xref: /dragonfly/contrib/gcc-4.7/gcc/rtlanal.c (revision 25a2db75)
1 /* Analyze RTL for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4    2011 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
41 
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49 
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51                                                    const_rtx, enum machine_mode,
52                                                    unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 					     const_rtx, enum machine_mode,
55                                              unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57                                                 enum machine_mode,
58                                                 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60                                           enum machine_mode, unsigned int);
61 
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63    -1 if a code has no such operand.  */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67    If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68    SIGN_EXTEND then while narrowing we also have to enforce the
69    representation and sign-extend the value to mode DESTINATION_REP.
70 
71    If the value is already sign-extended to DESTINATION_REP mode we
72    can just switch to DESTINATION mode on it.  For each pair of
73    integral modes SOURCE and DESTINATION, when truncating from SOURCE
74    to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75    contains the number of high-order bits in SOURCE that have to be
76    copies of the sign-bit so that we can do this mode-switch to
77    DESTINATION.  */
78 
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 
82 /* Return 1 if the value of X is unstable
83    (would be different at a different point in the program).
84    The frame pointer, arg pointer, etc. are considered stable
85    (within one function) and so is anything marked `unchanging'.  */
86 
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90   const RTX_CODE code = GET_CODE (x);
91   int i;
92   const char *fmt;
93 
94   switch (code)
95     {
96     case MEM:
97       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98 
99     case CONST:
100     case CONST_INT:
101     case CONST_DOUBLE:
102     case CONST_FIXED:
103     case CONST_VECTOR:
104     case SYMBOL_REF:
105     case LABEL_REF:
106       return 0;
107 
108     case REG:
109       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
110       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 	  /* The arg pointer varies if it is not a fixed register.  */
112 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 	return 0;
114       /* ??? When call-clobbered, the value is stable modulo the restore
115 	 that must happen after a call.  This currently screws up local-alloc
116 	 into believing that the restore is not needed.  */
117       if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 	return 0;
119       return 1;
120 
121     case ASM_OPERANDS:
122       if (MEM_VOLATILE_P (x))
123 	return 1;
124 
125       /* Fall through.  */
126 
127     default:
128       break;
129     }
130 
131   fmt = GET_RTX_FORMAT (code);
132   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133     if (fmt[i] == 'e')
134       {
135 	if (rtx_unstable_p (XEXP (x, i)))
136 	  return 1;
137       }
138     else if (fmt[i] == 'E')
139       {
140 	int j;
141 	for (j = 0; j < XVECLEN (x, i); j++)
142 	  if (rtx_unstable_p (XVECEXP (x, i, j)))
143 	    return 1;
144       }
145 
146   return 0;
147 }
148 
149 /* Return 1 if X has a value that can vary even between two
150    executions of the program.  0 means X can be compared reliably
151    against certain constants or near-constants.
152    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153    zero, we are slightly more conservative.
154    The frame pointer and the arg pointer are considered constant.  */
155 
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159   RTX_CODE code;
160   int i;
161   const char *fmt;
162 
163   if (!x)
164     return 0;
165 
166   code = GET_CODE (x);
167   switch (code)
168     {
169     case MEM:
170       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171 
172     case CONST:
173     case CONST_INT:
174     case CONST_DOUBLE:
175     case CONST_FIXED:
176     case CONST_VECTOR:
177     case SYMBOL_REF:
178     case LABEL_REF:
179       return 0;
180 
181     case REG:
182       /* Note that we have to test for the actual rtx used for the frame
183 	 and arg pointers and not just the register number in case we have
184 	 eliminated the frame and/or arg pointer and are using it
185 	 for pseudos.  */
186       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 	  /* The arg pointer varies if it is not a fixed register.  */
188 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 	return 0;
190       if (x == pic_offset_table_rtx
191 	  /* ??? When call-clobbered, the value is stable modulo the restore
192 	     that must happen after a call.  This currently screws up
193 	     local-alloc into believing that the restore is not needed, so we
194 	     must return 0 only if we are called from alias analysis.  */
195 	  && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 	return 0;
197       return 1;
198 
199     case LO_SUM:
200       /* The operand 0 of a LO_SUM is considered constant
201 	 (in fact it is related specifically to operand 1)
202 	 during alias analysis.  */
203       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 	     || rtx_varies_p (XEXP (x, 1), for_alias);
205 
206     case ASM_OPERANDS:
207       if (MEM_VOLATILE_P (x))
208 	return 1;
209 
210       /* Fall through.  */
211 
212     default:
213       break;
214     }
215 
216   fmt = GET_RTX_FORMAT (code);
217   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218     if (fmt[i] == 'e')
219       {
220 	if (rtx_varies_p (XEXP (x, i), for_alias))
221 	  return 1;
222       }
223     else if (fmt[i] == 'E')
224       {
225 	int j;
226 	for (j = 0; j < XVECLEN (x, i); j++)
227 	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 	    return 1;
229       }
230 
231   return 0;
232 }
233 
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235    MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236    whether nonzero is returned for unaligned memory accesses on strict
237    alignment machines.  */
238 
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 		       enum machine_mode mode, bool unaligned_mems)
242 {
243   enum rtx_code code = GET_CODE (x);
244 
245   if (STRICT_ALIGNMENT
246       && unaligned_mems
247       && GET_MODE_SIZE (mode) != 0)
248     {
249       HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251       /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 	     the real alignment of %sp.  However, when it does this, the
253 	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
254       if (SPARC_STACK_BOUNDARY_HACK
255 	  && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 	actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258 
259       if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 	return 1;
261     }
262 
263   switch (code)
264     {
265     case SYMBOL_REF:
266       if (SYMBOL_REF_WEAK (x))
267 	return 1;
268       if (!CONSTANT_POOL_ADDRESS_P (x))
269 	{
270 	  tree decl;
271 	  HOST_WIDE_INT decl_size;
272 
273 	  if (offset < 0)
274 	    return 1;
275 	  if (size == 0)
276 	    size = GET_MODE_SIZE (mode);
277 	  if (size == 0)
278 	    return offset != 0;
279 
280 	  /* If the size of the access or of the symbol is unknown,
281 	     assume the worst.  */
282 	  decl = SYMBOL_REF_DECL (x);
283 
284 	  /* Else check that the access is in bounds.  TODO: restructure
285 	     expr_size/tree_expr_size/int_expr_size and just use the latter.  */
286 	  if (!decl)
287 	    decl_size = -1;
288 	  else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 	    decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 			 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 			 : -1);
292 	  else if (TREE_CODE (decl) == STRING_CST)
293 	    decl_size = TREE_STRING_LENGTH (decl);
294 	  else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 	    decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 	  else
297 	    decl_size = -1;
298 
299 	  return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300         }
301 
302       return 0;
303 
304     case LABEL_REF:
305       return 0;
306 
307     case REG:
308       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
309       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 	  || x == stack_pointer_rtx
311 	  /* The arg pointer varies if it is not a fixed register.  */
312 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 	return 0;
314       /* All of the virtual frame registers are stack references.  */
315       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 	return 0;
318       return 1;
319 
320     case CONST:
321       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 				    mode, unaligned_mems);
323 
324     case PLUS:
325       /* An address is assumed not to trap if:
326          - it is the pic register plus a constant.  */
327       if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 	return 0;
329 
330       /* - or it is an address that can't trap plus a constant integer,
331 	   with the proper remainder modulo the mode size if we are
332 	   considering unaligned memory references.  */
333       if (CONST_INT_P (XEXP (x, 1))
334 	  && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 				     size, mode, unaligned_mems))
336 	return 0;
337 
338       return 1;
339 
340     case LO_SUM:
341     case PRE_MODIFY:
342       return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 				    mode, unaligned_mems);
344 
345     case PRE_DEC:
346     case PRE_INC:
347     case POST_DEC:
348     case POST_INC:
349     case POST_MODIFY:
350       return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 				    mode, unaligned_mems);
352 
353     default:
354       break;
355     }
356 
357   /* If it isn't one of the case above, it can cause a trap.  */
358   return 1;
359 }
360 
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
362 
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366   return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368 
369 /* Return true if X is an address that is known to not be zero.  */
370 
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374   const enum rtx_code code = GET_CODE (x);
375 
376   switch (code)
377     {
378     case SYMBOL_REF:
379       return !SYMBOL_REF_WEAK (x);
380 
381     case LABEL_REF:
382       return true;
383 
384     case REG:
385       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
386       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 	  || x == stack_pointer_rtx
388 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 	return true;
390       /* All of the virtual frame registers are stack references.  */
391       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 	return true;
394       return false;
395 
396     case CONST:
397       return nonzero_address_p (XEXP (x, 0));
398 
399     case PLUS:
400       if (CONST_INT_P (XEXP (x, 1)))
401         return nonzero_address_p (XEXP (x, 0));
402       /* Handle PIC references.  */
403       else if (XEXP (x, 0) == pic_offset_table_rtx
404 	       && CONSTANT_P (XEXP (x, 1)))
405 	return true;
406       return false;
407 
408     case PRE_MODIFY:
409       /* Similar to the above; allow positive offsets.  Further, since
410 	 auto-inc is only allowed in memories, the register must be a
411 	 pointer.  */
412       if (CONST_INT_P (XEXP (x, 1))
413 	  && INTVAL (XEXP (x, 1)) > 0)
414 	return true;
415       return nonzero_address_p (XEXP (x, 0));
416 
417     case PRE_INC:
418       /* Similarly.  Further, the offset is always positive.  */
419       return true;
420 
421     case PRE_DEC:
422     case POST_DEC:
423     case POST_INC:
424     case POST_MODIFY:
425       return nonzero_address_p (XEXP (x, 0));
426 
427     case LO_SUM:
428       return nonzero_address_p (XEXP (x, 1));
429 
430     default:
431       break;
432     }
433 
434   /* If it isn't one of the case above, might be zero.  */
435   return false;
436 }
437 
438 /* Return 1 if X refers to a memory location whose address
439    cannot be compared reliably with constant addresses,
440    or if X refers to a BLKmode memory object.
441    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442    zero, we are slightly more conservative.  */
443 
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447   enum rtx_code code;
448   int i;
449   const char *fmt;
450 
451   if (x == 0)
452     return 0;
453 
454   code = GET_CODE (x);
455   if (code == MEM)
456     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457 
458   fmt = GET_RTX_FORMAT (code);
459   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460     if (fmt[i] == 'e')
461       {
462 	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 	  return 1;
464       }
465     else if (fmt[i] == 'E')
466       {
467 	int j;
468 	for (j = 0; j < XVECLEN (x, i); j++)
469 	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 	    return 1;
471       }
472   return 0;
473 }
474 
475 /* Return the value of the integer term in X, if one is apparent;
476    otherwise return 0.
477    Only obvious integer terms are detected.
478    This is used in cse.c with the `related_value' field.  */
479 
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483   if (GET_CODE (x) == CONST)
484     x = XEXP (x, 0);
485 
486   if (GET_CODE (x) == MINUS
487       && CONST_INT_P (XEXP (x, 1)))
488     return - INTVAL (XEXP (x, 1));
489   if (GET_CODE (x) == PLUS
490       && CONST_INT_P (XEXP (x, 1)))
491     return INTVAL (XEXP (x, 1));
492   return 0;
493 }
494 
495 /* If X is a constant, return the value sans apparent integer term;
496    otherwise return 0.
497    Only obvious integer terms are detected.  */
498 
499 rtx
500 get_related_value (const_rtx x)
501 {
502   if (GET_CODE (x) != CONST)
503     return 0;
504   x = XEXP (x, 0);
505   if (GET_CODE (x) == PLUS
506       && CONST_INT_P (XEXP (x, 1)))
507     return XEXP (x, 0);
508   else if (GET_CODE (x) == MINUS
509 	   && CONST_INT_P (XEXP (x, 1)))
510     return XEXP (x, 0);
511   return 0;
512 }
513 
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515    to somewhere in the same object or object_block as SYMBOL.  */
516 
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520   tree decl;
521 
522   if (GET_CODE (symbol) != SYMBOL_REF)
523     return false;
524 
525   if (offset == 0)
526     return true;
527 
528   if (offset > 0)
529     {
530       if (CONSTANT_POOL_ADDRESS_P (symbol)
531 	  && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 	return true;
533 
534       decl = SYMBOL_REF_DECL (symbol);
535       if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 	return true;
537     }
538 
539   if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540       && SYMBOL_REF_BLOCK (symbol)
541       && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542       && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 	  < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544     return true;
545 
546   return false;
547 }
548 
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550    and *OFFSET_OUT respectively.  */
551 
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555   if (GET_CODE (x) == CONST)
556     {
557       x = XEXP (x, 0);
558       if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 	{
560 	  *base_out = XEXP (x, 0);
561 	  *offset_out = XEXP (x, 1);
562 	  return;
563 	}
564     }
565   *base_out = x;
566   *offset_out = const0_rtx;
567 }
568 
569 /* Return the number of places FIND appears within X.  If COUNT_DEST is
570    zero, we do not count occurrences inside the destination of a SET.  */
571 
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575   int i, j;
576   enum rtx_code code;
577   const char *format_ptr;
578   int count;
579 
580   if (x == find)
581     return 1;
582 
583   code = GET_CODE (x);
584 
585   switch (code)
586     {
587     case REG:
588     case CONST_INT:
589     case CONST_DOUBLE:
590     case CONST_FIXED:
591     case CONST_VECTOR:
592     case SYMBOL_REF:
593     case CODE_LABEL:
594     case PC:
595     case CC0:
596       return 0;
597 
598     case EXPR_LIST:
599       count = count_occurrences (XEXP (x, 0), find, count_dest);
600       if (XEXP (x, 1))
601 	count += count_occurrences (XEXP (x, 1), find, count_dest);
602       return count;
603 
604     case MEM:
605       if (MEM_P (find) && rtx_equal_p (x, find))
606 	return 1;
607       break;
608 
609     case SET:
610       if (SET_DEST (x) == find && ! count_dest)
611 	return count_occurrences (SET_SRC (x), find, count_dest);
612       break;
613 
614     default:
615       break;
616     }
617 
618   format_ptr = GET_RTX_FORMAT (code);
619   count = 0;
620 
621   for (i = 0; i < GET_RTX_LENGTH (code); i++)
622     {
623       switch (*format_ptr++)
624 	{
625 	case 'e':
626 	  count += count_occurrences (XEXP (x, i), find, count_dest);
627 	  break;
628 
629 	case 'E':
630 	  for (j = 0; j < XVECLEN (x, i); j++)
631 	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 	  break;
633 	}
634     }
635   return count;
636 }
637 
638 
639 /* Nonzero if register REG appears somewhere within IN.
640    Also works if REG is not a register; in this case it checks
641    for a subexpression of IN that is Lisp "equal" to REG.  */
642 
643 int
644 reg_mentioned_p (const_rtx reg, const_rtx in)
645 {
646   const char *fmt;
647   int i;
648   enum rtx_code code;
649 
650   if (in == 0)
651     return 0;
652 
653   if (reg == in)
654     return 1;
655 
656   if (GET_CODE (in) == LABEL_REF)
657     return reg == XEXP (in, 0);
658 
659   code = GET_CODE (in);
660 
661   switch (code)
662     {
663       /* Compare registers by number.  */
664     case REG:
665       return REG_P (reg) && REGNO (in) == REGNO (reg);
666 
667       /* These codes have no constituent expressions
668 	 and are unique.  */
669     case SCRATCH:
670     case CC0:
671     case PC:
672       return 0;
673 
674     case CONST_INT:
675     case CONST_VECTOR:
676     case CONST_DOUBLE:
677     case CONST_FIXED:
678       /* These are kept unique for a given value.  */
679       return 0;
680 
681     default:
682       break;
683     }
684 
685   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686     return 1;
687 
688   fmt = GET_RTX_FORMAT (code);
689 
690   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
691     {
692       if (fmt[i] == 'E')
693 	{
694 	  int j;
695 	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 	      return 1;
698 	}
699       else if (fmt[i] == 'e'
700 	       && reg_mentioned_p (reg, XEXP (in, i)))
701 	return 1;
702     }
703   return 0;
704 }
705 
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707    no CODE_LABEL insn.  */
708 
709 int
710 no_labels_between_p (const_rtx beg, const_rtx end)
711 {
712   rtx p;
713   if (beg == end)
714     return 0;
715   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716     if (LABEL_P (p))
717       return 0;
718   return 1;
719 }
720 
721 /* Nonzero if register REG is used in an insn between
722    FROM_INSN and TO_INSN (exclusive of those two).  */
723 
724 int
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
726 {
727   rtx insn;
728 
729   if (from_insn == to_insn)
730     return 0;
731 
732   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733     if (NONDEBUG_INSN_P (insn)
734 	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736       return 1;
737   return 0;
738 }
739 
740 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
741    is entirely replaced by a new value and the only use is as a SET_DEST,
742    we do not consider it a reference.  */
743 
744 int
745 reg_referenced_p (const_rtx x, const_rtx body)
746 {
747   int i;
748 
749   switch (GET_CODE (body))
750     {
751     case SET:
752       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 	return 1;
754 
755       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 	 of a REG that occupies all of the REG, the insn references X if
757 	 it is mentioned in the destination.  */
758       if (GET_CODE (SET_DEST (body)) != CC0
759 	  && GET_CODE (SET_DEST (body)) != PC
760 	  && !REG_P (SET_DEST (body))
761 	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 		&& REG_P (SUBREG_REG (SET_DEST (body)))
763 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 	return 1;
769       return 0;
770 
771     case ASM_OPERANDS:
772       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 	  return 1;
775       return 0;
776 
777     case CALL:
778     case USE:
779     case IF_THEN_ELSE:
780       return reg_overlap_mentioned_p (x, body);
781 
782     case TRAP_IF:
783       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
784 
785     case PREFETCH:
786       return reg_overlap_mentioned_p (x, XEXP (body, 0));
787 
788     case UNSPEC:
789     case UNSPEC_VOLATILE:
790       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 	  return 1;
793       return 0;
794 
795     case PARALLEL:
796       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 	  return 1;
799       return 0;
800 
801     case CLOBBER:
802       if (MEM_P (XEXP (body, 0)))
803 	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 	  return 1;
805       return 0;
806 
807     case COND_EXEC:
808       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 	return 1;
810       return reg_referenced_p (x, COND_EXEC_CODE (body));
811 
812     default:
813       return 0;
814     }
815 }
816 
817 /* Nonzero if register REG is set or clobbered in an insn between
818    FROM_INSN and TO_INSN (exclusive of those two).  */
819 
820 int
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
822 {
823   const_rtx insn;
824 
825   if (from_insn == to_insn)
826     return 0;
827 
828   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829     if (INSN_P (insn) && reg_set_p (reg, insn))
830       return 1;
831   return 0;
832 }
833 
834 /* Internals of reg_set_between_p.  */
835 int
836 reg_set_p (const_rtx reg, const_rtx insn)
837 {
838   /* We can be passed an insn or part of one.  If we are passed an insn,
839      check if a side-effect of the insn clobbers REG.  */
840   if (INSN_P (insn)
841       && (FIND_REG_INC_NOTE (insn, reg)
842 	  || (CALL_P (insn)
843 	      && ((REG_P (reg)
844 		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 		   && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 					       GET_MODE (reg), REGNO (reg)))
847 		  || MEM_P (reg)
848 		  || find_reg_fusage (insn, CLOBBER, reg)))))
849     return 1;
850 
851   return set_of (reg, insn) != NULL_RTX;
852 }
853 
854 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
855    only if none of them are modified between START and END.  Return 1 if
856    X contains a MEM; this routine does use memory aliasing.  */
857 
858 int
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
860 {
861   const enum rtx_code code = GET_CODE (x);
862   const char *fmt;
863   int i, j;
864   rtx insn;
865 
866   if (start == end)
867     return 0;
868 
869   switch (code)
870     {
871     case CONST_INT:
872     case CONST_DOUBLE:
873     case CONST_FIXED:
874     case CONST_VECTOR:
875     case CONST:
876     case SYMBOL_REF:
877     case LABEL_REF:
878       return 0;
879 
880     case PC:
881     case CC0:
882       return 1;
883 
884     case MEM:
885       if (modified_between_p (XEXP (x, 0), start, end))
886 	return 1;
887       if (MEM_READONLY_P (x))
888 	return 0;
889       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 	if (memory_modified_in_insn_p (x, insn))
891 	  return 1;
892       return 0;
893       break;
894 
895     case REG:
896       return reg_set_between_p (x, start, end);
897 
898     default:
899       break;
900     }
901 
902   fmt = GET_RTX_FORMAT (code);
903   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
904     {
905       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 	return 1;
907 
908       else if (fmt[i] == 'E')
909 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 	  if (modified_between_p (XVECEXP (x, i, j), start, end))
911 	    return 1;
912     }
913 
914   return 0;
915 }
916 
917 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
918    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
919    does use memory aliasing.  */
920 
921 int
922 modified_in_p (const_rtx x, const_rtx insn)
923 {
924   const enum rtx_code code = GET_CODE (x);
925   const char *fmt;
926   int i, j;
927 
928   switch (code)
929     {
930     case CONST_INT:
931     case CONST_DOUBLE:
932     case CONST_FIXED:
933     case CONST_VECTOR:
934     case CONST:
935     case SYMBOL_REF:
936     case LABEL_REF:
937       return 0;
938 
939     case PC:
940     case CC0:
941       return 1;
942 
943     case MEM:
944       if (modified_in_p (XEXP (x, 0), insn))
945 	return 1;
946       if (MEM_READONLY_P (x))
947 	return 0;
948       if (memory_modified_in_insn_p (x, insn))
949 	return 1;
950       return 0;
951       break;
952 
953     case REG:
954       return reg_set_p (x, insn);
955 
956     default:
957       break;
958     }
959 
960   fmt = GET_RTX_FORMAT (code);
961   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
962     {
963       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 	return 1;
965 
966       else if (fmt[i] == 'E')
967 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 	  if (modified_in_p (XVECEXP (x, i, j), insn))
969 	    return 1;
970     }
971 
972   return 0;
973 }
974 
975 /* Helper function for set_of.  */
976 struct set_of_data
977   {
978     const_rtx found;
979     const_rtx pat;
980   };
981 
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
984 {
985   struct set_of_data *const data = (struct set_of_data *) (data1);
986   if (rtx_equal_p (x, data->pat)
987       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988     data->found = pat;
989 }
990 
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992    (either directly or via STRICT_LOW_PART and similar modifiers).  */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
995 {
996   struct set_of_data data;
997   data.found = NULL_RTX;
998   data.pat = pat;
999   note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000   return data.found;
1001 }
1002 
1003 /* This function, called through note_stores, collects sets and
1004    clobbers of hard registers in a HARD_REG_SET, which is pointed to
1005    by DATA.  */
1006 void
1007 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1008 {
1009   HARD_REG_SET *pset = (HARD_REG_SET *)data;
1010   if (REG_P (x) && HARD_REGISTER_P (x))
1011     add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1012 }
1013 
1014 /* Examine INSN, and compute the set of hard registers written by it.
