xref: /dragonfly/contrib/gcc-8.0/gcc/combine.c (revision c87dd536)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of success.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with modified_between_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 
108 /* Number of attempts to combine instructions in this function.  */
109 
110 static int combine_attempts;
111 
112 /* Number of attempts that got as far as substitution in this function.  */
113 
114 static int combine_merges;
115 
116 /* Number of instructions combined with added SETs in this function.  */
117 
118 static int combine_extras;
119 
120 /* Number of instructions combined in this function.  */
121 
122 static int combine_successes;
123 
124 /* Totals over entire compilation.  */
125 
126 static int total_attempts, total_merges, total_extras, total_successes;
127 
128 /* combine_instructions may try to replace the right hand side of the
129    second instruction with the value of an associated REG_EQUAL note
130    before throwing it at try_combine.  That is problematic when there
131    is a REG_DEAD note for a register used in the old right hand side
132    and can cause distribute_notes to do wrong things.  This is the
133    second instruction if it has been so modified, null otherwise.  */
134 
135 static rtx_insn *i2mod;
136 
137 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
138 
139 static rtx i2mod_old_rhs;
140 
141 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
142 
143 static rtx i2mod_new_rhs;
144 
145 struct reg_stat_type {
146   /* Record last point of death of (hard or pseudo) register n.  */
147   rtx_insn			*last_death;
148 
149   /* Record last point of modification of (hard or pseudo) register n.  */
150   rtx_insn			*last_set;
151 
152   /* The next group of fields allows the recording of the last value assigned
153      to (hard or pseudo) register n.  We use this information to see if an
154      operation being processed is redundant given a prior operation performed
155      on the register.  For example, an `and' with a constant is redundant if
156      all the zero bits are already known to be turned off.
157 
158      We use an approach similar to that used by cse, but change it in the
159      following ways:
160 
161      (1) We do not want to reinitialize at each label.
162      (2) It is useful, but not critical, to know the actual value assigned
163 	 to a register.  Often just its form is helpful.
164 
165      Therefore, we maintain the following fields:
166 
167      last_set_value		the last value assigned
168      last_set_label		records the value of label_tick when the
169 				register was assigned
170      last_set_table_tick	records the value of label_tick when a
171 				value using the register is assigned
172      last_set_invalid		set to nonzero when it is not valid
173 				to use the value of this register in some
174 				register's value
175 
176      To understand the usage of these tables, it is important to understand
177      the distinction between the value in last_set_value being valid and
178      the register being validly contained in some other expression in the
179      table.
180 
181      (The next two parameters are out of date).
182 
183      reg_stat[i].last_set_value is valid if it is nonzero, and either
184      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 
186      Register I may validly appear in any expression returned for the value
187      of another register if reg_n_sets[i] is 1.  It may also appear in the
188      value for register J if reg_stat[j].last_set_invalid is zero, or
189      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 
191      If an expression is found in the table containing a register which may
192      not validly appear in an expression, the register is replaced by
193      something that won't match, (clobber (const_int 0)).  */
194 
195   /* Record last value assigned to (hard or pseudo) register n.  */
196 
197   rtx				last_set_value;
198 
199   /* Record the value of label_tick when an expression involving register n
200      is placed in last_set_value.  */
201 
202   int				last_set_table_tick;
203 
204   /* Record the value of label_tick when the value for register n is placed in
205      last_set_value.  */
206 
207   int				last_set_label;
208 
209   /* These fields are maintained in parallel with last_set_value and are
210      used to store the mode in which the register was last set, the bits
211      that were known to be zero when it was last set, and the number of
212      sign bits copies it was known to have when it was last set.  */
213 
214   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
215   char				last_set_sign_bit_copies;
216   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
217 
218   /* Set nonzero if references to register n in expressions should not be
219      used.  last_set_invalid is set nonzero when this register is being
220      assigned to and last_set_table_tick == label_tick.  */
221 
222   char				last_set_invalid;
223 
224   /* Some registers that are set more than once and used in more than one
225      basic block are nevertheless always set in similar ways.  For example,
226      a QImode register may be loaded from memory in two places on a machine
227      where byte loads zero extend.
228 
229      We record in the following fields if a register has some leading bits
230      that are always equal to the sign bit, and what we know about the
231      nonzero bits of a register, specifically which bits are known to be
232      zero.
233 
234      If an entry is zero, it means that we don't know anything special.  */
235 
236   unsigned char			sign_bit_copies;
237 
238   unsigned HOST_WIDE_INT	nonzero_bits;
239 
240   /* Record the value of the label_tick when the last truncation
241      happened.  The field truncated_to_mode is only valid if
242      truncation_label == label_tick.  */
243 
244   int				truncation_label;
245 
246   /* Record the last truncation seen for this register.  If truncation
247      is not a nop to this mode we might be able to save an explicit
248      truncation if we know that value already contains a truncated
249      value.  */
250 
251   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
252 };
253 
254 
255 static vec<reg_stat_type> reg_stat;
256 
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259    but during combine_split_insns new pseudos can be created.  As we don't have
260    updated DF information in that case, it is hard to initialize the array
261    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
262    so instead of growing the arrays, just assume all newly created pseudos
263    during combine might be set multiple times.  */
264 
265 static unsigned int reg_n_sets_max;
266 
267 /* Record the luid of the last insn that invalidated memory
268    (anything that writes memory, and subroutine calls, but not pushes).  */
269 
270 static int mem_last_set;
271 
272 /* Record the luid of the last CALL_INSN
273    so we can tell whether a potential combination crosses any calls.  */
274 
275 static int last_call_luid;
276 
277 /* When `subst' is called, this is the insn that is being modified
278    (by combining in a previous insn).  The PATTERN of this insn
279    is still the old pattern partially modified and it should not be
280    looked at, but this may be used to examine the successors of the insn
281    to judge whether a simplification is valid.  */
282 
283 static rtx_insn *subst_insn;
284 
285 /* This is the lowest LUID that `subst' is currently dealing with.
