithm for ordering the nodes of a DDG
2453    for modulo scheduling, activated through the
2454    "int sms_order_nodes (ddg_ptr, int mii, int * result)" API.  */
2455 
2456 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2457 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2458 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2459 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2460 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2461 #define DEPTH(x) (ASAP ((x)))
2462 
2463 typedef struct node_order_params * nopa;
2464 
2465 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2466 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2467 static nopa  calculate_order_params (ddg_ptr, int, int *);
2468 static int find_max_asap (ddg_ptr, sbitmap);
2469 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2470 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2471 
2472 enum sms_direction {BOTTOMUP, TOPDOWN};
2473 
2474 struct node_order_params
2475 {
2476   int asap;
2477   int alap;
2478   int height;
2479 };
2480 
2481 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1.  */
2482 static void
2483 check_nodes_order (int *node_order, int num_nodes)
2484 {
2485   int i;
2486   sbitmap tmp = sbitmap_alloc (num_nodes);
2487 
2488   sbitmap_zero (tmp);
2489 
2490   if (dump_file)
2491     fprintf (dump_file, "SMS final nodes order: \n");
2492 
2493   for (i = 0; i < num_nodes; i++)
2494     {
2495       int u = node_order[i];
2496 
2497       if (dump_file)
2498         fprintf (dump_file, "%d ", u);
2499       gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
2500 
2501       SET_BIT (tmp, u);
2502     }
2503 
2504   if (dump_file)
2505     fprintf (dump_file, "\n");
2506 
2507   sbitmap_free (tmp);
2508 }
2509 
2510 /* Order the nodes of G for scheduling and pass the result in
2511    NODE_ORDER.  Also set aux.count of each node to ASAP.
2512    Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
2513 static int
2514 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2515 {
2516   int i;
2517   int rec_mii = 0;
2518   ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2519 
2520   nopa nops = calculate_order_params (g, mii, pmax_asap);
2521 
2522   if (dump_file)
2523     print_sccs (dump_file, sccs, g);
2524 
2525   order_nodes_of_sccs (sccs, node_order);
2526 
2527   if (sccs->num_sccs > 0)
2528     /* First SCC has the largest recurrence_length.  */
2529     rec_mii = sccs->sccs[0]->recurrence_length;
2530 
2531   /* Save ASAP before destroying node_order_params.  */
2532   for (i = 0; i < g->num_nodes; i++)
2533     {
2534       ddg_node_ptr v = &g->nodes[i];
2535       v->aux.count = ASAP (v);
2536     }
2537 
2538   free (nops);
2539   free_ddg_all_sccs (sccs);
2540   check_nodes_order (node_order, g->num_nodes);
2541 
2542   return rec_mii;
2543 }
2544 
2545 static void
2546 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2547 {
2548   int i, pos = 0;
2549   ddg_ptr g = all_sccs->ddg;
2550   int num_nodes = g->num_nodes;
2551   sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2552   sbitmap on_path = sbitmap_alloc (num_nodes);
2553   sbitmap tmp = sbitmap_alloc (num_nodes);
2554   sbitmap ones = sbitmap_alloc (num_nodes);
2555 
2556   sbitmap_zero (prev_sccs);
2557   sbitmap_ones (ones);
2558 
2559   /* Perform the node ordering starting from the SCC with the highest recMII.