1015    Store it in *PSET.  Should only be called after reload.  */
1016 void
1017 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1018 {
1019   rtx link;
1020 
1021   CLEAR_HARD_REG_SET (*pset);
1022   note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1023   if (CALL_P (insn))
1024     IOR_HARD_REG_SET (*pset, call_used_reg_set);
1025   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1026     if (REG_NOTE_KIND (link) == REG_INC)
1027       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1028 }
1029 
1030 /* A for_each_rtx subroutine of record_hard_reg_uses.  */
1031 static int
1032 record_hard_reg_uses_1 (rtx *px, void *data)
1033 {
1034   rtx x = *px;
1035   HARD_REG_SET *pused = (HARD_REG_SET *)data;
1036 
1037   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1038     {
1039       int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1040       while (nregs-- > 0)
1041 	SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1042     }
1043   return 0;
1044 }
1045 
1046 /* Like record_hard_reg_sets, but called through note_uses.  */
1047 void
1048 record_hard_reg_uses (rtx *px, void *data)
1049 {
1050   for_each_rtx (px, record_hard_reg_uses_1, data);
1051 }
1052 
1053 /* Given an INSN, return a SET expression if this insn has only a single SET.
1054    It may also have CLOBBERs, USEs, or SET whose output
1055    will not be used, which we ignore.  */
1056 
1057 rtx
1058 single_set_2 (const_rtx insn, const_rtx pat)
1059 {
1060   rtx set = NULL;
1061   int set_verified = 1;
1062   int i;
1063 
1064   if (GET_CODE (pat) == PARALLEL)
1065     {
1066       for (i = 0; i < XVECLEN (pat, 0); i++)
1067 	{
1068 	  rtx sub = XVECEXP (pat, 0, i);
1069 	  switch (GET_CODE (sub))
1070 	    {
1071 	    case USE:
1072 	    case CLOBBER:
1073 	      break;
1074 
1075 	    case SET:
1076 	      /* We can consider insns having multiple sets, where all
1077 		 but one are dead as single set insns.  In common case
1078 		 only single set is present in the pattern so we want
1079 		 to avoid checking for REG_UNUSED notes unless necessary.
1080 
1081 		 When we reach set first time, we just expect this is
1082 		 the single set we are looking for and only when more
1083 		 sets are found in the insn, we check them.  */
1084 	      if (!set_verified)
1085 		{
1086 		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1087 		      && !side_effects_p (set))
1088 		    set = NULL;
1089 		  else
1090 		    set_verified = 1;
1091 		}
1092 	      if (!set)
1093 		set = sub, set_verified = 0;
1094 	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1095 		       || side_effects_p (sub))
1096 		return NULL_RTX;
1097 	      break;
1098 
1099 	    default:
1100 	      return NULL_RTX;
1101 	    }
1102 	}
1103     }
1104   return set;
1105 }
1106 
1107 /* Given an INSN, return nonzero if it has more than one SET, else return
1108    zero.  */
1109 
1110 int
1111 multiple_sets (const_rtx insn)
1112 {
1113   int found;
1114   int i;
1115 
1116   /* INSN must be an insn.  */
1117   if (! INSN_P (insn))
1118     return 0;
1119 
1120   /* Only a PARALLEL can have multiple SETs.  */
1121   if (GET_CODE (PATTERN (insn)) == PARALLEL)
1122     {
1123       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1124 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1125 	  {
1126 	    /* If we have already found a SET, then return now.  */
1127 	    if (found)
1128 	      return 1;
1129 	    else
1130 	      found = 1;
1131 	  }
1132     }
1133 
1134   /* Either zero or one SET.  */
1135   return 0;
1136 }
1137 
1138 /* Return nonzero if the destination of SET equals the source
1139    and there are no side effects.  */
1140 
1141 int
1142 set_noop_p (const_rtx set)
1143 {
1144   rtx src = SET_SRC (set);
1145   rtx dst = SET_DEST (set);
1146 
1147   if (dst == pc_rtx && src == pc_rtx)
1148     return 1;
1149 
1150   if (MEM_P (dst) && MEM_P (src))
1151     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1152 
1153   if (GET_CODE (dst) == ZERO_EXTRACT)
1154     return rtx_equal_p (XEXP (dst, 0), src)
1155 	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1156 	   && !side_effects_p (src);
1157 
1158   if (GET_CODE (dst) == STRICT_LOW_PART)
1159     dst = XEXP (dst, 0);
1160 
1161   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1162     {
1163       if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1164 	return 0;
1165       src = SUBREG_REG (src);
1166       dst = SUBREG_REG (dst);
1167     }
1168 
1169   return (REG_P (src) && REG_P (dst)
1170 	  && REGNO (src) == REGNO (dst));
1171 }
1172 
1173 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1174    value to itself.  */
1175 
1176 int
1177 noop_move_p (const_rtx insn)
1178 {
1179   rtx pat = PATTERN (insn);
1180 
1181   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1182     return 1;
1183 
1184   /* Insns carrying these notes are useful later on.  */
1185   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1186     return 0;
1187 
1188   if (GET_CODE (pat) == SET && set_noop_p (pat))
1189     return 1;
1190 
1191   if (GET_CODE (pat) == PARALLEL)
1192     {
1193       int i;
1194       /* If nothing but SETs of registers to themselves,
1195 	 this insn can also be deleted.  */
1196       for (i = 0; i < XVECLEN (pat, 0); i++)
1197 	{
1198 	  rtx tem = XVECEXP (pat, 0, i);
1199 
1200 	  if (GET_CODE (tem) == USE
1201 	      || GET_CODE (tem) == CLOBBER)
1202 	    continue;
1203 
1204 	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1205 	    return 0;
1206 	}
1207 
1208       return 1;
1209     }
1210   return 0;
1211 }
1212 
1213 
1214 /* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1215    is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1216    If the object was modified, if we hit a partial assignment to X, or hit a
1217    CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1218    point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1219    be the src.  */
1220 
1221 rtx
1222 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1223 {
1224   rtx p;
1225 
1226   for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1227        p = PREV_INSN (p))
1228     if (INSN_P (p))
1229       {
1230 	rtx set = single_set (p);
1231 	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1232 
1233 	if (set && rtx_equal_p (x, SET_DEST (set)))
1234 	  {
1235 	    rtx src = SET_SRC (set);
1236 
1237 	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1238 	      src = XEXP (note, 0);
1239 
1240 	    if ((valid_to == NULL_RTX
1241 		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1242 		/* Reject hard registers because we don't usually want
1243 		   to use them; we'd rather use a pseudo.  */
1244 		&& (! (REG_P (src)
1245 		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1246 	      {
1247 		*pinsn = p;
1248 		return src;
1249 	      }
1250 	  }
1251 
1252 	/* If set in non-simple way, we don't have a value.  */
1253 	if (reg_set_p (x, p))
1254 	  break;
1255       }
1256 
1257   return x;
1258 }
1259 
1260 /* Return nonzero if register in range [REGNO, ENDREGNO)
1261    appears either explicitly or implicitly in X
1262    other than being stored into.
1263 
1264    References contained within the substructure at LOC do not count.
1265    LOC may be zero, meaning don't ignore anything.  */
1266 
1267 int
1268 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1269 		   rtx *loc)
1270 {
1271   int i;
1272   unsigned int x_regno;
1273   RTX_CODE code;
1274   const char *fmt;
1275 
1276  repeat:
1277   /* The contents of a REG_NONNEG note is always zero, so we must come here
1278      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1279   if (x == 0)
1280     return 0;
1281 
1282   code = GET_CODE (x);
1283 
1284   switch (code)
1285     {
1286     case REG:
1287       x_regno = REGNO (x);
1288 
1289       /* If we modifying the stack, frame, or argument pointer, it will
1290 	 clobber a virtual register.  In fact, we could be more precise,
1291 	 but it isn't worth it.  */
1292       if ((x_regno == STACK_POINTER_REGNUM
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 	   || x_regno == ARG_POINTER_REGNUM
1295 #endif
1296 	   || x_regno == FRAME_POINTER_REGNUM)
1297 	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1298 	return 1;
1299 
1300       return endregno > x_regno && regno < END_REGNO (x);
1301 
1302     case SUBREG:
1303       /* If this is a SUBREG of a hard reg, we can see exactly which
1304 	 registers are being modified.  Otherwise, handle normally.  */
1305       if (REG_P (SUBREG_REG (x))
1306 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1307 	{
1308 	  unsigned int inner_regno = subreg_regno (x);
1309 	  unsigned int inner_endregno
1310 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1311 			     ? subreg_nregs (x) : 1);
1312 
1313 	  return endregno > inner_regno && regno < inner_endregno;
1314 	}
1315       break;
1316 
1317     case CLOBBER:
1318     case SET:
1319       if (&SET_DEST (x) != loc
1320 	  /* Note setting a SUBREG counts as referring to the REG it is in for
1321 	     a pseudo but not for hard registers since we can
1322 	     treat each word individually.  */
1323 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1324 	       && loc != &SUBREG_REG (SET_DEST (x))
1325 	       && REG_P (SUBREG_REG (SET_DEST (x)))
1326 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1327 	       && refers_to_regno_p (regno, endregno,
1328 				     SUBREG_REG (SET_DEST (x)), loc))
1329 	      || (!REG_P (SET_DEST (x))
1330 		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1331 	return 1;
1332 
1333       if (code == CLOBBER || loc == &SET_SRC (x))
1334 	return 0;
1335       x = SET_SRC (x);
1336       goto repeat;
1337 
1338     default:
1339       break;
1340     }
1341 
1342   /* X does not match, so try its subexpressions.  */
1343 
1344   fmt = GET_RTX_FORMAT (code);
1345   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346     {
1347       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1348 	{
1349 	  if (i == 0)
1350 	    {
1351 	      x = XEXP (x, 0);
1352 	      goto repeat;
1353 	    }
1354 	  else
1355 	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1356 	      return 1;
1357 	}
1358       else if (fmt[i] == 'E')
1359 	{
1360 	  int j;
1361 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1362 	    if (loc != &XVECEXP (x, i, j)
1363 		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1364 	      return 1;
1365 	}
1366     }
1367   return 0;
1368 }
1369 
1370 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1371    we check if any register number in X conflicts with the relevant register
1372    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1373    contains a MEM (we don't bother checking for memory addresses that can't
1374    conflict because we expect this to be a rare case.  */
1375 
1376 int
1377 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1378 {
1379   unsigned int regno, endregno;
1380 
1381   /* If either argument is a constant, then modifying X can not
1382      affect IN.  Here we look at IN, we can profitably combine
1383      CONSTANT_P (x) with the switch statement below.  */
1384   if (CONSTANT_P (in))
1385     return 0;
1386 
1387  recurse:
1388   switch (GET_CODE (x))
1389     {
1390     case STRICT_LOW_PART:
1391     case ZERO_EXTRACT:
1392     case SIGN_EXTRACT:
1393       /* Overly conservative.  */
1394       x = XEXP (x, 0);
1395       goto recurse;
1396 
1397     case SUBREG:
1398       regno = REGNO (SUBREG_REG (x));
1399       if (regno < FIRST_PSEUDO_REGISTER)
1400 	regno = subreg_regno (x);
1401       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1402 			  ? subreg_nregs (x) : 1);
1403       goto do_reg;
1404 
1405     case REG:
1406       regno = REGNO (x);
1407       endregno = END_REGNO (x);
1408     do_reg:
1409       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1410 
1411     case MEM:
1412       {
1413 	const char *fmt;
1414 	int i;
1415 
1416 	if (MEM_P (in))
1417 	  return 1;
1418 
1419 	fmt = GET_RTX_FORMAT (GET_CODE (in));
1420 	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1421 	  if (fmt[i] == 'e')
1422 	    {
1423 	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1424 		return 1;
1425 	    }
1426 	  else if (fmt[i] == 'E')
1427 	    {
1428 	      int j;
1429 	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1430 		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1431 		  return 1;
1432 	    }
1433 
1434 	return 0;
1435       }
1436 
1437     case SCRATCH:
1438     case PC:
1439     case CC0:
1440       return reg_mentioned_p (x, in);
1441 
1442     case PARALLEL:
1443       {
1444 	int i;
1445 
1446 	/* If any register in here refers to it we return true.  */
1447 	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1449 	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1450 	    return 1;
1451 	return 0;
1452       }
1453 
1454     default:
1455       gcc_assert (CONSTANT_P (x));
1456       return 0;
1457     }
1458 }
1459 
1460 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1461    (X would be the pattern of an insn).  DATA is an arbitrary pointer,
1462    ignored by note_stores, but passed to FUN.
1463 
1464    FUN receives three arguments:
1465    1. the REG, MEM, CC0 or PC being stored in or clobbered,
1466    2. the SET or CLOBBER rtx that does the store,
1467    3. the pointer DATA provided to note_stores.
1468 
1469   If the item being stored in or clobbered is a SUBREG of a hard register,
1470   the SUBREG will be passed.  */
1471 
1472 void
1473 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1474 {
1475   int i;
1476 
1477   if (GET_CODE (x) == COND_EXEC)
1478     x = COND_EXEC_CODE (x);
1479 
1480   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1481     {
1482       rtx dest = SET_DEST (x);
1483 
1484       while ((GET_CODE (dest) == SUBREG
1485 	      && (!REG_P (SUBREG_REG (dest))
1486 		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1487 	     || GET_CODE (dest) == ZERO_EXTRACT
1488 	     || GET_CODE (dest) == STRICT_LOW_PART)
1489 	dest = XEXP (dest, 0);
1490 
1491       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1492 	 each of whose first operand is a register.  */
1493       if (GET_CODE (dest) == PARALLEL)
1494 	{
1495 	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1496 	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1497 	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1498 	}
1499       else
1500 	(*fun) (dest, x, data);
1501     }
1502 
1503   else if (GET_CODE (x) == PARALLEL)
1504     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1505       note_stores (XVECEXP (x, 0, i), fun, data);
1506 }
1507 
1508 /* Like notes_stores, but call FUN for each expression that is being
1509    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1510    FUN for each expression, not any interior subexpressions.  FUN receives a
1511    pointer to the expression and the DATA passed to this function.