286    get_last_value will not return a value if the register was set at or
287    after this LUID.  If not for this mechanism, we could get confused if
288    I2 or I1 in try_combine were an insn that used the old value of a register
289    to obtain a new value.  In that case, we might erroneously get the
290    new value of the register when we wanted the old one.  */
291 
292 static int subst_low_luid;
293 
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295    must consider all these registers to be always live.  */
296 
297 static HARD_REG_SET newpat_used_regs;
298 
299 /* This is an insn to which a LOG_LINKS entry has been added.  If this
300    insn is the earlier than I2 or I3, combine should rescan starting at
301    that location.  */
302 
303 static rtx_insn *added_links_insn;
304 
305 /* And similarly, for notes.  */
306 
307 static rtx_insn *added_notes_insn;
308 
309 /* Basic block in which we are performing combines.  */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312 
313 
314 /* Length of the currently allocated uid_insn_cost array.  */
315 
316 static int max_uid_known;
317 
318 /* The following array records the insn_cost for every insn
319    in the instruction stream.  */
320 
321 static int *uid_insn_cost;
322 
323 /* The following array records the LOG_LINKS for every insn in the
324    instruction stream as struct insn_link pointers.  */
325 
326 struct insn_link {
327   rtx_insn *insn;
328   unsigned int regno;
329   struct insn_link *next;
330 };
331 
332 static struct insn_link **uid_log_links;
333 
334 static inline int
335 insn_uid_check (const_rtx insn)
336 {
337   int uid = INSN_UID (insn);
338   gcc_checking_assert (uid <= max_uid_known);
339   return uid;
340 }
341 
342 #define INSN_COST(INSN)		(uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN)		(uid_log_links[insn_uid_check (INSN)])
344 
345 #define FOR_EACH_LOG_LINK(L, INSN)				\
346   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347 
348 /* Links for LOG_LINKS are allocated from this obstack.  */
349 
350 static struct obstack insn_link_obstack;
351 
352 /* Allocate a link.  */
353 
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357   struct insn_link *l
358     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 					  sizeof (struct insn_link));
360   l->insn = insn;
361   l->regno = regno;
362   l->next = next;
363   return l;
364 }
365 
366 /* Incremented for each basic block.  */
367 
368 static int label_tick;
369 
370 /* Reset to label_tick for each extended basic block in scanning order.  */
371 
372 static int label_tick_ebb_start;
373 
374 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
375    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
376 
377 static scalar_int_mode nonzero_bits_mode;
378 
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380    be safely used.  It is zero while computing them and after combine has
381    completed.  This former test prevents propagating values based on
382    previously set values, which can be incorrect if a variable is modified
383    in a loop.  */
384 
385 static int nonzero_sign_valid;
386 
387 
388 /* Record one modification to rtl structure
389    to be undone by storing old_contents into *where.  */
390 
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392 
393 struct undo
394 {
395   struct undo *next;
396   enum undo_kind kind;
397   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398   union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400 
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402    num_undo says how many are currently recorded.
403 
404    other_insn is nonzero if we have modified some other insn in the process
405    of working on subst_insn.  It must be verified too.  */
406 
407 struct undobuf
408 {
409   struct undo *undos;
410   struct undo *frees;
411   rtx_insn *other_insn;
412 };
413 
414 static struct undobuf undobuf;
415 
416 /* Number of times the pseudo being substituted for
417    was found and replaced.  */
418 
419 static int n_occurrences;
420 
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 					 scalar_int_mode,
423 					 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 						scalar_int_mode,
426 						unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 			      int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 			      unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 			      scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 			  unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 				     unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 				   unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 			    HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 				 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 					     rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 
498 
499 /* It is not safe to use ordinary gen_lowpart in combine.
500    See comments in gen_lowpart_for_combine.  */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
503 
504 /* Our implementation of gen_lowpart never emits a new pseudo.  */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
507 
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
510 
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
513 
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
516 
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518 
519 
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521    Target hooks cannot use enum rtx_code.  */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 				bool op0_preserve_value)
525 {
526   int code_int = (int)*code;
527   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528   *code = (enum rtx_code)code_int;
529 }
530 
531 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
532    PATTERN can not be split.  Otherwise, it returns an insn sequence.
533    This is a wrapper around split_insns which ensures that the
534    reg_stat vector is made larger if the splitter creates a new
535    register.  */
536 
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540   rtx_insn *ret;
541   unsigned int nregs;
542 
543   ret = split_insns (pattern, insn);
544   nregs = max_reg_num ();
545   if (nregs > reg_stat.length ())
546     reg_stat.safe_grow_cleared (nregs);
547   return ret;
548 }
549 
550 /* This is used by find_single_use to locate an rtx in LOC that
551    contains exactly one use of DEST, which is typically either a REG
552    or CC0.  It returns a pointer to the innermost rtx expression
553    containing DEST.  Appearances of DEST that are being used to
554    totally replace it are not counted.  */
555 
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559   rtx x = *loc;
560   enum rtx_code code = GET_CODE (x);
561   rtx *result = NULL;
562   rtx *this_result;
563   int i;
564   const char *fmt;
565 
566   switch (code)
567     {
568     case CONST:
569     case LABEL_REF:
570     case SYMBOL_REF:
571     CASE_CONST_ANY:
572     case CLOBBER:
573       return 0;
574 
575     case SET:
576       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 	 of a REG that occupies all of the REG, the insn uses DEST if
578 	 it is mentioned in the destination or the source.  Otherwise, we
579 	 need just check the source.  */
580       if (GET_CODE (SET_DEST (x)) != CC0
581 	  && GET_CODE (SET_DEST (x)) != PC
582 	  && !REG_P (SET_DEST (x))
583 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 		&& REG_P (SUBREG_REG (SET_DEST (x)))
585 		&& !read_modify_subreg_p (SET_DEST (x))))
586 	break;
587 
588       return find_single_use_1 (dest, &SET_SRC (x));
589 
590     case MEM:
591     case SUBREG:
592       return find_single_use_1 (dest, &XEXP (x, 0));
593 
594     default:
595       break;
596     }
597 
598   /* If it wasn't one of the common cases above, check each expression and
599      vector of this code.  Look for a unique usage of DEST.  */
600 
601   fmt = GET_RTX_FORMAT (code);
602   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603     {
604       if (fmt[i] == 'e')
605 	{
606 	  if (dest == XEXP (x, i)
607 	      || (REG_P (dest) && REG_P (XEXP (x, i))
608 		  && REGNO (dest) == REGNO (XEXP (x, i))))
609 	    this_result = loc;
610 	  else
611 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
612 
613 	  if (result == NULL)
614 	    result = this_result;
615 	  else if (this_result)
616 	    /* Duplicate usage.  */
617 	    return NULL;
618 	}
619       else if (fmt[i] == 'E')
620 	{
621 	  int j;
622 
623 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 	    {
625 	      if (XVECEXP (x, i, j) == dest
626 		  || (REG_P (dest)
627 		      && REG_P (XVECEXP (x, i, j))
628 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 		this_result = loc;
630 	      else
631 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632 
633 	      if (result == NULL)
634 		result = this_result;
635 	      else if (this_result)
636 		return NULL;
637 	    }
638 	}
639     }
640 
641   return result;
642 }
643 
644 
645 /* See if DEST, produced in INSN, is used only a single time in the
646    sequel.  If so, return a pointer to the innermost rtx expression in which
647    it is used.
648 
649    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650 
651    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
652    care about REG_DEAD notes or LOG_LINKS.
