1 /* Instruction scheduling pass. This file contains definitions used 2 internally in the scheduler. 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 5 Free Software Foundation, Inc. 6 7 This file is part of GCC. 8 9 GCC is free software; you can redistribute it and/or modify it under 10 the terms of the GNU General Public License as published by the Free 11 Software Foundation; either version 3, or (at your option) any later 12 version. 13 14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 15 WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with GCC; see the file COPYING3. If not see 21 <http://www.gnu.org/licenses/>. */ 22 23 #ifndef GCC_SCHED_INT_H 24 #define GCC_SCHED_INT_H 25 26 #ifdef INSN_SCHEDULING 27 28 /* For state_t. */ 29 #include "insn-attr.h" 30 #include "df.h" 31 #include "basic-block.h" 32 33 /* For VEC (int, heap). */ 34 #include "vecprim.h" 35 36 /* Identificator of a scheduler pass. */ 37 enum sched_pass_id_t { SCHED_PASS_UNKNOWN, SCHED_RGN_PASS, SCHED_EBB_PASS, 38 SCHED_SMS_PASS, SCHED_SEL_PASS }; 39 40 typedef VEC (basic_block, heap) *bb_vec_t; 41 typedef VEC (rtx, heap) *insn_vec_t; 42 typedef VEC (rtx, heap) *rtx_vec_t; 43 44 extern void sched_init_bbs (void); 45 46 extern void sched_extend_luids (void); 47 extern void sched_init_insn_luid (rtx); 48 extern void sched_init_luids (bb_vec_t); 49 extern void sched_finish_luids (void); 50 51 extern void sched_extend_target (void); 52 53 extern void haifa_init_h_i_d (bb_vec_t); 54 extern void haifa_finish_h_i_d (void); 55 56 /* Hooks that are common to all the schedulers. */ 57 struct common_sched_info_def 58 { 59 /* Called after blocks were rearranged due to movement of jump instruction. 60 The first parameter - index of basic block, in which jump currently is. 61 The second parameter - index of basic block, in which jump used 62 to be. 63 The third parameter - index of basic block, that follows the second 64 parameter. */ 65 void (*fix_recovery_cfg) (int, int, int); 66 67 /* Called to notify frontend, that new basic block is being added. 68 The first parameter - new basic block. 69 The second parameter - block, after which new basic block is being added, 70 or EXIT_BLOCK_PTR, if recovery block is being added, 71 or NULL, if standalone block is being added. */ 72 void (*add_block) (basic_block, basic_block); 73 74 /* Estimate number of insns in the basic block. */ 75 int (*estimate_number_of_insns) (basic_block); 76 77 /* Given a non-insn (!INSN_P (x)) return 78 -1 - if this rtx don't need a luid. 79 0 - if it should have the same luid as the previous insn. 80 1 - if it needs a separate luid. */ 81 int (*luid_for_non_insn) (rtx); 82 83 /* Scheduler pass identifier. It is preferably used in assertions. */ 84 enum sched_pass_id_t sched_pass_id; 85 }; 86 87 extern struct common_sched_info_def *common_sched_info; 88 89 extern const struct common_sched_info_def haifa_common_sched_info; 90 91 /* Return true if selective scheduling pass is working. */ 92 static inline bool 93 sel_sched_p (void) 94 { 95 return common_sched_info->sched_pass_id == SCHED_SEL_PASS; 96 } 97 98 /* Returns maximum priority that an insn was assigned to. */ 99 extern int get_rgn_sched_max_insns_priority (void); 100 101 /* Increases effective priority for INSN by AMOUNT. */ 102 extern void sel_add_to_insn_priority (rtx, int); 103 104 /* True if during selective scheduling we need to emulate some of haifa 105 scheduler behaviour. */ 106 extern int sched_emulate_haifa_p; 107 108 /* Mapping from INSN_UID to INSN_LUID. In the end all other per insn data 109 structures should be indexed by luid. */ 110 extern VEC (int, heap) *sched_luids; 111 #define INSN_LUID(INSN) (VEC_index (int, sched_luids, INSN_UID (INSN))) 112 #define LUID_BY_UID(UID) (VEC_index (int, sched_luids, UID)) 113 114 #define SET_INSN_LUID(INSN, LUID) \ 115 (VEC_replace (int, sched_luids, INSN_UID (INSN), (LUID))) 116 117 /* The highest INSN_LUID. */ 118 extern int sched_max_luid; 119 120 extern int insn_luid (rtx); 121 122 /* This list holds ripped off notes from the current block. These notes will 123 be attached to the beginning of the block when its scheduling is 124 finished. */ 125 extern rtx note_list; 126 127 extern void remove_notes (rtx, rtx); 128 extern rtx restore_other_notes (rtx, basic_block); 129 extern void sched_insns_init (rtx); 130 extern void sched_insns_finish (void); 131 132 extern void *xrecalloc (void *, size_t, size_t, size_t); 133 134 extern void reemit_notes (rtx); 135 136 /* Functions in haifa-sched.c. */ 137 extern int haifa_classify_insn (const_rtx); 138 139 /* Functions in sel-sched-ir.c. */ 140 extern void sel_find_rgns (void); 141 extern void sel_mark_hard_insn (rtx); 142 143 extern size_t dfa_state_size; 144 145 extern void advance_state (state_t); 146 147 extern void setup_sched_dump (void); 148 extern void sched_init (void); 149 extern void sched_finish (void); 150 151 extern bool sel_insn_is_speculation_check (rtx); 152 153 /* Describe the ready list of the scheduler. 154 VEC holds space enough for all insns in the current region. VECLEN 155 says how many exactly. 156 FIRST is the index of the element with the highest priority; i.e. the 157 last one in the ready list, since elements are ordered by ascending 158 priority. 159 N_READY determines how many insns are on the ready list. 160 N_DEBUG determines how many debug insns are on the ready list. */ 161 struct ready_list 162 { 163 rtx *vec; 164 int veclen; 165 int first; 166 int n_ready; 167 int n_debug; 168 }; 169 170 extern char *ready_try; 171 extern struct ready_list ready; 172 173 extern int max_issue (struct ready_list *, int, state_t, bool, int *); 174 175 extern void ebb_compute_jump_reg_dependencies (rtx, regset); 176 177 extern edge find_fallthru_edge_from (basic_block); 178 179 extern void (* sched_init_only_bb) (basic_block, basic_block); 180 extern basic_block (* sched_split_block) (basic_block, rtx); 181 extern basic_block sched_split_block_1 (basic_block, rtx); 182 extern basic_block (* sched_create_empty_bb) (basic_block); 183 extern basic_block sched_create_empty_bb_1 (basic_block); 184 185 extern basic_block sched_create_recovery_block (basic_block *); 186 extern void sched_create_recovery_edges (basic_block, basic_block, 187 basic_block); 188 189 /* Pointer to data describing the current DFA state. */ 190 extern state_t curr_state; 191 192 /* Type to represent status of a dependence. */ 193 typedef int ds_t; 194 195 /* Type to represent weakness of speculative dependence. */ 196 typedef int dw_t; 197 198 extern enum reg_note ds_to_dk (ds_t); 199 extern ds_t dk_to_ds (enum reg_note); 200 201 /* Information about the dependency. */ 202 struct _dep 203 { 204 /* Producer. */ 205 rtx pro; 206 207 /* Consumer. */ 208 rtx con; 209 210 /* Dependency major type. This field is superseded by STATUS below. 