1512 
1513    Note that this is not quite the same test as that done in reg_referenced_p
1514    since that considers something as being referenced if it is being
1515    partially set, while we do not.  */
1516 
1517 void
1518 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1519 {
1520   rtx body = *pbody;
1521   int i;
1522 
1523   switch (GET_CODE (body))
1524     {
1525     case COND_EXEC:
1526       (*fun) (&COND_EXEC_TEST (body), data);
1527       note_uses (&COND_EXEC_CODE (body), fun, data);
1528       return;
1529 
1530     case PARALLEL:
1531       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1532 	note_uses (&XVECEXP (body, 0, i), fun, data);
1533       return;
1534 
1535     case SEQUENCE:
1536       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1537 	note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1538       return;
1539 
1540     case USE:
1541       (*fun) (&XEXP (body, 0), data);
1542       return;
1543 
1544     case ASM_OPERANDS:
1545       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1546 	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1547       return;
1548 
1549     case TRAP_IF:
1550       (*fun) (&TRAP_CONDITION (body), data);
1551       return;
1552 
1553     case PREFETCH:
1554       (*fun) (&XEXP (body, 0), data);
1555       return;
1556 
1557     case UNSPEC:
1558     case UNSPEC_VOLATILE:
1559       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1560 	(*fun) (&XVECEXP (body, 0, i), data);
1561       return;
1562 
1563     case CLOBBER:
1564       if (MEM_P (XEXP (body, 0)))
1565 	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1566       return;
1567 
1568     case SET:
1569       {
1570 	rtx dest = SET_DEST (body);
1571 
1572 	/* For sets we replace everything in source plus registers in memory
1573 	   expression in store and operands of a ZERO_EXTRACT.  */
1574 	(*fun) (&SET_SRC (body), data);
1575 
1576 	if (GET_CODE (dest) == ZERO_EXTRACT)
1577 	  {
1578 	    (*fun) (&XEXP (dest, 1), data);
1579 	    (*fun) (&XEXP (dest, 2), data);
1580 	  }
1581 
1582 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1583 	  dest = XEXP (dest, 0);
1584 
1585 	if (MEM_P (dest))
1586 	  (*fun) (&XEXP (dest, 0), data);
1587       }
1588       return;
1589 
1590     default:
1591       /* All the other possibilities never store.  */
1592       (*fun) (pbody, data);
1593       return;
1594     }
1595 }
1596 
1597 /* Return nonzero if X's old contents don't survive after INSN.
1598    This will be true if X is (cc0) or if X is a register and
1599    X dies in INSN or because INSN entirely sets X.
1600 
1601    "Entirely set" means set directly and not through a SUBREG, or
1602    ZERO_EXTRACT, so no trace of the old contents remains.
1603    Likewise, REG_INC does not count.
1604 
1605    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1606    but for this use that makes no difference, since regs don't overlap
1607    during their lifetimes.  Therefore, this function may be used
1608    at any time after deaths have been computed.
1609 
1610    If REG is a hard reg that occupies multiple machine registers, this
1611    function will only return 1 if each of those registers will be replaced
1612    by INSN.  */
1613 
1614 int
1615 dead_or_set_p (const_rtx insn, const_rtx x)
1616 {
1617   unsigned int regno, end_regno;
1618   unsigned int i;
1619 
1620   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1621   if (GET_CODE (x) == CC0)
1622     return 1;
1623 
1624   gcc_assert (REG_P (x));
1625 
1626   regno = REGNO (x);
1627   end_regno = END_REGNO (x);
1628   for (i = regno; i < end_regno; i++)
1629     if (! dead_or_set_regno_p (insn, i))
1630       return 0;
1631 
1632   return 1;
1633 }
1634 
1635 /* Return TRUE iff DEST is a register or subreg of a register and
1636    doesn't change the number of words of the inner register, and any
1637    part of the register is TEST_REGNO.  */
1638 
1639 static bool
1640 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1641 {
1642   unsigned int regno, endregno;
1643 
1644   if (GET_CODE (dest) == SUBREG
1645       && (((GET_MODE_SIZE (GET_MODE (dest))
1646 	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1647 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1648 	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1649     dest = SUBREG_REG (dest);
1650 
1651   if (!REG_P (dest))
1652     return false;
1653 
1654   regno = REGNO (dest);
1655   endregno = END_REGNO (dest);
1656   return (test_regno >= regno && test_regno < endregno);
1657 }
1658 
1659 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1660    any member matches the covers_regno_no_parallel_p criteria.  */
1661 
1662 static bool
1663 covers_regno_p (const_rtx dest, unsigned int test_regno)
1664 {
1665   if (GET_CODE (dest) == PARALLEL)
1666     {
1667       /* Some targets place small structures in registers for return
1668 	 values of functions, and those registers are wrapped in
1669 	 PARALLELs that we may see as the destination of a SET.  */
1670       int i;
1671 
1672       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1673 	{
1674 	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1675 	  if (inner != NULL_RTX
1676 	      && covers_regno_no_parallel_p (inner, test_regno))
1677 	    return true;
1678 	}
1679 
1680       return false;
1681     }
1682   else
1683     return covers_regno_no_parallel_p (dest, test_regno);
1684 }
1685 
1686 /* Utility function for dead_or_set_p to check an individual register. */
1687 
1688 int
1689 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1690 {
1691   const_rtx pattern;
1692 
1693   /* See if there is a death note for something that includes TEST_REGNO.  */
1694   if (find_regno_note (insn, REG_DEAD, test_regno))
1695     return 1;
1696 
1697   if (CALL_P (insn)
1698       && find_regno_fusage (insn, CLOBBER, test_regno))
1699     return 1;
1700 
1701   pattern = PATTERN (insn);
1702 
1703   if (GET_CODE (pattern) == COND_EXEC)
1704     pattern = COND_EXEC_CODE (pattern);
1705 
1706   if (GET_CODE (pattern) == SET)
1707     return covers_regno_p (SET_DEST (pattern), test_regno);
1708   else if (GET_CODE (pattern) == PARALLEL)
1709     {
1710       int i;
1711 
1712       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1713 	{
1714 	  rtx body = XVECEXP (pattern, 0, i);
1715 
1716 	  if (GET_CODE (body) == COND_EXEC)
1717 	    body = COND_EXEC_CODE (body);
1718 
1719 	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1720 	      && covers_regno_p (SET_DEST (body), test_regno))
1721 	    return 1;
1722 	}
1723     }
1724 
1725   return 0;
1726 }
1727 
1728 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1729    If DATUM is nonzero, look for one whose datum is DATUM.  */
1730 
1731 rtx
1732 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1733 {
1734   rtx link;
1735 
1736   gcc_checking_assert (insn);
1737 
1738   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1739   if (! INSN_P (insn))
1740     return 0;
1741   if (datum == 0)
1742     {
1743       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1744 	if (REG_NOTE_KIND (link) == kind)
1745 	  return link;
1746       return 0;
1747     }
1748 
1749   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1750     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1751       return link;
1752   return 0;
1753 }
1754 
1755 /* Return the reg-note of kind KIND in insn INSN which applies to register
1756    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1757    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1758    it might be the case that the note overlaps REGNO.  */
1759 
1760 rtx
1761 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1762 {
1763   rtx link;
1764 
1765   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1766   if (! INSN_P (insn))
1767     return 0;
1768 
1769   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1770     if (REG_NOTE_KIND (link) == kind
1771 	/* Verify that it is a register, so that scratch and MEM won't cause a
1772 	   problem here.  */
1773 	&& REG_P (XEXP (link, 0))
1774 	&& REGNO (XEXP (link, 0)) <= regno
1775 	&& END_REGNO (XEXP (link, 0)) > regno)
1776       return link;
1777   return 0;
1778 }
1779 
1780 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1781    has such a note.  */
1782 
1783 rtx
1784 find_reg_equal_equiv_note (const_rtx insn)
1785 {
1786   rtx link;
1787 
1788   if (!INSN_P (insn))
1789     return 0;
1790 
1791   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1792     if (REG_NOTE_KIND (link) == REG_EQUAL
1793 	|| REG_NOTE_KIND (link) == REG_EQUIV)
1794       {
1795 	/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1796 	   insns that have multiple sets.  Checking single_set to
1797 	   make sure of this is not the proper check, as explained
1798 	   in the comment in set_unique_reg_note.
1799 
1800 	   This should be changed into an assert.  */
1801 	if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1802 	  return 0;
1803 	return link;
1804       }
1805   return NULL;
1806 }
1807 
1808 /* Check whether INSN is a single_set whose source is known to be
1809    equivalent to a constant.  Return that constant if so, otherwise
1810    return null.  */
1811 
1812 rtx
1813 find_constant_src (const_rtx insn)
1814 {
1815   rtx note, set, x;
1816 
1817   set = single_set (insn);
1818   if (set)
1819     {
1820       x = avoid_constant_pool_reference (SET_SRC (set));
1821       if (CONSTANT_P (x))
1822 	return x;
1823     }
1824 
1825   note = find_reg_equal_equiv_note (insn);
1826   if (note && CONSTANT_P (XEXP (note, 0)))
1827     return XEXP (note, 0);
1828 
1829   return NULL_RTX;
1830 }
1831 
1832 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1833    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1834 
1835 int
1836 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1837 {
1838   /* If it's not a CALL_INSN, it can't possibly have a
1839      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1840   if (!CALL_P (insn))
1841     return 0;
1842 
1843   gcc_assert (datum);
1844 
1845   if (!REG_P (datum))
1846     {
1847       rtx link;
1848 
1849       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1850 	   link;
1851 	   link = XEXP (link, 1))
1852 	if (GET_CODE (XEXP (link, 0)) == code
1853 	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1854 	  return 1;
1855     }
1856   else
1857     {
1858       unsigned int regno = REGNO (datum);
1859 
1860       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1861 	 to pseudo registers, so don't bother checking.  */
1862 
1863       if (regno < FIRST_PSEUDO_REGISTER)
1864 	{
1865 	  unsigned int end_regno = END_HARD_REGNO (datum);
1866 	  unsigned int i;
1867 
1868 	  for (i = regno; i < end_regno; i++)
1869 	    if (find_regno_fusage (insn, code, i))
1870 	      return 1;
1871 	}
1872     }
1873 
1874   return 0;
1875 }
1876 
1877 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1878    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1879 
1880 int
1881 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1882 {
1883   rtx link;
1884 
1885   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1886      to pseudo registers, so don't bother checking.  */
1887 
1888   if (regno >= FIRST_PSEUDO_REGISTER
1889       || !CALL_P (insn) )
1890     return 0;
1891 
1892   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1893     {
1894       rtx op, reg;
1895 
1896       if (GET_CODE (op = XEXP (link, 0)) == code
1897 	  && REG_P (reg = XEXP (op, 0))
1898 	  && REGNO (reg) <= regno
1899 	  && END_HARD_REGNO (reg) > regno)
1900 	return 1;
1901     }
1902 
1903   return 0;
1904 }
1905 
1906 
1907 /* Allocate a register note with kind KIND and datum DATUM.  LIST is
1908    stored as the pointer to the next register note.  */
1909 
1910 rtx
1911 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1912 {
1913   rtx note;
1914 
1915   switch (kind)
1916     {
1917     case REG_CC_SETTER:
1918     case REG_CC_USER:
1919     case REG_LABEL_TARGET:
1920     case REG_LABEL_OPERAND:
1921     case REG_TM:
1922       /* These types of register notes use an INSN_LIST rather than an
1923 	 EXPR_LIST, so that copying is done right and dumps look
1924 	 better.  */
1925       note = alloc_INSN_LIST (datum, list);
1926       PUT_REG_NOTE_KIND (note, kind);
1927       break;
1928 
1929     default:
1930       note = alloc_EXPR_LIST (kind, datum, list);
1931       break;
1932     }
1933 
1934   return note;
1935 }
1936 
1937 /* Add register note with kind KIND and datum DATUM to INSN.  */
1938 
1939 void
1940 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1941 {
1942   REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1943 }
1944 
1945 /* Remove register note NOTE from the REG_NOTES of INSN.  */
1946 
1947 void
1948 remove_note (rtx insn, const_rtx note)
1949 {
1950   rtx link;
1951 
1952   if (note == NULL_RTX)
1953     return;
1954 
1955   if (REG_NOTES (insn) == note)
1956     REG_NOTES (insn) = XEXP (note, 1);
1957   else
1958     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1959       if (XEXP (link, 1) == note)
1960 	{
1961 	  XEXP (link, 1) = XEXP (note, 1);
1962 	  break;
1963 	}
1964 
1965   switch (REG_NOTE_KIND (note))
1966     {
1967     case REG_EQUAL:
1968     case REG_EQUIV:
1969       df_notes_rescan (insn);
1970       break;
1971     default:
1972       break;
1973     }
1974 }
1975 
1976 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.  */
1977 
1978 void
1979 remove_reg_equal_equiv_notes (rtx insn)
1980 {
1981   rtx *loc;
1982 
1983   loc = &REG_NOTES (insn);
1984   while (*loc)
1985     {
1986       enum reg_note kind = REG_NOTE_KIND (*loc);
1987       if (kind == REG_EQUAL || kind == REG_EQUIV)
1988 	*loc = XEXP (*loc, 1);
1989       else
1990 	loc = &XEXP (*loc, 1);
1991     }
1992 }
1993 
1994 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO.  */
1995 
1996 void
1997 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1998 {
1999   df_ref eq_use;
2000 
2001   if (!df)
2002     return;
2003 
2004   /* This loop is a little tricky.  We cannot just go down the chain because
2005      it is being modified by some actions in the loop.  So we just iterate
2006      over the head.  We plan to drain the list anyway.  */
2007   while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2008     {
2009       rtx insn = DF_REF_INSN (eq_use);
2010       rtx note = find_reg_equal_equiv_note (insn);
2011 
2012       /* This assert is generally triggered when someone deletes a REG_EQUAL
2013 	 or REG_EQUIV note by hacking the list manually rather than calling
2014 	 remove_note.  */
2015       gcc_assert (note);
2016 
2017       remove_note (insn, note);
2018     }
2019 }
2020 
2021 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2022    return 1 if it is found.  A simple equality test is used to determine if
2023    NODE matches.  */
2024 
2025 int
2026 in_expr_list_p (const_rtx listp, const_rtx node)
2027 {
2028   const_rtx x;
2029 
2030   for (x = listp; x; x = XEXP (x, 1))
2031     if (node == XEXP (x, 0))
2032       return 1;
2033 
2034   return 0;
2035 }
2036 
2037 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2038    remove that entry from the list if it is found.
2039 
2040    A simple equality test is used to determine if NODE matches.  */
2041 
2042 void
2043 remove_node_from_expr_list (const_rtx node, rtx *listp)
2044 {
2045   rtx temp = *listp;
2046   rtx prev = NULL_RTX;
2047 
2048   while (temp)
2049     {
2050       if (node == XEXP (temp, 0))
2051 	{
2052 	  /* Splice the node out of the list.  */
2053 	  if (prev)
2054 	    XEXP (prev, 1) = XEXP (temp, 1);
2055 	  else
2056 	    *listp = XEXP (temp, 1);
2057 
2058 	  return;
2059 	}
2060 
2061       prev = temp;
2062       temp = XEXP (temp, 1);
2063     }
2064 }
2065 
2066 /* Nonzero if X contains any volatile instructions.  These are instructions
2067    which may cause unpredictable machine state instructions, and thus no
2068    instructions should be moved or combined across them.  This includes
2069    only volatile asms and UNSPEC_VOLATILE instructions.  */
2070 
2071 int
2072 volatile_insn_p (const_rtx x)
2073 {
2074   const RTX_CODE code = GET_CODE (x);
2075   switch (code)
2076     {
2077     case LABEL_REF:
2078     case SYMBOL_REF:
2079     case CONST_INT:
2080     case CONST:
2081     case CONST_DOUBLE:
2082     case CONST_FIXED:
2083     case CONST_VECTOR:
2084     case CC0:
2085     case PC:
2086     case REG:
2087     case SCRATCH:
2088     case CLOBBER:
2089     case ADDR_VEC:
2090     case ADDR_DIFF_VEC:
2091     case CALL:
2092     case MEM:
2093       return 0;
2094 
2095     case UNSPEC_VOLATILE:
2096  /* case TRAP_IF: This isn't clear yet.  */
2097       return 1;
2098 
2099     case ASM_INPUT:
2100     case ASM_OPERANDS:
2101       if (MEM_VOLATILE_P (x))
2102 	return 1;
2103 
2104     default:
2105       break;
2106     }
2107 
2108   /* Recursively scan the operands of this expression.  */
2109 
2110   {
2111     const char *const fmt = GET_RTX_FORMAT (code);
2112     int i;
2113 
2114     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2115       {
2116 	if (fmt[i] == 'e')
2117 	  {
2118 	    if (volatile_insn_p (XEXP (x, i)))
2119 	      return 1;
2120 	  }
2121 	else if (fmt[i] == 'E')
2122 	  {
2123 	    int j;
2124 	    for (j = 0; j < XVECLEN (x, i); j++)
2125 	      if (volatile_insn_p (XVECEXP (x, i, j)))
2126 		return 1;
2127 	  }
2128       }
2129   }
2130   return 0;
2131 }
2132 
2133 /* Nonzero if X contains any volatile memory references
2134    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
2135 
2136 int
2137 volatile_refs_p (const_rtx x)
2138 {
2139   const RTX_CODE code = GET_CODE (x);
2140   switch (code)
2141     {
2142     case LABEL_REF:
2143     case SYMBOL_REF:
2144     case CONST_INT:
2145     case CONST:
2146     case CONST_DOUBLE:
2147     case CONST_FIXED:
2148     case CONST_VECTOR:
2149     case CC0:
2150     case PC:
2151     case REG:
2152     case SCRATCH:
2153     case CLOBBER:
2154     case ADDR_VEC:
2155     case ADDR_DIFF_VEC:
2156       return 0;
2157 
2158     case UNSPEC_VOLATILE:
2159       return 1;
2160 
2161     case MEM:
2162     case ASM_INPUT:
2163     case ASM_OPERANDS:
2164       if (MEM_VOLATILE_P (x))
2165 	return 1;
2166 
2167     default:
2168       break;
2169     }
2170 
2171   /* Recursively scan the operands of this expression.  */
2172 
2173   {
2174     const char *const fmt = GET_RTX_FORMAT (code);
2175     int i;
2176 
2177     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2178       {
2179 	if (fmt[i] == 'e')
2180 	  {
2181 	    if (volatile_refs_p (XEXP (x, i)))
2182 	      return 1;
2183 	  }
2184 	else if (fmt[i] == 'E')
2185 	  {
2186 	    int j;
2187 	    for (j = 0; j < XVECLEN (x, i); j++)
2188 	      if (volatile_refs_p (XVECEXP (x, i, j)))
2189 		return 1;
2190 	  }
2191       }
2192   }
2193   return 0;
2194 }
2195 
2196 /* Similar to above, except that it also rejects register pre- and post-
2197    incrementing.  */
2198 
2199 int
2200 side_effects_p (const_rtx x)
2201 {
2202   const RTX_CODE code = GET_CODE (x);
2203   switch (code)
2204     {
2205     case LABEL_REF:
2206     case SYMBOL_REF:
2207     case CONST_INT:
2208     case CONST:
2209     case CONST_DOUBLE:
2210     case CONST_FIXED:
2211     case CONST_VECTOR:
2212     case CC0:
2213     case PC:
2214     case REG:
2215     case SCRATCH:
2216     case ADDR_VEC:
2217     case ADDR_DIFF_VEC:
2218     case VAR_LOCATION:
2219       return 0;
2220 
2221     case CLOBBER:
2222       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2223 	 when some combination can't be done.  If we see one, don't think
2224 	 that we can simplify the expression.  */
2225       return (GET_MODE (x) != VOIDmode);
2226 
2227     case PRE_INC:
2228     case PRE_DEC:
2229     case POST_INC:
2230     case POST_DEC:
2231     case PRE_MODIFY:
2232     case POST_MODIFY:
2233     case CALL:
2234     case UNSPEC_VOLATILE:
2235  /* case TRAP_IF: This isn't clear yet.  */
2236       return 1;
2237 
2238     case MEM:
2239     case ASM_INPUT:
2240     case ASM_OPERANDS:
2241       if (MEM_VOLATILE_P (x))
2242 	return 1;
2243 
2244     default:
2245       break;
2246     }
2247 
2248   /* Recursively scan the operands of this expression.  */
2249 
2250   {
2251     const char *fmt = GET_RTX_FORMAT (code);
2252     int i;
2253 
2254     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2255       {
2256 	if (fmt[i] == 'e')
2257 	  {
2258 	    if (side_effects_p (XEXP (x, i)))
2259 	      return 1;
2260 	  }
2261 	else if (fmt[i] == 'E')
2262 	  {
2263 	    int j;
2264 	    for (j = 0; j < XVECLEN (x, i); j++)
2265 	      if (side_effects_p (XVECEXP (x, i, j)))
2266 		return 1;
2267 	  }
2268       }
2269   }
2270   return 0;
2271 }
2272 
2273 /* Return nonzero if evaluating rtx X might cause a trap.