2560      For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
2561   for (i = 0; i < all_sccs->num_sccs; i++)
2562     {
2563       ddg_scc_ptr scc = all_sccs->sccs[i];
2564 
2565       /* Add nodes on paths from previous SCCs to the current SCC.  */
2566       find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2567       sbitmap_a_or_b (tmp, scc->nodes, on_path);
2568 
2569       /* Add nodes on paths from the current SCC to previous SCCs.  */
2570       find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2571       sbitmap_a_or_b (tmp, tmp, on_path);
2572 
2573       /* Remove nodes of previous SCCs from current extended SCC.  */
2574       sbitmap_difference (tmp, tmp, prev_sccs);
2575 
2576       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2577       /* Above call to order_nodes_in_scc updated prev_sccs |= tmp.  */
2578     }
2579 
2580   /* Handle the remaining nodes that do not belong to any scc.  Each call
2581      to order_nodes_in_scc handles a single connected component.  */
2582   while (pos < g->num_nodes)
2583     {
2584       sbitmap_difference (tmp, ones, prev_sccs);
2585       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2586     }
2587   sbitmap_free (prev_sccs);
2588   sbitmap_free (on_path);
2589   sbitmap_free (tmp);
2590   sbitmap_free (ones);
2591 }
2592 
2593 /* MII is needed if we consider backarcs (that do not close recursive cycles).  */
2594 static struct node_order_params *
2595 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2596 {
2597   int u;
2598   int max_asap;
2599   int num_nodes = g->num_nodes;
2600   ddg_edge_ptr e;
2601   /* Allocate a place to hold ordering params for each node in the DDG.  */
2602   nopa node_order_params_arr;
2603 
2604   /* Initialize of ASAP/ALAP/HEIGHT to zero.  */
2605   node_order_params_arr = (nopa) xcalloc (num_nodes,
2606 					  sizeof (struct node_order_params));
2607 
2608   /* Set the aux pointer of each node to point to its order_params structure.  */
2609   for (u = 0; u < num_nodes; u++)
2610     g->nodes[u].aux.info = &node_order_params_arr[u];
2611 
2612   /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2613      calculate ASAP, ALAP, mobility, distance, and height for each node
2614      in the dependence (direct acyclic) graph.  */
2615 
2616   /* We assume that the nodes in the array are in topological order.  */
2617 
2618   max_asap = 0;
2619   for (u = 0; u < num_nodes; u++)
2620     {
2621       ddg_node_ptr u_node = &g->nodes[u];
2622 
2623       ASAP (u_node) = 0;
2624       for (e = u_node->in; e; e = e->next_in)
2625 	if (e->distance == 0)
2626 	  ASAP (u_node) = MAX (ASAP (u_node),
2627 			       ASAP (e->src) + e->latency);
2628       max_asap = MAX (max_asap, ASAP (u_node));
2629     }
2630 
2631   for (u = num_nodes - 1; u > -1; u--)
2632     {
2633       ddg_node_ptr u_node = &g->nodes[u];
2634 
2635       ALAP (u_node) = max_asap;
2636       HEIGHT (u_node) = 0;
2637       for (e = u_node->out; e; e = e->next_out)
2638 	if (e->distance == 0)
2639 	  {
2640 	    ALAP (u_node) = MIN (ALAP (u_node),
2641 				 ALAP (e->dest) - e->latency);
2642 	    HEIGHT (u_node) = MAX (HEIGHT (u_node),
2643 				   HEIGHT (e->dest) + e->latency);
2644 	  }
2645     }
2646   if (dump_file)
2647   {
2648     fprintf (dump_file, "\nOrder params\n");
2649     for (u = 0; u < num_nodes; u++)
2650       {
2651         ddg_node_ptr u_node = &g->nodes[u];
2652 
2653         fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2654                  ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2655       }
2656   }
2657 
2658   *pmax_asap = max_asap;
2659   return node_order_params_arr;
2660 }
2661 
2662 static int
2663 find_max_asap (ddg_ptr g, sbitmap nodes)
2664 {