653 
654    Otherwise, we find the single use by finding an insn that has a
655    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
656    only referenced once in that insn, we know that it must be the first
657    and last insn referencing DEST.  */
658 
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662   basic_block bb;
663   rtx_insn *next;
664   rtx *result;
665   struct insn_link *link;
666 
667   if (dest == cc0_rtx)
668     {
669       next = NEXT_INSN (insn);
670       if (next == 0
671 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 	return 0;
673 
674       result = find_single_use_1 (dest, &PATTERN (next));
675       if (result && ploc)
676 	*ploc = next;
677       return result;
678     }
679 
680   if (!REG_P (dest))
681     return 0;
682 
683   bb = BLOCK_FOR_INSN (insn);
684   for (next = NEXT_INSN (insn);
685        next && BLOCK_FOR_INSN (next) == bb;
686        next = NEXT_INSN (next))
687     if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688       {
689 	FOR_EACH_LOG_LINK (link, next)
690 	  if (link->insn == insn && link->regno == REGNO (dest))
691 	    break;
692 
693 	if (link)
694 	  {
695 	    result = find_single_use_1 (dest, &PATTERN (next));
696 	    if (ploc)
697 	      *ploc = next;
698 	    return result;
699 	  }
700       }
701 
702   return 0;
703 }
704 
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706    insn.  The substitution can be undone by undo_all.  If INTO is already
707    set to NEWVAL, do not record this change.  Because computing NEWVAL might
708    also call SUBST, we have to compute it before we put anything into
709    the undo table.  */
710 
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714   struct undo *buf;
715   rtx oldval = *into;
716 
717   if (oldval == newval)
718     return;
719 
720   /* We'd like to catch as many invalid transformations here as
721      possible.  Unfortunately, there are way too many mode changes
722      that are perfectly valid, so we'd waste too much effort for
723      little gain doing the checks here.  Focus on catching invalid
724      transformations involving integer constants.  */
725   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726       && CONST_INT_P (newval))
727     {
728       /* Sanity check that we're replacing oldval with a CONST_INT
729 	 that is a valid sign-extension for the original mode.  */
730       gcc_assert (INTVAL (newval)
731 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732 
733       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 	 CONST_INT is not valid, because after the replacement, the
735 	 original mode would be gone.  Unfortunately, we can't tell
736 	 when do_SUBST is called to replace the operand thereof, so we
737 	 perform this test on oldval instead, checking whether an
738 	 invalid replacement took place before we got here.  */
739       gcc_assert (!(GET_CODE (oldval) == SUBREG
740 		    && CONST_INT_P (SUBREG_REG (oldval))));
741       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 		    && CONST_INT_P (XEXP (oldval, 0))));
743     }
744 
745   if (undobuf.frees)
746     buf = undobuf.frees, undobuf.frees = buf->next;
747   else
748     buf = XNEW (struct undo);
749 
750   buf->kind = UNDO_RTX;
751   buf->where.r = into;
752   buf->old_contents.r = oldval;
753   *into = newval;
754 
755   buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757 
758 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
759 
760 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
761    for the value of a HOST_WIDE_INT value (including CONST_INT) is
762    not safe.  */
763 
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767   struct undo *buf;
768   int oldval = *into;
769 
770   if (oldval == newval)
771     return;
772 
773   if (undobuf.frees)
774     buf = undobuf.frees, undobuf.frees = buf->next;
775   else
776     buf = XNEW (struct undo);
777 
778   buf->kind = UNDO_INT;
779   buf->where.i = into;
780   buf->old_contents.i = oldval;
781   *into = newval;
782 
783   buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785 
786 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
787 
788 /* Similar to SUBST, but just substitute the mode.  This is used when
789    changing the mode of a pseudo-register, so that any other
790    references to the entry in the regno_reg_rtx array will change as
791    well.  */
792 
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796   struct undo *buf;
797   machine_mode oldval = GET_MODE (*into);
798 
799   if (oldval == newval)
800     return;
801 
802   if (undobuf.frees)
803     buf = undobuf.frees, undobuf.frees = buf->next;
804   else
805     buf = XNEW (struct undo);
806 
807   buf->kind = UNDO_MODE;
808   buf->where.r = into;
809   buf->old_contents.m = oldval;
810   adjust_reg_mode (*into, newval);
811 
812   buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814 
815 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE (&(INTO), (NEWVAL))
816 
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
818 
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822   struct undo *buf;
823   struct insn_link * oldval = *into;
824 
825   if (oldval == newval)
826     return;
827 
828   if (undobuf.frees)
829     buf = undobuf.frees, undobuf.frees = buf->next;
830   else
831     buf = XNEW (struct undo);
832 
833   buf->kind = UNDO_LINKS;
834   buf->where.l = into;
835   buf->old_contents.l = oldval;
836   *into = newval;
837 
838   buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840 
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 
843 /* Subroutine of try_combine.  Determine whether the replacement patterns
844    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
846    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
847    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
848    of all the instructions can be estimated and the replacements are more
849    expensive than the original sequence.  */
850 
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 		       rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855   int i0_cost, i1_cost, i2_cost, i3_cost;
856   int new_i2_cost, new_i3_cost;
857   int old_cost, new_cost;
858 
859   /* Lookup the original insn_costs.  */
860   i2_cost = INSN_COST (i2);
861   i3_cost = INSN_COST (i3);
862 
863   if (i1)
864     {
865       i1_cost = INSN_COST (i1);
866       if (i0)
867 	{
868 	  i0_cost = INSN_COST (i0);
869 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 	}
872       else
873 	{
874 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 		      ? i1_cost + i2_cost + i3_cost : 0);
876 	  i0_cost = 0;
877 	}
878     }
879   else
880     {
881       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882       i1_cost = i0_cost = 0;
883     }
884 
885   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886      correct that.  */
887   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888     old_cost -= i1_cost;
889 
890 
891   /* Calculate the replacement insn_costs.  */
892   rtx tmp = PATTERN (i3);
893   PATTERN (i3) = newpat;
894   int tmpi = INSN_CODE (i3);
895   INSN_CODE (i3) = -1;
896   new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897   PATTERN (i3) = tmp;
898   INSN_CODE (i3) = tmpi;
899   if (newi2pat)
900     {
901       tmp = PATTERN (i2);
902       PATTERN (i2) = newi2pat;
903       tmpi = INSN_CODE (i2);
904       INSN_CODE (i2) = -1;
905       new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906       PATTERN (i2) = tmp;
907       INSN_CODE (i2) = tmpi;
908       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 		 ? new_i2_cost + new_i3_cost : 0;
910     }
911   else
912     {
913       new_cost = new_i3_cost;
914       new_i2_cost = 0;
915     }
916 
917   if (undobuf.other_insn)
918     {
919       int old_other_cost, new_other_cost;
920 
921       old_other_cost = INSN_COST (undobuf.other_insn);
922       tmp = PATTERN (undobuf.other_insn);
923       PATTERN (undobuf.other_insn) = newotherpat;
924       tmpi = INSN_CODE (undobuf.other_insn);
925       INSN_CODE (undobuf.other_insn) = -1;
926       new_other_cost = insn_cost (undobuf.other_insn,
927 				  optimize_this_for_speed_p);
928       PATTERN (undobuf.other_insn) = tmp;