2274    FLAGS controls how to consider MEMs.  A nonzero means the context
2275    of the access may have changed from the original, such that the
2276    address may have become invalid.  */
2277 
2278 int
2279 may_trap_p_1 (const_rtx x, unsigned flags)
2280 {
2281   int i;
2282   enum rtx_code code;
2283   const char *fmt;
2284 
2285   /* We make no distinction currently, but this function is part of
2286      the internal target-hooks ABI so we keep the parameter as
2287      "unsigned flags".  */
2288   bool code_changed = flags != 0;
2289 
2290   if (x == 0)
2291     return 0;
2292   code = GET_CODE (x);
2293   switch (code)
2294     {
2295       /* Handle these cases quickly.  */
2296     case CONST_INT:
2297     case CONST_DOUBLE:
2298     case CONST_FIXED:
2299     case CONST_VECTOR:
2300     case SYMBOL_REF:
2301     case LABEL_REF:
2302     case CONST:
2303     case PC:
2304     case CC0:
2305     case REG:
2306     case SCRATCH:
2307       return 0;
2308 
2309     case UNSPEC:
2310     case UNSPEC_VOLATILE:
2311       return targetm.unspec_may_trap_p (x, flags);
2312 
2313     case ASM_INPUT:
2314     case TRAP_IF:
2315       return 1;
2316 
2317     case ASM_OPERANDS:
2318       return MEM_VOLATILE_P (x);
2319 
2320       /* Memory ref can trap unless it's a static var or a stack slot.  */
2321     case MEM:
2322       /* Recognize specific pattern of stack checking probes.  */
2323       if (flag_stack_check
2324 	  && MEM_VOLATILE_P (x)
2325 	  && XEXP (x, 0) == stack_pointer_rtx)
2326 	return 1;
2327       if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2328 	     reference; moving it out of context such as when moving code
2329 	     when optimizing, might cause its address to become invalid.  */
2330 	  code_changed
2331 	  || !MEM_NOTRAP_P (x))
2332 	{
2333 	  HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2334 	  return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2335 					GET_MODE (x), code_changed);
2336 	}
2337 
2338       return 0;
2339 
2340       /* Division by a non-constant might trap.  */
2341     case DIV:
2342     case MOD:
2343     case UDIV:
2344     case UMOD:
2345       if (HONOR_SNANS (GET_MODE (x)))
2346 	return 1;
2347       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2348 	return flag_trapping_math;
2349       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2350 	return 1;
2351       break;
2352 
2353     case EXPR_LIST:
2354       /* An EXPR_LIST is used to represent a function call.  This
2355 	 certainly may trap.  */
2356       return 1;
2357 
2358     case GE:
2359     case GT:
2360     case LE:
2361     case LT:
2362     case LTGT:
2363     case COMPARE:
2364       /* Some floating point comparisons may trap.  */
2365       if (!flag_trapping_math)
2366 	break;
2367       /* ??? There is no machine independent way to check for tests that trap
2368 	 when COMPARE is used, though many targets do make this distinction.
2369 	 For instance, sparc uses CCFPE for compares which generate exceptions
2370 	 and CCFP for compares which do not generate exceptions.  */
2371       if (HONOR_NANS (GET_MODE (x)))
2372 	return 1;
2373       /* But often the compare has some CC mode, so check operand
2374 	 modes as well.  */
2375       if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2376 	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2377 	return 1;
2378       break;
2379 
2380     case EQ:
2381     case NE:
2382       if (HONOR_SNANS (GET_MODE (x)))
2383 	return 1;
2384       /* Often comparison is CC mode, so check operand modes.  */
2385       if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2386 	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2387 	return 1;
2388       break;
2389 
2390     case FIX:
2391       /* Conversion of floating point might trap.  */
2392       if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2393 	return 1;
2394       break;
2395 
2396     case NEG:
2397     case ABS:
2398     case SUBREG:
2399       /* These operations don't trap even with floating point.  */
2400       break;
2401 
2402     default:
2403       /* Any floating arithmetic may trap.  */
2404       if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2405 	  && flag_trapping_math)
2406 	return 1;
2407     }
2408 
2409   fmt = GET_RTX_FORMAT (code);
2410   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2411     {
2412       if (fmt[i] == 'e')
2413 	{
2414 	  if (may_trap_p_1 (XEXP (x, i), flags))
2415 	    return 1;
2416 	}
2417       else if (fmt[i] == 'E')
2418 	{
2419 	  int j;
2420 	  for (j = 0; j < XVECLEN (x, i); j++)
2421 	    if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2422 	      return 1;
2423 	}
2424     }
2425   return 0;
2426 }
2427 
2428 /* Return nonzero if evaluating rtx X might cause a trap.  */
2429 
2430 int
2431 may_trap_p (const_rtx x)
2432 {
2433   return may_trap_p_1 (x, 0);
2434 }
2435 
2436 /* Same as above, but additionally return nonzero if evaluating rtx X might
2437    cause a fault.  We define a fault for the purpose of this function as a
2438    erroneous execution condition that cannot be encountered during the normal
2439    execution of a valid program; the typical example is an unaligned memory
2440    access on a strict alignment machine.  The compiler guarantees that it
2441    doesn't generate code that will fault from a valid program, but this
2442    guarantee doesn't mean anything for individual instructions.  Consider
2443    the following example:
2444 
2445       struct S { int d; union { char *cp; int *ip; }; };
2446 
2447       int foo(struct S *s)
2448       {
2449 	if (s->d == 1)
2450 	  return *s->ip;
2451 	else
2452 	  return *s->cp;
2453       }
2454 
2455    on a strict alignment machine.  In a valid program, foo will never be
2456    invoked on a structure for which d is equal to 1 and the underlying
2457    unique field of the union not aligned on a 4-byte boundary, but the
2458    expression *s->ip might cause a fault if considered individually.
2459 
2460    At the RTL level, potentially problematic expressions will almost always
2461    verify may_trap_p; for example, the above dereference can be emitted as
2462    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2463    However, suppose that foo is inlined in a caller that causes s->cp to
2464    point to a local character variable and guarantees that s->d is not set
2465    to 1; foo may have been effectively translated into pseudo-RTL as:
2466 
2467       if ((reg:SI) == 1)
2468 	(set (reg:SI) (mem:SI (%fp - 7)))
2469       else
2470 	(set (reg:QI) (mem:QI (%fp - 7)))
2471 
2472    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2473    memory reference to a stack slot, but it will certainly cause a fault
2474    on a strict alignment machine.  */
2475 
2476 int
2477 may_trap_or_fault_p (const_rtx x)
2478 {
2479   return may_trap_p_1 (x, 1);
2480 }
2481 
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483    i.e., an inequality.  */
2484 
2485 int
2486 inequality_comparisons_p (const_rtx x)
2487 {
2488   const char *fmt;
2489   int len, i;
2490   const enum rtx_code code = GET_CODE (x);
2491 
2492   switch (code)
2493     {
2494     case REG:
2495     case SCRATCH:
2496     case PC:
2497     case CC0:
2498     case CONST_INT:
2499     case CONST_DOUBLE:
2500     case CONST_FIXED:
2501     case CONST_VECTOR:
2502     case CONST:
2503     case LABEL_REF:
2504     case SYMBOL_REF:
2505       return 0;
2506 
2507     case LT:
2508     case LTU:
2509     case GT:
2510     case GTU:
2511     case LE:
2512     case LEU:
2513     case GE:
2514     case GEU:
2515       return 1;
2516 
2517     default:
2518       break;
2519     }
2520 
2521   len = GET_RTX_LENGTH (code);
2522   fmt = GET_RTX_FORMAT (code);
2523 
2524   for (i = 0; i < len; i++)
2525     {
2526       if (fmt[i] == 'e')
2527 	{
2528 	  if (inequality_comparisons_p (XEXP (x, i)))
2529 	    return 1;
2530 	}
2531       else if (fmt[i] == 'E')
2532 	{
2533 	  int j;
2534 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2535 	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2536 	      return 1;
2537 	}
2538     }
2539 
2540   return 0;
2541 }
2542 
2543 /* Replace any occurrence of FROM in X with TO.  The function does
2544    not enter into CONST_DOUBLE for the replace.
2545 
2546    Note that copying is not done so X must not be shared unless all copies
2547    are to be modified.  */
2548 
2549 rtx
2550 replace_rtx (rtx x, rtx from, rtx to)
2551 {
2552   int i, j;
2553   const char *fmt;
2554 
2555   /* The following prevents loops occurrence when we change MEM in
2556      CONST_DOUBLE onto the same CONST_DOUBLE.  */
2557   if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2558     return x;
2559 
2560   if (x == from)
2561     return to;
2562 
2563   /* Allow this function to make replacements in EXPR_LISTs.  */
2564   if (x == 0)
2565     return 0;
2566 
2567   if (GET_CODE (x) == SUBREG)
2568     {
2569       rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2570 
2571       if (CONST_INT_P (new_rtx))
2572 	{
2573 	  x = simplify_subreg (GET_MODE (x), new_rtx,
2574 			       GET_MODE (SUBREG_REG (x)),
2575 			       SUBREG_BYTE (x));
2576 	  gcc_assert (x);
2577 	}
2578       else
2579 	SUBREG_REG (x) = new_rtx;
2580 
2581       return x;
2582     }
2583   else if (GET_CODE (x) == ZERO_EXTEND)
2584     {
2585       rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2586 
2587       if (CONST_INT_P (new_rtx))
2588 	{
2589 	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2590 					new_rtx, GET_MODE (XEXP (x, 0)));
2591 	  gcc_assert (x);
2592 	}
2593       else
2594 	XEXP (x, 0) = new_rtx;
2595 
2596       return x;
2597     }
2598 
2599   fmt = GET_RTX_FORMAT (GET_CODE (x));
2600   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2601     {
2602       if (fmt[i] == 'e')
2603 	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2604       else if (fmt[i] == 'E')
2605 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2606 	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2607     }
2608 
2609   return x;
2610 }
2611 
2612 /* Replace occurrences of the old label in *X with the new one.
2613    DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2614 
2615 int
2616 replace_label (rtx *x, void *data)
2617 {
2618   rtx l = *x;
2619   rtx old_label = ((replace_label_data *) data)->r1;
2620   rtx new_label = ((replace_label_data *) data)->r2;
2621   bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2622 
2623   if (l == NULL_RTX)
2624     return 0;
2625 
2626   if (GET_CODE (l) == SYMBOL_REF
2627       && CONSTANT_POOL_ADDRESS_P (l))
2628     {
2629       rtx c = get_pool_constant (l);
2630       if (rtx_referenced_p (old_label, c))
2631 	{
2632 	  rtx new_c, new_l;
2633 	  replace_label_data *d = (replace_label_data *) data;
2634 
2635 	  /* Create a copy of constant C; replace the label inside
2636 	     but do not update LABEL_NUSES because uses in constant pool
2637 	     are not counted.  */
2638 	  new_c = copy_rtx (c);
2639 	  d->update_label_nuses = false;
2640 	  for_each_rtx (&new_c, replace_label, data);
2641 	  d->update_label_nuses = update_label_nuses;
2642 
2643 	  /* Add the new constant NEW_C to constant pool and replace
2644 	     the old reference to constant by new reference.  */
2645 	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2646 	  *x = replace_rtx (l, l, new_l);
2647 	}
2648       return 0;
2649     }
2650 
2651   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2652      field.  This is not handled by for_each_rtx because it doesn't
2653      handle unprinted ('0') fields.  */
2654   if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2655     JUMP_LABEL (l) = new_label;
2656 
2657   if ((GET_CODE (l) == LABEL_REF
2658        || GET_CODE (l) == INSN_LIST)
2659       && XEXP (l, 0) == old_label)
2660     {
2661       XEXP (l, 0) = new_label;
2662       if (update_label_nuses)
2663 	{
2664 	  ++LABEL_NUSES (new_label);
2665 	  --LABEL_NUSES (old_label);
2666 	}
2667       return 0;
2668     }
2669 
2670   return 0;
2671 }
2672 
2673 /* When *BODY is equal to X or X is directly referenced by *BODY
2674    return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2675    too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2676 
2677 static int
2678 rtx_referenced_p_1 (rtx *body, void *x)
2679 {
2680   rtx y = (rtx) x;
2681 
2682   if (*body == NULL_RTX)
2683     return y == NULL_RTX;
2684 
2685   /* Return true if a label_ref *BODY refers to label Y.  */
2686   if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2687     return XEXP (*body, 0) == y;
2688 
2689   /* If *BODY is a reference to pool constant traverse the constant.  */
2690   if (GET_CODE (*body) == SYMBOL_REF
2691       && CONSTANT_POOL_ADDRESS_P (*body))
2692     return rtx_referenced_p (y, get_pool_constant (*body));
2693 
2694   /* By default, compare the RTL expressions.  */
2695   return rtx_equal_p (*body, y);
2696 }
2697 
2698 /* Return true if X is referenced in BODY.  */
2699 
2700 int
2701 rtx_referenced_p (rtx x, rtx body)
2702 {
2703   return for_each_rtx (&body, rtx_referenced_p_1, x);
2704 }
2705 
2706 /* If INSN is a tablejump return true and store the label (before jump table) to
2707    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2708 
2709 bool
2710 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2711 {
2712   rtx label, table;
2713 
2714   if (!JUMP_P (insn))
2715     return false;
2716 
2717   label = JUMP_LABEL (insn);
2718   if (label != NULL_RTX && !ANY_RETURN_P (label)
2719       && (table = next_active_insn (label)) != NULL_RTX
2720       && JUMP_TABLE_DATA_P (table))
2721     {
2722       if (labelp)
2723 	*labelp = label;
2724       if (tablep)
2725 	*tablep = table;
2726       return true;
2727     }
2728   return false;
2729 }
2730 
2731 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2732    constant that is not in the constant pool and not in the condition
2733    of an IF_THEN_ELSE.  */
2734 
2735 static int
2736 computed_jump_p_1 (const_rtx x)
2737 {
2738   const enum rtx_code code = GET_CODE (x);
2739   int i, j;
2740   const char *fmt;
2741 
2742   switch (code)
2743     {
2744     case LABEL_REF:
2745     case PC:
2746       return 0;
2747 
2748     case CONST:
2749     case CONST_INT:
2750     case CONST_DOUBLE:
2751     case CONST_FIXED:
2752     case CONST_VECTOR:
2753     case SYMBOL_REF:
2754     case REG:
2755       return 1;
2756 
2757     case MEM:
2758       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2759 		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2760 
2761     case IF_THEN_ELSE:
2762       return (computed_jump_p_1 (XEXP (x, 1))
2763 	      || computed_jump_p_1 (XEXP (x, 2)));
2764 
2765     default:
2766       break;
2767     }
2768 
2769   fmt = GET_RTX_FORMAT (code);
2770   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2771     {
2772       if (fmt[i] == 'e'
2773 	  && computed_jump_p_1 (XEXP (x, i)))
2774 	return 1;
2775 
2776       else if (fmt[i] == 'E')
2777 	for (j = 0; j < XVECLEN (x, i); j++)
2778 	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2779 	    return 1;
2780     }
2781 
2782   return 0;
2783 }
2784 
2785 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2786 
2787    Tablejumps and casesi insns are not considered indirect jumps;
2788    we can recognize them by a (use (label_ref)).  */
2789 
2790 int
2791 computed_jump_p (const_rtx insn)
2792 {
2793   int i;
2794   if (JUMP_P (insn))
2795     {
2796       rtx pat = PATTERN (insn);
2797 
2798       /* If we have a JUMP_LABEL set, we're not a computed jump.  */
2799       if (JUMP_LABEL (insn) != NULL)
2800 	return 0;
2801 
2802       if (GET_CODE (pat) == PARALLEL)
2803 	{
2804 	  int len = XVECLEN (pat, 0);
2805 	  int has_use_labelref = 0;
2806 
2807 	  for (i = len - 1; i >= 0; i--)
2808 	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2809 		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2810 		    == LABEL_REF))
2811 	      has_use_labelref = 1;
2812 
2813 	  if (! has_use_labelref)
2814 	    for (i = len - 1; i >= 0; i--)
2815 	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2816 		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2817 		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2818 		return 1;
2819 	}
2820       else if (GET_CODE (pat) == SET
2821 	       && SET_DEST (pat) == pc_rtx
2822 	       && computed_jump_p_1 (SET_SRC (pat)))
2823 	return 1;
2824     }
2825   return 0;
2826 }
2827 
2828 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2829    calls.  Processes the subexpressions of EXP and passes them to F.  */
2830 static int
2831 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2832 {
2833   int result, i, j;
2834   const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2835   rtx *x;
2836 
2837   for (; format[n] != '\0'; n++)
2838     {
2839       switch (format[n])
2840 	{
2841 	case 'e':
2842 	  /* Call F on X.  */
2843 	  x = &XEXP (exp, n);
2844 	  result = (*f) (x, data);
2845 	  if (result == -1)
2846 	    /* Do not traverse sub-expressions.  */
2847 	    continue;
2848 	  else if (result != 0)
2849 	    /* Stop the traversal.  */
2850 	    return result;
2851 
2852 	  if (*x == NULL_RTX)
2853 	    /* There are no sub-expressions.  */
2854 	    continue;
2855 
2856 	  i = non_rtx_starting_operands[GET_CODE (*x)];
2857 	  if (i >= 0)
2858 	    {
2859 	      result = for_each_rtx_1 (*x, i, f, data);
2860 	      if (result != 0)
2861 		return result;
2862 	    }
2863 	  break;
2864 
2865 	case 'V':
2866 	case 'E':
2867 	  if (XVEC (exp, n) == 0)
2868 	    continue;
2869 	  for (j = 0; j < XVECLEN (exp, n); ++j)
2870 	    {
2871 	      /* Call F on X.  */
2872 	      x = &XVECEXP (exp, n, j);
2873 	      result = (*f) (x, data);
2874 	      if (result == -1)
2875 		/* Do not traverse sub-expressions.  */
2876 		continue;
2877 	      else if (result != 0)
2878 		/* Stop the traversal.  */
2879 		return result;
2880 
2881 	      if (*x == NULL_RTX)
2882 		/* There are no sub-expressions.  */
2883 		continue;
2884 
2885 	      i = non_rtx_starting_operands[GET_CODE (*x)];
2886 	      if (i >= 0)
2887 		{
2888 		  result = for_each_rtx_1 (*x, i, f, data);
2889 		  if (result != 0)
2890 		    return result;
2891 	        }
2892 	    }
2893 	  break;
2894 
2895 	default:
2896 	  /* Nothing to do.  */
2897 	  break;
2898 	}
2899     }
2900 
2901   return 0;
2902 }
2903 
2904 /* Traverse X via depth-first search, calling F for each
2905    sub-expression (including X itself).  F is also passed the DATA.