211 Though, it is still in place because some targets use it. */ 212 enum reg_note type; 213 214 /* Dependency status. This field holds all dependency types and additional 215 information for speculative dependencies. */ 216 ds_t status; 217 218 /* Cached cost of the dependency. */ 219 int cost; 220 }; 221 222 typedef struct _dep dep_def; 223 typedef dep_def *dep_t; 224 225 #define DEP_PRO(D) ((D)->pro) 226 #define DEP_CON(D) ((D)->con) 227 #define DEP_TYPE(D) ((D)->type) 228 #define DEP_STATUS(D) ((D)->status) 229 #define DEP_COST(D) ((D)->cost) 230 231 #define UNKNOWN_DEP_COST INT_MIN 232 233 /* Functions to work with dep. */ 234 235 extern void init_dep_1 (dep_t, rtx, rtx, enum reg_note, ds_t); 236 extern void init_dep (dep_t, rtx, rtx, enum reg_note); 237 238 extern void sd_debug_dep (dep_t); 239 240 /* Definition of this struct resides below. */ 241 struct _dep_node; 242 typedef struct _dep_node *dep_node_t; 243 244 /* A link in the dependency list. This is essentially an equivalent of a 245 single {INSN, DEPS}_LIST rtx. */ 246 struct _dep_link 247 { 248 /* Dep node with all the data. */ 249 dep_node_t node; 250 251 /* Next link in the list. For the last one it is NULL. */ 252 struct _dep_link *next; 253 254 /* Pointer to the next field of the previous link in the list. 255 For the first link this points to the deps_list->first. 256 257 With help of this field it is easy to remove and insert links to the 258 list. */ 259 struct _dep_link **prev_nextp; 260 }; 261 typedef struct _dep_link *dep_link_t; 262 263 #define DEP_LINK_NODE(N) ((N)->node) 264 #define DEP_LINK_NEXT(N) ((N)->next) 265 #define DEP_LINK_PREV_NEXTP(N) ((N)->prev_nextp) 266 267 /* Macros to work dep_link. For most usecases only part of the dependency 268 information is need. These macros conveniently provide that piece of 269 information. */ 270 271 #define DEP_LINK_DEP(N) (DEP_NODE_DEP (DEP_LINK_NODE (N))) 272 #define DEP_LINK_PRO(N) (DEP_PRO (DEP_LINK_DEP (N))) 273 #define DEP_LINK_CON(N) (DEP_CON (DEP_LINK_DEP (N))) 274 #define DEP_LINK_TYPE(N) (DEP_TYPE (DEP_LINK_DEP (N))) 275 #define DEP_LINK_STATUS(N) (DEP_STATUS (DEP_LINK_DEP (N))) 276 277 /* A list of dep_links. */ 278 struct _deps_list 279 { 280 /* First element. */ 281 dep_link_t first; 282 283 /* Total number of elements in the list. */ 284 int n_links; 285 }; 286 typedef struct _deps_list *deps_list_t; 287 288 #define DEPS_LIST_FIRST(L) ((L)->first) 289 #define DEPS_LIST_N_LINKS(L) ((L)->n_links) 290 291 /* Suppose we have a dependence Y between insn pro1 and con1, where pro1 has 292 additional dependents con0 and con2, and con1 is dependent on additional 293 insns pro0 and pro1: 294 295 .con0 pro0 296 . ^ | 297 . | | 298 . | | 299 . X A 300 . | | 301 . | | 302 . | V 303 .pro1--Y-->con1 304 . | ^ 305 . | | 306 . | | 307 . Z B 308 . | | 309 . | | 310 . V | 311 .con2 pro2 312 313 This is represented using a "dep_node" for each dependence arc, which are 314 connected as follows (diagram is centered around Y which is fully shown; 315 other dep_nodes shown partially): 316 317 . +------------+ +--------------+ +------------+ 318 . : dep_node X : | dep_node Y | : dep_node Z : 319 . : : | | : : 320 . : : | | : : 321 . : forw : | forw | : forw : 322 . : +--------+ : | +--------+ | : +--------+ : 323 forw_deps : |dep_link| : | |dep_link| | : |dep_link| : 324 +-----+ : | +----+ | : | | +----+ | | : | +----+ | : 325 |first|----->| |next|-+------+->| |next|-+--+----->| |next|-+--->NULL 326 +-----+ : | +----+ | : | | +----+ | | : | +----+ | : 327 . ^ ^ : | ^ | : | | ^ | | : | | : 328 . | | : | | | : | | | | | : | | : 329 . | +--<----+--+ +--+---<--+--+--+ +--+--+--<---+--+ | : 330 . | : | | | : | | | | | : | | | : 331 . | : | +----+ | : | | +----+ | | : | +----+ | : 332 . | : | |prev| | : | | |prev| | | : | |prev| | : 333 . | : | |next| | : | | |next| | | : | |next| | : 334 . | : | +----+ | : | | +----+ | | : | +----+ | : 335 . | : | | :<-+ | | | |<-+ : | | :<-+ 336 . | : | +----+ | : | | | +----+ | | | : | +----+ | : | 337 . | : | |node|-+----+ | | |node|-+--+--+ : | |node|-+----+ 338 . | : | +----+ | : | | +----+ | | : | +----+ | : 339 . | : | | : | | | | : | | : 340 . | : +--------+ : | +--------+ | : +--------+ : 341 . | : : | | : : 342 . | : SAME pro1 : | +--------+ | : SAME pro1 : 343 . | : DIFF con0 : | |dep | | : DIFF con2 : 344 . | : : | | | | : : 345 . | | | +----+ | | 346 .RTX<------------------------+--+-|pro1| | | 347 .pro1 | | +----+ | | 348 . | | | | 349 . | | +----+ | | 350 .RTX<------------------------+--+-|con1| | | 351 .con1 | | +----+ | | 352 . | | | | | 353 . | | | +----+ | | 354 . | | | |kind| | | 355 . | | | +----+ | | 356 . | : : | | |stat| | | : : 357 . | : DIFF pro0 : | | +----+ | | : DIFF pro2 : 358 . | : SAME con1 : | | | | : SAME con1 : 359 . | : : | +--------+ | : : 360 . | : : | | : : 361 . | : back : | back | : back : 362 . v : +--------+ : | +--------+ | : +--------+ : 363 back_deps : |dep_link| : | |dep_link| | : |dep_link| : 364 +-----+ : | +----+ | : | | +----+ | | : | +----+ | : 365 |first|----->| |next|-+------+->| |next|-+--+----->| |next|-+--->NULL 366 +-----+ : | +----+ | : | | +----+ | | : | +----+ | : 367 . ^ : | ^ | : | | ^ | | : | | : 368 . | : | | | : | | | | | : | | : 369 . +--<----+--+ +--+---<--+--+--+ +--+--+--<---+--+ | : 370 . : | | | : | | | | | : | | | : 371 . : | +----+ | : | | +----+ | | : | +----+ | : 372 . : | |prev| | : | | |prev| | | : | |prev| | : 373 . : | |next| | : | | |next| | | : | |next| | : 374 . : | +----+ | : | | +----+ | | : | +----+ | : 375 . : | | :<-+ | | | |<-+ : | | :<-+ 376 . : | +----+ | : | | | +----+ | | | : | +----+ | : | 377 . : | |node|-+----+ | | |node|-+--+--+ : | |node|-+----+ 378 . : | +----+ | : | | +----+ | | : | +----+ | : 379 . : | | : | | | | : | | : 380 . : +--------+ : | +--------+ | : +--------+ : 381 . : : | | : : 382 . : dep_node A : | dep_node Y | : dep_node B : 383 . +------------+ +--------------+ +------------+ 384 */ 385 386 struct _dep_node 387 { 388 /* Backward link. */ 389 struct _dep_link back; 390 391 /* The dep. */ 392 struct _dep dep; 393 394 /* Forward link. */ 395 struct _dep_link forw; 396 }; 397 398 #define DEP_NODE_BACK(N) (&(N)->back) 399 #define DEP_NODE_DEP(N) (&(N)->dep) 400 #define DEP_NODE_FORW(N) (&(N)->forw) 401 402 /* The following enumeration values tell us what dependencies we 403 should use to implement the barrier. We use true-dependencies for 404 TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */ 405 enum reg_pending_barrier_mode 406 { 407 NOT_A_BARRIER = 0, 408 MOVE_BARRIER, 409 TRUE_BARRIER 410 }; 411 412 /* Whether a register movement is associated with a call. */ 413 enum post_call_group 414 { 415 not_post_call, 416 post_call, 417 post_call_initial 418 }; 419 420 /* Insns which affect pseudo-registers. */ 421 struct deps_reg 422 { 423 rtx uses; 424 rtx sets; 425 rtx implicit_sets; 426 rtx control_uses; 427 rtx clobbers; 428 int uses_length; 429 int clobbers_length; 430 }; 431 432 /* Describe state of dependencies used during sched_analyze phase. */ 433 struct deps_desc 434 { 435 /* The *_insns and *_mems are paired lists. Each pending memory operation 436 will have a pointer to the MEM rtx on one list and a pointer to the 437 containing insn on the other list in the same place in the list. */ 438 439 /* We can't use add_dependence like the old code did, because a single insn 440 may have multiple memory accesses, and hence needs to be on the list 441 once for each memory access. Add_dependence won't let you add an insn 442 to a list more than once. */ 443 444 /* An INSN_LIST containing all insns with pending read operations. */ 445 rtx pending_read_insns; 446 447 /* An EXPR_LIST containing all MEM rtx's which are pending reads. */ 448 rtx pending_read_mems; 449 450 /* An INSN_LIST containing all insns with pending write operations. */ 451 rtx pending_write_insns; 452 453 /* An EXPR_LIST containing all MEM rtx's which are pending writes. */ 454 rtx pending_write_mems; 455 456 /* An INSN_LIST containing all jump insns. */ 457 rtx pending_jump_insns; 458 459 /* We must prevent the above lists from ever growing too large since 460 the number of dependencies produced is at least O(N*N), 461 and execution time is at least O(4*N*N), as a function of the 462 length of these pending lists. */ 463 464 /* Indicates the length of the pending_read list. */ 465 int pending_read_list_length; 466 467 /* Indicates the length of the pending_write list. */ 468 int pending_write_list_length; 469 470 /* Length of the pending memory flush list plus the length of the pending 471 jump insn list. Large functions with no calls may build up extremely 472 large lists. */ 473 int pending_flush_length; 474 475 /* The last insn upon which all memory references must depend. 