1 /* Routines for discovering and unpropagating edge equivalences.
2    Copyright (C) 2005, 2007, 2008, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "function.h"
31 #include "timevar.h"
32 #include "tree-dump.h"
33 #include "tree-flow.h"
34 #include "domwalk.h"
35 #include "tree-pass.h"
36 #include "tree-ssa-propagate.h"
37 #include "langhooks.h"
38 
39 /* The basic structure describing an equivalency created by traversing
40    an edge.  Traversing the edge effectively means that we can assume
41    that we've seen an assignment LHS = RHS.  */
42 struct edge_equivalency
43 {
44   tree rhs;
45   tree lhs;
46 };
47 
48 /* This routine finds and records edge equivalences for every edge
49    in the CFG.
50 
51    When complete, each edge that creates an equivalency will have an
52    EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
53    The caller is responsible for freeing the AUX fields.  */
54 
55 static void
56 associate_equivalences_with_edges (void)
57 {
58   basic_block bb;
59 
60   /* Walk over each block.  If the block ends with a control statement,
61      then it might create a useful equivalence.  */
62   FOR_EACH_BB (bb)
63     {
64       gimple_stmt_iterator gsi = gsi_last_bb (bb);
65       gimple stmt;
66 
67       /* If the block does not end with a COND_EXPR or SWITCH_EXPR
68 	 then there is nothing to do.  */
69       if (gsi_end_p (gsi))
70 	continue;
71 
72       stmt = gsi_stmt (gsi);
73 
74       if (!stmt)
75 	continue;
76 
77       /* A COND_EXPR may create an equivalency in a variety of different
78 	 ways.  */
79       if (gimple_code (stmt) == GIMPLE_COND)
80 	{
81 	  edge true_edge;
82 	  edge false_edge;
83 	  struct edge_equivalency *equivalency;
84 	  enum tree_code code = gimple_cond_code (stmt);
85 
86 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
87 
88 	  /* Equality tests may create one or two equivalences.  */
89 	  if (code == EQ_EXPR || code == NE_EXPR)
90 	    {
91 	      tree op0 = gimple_cond_lhs (stmt);
92 	      tree op1 = gimple_cond_rhs (stmt);
93 
94 	      /* Special case comparing booleans against a constant as we
95 		 know the value of OP0 on both arms of the branch.  i.e., we
96 		 can record an equivalence for OP0 rather than COND.  */
97 	      if (TREE_CODE (op0) == SSA_NAME
98 		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
99 		  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
100 		  && is_gimple_min_invariant (op1))
101 		{
102 		  if (code == EQ_EXPR)
103 		    {
104 		      equivalency = XNEW (struct edge_equivalency);
105 		      equivalency->lhs = op0;
106 		      equivalency->rhs = (integer_zerop (op1)
107 					  ? boolean_false_node
108 					  : boolean_true_node);
109 		      true_edge->aux = equivalency;
110 
111 		      equivalency = XNEW (struct edge_equivalency);
112 		      equivalency->lhs = op0;
113 		      equivalency->rhs = (integer_zerop (op1)
114 					  ? boolean_true_node
115 					  : boolean_false_node);
116 		      false_edge->aux = equivalency;
117 		    }
118 		  else
119 		    {
120 		      equivalency = XNEW (struct edge_equivalency);
121 		      equivalency->lhs = op0;
122 		      equivalency->rhs = (integer_zerop (op1)
123 					  ? boolean_true_node
124 					  : boolean_false_node);
125 		      true_edge->aux = equivalency;
126 
127 		      equivalency = XNEW (struct edge_equivalency);
128 		      equivalency->lhs = op0;
129 		      equivalency->rhs = (integer_zerop (op1)
130 					  ? boolean_false_node
131 					  : boolean_true_node);
132 		      false_edge->aux = equivalency;
133 		    }
134 		}
135 
136 	      else if (TREE_CODE (op0) == SSA_NAME
137 		       && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
138 		       && (is_gimple_min_invariant (op1)
139 			   || (TREE_CODE (op1) == SSA_NAME
140 			       && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
141 		{
142 		  /* For IEEE, -0.0 == 0.0, so we don't necessarily know
143 		     the sign of a variable compared against zero.  If
144 		     we're honoring signed zeros, then we cannot record
145 		     this value unless we know that the value is nonzero.  */
146 		  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
