1 /* Optimization of PHI nodes by converting them into straightline code. 2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "ggc.h" 26 #include "tree.h" 27 #include "flags.h" 28 #include "tm_p.h" 29 #include "basic-block.h" 30 #include "timevar.h" 31 #include "tree-flow.h" 32 #include "tree-pass.h" 33 #include "tree-dump.h" 34 #include "langhooks.h" 35 #include "pointer-set.h" 36 #include "domwalk.h" 37 #include "cfgloop.h" 38 #include "tree-data-ref.h" 39 40 static unsigned int tree_ssa_phiopt (void); 41 static unsigned int tree_ssa_phiopt_worker (bool); 42 static bool conditional_replacement (basic_block, basic_block, 43 edge, edge, gimple, tree, tree); 44 static bool value_replacement (basic_block, basic_block, 45 edge, edge, gimple, tree, tree); 46 static bool minmax_replacement (basic_block, basic_block, 47 edge, edge, gimple, tree, tree); 48 static bool abs_replacement (basic_block, basic_block, 49 edge, edge, gimple, tree, tree); 50 static bool cond_store_replacement (basic_block, basic_block, edge, edge, 51 struct pointer_set_t *); 52 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block); 53 static struct pointer_set_t * get_non_trapping (void); 54 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree); 55 56 /* This pass tries to replaces an if-then-else block with an 57 assignment. We have four kinds of transformations. Some of these 58 transformations are also performed by the ifcvt RTL optimizer. 59 60 Conditional Replacement 61 ----------------------- 62 63 This transformation, implemented in conditional_replacement, 64 replaces 65 66 bb0: 67 if (cond) goto bb2; else goto bb1; 68 bb1: 69 bb2: 70 x = PHI <0 (bb1), 1 (bb0), ...>; 71 72 with 73 74 bb0: 75 x' = cond; 76 goto bb2; 77 bb2: 78 x = PHI <x' (bb0), ...>; 79 80 We remove bb1 as it becomes unreachable. This occurs often due to 81 gimplification of conditionals. 82 83 Value Replacement 84 ----------------- 85 86 This transformation, implemented in value_replacement, replaces 87 88 bb0: 89 if (a != b) goto bb2; else goto bb1; 90 bb1: 91 bb2: 92 x = PHI <a (bb1), b (bb0), ...>; 93 94 with 95 96 bb0: 97 bb2: 98 x = PHI <b (bb0), ...>; 99 100 This opportunity can sometimes occur as a result of other 101 optimizations. 102 103 ABS Replacement 104 --------------- 105 106 This transformation, implemented in abs_replacement, replaces 107 108 bb0: 109 if (a >= 0) goto bb2; else goto bb1; 110 bb1: 111 x = -a; 112 bb2: 113 x = PHI <x (bb1), a (bb0), ...>; 114 115 with 116 117 bb0: 118 x' = ABS_EXPR< a >; 119 bb2: 120 x = PHI <x' (bb0), ...>; 121 122 MIN/MAX Replacement 123 ------------------- 124 125 This transformation, minmax_replacement replaces 126 127 bb0: 128 if (a <= b) goto bb2; else goto bb1; 129 bb1: 130 bb2: 131 x = PHI <b (bb1), a (bb0), ...>; 132 133 with 134 135 bb0: 136 x' = MIN_EXPR (a, b) 137 bb2: 138 x = PHI <x' (bb0), ...>; 139 140 A similar transformation is done for MAX_EXPR. */ 141 142 static unsigned int 143 tree_ssa_phiopt (void) 144 { 145 return tree_ssa_phiopt_worker (false); 146 } 147 148 /* This pass tries to transform conditional stores into unconditional 149 ones, enabling further simplifications with the simpler then and else 150 blocks. In particular it replaces this: 151 152 bb0: 153 if (cond) goto bb2; else goto bb1; 154 bb1: 155 *p = RHS; 156 bb2: 157 158 with 159 160 bb0: 161 if (cond) goto bb1; else goto bb2; 162 bb1: 163 condtmp' = *p; 164 bb2: 165 condtmp = PHI <RHS, condtmp'> 166 *p = condtmp; 167 168 This transformation can only be done under several constraints, 169 documented below. It also replaces: 170 171 bb0: 172 if (cond) goto bb2; else goto bb1; 173 bb1: 174 *p = RHS1; 175 goto bb3; 176 bb2: 177 *p = RHS2; 178 bb3: 179 180 with 181 182 bb0: 183 if (cond) goto bb3; else goto bb1; 184 bb1: 185 bb3: 186 condtmp = PHI <RHS1, RHS2> 187 *p = condtmp; */ 188 189 static unsigned int 190 tree_ssa_cs_elim (void) 191 { 192 return tree_ssa_phiopt_worker (true); 193 } 194 195 /* For conditional store replacement we need a temporary to 196 put the old contents of the memory in. */ 197 static tree condstoretemp; 198 199 /* The core routine of conditional store replacement and normal 200 phi optimizations. Both share much of the infrastructure in how 201 to match applicable basic block patterns. DO_STORE_ELIM is true 202 when we want to do conditional store replacement, false otherwise. */ 203 static unsigned int 204 tree_ssa_phiopt_worker (bool do_store_elim) 205 { 206 basic_block bb; 207 basic_block *bb_order; 208 unsigned n, i; 209 bool cfgchanged = false; 210 struct pointer_set_t *nontrap = 0; 211 212 if (do_store_elim) 213 { 214 condstoretemp = NULL_TREE; 215 /* Calculate the set of non-trapping memory accesses. */ 216 nontrap = get_non_trapping (); 217 } 218 219 /* Search every basic block for COND_EXPR we may be able to optimize. 220 221 We walk the blocks in order that guarantees that a block with 222 a single predecessor is processed before the predecessor. 223 This ensures that we collapse inner ifs before visiting the 224 outer ones, and also that we do not try to visit a removed 225 block. */ 226 bb_order = blocks_in_phiopt_order (); 227 n = n_basic_blocks - NUM_FIXED_BLOCKS; 228 229 for (i = 0; i < n; i++) 230 { 231 gimple cond_stmt, phi; 232 basic_block bb1, bb2; 233 edge e1, e2; 234 tree arg0, arg1; 235 236 bb = bb_order[i]; 237 238 cond_stmt = last_stmt (bb); 239 /* Check to see if the last statement is a GIMPLE_COND. */ 240 if (!cond_stmt 241 || gimple_code (cond_stmt) != GIMPLE_COND) 242 continue; 243 244 e1 = EDGE_SUCC (bb, 0); 245 bb1 = e1->dest; 246 e2 = EDGE_SUCC (bb, 1); 247 bb2 = e2->dest; 248 249 /* We cannot do the optimization on abnormal edges. */ 250 if ((e1->flags & EDGE_ABNORMAL) != 0 251 || (e2->flags & EDGE_ABNORMAL) != 0) 252 continue; 253 254 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */ 255 if (EDGE_COUNT (bb1->succs) == 0 256 || bb2 == NULL 257 || EDGE_COUNT (bb2->succs) == 0) 258 continue; 259 260 /* Find the bb which is the fall through to the other. */ 261 if (EDGE_SUCC (bb1, 0)->dest == bb2) 262 ; 263 else if (EDGE_SUCC (bb2, 0)->dest == bb1) 264 { 265 basic_block bb_tmp = bb1; 266 edge e_tmp = e1; 267 bb1 = bb2; 268 bb2 = bb_tmp; 269 e1 = e2; 270 e2 = e_tmp; 271 } 272 else if (do_store_elim 273 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest) 274 { 275 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest; 276 277 if (!single_succ_p (bb1) 278 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0 279 || !single_succ_p (bb2) 280 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0 281 || EDGE_COUNT (bb3->preds) != 2) 282 continue; 283 if (cond_if_else_store_replacement (bb1, bb2, bb3)) 284 cfgchanged = true; 285 continue; 286 } 287 else 288 continue; 289 290 e1 = EDGE_SUCC (bb1, 0); 291 292 /* Make sure that bb1 is just a fall through. */ 293 if (!single_succ_p (bb1) 294 || (e1->flags & EDGE_FALLTHRU) == 0) 295 continue; 296 297 /* Also make sure that bb1 only have one predecessor and that it 298 is bb. */ 299 if (!single_pred_p (bb1) 300 || single_pred (bb1) != bb) 301 continue; 302 303 if (do_store_elim) 304 { 305 /* bb1 is the middle block, bb2 the join block, bb the split block, 306 e1 the fallthrough edge from bb1 to bb2. We can't do the 307 optimization if the join block has more than two predecessors. */ 308 if (EDGE_COUNT (bb2->preds) > 2) 309 continue; 310 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap)) 311 cfgchanged = true; 312 } 313 else 314 { 315 gimple_seq phis = phi_nodes (bb2); 316 gimple_stmt_iterator gsi; 317 318 /* Check to make sure that there is only one non-virtual PHI node. 319 TODO: we could do it with more than one iff the other PHI nodes 320 have the same elements for these two edges. */ 321 phi = NULL; 322 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi)) 323 { 324 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi)))) 325 continue; 326 if (phi) 327 { 328 phi = NULL; 329 break; 330 } 331 phi = gsi_stmt (gsi); 332 } 333 if (!phi) 334 continue; 335 336 arg0 = gimple_phi_arg_def (phi, e1->dest_idx); 337 arg1 = gimple_phi_arg_def (phi, e2->dest_idx); 338 339 /* Something is wrong if we cannot find the arguments in the PHI 340 node. */ 341 gcc_assert (arg0 != NULL && arg1 != NULL); 342 343 /* Do the replacement of conditional if it can be done. */ 344 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 345 cfgchanged = true; 346 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 347 cfgchanged = true; 348 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 349 cfgchanged = true; 350 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 351 cfgchanged = true; 352 } 353 } 354 355 free (bb_order); 356 357 if (do_store_elim) 358 pointer_set_destroy (nontrap); 359 /* If the CFG has changed, we should cleanup the CFG. */ 360 if (cfgchanged && do_store_elim) 361 { 362 /* In cond-store replacement we have added some loads on edges 363 and new VOPS (as we moved the store, and created a load). */ 364 gsi_commit_edge_inserts (); 365 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; 366 } 367 else if (cfgchanged) 368 return TODO_cleanup_cfg; 369 return 0; 370 } 371 372 /* Returns the list of basic blocks in the function in an order that guarantees 373 that if a block X has just a single predecessor Y, then Y is after X in the 374 ordering. */ 375 376 basic_block * 377 blocks_in_phiopt_order (void) 378 { 379 basic_block x, y; 380 basic_block *order = XNEWVEC (basic_block, n_basic_blocks); 381 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS; 382 unsigned np, i; 383 sbitmap visited = sbitmap_alloc (last_basic_block); 384 385 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 386 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 387 388 sbitmap_zero (visited); 389 390 MARK_VISITED (ENTRY_BLOCK_PTR); 391 FOR_EACH_BB (x) 392 { 393 if (VISITED_P (x)) 394 continue; 395 396 /* Walk the predecessors of x as long as they have precisely one 397 predecessor and add them to the list, so that they get stored 398 after x. */ 399 for (y = x, np = 1; 400 single_pred_p (y) && !VISITED_P (single_pred (y)); 401 y = single_pred (y)) 402 np++; 403 for (y = x, i = n - np; 404 single_pred_p (y) && !VISITED_P (single_pred (y)); 405 y = single_pred (y), i++) 406 { 407 order[i] = y; 408 MARK_VISITED (y); 409 } 410 order[i] = y; 411 MARK_VISITED (y); 412 413 gcc_assert (i == n - 1); 414 n -= np; 415 } 416 417 sbitmap_free (visited); 418 gcc_assert (n == 0); 419 return order; 420 421 #undef MARK_VISITED 422 #undef VISITED_P 423 } 424 425 426 /* Return TRUE if block BB has no executable statements, otherwise return 427 FALSE. */ 428 429 bool 430 empty_block_p (basic_block bb) 431 { 432 /* BB must have no executable statements. */ 433 gimple_stmt_iterator gsi = gsi_after_labels (bb); 434 if (gsi_end_p (gsi)) 435 return true; 436 if (is_gimple_debug (gsi_stmt (gsi))) 437 gsi_next_nondebug (&gsi); 438 return gsi_end_p (gsi); 439 } 440 441 /* Replace PHI node element whose edge is E in block BB with variable NEW. 442 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK 443 is known to have two edges, one of which must reach BB). */ 444 445 static void 446 replace_phi_edge_with_variable (basic_block cond_block, 447 edge e, gimple phi, tree new_tree) 448 { 449 basic_block bb = gimple_bb (phi); 450 basic_block block_to_remove; 451 gimple_stmt_iterator gsi; 452 453 /* Change the PHI argument to new. */ 454 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree); 455 456 /* Remove the empty basic block. */ 457 if (EDGE_SUCC (cond_block, 0)->dest == bb) 458 { 459 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU; 460 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 461 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE; 462 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count; 463 464 block_to_remove = EDGE_SUCC (cond_block, 1)->dest; 465 } 466 else 467 { 468 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU; 469 EDGE_SUCC (cond_block, 1)->flags 470 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 471 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE; 472 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count; 473 474 block_to_remove = EDGE_SUCC (cond_block, 0)->dest; 475 } 476 delete_basic_block (block_to_remove); 477 478 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */ 479 gsi = gsi_last_bb (cond_block); 480 gsi_remove (&gsi, true); 481 482 if (dump_file && (dump_flags & TDF_DETAILS)) 483 fprintf (dump_file, 484 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n", 485 cond_block->index, 486 bb->index); 487 } 488 489 /* The function conditional_replacement does the main work of doing the 490 conditional replacement. Return true if the replacement is done. 491 Otherwise return false. 