2665   unsigned int u = 0;
2666   int max_asap = -1;
2667   int result = -1;
2668   sbitmap_iterator sbi;
2669 
2670   EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2671     {
2672       ddg_node_ptr u_node = &g->nodes[u];
2673 
2674       if (max_asap < ASAP (u_node))
2675 	{
2676 	  max_asap = ASAP (u_node);
2677 	  result = u;
2678 	}
2679     }
2680   return result;
2681 }
2682 
2683 static int
2684 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2685 {
2686   unsigned int u = 0;
2687   int max_hv = -1;
2688   int min_mob = INT_MAX;
2689   int result = -1;
2690   sbitmap_iterator sbi;
2691 
2692   EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2693     {
2694       ddg_node_ptr u_node = &g->nodes[u];
2695 
2696       if (max_hv < HEIGHT (u_node))
2697 	{
2698 	  max_hv = HEIGHT (u_node);
2699 	  min_mob = MOB (u_node);
2700 	  result = u;
2701 	}
2702       else if ((max_hv == HEIGHT (u_node))
2703 	       && (min_mob > MOB (u_node)))
2704 	{
2705 	  min_mob = MOB (u_node);
2706 	  result = u;
2707 	}
2708     }
2709   return result;
2710 }
2711 
2712 static int
2713 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2714 {
2715   unsigned int u = 0;
2716   int max_dv = -1;
2717   int min_mob = INT_MAX;
2718   int result = -1;
2719   sbitmap_iterator sbi;
2720 
2721   EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2722     {
2723       ddg_node_ptr u_node = &g->nodes[u];
2724 
2725       if (max_dv < DEPTH (u_node))
2726 	{
2727 	  max_dv = DEPTH (u_node);
2728 	  min_mob = MOB (u_node);
2729 	  result = u;
2730 	}
2731       else if ((max_dv == DEPTH (u_node))
2732 	       && (min_mob > MOB (u_node)))
2733 	{
2734 	  min_mob = MOB (u_node);
2735 	  result = u;
2736 	}
2737     }
2738   return result;
2739 }
2740 
2741 /* Places the nodes of SCC into the NODE_ORDER array starting
2742    at position POS, according to the SMS ordering algorithm.
2743    NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2744    the NODE_ORDER array, starting from position zero.  */
2745 static int
2746 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2747 		    int * node_order, int pos)
2748 {
2749   enum sms_direction dir;
2750   int num_nodes = g->num_nodes;
2751   sbitmap workset = sbitmap_alloc (num_nodes);
2752   sbitmap tmp = sbitmap_alloc (num_nodes);
2753   sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2754   sbitmap predecessors = sbitmap_alloc (num_nodes);
2755   sbitmap successors = sbitmap_alloc (num_nodes);
2756 
2757   sbitmap_zero (predecessors);
2758   find_predecessors (predecessors, g, nodes_ordered);
2759 
2760   sbitmap_zero (successors);
2761   find_successors (successors, g, nodes_ordered);
2762 
2763   sbitmap_zero (tmp);
2764   if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
2765     {
2766       sbitmap_copy (workset, tmp);
2767       dir = BOTTOMUP;
2768     }
2769   else if (sbitmap_a_and_b_cg (tmp, successors, scc))
2770     {
2771       sbitmap_copy (workset, tmp);
2772       dir = TOPDOWN;
2773     }
2774   else
2775     {
2776       int u;
2777 
2778       sbitmap_zero (workset);
2779       if ((u = find_max_asap (g, scc)) >= 0)
2780 	SET_BIT (workset, u);
2781       dir = BOTTOMUP;
2782     }
2783 
2784   sbitmap_zero (zero_bitmap);
2785   while (!sbitmap_equal (workset, zero_bitmap))
2786     {
2787       int v;
2788       ddg_node_ptr v_node;
2789       sbitmap v_node_preds;
2790       sbitmap v_node_succs;
2791 
2792       if (dir == TOPDOWN)
2793 	{
2794 	  while (!sbitmap_equal (workset, zero_bitmap))
2795 	    {
2796 	      v = find_max_hv_min_mob (g, workset);
2797 	      v_node = &g->nodes[v];
2798 	      node_order[pos++] = v;
2799 	      v_node_succs = NODE_SUCCESSORS (v_node);
2800 	      sbitmap_a_and_b (tmp, v_node_succs, scc);