929       INSN_CODE (undobuf.other_insn) = tmpi;
930       if (old_other_cost > 0 && new_other_cost > 0)
931 	{
932 	  old_cost += old_other_cost;
933 	  new_cost += new_other_cost;
934 	}
935       else
936 	old_cost = 0;
937     }
938 
939   /* Disallow this combination if both new_cost and old_cost are greater than
940      zero, and new_cost is greater than old cost.  */
941   int reject = old_cost > 0 && new_cost > old_cost;
942 
943   if (dump_file)
944     {
945       fprintf (dump_file, "%s combination of insns ",
946 	       reject ? "rejecting" : "allowing");
947       if (i0)
948 	fprintf (dump_file, "%d, ", INSN_UID (i0));
949       if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 	fprintf (dump_file, "%d, ", INSN_UID (i1));
951       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952 
953       fprintf (dump_file, "original costs ");
954       if (i0)
955 	fprintf (dump_file, "%d + ", i0_cost);
956       if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 	fprintf (dump_file, "%d + ", i1_cost);
958       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959 
960       if (newi2pat)
961 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 		 new_i2_cost, new_i3_cost, new_cost);
963       else
964 	fprintf (dump_file, "replacement cost %d\n", new_cost);
965     }
966 
967   if (reject)
968     return false;
969 
970   /* Update the uid_insn_cost array with the replacement costs.  */
971   INSN_COST (i2) = new_i2_cost;
972   INSN_COST (i3) = new_i3_cost;
973   if (i1)
974     {
975       INSN_COST (i1) = 0;
976       if (i0)
977 	INSN_COST (i0) = 0;
978     }
979 
980   return true;
981 }
982 
983 
984 /* Delete any insns that copy a register to itself.  */
985 
986 static void
987 delete_noop_moves (void)
988 {
989   rtx_insn *insn, *next;
990   basic_block bb;
991 
992   FOR_EACH_BB_FN (bb, cfun)
993     {
994       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
995 	{
996 	  next = NEXT_INSN (insn);
997 	  if (INSN_P (insn) && noop_move_p (insn))
998 	    {
999 	      if (dump_file)
1000 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1001 
1002 	      delete_insn_and_edges (insn);
1003 	    }
1004 	}
1005     }
1006 }
1007 
1008 
1009 /* Return false if we do not want to (or cannot) combine DEF.  */
1010 static bool
1011 can_combine_def_p (df_ref def)
1012 {
1013   /* Do not consider if it is pre/post modification in MEM.  */
1014   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015     return false;
1016 
1017   unsigned int regno = DF_REF_REGNO (def);
1018 
1019   /* Do not combine frame pointer adjustments.  */
1020   if ((regno == FRAME_POINTER_REGNUM
1021        && (!reload_completed || frame_pointer_needed))
1022       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 	  && regno == HARD_FRAME_POINTER_REGNUM
1024 	  && (!reload_completed || frame_pointer_needed))
1025       || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 	  && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027     return false;
1028 
1029   return true;
1030 }
1031 
1032 /* Return false if we do not want to (or cannot) combine USE.  */
1033 static bool
1034 can_combine_use_p (df_ref use)
1035 {
1036   /* Do not consider the usage of the stack pointer by function call.  */
1037   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038     return false;
1039 
1040   return true;
1041 }
1042 
1043 /* Fill in log links field for all insns.  */
1044 
1045 static void
1046 create_log_links (void)
1047 {
1048   basic_block bb;
1049   rtx_insn **next_use;
1050   rtx_insn *insn;
1051   df_ref def, use;
1052 
1053   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1054 
1055   /* Pass through each block from the end, recording the uses of each
1056      register and establishing log links when def is encountered.
1057      Note that we do not clear next_use array in order to save time,
1058      so we have to test whether the use is in the same basic block as def.
1059 
1060      There are a few cases below when we do not consider the definition or
1061      usage -- these are taken from original flow.c did. Don't ask me why it is
1062      done this way; I don't know and if it works, I don't want to know.  */
1063 
1064   FOR_EACH_BB_FN (bb, cfun)
1065     {
1066       FOR_BB_INSNS_REVERSE (bb, insn)
1067         {
1068           if (!NONDEBUG_INSN_P (insn))
1069             continue;
1070 
1071 	  /* Log links are created only once.  */
1072 	  gcc_assert (!LOG_LINKS (insn));
1073 
1074 	  FOR_EACH_INSN_DEF (def, insn)
1075             {
1076               unsigned int regno = DF_REF_REGNO (def);
1077               rtx_insn *use_insn;
1078 
1079               if (!next_use[regno])
1080                 continue;
1081 
1082 	      if (!can_combine_def_p (def))
1083 		continue;
1084 
1085 	      use_insn = next_use[regno];
1086 	      next_use[regno] = NULL;
1087 
1088 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1089 		continue;
1090 
1091 	      /* flow.c claimed:
1092 
1093 		 We don't build a LOG_LINK for hard registers contained
1094 		 in ASM_OPERANDs.  If these registers get replaced,
1095 		 we might wind up changing the semantics of the insn,
1096 		 even if reload can make what appear to be valid
1097 		 assignments later.  */
1098 	      if (regno < FIRST_PSEUDO_REGISTER
1099 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1100 		continue;
1101 
1102 	      /* Don't add duplicate links between instructions.  */
1103 	      struct insn_link *links;
1104 	      FOR_EACH_LOG_LINK (links, use_insn)
1105 	        if (insn == links->insn && regno == links->regno)
1106 		  break;
1107 
1108 	      if (!links)
1109 		LOG_LINKS (use_insn)
1110 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1111             }
1112 
1113 	  FOR_EACH_INSN_USE (use, insn)
1114 	    if (can_combine_use_p (use))
1115 	      next_use[DF_REF_REGNO (use)] = insn;
1116         }
1117     }
1118 
1119   free (next_use);
1120 }
1121 
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1123    true if we found a LOG_LINK that proves that A feeds B.  This only works
1124    if there are no instructions between A and B which could have a link
1125    depending on A, since in that case we would not record a link for B.
1126    We also check the implicit dependency created by a cc0 setter/user
1127    pair.  */
1128 
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1131 {
1132   struct insn_link *links;
1133   FOR_EACH_LOG_LINK (links, b)
1134     if (links->insn == a)
1135       return true;
1136   if (HAVE_cc0 && sets_cc0_p (a))
1137     return true;
1138   return false;
1139 }
1140 
1141 /* Main entry point for combiner.  F is the first insn of the function.
1142    NREGS is the first unused pseudo-reg number.
1143 
1144    Return nonzero if the combiner has turned an indirect jump
1145    instruction into a direct jump.  */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1148 {
1149   rtx_insn *insn, *next;
1150   rtx_insn *prev;
1151   struct insn_link *links, *nextlinks;
1152   rtx_insn *first;
1153   basic_block last_bb;
1154 
1155   int new_direct_jump_p = 0;
1156 
1157   for (first = f; first && !NONDEBUG_INSN_P (first); )
1158     first = NEXT_INSN (first);
1159   if (!first)
1160     return 0;
1161 
1162   combine_attempts = 0;
1163   combine_merges = 0;
1164   combine_extras = 0;
1165   combine_successes = 0;
1166 
1167   rtl_hooks = combine_rtl_hooks;
1168 
1169   reg_stat.safe_grow_cleared (nregs);
1170 
1171   init_recog_no_volatile ();
1172 
1173   /* Allocate array for insn info.  */
1174   max_uid_known = get_max_uid ();
1175   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177   gcc_obstack_init (&insn_link_obstack);
1178 
1179   nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1180 
1181   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1182      problems when, for example, we have j <<= 1 in a loop.  */
1183 
1184   nonzero_sign_valid = 0;
1185   label_tick = label_tick_ebb_start = 1;
1186 
1187   /* Scan all SETs and see if we can deduce anything about what
1188      bits are known to be zero for some registers and how many copies
1189      of the sign bit are known to exist for those registers.