492 BB is the basic block where the replacement is going to be done on. ARG0 493 is argument 0 from PHI. Likewise for ARG1. */ 494 495 static bool 496 conditional_replacement (basic_block cond_bb, basic_block middle_bb, 497 edge e0, edge e1, gimple phi, 498 tree arg0, tree arg1) 499 { 500 tree result; 501 gimple stmt, new_stmt; 502 tree cond; 503 gimple_stmt_iterator gsi; 504 edge true_edge, false_edge; 505 tree new_var, new_var2; 506 507 /* FIXME: Gimplification of complex type is too hard for now. */ 508 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE 509 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE) 510 return false; 511 512 /* The PHI arguments have the constants 0 and 1, then convert 513 it to the conditional. */ 514 if ((integer_zerop (arg0) && integer_onep (arg1)) 515 || (integer_zerop (arg1) && integer_onep (arg0))) 516 ; 517 else 518 return false; 519 520 if (!empty_block_p (middle_bb)) 521 return false; 522 523 /* At this point we know we have a GIMPLE_COND with two successors. 524 One successor is BB, the other successor is an empty block which 525 falls through into BB. 526 527 There is a single PHI node at the join point (BB) and its arguments 528 are constants (0, 1). 529 530 So, given the condition COND, and the two PHI arguments, we can 531 rewrite this PHI into non-branching code: 532 533 dest = (COND) or dest = COND' 534 535 We use the condition as-is if the argument associated with the 536 true edge has the value one or the argument associated with the 537 false edge as the value zero. Note that those conditions are not 538 the same since only one of the outgoing edges from the GIMPLE_COND 539 will directly reach BB and thus be associated with an argument. */ 540 541 stmt = last_stmt (cond_bb); 542 result = PHI_RESULT (phi); 543 544 /* To handle special cases like floating point comparison, it is easier and 545 less error-prone to build a tree and gimplify it on the fly though it is 546 less efficient. */ 547 cond = fold_build2_loc (gimple_location (stmt), 548 gimple_cond_code (stmt), boolean_type_node, 549 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); 550 551 /* We need to know which is the true edge and which is the false 552 edge so that we know when to invert the condition below. */ 553 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 554 if ((e0 == true_edge && integer_zerop (arg0)) 555 || (e0 == false_edge && integer_onep (arg0)) 556 || (e1 == true_edge && integer_zerop (arg1)) 557 || (e1 == false_edge && integer_onep (arg1))) 558 cond = fold_build1_loc (gimple_location (stmt), 559 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond); 560 561 /* Insert our new statements at the end of conditional block before the 562 COND_STMT. */ 563 gsi = gsi_for_stmt (stmt); 564 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true, 565 GSI_SAME_STMT); 566 567 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var))) 568 { 569 source_location locus_0, locus_1; 570 571 new_var2 = create_tmp_var (TREE_TYPE (result), NULL); 572 add_referenced_var (new_var2); 573 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2, 574 new_var, NULL); 575 new_var2 = make_ssa_name (new_var2, new_stmt); 576 gimple_assign_set_lhs (new_stmt, new_var2); 577 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); 578 new_var = new_var2; 579 580 /* Set the locus to the first argument, unless is doesn't have one. */ 581 locus_0 = gimple_phi_arg_location (phi, 0); 582 locus_1 = gimple_phi_arg_location (phi, 1); 583 if (locus_0 == UNKNOWN_LOCATION) 584 locus_0 = locus_1; 585 gimple_set_location (new_stmt, locus_0); 586 } 587 588 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var); 589 590 /* Note that we optimized this PHI. */ 591 return true; 592 } 593 594 /* Update *ARG which is defined in STMT so that it contains the 595 computed value if that seems profitable. Return true if the 596 statement is made dead by that rewriting. */ 597 598 static bool 599 jump_function_from_stmt (tree *arg, gimple stmt) 600 { 601 enum tree_code code = gimple_assign_rhs_code (stmt); 602 if (code == ADDR_EXPR) 603 { 604 /* For arg = &p->i transform it to p, if possible. */ 605 tree rhs1 = gimple_assign_rhs1 (stmt); 606 HOST_WIDE_INT offset; 607 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0), 608 &offset); 609 if (tem 610 && TREE_CODE (tem) == MEM_REF 611 && double_int_zero_p 612 (double_int_add (mem_ref_offset (tem), 613 shwi_to_double_int (offset)))) 614 { 615 *arg = TREE_OPERAND (tem, 0); 616 return true; 617 } 618 } 619 /* TODO: Much like IPA-CP jump-functions we want to handle constant 620 additions symbolically here, and we'd need to update the comparison 621 code that compares the arg + cst tuples in our caller. For now the 622 code above exactly handles the VEC_BASE pattern from vec.h. */ 623 return false; 624 } 625 626 /* The function value_replacement does the main work of doing the value 627 replacement. Return true if the replacement is done. Otherwise return 628 false. 629 BB is the basic block where the replacement is going to be done on. ARG0 630 is argument 0 from the PHI. Likewise for ARG1. */ 631 632 static bool 633 value_replacement (basic_block cond_bb, basic_block middle_bb, 634 edge e0, edge e1, gimple phi, 635 tree arg0, tree arg1) 636 { 637 gimple_stmt_iterator gsi; 638 gimple cond; 639 edge true_edge, false_edge; 640 enum tree_code code; 641 642 /* If the type says honor signed zeros we cannot do this 643 optimization. */ 644 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) 645 return false; 646 647 /* Allow a single statement in MIDDLE_BB that defines one of the PHI 648 arguments. */ 649 gsi = gsi_after_labels (middle_bb); 650 if (!gsi_end_p (gsi)) 651 { 652 if (is_gimple_debug (gsi_stmt (gsi))) 653 gsi_next_nondebug (&gsi); 654 if (!gsi_end_p (gsi)) 655 { 656 gimple stmt = gsi_stmt (gsi); 657 tree lhs; 658 gsi_next_nondebug (&gsi); 659 if (!gsi_end_p (gsi)) 660 return false; 661 if (!is_gimple_assign (stmt)) 662 return false; 663 /* Now try to adjust arg0 or arg1 according to the computation 664 in the single statement. */ 665 lhs = gimple_assign_lhs (stmt); 666 if (!((lhs == arg0 667 && jump_function_from_stmt (&arg0, stmt)) 668 || (lhs == arg1 669 && jump_function_from_stmt (&arg1, stmt)))) 670 return false; 671 } 672 } 673 674 cond = last_stmt (cond_bb); 675 code = gimple_cond_code (cond); 676 677 /* This transformation is only valid for equality comparisons. */ 678 if (code != NE_EXPR && code != EQ_EXPR) 679 return false; 680 681 /* We need to know which is the true edge and which is the false 682 edge so that we know if have abs or negative abs. */ 683 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 684 685 /* At this point we know we have a COND_EXPR with two successors. 