2801 
2802 	      /* Don't consider the already ordered successors again.  */
2803 	      sbitmap_difference (tmp, tmp, nodes_ordered);
2804 	      sbitmap_a_or_b (workset, workset, tmp);
2805 	      RESET_BIT (workset, v);
2806 	      SET_BIT (nodes_ordered, v);
2807 	    }
2808 	  dir = BOTTOMUP;
2809 	  sbitmap_zero (predecessors);
2810 	  find_predecessors (predecessors, g, nodes_ordered);
2811 	  sbitmap_a_and_b (workset, predecessors, scc);
2812 	}
2813       else
2814 	{
2815 	  while (!sbitmap_equal (workset, zero_bitmap))
2816 	    {
2817 	      v = find_max_dv_min_mob (g, workset);
2818 	      v_node = &g->nodes[v];
2819 	      node_order[pos++] = v;
2820 	      v_node_preds = NODE_PREDECESSORS (v_node);
2821 	      sbitmap_a_and_b (tmp, v_node_preds, scc);
2822 
2823 	      /* Don't consider the already ordered predecessors again.  */
2824 	      sbitmap_difference (tmp, tmp, nodes_ordered);
2825 	      sbitmap_a_or_b (workset, workset, tmp);
2826 	      RESET_BIT (workset, v);
2827 	      SET_BIT (nodes_ordered, v);
2828 	    }
2829 	  dir = TOPDOWN;
2830 	  sbitmap_zero (successors);
2831 	  find_successors (successors, g, nodes_ordered);
2832 	  sbitmap_a_and_b (workset, successors, scc);
2833 	}
2834     }
2835   sbitmap_free (tmp);
2836   sbitmap_free (workset);
2837   sbitmap_free (zero_bitmap);
2838   sbitmap_free (predecessors);
2839   sbitmap_free (successors);
2840   return pos;
2841 }
2842 
2843 
2844 /* This page contains functions for manipulating partial-schedules during
2845    modulo scheduling.  */
2846 
2847 /* Create a partial schedule and allocate a memory to hold II rows.  */
2848 
2849 static partial_schedule_ptr
2850 create_partial_schedule (int ii, ddg_ptr g, int history)
2851 {
2852   partial_schedule_ptr ps = XNEW (struct partial_schedule);
2853   ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2854   ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2855   ps->reg_moves = NULL;
2856   ps->ii = ii;
2857   ps->history = history;
2858   ps->min_cycle = INT_MAX;
2859   ps->max_cycle = INT_MIN;
2860   ps->g = g;
2861 
2862   return ps;
2863 }
2864 
2865 /* Free the PS_INSNs in rows array of the given partial schedule.
2866    ??? Consider caching the PS_INSN's.  */
2867 static void
2868 free_ps_insns (partial_schedule_ptr ps)
2869 {
2870   int i;
2871 
2872   for (i = 0; i < ps->ii; i++)
2873     {
2874       while (ps->rows[i])
2875 	{
2876 	  ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2877 
2878 	  free (ps->rows[i]);
2879 	  ps->rows[i] = ps_insn;
2880 	}
2881       ps->rows[i] = NULL;
2882     }
2883 }
2884 
2885 /* Free all the memory allocated to the partial schedule.  */
2886 
2887 static void
2888 free_partial_schedule (partial_schedule_ptr ps)
2889 {
2890   ps_reg_move_info *move;
2891   unsigned int i;
2892 
2893   if (!ps)
2894     return;
2895 
2896   FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
2897     sbitmap_free (move->uses);
2898   VEC_free (ps_reg_move_info, heap, ps->reg_moves);
2899 
2900   free_ps_insns (ps);
2901   free (ps->rows);
2902   free (ps->rows_length);
2903   free (ps);
2904 }
2905 
2906 /* Clear the rows array with its PS_INSNs, and create a new one with
2907    NEW_II rows.  */
2908 
2909 static void
2910 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2911 {
2912   if (!ps)
2913     return;
2914   free_ps_insns (ps);
2915   if (new_ii == ps->ii)
2916     return;
2917   ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2918 						 * sizeof (ps_insn_ptr));
2919   memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2920   ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2921   memset (ps->rows_length, 0, new_ii * sizeof (int));
2922   ps->ii = new_ii;
2923   ps->min_cycle = INT_MAX;