2906    If F returns -1, do not traverse sub-expressions, but continue
2907    traversing the rest of the tree.  If F ever returns any other
2908    nonzero value, stop the traversal, and return the value returned
2909    by F.  Otherwise, return 0.  This function does not traverse inside
2910    tree structure that contains RTX_EXPRs, or into sub-expressions
2911    whose format code is `0' since it is not known whether or not those
2912    codes are actually RTL.
2913 
2914    This routine is very general, and could (should?) be used to
2915    implement many of the other routines in this file.  */
2916 
2917 int
2918 for_each_rtx (rtx *x, rtx_function f, void *data)
2919 {
2920   int result;
2921   int i;
2922 
2923   /* Call F on X.  */
2924   result = (*f) (x, data);
2925   if (result == -1)
2926     /* Do not traverse sub-expressions.  */
2927     return 0;
2928   else if (result != 0)
2929     /* Stop the traversal.  */
2930     return result;
2931 
2932   if (*x == NULL_RTX)
2933     /* There are no sub-expressions.  */
2934     return 0;
2935 
2936   i = non_rtx_starting_operands[GET_CODE (*x)];
2937   if (i < 0)
2938     return 0;
2939 
2940   return for_each_rtx_1 (*x, i, f, data);
2941 }
2942 
2943 
2944 
2945 /* Data structure that holds the internal state communicated between
2946    for_each_inc_dec, for_each_inc_dec_find_mem and
2947    for_each_inc_dec_find_inc_dec.  */
2948 
2949 struct for_each_inc_dec_ops {
2950   /* The function to be called for each autoinc operation found.  */
2951   for_each_inc_dec_fn fn;
2952   /* The opaque argument to be passed to it.  */
2953   void *arg;
2954   /* The MEM we're visiting, if any.  */
2955   rtx mem;
2956 };
2957 
2958 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2959 
2960 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2961    operands of the equivalent add insn and pass the result to the
2962    operator specified by *D.  */
2963 
2964 static int
2965 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2966 {
2967   rtx x = *r;
2968   struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2969 
2970   switch (GET_CODE (x))
2971     {
2972     case PRE_INC:
2973     case POST_INC:
2974       {
2975 	int size = GET_MODE_SIZE (GET_MODE (data->mem));
2976 	rtx r1 = XEXP (x, 0);
2977 	rtx c = gen_int_mode (size, GET_MODE (r1));
2978 	return data->fn (data->mem, x, r1, r1, c, data->arg);
2979       }
2980 
2981     case PRE_DEC:
2982     case POST_DEC:
2983       {
2984 	int size = GET_MODE_SIZE (GET_MODE (data->mem));
2985 	rtx r1 = XEXP (x, 0);
2986 	rtx c = gen_int_mode (-size, GET_MODE (r1));
2987 	return data->fn (data->mem, x, r1, r1, c, data->arg);
2988       }
2989 
2990     case PRE_MODIFY:
2991     case POST_MODIFY:
2992       {
2993 	rtx r1 = XEXP (x, 0);
2994 	rtx add = XEXP (x, 1);
2995 	return data->fn (data->mem, x, r1, add, NULL, data->arg);
2996       }
2997 
2998     case MEM:
2999       {
3000 	rtx save = data->mem;
3001 	int ret = for_each_inc_dec_find_mem (r, d);
3002 	data->mem = save;
3003 	return ret;
3004       }
3005 
3006     default:
3007       return 0;
3008     }
3009 }
3010 
3011 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3012    address, extract the operands of the equivalent add insn and pass
3013    the result to the operator specified by *D.  */
3014 
3015 static int
3016 for_each_inc_dec_find_mem (rtx *r, void *d)
3017 {
3018   rtx x = *r;
3019   if (x != NULL_RTX && MEM_P (x))
3020     {
3021       struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3022       int result;
3023 
3024       data->mem = x;
3025 
3026       result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3027 			     data);
3028       if (result)
3029 	return result;
3030 
3031       return -1;
3032     }
3033   return 0;
3034 }
3035 
3036 /* Traverse *X looking for MEMs, and for autoinc operations within
3037    them.  For each such autoinc operation found, call FN, passing it
3038    the innermost enclosing MEM, the operation itself, the RTX modified
3039    by the operation, two RTXs (the second may be NULL) that, once
3040    added, represent the value to be held by the modified RTX
3041    afterwards, and ARG.  FN is to return -1 to skip looking for other
3042    autoinc operations within the visited operation, 0 to continue the
3043    traversal, or any other value to have it returned to the caller of
3044    for_each_inc_dec.  */
3045 
3046 int
3047 for_each_inc_dec (rtx *x,
3048 		  for_each_inc_dec_fn fn,
3049 		  void *arg)
3050 {
3051   struct for_each_inc_dec_ops data;
3052 
3053   data.fn = fn;
3054   data.arg = arg;
3055   data.mem = NULL;
3056 
3057   return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3058 }
3059 
3060 
3061 /* Searches X for any reference to REGNO, returning the rtx of the
3062    reference found if any.  Otherwise, returns NULL_RTX.  */
3063 
3064 rtx
3065 regno_use_in (unsigned int regno, rtx x)
3066 {
3067   const char *fmt;
3068   int i, j;
3069   rtx tem;
3070 
3071   if (REG_P (x) && REGNO (x) == regno)
3072     return x;
3073 
3074   fmt = GET_RTX_FORMAT (GET_CODE (x));
3075   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3076     {
3077       if (fmt[i] == 'e')
3078 	{
3079 	  if ((tem = regno_use_in (regno, XEXP (x, i))))
3080 	    return tem;
3081 	}
3082       else if (fmt[i] == 'E')
3083 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3084 	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3085 	    return tem;
3086     }
3087 
3088   return NULL_RTX;
3089 }
3090 
3091 /* Return a value indicating whether OP, an operand of a commutative
3092    operation, is preferred as the first or second operand.  The higher
3093    the value, the stronger the preference for being the first operand.
3094    We use negative values to indicate a preference for the first operand
3095    and positive values for the second operand.  */
3096 
3097 int
3098 commutative_operand_precedence (rtx op)
3099 {
3100   enum rtx_code code = GET_CODE (op);
3101 
3102   /* Constants always come the second operand.  Prefer "nice" constants.  */
3103   if (code == CONST_INT)
3104     return -8;
3105   if (code == CONST_DOUBLE)
3106     return -7;
3107   if (code == CONST_FIXED)
3108     return -7;
3109   op = avoid_constant_pool_reference (op);
3110   code = GET_CODE (op);
3111 
3112   switch (GET_RTX_CLASS (code))
3113     {
3114     case RTX_CONST_OBJ:
3115       if (code == CONST_INT)
3116         return -6;
3117       if (code == CONST_DOUBLE)
3118         return -5;
3119       if (code == CONST_FIXED)
3120         return -5;
3121       return -4;
3122 
3123     case RTX_EXTRA:
3124       /* SUBREGs of objects should come second.  */
3125       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3126         return -3;
3127       return 0;
3128 
3129     case RTX_OBJ:
3130       /* Complex expressions should be the first, so decrease priority
3131          of objects.  Prefer pointer objects over non pointer objects.  */
3132       if ((REG_P (op) && REG_POINTER (op))
3133 	  || (MEM_P (op) && MEM_POINTER (op)))
3134 	return -1;
3135       return -2;
3136 
3137     case RTX_COMM_ARITH:
3138       /* Prefer operands that are themselves commutative to be first.
3139          This helps to make things linear.  In particular,
3140          (and (and (reg) (reg)) (not (reg))) is canonical.  */
3141       return 4;
3142 
3143     case RTX_BIN_ARITH:
3144       /* If only one operand is a binary expression, it will be the first
3145          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
3146          is canonical, although it will usually be further simplified.  */
3147       return 2;
3148 
3149     case RTX_UNARY:
3150       /* Then prefer NEG and NOT.  */
3151       if (code == NEG || code == NOT)
3152         return 1;
3153 
3154     default:
3155       return 0;
3156     }
3157 }
3158 
3159 /* Return 1 iff it is necessary to swap operands of commutative operation
3160    in order to canonicalize expression.  */
3161 
3162 bool
3163 swap_commutative_operands_p (rtx x, rtx y)
3164 {
3165   return (commutative_operand_precedence (x)
3166 	  < commutative_operand_precedence (y));
3167 }
3168 
3169 /* Return 1 if X is an autoincrement side effect and the register is
3170    not the stack pointer.  */
3171 int
3172 auto_inc_p (const_rtx x)
3173 {
3174   switch (GET_CODE (x))
3175     {
3176     case PRE_INC:
3177     case POST_INC:
3178     case PRE_DEC:
3179     case POST_DEC:
3180     case PRE_MODIFY:
3181     case POST_MODIFY:
3182       /* There are no REG_INC notes for SP.  */
3183       if (XEXP (x, 0) != stack_pointer_rtx)
3184 	return 1;
3185     default:
3186       break;
3187     }
3188   return 0;
3189 }
3190 
3191 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3192 int
3193 loc_mentioned_in_p (rtx *loc, const_rtx in)
3194 {
3195   enum rtx_code code;
3196   const char *fmt;
3197   int i, j;
3198 
3199   if (!in)
3200     return 0;
3201 
3202   code = GET_CODE (in);
3203   fmt = GET_RTX_FORMAT (code);
3204   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3205     {
3206       if (fmt[i] == 'e')
3207 	{
3208 	  if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3209 	    return 1;
3210 	}
3211       else if (fmt[i] == 'E')
3212 	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3213 	  if (loc == &XVECEXP (in, i, j)
3214 	      || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3215 	    return 1;
3216     }
3217   return 0;
3218 }
3219 
3220 /* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
3221    and SUBREG_BYTE, return the bit offset where the subreg begins
3222    (counting from the least significant bit of the operand).  */
3223 
3224 unsigned int
3225 subreg_lsb_1 (enum machine_mode outer_mode,
3226 	      enum machine_mode inner_mode,
3227 	      unsigned int subreg_byte)
3228 {
3229   unsigned int bitpos;
3230   unsigned int byte;
3231   unsigned int word;
3232 
3233   /* A paradoxical subreg begins at bit position 0.  */
3234   if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3235     return 0;
3236 
3237   if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3238     /* If the subreg crosses a word boundary ensure that
3239        it also begins and ends on a word boundary.  */
3240     gcc_assert (!((subreg_byte % UNITS_PER_WORD
3241 		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3242 		  && (subreg_byte % UNITS_PER_WORD
3243 		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3244 
3245   if (WORDS_BIG_ENDIAN)
3246     word = (GET_MODE_SIZE (inner_mode)
3247 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3248   else
3249     word = subreg_byte / UNITS_PER_WORD;
3250   bitpos = word * BITS_PER_WORD;
3251 
3252   if (BYTES_BIG_ENDIAN)
3253     byte = (GET_MODE_SIZE (inner_mode)
3254 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3255   else
3256     byte = subreg_byte % UNITS_PER_WORD;
3257   bitpos += byte * BITS_PER_UNIT;
3258 
3259   return bitpos;
3260 }
3261 
3262 /* Given a subreg X, return the bit offset where the subreg begins
3263    (counting from the least significant bit of the reg).  */
3264 
3265 unsigned int
3266 subreg_lsb (const_rtx x)
3267 {
3268   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3269 		       SUBREG_BYTE (x));
3270 }
3271 
3272 /* Fill in information about a subreg of a hard register.
3273    xregno - A regno of an inner hard subreg_reg (or what will become one).
3274    xmode  - The mode of xregno.
3275    offset - The byte offset.
3276    ymode  - The mode of a top level SUBREG (or what may become one).
3277    info   - Pointer to structure to fill in.  */
3278 void
3279 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3280 		 unsigned int offset, enum machine_mode ymode,
3281 		 struct subreg_info *info)
3282 {
3283   int nregs_xmode, nregs_ymode;
3284   int mode_multiple, nregs_multiple;
3285   int offset_adj, y_offset, y_offset_adj;
3286   int regsize_xmode, regsize_ymode;
3287   bool rknown;
3288 
3289   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3290 
3291   rknown = false;
3292 
3293   /* If there are holes in a non-scalar mode in registers, we expect
3294      that it is made up of its units concatenated together.  */
3295   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3296     {
3297       enum machine_mode xmode_unit;
3298 
3299       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3300       if (GET_MODE_INNER (xmode) == VOIDmode)
3301 	xmode_unit = xmode;
3302       else
3303 	xmode_unit = GET_MODE_INNER (xmode);
3304       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3305       gcc_assert (nregs_xmode
3306 		  == (GET_MODE_NUNITS (xmode)
3307 		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3308       gcc_assert (hard_regno_nregs[xregno][xmode]
3309 		  == (hard_regno_nregs[xregno][xmode_unit]
3310 		      * GET_MODE_NUNITS (xmode)));
3311 
3312       /* You can only ask for a SUBREG of a value with holes in the middle
3313 	 if you don't cross the holes.  (Such a SUBREG should be done by
3314 	 picking a different register class, or doing it in memory if
3315 	 necessary.)  An example of a value with holes is XCmode on 32-bit
3316 	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3317 	 3 for each part, but in memory it's two 128-bit parts.
3318 	 Padding is assumed to be at the end (not necessarily the 'high part')
3319 	 of each unit.  */
3320       if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3321 	   < GET_MODE_NUNITS (xmode))
3322 	  && (offset / GET_MODE_SIZE (xmode_unit)
3323 	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3324 		  / GET_MODE_SIZE (xmode_unit))))
3325 	{
3326 	  info->representable_p = false;
3327 	  rknown = true;
3328 	}
3329     }
3330   else
3331     nregs_xmode = hard_regno_nregs[xregno][xmode];
3332 
3333   nregs_ymode = hard_regno_nregs[xregno][ymode];
3334 
3335   /* Paradoxical subregs are otherwise valid.  */
3336   if (!rknown
3337       && offset == 0
3338       && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3339     {
3340       info->representable_p = true;
3341       /* If this is a big endian paradoxical subreg, which uses more
3342 	 actual hard registers than the original register, we must
3343 	 return a negative offset so that we find the proper highpart
3344 	 of the register.  */
3345       if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3346 	  ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3347 	info->offset = nregs_xmode - nregs_ymode;
3348       else
3349 	info->offset = 0;
3350       info->nregs = nregs_ymode;
3351       return;
3352     }
3353 
3354   /* If registers store different numbers of bits in the different
3355      modes, we cannot generally form this subreg.  */
3356   if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3357       && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3358       && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3359       && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3360     {
3361       regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3362       regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3363       if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3364 	{
3365 	  info->representable_p = false;
3366 	  info->nregs
3367 	    = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3368 	  info->offset = offset / regsize_xmode;
3369 	  return;
3370 	}
3371       if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3372 	{
3373 	  info->representable_p = false;
3374 	  info->nregs
3375 	    = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3376 	  info->offset = offset / regsize_xmode;
3377 	  return;
3378 	}
3379     }
3380 
3381   /* Lowpart subregs are otherwise valid.  */
3382   if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3383     {
3384       info->representable_p = true;
3385       rknown = true;
3386 
3387       if (offset == 0 || nregs_xmode == nregs_ymode)
3388 	{
3389 	  info->offset = 0;
3390 	  info->nregs = nregs_ymode;
3391 	  return;
3392 	}
3393     }
3394 
3395   /* This should always pass, otherwise we don't know how to verify
3396      the constraint.  These conditions may be relaxed but
3397      subreg_regno_offset would need to be redesigned.  */
3398   gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3399   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3400 
3401   if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3402       && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3403     {
3404       HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3405       HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3406       HOST_WIDE_INT off_low = offset & (ysize - 1);
3407       HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3408       offset = (xsize - ysize - off_high) | off_low;
3409     }
3410   /* The XMODE value can be seen as a vector of NREGS_XMODE
3411      values.  The subreg must represent a lowpart of given field.
3412      Compute what field it is.  */
3413   offset_adj = offset;
3414   offset_adj -= subreg_lowpart_offset (ymode,
3415 				       mode_for_size (GET_MODE_BITSIZE (xmode)
3416 						      / nregs_xmode,
3417 						      MODE_INT, 0));
3418 
3419   /* Size of ymode must not be greater than the size of xmode.  */
3420   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3421   gcc_assert (mode_multiple != 0);
3422 
3423   y_offset = offset / GET_MODE_SIZE (ymode);
3424   y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3425   nregs_multiple = nregs_xmode / nregs_ymode;
3426 
3427   gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3428   gcc_assert ((mode_multiple % nregs_multiple) == 0);
3429 
3430   if (!rknown)
3431     {
3432       info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3433       rknown = true;
3434     }
3435   info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3436   info->nregs = nregs_ymode;
3437 }
3438 
3439 /* This function returns the regno offset of a subreg expression.
3440    xregno - A regno of an inner hard subreg_reg (or what will become one).
3441    xmode  - The mode of xregno.
3442    offset - The byte offset.
3443    ymode  - The mode of a top level SUBREG (or what may become one).
3444    RETURN - The regno offset which would be used.  */
3445 unsigned int
3446 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3447 		     unsigned int offset, enum machine_mode ymode)
3448 {
3449   struct subreg_info info;
3450   subreg_get_info (xregno, xmode, offset, ymode, &info);
3451   return info.offset;
3452 }
3453 
3454 /* This function returns true when the offset is representable via
3455    subreg_offset in the given regno.
3456    xregno - A regno of an inner hard subreg_reg (or what will become one).
3457    xmode  - The mode of xregno.
3458    offset - The byte offset.
3459    ymode  - The mode of a top level SUBREG (or what may become one).
3460    RETURN - Whether the offset is representable.  */
3461 bool
3462 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3463 			       unsigned int offset, enum machine_mode ymode)
3464 {
3465   struct subreg_info info;
3466   subreg_get_info (xregno, xmode, offset, ymode, &info);
3467   return info.representable_p;
3468 }
3469 
3470 /* Return the number of a YMODE register to which
3471 
3472        (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3473 
3474    can be simplified.  Return -1 if the subreg can't be simplified.