686 One successor is BB, the other successor is an empty block which 687 falls through into BB. 688 689 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR. 690 691 There is a single PHI node at the join point (BB) with two arguments. 692 693 We now need to verify that the two arguments in the PHI node match 694 the two arguments to the equality comparison. */ 695 696 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond)) 697 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond))) 698 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond)) 699 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond)))) 700 { 701 edge e; 702 tree arg; 703 704 /* For NE_EXPR, we want to build an assignment result = arg where 705 arg is the PHI argument associated with the true edge. For 706 EQ_EXPR we want the PHI argument associated with the false edge. */ 707 e = (code == NE_EXPR ? true_edge : false_edge); 708 709 /* Unfortunately, E may not reach BB (it may instead have gone to 710 OTHER_BLOCK). If that is the case, then we want the single outgoing 711 edge from OTHER_BLOCK which reaches BB and represents the desired 712 path from COND_BLOCK. */ 713 if (e->dest == middle_bb) 714 e = single_succ_edge (e->dest); 715 716 /* Now we know the incoming edge to BB that has the argument for the 717 RHS of our new assignment statement. */ 718 if (e0 == e) 719 arg = arg0; 720 else 721 arg = arg1; 722 723 replace_phi_edge_with_variable (cond_bb, e1, phi, arg); 724 725 /* Note that we optimized this PHI. */ 726 return true; 727 } 728 return false; 729 } 730 731 /* The function minmax_replacement does the main work of doing the minmax 732 replacement. Return true if the replacement is done. Otherwise return 733 false. 734 BB is the basic block where the replacement is going to be done on. ARG0 735 is argument 0 from the PHI. Likewise for ARG1. */ 736 737 static bool 738 minmax_replacement (basic_block cond_bb, basic_block middle_bb, 739 edge e0, edge e1, gimple phi, 740 tree arg0, tree arg1) 741 { 742 tree result, type; 743 gimple cond, new_stmt; 744 edge true_edge, false_edge; 745 enum tree_code cmp, minmax, ass_code; 746 tree smaller, larger, arg_true, arg_false; 747 gimple_stmt_iterator gsi, gsi_from; 748 749 type = TREE_TYPE (PHI_RESULT (phi)); 750 751 /* The optimization may be unsafe due to NaNs. */ 752 if (HONOR_NANS (TYPE_MODE (type))) 753 return false; 754 755 cond = last_stmt (cond_bb); 756 cmp = gimple_cond_code (cond); 757 758 /* This transformation is only valid for order comparisons. Record which 759 operand is smaller/larger if the result of the comparison is true. */ 760 if (cmp == LT_EXPR || cmp == LE_EXPR) 761 { 762 smaller = gimple_cond_lhs (cond); 763 larger = gimple_cond_rhs (cond); 764 } 765 else if (cmp == GT_EXPR || cmp == GE_EXPR) 766 { 767 smaller = gimple_cond_rhs (cond); 768 larger = gimple_cond_lhs (cond); 769 } 770 else 771 return false; 772 773 /* We need to know which is the true edge and which is the false 774 edge so that we know if have abs or negative abs. */ 775 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 776 777 /* Forward the edges over the middle basic block. */ 778 if (true_edge->dest == middle_bb) 779 true_edge = EDGE_SUCC (true_edge->dest, 0); 780 if (false_edge->dest == middle_bb) 781 false_edge = EDGE_SUCC (false_edge->dest, 0); 782 783 if (true_edge == e0) 784 { 785 gcc_assert (false_edge == e1); 786 arg_true = arg0; 787 arg_false = arg1; 788 } 789 else 790 { 791 gcc_assert (false_edge == e0); 792 gcc_assert (true_edge == e1); 793 arg_true = arg1; 794 arg_false = arg0; 795 } 796 797 if (empty_block_p (middle_bb)) 798 { 799 if (operand_equal_for_phi_arg_p (arg_true, smaller) 800 && operand_equal_for_phi_arg_p (arg_false, larger)) 801 { 802 /* Case 803 804 if (smaller < larger) 805 rslt = smaller; 806 else 807 rslt = larger; */ 808 minmax = MIN_EXPR; 809 } 810 else if (operand_equal_for_phi_arg_p (arg_false, smaller) 811 && operand_equal_for_phi_arg_p (arg_true, larger)) 812 minmax = MAX_EXPR; 813 else 814 return false; 815 } 816 else 817 { 818 /* Recognize the following case, assuming d <= u: 819 820 if (a <= u) 821 b = MAX (a, d); 822 x = PHI <b, u> 823 824 This is equivalent to 825 826 b = MAX (a, d); 827 x = MIN (b, u); */ 828 829 gimple assign = last_and_only_stmt (middle_bb); 830 tree lhs, op0, op1, bound; 831 832 if (!assign 833 || gimple_code (assign) != GIMPLE_ASSIGN) 834 return false; 835 836 lhs = gimple_assign_lhs (assign); 837 ass_code = gimple_assign_rhs_code (assign); 838 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR) 839 return false; 840 op0 = gimple_assign_rhs1 (assign); 841 op1 = gimple_assign_rhs2 (assign); 842 843 if (true_edge->src == middle_bb) 844 { 845 /* We got here if the condition is true, i.e., SMALLER < LARGER. */ 846 if (!operand_equal_for_phi_arg_p (lhs, arg_true)) 847 return false; 848 849 if (operand_equal_for_phi_arg_p (arg_false, larger)) 850 { 851 /* Case 852 853 if (smaller < larger) 854 { 855 r' = MAX_EXPR (smaller, bound) 856 } 857 r = PHI <r', larger> --> to be turned to MIN_EXPR. */ 858 if (ass_code != MAX_EXPR) 859 return false; 860 861 minmax = MIN_EXPR; 862 if (operand_equal_for_phi_arg_p (op0, smaller)) 863 bound = op1; 864 else if (operand_equal_for_phi_arg_p (op1, smaller)) 865 bound = op0; 866 else 867 return false; 868 869 /* We need BOUND <= LARGER. */ 870 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, 871 bound, larger))) 872 return false; 873 } 874 else if (operand_equal_for_phi_arg_p (arg_false, smaller)) 875 { 876 /* Case 877 878 if (smaller < larger) 879 { 880 r' = MIN_EXPR (larger, bound) 881 } 882 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */ 883 if (ass_code != MIN_EXPR) 884 return false; 885 886 minmax = MAX_EXPR; 887 if (operand_equal_for_phi_arg_p (op0, larger)) 888 bound = op1; 889 else if (operand_equal_for_phi_arg_p (op1, larger)) 890 bound = op0; 891 else 892 return false; 893 894 /* We need BOUND >= SMALLER. */ 895 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, 896 bound, smaller))) 897 return false; 898 } 899 else 900 return false; 901 } 902 