1190 
1191      Also set any known values so that we can use it while searching
1192      for what bits are known to be set.  */
1193 
1194   setup_incoming_promotions (first);
1195   /* Allow the entry block and the first block to fall into the same EBB.
1196      Conceptually the incoming promotions are assigned to the entry block.  */
1197   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1198 
1199   create_log_links ();
1200   FOR_EACH_BB_FN (this_basic_block, cfun)
1201     {
1202       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203       last_call_luid = 0;
1204       mem_last_set = -1;
1205 
1206       label_tick++;
1207       if (!single_pred_p (this_basic_block)
1208 	  || single_pred (this_basic_block) != last_bb)
1209 	label_tick_ebb_start = label_tick;
1210       last_bb = this_basic_block;
1211 
1212       FOR_BB_INSNS (this_basic_block, insn)
1213         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1214 	  {
1215             rtx links;
1216 
1217             subst_low_luid = DF_INSN_LUID (insn);
1218             subst_insn = insn;
1219 
1220 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 		         insn);
1222 	    record_dead_and_set_regs (insn);
1223 
1224 	    if (AUTO_INC_DEC)
1225 	      for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 		if (REG_NOTE_KIND (links) == REG_INC)
1227 		  set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 						    insn);
1229 
1230 	    /* Record the current insn_cost of this instruction.  */
1231 	    if (NONJUMP_INSN_P (insn))
1232 	      INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 	    if (dump_file)
1234 	      {
1235 		fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 		dump_insn_slim (dump_file, insn);
1237 	      }
1238 	  }
1239     }
1240 
1241   nonzero_sign_valid = 1;
1242 
1243   /* Now scan all the insns in forward order.  */
1244   label_tick = label_tick_ebb_start = 1;
1245   init_reg_last ();
1246   setup_incoming_promotions (first);
1247   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248   int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1249 
1250   FOR_EACH_BB_FN (this_basic_block, cfun)
1251     {
1252       rtx_insn *last_combined_insn = NULL;
1253 
1254       /* Ignore instruction combination in basic blocks that are going to
1255 	 be removed as unreachable anyway.  See PR82386.  */
1256       if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 	continue;
1258 
1259       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260       last_call_luid = 0;
1261       mem_last_set = -1;
1262 
1263       label_tick++;
1264       if (!single_pred_p (this_basic_block)
1265 	  || single_pred (this_basic_block) != last_bb)
1266 	label_tick_ebb_start = label_tick;
1267       last_bb = this_basic_block;
1268 
1269       rtl_profile_for_bb (this_basic_block);
1270       for (insn = BB_HEAD (this_basic_block);
1271 	   insn != NEXT_INSN (BB_END (this_basic_block));
1272 	   insn = next ? next : NEXT_INSN (insn))
1273 	{
1274 	  next = 0;
1275 	  if (!NONDEBUG_INSN_P (insn))
1276 	    continue;
1277 
1278 	  while (last_combined_insn
1279 		 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 		     || last_combined_insn->deleted ()))
1281 	    last_combined_insn = PREV_INSN (last_combined_insn);
1282 	  if (last_combined_insn == NULL_RTX
1283 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 	    last_combined_insn = insn;
1286 
1287 	  /* See if we know about function return values before this
1288 	     insn based upon SUBREG flags.  */
1289 	  check_promoted_subreg (insn, PATTERN (insn));
1290 
1291 	  /* See if we can find hardregs and subreg of pseudos in
1292 	     narrower modes.  This could help turning TRUNCATEs
1293 	     into SUBREGs.  */
1294 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1295 
1296 	  /* Try this insn with each insn it links back to.  */
1297 
1298 	  FOR_EACH_LOG_LINK (links, insn)
1299 	    if ((next = try_combine (insn, links->insn, NULL,
1300 				     NULL, &new_direct_jump_p,
1301 				     last_combined_insn)) != 0)
1302 	      {
1303 		statistics_counter_event (cfun, "two-insn combine", 1);
1304 		goto retry;
1305 	      }
1306 
1307 	  /* Try each sequence of three linked insns ending with this one.  */
1308 
1309 	  if (max_combine >= 3)
1310 	    FOR_EACH_LOG_LINK (links, insn)
1311 	      {
1312 		rtx_insn *link = links->insn;
1313 
1314 		/* If the linked insn has been replaced by a note, then there
1315 		   is no point in pursuing this chain any further.  */
1316 		if (NOTE_P (link))
1317 		  continue;
1318 
1319 		FOR_EACH_LOG_LINK (nextlinks, link)
1320 		  if ((next = try_combine (insn, link, nextlinks->insn,
1321 					   NULL, &new_direct_jump_p,
1322 					   last_combined_insn)) != 0)
1323 		    {
1324 		      statistics_counter_event (cfun, "three-insn combine", 1);
1325 		      goto retry;
1326 		    }
1327 	      }
1328 
1329 	  /* Try to combine a jump insn that uses CC0
1330 	     with a preceding insn that sets CC0, and maybe with its
1331 	     logical predecessor as well.
1332 	     This is how we make decrement-and-branch insns.
1333 	     We need this special code because data flow connections
1334 	     via CC0 do not get entered in LOG_LINKS.  */
1335 
1336 	  if (HAVE_cc0
1337 	      && JUMP_P (insn)
1338 	      && (prev = prev_nonnote_insn (insn)) != 0
1339 	      && NONJUMP_INSN_P (prev)
1340 	      && sets_cc0_p (PATTERN (prev)))
1341 	    {
1342 	      if ((next = try_combine (insn, prev, NULL, NULL,
1343 				       &new_direct_jump_p,
1344 				       last_combined_insn)) != 0)
1345 		goto retry;
1346 
1347 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1348 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1349 					   NULL, &new_direct_jump_p,
1350 					   last_combined_insn)) != 0)
1351 		    goto retry;
1352 	    }
1353 
1354 	  /* Do the same for an insn that explicitly references CC0.  */
1355 	  if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 	      && (prev = prev_nonnote_insn (insn)) != 0
1357 	      && NONJUMP_INSN_P (prev)
1358 	      && sets_cc0_p (PATTERN (prev))
1359 	      && GET_CODE (PATTERN (insn)) == SET
1360 	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1361 	    {
1362 	      if ((next = try_combine (insn, prev, NULL, NULL,
1363 				       &new_direct_jump_p,
1364 				       last_combined_insn)) != 0)
1365 		goto retry;
1366 
1367 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1368 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1369 					   NULL, &new_direct_jump_p,
1370 					   last_combined_insn)) != 0)
1371 		    goto retry;
1372 	    }
1373 
1374 	  /* Finally, see if any of the insns that this insn links to
1375 	     explicitly references CC0.  If so, try this insn, that insn,
1376 	     and its predecessor if it sets CC0.  */
1377 	  if (HAVE_cc0)
1378 	    {
1379 	      FOR_EACH_LOG_LINK (links, insn)
1380 		if (NONJUMP_INSN_P (links->insn)
1381 		    && GET_CODE (PATTERN (links->insn)) == SET
1382 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 		    && (prev = prev_nonnote_insn (links->insn)) != 0
1384 		    && NONJUMP_INSN_P (prev)
1385 		    && sets_cc0_p (PATTERN (prev))
1386 		    && (next = try_combine (insn, links->insn,
1387 					    prev, NULL, &new_direct_jump_p,
1388 					    last_combined_insn)) != 0)
1389 		  goto retry;
1390 	    }
1391 
1392 	  /* Try combining an insn with two different insns whose results it
1393 	     uses.  */
1394 	  if (max_combine >= 3)
1395 	    FOR_EACH_LOG_LINK (links, insn)
1396 	      for (nextlinks = links->next; nextlinks;
1397 		   nextlinks = nextlinks->next)
1398 		if ((next = try_combine (insn, links->insn,
1399 					 nextlinks->insn, NULL,
1400 					 &new_direct_jump_p,
1401 					 last_combined_insn)) != 0)
1402 
1403 		  {
1404 		    statistics_counter_event (cfun, "three-insn combine", 1);
1405 		    goto retry;
1406 		  }
1407 
1408 	  /* Try four-instruction combinations.  */