2924   ps->max_cycle = INT_MIN;
2925 }
2926 
2927 /* Prints the partial schedule as an ii rows array, for each rows
2928    print the ids of the insns in it.  */
2929 void
2930 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2931 {
2932   int i;
2933 
2934   for (i = 0; i < ps->ii; i++)
2935     {
2936       ps_insn_ptr ps_i = ps->rows[i];
2937 
2938       fprintf (dump, "\n[ROW %d ]: ", i);
2939       while (ps_i)
2940 	{
2941 	  rtx insn = ps_rtl_insn (ps, ps_i->id);
2942 
2943 	  if (JUMP_P (insn))
2944 	    fprintf (dump, "%d (branch), ", INSN_UID (insn));
2945 	  else
2946 	    fprintf (dump, "%d, ", INSN_UID (insn));
2947 
2948 	  ps_i = ps_i->next_in_row;
2949 	}
2950     }
2951 }
2952 
2953 /* Creates an object of PS_INSN and initializes it to the given parameters.  */
2954 static ps_insn_ptr
2955 create_ps_insn (int id, int cycle)
2956 {
2957   ps_insn_ptr ps_i = XNEW (struct ps_insn);
2958 
2959   ps_i->id = id;
2960   ps_i->next_in_row = NULL;
2961   ps_i->prev_in_row = NULL;
2962   ps_i->cycle = cycle;
2963 
2964   return ps_i;
2965 }
2966 
2967 
2968 /* Removes the given PS_INSN from the partial schedule.  */
2969 static void
2970 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2971 {
2972   int row;
2973 
2974   gcc_assert (ps && ps_i);
2975 
2976   row = SMODULO (ps_i->cycle, ps->ii);
2977   if (! ps_i->prev_in_row)
2978     {
2979       gcc_assert (ps_i == ps->rows[row]);
2980       ps->rows[row] = ps_i->next_in_row;
2981       if (ps->rows[row])
2982 	ps->rows[row]->prev_in_row = NULL;
2983     }
2984   else
2985     {
2986       ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2987       if (ps_i->next_in_row)
2988 	ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2989     }
2990 
2991   ps->rows_length[row] -= 1;
2992   free (ps_i);
2993   return;
2994 }
2995 
2996 /* Unlike what literature describes for modulo scheduling (which focuses
2997    on VLIW machines) the order of the instructions inside a cycle is
2998    important.  Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2999    where the current instruction should go relative to the already
3000    scheduled instructions in the given cycle.  Go over these
3001    instructions and find the first possible column to put it in.  */
3002 static bool
3003 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3004 		     sbitmap must_precede, sbitmap must_follow)
3005 {
3006   ps_insn_ptr next_ps_i;
3007   ps_insn_ptr first_must_follow = NULL;
3008   ps_insn_ptr last_must_precede = NULL;
3009   ps_insn_ptr last_in_row = NULL;
3010   int row;
3011 
3012   if (! ps_i)
3013     return false;
3014 
3015   row = SMODULO (ps_i->cycle, ps->ii);
3016 
3017   /* Find the first must follow and the last must precede
3018      and insert the node immediately after the must precede
3019      but make sure that it there is no must follow after it.  */
3020   for (next_ps_i = ps->rows[row];
3021        next_ps_i;
3022        next_ps_i = next_ps_i->next_in_row)
3023     {
3024       if (must_follow
3025 	  && TEST_BIT (must_follow, next_ps_i->id)
3026 	  && ! first_must_follow)
3027         first_must_follow = next_ps_i;
3028       if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
3029         {
3030           /* If we have already met a node that must follow, then
3031 	     there is no possible column.  */
3032   	  if (first_must_follow)
3033             return false;
3034 	  else
3035             last_must_precede = next_ps_i;
3036         }
3037       /* The closing branch must be the last in the row.  */
3038       if (must_precede
3039 	  && TEST_BIT (must_precede, next_ps_i->id)
3040 	  && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3041 	return false;
3042 
3043        last_in_row = next_ps_i;