3475 
3476    XREGNO is a hard register number.  */
3477 
3478 int
3479 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3480 		       unsigned int offset, enum machine_mode ymode)
3481 {
3482   struct subreg_info info;
3483   unsigned int yregno;
3484 
3485 #ifdef CANNOT_CHANGE_MODE_CLASS
3486   /* Give the backend a chance to disallow the mode change.  */
3487   if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3488       && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3489       && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3490     return -1;
3491 #endif
3492 
3493   /* We shouldn't simplify stack-related registers.  */
3494   if ((!reload_completed || frame_pointer_needed)
3495       && xregno == FRAME_POINTER_REGNUM)
3496     return -1;
3497 
3498   if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3499       && xregno == ARG_POINTER_REGNUM)
3500     return -1;
3501 
3502   if (xregno == STACK_POINTER_REGNUM)
3503     return -1;
3504 
3505   /* Try to get the register offset.  */
3506   subreg_get_info (xregno, xmode, offset, ymode, &info);
3507   if (!info.representable_p)
3508     return -1;
3509 
3510   /* Make sure that the offsetted register value is in range.  */
3511   yregno = xregno + info.offset;
3512   if (!HARD_REGISTER_NUM_P (yregno))
3513     return -1;
3514 
3515   /* See whether (reg:YMODE YREGNO) is valid.
3516 
3517      ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3518      This is a kludge to work around how complex FP arguments are passed
3519      on IA-64 and should be fixed.  See PR target/49226.  */
3520   if (!HARD_REGNO_MODE_OK (yregno, ymode)
3521       && HARD_REGNO_MODE_OK (xregno, xmode))
3522     return -1;
3523 
3524   return (int) yregno;
3525 }
3526 
3527 /* Return the final regno that a subreg expression refers to.  */
3528 unsigned int
3529 subreg_regno (const_rtx x)
3530 {
3531   unsigned int ret;
3532   rtx subreg = SUBREG_REG (x);
3533   int regno = REGNO (subreg);
3534 
3535   ret = regno + subreg_regno_offset (regno,
3536 				     GET_MODE (subreg),
3537 				     SUBREG_BYTE (x),
3538 				     GET_MODE (x));
3539   return ret;
3540 
3541 }
3542 
3543 /* Return the number of registers that a subreg expression refers
3544    to.  */
3545 unsigned int
3546 subreg_nregs (const_rtx x)
3547 {
3548   return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3549 }
3550 
3551 /* Return the number of registers that a subreg REG with REGNO
3552    expression refers to.  This is a copy of the rtlanal.c:subreg_nregs
3553    changed so that the regno can be passed in. */
3554 
3555 unsigned int
3556 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3557 {
3558   struct subreg_info info;
3559   rtx subreg = SUBREG_REG (x);
3560 
3561   subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3562 		   &info);
3563   return info.nregs;
3564 }
3565 
3566 
3567 struct parms_set_data
3568 {
3569   int nregs;
3570   HARD_REG_SET regs;
3571 };
3572 
3573 /* Helper function for noticing stores to parameter registers.  */
3574 static void
3575 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3576 {
3577   struct parms_set_data *const d = (struct parms_set_data *) data;
3578   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3579       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3580     {
3581       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3582       d->nregs--;
3583     }
3584 }
3585 
3586 /* Look backward for first parameter to be loaded.
3587    Note that loads of all parameters will not necessarily be
3588    found if CSE has eliminated some of them (e.g., an argument
3589    to the outer function is passed down as a parameter).
3590    Do not skip BOUNDARY.  */
3591 rtx
3592 find_first_parameter_load (rtx call_insn, rtx boundary)
3593 {
3594   struct parms_set_data parm;
3595   rtx p, before, first_set;
3596 
3597   /* Since different machines initialize their parameter registers
3598      in different orders, assume nothing.  Collect the set of all
3599      parameter registers.  */
3600   CLEAR_HARD_REG_SET (parm.regs);
3601   parm.nregs = 0;
3602   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3603     if (GET_CODE (XEXP (p, 0)) == USE
3604 	&& REG_P (XEXP (XEXP (p, 0), 0)))
3605       {
3606 	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3607 
3608 	/* We only care about registers which can hold function
3609 	   arguments.  */
3610 	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3611 	  continue;
3612 
3613 	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3614 	parm.nregs++;
3615       }
3616   before = call_insn;
3617   first_set = call_insn;
3618 
3619   /* Search backward for the first set of a register in this set.  */
3620   while (parm.nregs && before != boundary)
3621     {
3622       before = PREV_INSN (before);
3623 
3624       /* It is possible that some loads got CSEed from one call to
3625          another.  Stop in that case.  */
3626       if (CALL_P (before))
3627 	break;
3628 
3629       /* Our caller needs either ensure that we will find all sets
3630          (in case code has not been optimized yet), or take care
3631          for possible labels in a way by setting boundary to preceding
3632          CODE_LABEL.  */
3633       if (LABEL_P (before))
3634 	{
3635 	  gcc_assert (before == boundary);
3636 	  break;
3637 	}
3638 
3639       if (INSN_P (before))
3640 	{
3641 	  int nregs_old = parm.nregs;
3642 	  note_stores (PATTERN (before), parms_set, &parm);
3643 	  /* If we found something that did not set a parameter reg,
3644 	     we're done.  Do not keep going, as that might result
3645 	     in hoisting an insn before the setting of a pseudo
3646 	     that is used by the hoisted insn. */
3647 	  if (nregs_old != parm.nregs)
3648 	    first_set = before;
3649 	  else
3650 	    break;
3651 	}
3652     }
3653   return first_set;
3654 }
3655 
3656 /* Return true if we should avoid inserting code between INSN and preceding
3657    call instruction.  */
3658 
3659 bool
3660 keep_with_call_p (const_rtx insn)
3661 {
3662   rtx set;
3663 
3664   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3665     {
3666       if (REG_P (SET_DEST (set))
3667 	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3668 	  && fixed_regs[REGNO (SET_DEST (set))]
3669 	  && general_operand (SET_SRC (set), VOIDmode))
3670 	return true;
3671       if (REG_P (SET_SRC (set))
3672 	  && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3673 	  && REG_P (SET_DEST (set))
3674 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3675 	return true;
3676       /* There may be a stack pop just after the call and before the store
3677 	 of the return register.  Search for the actual store when deciding
3678 	 if we can break or not.  */
3679       if (SET_DEST (set) == stack_pointer_rtx)
3680 	{
3681 	  /* This CONST_CAST is okay because next_nonnote_insn just
3682 	     returns its argument and we assign it to a const_rtx
3683 	     variable.  */
3684 	  const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3685 	  if (i2 && keep_with_call_p (i2))
3686 	    return true;
3687 	}
3688     }
3689   return false;
3690 }
3691 
3692 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
3693    to non-complex jumps.  That is, direct unconditional, conditional,
3694    and tablejumps, but not computed jumps or returns.  It also does
3695    not apply to the fallthru case of a conditional jump.  */
3696 
3697 bool
3698 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3699 {
3700   rtx tmp = JUMP_LABEL (jump_insn);
3701 
3702   if (label == tmp)
3703     return true;
3704 
3705   if (tablejump_p (jump_insn, NULL, &tmp))
3706     {
3707       rtvec vec = XVEC (PATTERN (tmp),
3708 			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3709       int i, veclen = GET_NUM_ELEM (vec);
3710 
3711       for (i = 0; i < veclen; ++i)
3712 	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3713 	  return true;
3714     }
3715 
3716   if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3717     return true;
3718 
3719   return false;
3720 }
3721 
3722 
3723 /* Return an estimate of the cost of computing rtx X.
3724    One use is in cse, to decide which expression to keep in the hash table.
3725    Another is in rtl generation, to pick the cheapest way to multiply.
3726    Other uses like the latter are expected in the future.
3727 
3728    X appears as operand OPNO in an expression with code OUTER_CODE.
3729    SPEED specifies whether costs optimized for speed or size should
3730    be returned.  */
3731 
3732 int
3733 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3734 {
3735   int i, j;
3736   enum rtx_code code;
3737   const char *fmt;
3738   int total;
3739 
3740   if (x == 0)
3741     return 0;
3742 
3743   /* Compute the default costs of certain things.
3744      Note that targetm.rtx_costs can override the defaults.  */
3745 
3746   code = GET_CODE (x);
3747   switch (code)
3748     {
3749     case MULT:
3750       total = COSTS_N_INSNS (5);
3751       break;
3752     case DIV:
3753     case UDIV:
3754     case MOD:
3755     case UMOD:
3756       total = COSTS_N_INSNS (7);
3757       break;
3758     case USE:
3759       /* Used in combine.c as a marker.  */
3760       total = 0;
3761       break;
3762     default:
3763       total = COSTS_N_INSNS (1);
3764     }
3765 
3766   switch (code)
3767     {
3768     case REG:
3769       return 0;
3770 
3771     case SUBREG:
3772       total = 0;
3773       /* If we can't tie these modes, make this expensive.  The larger
3774 	 the mode, the more expensive it is.  */
3775       if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3776 	return COSTS_N_INSNS (2
3777 			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3778       break;
3779 
3780     default:
3781       if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3782 	return total;
3783       break;
3784     }
3785 
3786   /* Sum the costs of the sub-rtx's, plus cost of this operation,
3787      which is already in total.  */
3788 
3789   fmt = GET_RTX_FORMAT (code);
3790   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3791     if (fmt[i] == 'e')
3792       total += rtx_cost (XEXP (x, i), code, i, speed);
3793     else if (fmt[i] == 'E')
3794       for (j = 0; j < XVECLEN (x, i); j++)
3795 	total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3796 
3797   return total;
3798 }
3799 
3800 /* Fill in the structure C with information about both speed and size rtx
3801    costs for X, which is operand OPNO in an expression with code OUTER.  */
3802 
3803 void
3804 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3805 		   struct full_rtx_costs *c)
3806 {
3807   c->speed = rtx_cost (x, outer, opno, true);
3808   c->size = rtx_cost (x, outer, opno, false);
3809 }
3810 
3811 
3812 /* Return cost of address expression X.
3813    Expect that X is properly formed address reference.
3814 
3815    SPEED parameter specify whether costs optimized for speed or size should
3816    be returned.  */
3817 
3818 int
3819 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3820 {
3821   /* We may be asked for cost of various unusual addresses, such as operands
3822      of push instruction.  It is not worthwhile to complicate writing
3823      of the target hook by such cases.  */
3824 
3825   if (!memory_address_addr_space_p (mode, x, as))
3826     return 1000;
3827 
3828   return targetm.address_cost (x, speed);
3829 }
3830 
3831 /* If the target doesn't override, compute the cost as with arithmetic.  */
3832 
3833 int
3834 default_address_cost (rtx x, bool speed)
3835 {
3836   return rtx_cost (x, MEM, 0, speed);
3837 }
3838 
3839 
3840 unsigned HOST_WIDE_INT
3841 nonzero_bits (const_rtx x, enum machine_mode mode)
3842 {
3843   return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3844 }
3845 
3846 unsigned int
3847 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3848 {
3849   return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3850 }
3851 
3852 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3853    It avoids exponential behavior in nonzero_bits1 when X has
3854    identical subexpressions on the first or the second level.  */
3855 
3856 static unsigned HOST_WIDE_INT
3857 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3858 		     enum machine_mode known_mode,
3859 		     unsigned HOST_WIDE_INT known_ret)
3860 {
3861   if (x == known_x && mode == known_mode)
3862     return known_ret;
3863 
3864   /* Try to find identical subexpressions.  If found call
3865      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3866      precomputed value for the subexpression as KNOWN_RET.  */
3867 
3868   if (ARITHMETIC_P (x))
3869     {
3870       rtx x0 = XEXP (x, 0);
3871       rtx x1 = XEXP (x, 1);
3872 
3873       /* Check the first level.  */
3874       if (x0 == x1)
3875 	return nonzero_bits1 (x, mode, x0, mode,
3876 			      cached_nonzero_bits (x0, mode, known_x,
3877 						   known_mode, known_ret));
3878 
3879       /* Check the second level.  */
3880       if (ARITHMETIC_P (x0)
3881 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3882 	return nonzero_bits1 (x, mode, x1, mode,
3883 			      cached_nonzero_bits (x1, mode, known_x,
3884 						   known_mode, known_ret));
3885 
3886       if (ARITHMETIC_P (x1)
3887 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3888 	return nonzero_bits1 (x, mode, x0, mode,
3889 			      cached_nonzero_bits (x0, mode, known_x,
3890 						   known_mode, known_ret));
3891     }
3892 
3893   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3894 }
3895 
3896 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3897    We don't let nonzero_bits recur into num_sign_bit_copies, because that
3898    is less useful.  We can't allow both, because that results in exponential
3899    run time recursion.  There is a nullstone testcase that triggered
3900    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3901 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3902 
3903 /* Given an expression, X, compute which bits in X can be nonzero.
3904    We don't care about bits outside of those defined in MODE.
3905 
3906    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3907    an arithmetic operation, we can do better.  */
3908 
3909 static unsigned HOST_WIDE_INT
3910 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3911 	       enum machine_mode known_mode,
3912 	       unsigned HOST_WIDE_INT known_ret)
3913 {
3914   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3915   unsigned HOST_WIDE_INT inner_nz;
3916   enum rtx_code code;
3917   enum machine_mode inner_mode;
3918   unsigned int mode_width = GET_MODE_PRECISION (mode);
3919 
3920   /* For floating-point and vector values, assume all bits are needed.  */
3921   if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3922       || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3923     return nonzero;
3924 
3925   /* If X is wider than MODE, use its mode instead.  */
3926   if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3927     {
3928       mode = GET_MODE (x);
3929       nonzero = GET_MODE_MASK (mode);
3930       mode_width = GET_MODE_PRECISION (mode);
3931     }
3932 
3933   if (mode_width > HOST_BITS_PER_WIDE_INT)
3934     /* Our only callers in this case look for single bit values.  So
3935        just return the mode mask.  Those tests will then be false.  */
3936     return nonzero;
3937 
3938 #ifndef WORD_REGISTER_OPERATIONS
3939   /* If MODE is wider than X, but both are a single word for both the host
3940      and target machines, we can compute this from which bits of the
3941      object might be nonzero in its own mode, taking into account the fact
3942      that on many CISC machines, accessing an object in a wider mode
3943      causes the high-order bits to become undefined.  So they are
3944      not known to be zero.  */
3945 
3946   if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3947       && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3948       && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3949       && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3950     {
3951       nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3952 				      known_x, known_mode, known_ret);
3953       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3954       return nonzero;
3955     }
3956 #endif
3957 
3958   code = GET_CODE (x);
3959   switch (code)
3960     {
3961     case REG:
3962 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3963       /* If pointers extend unsigned and this is a pointer in Pmode, say that
3964 	 all the bits above ptr_mode are known to be zero.  */
3965       /* As we do not know which address space the pointer is refering to,
3966 	 we can do this only if the target does not support different pointer
3967 	 or address modes depending on the address space.  */
3968       if (target_default_pointer_address_modes_p ()
3969 	  && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3970 	  && REG_POINTER (x))
3971 	nonzero &= GET_MODE_MASK (ptr_mode);
3972 #endif
3973 
3974       /* Include declared information about alignment of pointers.  */
3975       /* ??? We don't properly preserve REG_POINTER changes across
3976 	 pointer-to-integer casts, so we can't trust it except for
3977 	 things that we know must be pointers.  See execute/960116-1.c.  */
3978       if ((x == stack_pointer_rtx
3979 	   || x == frame_pointer_rtx
3980 	   || x == arg_pointer_rtx)
3981 	  && REGNO_POINTER_ALIGN (REGNO (x)))
3982 	{
3983 	  unsigned HOST_WIDE_INT alignment
3984 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3985 
3986 #ifdef PUSH_ROUNDING
3987 	  /* If PUSH_ROUNDING is defined, it is possible for the
3988 	     stack to be momentarily aligned only to that amount,
3989 	     so we pick the least alignment.  */
3990 	  if (x == stack_pointer_rtx && PUSH_ARGS)
3991 	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3992 			     alignment);
3993 #endif
3994 
3995 	  nonzero &= ~(alignment - 1);
3996 	}
3997 
3998       {
3999 	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4000 	rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4001 					      known_mode, known_ret,
4002 					      &nonzero_for_hook);
4003 
4004 	if (new_rtx)
4005 	  nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4006 						   known_mode, known_ret);
4007 
4008 	return nonzero_for_hook;
4009       }
4010 
4011     case CONST_INT:
4012 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4013       /* If X is negative in MODE, sign-extend the value.  */
4014       if (INTVAL (x) > 0
4015 	  && mode_width < BITS_PER_WORD
4016 	  && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4017 	     != 0)
4018 	return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4019 #endif
4020 
4021       return UINTVAL (x);
4022 
4023     case MEM:
4024 #ifdef LOAD_EXTEND_OP
4025       /* In many, if not most, RISC machines, reading a byte from memory
4026 	 zeros the rest of the register.  Noticing that fact saves a lot
4027 	 of extra zero-extends.  */
4028       if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4029 	nonzero &= GET_MODE_MASK (GET_MODE (x));
4030 #endif
4031       break;
4032 
4033     case EQ:  case NE:
4034     case UNEQ:  case LTGT:
4035     case GT:  case GTU:  case UNGT:
4036     case LT:  case LTU:  case UNLT:
4037     case GE:  case GEU:  case UNGE:
4038     case LE:  case LEU:  case UNLE:
4039     case UNORDERED: case ORDERED:
4040       /* If this produces an integer result, we know which bits are set.