1409 	  if (max_combine >= 4)
1410 	    FOR_EACH_LOG_LINK (links, insn)
1411 	      {
1412 		struct insn_link *next1;
1413 		rtx_insn *link = links->insn;
1414 
1415 		/* If the linked insn has been replaced by a note, then there
1416 		   is no point in pursuing this chain any further.  */
1417 		if (NOTE_P (link))
1418 		  continue;
1419 
1420 		FOR_EACH_LOG_LINK (next1, link)
1421 		  {
1422 		    rtx_insn *link1 = next1->insn;
1423 		    if (NOTE_P (link1))
1424 		      continue;
1425 		    /* I0 -> I1 -> I2 -> I3.  */
1426 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1427 		      if ((next = try_combine (insn, link, link1,
1428 					       nextlinks->insn,
1429 					       &new_direct_jump_p,
1430 					       last_combined_insn)) != 0)
1431 			{
1432 			  statistics_counter_event (cfun, "four-insn combine", 1);
1433 			  goto retry;
1434 			}
1435 		    /* I0, I1 -> I2, I2 -> I3.  */
1436 		    for (nextlinks = next1->next; nextlinks;
1437 			 nextlinks = nextlinks->next)
1438 		      if ((next = try_combine (insn, link, link1,
1439 					       nextlinks->insn,
1440 					       &new_direct_jump_p,
1441 					       last_combined_insn)) != 0)
1442 			{
1443 			  statistics_counter_event (cfun, "four-insn combine", 1);
1444 			  goto retry;
1445 			}
1446 		  }
1447 
1448 		for (next1 = links->next; next1; next1 = next1->next)
1449 		  {
1450 		    rtx_insn *link1 = next1->insn;
1451 		    if (NOTE_P (link1))
1452 		      continue;
1453 		    /* I0 -> I2; I1, I2 -> I3.  */
1454 		    FOR_EACH_LOG_LINK (nextlinks, link)
1455 		      if ((next = try_combine (insn, link, link1,
1456 					       nextlinks->insn,
1457 					       &new_direct_jump_p,
1458 					       last_combined_insn)) != 0)
1459 			{
1460 			  statistics_counter_event (cfun, "four-insn combine", 1);
1461 			  goto retry;
1462 			}
1463 		    /* I0 -> I1; I1, I2 -> I3.  */
1464 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1465 		      if ((next = try_combine (insn, link, link1,
1466 					       nextlinks->insn,
1467 					       &new_direct_jump_p,
1468 					       last_combined_insn)) != 0)
1469 			{
1470 			  statistics_counter_event (cfun, "four-insn combine", 1);
1471 			  goto retry;
1472 			}
1473 		  }
1474 	      }
1475 
1476 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1477 	  FOR_EACH_LOG_LINK (links, insn)
1478 	    {
1479 	      rtx set, note;
1480 	      rtx_insn *temp = links->insn;
1481 	      if ((set = single_set (temp)) != 0
1482 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1483 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 		  /* Avoid using a register that may already been marked
1485 		     dead by an earlier instruction.  */
1486 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1487 		  && (GET_MODE (note) == VOIDmode
1488 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 		      : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 			 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 			     || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 				 == GET_MODE (note))))))
1493 		{
1494 		  /* Temporarily replace the set's source with the
1495 		     contents of the REG_EQUAL note.  The insn will
1496 		     be deleted or recognized by try_combine.  */
1497 		  rtx orig_src = SET_SRC (set);
1498 		  rtx orig_dest = SET_DEST (set);
1499 		  if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 		    SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 		  SET_SRC (set) = note;
1502 		  i2mod = temp;
1503 		  i2mod_old_rhs = copy_rtx (orig_src);
1504 		  i2mod_new_rhs = copy_rtx (note);
1505 		  next = try_combine (insn, i2mod, NULL, NULL,
1506 				      &new_direct_jump_p,
1507 				      last_combined_insn);
1508 		  i2mod = NULL;
1509 		  if (next)
1510 		    {
1511 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 		      goto retry;
1513 		    }
1514 		  SET_SRC (set) = orig_src;
1515 		  SET_DEST (set) = orig_dest;
1516 		}
1517 	    }
1518 
1519 	  if (!NOTE_P (insn))
1520 	    record_dead_and_set_regs (insn);
1521 
1522 retry:
1523 	  ;
1524 	}
1525     }
1526 
1527   default_rtl_profile ();
1528   clear_bb_flags ();
1529   new_direct_jump_p |= purge_all_dead_edges ();
1530   delete_noop_moves ();
1531 
1532   /* Clean up.  */
1533   obstack_free (&insn_link_obstack, NULL);
1534   free (uid_log_links);
1535   free (uid_insn_cost);
1536   reg_stat.release ();
1537 
1538   {
1539     struct undo *undo, *next;
1540     for (undo = undobuf.frees; undo; undo = next)
1541       {
1542 	next = undo->next;
1543 	free (undo);
1544       }
1545     undobuf.frees = 0;
1546   }
1547 
1548   total_attempts += combine_attempts;
1549   total_merges += combine_merges;
1550   total_extras += combine_extras;
1551   total_successes += combine_successes;
1552 
1553   nonzero_sign_valid = 0;
1554   rtl_hooks = general_rtl_hooks;
1555 
1556   /* Make recognizer allow volatile MEMs again.  */
1557   init_recog ();
1558 
1559   return new_direct_jump_p;
1560 }
1561 
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1563 
1564 static void
1565 init_reg_last (void)
1566 {
1567   unsigned int i;
1568   reg_stat_type *p;
1569 
1570   FOR_EACH_VEC_ELT (reg_stat, i, p)
1571     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1572 }
1573 
1574 /* Set up any promoted values for incoming argument registers.  */
1575 
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1578 {
1579   tree arg;
1580   bool strictly_local = false;
1581 
1582   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583        arg = DECL_CHAIN (arg))
1584     {
1585       rtx x, reg = DECL_INCOMING_RTL (arg);
1586       int uns1, uns3;
1587       machine_mode mode1, mode2, mode3, mode4;
1588 
1589       /* Only continue if the incoming argument is in a register.  */
1590       if (!REG_P (reg))
1591 	continue;
1592 
1593       /* Determine, if possible, whether all call sites of the current
1594          function lie within the current compilation unit.  (This does
1595 	 take into account the exporting of a function via taking its
1596 	 address, and so forth.)  */
1597       strictly_local = cgraph_node::local_info (current_function_decl)->local;
1598 
1599       /* The mode and signedness of the argument before any promotions happen
1600          (equal to the mode of the pseudo holding it at that stage).  */
1601       mode1 = TYPE_MODE (TREE_TYPE (arg));
1602       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1603 
1604       /* The mode and signedness of the argument after any source language and
1605          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1606       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1608 
1609       /* The mode and signedness of the argument as it is actually passed,
1610          see assign_parm_setup_reg in function.c.  */
1611       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 				     TREE_TYPE (cfun->decl), 0);
1613 
1614       /* The mode of the register in which the argument is being passed.  */
1615       mode4 = GET_MODE (reg);
1616 
1617       /* Eliminate sign extensions in the callee when:
1618 	 (a) A mode promotion has occurred;  */
1619       if (mode1 == mode3)
1620 	continue;
1621       /* (b) The mode of the register is the same as the mode of
1622 	     the argument as it is passed; */
1623       if (mode3 != mode4)
1624 	continue;
1625       /* (c) There's no language level extension;  */
1626       if (mode1 == mode2)
1627 	;
1628       /* (c.1) All callers are from the current compilation unit.  If that's
1629 	 the case we don't have to rely on an ABI, we only have to know
1630 	 what we're generating right now, and we know that we will do the
1631 	 mode1 to mode2 promotion with the given sign.  */
1632       else if (!strictly_local)
1633 	continue;
1634       /* (c.2) The combination of the two promotions is useful.  This is
1635 	 true when the signs match, or if the first promotion is unsigned.
