1 /* Natural loop analysis code for GNU compiler. 2 Copyright (C) 2002-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "predict.h" 27 #include "memmodel.h" 28 #include "emit-rtl.h" 29 #include "cfgloop.h" 30 #include "explow.h" 31 #include "expr.h" 32 #include "graphds.h" 33 #include "params.h" 34 #include "sreal.h" 35 36 struct target_cfgloop default_target_cfgloop; 37 #if SWITCHABLE_TARGET 38 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop; 39 #endif 40 41 /* Checks whether BB is executed exactly once in each LOOP iteration. */ 42 43 bool 44 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb) 45 { 46 /* It must be executed at least once each iteration. */ 47 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 48 return false; 49 50 /* And just once. */ 51 if (bb->loop_father != loop) 52 return false; 53 54 /* But this was not enough. We might have some irreducible loop here. */ 55 if (bb->flags & BB_IRREDUCIBLE_LOOP) 56 return false; 57 58 return true; 59 } 60 61 /* Marks blocks and edges that are part of non-recognized loops; i.e. we 62 throw away all latch edges and mark blocks inside any remaining cycle. 63 Everything is a bit complicated due to fact we do not want to do this 64 for parts of cycles that only "pass" through some loop -- i.e. for 65 each cycle, we want to mark blocks that belong directly to innermost 66 loop containing the whole cycle. 67 68 LOOPS is the loop tree. */ 69 70 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun)) 71 #define BB_REPR(BB) ((BB)->index + 1) 72 73 bool 74 mark_irreducible_loops (void) 75 { 76 basic_block act; 77 struct graph_edge *ge; 78 edge e; 79 edge_iterator ei; 80 int src, dest; 81 unsigned depth; 82 struct graph *g; 83 int num = number_of_loops (cfun); 84 struct loop *cloop; 85 bool irred_loop_found = false; 86 int i; 87 88 gcc_assert (current_loops != NULL); 89 90 /* Reset the flags. */ 91 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun), 92 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 93 { 94 act->flags &= ~BB_IRREDUCIBLE_LOOP; 95 FOR_EACH_EDGE (e, ei, act->succs) 96 e->flags &= ~EDGE_IRREDUCIBLE_LOOP; 97 } 98 99 /* Create the edge lists. */ 100 g = new_graph (last_basic_block_for_fn (cfun) + num); 101 102 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun), 103 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 104 FOR_EACH_EDGE (e, ei, act->succs) 105 { 106 /* Ignore edges to exit. */ 107 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 108 continue; 109 110 src = BB_REPR (act); 111 dest = BB_REPR (e->dest); 112 113 /* Ignore latch edges. */ 114 if (e->dest->loop_father->header == e->dest 115 && e->dest->loop_father->latch == act) 116 continue; 117 118 /* Edges inside a single loop should be left where they are. Edges 119 to subloop headers should lead to representative of the subloop, 120 but from the same place. 121 122 Edges exiting loops should lead from representative 123 of the son of nearest common ancestor of the loops in that 124 act lays. */ 125 126 if (e->dest->loop_father->header == e->dest) 127 dest = LOOP_REPR (e->dest->loop_father); 128 129 if (!flow_bb_inside_loop_p (act->loop_father, e->dest)) 130 { 131 depth = 1 + loop_depth (find_common_loop (act->loop_father, 132 e->dest->loop_father)); 133 if (depth == loop_depth (act->loop_father)) 134 cloop = act->loop_father; 135 else 136 cloop = (*act->loop_father->superloops)[depth]; 137 138 src = LOOP_REPR (cloop); 139 } 140 141 add_edge (g, src, dest)->data = e; 142 } 143 144 /* Find the strongly connected components. */ 145 graphds_scc (g, NULL); 146 147 /* Mark the irreducible loops. */ 148 for (i = 0; i < g->n_vertices; i++) 149 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next) 150 { 151 edge real = (edge) ge->data; 152 /* edge E in graph G is irreducible if it connects two vertices in the 153 same scc. */ 154 155 /* All edges should lead from a component with higher number to the 156 one with lower one. */ 157 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component); 158 159 if (g->vertices[ge->src].component != g->vertices[ge->dest].component) 160 continue; 161 162 real->flags |= EDGE_IRREDUCIBLE_LOOP; 163 irred_loop_found = true; 164 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest)) 165 real->src->flags |= BB_IRREDUCIBLE_LOOP; 166 } 167 168 free_graph (g); 169 170 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS); 171 return irred_loop_found; 172 } 173 174 /* Counts number of insns inside LOOP. */ 175 int 176 num_loop_insns (const struct loop *loop) 177 { 178 basic_block *bbs, bb; 179 unsigned i, ninsns = 0; 180 rtx_insn *insn; 181 182 