147 		      && (TREE_CODE (op1) != REAL_CST
148 			  || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
149 		    continue;
150 
151 		  equivalency = XNEW (struct edge_equivalency);
152 		  equivalency->lhs = op0;
153 		  equivalency->rhs = op1;
154 		  if (code == EQ_EXPR)
155 		    true_edge->aux = equivalency;
156 		  else
157 		    false_edge->aux = equivalency;
158 
159 		}
160 	    }
161 
162 	  /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
163 	}
164 
165       /* For a SWITCH_EXPR, a case label which represents a single
166 	 value and which is the only case label which reaches the
167 	 target block creates an equivalence.  */
168       else if (gimple_code (stmt) == GIMPLE_SWITCH)
169 	{
170 	  tree cond = gimple_switch_index (stmt);
171 
172 	  if (TREE_CODE (cond) == SSA_NAME
173 	      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
174 	    {
175 	      int i, n_labels = gimple_switch_num_labels (stmt);
176 	      tree *info = XCNEWVEC (tree, last_basic_block);
177 
178 	      /* Walk over the case label vector.  Record blocks
179 		 which are reached by a single case label which represents
180 		 a single value.  */
181 	      for (i = 0; i < n_labels; i++)
182 		{
183 		  tree label = gimple_switch_label (stmt, i);
184 		  basic_block bb = label_to_block (CASE_LABEL (label));
185 
186 		  if (CASE_HIGH (label)
187 		      || !CASE_LOW (label)
188 		      || info[bb->index])
189 		    info[bb->index] = error_mark_node;
190 		  else
191 		    info[bb->index] = label;
192 		}
193 
194 	      /* Now walk over the blocks to determine which ones were
195 		 marked as being reached by a useful case label.  */
196 	      for (i = 0; i < n_basic_blocks; i++)
197 		{
198 		  tree node = info[i];
199 
200 		  if (node != NULL
201 		      && node != error_mark_node)
202 		    {
203 		      tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
204 		      struct edge_equivalency *equivalency;
205 
206 		      /* Record an equivalency on the edge from BB to basic
207 			 block I.  */
208 		      equivalency = XNEW (struct edge_equivalency);
209 		      equivalency->rhs = x;
210 		      equivalency->lhs = cond;
211 		      find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
212 		    }
213 		}
214 	      free (info);
215 	    }
216 	}
217 
218     }
219 }
220 
221 
222 /* Translating out of SSA sometimes requires inserting copies and
223    constant initializations on edges to eliminate PHI nodes.
224 
225    In some cases those copies and constant initializations are
226    redundant because the target already has the value on the
227    RHS of the assignment.
228 
229    We previously tried to catch these cases after translating
230    out of SSA form.  However, that code often missed cases.  Worse
231    yet, the cases it missed were also often missed by the RTL
232    optimizers.  Thus the resulting code had redundant instructions.
233 
234    This pass attempts to detect these situations before translating
235    out of SSA form.
236 
237    The key concept that this pass is built upon is that these
238    redundant copies and constant initializations often occur
239    due to constant/copy propagating equivalences resulting from
240    COND_EXPRs and SWITCH_EXPRs.
241 
242    We want to do those propagations as they can sometimes allow
243    the SSA optimizers to do a better job.  However, in the cases
244    where such propagations do not result in further optimization,
245    we would like to "undo" the propagation to avoid the redundant
246    copies and constant initializations.
247 
248    This pass works by first associating equivalences with edges in
249    the CFG.  For example, the edge leading from a SWITCH_EXPR to
250    its associated CASE_LABEL will have an equivalency between
251    SWITCH_COND and the value in the case label.
252 
253    Once we have found the edge equivalences, we proceed to walk
254    the CFG in dominator order.  As we traverse edges we record
255    equivalences associated with those edges we traverse.
256 
257    When we encounter a PHI node, we walk its arguments to see if we
258    have an equivalence for the PHI argument.  If so, then we replace
259    the argument.