1636 	 In the later case, (sign_extend (zero_extend x)) is the same as
1637 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1638       else if (uns1)
1639 	uns3 = true;
1640       else if (uns3)
1641 	continue;
1642 
1643       /* Record that the value was promoted from mode1 to mode3,
1644 	 so that any sign extension at the head of the current
1645 	 function may be eliminated.  */
1646       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648       record_value_for_reg (reg, first, x);
1649     }
1650 }
1651 
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653    that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654    because some machines (maybe most) will actually do the sign-extension and
1655    this is the conservative approach.
1656 
1657    ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658    kludge.  */
1659 
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1662 {
1663   scalar_int_mode int_mode;
1664   if (CONST_INT_P (src)
1665       && is_a <scalar_int_mode> (mode, &int_mode)
1666       && GET_MODE_PRECISION (int_mode) < prec
1667       && INTVAL (src) > 0
1668       && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669     src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1670 
1671   return src;
1672 }
1673 
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675    and SET.  */
1676 
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 			   rtx x)
1680 {
1681   rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682   unsigned HOST_WIDE_INT bits = 0;
1683   rtx reg_equal = NULL, src = SET_SRC (set);
1684   unsigned int num = 0;
1685 
1686   if (reg_equal_note)
1687     reg_equal = XEXP (reg_equal_note, 0);
1688 
1689   if (SHORT_IMMEDIATES_SIGN_EXTEND)
1690     {
1691       src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692       if (reg_equal)
1693 	reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1694     }
1695 
1696   /* Don't call nonzero_bits if it cannot change anything.  */
1697   if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1698     {
1699       bits = nonzero_bits (src, nonzero_bits_mode);
1700       if (reg_equal && bits)
1701 	bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702       rsp->nonzero_bits |= bits;
1703     }
1704 
1705   /* Don't call num_sign_bit_copies if it cannot change anything.  */
1706   if (rsp->sign_bit_copies != 1)
1707     {
1708       num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709       if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1710 	{
1711 	  unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 	  if (num == 0 || numeq > num)
1713 	    num = numeq;
1714 	}
1715       if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 	rsp->sign_bit_copies = num;
1717     }
1718 }
1719 
1720 /* Called via note_stores.  If X is a pseudo that is narrower than
1721    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1722 
1723    If we are setting only a portion of X and we can't figure out what
1724    portion, assume all bits will be used since we don't know what will
1725    be happening.
1726 
1727    Similarly, set how many bits of X are known to be copies of the sign bit
1728    at all locations in the function.  This is the smallest number implied
1729    by any set of X.  */
1730 
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1733 {
1734   rtx_insn *insn = (rtx_insn *) data;
1735   scalar_int_mode mode;
1736 
1737   if (REG_P (x)
1738       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739       /* If this register is undefined at the start of the file, we can't
1740 	 say what its contents were.  */
1741       && ! REGNO_REG_SET_P
1742 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743       && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744       && HWI_COMPUTABLE_MODE_P (mode))
1745     {
1746       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1747 
1748       if (set == 0 || GET_CODE (set) == CLOBBER)
1749 	{
1750 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 	  rsp->sign_bit_copies = 1;
1752 	  return;
1753 	}
1754 
1755       /* If this register is being initialized using itself, and the
1756 	 register is uninitialized in this basic block, and there are
1757 	 no LOG_LINKS which set the register, then part of the
1758 	 register is uninitialized.  In that case we can't assume
1759 	 anything about the number of nonzero bits.
1760 
1761 	 ??? We could do better if we checked this in
1762 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1763 	 could avoid making assumptions about the insn which initially
1764 	 sets the register, while still using the information in other
1765 	 insns.  We would have to be careful to check every insn
1766 	 involved in the combination.  */
1767 
1768       if (insn
1769 	  && reg_referenced_p (x, PATTERN (insn))
1770 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 			       REGNO (x)))
1772 	{
1773 	  struct insn_link *link;
1774 
1775 	  FOR_EACH_LOG_LINK (link, insn)
1776 	    if (dead_or_set_p (link->insn, x))
1777 	      break;
1778 	  if (!link)
1779 	    {
1780 	      rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 	      rsp->sign_bit_copies = 1;
1782 	      return;
1783 	    }
1784 	}
1785 
1786       /* If this is a complex assignment, see if we can convert it into a
1787 	 simple assignment.  */
1788       set = expand_field_assignment (set);
1789 
1790       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 	 set what we know about X.  */
1792 
1793       if (SET_DEST (set) == x
1794 	  || (paradoxical_subreg_p (SET_DEST (set))
1795 	      && SUBREG_REG (SET_DEST (set)) == x))
1796 	update_rsp_from_reg_equal (rsp, insn, set, x);
1797       else
1798 	{
1799 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 	  rsp->sign_bit_copies = 1;
1801 	}
1802     }
1803 }
1804 
1805 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1806    optionally insns that were previously combined into I3 or that will be
1807    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1808    INSN, SUCC, SUCC2, I3.
1809 
1810    Return 0 if the combination is not allowed for any reason.
1811 
1812    If the combination is allowed, *PDEST will be set to the single
1813    destination of INSN and *PSRC to the single source, and this function
1814    will return 1.  */
1815 
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 	       rtx *pdest, rtx *psrc)
1820 {
1821   int i;
1822   const_rtx set = 0;
1823   rtx src, dest;
1824   rtx_insn *p;
1825   rtx link;
1826   bool all_adjacent = true;
1827   int (*is_volatile_p) (const_rtx);
1828 
1829   if (succ)
1830     {
1831       if (succ2)
1832 	{
1833 	  if (next_active_insn (succ2) != i3)
1834 	    all_adjacent = false;
1835 	  if (next_active_insn (succ) != succ2)
1836 	    all_adjacent = false;
1837 	}
1838       else if (next_active_insn (succ) != i3)
1839 	all_adjacent = false;
1840       if (next_active_insn (insn) != succ)
1841 	all_adjacent = false;
1842     }
1843   else if (next_active_insn (insn) != i3)
1844     all_adjacent = false;
1845 
1846   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847      or a PARALLEL consisting of such a SET and CLOBBERs.