476 This is an insn which flushed the pending lists, creating a dependency 477 between it and all previously pending memory references. This creates 478 a barrier (or a checkpoint) which no memory reference is allowed to cross. 479 480 This includes all non constant CALL_INSNs. When we do interprocedural 481 alias analysis, this restriction can be relaxed. 482 This may also be an INSN that writes memory if the pending lists grow 483 too large. */ 484 rtx last_pending_memory_flush; 485 486 /* A list of the last function calls we have seen. We use a list to 487 represent last function calls from multiple predecessor blocks. 488 Used to prevent register lifetimes from expanding unnecessarily. */ 489 rtx last_function_call; 490 491 /* A list of the last function calls that may not return normally 492 we have seen. We use a list to represent last function calls from 493 multiple predecessor blocks. Used to prevent moving trapping insns 494 across such calls. */ 495 rtx last_function_call_may_noreturn; 496 497 /* A list of insns which use a pseudo register that does not already 498 cross a call. We create dependencies between each of those insn 499 and the next call insn, to ensure that they won't cross a call after 500 scheduling is done. */ 501 rtx sched_before_next_call; 502 503 /* Similarly, a list of insns which should not cross a branch. */ 504 rtx sched_before_next_jump; 505 506 /* Used to keep post-call pseudo/hard reg movements together with 507 the call. */ 508 enum post_call_group in_post_call_group_p; 509 510 /* The last debug insn we've seen. */ 511 rtx last_debug_insn; 512 513 /* The maximum register number for the following arrays. Before reload 514 this is max_reg_num; after reload it is FIRST_PSEUDO_REGISTER. */ 515 int max_reg; 516 517 /* Element N is the next insn that sets (hard or pseudo) register 518 N within the current basic block; or zero, if there is no 519 such insn. Needed for new registers which may be introduced 520 by splitting insns. */ 521 struct deps_reg *reg_last; 522 523 /* Element N is set for each register that has any nonzero element 524 in reg_last[N].{uses,sets,clobbers}. */ 525 regset_head reg_last_in_use; 526 527 /* Shows the last value of reg_pending_barrier associated with the insn. */ 528 enum reg_pending_barrier_mode last_reg_pending_barrier; 529 530 /* True when this context should be treated as a readonly by 531 the analysis. */ 532 BOOL_BITFIELD readonly : 1; 533 }; 534 535 typedef struct deps_desc *deps_t; 536 537 /* This structure holds some state of the current scheduling pass, and 538 contains some function pointers that abstract out some of the non-generic 539 functionality from functions such as schedule_block or schedule_insn. 540 There is one global variable, current_sched_info, which points to the 541 sched_info structure currently in use. */ 542 struct haifa_sched_info 543 { 544 /* Add all insns that are initially ready to the ready list. Called once 545 before scheduling a set of insns. */ 546 void (*init_ready_list) (void); 547 /* Called after taking an insn from the ready list. Returns nonzero if 548 this insn can be scheduled, nonzero if we should silently discard it. */ 549 int (*can_schedule_ready_p) (rtx); 550 /* Return nonzero if there are more insns that should be scheduled. */ 551 int (*schedule_more_p) (void); 552 /* Called after an insn has all its hard dependencies resolved. 553 Adjusts status of instruction (which is passed through second parameter) 554 to indicate if instruction should be moved to the ready list or the 555 queue, or if it should silently discard it (until next resolved 556 dependence). */ 557 ds_t (*new_ready) (rtx, ds_t); 558 /* Compare priority of two insns. Return a positive number if the second 559 insn is to be preferred for scheduling, and a negative one if the first 560 is to be preferred. Zero if they are equally good. */ 561 int (*rank) (rtx, rtx); 562 /* Return a string that contains the insn uid and optionally anything else 563 necessary to identify this insn in an output. It's valid to use a 564 static buffer for this. The ALIGNED parameter should cause the string 565 to be formatted so that multiple output lines will line up nicely. */ 566 const char *(*print_insn) (const_rtx, int); 567 /* Return nonzero if an insn should be included in priority 568 calculations. */ 569 int (*contributes_to_priority) (rtx, rtx); 570 571 /* Return true if scheduling insn (passed as the parameter) will trigger 572 finish of scheduling current block. */ 573 bool (*insn_finishes_block_p) (rtx); 574 575 /* The boundaries of the set of insns to be scheduled. */ 576 rtx prev_head, next_tail; 577 578 /* Filled in after the schedule is finished; the first and last scheduled 579 insns. */ 580 rtx head, tail; 581 582 /* If nonzero, enables an additional sanity check in schedule_block. */ 583 unsigned int queue_must_finish_empty:1; 584 585 /* Maximum priority that has been assigned to an insn. */ 586 int sched_max_insns_priority; 587 588 /* Hooks to support speculative scheduling. */ 589 590 /* Called to notify frontend that instruction is being added (second 591 parameter == 0) or removed (second parameter == 1). */ 592 void (*add_remove_insn) (rtx, int); 593 594 /* Called to notify the frontend that instruction INSN is being 595 scheduled. */ 596 void (*begin_schedule_ready) (rtx insn); 597 598 /* Called to notify the frontend that an instruction INSN is about to be 599 moved to its correct place in the final schedule. This is done for all 600 insns in order of the schedule. LAST indicates the last scheduled 601 instruction. */ 602 void (*begin_move_insn) (rtx insn, rtx last); 603 604 /* If the second parameter is not NULL, return nonnull value, if the 605 basic block should be advanced. 