3044     }
3045 
3046   /* The closing branch is scheduled as well.  Make sure there is no
3047      dependent instruction after it as the branch should be the last
3048      instruction in the row.  */
3049   if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3050     {
3051       if (first_must_follow)
3052 	return false;
3053       if (last_in_row)
3054 	{
3055 	  /* Make the branch the last in the row.  New instructions
3056 	     will be inserted at the beginning of the row or after the
3057 	     last must_precede instruction thus the branch is guaranteed
3058 	     to remain the last instruction in the row.  */
3059 	  last_in_row->next_in_row = ps_i;
3060 	  ps_i->prev_in_row = last_in_row;
3061 	  ps_i->next_in_row = NULL;
3062 	}
3063       else
3064 	ps->rows[row] = ps_i;
3065       return true;
3066     }
3067 
3068   /* Now insert the node after INSERT_AFTER_PSI.  */
3069 
3070   if (! last_must_precede)
3071     {
3072       ps_i->next_in_row = ps->rows[row];
3073       ps_i->prev_in_row = NULL;
3074       if (ps_i->next_in_row)
3075     	ps_i->next_in_row->prev_in_row = ps_i;
3076       ps->rows[row] = ps_i;
3077     }
3078   else
3079     {
3080       ps_i->next_in_row = last_must_precede->next_in_row;
3081       last_must_precede->next_in_row = ps_i;
3082       ps_i->prev_in_row = last_must_precede;
3083       if (ps_i->next_in_row)
3084         ps_i->next_in_row->prev_in_row = ps_i;
3085     }
3086 
3087   return true;
3088 }
3089 
3090 /* Advances the PS_INSN one column in its current row; returns false
3091    in failure and true in success.  Bit N is set in MUST_FOLLOW if
3092    the node with cuid N must be come after the node pointed to by
3093    PS_I when scheduled in the same cycle.  */
3094 static int
3095 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3096 			sbitmap must_follow)
3097 {
3098   ps_insn_ptr prev, next;
3099   int row;
3100 
3101   if (!ps || !ps_i)
3102     return false;
3103 
3104   row = SMODULO (ps_i->cycle, ps->ii);
3105 
3106   if (! ps_i->next_in_row)
3107     return false;
3108 
3109   /* Check if next_in_row is dependent on ps_i, both having same sched
3110      times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
3111   if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
3112     return false;
3113 
3114   /* Advance PS_I over its next_in_row in the doubly linked list.  */
3115   prev = ps_i->prev_in_row;
3116   next = ps_i->next_in_row;
3117 
3118   if (ps_i == ps->rows[row])
3119     ps->rows[row] = next;
3120 
3121   ps_i->next_in_row = next->next_in_row;
3122 
3123   if (next->next_in_row)
3124     next->next_in_row->prev_in_row = ps_i;
3125 
3126   next->next_in_row = ps_i;
3127   ps_i->prev_in_row = next;
3128 
3129   next->prev_in_row = prev;
3130   if (prev)
3131     prev->next_in_row = next;
3132 
3133   return true;
3134 }
3135 
3136 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3137    Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
3138    set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3139    before/after (respectively) the node pointed to by PS_I when scheduled
3140    in the same cycle.  */
3141 static ps_insn_ptr
3142 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3143 		sbitmap must_precede, sbitmap must_follow)
3144 {
3145   ps_insn_ptr ps_i;
3146   int row = SMODULO (cycle, ps->ii);
3147 
3148   if (ps->rows_length[row] >= issue_rate)
3149     return NULL;
3150 
3151   ps_i = create_ps_insn (id, cycle);
3152 
3153   /* Finds and inserts PS_I according to MUST_FOLLOW and
3154      MUST_PRECEDE.  */
3155   if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3156     {
3157       free (ps_i);
3158       return NULL;
3159     }
3160 
3161   ps->rows_length[row] += 1;