else 903 { 904 /* We got here if the condition is false, i.e., SMALLER > LARGER. */ 905 if (!operand_equal_for_phi_arg_p (lhs, arg_false)) 906 return false; 907 908 if (operand_equal_for_phi_arg_p (arg_true, larger)) 909 { 910 /* Case 911 912 if (smaller > larger) 913 { 914 r' = MIN_EXPR (smaller, bound) 915 } 916 r = PHI <r', larger> --> to be turned to MAX_EXPR. */ 917 if (ass_code != MIN_EXPR) 918 return false; 919 920 minmax = MAX_EXPR; 921 if (operand_equal_for_phi_arg_p (op0, smaller)) 922 bound = op1; 923 else if (operand_equal_for_phi_arg_p (op1, smaller)) 924 bound = op0; 925 else 926 return false; 927 928 /* We need BOUND >= LARGER. */ 929 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, 930 bound, larger))) 931 return false; 932 } 933 else if (operand_equal_for_phi_arg_p (arg_true, smaller)) 934 { 935 /* Case 936 937 if (smaller > larger) 938 { 939 r' = MAX_EXPR (larger, bound) 940 } 941 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */ 942 if (ass_code != MAX_EXPR) 943 return false; 944 945 minmax = MIN_EXPR; 946 if (operand_equal_for_phi_arg_p (op0, larger)) 947 bound = op1; 948 else if (operand_equal_for_phi_arg_p (op1, larger)) 949 bound = op0; 950 else 951 return false; 952 953 /* We need BOUND <= SMALLER. */ 954 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, 955 bound, smaller))) 956 return false; 957 } 958 else 959 return false; 960 } 961 962 /* Move the statement from the middle block. */ 963 gsi = gsi_last_bb (cond_bb); 964 gsi_from = gsi_last_nondebug_bb (middle_bb); 965 gsi_move_before (&gsi_from, &gsi); 966 } 967 968 /* Emit the statement to compute min/max. */ 969 result = duplicate_ssa_name (PHI_RESULT (phi), NULL); 970 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1); 971 gsi = gsi_last_bb (cond_bb); 972 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 973 974 replace_phi_edge_with_variable (cond_bb, e1, phi, result); 975 return true; 976 } 977 978 /* The function absolute_replacement does the main work of doing the absolute 979 replacement. Return true if the replacement is done. Otherwise return 980 false. 981 bb is the basic block where the replacement is going to be done on. arg0 982 is argument 0 from the phi. Likewise for arg1. */ 983 984 static bool 985 abs_replacement (basic_block cond_bb, basic_block middle_bb, 986 edge e0 ATTRIBUTE_UNUSED, edge e1, 987 gimple phi, tree arg0, tree arg1) 988 { 989 tree result; 990 gimple new_stmt, cond; 991 gimple_stmt_iterator gsi; 992 edge true_edge, false_edge; 993 gimple assign; 994 edge e; 995 tree rhs, lhs; 996 bool negate; 997 enum tree_code cond_code; 998 999 /* If the type says honor signed zeros we cannot do this 1000 optimization. */ 1001 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) 1002 return false; 1003 1004 /* OTHER_BLOCK must have only one executable statement which must have the 1005 form arg0 = -arg1 or arg1 = -arg0. */ 1006 1007 assign = last_and_only_stmt (middle_bb); 1008 /* If we did not find the proper negation assignment, then we can not 1009 optimize. */ 1010 if (assign == NULL) 1011 return false; 1012 1013 /* If we got here, then we have found the only executable statement 1014 in OTHER_BLOCK. If it is anything other than arg = -arg1 or 1015 arg1 = -arg0, then we can not optimize. */ 1016 if (gimple_code (assign) != GIMPLE_ASSIGN) 1017 return false; 1018 1019 lhs = gimple_assign_lhs (assign); 1020 1021 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR) 1022 return false; 1023 1024 rhs = gimple_assign_rhs1 (assign); 1025 1026 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */ 1027 if (!(lhs == arg0 && rhs == arg1) 1028 && !(lhs == arg1 && rhs == arg0)) 1029 return false; 1030 1031 cond = last_stmt (cond_bb); 1032 result = PHI_RESULT (phi); 1033 1034 /* Only relationals comparing arg[01] against zero are interesting. */ 1035 cond_code = gimple_cond_code (cond); 1036 if (cond_code != GT_EXPR && cond_code != GE_EXPR 1037 && cond_code != LT_EXPR && cond_code != LE_EXPR) 1038 return false; 1039 1040 /* Make sure the conditional is arg[01] OP y. */ 1041 if (gimple_cond_lhs (cond) != rhs) 1042 return false; 1043 1044 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond))) 1045 ? real_zerop (gimple_cond_rhs (cond)) 1046 : integer_zerop (gimple_cond_rhs (cond))) 1047 ; 1048 else 1049 return false; 1050 1051 /* We need to know which is the true edge and which is the false 1052 edge so that we know if have abs or negative abs. */ 1053 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 1054 1055 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we 1056 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if 1057 the false edge goes to OTHER_BLOCK. */ 1058 if (cond_code == GT_EXPR || cond_code == GE_EXPR) 1059 e = true_edge; 1060 else 1061 e = false_edge; 1062 1063 if (e->dest == middle_bb) 1064 negate = true; 1065 else 1066 negate = false; 1067 1068 result = duplicate_ssa_name (result, NULL); 1069 1070 if (negate) 1071 { 1072 tree tmp = create_tmp_var (TREE_TYPE (result), NULL); 1073 add_referenced_var (tmp); 1074 lhs = make_ssa_name (tmp, NULL); 1075 } 1076 else 1077 lhs = result; 1078 1079 /* Build the modify expression with abs expression. */ 1080 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL); 1081 1082 gsi = gsi_last_bb (cond_bb); 1083 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 1084 1085 if (negate) 1086 { 1087 /* Get the right GSI. We want to insert after the recently 1088 added ABS_EXPR statement (which we know is the first statement 1089 in the block. */ 1090 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL); 1091 1092 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); 1093 } 1094 1095 replace_phi_edge_with_variable (cond_bb, e1, phi, result); 1096 1097 /* Note that we optimized this PHI. */ 1098 return true; 1099 } 1100 1101 /* Auxiliary functions to determine the set of memory accesses which 1102 can't trap because they are preceded by accesses to the same memory 1103 portion. We do that for MEM_REFs, so we only need to track 1104 the SSA_NAME of the pointer indirectly referenced. The algorithm 1105 simply is a walk over all instructions in dominator order. When 1106 we see an MEM_REF we determine if we've already seen a same 1107 ref anywhere up to the root of the dominator tree. If we do the 1108 current access can't trap. If we don't see any dominating access 1109 the current access might trap, but