606 If the second parameter is NULL, return the next basic block in EBB. 607 The first parameter is the current basic block in EBB. */ 608 basic_block (*advance_target_bb) (basic_block, rtx); 609 610 /* Allocate memory, store the frontend scheduler state in it, and 611 return it. */ 612 void *(*save_state) (void); 613 /* Restore frontend scheduler state from the argument, and free the 614 memory. */ 615 void (*restore_state) (void *); 616 617 /* ??? FIXME: should use straight bitfields inside sched_info instead of 618 this flag field. */ 619 unsigned int flags; 620 }; 621 622 /* This structure holds description of the properties for speculative 623 scheduling. */ 624 struct spec_info_def 625 { 626 /* Holds types of allowed speculations: BEGIN_{DATA|CONTROL}, 627 BE_IN_{DATA_CONTROL}. */ 628 int mask; 629 630 /* A dump file for additional information on speculative scheduling. */ 631 FILE *dump; 632 633 /* Minimal cumulative weakness of speculative instruction's 634 dependencies, so that insn will be scheduled. */ 635 dw_t data_weakness_cutoff; 636 637 /* Minimal usefulness of speculative instruction to be considered for 638 scheduling. */ 639 int control_weakness_cutoff; 640 641 /* Flags from the enum SPEC_SCHED_FLAGS. */ 642 int flags; 643 }; 644 typedef struct spec_info_def *spec_info_t; 645 646 extern spec_info_t spec_info; 647 648 extern struct haifa_sched_info *current_sched_info; 649 650 /* Do register pressure sensitive insn scheduling if the flag is set 651 up. */ 652 extern bool sched_pressure_p; 653 654 /* Map regno -> its pressure class. The map defined only when 655 SCHED_PRESSURE_P is true. */ 656 extern enum reg_class *sched_regno_pressure_class; 657 658 /* Indexed by INSN_UID, the collection of all data associated with 659 a single instruction. */ 660 661 struct _haifa_deps_insn_data 662 { 663 /* The number of incoming edges in the forward dependency graph. 664 As scheduling proceeds, counts are decreased. An insn moves to 665 the ready queue when its counter reaches zero. */ 666 int dep_count; 667 668 /* Nonzero if instruction has internal dependence 669 (e.g. add_dependence was invoked with (insn == elem)). */ 670 unsigned int has_internal_dep; 671 672 /* NB: We can't place 'struct _deps_list' here instead of deps_list_t into 673 h_i_d because when h_i_d extends, addresses of the deps_list->first 674 change without updating deps_list->first->next->prev_nextp. Thus 675 BACK_DEPS and RESOLVED_BACK_DEPS are allocated on the heap and FORW_DEPS 676 list is allocated on the obstack. */ 677 678 /* A list of hard backward dependencies. The insn is a consumer of all the 679 deps mentioned here. */ 680 deps_list_t hard_back_deps; 681 682 /* A list of speculative (weak) dependencies. The insn is a consumer of all 683 the deps mentioned here. */ 684 deps_list_t spec_back_deps; 685 686 /* A list of insns which depend on the instruction. Unlike 'back_deps', 687 it represents forward dependencies. */ 688 deps_list_t forw_deps; 689 690 /* A list of scheduled producers of the instruction. Links are being moved 691 from 'back_deps' to 'resolved_back_deps' while scheduling. */ 692 deps_list_t resolved_back_deps; 693 694 /* A list of scheduled consumers of the instruction. Links are being moved 695 from 'forw_deps' to 'resolved_forw_deps' while scheduling to fasten the 696 search in 'forw_deps'. */ 697 deps_list_t resolved_forw_deps; 698 699 /* If the insn is conditional (either through COND_EXEC, or because 700 it is a conditional branch), this records the condition. NULL 701 for insns that haven't been seen yet or don't have a condition; 702 const_true_rtx to mark an insn without a condition, or with a 703 condition that has been clobbered by a subsequent insn. */ 704 rtx cond; 705 706 /* For a conditional insn, a list of insns that could set the condition 707 register. Used when generating control dependencies. */ 708 rtx cond_deps; 709 710 /* True if the condition in 'cond' should be reversed to get the actual 711 condition. */ 712 unsigned int reverse_cond : 1; 713 714 /* Some insns (e.g. call) are not allowed to move across blocks. */ 715 unsigned int cant_move : 1; 716 }; 717 718 /* Bits used for storing values of the fields in the following 719 structure. */ 720 #define INCREASE_BITS 8 721 722 /* The structure describes how the corresponding insn increases the 723 register pressure for each pressure class. */ 724 struct reg_pressure_data 725 { 726 /* Pressure increase for given class because of clobber. */ 727 unsigned int clobber_increase : INCREASE_BITS; 728 /* Increase in register pressure for given class because of register 729 sets. */ 730 unsigned int set_increase : INCREASE_BITS; 731 /* Pressure increase for given class because of unused register 732 set. */ 733 unsigned int unused_set_increase : INCREASE_BITS; 734 /* Pressure change: #sets - #deaths. */ 735 int change : INCREASE_BITS; 736 }; 737 738 /* The following structure describes usage of registers by insns. */ 739 struct reg_use_data 740 { 741 /* Regno used in the insn. */ 742 int regno; 743 /* Insn using the regno. */ 744 rtx insn; 745 /* Cyclic list of elements with the same regno. */ 746 struct reg_use_data *next_regno_use; 747 /* List of elements with the same insn. */ 748 struct reg_use_data *next_insn_use; 749 }; 750 751 /* The following structure describes used sets of registers by insns. 752 Registers are pseudos whose pressure class is not NO_REGS or hard 753 registers available for allocations. */ 754 struct reg_set_data 755 { 756 /* Regno used in the insn. */ 757 int regno; 758 /* Insn setting the regno. */ 759 rtx insn; 760 /* List of elements with the same insn. */ 761 struct reg_set_data *next_insn_set; 762 }; 763 764 struct _haifa_insn_data 765 { 766 /* We can't place 'struct _deps_list' into h_i_d instead of deps_list_t 767 because when h_i_d extends, addresses of the deps_list->first 768 change without updating deps_list->first->next->prev_nextp. */ 769 770 /* Logical uid gives the original ordering of the insns. */ 771 int luid; 772 773 /* A priority for each insn. */ 774 int priority; 775 776 /* The minimum clock tick at which the insn becomes ready. This is 777 used to note timing constraints for the insns in the pending list. */ 778 int tick; 779 780 /* For insns that are scheduled at a fixed difference from another, 781 this records the tick in which they must be ready. */ 782 int exact_tick; 783 784 /* INTER_TICK is used to adjust INSN_TICKs of instructions from the 785 subsequent blocks in a region. */ 786 int inter_tick; 787 788 /* Used temporarily to estimate an INSN_TICK value for an insn given 789 current knowledge. */ 790 int tick_estimate; 791 792 /* See comment on QUEUE_INDEX macro in haifa-sched.c. */ 793 int queue_index; 794 795 short cost; 796 797 /* Set if there's DEF-USE dependence between some speculatively 798 moved load insn and this one. */ 799 unsigned int fed_by_spec_load : 1; 800 unsigned int is_load_insn : 1; 801 /* Nonzero if this insn has negative-cost forward dependencies against 802 an already scheduled insn. */ 803 unsigned int feeds_backtrack_insn : 1; 804 805 /* Nonzero if this insn is a shadow of another, scheduled after a fixed 806 delay. We only emit shadows at the end of a cycle, with no other 807 real insns following them. */ 808 unsigned int shadow_p : 1; 809 810 /* Used internally in unschedule_insns_until to mark insns that must have 811 their TODO_SPEC recomputed. */ 812 unsigned int must_recompute_spec : 1; 813 814 /* '> 0' if priority is valid, 815 '== 0' if priority was not yet computed, 816 '< 0' if priority in invalid and should be recomputed. */ 817 signed char priority_status; 818 819 /* What speculations are necessary to apply to schedule the instruction. */ 820 ds_t todo_spec; 821 822 /* What speculations were already applied. */ 823 ds_t done_spec; 824 825 /* What speculations are checked by this instruction. */ 826 ds_t check_spec; 827 828 /* Recovery block for speculation checks. */ 829 basic_block