3162   return ps_i;
3163 }
3164 
3165 /* Advance time one cycle.  Assumes DFA is being used.  */
3166 static void
3167 advance_one_cycle (void)
3168 {
3169   if (targetm.sched.dfa_pre_cycle_insn)
3170     state_transition (curr_state,
3171 		      targetm.sched.dfa_pre_cycle_insn ());
3172 
3173   state_transition (curr_state, NULL);
3174 
3175   if (targetm.sched.dfa_post_cycle_insn)
3176     state_transition (curr_state,
3177 		      targetm.sched.dfa_post_cycle_insn ());
3178 }
3179 
3180 
3181 
3182 /* Checks if PS has resource conflicts according to DFA, starting from
3183    FROM cycle to TO cycle; returns true if there are conflicts and false
3184    if there are no conflicts.  Assumes DFA is being used.  */
3185 static int
3186 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3187 {
3188   int cycle;
3189 
3190   state_reset (curr_state);
3191 
3192   for (cycle = from; cycle <= to; cycle++)
3193     {
3194       ps_insn_ptr crr_insn;
3195       /* Holds the remaining issue slots in the current row.  */
3196       int can_issue_more = issue_rate;
3197 
3198       /* Walk through the DFA for the current row.  */
3199       for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3200 	   crr_insn;
3201 	   crr_insn = crr_insn->next_in_row)
3202 	{
3203 	  rtx insn = ps_rtl_insn (ps, crr_insn->id);
3204 
3205 	  if (!NONDEBUG_INSN_P (insn))
3206 	    continue;
3207 
3208 	  /* Check if there is room for the current insn.  */
3209 	  if (!can_issue_more || state_dead_lock_p (curr_state))
3210 	    return true;
3211 
3212 	  /* Update the DFA state and return with failure if the DFA found
3213 	     resource conflicts.  */
3214 	  if (state_transition (curr_state, insn) >= 0)
3215 	    return true;
3216 
3217 	  if (targetm.sched.variable_issue)
3218 	    can_issue_more =
3219 	      targetm.sched.variable_issue (sched_dump, sched_verbose,
3220 					    insn, can_issue_more);
3221 	  /* A naked CLOBBER or USE generates no instruction, so don't
3222 	     let them consume issue slots.  */
3223 	  else if (GET_CODE (PATTERN (insn)) != USE
3224 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
3225 	    can_issue_more--;
3226 	}
3227 
3228       /* Advance the DFA to the next cycle.  */
3229       advance_one_cycle ();
3230     }
3231   return false;
3232 }
3233 
3234 /* Checks if the given node causes resource conflicts when added to PS at
3235    cycle C.  If not the node is added to PS and returned; otherwise zero
3236    is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3237    cuid N must be come before/after (respectively) the node pointed to by
3238    PS_I when scheduled in the same cycle.  */
3239 ps_insn_ptr
3240 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3241    			     int c, sbitmap must_precede,
3242 			     sbitmap must_follow)
3243 {
3244   int has_conflicts = 0;
3245   ps_insn_ptr ps_i;
3246 
3247   /* First add the node to the PS, if this succeeds check for
3248      conflicts, trying different issue slots in the same row.  */
3249   if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3250     return NULL; /* Failed to insert the node at the given cycle.  */
3251 
3252   has_conflicts = ps_has_conflicts (ps, c, c)
3253 		  || (ps->history > 0
3254 		      && ps_has_conflicts (ps,
3255 					   c - ps->history,
3256 					   c + ps->history));
3257 
3258   /* Try different issue slots to find one that the given node can be
3259      scheduled in without conflicts.  */
3260   while (has_conflicts)
3261     {
3262       if (! ps_insn_advance_column (ps, ps_i, must_follow))
3263 	break;
3264       has_conflicts = ps_has_conflicts (ps, c, c)
3265 		      || (ps->history > 0
3266 			  && ps_has_conflicts (ps,
3267 					       c - ps->history,