might also make later accesses 1110 non-trapping, so we remember it. We need to be careful with loads 1111 or stores, for instance a load might not trap, while a store would, 1112 so if we see a dominating read access this doesn't mean that a later 1113 write access would not trap. Hence we also need to differentiate the 1114 type of access(es) seen. 1115 1116 ??? We currently are very conservative and assume that a load might 1117 trap even if a store doesn't (write-only memory). This probably is 1118 overly conservative. */ 1119 1120 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF 1121 through it was seen, which would constitute a no-trap region for 1122 same accesses. */ 1123 struct name_to_bb 1124 { 1125 unsigned int ssa_name_ver; 1126 bool store; 1127 HOST_WIDE_INT offset, size; 1128 basic_block bb; 1129 }; 1130 1131 /* The hash table for remembering what we've seen. */ 1132 static htab_t seen_ssa_names; 1133 1134 /* The set of MEM_REFs which can't trap. */ 1135 static struct pointer_set_t *nontrap_set; 1136 1137 /* The hash function. */ 1138 static hashval_t 1139 name_to_bb_hash (const void *p) 1140 { 1141 const struct name_to_bb *n = (const struct name_to_bb *) p; 1142 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31) 1143 ^ (n->offset << 6) ^ (n->size << 3); 1144 } 1145 1146 /* The equality function of *P1 and *P2. */ 1147 static int 1148 name_to_bb_eq (const void *p1, const void *p2) 1149 { 1150 const struct name_to_bb *n1 = (const struct name_to_bb *)p1; 1151 const struct name_to_bb *n2 = (const struct name_to_bb *)p2; 1152 1153 return n1->ssa_name_ver == n2->ssa_name_ver 1154 && n1->store == n2->store 1155 && n1->offset == n2->offset 1156 && n1->size == n2->size; 1157 } 1158 1159 /* We see the expression EXP in basic block BB. If it's an interesting 1160 expression (an MEM_REF through an SSA_NAME) possibly insert the 1161 expression into the set NONTRAP or the hash table of seen expressions. 1162 STORE is true if this expression is on the LHS, otherwise it's on 1163 the RHS. */ 1164 static void 1165 add_or_mark_expr (basic_block bb, tree exp, 1166 struct pointer_set_t *nontrap, bool store) 1167 { 1168 HOST_WIDE_INT size; 1169 1170 if (TREE_CODE (exp) == MEM_REF 1171 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME 1172 && host_integerp (TREE_OPERAND (exp, 1), 0) 1173 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0) 1174 { 1175 tree name = TREE_OPERAND (exp, 0); 1176 struct name_to_bb map; 1177 void **slot; 1178 struct name_to_bb *n2bb; 1179 basic_block found_bb = 0; 1180 1181 /* Try to find the last seen MEM_REF through the same 1182 SSA_NAME, which can trap. */ 1183 map.ssa_name_ver = SSA_NAME_VERSION (name); 1184 map.bb = 0; 1185 map.store = store; 1186 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0); 1187 map.size = size; 1188 1189 slot = htab_find_slot (seen_ssa_names, &map, INSERT); 1190 n2bb = (struct name_to_bb *) *slot; 1191 if (n2bb) 1192 found_bb = n2bb->bb; 1193 1194 /* If we've found a trapping MEM_REF, _and_ it dominates EXP 1195 (it's in a basic block on the path from us to the dominator root) 1196 then we can't trap. */ 1197 if (found_bb && found_bb->aux == (void *)1) 1198 { 1199 pointer_set_insert (nontrap, exp); 1200 } 1201 else 1202 { 1203 /* EXP might trap, so insert it into the hash table. */ 1204 if (n2bb) 1205 { 1206 n2bb->bb = bb; 1207 } 1208 else 1209 { 1210 n2bb = XNEW (struct name_to_bb); 1211 n2bb->ssa_name_ver = SSA_NAME_VERSION (name); 1212 n2bb->bb = bb; 1213 n2bb->store = store; 1214 n2bb->offset = map.offset; 1215 n2bb->size = size; 1216 *slot = n2bb; 1217 } 1218 } 1219 } 1220 } 1221 1222 /* Called by walk_dominator_tree, when entering the block BB. */ 1223 static void 1224 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) 1225 { 1226 gimple_stmt_iterator gsi; 1227 /* Mark this BB as being on the path to dominator root. */ 1228 bb->aux = (void*)1; 1229 1230 /* And walk the statements in order. */ 1231 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1232 { 1233 gimple stmt = gsi_stmt (gsi); 1234 1235 if (gimple_assign_single_p (stmt)) 1236 { 1237 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true); 1238 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false); 1239 } 1240 } 1241 } 1242 1243 /* Called by walk_dominator_tree, when basic block BB is exited. */ 1244 static void 1245 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) 1246 { 1247 /* This BB isn't on the path to dominator root anymore. */ 1248 bb->aux = NULL; 1249 } 1250 1251 /* This is the entry point of gathering non trapping memory accesses. 1252 It will do a dominator walk over the whole function, and it will 1253 make use of the bb->aux pointers. It returns a set of trees 1254 (the MEM_REFs itself) which can't trap. */ 1255 static struct pointer_set_t * 1256 get_non_trapping (void) 1257 { 1258 struct pointer_set_t *nontrap; 1259 struct dom_walk_data walk_data; 1260 1261 nontrap = pointer_set_create (); 1262 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq, 1263 free); 1264 /* We're going to do a dominator walk, so ensure that we have 1265 dominance information. */ 1266 calculate_dominance_info (CDI_DOMINATORS); 1267 1268 /* Setup callbacks for the generic dominator tree walker. */ 1269 nontrap_set = nontrap; 1270 walk_data.dom_direction = CDI_DOMINATORS; 1271 walk_data.initialize_block_local_data = NULL; 1272 walk_data.before_dom_children = nt_init_block; 1273 walk_data.after_dom_children = nt_fini_block; 1274 walk_data.global_data = NULL; 1275 walk_data.block_local_data_size = 0; 1276 1277 init_walk_dominator_tree (&walk_data); 1278 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); 1279 fini_walk_dominator_tree (&walk_data); 1280 htab_delete (seen_ssa_names); 1281 1282 return nontrap; 1283 } 1284 1285 /* Do the main work of conditional store replacement. We already know 1286 that the recognized pattern looks like so: 1287 1288 split: 1289 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1) 1290 MIDDLE_BB: 1291 something 1292 fallthrough (edge E0) 1293 JOIN_BB: 1294 some more 1295 1296 We check that MIDDLE_BB contains only one store, that that store 1297 doesn't trap (not via NOTRAP, but via checking if an access to the same 1298 memory location dominates us) and that the store has a "simple" RHS. */ 1299 1300 static bool 1301 cond_store_replacement (basic_block middle_bb, basic_block join_bb, 1302 edge