recovery_block; 830 831 /* Original pattern of the instruction. */ 832 rtx orig_pat; 833 834 /* For insns with DEP_CONTROL dependencies, the predicated pattern if it 835 was ever successfully constructed. */ 836 rtx predicated_pat; 837 838 /* The following array contains info how the insn increases register 839 pressure. There is an element for each cover class of pseudos 840 referenced in insns. */ 841 struct reg_pressure_data *reg_pressure; 842 /* The following array contains maximal reg pressure between last 843 scheduled insn and given insn. There is an element for each 844 pressure class of pseudos referenced in insns. This info updated 845 after scheduling each insn for each insn between the two 846 mentioned insns. */ 847 int *max_reg_pressure; 848 /* The following list contains info about used pseudos and hard 849 registers available for allocation. */ 850 struct reg_use_data *reg_use_list; 851 /* The following list contains info about set pseudos and hard 852 registers available for allocation. */ 853 struct reg_set_data *reg_set_list; 854 /* Info about how scheduling the insn changes cost of register 855 pressure excess (between source and target). */ 856 int reg_pressure_excess_cost_change; 857 }; 858 859 typedef struct _haifa_insn_data haifa_insn_data_def; 860 typedef haifa_insn_data_def *haifa_insn_data_t; 861 862 DEF_VEC_O (haifa_insn_data_def); 863 DEF_VEC_ALLOC_O (haifa_insn_data_def, heap); 864 865 extern VEC(haifa_insn_data_def, heap) *h_i_d; 866 867 #define HID(INSN) (VEC_index (haifa_insn_data_def, h_i_d, INSN_UID (INSN))) 868 869 /* Accessor macros for h_i_d. There are more in haifa-sched.c and 870 sched-rgn.c. */ 871 #define INSN_PRIORITY(INSN) (HID (INSN)->priority) 872 #define INSN_REG_PRESSURE(INSN) (HID (INSN)->reg_pressure) 873 #define INSN_MAX_REG_PRESSURE(INSN) (HID (INSN)->max_reg_pressure) 874 #define INSN_REG_USE_LIST(INSN) (HID (INSN)->reg_use_list) 875 #define INSN_REG_SET_LIST(INSN) (HID (INSN)->reg_set_list) 876 #define INSN_REG_PRESSURE_EXCESS_COST_CHANGE(INSN) \ 877 (HID (INSN)->reg_pressure_excess_cost_change) 878 #define INSN_PRIORITY_STATUS(INSN) (HID (INSN)->priority_status) 879 880 typedef struct _haifa_deps_insn_data haifa_deps_insn_data_def; 881 typedef haifa_deps_insn_data_def *haifa_deps_insn_data_t; 882 883 DEF_VEC_O (haifa_deps_insn_data_def); 884 DEF_VEC_ALLOC_O (haifa_deps_insn_data_def, heap); 885 886 extern VEC(haifa_deps_insn_data_def, heap) *h_d_i_d; 887 888 #define HDID(INSN) (VEC_index (haifa_deps_insn_data_def, h_d_i_d, \ 889 INSN_LUID (INSN))) 890 #define INSN_DEP_COUNT(INSN) (HDID (INSN)->dep_count) 891 #define HAS_INTERNAL_DEP(INSN) (HDID (INSN)->has_internal_dep) 892 #define INSN_FORW_DEPS(INSN) (HDID (INSN)->forw_deps) 893 #define INSN_RESOLVED_BACK_DEPS(INSN) (HDID (INSN)->resolved_back_deps) 894 #define INSN_RESOLVED_FORW_DEPS(INSN) (HDID (INSN)->resolved_forw_deps) 895 #define INSN_HARD_BACK_DEPS(INSN) (HDID (INSN)->hard_back_deps) 896 #define INSN_SPEC_BACK_DEPS(INSN) (HDID (INSN)->spec_back_deps) 897 #define INSN_CACHED_COND(INSN) (HDID (INSN)->cond) 898 #define INSN_REVERSE_COND(INSN) (HDID (INSN)->reverse_cond) 899 #define INSN_COND_DEPS(INSN) (HDID (INSN)->cond_deps) 900 #define CANT_MOVE(INSN) (HDID (INSN)->cant_move) 901 #define CANT_MOVE_BY_LUID(LUID) (VEC_index (haifa_deps_insn_data_def, h_d_i_d, \ 902 LUID)->cant_move) 903 904 905 #define INSN_PRIORITY(INSN) (HID (INSN)->priority) 906 #define INSN_PRIORITY_STATUS(INSN) (HID (INSN)->priority_status) 907 #define INSN_PRIORITY_KNOWN(INSN) (INSN_PRIORITY_STATUS (INSN) > 0) 908 #define TODO_SPEC(INSN) (HID (INSN)->todo_spec) 909 #define DONE_SPEC(INSN) (HID (INSN)->done_spec) 910 #define CHECK_SPEC(INSN) (HID (INSN)->check_spec) 911 #define RECOVERY_BLOCK(INSN) (HID (INSN)->recovery_block) 912 #define ORIG_PAT(INSN) (HID (INSN)->orig_pat) 913 #define PREDICATED_PAT(INSN) (HID (INSN)->predicated_pat) 914 915 /* INSN is either a simple or a branchy speculation check. */ 916 #define IS_SPECULATION_CHECK_P(INSN) \ 917 (sel_sched_p () ? sel_insn_is_speculation_check (INSN) : RECOVERY_BLOCK (INSN) != NULL) 918 919 /* INSN is a speculation check that will simply reexecute the speculatively 920 scheduled instruction if the speculation fails. */ 921 #define IS_SPECULATION_SIMPLE_CHECK_P(INSN) \ 922 (RECOVERY_BLOCK (INSN) == EXIT_BLOCK_PTR) 923 924 /* INSN is a speculation check that will branch to RECOVERY_BLOCK if the 925 speculation fails. Insns in that block will reexecute the speculatively 926 scheduled code and then will return immediately after INSN thus preserving 927 semantics of the program. */ 928 #define IS_SPECULATION_BRANCHY_CHECK_P(INSN) \ 929 (RECOVERY_BLOCK (INSN) != NULL && RECOVERY_BLOCK (INSN) != EXIT_BLOCK_PTR) 930 931 /* Dep status (aka ds_t) of the link encapsulates information, that is needed 932 for speculative scheduling. Namely, it is 4 integers in the range 933 [0, MAX_DEP_WEAK] and 3 bits. 934 The integers correspond to the probability of the dependence to *not* 935 exist, it is the probability, that overcoming of this dependence will 936 not be followed by execution of the recovery code. Nevertheless, 937 whatever high the probability of success is, recovery code should still 938 be generated to preserve semantics of the program. To find a way to 939 get/set these integers, please refer to the {get, set}_dep_weak () 940 functions in sched-deps.c . 941 The 3 bits in the DEP_STATUS correspond to 3 dependence types: true-, 942 output- and anti- dependence. It is not enough for speculative scheduling 943 to know just the major type of all the dependence between two instructions, 944 as only true dependence can be overcome. 945 There also is the 4-th bit in the DEP_STATUS (HARD_DEP), that is reserved 946 for using to describe instruction's status. It is set whenever instruction 947 has at least one dependence, that cannot be overcame. 948 See also: check_dep_status () in sched-deps.c . */ 949 950 /* We exclude sign bit. */ 951 #define BITS_PER_DEP_STATUS (HOST_BITS_PER_INT - 1) 952 953 /* First '6' stands for 4 dep type bits and the HARD_DEP and DEP_CANCELLED 954 bits. 955 Second '4' stands for BEGIN_{DATA, CONTROL}, BE_IN_{DATA, CONTROL} 956 dep weakness. */ 957 #define BITS_PER_DEP_WEAK ((BITS_PER_DEP_STATUS - 6) / 4) 958 959 /* Mask of speculative weakness in dep_status. */ 960 #define DEP_WEAK_MASK ((1 << BITS_PER_DEP_WEAK) - 1) 961 962 /* This constant means that dependence is fake with 99.999...% probability. 963 This is the maximum value, that can appear in dep_status. 964 Note, that we don't want MAX_DEP_WEAK to be the same as DEP_WEAK_MASK for 965 debugging reasons. Though, it can be set to DEP_WEAK_MASK, and, when 966 done so, we'll get fast (mul for)/(div by) NO_DEP_WEAK. */ 967 #define MAX_DEP_WEAK (DEP_WEAK_MASK - 1) 968 969 /* This constant means that dependence is 99.999...% real and it is a really 970 bad idea to overcome it (though this can be done, preserving program 971 semantics). */ 972 #define MIN_DEP_WEAK 1 973 974 /* This constant represents 100% probability. 