bbs = get_loop_body (loop); 183 for (i = 0; i < loop->num_nodes; i++) 184 { 185 bb = bbs[i]; 186 FOR_BB_INSNS (bb, insn) 187 if (NONDEBUG_INSN_P (insn)) 188 ninsns++; 189 } 190 free (bbs); 191 192 if (!ninsns) 193 ninsns = 1; /* To avoid division by zero. */ 194 195 return ninsns; 196 } 197 198 /* Counts number of insns executed on average per iteration LOOP. */ 199 int 200 average_num_loop_insns (const struct loop *loop) 201 { 202 basic_block *bbs, bb; 203 unsigned i, binsns; 204 sreal ninsns; 205 rtx_insn *insn; 206 207 ninsns = 0; 208 bbs = get_loop_body (loop); 209 for (i = 0; i < loop->num_nodes; i++) 210 { 211 bb = bbs[i]; 212 213 binsns = 0; 214 FOR_BB_INSNS (bb, insn) 215 if (NONDEBUG_INSN_P (insn)) 216 binsns++; 217 218 ninsns += (sreal)binsns * bb->count.to_sreal_scale (loop->header->count); 219 /* Avoid overflows. */ 220 if (ninsns > 1000000) 221 return 100000; 222 } 223 free (bbs); 224 225 int64_t ret = ninsns.to_int (); 226 if (!ret) 227 ret = 1; /* To avoid division by zero. */ 228 229 return ret; 230 } 231 232 /* Returns expected number of iterations of LOOP, according to 233 measured or guessed profile. 234 235 This functions attempts to return "sane" value even if profile 236 information is not good enough to derive osmething. 237 If BY_PROFILE_ONLY is set, this logic is bypassed and function 238 return -1 in those scenarios. */ 239 240 gcov_type 241 expected_loop_iterations_unbounded (const struct loop *loop, 242 bool *read_profile_p, 243 bool by_profile_only) 244 { 245 edge e; 246 edge_iterator ei; 247 gcov_type expected = -1; 248 249 if (read_profile_p) 250 *read_profile_p = false; 251 252 /* If we have no profile at all, use AVG_LOOP_NITER. */ 253 if (profile_status_for_fn (cfun) == PROFILE_ABSENT) 254 { 255 if (by_profile_only) 256 return -1; 257 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER); 258 } 259 else if (loop->latch && (loop->latch->count.initialized_p () 260 || loop->header->count.initialized_p ())) 261 { 262 profile_count count_in = profile_count::zero (), 263 count_latch = profile_count::zero (); 264 265 FOR_EACH_EDGE (e, ei, loop->header->preds) 266 if (e->src == loop->latch) 267 count_latch = e->count (); 268 else 269 count_in += e->count (); 270 271 if (!count_latch.initialized_p ()) 272 { 273 if (by_profile_only) 274 return -1; 275 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER); 276 } 277 else if (!count_in.nonzero_p ()) 278 { 279 if (by_profile_only) 280 return -1; 281 expected = count_latch.to_gcov_type () * 2; 282 } 283 else 284 { 285 expected = (count_latch.to_gcov_type () + count_in.to_gcov_type () 286 - 1) / count_in.to_gcov_type (); 287 if (read_profile_p 288 && count_latch.reliable_p () && count_in.reliable_p ()) 289 *read_profile_p = true; 290 } 291 } 292 else 293 { 294 if (by_profile_only) 295 return -1; 296 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER); 297 } 298 299 if (!by_profile_only) 300 { 301 HOST_WIDE_INT max = get_max_loop_iterations_int (loop); 302 if (max != -1 && max < expected) 303 return max; 304 } 305 306 return expected; 307 } 308 309 /* Returns expected number of LOOP iterations. The returned value is bounded 310 by REG_BR_PROB_BASE. */ 311 312 unsigned 313 expected_loop_iterations (struct loop *loop) 314 { 315 gcov_type expected = expected_loop_iterations_unbounded (loop); 316 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected); 317 } 318 319 /* Returns the maximum level of nesting of subloops of LOOP. */ 320 321 unsigned 322 get_loop_level (const struct loop *loop) 323 { 324 const struct loop *ploop; 325 unsigned mx = 0, l; 326 327 for (ploop = loop->inner; ploop; ploop = ploop->next) 328 { 329 l = get_loop_level (ploop); 330 if (l >= mx) 331 mx = l + 1; 332 } 333 return mx; 334 } 335 336 /* Initialize the constants for computing set costs. */ 337 338 void 339 init_set_costs (void) 340 { 341 int speed; 342 rtx_insn *seq; 343 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1); 344 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2); 345 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3); 346 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr)); 347 unsigned i; 348 349 target_avail_regs = 0; 350 target_clobbered_regs = 0; 351 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 352 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i) 353 && !fixed_regs[i]) 354 { 355 target_avail_regs++; 356 if (call_used_regs[i]) 357 target_clobbered_regs++; 358 } 359 360 target_res_regs = 3; 361 362 for (speed = 0; speed < 2; speed++) 363 { 364 crtl->maybe_hot_insn_p = speed; 365 /* Set up the costs for using extra registers: 366 367 1) If not many free registers remain, we should prefer having an 368 additional move to decreasing the number of available registers. 