4041 	 Code here used to clear bits outside the mode of X, but that is
4042 	 now done above.  */
4043       /* Mind that MODE is the mode the caller wants to look at this
4044 	 operation in, and not the actual operation mode.  We can wind
4045 	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4046 	 that describes the results of a vector compare.  */
4047       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4048 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
4049 	nonzero = STORE_FLAG_VALUE;
4050       break;
4051 
4052     case NEG:
4053 #if 0
4054       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4055 	 and num_sign_bit_copies.  */
4056       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4057 	  == GET_MODE_PRECISION (GET_MODE (x)))
4058 	nonzero = 1;
4059 #endif
4060 
4061       if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4062 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4063       break;
4064 
4065     case ABS:
4066 #if 0
4067       /* Disabled to avoid exponential mutual recursion between nonzero_bits
4068 	 and num_sign_bit_copies.  */
4069       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4070 	  == GET_MODE_PRECISION (GET_MODE (x)))
4071 	nonzero = 1;
4072 #endif
4073       break;
4074 
4075     case TRUNCATE:
4076       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4077 				       known_x, known_mode, known_ret)
4078 		  & GET_MODE_MASK (mode));
4079       break;
4080 
4081     case ZERO_EXTEND:
4082       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4083 				      known_x, known_mode, known_ret);
4084       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4085 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4086       break;
4087 
4088     case SIGN_EXTEND:
4089       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4090 	 Otherwise, show all the bits in the outer mode but not the inner
4091 	 may be nonzero.  */
4092       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4093 				      known_x, known_mode, known_ret);
4094       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4095 	{
4096 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4097 	  if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4098 	    inner_nz |= (GET_MODE_MASK (mode)
4099 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4100 	}
4101 
4102       nonzero &= inner_nz;
4103       break;
4104 
4105     case AND:
4106       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4107 				       known_x, known_mode, known_ret)
4108       		 & cached_nonzero_bits (XEXP (x, 1), mode,
4109 					known_x, known_mode, known_ret);
4110       break;
4111 
4112     case XOR:   case IOR:
4113     case UMIN:  case UMAX:  case SMIN:  case SMAX:
4114       {
4115 	unsigned HOST_WIDE_INT nonzero0
4116 	   = cached_nonzero_bits (XEXP (x, 0), mode,
4117 				  known_x, known_mode, known_ret);
4118 
4119 	/* Don't call nonzero_bits for the second time if it cannot change
4120 	   anything.  */
4121 	if ((nonzero & nonzero0) != nonzero)
4122 	  nonzero &= nonzero0
4123       		     | cached_nonzero_bits (XEXP (x, 1), mode,
4124 					    known_x, known_mode, known_ret);
4125       }
4126       break;
4127 
4128     case PLUS:  case MINUS:
4129     case MULT:
4130     case DIV:   case UDIV:
4131     case MOD:   case UMOD:
4132       /* We can apply the rules of arithmetic to compute the number of
4133 	 high- and low-order zero bits of these operations.  We start by
4134 	 computing the width (position of the highest-order nonzero bit)
4135 	 and the number of low-order zero bits for each value.  */
4136       {
4137 	unsigned HOST_WIDE_INT nz0
4138 	  = cached_nonzero_bits (XEXP (x, 0), mode,
4139 				 known_x, known_mode, known_ret);
4140 	unsigned HOST_WIDE_INT nz1
4141 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4142 				 known_x, known_mode, known_ret);
4143 	int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4144 	int width0 = floor_log2 (nz0) + 1;
4145 	int width1 = floor_log2 (nz1) + 1;
4146 	int low0 = floor_log2 (nz0 & -nz0);
4147 	int low1 = floor_log2 (nz1 & -nz1);
4148 	unsigned HOST_WIDE_INT op0_maybe_minusp
4149 	  = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4150 	unsigned HOST_WIDE_INT op1_maybe_minusp
4151 	  = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4152 	unsigned int result_width = mode_width;
4153 	int result_low = 0;
4154 
4155 	switch (code)
4156 	  {
4157 	  case PLUS:
4158 	    result_width = MAX (width0, width1) + 1;
4159 	    result_low = MIN (low0, low1);
4160 	    break;
4161 	  case MINUS:
4162 	    result_low = MIN (low0, low1);
4163 	    break;
4164 	  case MULT:
4165 	    result_width = width0 + width1;
4166 	    result_low = low0 + low1;
4167 	    break;
4168 	  case DIV:
4169 	    if (width1 == 0)
4170 	      break;
4171 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4172 	      result_width = width0;
4173 	    break;
4174 	  case UDIV:
4175 	    if (width1 == 0)
4176 	      break;
4177 	    result_width = width0;
4178 	    break;
4179 	  case MOD:
4180 	    if (width1 == 0)
4181 	      break;
4182 	    if (!op0_maybe_minusp && !op1_maybe_minusp)
4183 	      result_width = MIN (width0, width1);
4184 	    result_low = MIN (low0, low1);
4185 	    break;
4186 	  case UMOD:
4187 	    if (width1 == 0)
4188 	      break;
4189 	    result_width = MIN (width0, width1);
4190 	    result_low = MIN (low0, low1);
4191 	    break;
4192 	  default:
4193 	    gcc_unreachable ();
4194 	  }
4195 
4196 	if (result_width < mode_width)
4197 	  nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4198 
4199 	if (result_low > 0)
4200 	  nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4201       }
4202       break;
4203 
4204     case ZERO_EXTRACT:
4205       if (CONST_INT_P (XEXP (x, 1))
4206 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4207 	nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4208       break;
4209 
4210     case SUBREG:
4211       /* If this is a SUBREG formed for a promoted variable that has
4212 	 been zero-extended, we know that at least the high-order bits
4213 	 are zero, though others might be too.  */
4214 
4215       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4216 	nonzero = GET_MODE_MASK (GET_MODE (x))
4217 		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4218 					 known_x, known_mode, known_ret);
4219 
4220       inner_mode = GET_MODE (SUBREG_REG (x));
4221       /* If the inner mode is a single word for both the host and target
4222 	 machines, we can compute this from which bits of the inner
4223 	 object might be nonzero.  */
4224       if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4225 	  && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4226 	{
4227 	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4228 					  known_x, known_mode, known_ret);
4229 
4230 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4231 	  /* If this is a typical RISC machine, we only have to worry
4232 	     about the way loads are extended.  */
4233 	  if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4234 	       ? val_signbit_known_set_p (inner_mode, nonzero)
4235 	       : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4236 	      || !MEM_P (SUBREG_REG (x)))
4237 #endif
4238 	    {
4239 	      /* On many CISC machines, accessing an object in a wider mode
4240 		 causes the high-order bits to become undefined.  So they are
4241 		 not known to be zero.  */
4242 	      if (GET_MODE_PRECISION (GET_MODE (x))
4243 		  > GET_MODE_PRECISION (inner_mode))
4244 		nonzero |= (GET_MODE_MASK (GET_MODE (x))
4245 			    & ~GET_MODE_MASK (inner_mode));
4246 	    }
4247 	}
4248       break;
4249 
4250     case ASHIFTRT:
4251     case LSHIFTRT:
4252     case ASHIFT:
4253     case ROTATE:
4254       /* The nonzero bits are in two classes: any bits within MODE
4255 	 that aren't in GET_MODE (x) are always significant.  The rest of the
4256 	 nonzero bits are those that are significant in the operand of
4257 	 the shift when shifted the appropriate number of bits.  This
4258 	 shows that high-order bits are cleared by the right shift and
4259 	 low-order bits by left shifts.  */
4260       if (CONST_INT_P (XEXP (x, 1))
4261 	  && INTVAL (XEXP (x, 1)) >= 0
4262 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4263 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4264 	{
4265 	  enum machine_mode inner_mode = GET_MODE (x);
4266 	  unsigned int width = GET_MODE_PRECISION (inner_mode);
4267 	  int count = INTVAL (XEXP (x, 1));
4268 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4269 	  unsigned HOST_WIDE_INT op_nonzero
4270 	    = cached_nonzero_bits (XEXP (x, 0), mode,
4271 				   known_x, known_mode, known_ret);
4272 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4273 	  unsigned HOST_WIDE_INT outer = 0;
4274 
4275 	  if (mode_width > width)
4276 	    outer = (op_nonzero & nonzero & ~mode_mask);
4277 
4278 	  if (code == LSHIFTRT)
4279 	    inner >>= count;
4280 	  else if (code == ASHIFTRT)
4281 	    {
4282 	      inner >>= count;
4283 
4284 	      /* If the sign bit may have been nonzero before the shift, we
4285 		 need to mark all the places it could have been copied to
4286 		 by the shift as possibly nonzero.  */
4287 	      if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4288 		inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4289 			   << (width - count);
4290 	    }
4291 	  else if (code == ASHIFT)
4292 	    inner <<= count;
4293 	  else
4294 	    inner = ((inner << (count % width)
4295 		      | (inner >> (width - (count % width)))) & mode_mask);
4296 
4297 	  nonzero &= (outer | inner);
4298 	}
4299       break;
4300 
4301     case FFS:
4302     case POPCOUNT:
4303       /* This is at most the number of bits in the mode.  */
4304       nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4305       break;
4306 
4307     case CLZ:
4308       /* If CLZ has a known value at zero, then the nonzero bits are
4309 	 that value, plus the number of bits in the mode minus one.  */
4310       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4311 	nonzero
4312 	  |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4313       else
4314 	nonzero = -1;
4315       break;
4316 
4317     case CTZ:
4318       /* If CTZ has a known value at zero, then the nonzero bits are
4319 	 that value, plus the number of bits in the mode minus one.  */
4320       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4321 	nonzero
4322 	  |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4323       else
4324 	nonzero = -1;
4325       break;
4326 
4327     case CLRSB:
4328       /* This is at most the number of bits in the mode minus 1.  */
4329       nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4330       break;
4331 
4332     case PARITY:
4333       nonzero = 1;
4334       break;
4335 
4336     case IF_THEN_ELSE:
4337       {
4338 	unsigned HOST_WIDE_INT nonzero_true
4339 	  = cached_nonzero_bits (XEXP (x, 1), mode,
4340 				 known_x, known_mode, known_ret);
4341 
4342 	/* Don't call nonzero_bits for the second time if it cannot change
4343 	   anything.  */
4344 	if ((nonzero & nonzero_true) != nonzero)
4345 	  nonzero &= nonzero_true
4346       		     | cached_nonzero_bits (XEXP (x, 2), mode,
4347 					    known_x, known_mode, known_ret);
4348       }
4349       break;
4350 
4351     default:
4352       break;
4353     }
4354 
4355   return nonzero;
4356 }
4357 
4358 /* See the macro definition above.  */
4359 #undef cached_num_sign_bit_copies
4360 
4361 
4362 /* The function cached_num_sign_bit_copies is a wrapper around
4363    num_sign_bit_copies1.  It avoids exponential behavior in
4364    num_sign_bit_copies1 when X has identical subexpressions on the
4365    first or the second level.  */
4366 
4367 static unsigned int
4368 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4369 			    enum machine_mode known_mode,
4370 			    unsigned int known_ret)
4371 {
4372   if (x == known_x && mode == known_mode)
4373     return known_ret;
4374 
4375   /* Try to find identical subexpressions.  If found call
4376      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4377      the precomputed value for the subexpression as KNOWN_RET.  */
4378 
4379   if (ARITHMETIC_P (x))
4380     {
4381       rtx x0 = XEXP (x, 0);
4382       rtx x1 = XEXP (x, 1);
4383 
4384       /* Check the first level.  */
4385       if (x0 == x1)
4386 	return
4387 	  num_sign_bit_copies1 (x, mode, x0, mode,
4388 				cached_num_sign_bit_copies (x0, mode, known_x,
4389 							    known_mode,
4390 							    known_ret));
4391 
4392       /* Check the second level.  */
4393       if (ARITHMETIC_P (x0)
4394 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4395 	return
4396 	  num_sign_bit_copies1 (x, mode, x1, mode,
4397 				cached_num_sign_bit_copies (x1, mode, known_x,
4398 							    known_mode,
4399 							    known_ret));
4400 
4401       if (ARITHMETIC_P (x1)
4402 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4403 	return
4404 	  num_sign_bit_copies1 (x, mode, x0, mode,
4405 				cached_num_sign_bit_copies (x0, mode, known_x,
4406 							    known_mode,
4407 							    known_ret));
4408     }
4409 
4410   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4411 }
4412 
4413 /* Return the number of bits at the high-order end of X that are known to
4414    be equal to the sign bit.  X will be used in mode MODE; if MODE is
4415    VOIDmode, X will be used in its own mode.  The returned value  will always
4416    be between 1 and the number of bits in MODE.  */
4417 
4418 static unsigned int
4419 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4420 		      enum machine_mode known_mode,
4421 		      unsigned int known_ret)
4422 {
4423   enum rtx_code code = GET_CODE (x);
4424   unsigned int bitwidth = GET_MODE_PRECISION (mode);
4425   int num0, num1, result;
4426   unsigned HOST_WIDE_INT nonzero;
4427 
4428   /* If we weren't given a mode, use the mode of X.  If the mode is still
4429      VOIDmode, we don't know anything.  Likewise if one of the modes is
4430      floating-point.  */
4431 
4432   if (mode == VOIDmode)
4433     mode = GET_MODE (x);
4434 
4435   if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4436       || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4437     return 1;
4438 
4439   /* For a smaller object, just ignore the high bits.  */
4440   if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4441     {
4442       num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4443 					 known_x, known_mode, known_ret);
4444       return MAX (1,
4445 		  num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4446     }
4447 
4448   if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4449     {
4450 #ifndef WORD_REGISTER_OPERATIONS
4451       /* If this machine does not do all register operations on the entire
4452 	 register and MODE is wider than the mode of X, we can say nothing
4453 	 at all about the high-order bits.  */
4454       return 1;
4455 #else
4456       /* Likewise on machines that do, if the mode of the object is smaller
4457 	 than a word and loads of that size don't sign extend, we can say
4458 	 nothing about the high order bits.  */
4459       if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4460 #ifdef LOAD_EXTEND_OP
4461 	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4462 #endif
4463 	  )
4464 	return 1;
4465 #endif
4466     }
4467 
4468   switch (code)
4469     {
4470     case REG:
4471 
4472 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4473       /* If pointers extend signed and this is a pointer in Pmode, say that
4474 	 all the bits above ptr_mode are known to be sign bit copies.  */
4475       /* As we do not know which address space the pointer is refering to,
4476 	 we can do this only if the target does not support different pointer
4477 	 or address modes depending on the address space.  */
4478       if (target_default_pointer_address_modes_p ()
4479 	  && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4480 	  && mode == Pmode && REG_POINTER (x))
4481 	return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4482 #endif
4483 
4484       {
4485 	unsigned int copies_for_hook = 1, copies = 1;
4486 	rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4487 						     known_mode, known_ret,
4488 						     &copies_for_hook);
4489 
4490 	if (new_rtx)
4491 	  copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4492 					       known_mode, known_ret);
4493 
4494 	if (copies > 1 || copies_for_hook > 1)
4495 	  return MAX (copies, copies_for_hook);
4496 
4497 	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
4498       }
4499       break;
4500 
4501     case MEM:
4502 #ifdef LOAD_EXTEND_OP
4503       /* Some RISC machines sign-extend all loads of smaller than a word.  */
4504       if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4505 	return MAX (1, ((int) bitwidth
4506 			- (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4507 #endif
4508       break;
4509 
4510     case CONST_INT:
4511       /* If the constant is negative, take its 1's complement and remask.
4512 	 Then see how many zero bits we have.  */
4513       nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4514       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4515 	  && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4516 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4517 
4518       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4519 
4520     case SUBREG:
4521       /* If this is a SUBREG for a promoted object that is sign-extended
4522 	 and we are looking at it in a wider mode, we know that at least the
4523 	 high-order bits are known to be sign bit copies.  */
4524 
4525       if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4526 	{
4527 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4528 					     known_x, known_mode, known_ret);
4529 	  return MAX ((int) bitwidth
4530 		      - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4531 		      num0);
4532 	}
4533 
4534       /* For a smaller object, just ignore the high bits.  */
4535       if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4536 	{
4537 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4538 					     known_x, known_mode, known_ret);
4539 	  return MAX (1, (num0
4540 			  - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4541 				   - bitwidth)));
4542 	}
4543 
4544 #ifdef WORD_REGISTER_OPERATIONS
4545 #ifdef LOAD_EXTEND_OP
4546       /* For paradoxical SUBREGs on machines where all register operations
4547 	 affect the entire register, just look inside.  Note that we are
4548 	 passing MODE to the recursive call, so the number of sign bit copies
4549 	 will remain relative to that mode, not the inner mode.  */
4550 
4551       /* This works only if loads sign extend.  Otherwise, if we get a
4552 	 reload for the inner part, it may be loaded from the stack, and
4553 	 then we lose all sign bit copies that existed before the store
4554 	 to the stack.  */
4555 
4556       if (paradoxical_subreg_p (x)
4557 	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4558 	  && MEM_P (SUBREG_REG (x)))
4559 	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4560 					   known_x, known_mode, known_ret);
4561 #endif
4562 #endif
4563       break;
4564 
4565     case SIGN_EXTRACT:
4566       if (CONST_INT_P (XEXP (x, 1)))
4567 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4568       break;
4569 
4570     case SIGN_EXTEND:
4571       return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4572 	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4573 					    known_x, known_mode, known_ret));
4574 
4575     case TRUNCATE:
4576       /* For a smaller object, just ignore the high bits.  */
4577       num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4578 					 known_x, known_mode, known_ret);
4579       return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4580 				    - bitwidth)));
4581 
4582     case NOT:
4583       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4584 					 known_x, known_mode, known_ret);
4585 
4586     case ROTATE:       case ROTATERT:
4587       /* If we are rotating left by a number of bits less than the number
4588 	 of sign bit copies, we can just subtract that amount from the
4589 	 number.  */
4590       if (CONST_INT_P (XEXP (x, 1))
4591 	  && INTVAL (XEXP (x, 1)) >= 0
4592 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4593 	{
4594 	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4595 					     known_x, known_mode, known_ret);
4596 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4597 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4598 	}
4599       break;
4600 
4601     case NEG:
4602       /* In general, this subtracts one sign bit copy.  But if the value
4603 	 is known to be positive, the number of sign bit copies is the
4604 	 same as that of the input.  Finally, if the input has just one bit
4605 	 that might be nonzero, all the bits are copies of the sign bit.  */
4606       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4607 					 known_x, known_mode, known_ret);
4608       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4609 	return num0 > 1 ? num0 - 1 : 1;
4610 
4611       nonzero = nonzero_bits (XEXP (x, 0), mode);
4612       if (nonzero == 1)
4613 	return bitwidth;
4614 
4615       if (num0 > 1
4616 	  && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4617 	num0--;
4618 
4619       return num0;
4620 
4621     case IOR:   case AND:   case XOR:
4622     case SMIN:  case SMAX:  case UMIN:  case UMAX:
4623       /* Logical operations will preserve the number of sign-bit copies.