e0, edge e1, struct pointer_set_t *nontrap) 1303 { 1304 gimple assign = last_and_only_stmt (middle_bb); 1305 tree lhs, rhs, name; 1306 gimple newphi, new_stmt; 1307 gimple_stmt_iterator gsi; 1308 source_location locus; 1309 1310 /* Check if middle_bb contains of only one store. */ 1311 if (!assign 1312 || !gimple_assign_single_p (assign)) 1313 return false; 1314 1315 locus = gimple_location (assign); 1316 lhs = gimple_assign_lhs (assign); 1317 rhs = gimple_assign_rhs1 (assign); 1318 if (TREE_CODE (lhs) != MEM_REF 1319 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME 1320 || !is_gimple_reg_type (TREE_TYPE (lhs))) 1321 return false; 1322 1323 /* Prove that we can move the store down. We could also check 1324 TREE_THIS_NOTRAP here, but in that case we also could move stores, 1325 whose value is not available readily, which we want to avoid. */ 1326 if (!pointer_set_contains (nontrap, lhs)) 1327 return false; 1328 1329 /* Now we've checked the constraints, so do the transformation: 1330 1) Remove the single store. */ 1331 gsi = gsi_for_stmt (assign); 1332 unlink_stmt_vdef (assign); 1333 gsi_remove (&gsi, true); 1334 release_defs (assign); 1335 1336 /* 2) Create a temporary where we can store the old content 1337 of the memory touched by the store, if we need to. */ 1338 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp)) 1339 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore"); 1340 add_referenced_var (condstoretemp); 1341 1342 /* 3) Insert a load from the memory of the store to the temporary 1343 on the edge which did not contain the store. */ 1344 lhs = unshare_expr (lhs); 1345 new_stmt = gimple_build_assign (condstoretemp, lhs); 1346 name = make_ssa_name (condstoretemp, new_stmt); 1347 gimple_assign_set_lhs (new_stmt, name); 1348 gimple_set_location (new_stmt, locus); 1349 gsi_insert_on_edge (e1, new_stmt); 1350 1351 /* 4) Create a PHI node at the join block, with one argument 1352 holding the old RHS, and the other holding the temporary 1353 where we stored the old memory contents. */ 1354 newphi = create_phi_node (condstoretemp, join_bb); 1355 add_phi_arg (newphi, rhs, e0, locus); 1356 add_phi_arg (newphi, name, e1, locus); 1357 1358 lhs = unshare_expr (lhs); 1359 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi)); 1360 1361 /* 5) Insert that PHI node. */ 1362 gsi = gsi_after_labels (join_bb); 1363 if (gsi_end_p (gsi)) 1364 { 1365 gsi = gsi_last_bb (join_bb); 1366 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); 1367 } 1368 else 1369 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 1370 1371 return true; 1372 } 1373 1374 /* Do the main work of conditional store replacement. */ 1375 1376 static bool 1377 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb, 1378 basic_block join_bb, gimple then_assign, 1379 gimple else_assign) 1380 { 1381 tree lhs_base, lhs, then_rhs, else_rhs; 1382 source_location then_locus, else_locus; 1383 gimple_stmt_iterator gsi; 1384 gimple newphi, new_stmt; 1385 1386 if (then_assign == NULL 1387 || !gimple_assign_single_p (then_assign) 1388 || gimple_clobber_p (then_assign) 1389 || else_assign == NULL 1390 || !gimple_assign_single_p (else_assign) 1391 || gimple_clobber_p (else_assign)) 1392 return false; 1393 1394 lhs = gimple_assign_lhs (then_assign); 1395 if (!is_gimple_reg_type (TREE_TYPE (lhs)) 1396 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0)) 1397 return false; 1398 1399 lhs_base = get_base_address (lhs); 1400 if (lhs_base == NULL_TREE 1401 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF)) 1402 return false; 1403 1404 then_rhs = gimple_assign_rhs1 (then_assign); 1405 else_rhs = gimple_assign_rhs1 (else_assign); 1406 then_locus = gimple_location (then_assign); 1407 else_locus = gimple_location (else_assign); 1408 1409 /* Now we've checked the constraints, so do the transformation: 1410 1) Remove the stores. */ 1411 gsi = gsi_for_stmt (then_assign); 1412 unlink_stmt_vdef (then_assign); 1413 gsi_remove (&gsi, true); 1414 release_defs (then_assign); 1415 1416 gsi = gsi_for_stmt (else_assign); 1417 unlink_stmt_vdef (else_assign); 1418 gsi_remove (&gsi, true); 1419 release_defs (else_assign); 1420 1421 /* 2) Create a temporary where we can store the old content 1422 of the memory touched by the store, if we need to. */ 1423 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp)) 1424 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore"); 1425 add_referenced_var (condstoretemp); 1426 1427 /* 3) Create a PHI node at the join block, with one argument 1428 holding the old RHS, and the other holding the temporary 1429 where we stored the old memory contents. */ 1430 newphi = create_phi_node (condstoretemp, join_bb); 1431 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus); 1432 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus); 1433 1434 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi)); 1435 1436 /* 4) Insert that PHI node. */ 1437 gsi = gsi_after_labels (join_bb); 1438 if (gsi_end_p (gsi)) 1439 { 1440 gsi = gsi_last_bb (join_bb); 1441 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); 1442 } 1443 else 1444 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 1445 1446 return true; 1447 } 1448 1449 /* Conditional store replacement. We already know 1450 that the recognized pattern looks like so: 1451 1452 split: 1453 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1) 1454 THEN_BB: 1455 ... 1456 X = Y; 1457 ... 1458 goto JOIN_BB; 1459 ELSE_BB: 1460 ... 1461 X = Z; 1462 ... 