369 (TARGET_REG_COST). 370 2) If no registers are available, we need to spill, which may require 371 storing the old value to memory and loading it back 372 (TARGET_SPILL_COST). */ 373 374 start_sequence (); 375 emit_move_insn (reg1, reg2); 376 seq = get_insns (); 377 end_sequence (); 378 target_reg_cost [speed] = seq_cost (seq, speed); 379 380 start_sequence (); 381 emit_move_insn (mem, reg1); 382 emit_move_insn (reg2, mem); 383 seq = get_insns (); 384 end_sequence (); 385 target_spill_cost [speed] = seq_cost (seq, speed); 386 } 387 default_rtl_profile (); 388 } 389 390 /* Estimates cost of increased register pressure caused by making N_NEW new 391 registers live around the loop. N_OLD is the number of registers live 392 around the loop. If CALL_P is true, also take into account that 393 call-used registers may be clobbered in the loop body, reducing the 394 number of available registers before we spill. */ 395 396 unsigned 397 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed, 398 bool call_p) 399 { 400 unsigned cost; 401 unsigned regs_needed = n_new + n_old; 402 unsigned available_regs = target_avail_regs; 403 404 /* If there is a call in the loop body, the call-clobbered registers 405 are not available for loop invariants. */ 406 if (call_p) 407 available_regs = available_regs - target_clobbered_regs; 408 409 /* If we have enough registers, we should use them and not restrict 410 the transformations unnecessarily. */ 411 if (regs_needed + target_res_regs <= available_regs) 412 return 0; 413 414 if (regs_needed <= available_regs) 415 /* If we are close to running out of registers, try to preserve 416 them. */ 417 cost = target_reg_cost [speed] * n_new; 418 else 419 /* If we run out of registers, it is very expensive to add another 420 one. */ 421 cost = target_spill_cost [speed] * n_new; 422 423 if (optimize && (flag_ira_region == IRA_REGION_ALL 424 || flag_ira_region == IRA_REGION_MIXED) 425 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM) 426 /* IRA regional allocation deals with high register pressure 427 better. So decrease the cost (to do more accurate the cost 428 calculation for IRA, we need to know how many registers lives 429 through the loop transparently). */ 430 cost /= 2; 431 432 return cost; 433 } 434 435 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */ 436 437 void 438 mark_loop_exit_edges (void) 439 { 440 basic_block bb; 441 edge e; 442 443 if (number_of_loops (cfun) <= 1) 444 return; 445 446 FOR_EACH_BB_FN (bb, cfun) 447 { 448 edge_iterator ei; 449 450 FOR_EACH_EDGE (e, ei, bb->succs) 451 { 452 if (loop_outer (bb->loop_father) 453 && loop_exit_edge_p (bb->loop_father, e)) 454 e->flags |= EDGE_LOOP_EXIT; 455 else 456 e->flags &= ~EDGE_LOOP_EXIT; 457 } 458 } 459 } 460 461 /* Return exit edge if loop has only one exit that is likely 462 to be executed on runtime (i.e. it is not EH or leading 463 to noreturn call. */ 464 465 edge 466 single_likely_exit (struct loop *loop) 467 { 468 edge found = single_exit (loop); 469 vec<edge> exits; 470 unsigned i; 471 edge ex; 472 473 if (found) 474 return found; 475 exits = get_loop_exit_edges (loop); 476 FOR_EACH_VEC_ELT (exits, i, ex) 477 { 478 if (probably_never_executed_edge_p (cfun, ex) 479 /* We want to rule out paths to noreturns but not low probabilities 480 resulting from adjustments or combining. 481 FIXME: once we have better quality tracking, make this more 482 robust. */ 483 || ex->probability <= profile_probability::very_unlikely ()) 484 continue; 485 if (!found) 486 found = ex; 487 else 488 { 489 exits.release (); 490 return NULL; 491 } 492 } 493 exits.release (); 494 return found; 495 } 496 497 498 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs 499 order against direction of edges from latch. Specially, if 500 header != latch, latch is the 1-st block. */ 501 502 vec<basic_block> 503 get_loop_hot_path (const struct loop *loop) 504 { 505 basic_block bb = loop->header; 506 vec<basic_block> path = vNULL; 507 bitmap visited = BITMAP_ALLOC (NULL); 508 509 while (true) 510 { 511 edge_iterator ei; 512 edge e; 513 edge best = NULL; 514 515 path.safe_push (bb); 516 bitmap_set_bit (visited, bb->index); 517 FOR_EACH_EDGE (e, ei, bb->succs) 518 if ((!best || e->probability > best->probability) 519 && !loop_exit_edge_p (loop, e) 520 && !bitmap_bit_p (visited, e->dest->index)) 521 best = e; 522 if (!best || best->dest == loop->header) 523 break; 524 bb = best->dest; 525 } 526 BITMAP_FREE (visited); 527 return path; 528 } 529