3268 					       c + ps->history));
3269     }
3270 
3271   if (has_conflicts)
3272     {
3273       remove_node_from_ps (ps, ps_i);
3274       return NULL;
3275     }
3276 
3277   ps->min_cycle = MIN (ps->min_cycle, c);
3278   ps->max_cycle = MAX (ps->max_cycle, c);
3279   return ps_i;
3280 }
3281 
3282 /* Calculate the stage count of the partial schedule PS.  The calculation
3283    takes into account the rotation amount passed in ROTATION_AMOUNT.  */
3284 int
3285 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3286 {
3287   int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3288   int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3289   int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3290 
3291   /* The calculation of stage count is done adding the number of stages
3292      before cycle zero and after cycle zero.  */
3293   stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3294 
3295   return stage_count;
3296 }
3297 
3298 /* Rotate the rows of PS such that insns scheduled at time
3299    START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
3300 void
3301 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3302 {
3303   int i, row, backward_rotates;
3304   int last_row = ps->ii - 1;
3305 
3306   if (start_cycle == 0)
3307     return;
3308 
3309   backward_rotates = SMODULO (start_cycle, ps->ii);
3310 
3311   /* Revisit later and optimize this into a single loop.  */
3312   for (i = 0; i < backward_rotates; i++)
3313     {
3314       ps_insn_ptr first_row = ps->rows[0];
3315       int first_row_length = ps->rows_length[0];
3316 
3317       for (row = 0; row < last_row; row++)
3318 	{
3319 	  ps->rows[row] = ps->rows[row + 1];
3320 	  ps->rows_length[row] = ps->rows_length[row + 1];
3321 	}
3322 
3323       ps->rows[last_row] = first_row;
3324       ps->rows_length[last_row] = first_row_length;
3325     }
3326 
3327   ps->max_cycle -= start_cycle;
3328   ps->min_cycle -= start_cycle;
3329 }
3330 
3331 #endif /* INSN_SCHEDULING */
3332 
3333 static bool
3334 gate_handle_sms (void)
3335 {
3336   return (optimize > 0 && flag_modulo_sched);
3337 }
3338 
3339 
3340 /* Run instruction scheduler.  */
3341 /* Perform SMS module scheduling.  */
3342 static unsigned int
3343 rest_of_handle_sms (void)
3344 {
3345 #ifdef INSN_SCHEDULING
3346   basic_block bb;
3347 
3348   /* Collect loop information to be used in SMS.  */
3349   cfg_layout_initialize (0);
3350   sms_schedule ();
3351 
3352   /* Update the life information, because we add pseudos.  */
3353   max_regno = max_reg_num ();
3354 
3355   /* Finalize layout changes.  */
3356   FOR_EACH_BB (bb)
3357     if (bb->next_bb != EXIT_BLOCK_PTR)
3358       bb->aux = bb->next_bb;
3359   free_dominance_info (CDI_DOMINATORS);
3360   cfg_layout_finalize ();
3361 #endif /* INSN_SCHEDULING */
3362   return 0;
3363 }
3364 
3365 struct rtl_opt_pass pass_sms =
3366 {
3367  {
3368   RTL_PASS,
3369   "sms",                                /* name */
3370   gate_handle_sms,                      /* gate */
3371   rest_of_handle_sms,                   /* execute */
3372   NULL,                                 /* sub */
3373   NULL,                                 /* next */
3374   0,                                    /* static_pass_number */
3375   TV_SMS,                               /* tv_id */
3376   0,                                    /* properties_required */
3377   0,                                    /* properties_provided */
3378   0,                                    /* properties_destroyed */
3379   0,                                    /* todo_flags_start */
3380   TODO_df_finish
3381     | TODO_verify_flow
3382     | TODO_verify_rtl_sharing
3383     | TODO_ggc_collect                  /* todo_flags_finish */
3384  }
3385 };
3386