4624 	 MIN and MAX operations always return one of the operands.  */
4625       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4626 					 known_x, known_mode, known_ret);
4627       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4628 					 known_x, known_mode, known_ret);
4629 
4630       /* If num1 is clearing some of the top bits then regardless of
4631 	 the other term, we are guaranteed to have at least that many
4632 	 high-order zero bits.  */
4633       if (code == AND
4634 	  && num1 > 1
4635 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
4636 	  && CONST_INT_P (XEXP (x, 1))
4637 	  && (UINTVAL (XEXP (x, 1))
4638 	      & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4639 	return num1;
4640 
4641       /* Similarly for IOR when setting high-order bits.  */
4642       if (code == IOR
4643 	  && num1 > 1
4644 	  && bitwidth <= HOST_BITS_PER_WIDE_INT
4645 	  && CONST_INT_P (XEXP (x, 1))
4646 	  && (UINTVAL (XEXP (x, 1))
4647 	      & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4648 	return num1;
4649 
4650       return MIN (num0, num1);
4651 
4652     case PLUS:  case MINUS:
4653       /* For addition and subtraction, we can have a 1-bit carry.  However,
4654 	 if we are subtracting 1 from a positive number, there will not
4655 	 be such a carry.  Furthermore, if the positive number is known to
4656 	 be 0 or 1, we know the result is either -1 or 0.  */
4657 
4658       if (code == PLUS && XEXP (x, 1) == constm1_rtx
4659 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4660 	{
4661 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4662 	  if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4663 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4664 		    : bitwidth - floor_log2 (nonzero) - 1);
4665 	}
4666 
4667       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4668 					 known_x, known_mode, known_ret);
4669       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4670 					 known_x, known_mode, known_ret);
4671       result = MAX (1, MIN (num0, num1) - 1);
4672 
4673       return result;
4674 
4675     case MULT:
4676       /* The number of bits of the product is the sum of the number of
4677 	 bits of both terms.  However, unless one of the terms if known
4678 	 to be positive, we must allow for an additional bit since negating
4679 	 a negative number can remove one sign bit copy.  */
4680 
4681       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4682 					 known_x, known_mode, known_ret);
4683       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4684 					 known_x, known_mode, known_ret);
4685 
4686       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4687       if (result > 0
4688 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4689 	      || (((nonzero_bits (XEXP (x, 0), mode)
4690 		    & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4691 		  && ((nonzero_bits (XEXP (x, 1), mode)
4692 		       & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4693 		      != 0))))
4694 	result--;
4695 
4696       return MAX (1, result);
4697 
4698     case UDIV:
4699       /* The result must be <= the first operand.  If the first operand
4700 	 has the high bit set, we know nothing about the number of sign
4701 	 bit copies.  */
4702       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4703 	return 1;
4704       else if ((nonzero_bits (XEXP (x, 0), mode)
4705 		& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4706 	return 1;
4707       else
4708 	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4709 					   known_x, known_mode, known_ret);
4710 
4711     case UMOD:
4712       /* The result must be <= the second operand.  If the second operand
4713 	 has (or just might have) the high bit set, we know nothing about
4714 	 the number of sign bit copies.  */
4715       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4716 	return 1;
4717       else if ((nonzero_bits (XEXP (x, 1), mode)
4718 		& ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4719 	return 1;
4720       else
4721 	return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4722 					   known_x, known_mode, known_ret);
4723 
4724     case DIV:
4725       /* Similar to unsigned division, except that we have to worry about
4726 	 the case where the divisor is negative, in which case we have
4727 	 to add 1.  */
4728       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4729 					   known_x, known_mode, known_ret);
4730       if (result > 1
4731 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4732 	      || (nonzero_bits (XEXP (x, 1), mode)
4733 		  & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4734 	result--;
4735 
4736       return result;
4737 
4738     case MOD:
4739       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4740 					   known_x, known_mode, known_ret);
4741       if (result > 1
4742 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4743 	      || (nonzero_bits (XEXP (x, 1), mode)
4744 		  & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4745 	result--;
4746 
4747       return result;
4748 
4749     case ASHIFTRT:
4750       /* Shifts by a constant add to the number of bits equal to the
4751 	 sign bit.  */
4752       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4753 					 known_x, known_mode, known_ret);
4754       if (CONST_INT_P (XEXP (x, 1))
4755 	  && INTVAL (XEXP (x, 1)) > 0
4756 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4757 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4758 
4759       return num0;
4760 
4761     case ASHIFT:
4762       /* Left shifts destroy copies.  */
4763       if (!CONST_INT_P (XEXP (x, 1))
4764 	  || INTVAL (XEXP (x, 1)) < 0
4765 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4766 	  || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4767 	return 1;
4768 
4769       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4770 					 known_x, known_mode, known_ret);
4771       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4772 
4773     case IF_THEN_ELSE:
4774       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4775 					 known_x, known_mode, known_ret);
4776       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4777 					 known_x, known_mode, known_ret);
4778       return MIN (num0, num1);
4779 
4780     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4781     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4782     case GEU: case GTU: case LEU: case LTU:
4783     case UNORDERED: case ORDERED:
4784       /* If the constant is negative, take its 1's complement and remask.
4785 	 Then see how many zero bits we have.  */
4786       nonzero = STORE_FLAG_VALUE;
4787       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4788 	  && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4789 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4790 
4791       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4792 
4793     default:
4794       break;
4795     }
4796 
4797   /* If we haven't been able to figure it out by one of the above rules,
4798      see if some of the high-order bits are known to be zero.  If so,
4799      count those bits and return one less than that amount.  If we can't
4800      safely compute the mask for this mode, always return BITWIDTH.  */
4801 
4802   bitwidth = GET_MODE_PRECISION (mode);
4803   if (bitwidth > HOST_BITS_PER_WIDE_INT)
4804     return 1;
4805 
4806   nonzero = nonzero_bits (x, mode);
4807   return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4808 	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4809 }
4810 
4811 /* Calculate the rtx_cost of a single instruction.  A return value of
4812    zero indicates an instruction pattern without a known cost.  */
4813 
4814 int
4815 insn_rtx_cost (rtx pat, bool speed)
4816 {
4817   int i, cost;
4818   rtx set;
4819 
4820   /* Extract the single set rtx from the instruction pattern.
4821      We can't use single_set since we only have the pattern.  */
4822   if (GET_CODE (pat) == SET)
4823     set = pat;
4824   else if (GET_CODE (pat) == PARALLEL)
4825     {
4826       set = NULL_RTX;
4827       for (i = 0; i < XVECLEN (pat, 0); i++)
4828 	{
4829 	  rtx x = XVECEXP (pat, 0, i);
4830 	  if (GET_CODE (x) == SET)
4831 	    {
4832 	      if (set)
4833 		return 0;
4834 	      set = x;
4835 	    }
4836 	}
4837       if (!set)
4838 	return 0;
4839     }
4840   else
4841     return 0;
4842 
4843   cost = set_src_cost (SET_SRC (set), speed);
4844   return cost > 0 ? cost : COSTS_N_INSNS (1);
4845 }
4846 
4847 /* Given an insn INSN and condition COND, return the condition in a
4848    canonical form to simplify testing by callers.  Specifically:
4849 
4850    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4851    (2) Both operands will be machine operands; (cc0) will have been replaced.
4852    (3) If an operand is a constant, it will be the second operand.
4853    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4854        for GE, GEU, and LEU.
4855 
4856    If the condition cannot be understood, or is an inequality floating-point
4857    comparison which needs to be reversed, 0 will be returned.
4858 
4859    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4860 
4861    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4862    insn used in locating the condition was found.  If a replacement test
4863    of the condition is desired, it should be placed in front of that
4864    insn and we will be sure that the inputs are still valid.
4865 
4866    If WANT_REG is nonzero, we wish the condition to be relative to that
4867    register, if possible.  Therefore, do not canonicalize the condition
4868    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4869    to be a compare to a CC mode register.
4870 
4871    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4872    and at INSN.  */
4873 
4874 rtx
4875 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4876 			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4877 {
4878   enum rtx_code code;
4879   rtx prev = insn;
4880   const_rtx set;
4881   rtx tem;
4882   rtx op0, op1;
4883   int reverse_code = 0;
4884   enum machine_mode mode;
4885   basic_block bb = BLOCK_FOR_INSN (insn);
4886 
4887   code = GET_CODE (cond);
4888   mode = GET_MODE (cond);
4889   op0 = XEXP (cond, 0);
4890   op1 = XEXP (cond, 1);
4891 
4892   if (reverse)
4893     code = reversed_comparison_code (cond, insn);
4894   if (code == UNKNOWN)
4895     return 0;
4896 
4897   if (earliest)
4898     *earliest = insn;
4899 
4900   /* If we are comparing a register with zero, see if the register is set
4901      in the previous insn to a COMPARE or a comparison operation.  Perform
4902      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4903      in cse.c  */
4904 
4905   while ((GET_RTX_CLASS (code) == RTX_COMPARE
4906 	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4907 	 && op1 == CONST0_RTX (GET_MODE (op0))
4908 	 && op0 != want_reg)
4909     {
4910       /* Set nonzero when we find something of interest.  */
4911       rtx x = 0;
4912 
4913 #ifdef HAVE_cc0
4914       /* If comparison with cc0, import actual comparison from compare
4915 	 insn.  */
4916       if (op0 == cc0_rtx)
4917 	{
4918 	  if ((prev = prev_nonnote_insn (prev)) == 0
4919 	      || !NONJUMP_INSN_P (prev)
4920 	      || (set = single_set (prev)) == 0
4921 	      || SET_DEST (set) != cc0_rtx)
4922 	    return 0;
4923 
4924 	  op0 = SET_SRC (set);
4925 	  op1 = CONST0_RTX (GET_MODE (op0));
4926 	  if (earliest)
4927 	    *earliest = prev;
4928 	}
4929 #endif
4930 
4931       /* If this is a COMPARE, pick up the two things being compared.  */
4932       if (GET_CODE (op0) == COMPARE)
4933 	{
4934 	  op1 = XEXP (op0, 1);
4935 	  op0 = XEXP (op0, 0);
4936 	  continue;
4937 	}
4938       else if (!REG_P (op0))
4939 	break;
4940 
4941       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4942 	 stop if it isn't a single set or if it has a REG_INC note because
4943 	 we don't want to bother dealing with it.  */
4944 
4945       prev = prev_nonnote_nondebug_insn (prev);
4946 
4947       if (prev == 0
4948 	  || !NONJUMP_INSN_P (prev)
4949 	  || FIND_REG_INC_NOTE (prev, NULL_RTX)
4950 	  /* In cfglayout mode, there do not have to be labels at the
4951 	     beginning of a block, or jumps at the end, so the previous
4952 	     conditions would not stop us when we reach bb boundary.  */
4953 	  || BLOCK_FOR_INSN (prev) != bb)
4954 	break;
4955 
4956       set = set_of (op0, prev);
4957 
4958       if (set
4959 	  && (GET_CODE (set) != SET
4960 	      || !rtx_equal_p (SET_DEST (set), op0)))
4961 	break;
4962 
4963       /* If this is setting OP0, get what it sets it to if it looks
4964 	 relevant.  */
4965       if (set)
4966 	{
4967 	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4968 #ifdef FLOAT_STORE_FLAG_VALUE
4969 	  REAL_VALUE_TYPE fsfv;
4970 #endif
4971 
4972 	  /* ??? We may not combine comparisons done in a CCmode with
4973 	     comparisons not done in a CCmode.  This is to aid targets
4974 	     like Alpha that have an IEEE compliant EQ instruction, and
4975 	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
4976 	     actually artificial, simply to prevent the combination, but
4977 	     should not affect other platforms.
4978 
4979 	     However, we must allow VOIDmode comparisons to match either
4980 	     CCmode or non-CCmode comparison, because some ports have
4981 	     modeless comparisons inside branch patterns.
4982 
4983 	     ??? This mode check should perhaps look more like the mode check
4984 	     in simplify_comparison in combine.  */
4985 
4986 	  if ((GET_CODE (SET_SRC (set)) == COMPARE
4987 	       || (((code == NE
4988 		     || (code == LT
4989 			 && val_signbit_known_set_p (inner_mode,
4990 						     STORE_FLAG_VALUE))
4991 #ifdef FLOAT_STORE_FLAG_VALUE
4992 		     || (code == LT
4993 			 && SCALAR_FLOAT_MODE_P (inner_mode)
4994 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4995 			     REAL_VALUE_NEGATIVE (fsfv)))
4996 #endif
4997 		     ))
4998 		   && COMPARISON_P (SET_SRC (set))))
4999 	      && (((GET_MODE_CLASS (mode) == MODE_CC)
5000 		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5001 		  || mode == VOIDmode || inner_mode == VOIDmode))
5002 	    x = SET_SRC (set);
5003 	  else if (((code == EQ
5004 		     || (code == GE
5005 			 && val_signbit_known_set_p (inner_mode,
5006 						     STORE_FLAG_VALUE))
5007 #ifdef FLOAT_STORE_FLAG_VALUE
5008 		     || (code == GE
5009 			 && SCALAR_FLOAT_MODE_P (inner_mode)
5010 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5011 			     REAL_VALUE_NEGATIVE (fsfv)))
5012 #endif
5013 		     ))
5014 		   && COMPARISON_P (SET_SRC (set))
5015 		   && (((GET_MODE_CLASS (mode) == MODE_CC)
5016 			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
5017 		       || mode == VOIDmode || inner_mode == VOIDmode))
5018 
5019 	    {
5020 	      reverse_code = 1;
5021 	      x = SET_SRC (set);
5022 	    }
5023 	  else
5024 	    break;
5025 	}
5026 
5027       else if (reg_set_p (op0, prev))
5028 	/* If this sets OP0, but not directly, we have to give up.  */
5029 	break;
5030 
5031       if (x)
5032 	{
5033 	  /* If the caller is expecting the condition to be valid at INSN,
5034 	     make sure X doesn't change before INSN.  */
5035 	  if (valid_at_insn_p)
5036 	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5037 	      break;
5038 	  if (COMPARISON_P (x))
5039 	    code = GET_CODE (x);
5040 	  if (reverse_code)
5041 	    {
5042 	      code = reversed_comparison_code (x, prev);
5043 	      if (code == UNKNOWN)
5044 		return 0;
5045 	      reverse_code = 0;
5046 	    }
5047 
5048 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5049 	  if (earliest)
5050 	    *earliest = prev;
5051 	}
5052     }
5053 
5054   /* If constant is first, put it last.  */
5055   if (CONSTANT_P (op0))
5056     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5057 
5058   /* If OP0 is the result of a comparison, we weren't able to find what
5059      was really being compared, so fail.  */
5060   if (!allow_cc_mode
5061       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5062     return 0;
5063 
5064   /* Canonicalize any ordered comparison with integers involving equality
5065      if we can do computations in the relevant mode and we do not
5066      overflow.  */
5067 
5068   if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5069       && CONST_INT_P (op1)
5070       && GET_MODE (op0) != VOIDmode
5071       && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5072     {
5073       HOST_WIDE_INT const_val = INTVAL (op1);
5074       unsigned HOST_WIDE_INT uconst_val = const_val;
5075       unsigned HOST_WIDE_INT max_val
5076 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5077 
5078       switch (code)
5079 	{
5080 	case LE:
5081 	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5082 	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5083 	  break;
5084 
5085 	/* When cross-compiling, const_val might be sign-extended from
5086 	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5087 	case GE:
5088 	  if ((const_val & max_val)
5089 	      != ((unsigned HOST_WIDE_INT) 1
5090 		  << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5091 	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5092 	  break;
5093 
5094 	case LEU:
5095 	  if (uconst_val < max_val)
5096 	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5097 	  break;
5098 
5099 	case GEU:
5100 	  if (uconst_val != 0)
5101 	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5102 	  break;
5103 
5104 	default:
5105 	  break;
5106 	}
5107     }
5108 
5109   /* Never return CC0; return zero instead.  */
5110   if (CC0_P (op0))
5111     return 0;
5112 
5113   return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5114 }
5115 
5116 /* Given a jump insn JUMP, return the condition that will cause it to branch
5117    to its JUMP_LABEL.  If the condition cannot be understood, or is an
5118    inequality floating-point comparison which needs to be reversed, 0 will
5119    be returned.
5120 
5121    If EARLIEST is nonzero, it is a pointer to a place where the earliest
5122    insn used in locating the condition was found.  If a replacement test
5123    of the condition is desired, it should be placed in front of that
5124    insn and we will be sure that the inputs are still valid.  If EARLIEST
5125    is null, the returned condition will be valid at INSN.
5126 
5127    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5128    compare CC mode register.
5129 
5130    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
5131 
5132 rtx
5133 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5134 {
5135   rtx cond;
5136   int reverse;
5137   rtx set;
5138 
5139   /* If this is not a standard conditional jump, we can't parse it.  */
5140   if (!JUMP_P (jump)
5141       || ! any_condjump_p (jump))
5142     return 0;
5143   set = pc_set (jump);
5144 
5145   cond = XEXP (SET_SRC (set), 0);
5146 
5147   /* If this branches to JUMP_LABEL when the condition is false, reverse
5148      the condition.  */
5149   reverse
5150     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5151       && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5152 
5153   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5154 				 allow_cc_mode, valid_at_insn_p);
5155 }
5156 
5157 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5158    TARGET_MODE_REP_EXTENDED.
5159 
5160    Note that we assume that the property of
5161    TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5162    narrower than mode B.  I.e., if A is a mode narrower than B then in
5163    order to be able to operate on it in mode B, mode A needs to
5164    satisfy the requirements set by the representation of mode B.  */
5165 
5166 static void
5167 init_num_sign_bit_copies_in_rep (void)
5168 {
5169   enum machine_mode mode, in_mode;
5170 
5171   for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5172        in_mode = GET_MODE_WIDER_MODE (mode))
5173     for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5174 	 mode = GET_MODE_WIDER_MODE (mode))
5175       {
5176 	enum machine_mode i;
5177 
5178 	/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5179 	   extends to the next widest mode.  */
5180 	gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5181 		    || GET_MODE_WIDER_MODE (mode) == in_mode);
5182 
5183 	/* We are in in_mode.  Count how many bits outside of mode
5184 	   have to be copies of the sign-bit.  */
5185 	for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5186 	  {
5187 	    enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5188 
5189 	    if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5190 		/* We can only check sign-bit copies starting from the
5191 		   top-bit.  In order to be able to check the bits we
5192 		   have already seen we pretend that subsequent bits
5193 		   have to be sign-bit copies too.  */
5194 		|| num_sign_bit_copies_in_rep [in_mode][mode])
5195 	      num_sign_bit_copies_in_rep [in_mode][mode]
5196 		+= GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5197 	  }
5198       }
5199 }
5200 
5201 /* Suppose that truncation from the machine mode of X to MODE is not a
5202    no-op.  See if there is anything special about X so that we can
5203    assume it already contains a truncated value of MODE.  */
5204 
5205 bool
5206 truncated_to_mode (enum machine_mode mode, const_rtx x)
5207 {
5208   /* This register has already been used in MODE without explicit
5209      truncation.  */
5210   if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5211     return true;
5212 
5213   /* See if we already satisfy the requirements of MODE.  If yes we
5214      can just switch to MODE.  */
5215   if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5216       && (num_sign_bit_copies (x, GET_MODE (x))
5217 	  >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5218     return true;
5219 
5220   return false;
5221 }
5222 
5223 /* Initialize non_rtx_starting_operands, which is used to speed up
5224    for_each_rtx.  */
5225 void
5226 init_rtlanal (void)
5227 {
5228   int i;
5229   for (i = 0; i < NUM_RTX_CODE; i++)
5230     {
5231       const char *format = GET_RTX_FORMAT (i);
5232       const char *first = strpbrk (format, "eEV");
5233       non_rtx_starting_operands[i] = first ? first - format : -1;
5234     }
5235 
5236   init_num_sign_bit_copies_in_rep ();
5237 }
5238 
5239 /* Check whether this is a constant pool constant.  */
5240 bool
5241 constant_pool_constant_p (rtx x)
5242 {
5243   x = avoid_constant_pool_reference (x);
5244   return GET_CODE (x) == CONST_DOUBLE;
5245 }
5246 
5247 /* If M is a bitmask that selects a field of low-order bits within an item but
5248    not the entire word, return the length of the field.  Return -1 otherwise.
5249    M is used in machine mode MODE.  */
5250 
5251 int
5252 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5253 {
5254   if (mode != VOIDmode)
5255     {
5256       if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5257 	return -1;
5258       m &= GET_MODE_MASK (mode);
5259     }
5260 
5261   return exact_log2 (m + 1);
5262 }
5263