260 
261    Equivalences are looked up based on their value (think of it as
262    the RHS of an assignment).   A value may be an SSA_NAME or an
263    invariant.  We may have several SSA_NAMEs with the same value,
264    so with each value we have a list of SSA_NAMEs that have the
265    same value.  */
266 
267 /* As we enter each block we record the value for any edge equivalency
268    leading to this block.  If no such edge equivalency exists, then we
269    record NULL.  These equivalences are live until we leave the dominator
270    subtree rooted at the block where we record the equivalency.  */
271 static VEC(tree,heap) *equiv_stack;
272 
273 /* Global hash table implementing a mapping from invariant values
274    to a list of SSA_NAMEs which have the same value.  We might be
275    able to reuse tree-vn for this code.  */
276 static htab_t equiv;
277 
278 /* Main structure for recording equivalences into our hash table.  */
279 struct equiv_hash_elt
280 {
281   /* The value/key of this entry.  */
282   tree value;
283 
284   /* List of SSA_NAMEs which have the same value/key.  */
285   VEC(tree,heap) *equivalences;
286 };
287 
288 static void uncprop_enter_block (struct dom_walk_data *, basic_block);
289 static void uncprop_leave_block (struct dom_walk_data *, basic_block);
290 static void uncprop_into_successor_phis (basic_block);
291 
292 /* Hashing and equality routines for the hash table.  */
293 
294 static hashval_t
295 equiv_hash (const void *p)
296 {
297   tree const value = ((const struct equiv_hash_elt *)p)->value;
298   return iterative_hash_expr (value, 0);
299 }
300 
301 static int
302 equiv_eq (const void *p1, const void *p2)
303 {
304   tree value1 = ((const struct equiv_hash_elt *)p1)->value;
305   tree value2 = ((const struct equiv_hash_elt *)p2)->value;
306 
307   return operand_equal_p (value1, value2, 0);
308 }
309 
310 /* Free an instance of equiv_hash_elt.  */
311 
312 static void
313 equiv_free (void *p)
314 {
315   struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
316   VEC_free (tree, heap, elt->equivalences);
317   free (elt);
318 }
319 
320 /* Remove the most recently recorded equivalency for VALUE.  */
321 
322 static void
323 remove_equivalence (tree value)
324 {
325   struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
326   void **slot;
327 
328   equiv_hash_elt.value = value;
329   equiv_hash_elt.equivalences = NULL;
330 
331   slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
332 
333   equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
334   VEC_pop (tree, equiv_hash_elt_p->equivalences);
335 }
336 
337 /* Record EQUIVALENCE = VALUE into our hash table.  */
338 
339 static void
340 record_equiv (tree value, tree equivalence)
341 {
342   struct equiv_hash_elt *equiv_hash_elt;
343   void **slot;
344 
345   equiv_hash_elt = XNEW (struct equiv_hash_elt);
346   equiv_hash_elt->value = value;
347   equiv_hash_elt->equivalences = NULL;
348 
349   slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
350 
351   if (*slot == NULL)
352     *slot = (void *) equiv_hash_elt;
353   else
354      free (equiv_hash_elt);
355 
356   equiv_hash_elt = (struct equiv_hash_elt *) *slot;
357 
358   VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
359 }
360 
361 /* Main driver for un-cprop.  */
362 
363 static unsigned int
364 tree_ssa_uncprop (void)
365 {
366   struct dom_walk_data walk_data;
367   basic_block bb;
368 
369   associate_equivalences_with_edges ();
370 
371   /* Create our global data structures.  */
372   equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
373   equiv_stack = VEC_alloc (tree, heap, 2);
374 
375   /* We're going to do a dominator walk, so ensure that we have
376      dominance information.  */
377   calculate_dominance_info (CDI_DOMINATORS);
378 
379   /* Setup callbacks for the generic dominator tree walker.  */
380   walk_data.dom_direction = CDI_DOMINATORS;
381   walk_data.initialize_block_local_data = NULL;
382   walk_data.before_dom_children = uncprop_enter_block;
383   walk_data.after_dom_children = uncprop_leave_block;
384   walk_data.global_data = NULL;
385   walk_data.block_local_data_size = 0;
386 
387   /* Now initialize the dominator walker.  */
388   init_walk_dominator_tree (&walk_data);
389 
390   /* Recursively walk the dominator tree undoing unprofitable
391      constant/copy propagations.  */
392   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
393 
394   /* Finalize and clean up.  */
395   fini_walk_dominator_tree (&walk_data);
396 
397   /* EQUIV_STACK should already be empty at this point, so we just
398      need to empty elements out of the hash table, free EQUIV_STACK,
399      and cleanup the AUX field on the edges.  */
400   htab_delete (equiv);
401   VEC_free (tree, heap, equiv_stack);
402   FOR_EACH_BB (bb)
403     {
404       edge e;
405       edge_iterator ei;
406 
407       FOR_EACH_EDGE (e, ei, bb->succs)
408 	{
409 	  if (e->aux)
410 	    {
411 	      free (e->aux);
412 	      e->aux = NULL;
413 	    }
414 	}
415     }
416   return 0;
417 }
418 
419 
420 /* We have finished processing the dominator children of BB, perform
421    any finalization actions in preparation for leaving this node in
422    the dominator tree.  */
423 
424 static void
425 uncprop_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
426 		     basic_block bb ATTRIBUTE_UNUSED)
427 {
428   /* Pop the topmost value off the equiv stack.  */
429   tree value = VEC_pop (tree, equiv_stack);