1463 fallthrough (edge E0) 1464 JOIN_BB: 1465 some more 1466 1467 We check that it is safe to sink the store to JOIN_BB by verifying that 1468 there are no read-after-write or write-after-write dependencies in 1469 THEN_BB and ELSE_BB. */ 1470 1471 static bool 1472 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb, 1473 basic_block join_bb) 1474 { 1475 gimple then_assign = last_and_only_stmt (then_bb); 1476 gimple else_assign = last_and_only_stmt (else_bb); 1477 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs; 1478 VEC (ddr_p, heap) *then_ddrs, *else_ddrs; 1479 gimple then_store, else_store; 1480 bool found, ok = false, res; 1481 struct data_dependence_relation *ddr; 1482 data_reference_p then_dr, else_dr; 1483 int i, j; 1484 tree then_lhs, else_lhs; 1485 VEC (gimple, heap) *then_stores, *else_stores; 1486 basic_block blocks[3]; 1487 1488 if (MAX_STORES_TO_SINK == 0) 1489 return false; 1490 1491 /* Handle the case with single statement in THEN_BB and ELSE_BB. */ 1492 if (then_assign && else_assign) 1493 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb, 1494 then_assign, else_assign); 1495 1496 /* Find data references. */ 1497 then_datarefs = VEC_alloc (data_reference_p, heap, 1); 1498 else_datarefs = VEC_alloc (data_reference_p, heap, 1); 1499 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs) 1500 == chrec_dont_know) 1501 || !VEC_length (data_reference_p, then_datarefs) 1502 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs) 1503 == chrec_dont_know) 1504 || !VEC_length (data_reference_p, else_datarefs)) 1505 { 1506 free_data_refs (then_datarefs); 1507 free_data_refs (else_datarefs); 1508 return false; 1509 } 1510 1511 /* Find pairs of stores with equal LHS. */ 1512 then_stores = VEC_alloc (gimple, heap, 1); 1513 else_stores = VEC_alloc (gimple, heap, 1); 1514 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr) 1515 { 1516 if (DR_IS_READ (then_dr)) 1517 continue; 1518 1519 then_store = DR_STMT (then_dr); 1520 then_lhs = gimple_get_lhs (then_store); 1521 found = false; 1522 1523 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr) 1524 { 1525 if (DR_IS_READ (else_dr)) 1526 continue; 1527 1528 else_store = DR_STMT (else_dr); 1529 else_lhs = gimple_get_lhs (else_store); 1530 1531 if (operand_equal_p (then_lhs, else_lhs, 0)) 1532 { 1533 found = true; 1534 break; 1535 } 1536 } 1537 1538 if (!found) 1539 continue; 1540 1541 VEC_safe_push (gimple, heap, then_stores, then_store); 1542 VEC_safe_push (gimple, heap, else_stores, else_store); 1543 } 1544 1545 /* No pairs of stores found. */ 1546 if (!VEC_length (gimple, then_stores) 1547 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK) 1548 { 1549 free_data_refs (then_datarefs); 1550 free_data_refs (else_datarefs); 1551 VEC_free (gimple, heap, then_stores); 1552 VEC_free (gimple, heap, else_stores); 1553 return false; 1554 } 1555 1556 /* Compute and check data dependencies in both basic blocks. */ 1557 then_ddrs = VEC_alloc (ddr_p, heap, 1); 1558 else_ddrs = VEC_alloc (ddr_p, heap, 1); 1559 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false) 1560 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false)) 1561 { 1562 free_dependence_relations (then_ddrs); 1563 free_dependence_relations (else_ddrs); 1564 free_data_refs (then_datarefs); 1565 free_data_refs (else_datarefs); 1566 VEC_free (gimple, heap, then_stores); 1567 VEC_free (gimple, heap, else_stores); 1568 return false; 1569 } 1570 blocks[0] = then_bb; 1571 blocks[1] = else_bb; 1572 blocks[2] = join_bb; 1573 renumber_gimple_stmt_uids_in_blocks (blocks, 3); 1574 1575 /* Check that there are no read-after-write or write-after-write dependencies 1576 in THEN_BB. */ 1577 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr) 1578 { 1579 struct data_reference *dra = DDR_A (ddr); 1580 struct data_reference *drb = DDR_B (ddr); 1581 1582 if (DDR_ARE_DEPENDENT (ddr) != chrec_known 1583 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb) 1584 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb))) 1585 || (DR_IS_READ (drb) && DR_IS_WRITE (dra) 1586 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra))) 1587 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)))) 1588 { 1589 free_dependence_relations (then_ddrs); 1590 free_dependence_relations (else_ddrs); 1591 free_data_refs (then_datarefs); 1592 free_data_refs (else_datarefs); 1593 VEC_free (gimple, heap, then_stores); 1594 VEC_free (gimple, heap, else_stores); 1595 return false; 1596 } 1597 } 1598 1599 /* Check that there are no read-after-write or write-after-write dependencies 1600 in ELSE_BB. */ 1601 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr) 1602 { 1603 struct data_reference *dra = DDR_A (ddr); 1604 struct data_reference *drb = DDR_B (ddr); 1605 1606 if (DDR_ARE_DEPENDENT (ddr) != chrec_known 1607 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb) 1608 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb))) 1609 || (DR_IS_READ (drb) && DR_IS_WRITE (dra) 1610 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra))) 1611 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)))) 1612 { 1613 free_dependence_relations (then_ddrs); 1614 free_dependence_relations (else_ddrs); 1615 free_data_refs (then_datarefs); 1616 free_data_refs (else_datarefs); 1617 VEC_free (gimple, heap, then_stores); 1618 VEC_free (gimple, heap, else_stores); 1619 return false; 1620 } 1621 } 1622 1623 /* Sink stores with same LHS. */ 1624 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store) 1625 { 1626 else_store = VEC_index (gimple, else_stores, i); 1627 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb, 1628 then_store, else_store); 1629 ok = ok || res; 1630 } 1631 1632 free_dependence_relations (then_ddrs); 1633 free_dependence_relations (else_ddrs); 1634 free_data_refs (then_datarefs); 1635 free_data_refs (else_datarefs); 1636 VEC_free (gimple, heap, then_stores); 1637 VEC_free (gimple, heap, else_stores); 1638 1639 return ok; 1640 } 1641 1642 /* Always do these optimizations if we have SSA 1643 trees to work on. */ 1644 static bool 1645 gate_phiopt (void) 1646 { 1647 return 1; 1648 } 1649 1650 struct gimple_opt_pass pass_phiopt = 1651 { 1652 { 1653 GIMPLE_PASS, 1654 "phiopt", /* name */ 1655 gate_phiopt, /* gate */ 1656 tree_ssa_phiopt, /* execute */ 1657 NULL, /* sub */ 1658 NULL, /* next */ 1659 0, /* static_pass_number */ 1660 TV_TREE_PHIOPT, /* tv_id */ 1661 PROP_cfg | PROP_ssa, /* properties_required */ 1662 0, /* properties_provided */ 1663 0, /* properties_destroyed */ 1664 0, /* todo_flags_start */ 1665 TODO_ggc_collect 1666 | TODO_verify_ssa 1667 | TODO_verify_flow 1668 | TODO_verify_stmts /* todo_flags_finish */ 1669 } 1670 }; 1671 1672 static bool 1673 gate_cselim (void) 1674 { 1675 return flag_tree_cselim; 1676 } 1677 1678 struct gimple_opt_pass pass_cselim = 1679 { 1680 { 1681 GIMPLE_PASS, 1682 "cselim", /* name */ 1683 gate_cselim, /* gate */ 1684 tree_ssa_cs_elim, /* execute */ 1685 NULL, /* sub */ 1686 NULL, /* next */ 1687 0, /* static_pass_number */ 1688 TV_TREE_PHIOPT, /* tv_id */ 1689 PROP_cfg | PROP_ssa, /* properties_required */ 1690 0, /* properties_provided */ 1691 0, /* properties_destroyed */ 1692 0, /* todo_flags_start */ 1693 TODO_ggc_collect 1694 | TODO_verify_ssa 1695 | TODO_verify_flow 1696 | TODO_verify_stmts /* todo_flags_finish */ 1697 } 1698 }; 1699