975 E.g. it is used to represent weakness of dependence, that doesn't exist. */ 976 #define NO_DEP_WEAK (MAX_DEP_WEAK + MIN_DEP_WEAK) 977 978 /* Default weakness of speculative dependence. Used when we can't say 979 neither bad nor good about the dependence. */ 980 #define UNCERTAIN_DEP_WEAK (MAX_DEP_WEAK - MAX_DEP_WEAK / 4) 981 982 /* Offset for speculative weaknesses in dep_status. */ 983 enum SPEC_TYPES_OFFSETS { 984 BEGIN_DATA_BITS_OFFSET = 0, 985 BE_IN_DATA_BITS_OFFSET = BEGIN_DATA_BITS_OFFSET + BITS_PER_DEP_WEAK, 986 BEGIN_CONTROL_BITS_OFFSET = BE_IN_DATA_BITS_OFFSET + BITS_PER_DEP_WEAK, 987 BE_IN_CONTROL_BITS_OFFSET = BEGIN_CONTROL_BITS_OFFSET + BITS_PER_DEP_WEAK 988 }; 989 990 /* The following defines provide numerous constants used to distinguish between 991 different types of speculative dependencies. */ 992 993 /* Dependence can be overcome with generation of new data speculative 994 instruction. */ 995 #define BEGIN_DATA (((ds_t) DEP_WEAK_MASK) << BEGIN_DATA_BITS_OFFSET) 996 997 /* This dependence is to the instruction in the recovery block, that was 998 formed to recover after data-speculation failure. 999 Thus, this dependence can overcome with generating of the copy of 1000 this instruction in the recovery block. */ 1001 #define BE_IN_DATA (((ds_t) DEP_WEAK_MASK) << BE_IN_DATA_BITS_OFFSET) 1002 1003 /* Dependence can be overcome with generation of new control speculative 1004 instruction. */ 1005 #define BEGIN_CONTROL (((ds_t) DEP_WEAK_MASK) << BEGIN_CONTROL_BITS_OFFSET) 1006 1007 /* This dependence is to the instruction in the recovery block, that was 1008 formed to recover after control-speculation failure. 1009 Thus, this dependence can be overcome with generating of the copy of 1010 this instruction in the recovery block. */ 1011 #define BE_IN_CONTROL (((ds_t) DEP_WEAK_MASK) << BE_IN_CONTROL_BITS_OFFSET) 1012 1013 /* A few convenient combinations. */ 1014 #define BEGIN_SPEC (BEGIN_DATA | BEGIN_CONTROL) 1015 #define DATA_SPEC (BEGIN_DATA | BE_IN_DATA) 1016 #define CONTROL_SPEC (BEGIN_CONTROL | BE_IN_CONTROL) 1017 #define SPECULATIVE (DATA_SPEC | CONTROL_SPEC) 1018 #define BE_IN_SPEC (BE_IN_DATA | BE_IN_CONTROL) 1019 1020 /* Constants, that are helpful in iterating through dep_status. */ 1021 #define FIRST_SPEC_TYPE BEGIN_DATA 1022 #define LAST_SPEC_TYPE BE_IN_CONTROL 1023 #define SPEC_TYPE_SHIFT BITS_PER_DEP_WEAK 1024 1025 /* Dependence on instruction can be of multiple types 1026 (e.g. true and output). This fields enhance REG_NOTE_KIND information 1027 of the dependence. */ 1028 #define DEP_TRUE (((ds_t) 1) << (BE_IN_CONTROL_BITS_OFFSET + BITS_PER_DEP_WEAK)) 1029 #define DEP_OUTPUT (DEP_TRUE << 1) 1030 #define DEP_ANTI (DEP_OUTPUT << 1) 1031 #define DEP_CONTROL (DEP_ANTI << 1) 1032 1033 #define DEP_TYPES (DEP_TRUE | DEP_OUTPUT | DEP_ANTI | DEP_CONTROL) 1034 1035 /* Instruction has non-speculative dependence. This bit represents the 1036 property of an instruction - not the one of a dependence. 1037 Therefore, it can appear only in TODO_SPEC field of an instruction. */ 1038 #define HARD_DEP (DEP_CONTROL << 1) 1039 1040 #define DEP_CANCELLED (HARD_DEP << 1) 1041 1042 /* This represents the results of calling sched-deps.c functions, 1043 which modify dependencies. */ 1044 enum DEPS_ADJUST_RESULT { 1045 /* No dependence needed (e.g. producer == consumer). */ 1046 DEP_NODEP, 1047 /* Dependence is already present and wasn't modified. */ 1048 DEP_PRESENT, 1049 /* Existing dependence was modified to include additional information. */ 1050 DEP_CHANGED, 1051 /* New dependence has been created. */ 1052 DEP_CREATED 1053 }; 1054 1055 /* Represents the bits that can be set in the flags field of the 1056 sched_info structure. */ 1057 enum SCHED_FLAGS { 1058 /* If set, generate links between instruction as DEPS_LIST. 1059 Otherwise, generate usual INSN_LIST links. */ 1060 USE_DEPS_LIST = 1, 1061 /* Perform data or control (or both) speculation. 1062 Results in generation of data and control speculative dependencies. 1063 Requires USE_DEPS_LIST set. */ 1064 DO_SPECULATION = USE_DEPS_LIST << 1, 1065 DO_BACKTRACKING = DO_SPECULATION << 1, 1066 DO_PREDICATION = DO_BACKTRACKING << 1, 1067 SCHED_RGN = DO_PREDICATION << 1, 1068 SCHED_EBB = SCHED_RGN << 1, 1069 /* Scheduler can possibly create new basic blocks. Used for assertions. */ 1070 NEW_BBS = SCHED_EBB << 1, 1071 SEL_SCHED = NEW_BBS << 1 1072 }; 1073 1074 enum SPEC_SCHED_FLAGS { 1075 COUNT_SPEC_IN_CRITICAL_PATH = 1, 1076 PREFER_NON_DATA_SPEC = COUNT_SPEC_IN_CRITICAL_PATH << 1, 1077 PREFER_NON_CONTROL_SPEC = PREFER_NON_DATA_SPEC << 1, 1078 SEL_SCHED_SPEC_DONT_CHECK_CONTROL = PREFER_NON_CONTROL_SPEC << 1 1079 }; 1080 1081 #define NOTE_NOT_BB_P(NOTE) (NOTE_P (NOTE) && (NOTE_KIND (NOTE) \ 1082 != NOTE_INSN_BASIC_BLOCK)) 1083 1084 extern FILE *sched_dump; 1085 extern int sched_verbose; 1086 1087 extern spec_info_t spec_info; 1088 extern bool haifa_recovery_bb_ever_added_p; 1089 1090 /* Exception Free Loads: 1091 1092 We define five classes of speculative loads: IFREE, IRISKY, 1093 PFREE, PRISKY, and MFREE. 1094 1095 IFREE loads are loads that are proved to be exception-free, just 1096 by examining the load insn. Examples for such loads are loads 1097 from TOC and loads of global data. 1098 1099 IRISKY loads are loads that are proved to be exception-risky, 1100 just by examining the load insn. Examples for such loads are 1101 volatile loads and loads from shared memory. 1102 1103 PFREE loads are loads for which we can prove, by examining other 1104 insns, that they are exception-free. Currently, this class consists 1105 of loads for which we are able to find a "similar load", either in 1106 the target block, or, if only one split-block exists, in that split 1107 block. Load2 is similar to load1 if both have same single base 1108 register. We identify only part of the similar loads, by finding 1109 an insn upon which both load1 and load2 have a DEF-USE dependence. 1110 1111 PRISKY loads are loads for which we can prove, by examining other 1112 insns, that they are exception-risky. Currently we have two proofs for 1113 such loads. The first proof detects loads that are probably guarded by a 1114 test on the memory address. This proof is based on the 1115 backward and forward data dependence information for the region. 1116 Let load-insn be the examined load. 1117 Load-insn is PRISKY iff ALL the following hold: 1118 1119 - insn1 is not in the same block as load-insn 1120 - there is a DEF-USE dependence chain (insn1, ..., load-insn) 1121 - test-insn is either a compare or a branch, not in the same block 1122 as load-insn 1123 - load-insn is reachable from test-insn 1124 - there is a DEF-USE dependence chain (insn1, ..., test-insn) 1125 1126 This proof might fail when the compare and the load are fed 1127 by an insn not in the region. To solve this, we will add to this 1128 group all loads that have no input DEF-USE dependence. 1129 1130 The second proof detects loads that are directly or indirectly 1131 fed by a speculative load. This proof is affected by the 1132 scheduling process. We will use the flag fed_by_spec_load. 1133 Initially, all insns have this flag reset. After a speculative 1134 motion of an insn, if insn is either a load, or marked as 1135 fed_by_spec_load, we will also mark as fed_by_spec_load every 1136 insn1 for which a DEF-USE dependence (insn, insn1) exists. A 1137 load which is fed_by_spec_load is also PRISKY. 