430 
431   /* If that value was non-null, then pop the topmost equivalency off
432      its equivalency stack.  */
433   if (value != NULL)
434     remove_equivalence (value);
435 }
436 
437 /* Unpropagate values from PHI nodes in successor blocks of BB.  */
438 
439 static void
440 uncprop_into_successor_phis (basic_block bb)
441 {
442   edge e;
443   edge_iterator ei;
444 
445   /* For each successor edge, first temporarily record any equivalence
446      on that edge.  Then unpropagate values in any PHI nodes at the
447      destination of the edge.  Then remove the temporary equivalence.  */
448   FOR_EACH_EDGE (e, ei, bb->succs)
449     {
450       gimple_seq phis = phi_nodes (e->dest);
451       gimple_stmt_iterator gsi;
452 
453       /* If there are no PHI nodes in this destination, then there is
454 	 no sense in recording any equivalences.  */
455       if (gimple_seq_empty_p (phis))
456 	continue;
457 
458       /* Record any equivalency associated with E.  */
459       if (e->aux)
460 	{
461 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
462 	  record_equiv (equiv->rhs, equiv->lhs);
463 	}
464 
465       /* Walk over the PHI nodes, unpropagating values.  */
466       for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
467 	{
468 	  gimple phi = gsi_stmt (gsi);
469 	  tree arg = PHI_ARG_DEF (phi, e->dest_idx);
470 	  struct equiv_hash_elt equiv_hash_elt;
471 	  void **slot;
472 
473 	  /* If the argument is not an invariant, or refers to the same
474 	     underlying variable as the PHI result, then there's no
475 	     point in un-propagating the argument.  */
476 	  if (!is_gimple_min_invariant (arg)
477 	      && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
478 	    continue;
479 
480 	  /* Lookup this argument's value in the hash table.  */
481 	  equiv_hash_elt.value = arg;
482 	  equiv_hash_elt.equivalences = NULL;
483 	  slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
484 
485 	  if (slot)
486 	    {
487 	      struct equiv_hash_elt *elt = (struct equiv_hash_elt *) *slot;
488 	      int j;
489 
490 	      /* Walk every equivalence with the same value.  If we find
491 		 one with the same underlying variable as the PHI result,
492 		 then replace the value in the argument with its equivalent
493 		 SSA_NAME.  Use the most recent equivalence as hopefully
494 		 that results in shortest lifetimes.  */
495 	      for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
496 		{
497 		  tree equiv = VEC_index (tree, elt->equivalences, j);
498 
499 		  if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
500 		    {
501 		      SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
502 		      break;
503 		    }
504 		}
505 	    }
506 	}
507 
508       /* If we had an equivalence associated with this edge, remove it.  */
509       if (e->aux)
510 	{
511 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
512 	  remove_equivalence (equiv->rhs);
513 	}
514     }
515 }
516 
517 /* Ignoring loop backedges, if BB has precisely one incoming edge then
518    return that edge.  Otherwise return NULL.  */
519 static edge
520 single_incoming_edge_ignoring_loop_edges (basic_block bb)
521 {
522   edge retval = NULL;
523   edge e;
524   edge_iterator ei;
525 
526   FOR_EACH_EDGE (e, ei, bb->preds)
527     {
528       /* A loop back edge can be identified by the destination of
529 	 the edge dominating the source of the edge.  */
530       if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
531 	continue;
532 
533       /* If we have already seen a non-loop edge, then we must have
534 	 multiple incoming non-loop edges and thus we return NULL.  */
535       if (retval)
536 	return NULL;
537 
538       /* This is the first non-loop incoming edge we have found.  Record
539 	 it.  */
540       retval = e;
541     }
542 
543   return retval;
544 }
545 
546 static void
547 uncprop_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
548 		     basic_block bb)
549 {
550   basic_block parent;
551   edge e;
552   bool recorded = false;
553 
554   /* If this block is dominated by a single incoming edge and that edge
555      has an equivalency, then record the equivalency and push the
556      VALUE onto EQUIV_STACK.  Else push a NULL entry on EQUIV_STACK.  */
557   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
558   if (parent)
559     {
560       e = single_incoming_edge_ignoring_loop_edges (bb);
561 
562       if (e && e->src == parent && e->aux)
563 	{
564 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
565 
566 	  record_equiv (equiv->rhs, equiv->lhs);
567 	  VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
568 	  recorded = true;
569 	}
570     }
571 
572   if (!recorded)
573     VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
574 
575   uncprop_into_successor_phis (bb);
576 }
577 
578 static bool
579 gate_uncprop (void)
580 {
581   return flag_tree_dom != 0;
582 }
583 
584 struct gimple_opt_pass pass_uncprop =
585 {
586  {
587   GIMPLE_PASS,
588   "uncprop",				/* name */
589   gate_uncprop,				/* gate */
590   tree_ssa_uncprop,			/* execute */
591   NULL,					/* sub */
592   NULL,					/* next */
593   0,					/* static_pass_number */
594   TV_TREE_SSA_UNCPROP,			/* tv_id */
595   PROP_cfg | PROP_ssa,			/* properties_required */
596   0,					/* properties_provided */
597   0,					/* properties_destroyed */
598   0,					/* todo_flags_start */
599   TODO_verify_ssa	                /* todo_flags_finish */
600  }
601 };
602