1138 1139 MFREE (maybe-free) loads are all the remaining loads. They may be 1140 exception-free, but we cannot prove it. 1141 1142 Now, all loads in IFREE and PFREE classes are considered 1143 exception-free, while all loads in IRISKY and PRISKY classes are 1144 considered exception-risky. As for loads in the MFREE class, 1145 these are considered either exception-free or exception-risky, 1146 depending on whether we are pessimistic or optimistic. We have 1147 to take the pessimistic approach to assure the safety of 1148 speculative scheduling, but we can take the optimistic approach 1149 by invoking the -fsched_spec_load_dangerous option. */ 1150 1151 enum INSN_TRAP_CLASS 1152 { 1153 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2, 1154 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5 1155 }; 1156 1157 #define WORST_CLASS(class1, class2) \ 1158 ((class1 > class2) ? class1 : class2) 1159 1160 #ifndef __GNUC__ 1161 #define __inline 1162 #endif 1163 1164 #ifndef HAIFA_INLINE 1165 #define HAIFA_INLINE __inline 1166 #endif 1167 1168 struct sched_deps_info_def 1169 { 1170 /* Called when computing dependencies for a JUMP_INSN. This function 1171 should store the set of registers that must be considered as set by 1172 the jump in the regset. */ 1173 void (*compute_jump_reg_dependencies) (rtx, regset); 1174 1175 /* Start analyzing insn. */ 1176 void (*start_insn) (rtx); 1177 1178 /* Finish analyzing insn. */ 1179 void (*finish_insn) (void); 1180 1181 /* Start analyzing insn LHS (Left Hand Side). */ 1182 void (*start_lhs) (rtx); 1183 1184 /* Finish analyzing insn LHS. */ 1185 void (*finish_lhs) (void); 1186 1187 /* Start analyzing insn RHS (Right Hand Side). */ 1188 void (*start_rhs) (rtx); 1189 1190 /* Finish analyzing insn RHS. */ 1191 void (*finish_rhs) (void); 1192 1193 /* Note set of the register. */ 1194 void (*note_reg_set) (int); 1195 1196 /* Note clobber of the register. */ 1197 void (*note_reg_clobber) (int); 1198 1199 /* Note use of the register. */ 1200 void (*note_reg_use) (int); 1201 1202 /* Note memory dependence of type DS between MEM1 and MEM2 (which is 1203 in the INSN2). */ 1204 void (*note_mem_dep) (rtx mem1, rtx mem2, rtx insn2, ds_t ds); 1205 1206 /* Note a dependence of type DS from the INSN. */ 1207 void (*note_dep) (rtx insn, ds_t ds); 1208 1209 /* Nonzero if we should use cselib for better alias analysis. This 1210 must be 0 if the dependency information is used after sched_analyze 1211 has completed, e.g. if we're using it to initialize state for successor 1212 blocks in region scheduling. */ 1213 unsigned int use_cselib : 1; 1214 1215 /* If set, generate links between instruction as DEPS_LIST. 1216 Otherwise, generate usual INSN_LIST links. */ 1217 unsigned int use_deps_list : 1; 1218 1219 /* Generate data and control speculative dependencies. 1220 Requires USE_DEPS_LIST set. */ 1221 unsigned int generate_spec_deps : 1; 1222 }; 1223 1224 extern struct sched_deps_info_def *sched_deps_info; 1225 1226 1227 /* Functions in sched-deps.c. */ 1228 extern rtx sched_get_reverse_condition_uncached (const_rtx); 1229 extern bool sched_insns_conditions_mutex_p (const_rtx, const_rtx); 1230 extern bool sched_insn_is_legitimate_for_speculation_p (const_rtx, ds_t); 1231 extern void add_dependence (rtx, rtx, enum reg_note); 1232 extern void sched_analyze (struct deps_desc *, rtx, rtx); 1233 extern void init_deps (struct deps_desc *, bool); 1234 extern void init_deps_reg_last (struct deps_desc *); 1235 extern void free_deps (struct deps_desc *); 1236 extern void init_deps_global (void); 1237 extern void finish_deps_global (void); 1238 extern void deps_analyze_insn (struct deps_desc *, rtx); 1239 extern void remove_from_deps (struct deps_desc *, rtx); 1240 extern void init_insn_reg_pressure_info (rtx); 1241 1242 extern dw_t get_dep_weak_1 (ds_t, ds_t); 1243 extern dw_t get_dep_weak (ds_t, ds_t); 1244 extern ds_t set_dep_weak (ds_t, ds_t, dw_t); 1245 extern dw_t estimate_dep_weak (rtx, rtx); 1246 extern ds_t ds_merge (ds_t, ds_t); 1247 extern ds_t ds_full_merge (ds_t, ds_t, rtx, rtx); 1248 extern ds_t ds_max_merge (ds_t, ds_t); 1249 extern dw_t ds_weak (ds_t); 1250 extern ds_t ds_get_speculation_types (ds_t); 1251 extern ds_t ds_get_max_dep_weak (ds_t); 1252 1253 extern void sched_deps_init (bool); 1254 extern void sched_deps_finish (void); 1255 1256 extern void haifa_note_reg_set (int); 1257 extern void haifa_note_reg_clobber (int); 1258 extern void haifa_note_reg_use (int); 1259 1260 extern void maybe_extend_reg_info_p (void); 1261 1262 extern void deps_start_bb (struct deps_desc *, rtx); 1263 extern enum reg_note ds_to_dt (ds_t); 1264 1265 extern bool deps_pools_are_empty_p (void); 1266 extern void sched_free_deps (rtx, rtx, bool); 1267 extern void extend_dependency_caches (int, bool); 1268 1269 extern void debug_ds (ds_t); 1270 1271 1272 /* Functions in haifa-sched.c. */ 1273 extern void sched_init_region_reg_pressure_info (void); 1274 extern int haifa_classify_insn (const_rtx); 1275 extern void get_ebb_head_tail (basic_block, basic_block, rtx *, rtx *); 1276 extern int no_real_insns_p (const_rtx, const_rtx); 1277 1278 extern int insn_cost (rtx); 1279 extern int dep_cost_1 (dep_t, dw_t); 1280 extern int dep_cost (dep_t); 1281 extern int set_priorities (rtx, rtx); 1282 1283 extern void sched_setup_bb_reg_pressure_info (basic_block, rtx); 1284 extern bool schedule_block (basic_block *); 1285 1286 extern int cycle_issued_insns; 1287 extern int issue_rate; 1288 extern int dfa_lookahead; 1289 1290 extern void ready_sort (struct ready_list *); 1291 extern rtx ready_element (struct ready_list *, int); 1292 extern rtx *ready_lastpos (struct ready_list *); 1293 1294 extern int try_ready (rtx); 1295 extern void sched_extend_ready_list (int); 1296 extern void sched_finish_ready_list (void); 1297 extern void sched_change_pattern (rtx, rtx); 1298 extern int sched_speculate_insn (rtx, ds_t, rtx *); 1299 extern void unlink_bb_notes (basic_block, basic_block); 1300 extern void add_block (basic_block, basic_block); 1301 extern rtx bb_note (basic_block); 1302 extern void concat_note_lists (rtx, rtx *); 1303 extern rtx sched_emit_insn (rtx); 1304 extern rtx get_ready_element (int); 1305 extern int number_in_ready (void); 1306 1307 /* Types and functions in sched-ebb.c. */ 1308 1309 extern basic_block schedule_ebb (rtx, rtx, bool); 1310 extern void schedule_ebbs_init (void); 1311 extern void schedule_ebbs_finish (void); 1312 1313 /* Types and functions in sched-rgn.c. */ 1314 1315 /* A region is the main entity for interblock scheduling: insns 1316 are allowed to move between blocks in the same region, along 1317 control flow graph edges, in the 'up' direction. */ 1318 typedef struct 1319 { 1320 /* Number of extended basic blocks in region. */ 1321 int rgn_nr_blocks; 1322 /* cblocks in the region (actually index in rgn_bb_table). */ 1323 int rgn_blocks; 1324 /* Dependencies for this region are already computed. Basically, indicates, 1325 that this is a recovery block. */ 1326 unsigned int dont_calc_deps : 1; 1327 /* This region has at least one non-trivial ebb. */ 1328 unsigned int has_real_ebb : 1; 1329 } 1330 region; 1331 1332 extern int nr_regions; 1333 extern region *rgn_table; 1334 extern int *rgn_bb_table; 1335 extern int *block_to_bb; 1336 extern int *containing_rgn; 1337 1338 /* Often used short-hand in the scheduler. The rest of the compiler uses 1339 BLOCK_FOR_INSN(INSN) and an indirect reference to get the basic block 1340 number ("index"). For historical reasons, the scheduler does not. */ 1341 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0) 1342 1343 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks) 1344 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks) 1345 #define RGN_DONT_CALC_DEPS(rgn) (rgn_table[rgn].dont_calc_deps) 1346 #define RGN_HAS_REAL_EBB(rgn) (rgn_table[rgn].has_real_ebb) 1347 #define BLOCK_TO_BB(block) (block_to_bb[block]) 1348 #define CONTAINING_RGN(block) (containing_rgn[block]) 1349 1350 /* The mapping from ebb to block. */ 1351 extern int *ebb_head; 1352 #define BB_TO_BLOCK(ebb) (rgn_bb_table[ebb_head[ebb]]) 1353 #define EBB_FIRST_BB(ebb) BASIC_BLOCK (BB_TO_BLOCK (ebb)) 1354 #define EBB_LAST_BB(ebb) BASIC_BLOCK (rgn_bb_table[ebb_head[ebb + 1] - 1]) 1355 #define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN))) 1356 1357 extern int current_nr_blocks; 1358 extern int current_blocks; 1359 extern int target_bb; 1360 extern bool sched_no_dce; 1361 1362 extern void set_modulo_params (int, int, int, int); 1363 extern void record_delay_slot_pair (rtx, rtx, int, int); 1364 extern rtx real_insn_for_shadow (rtx); 1365 extern void discard_delay_pairs_above (int); 1366 extern void free_delay_pairs (void); 1367 extern void add_delay_dependencies (rtx); 1368 extern bool sched_is_disabled_for_current_region_p (void); 1369 extern void sched_rgn_init (bool); 1370 extern void sched_rgn_finish (void); 1371 extern void rgn_setup_region (int); 1372 extern void sched_rgn_compute_dependencies (int); 1373 extern void sched_rgn_local_init (int); 1374 extern void sched_rgn_local_finish (void); 1375 extern void sched_rgn_local_free (void); 1376 extern void extend_regions (void); 1377 extern void rgn_make_new_region_out_of_new_block (basic_block); 1378 1379 extern void compute_priorities (void); 1380 extern void increase_insn_priority (rtx, int); 1381 extern void debug_rgn_dependencies (int); 1382 extern void debug_dependencies (rtx, rtx); 1383 extern void free_rgn_deps (void); 1384 extern int contributes_to_priority (rtx, rtx); 1385 extern void extend_rgns (int *, int *, sbitmap, int *); 1386 extern void deps_join (struct deps_desc *, struct deps_desc *); 1387 1388 extern void rgn_setup_common_sched_info (void); 1389 extern void rgn_setup_sched_infos (void); 1390 1391 extern void debug_regions (void); 1392 extern void debug_region (int); 1393 extern void dump_region_dot (FILE *, int); 1394 extern void dump_region_dot_file (const char *, int); 1395 1396 extern void haifa_sched_init (void); 1397 extern void haifa_sched_finish (void); 1398 1399 /* sched-deps.c interface to walk, add, search, update, resolve, delete 1400 and debug instruction dependencies. */ 1401 1402 /* Constants defining dependences lists. */ 1403 1404 /* No list. */ 1405 #define SD_LIST_NONE (0) 1406 1407 /* hard_back_deps. */ 1408 #define SD_LIST_HARD_BACK (1) 1409 1410 /* spec_back_deps. */ 1411 #define SD_LIST_SPEC_BACK (2) 1412 1413 /* forw_deps. */ 1414 #define SD_LIST_FORW (4) 1415 1416 /* resolved_back_deps. */ 1417 #define SD_LIST_RES_BACK (8) 1418 1419 /* resolved_forw_deps. */ 1420 #define SD_LIST_RES_FORW (16) 1421 1422 #define SD_LIST_BACK (SD_LIST_HARD_BACK | SD_LIST_SPEC_BACK) 1423 1424 /* A type to hold above flags. */ 1425 typedef int sd_list_types_def; 1426 1427 extern void sd_next_list (const_rtx, sd_list_types_def *, deps_list_t *, bool *); 1428 1429 /* Iterator to walk through, resolve and delete dependencies. */ 1430 struct _sd_iterator 1431 { 1432 /* What lists to walk. Can be any combination of SD_LIST_* flags. */ 1433 sd_list_types_def types; 1434 1435 /* Instruction dependencies lists of which will be walked. */ 1436 rtx insn; 1437 1438 /* Pointer to the next field of the previous element. This is not 1439 simply a pointer to the next element to allow easy deletion from the 1440 list. When a dep is being removed from the list the iterator 1441 will automatically advance because the value in *linkp will start 1442 referring to the next element. */ 1443 dep_link_t *linkp; 1444 1445 /* True if the current list is a resolved one. */ 1446 bool resolved_p; 1447 }; 1448 1449 typedef struct _sd_iterator sd_iterator_def; 1450 1451 /* ??? We can move some definitions that are used in below inline functions 1452 out of sched-int.h to sched-deps.c provided that the below functions will 1453 become global externals. 1454 These definitions include: 1455 * struct _deps_list: opaque pointer is needed at global scope. 1456 * struct _dep_link: opaque pointer is needed at scope of sd_iterator_def. 1457 * struct _dep_node: opaque pointer is needed at scope of 1458 struct _deps_link. */ 1459 1460 /* Return initialized iterator. */ 1461 static inline sd_iterator_def 1462 sd_iterator_start (rtx insn, sd_list_types_def types) 1463 { 1464 /* Some dep_link a pointer to which will return NULL. */ 1465 static dep_link_t null_link = NULL; 1466 1467 sd_iterator_def i; 1468 1469 i.types = types; 1470 i.insn = insn; 1471 i.linkp = &null_link; 1472 1473 /* Avoid 'uninitialized warning'. */ 1474 i.resolved_p = false; 1475 1476 return i; 1477 } 1478 1479 /* Return the current element. */ 1480 static inline bool 1481 sd_iterator_cond (sd_iterator_def *it_ptr, dep_t *dep_ptr) 1482 { 1483 dep_link_t link = *it_ptr->linkp; 1484 1485 if (link != NULL) 1486 { 1487 *dep_ptr = DEP_LINK_DEP (link); 1488 return true; 1489 } 1490 else 1491 { 1492 sd_list_types_def types = it_ptr->types; 1493 1494 if (types != SD_LIST_NONE) 1495 /* Switch to next list. */ 1496 { 1497 deps_list_t list; 1498 1499 sd_next_list (it_ptr->insn, 1500 &it_ptr->types, &list, &it_ptr->resolved_p); 1501 1502 it_ptr->linkp = &DEPS_LIST_FIRST (list); 1503 1504 if (list) 1505 return sd_iterator_cond (it_ptr, dep_ptr); 1506 } 1507 1508 *dep_ptr = NULL; 1509 return false; 1510 } 1511 } 1512 1513 /* Advance iterator. */ 1514 static inline void 1515 sd_iterator_next (sd_iterator_def *it_ptr) 1516 { 1517 it_ptr->linkp = &DEP_LINK_NEXT (*it_ptr->linkp); 1518 } 1519 1520 /* A cycle wrapper. */ 1521 #define FOR_EACH_DEP(INSN, LIST_TYPES, ITER, DEP) \ 1522 for ((ITER) = sd_iterator_start ((INSN), (LIST_TYPES)); \ 1523 sd_iterator_cond (&(ITER), &(DEP)); \ 1524 sd_iterator_next (&(ITER))) 1525 1526 #define IS_DISPATCH_ON 1 1527 #define IS_CMP 2 1528 #define DISPATCH_VIOLATION 3 1529 #define FITS_DISPATCH_WINDOW 4 1530 #define DISPATCH_INIT 5 1531 #define ADD_TO_DISPATCH_WINDOW 6 1532 1533 extern int sd_lists_size (const_rtx, sd_list_types_def); 1534 extern bool sd_lists_empty_p (const_rtx, sd_list_types_def); 1535 extern void sd_init_insn (rtx); 1536 extern void sd_finish_insn (rtx); 1537 extern dep_t sd_find_dep_between (rtx, rtx, bool); 1538 extern void sd_add_dep (dep_t, bool); 1539 extern enum DEPS_ADJUST_RESULT sd_add_or_update_dep (dep_t, bool); 1540 extern void sd_resolve_dep (sd_iterator_def); 1541 extern void sd_unresolve_dep (sd_iterator_def); 1542 extern void sd_copy_back_deps (rtx, rtx, bool); 1543 extern void sd_delete_dep (sd_iterator_def); 1544 extern void sd_debug_lists (rtx, sd_list_types_def); 1545 1546 #endif /* INSN_SCHEDULING */ 1547 1548 /* Functions in sched-vis.c. These must be outside INSN_SCHEDULING as 1549 sched-vis.c is compiled always. */ 1550 extern void print_insn (char *, const_rtx, int); 1551 extern void print_pattern (char *, const_rtx, int); 1552 extern void print_value (char *, const_rtx, int); 1553 1554 #endif /* GCC_SCHED_INT_H */ 1555 1556