1848 
1849      If INSN has CLOBBER parallel parts, ignore them for our processing.
1850      By definition, these happen during the execution of the insn.  When it
1851      is merged with another insn, all bets are off.  If they are, in fact,
1852      needed and aren't also supplied in I3, they may be added by
1853      recog_for_combine.  Otherwise, it won't match.
1854 
1855      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856      note.
1857 
1858      Get the source and destination of INSN.  If more than one, can't
1859      combine.  */
1860 
1861   if (GET_CODE (PATTERN (insn)) == SET)
1862     set = PATTERN (insn);
1863   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1865     {
1866       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1867 	{
1868 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1869 
1870 	  switch (GET_CODE (elt))
1871 	    {
1872 	    /* This is important to combine floating point insns
1873 	       for the SH4 port.  */
1874 	    case USE:
1875 	      /* Combining an isolated USE doesn't make sense.
1876 		 We depend here on combinable_i3pat to reject them.  */
1877 	      /* The code below this loop only verifies that the inputs of
1878 		 the SET in INSN do not change.  We call reg_set_between_p
1879 		 to verify that the REG in the USE does not change between
1880 		 I3 and INSN.
1881 		 If the USE in INSN was for a pseudo register, the matching
1882 		 insn pattern will likely match any register; combining this
1883 		 with any other USE would only be safe if we knew that the
1884 		 used registers have identical values, or if there was
1885 		 something to tell them apart, e.g. different modes.  For
1886 		 now, we forgo such complicated tests and simply disallow
1887 		 combining of USES of pseudo registers with any other USE.  */
1888 	      if (REG_P (XEXP (elt, 0))
1889 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1890 		{
1891 		  rtx i3pat = PATTERN (i3);
1892 		  int i = XVECLEN (i3pat, 0) - 1;
1893 		  unsigned int regno = REGNO (XEXP (elt, 0));
1894 
1895 		  do
1896 		    {
1897 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1898 
1899 		      if (GET_CODE (i3elt) == USE
1900 			  && REG_P (XEXP (i3elt, 0))
1901 			  && (REGNO (XEXP (i3elt, 0)) == regno
1902 			      ? reg_set_between_p (XEXP (elt, 0),
1903 						   PREV_INSN (insn), i3)
1904 			      : regno >= FIRST_PSEUDO_REGISTER))
1905 			return 0;
1906 		    }
1907 		  while (--i >= 0);
1908 		}
1909 	      break;
1910 
1911 	      /* We can ignore CLOBBERs.  */
1912 	    case CLOBBER:
1913 	      break;
1914 
1915 	    case SET:
1916 	      /* Ignore SETs whose result isn't used but not those that
1917 		 have side-effects.  */
1918 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 		  && insn_nothrow_p (insn)
1920 		  && !side_effects_p (elt))
1921 		break;
1922 
1923 	      /* If we have already found a SET, this is a second one and
1924 		 so we cannot combine with this insn.  */
1925 	      if (set)
1926 		return 0;
1927 
1928 	      set = elt;
1929 	      break;
1930 
1931 	    default:
1932 	      /* Anything else means we can't combine.  */
1933 	      return 0;
1934 	    }
1935 	}
1936 
1937       if (set == 0
1938 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 	     so don't do anything with it.  */
1940 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 	return 0;
1942     }
1943   else
1944     return 0;
1945 
1946   if (set == 0)
1947     return 0;
1948 
1949   /* The simplification in expand_field_assignment may call back to
1950      get_last_value, so set safe guard here.  */
1951   subst_low_luid = DF_INSN_LUID (insn);
1952 
1953   set = expand_field_assignment (set);
1954   src = SET_SRC (set), dest = SET_DEST (set);
1955 
1956   /* Do not eliminate user-specified register if it is in an
1957      asm input because we may break the register asm usage defined
1958      in GCC manual if allow to do so.
1959      Be aware that this may cover more cases than we expect but this
1960      should be harmless.  */
1961   if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962       && extract_asm_operands (PATTERN (i3)))
1963     return 0;
1964 
1965   /* Don't eliminate a store in the stack pointer.  */
1966   if (dest == stack_pointer_rtx
1967       /* Don't combine with an insn that sets a register to itself if it has
1968 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1969       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970       /* Can't merge an ASM_OPERANDS.  */
1971       || GET_CODE (src) == ASM_OPERANDS
1972       /* Can't merge a function call.  */
1973       || GET_CODE (src) == CALL
1974       /* Don't eliminate a function call argument.  */
1975       || (CALL_P (i3)
1976 	  && (find_reg_fusage (i3, USE, dest)
1977 	      || (REG_P (dest)
1978 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 		  && global_regs[REGNO (dest)])))
1980       /* Don't substitute into an incremented register.  */
1981       || FIND_REG_INC_NOTE (i3, dest)
1982       || (succ && FIND_REG_INC_NOTE (succ, dest))
1983       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984       /* Don't substitute into a non-local goto, this confuses CFG.  */
1985       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986       /* Make sure that DEST is not used after INSN but before SUCC, or
1987 	 after SUCC and before SUCC2, or after SUCC2 but before I3.  */
1988       || (!all_adjacent
1989 	  && ((succ2
1990 	       && (reg_used_between_p (dest, succ2, i3)
1991 		   || reg_used_between_p (dest, succ, succ2)))
1992 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 	      || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1994 	      || (succ
1995 		  /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 		     that case SUCC is not in the insn stream, so use SUCC2
1997 		     instead for this test.  */
1998 		  && reg_used_between_p (dest, insn,
1999 					 succ2
2000 					 && INSN_UID (succ) == INSN_UID (succ2)
2001 					 ? succ2 : succ))))
2002       /* Make sure that the value that is to be substituted for the register
2003 	 does not use any registers whose values alter in between.  However,
2004 	 If the insns are adjacent, a use can't cross a set even though we
2005 	 think it might (this can happen for a sequence of insns each setting
2006 	 the same destination; last_set of that register might point to
2007 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
2008 	 equivalent to the memory so the substitution is valid even if there
2009 	 are intervening stores.  Also, don't move a volatile asm or
2010 	 UNSPEC_VOLATILE across any other insns.  */
2011       || (! all_adjacent
2012 	  && (((!MEM_P (src)
2013 		|| ! find_reg_note (insn, REG_EQUIV, src))
2014 	       && modified_between_p (src, insn, i3))
2015 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 	      || GET_CODE (src) == UNSPEC_VOLATILE))
2017       /* Don't combine across a CALL_INSN, because that would possibly
2018 	 change whether the life span of some REGs crosses calls or not,
2019 	 and it is a pain to update that information.
2020 	 Exception: if source is a constant, moving it later can't hurt.
2021 	 Accept that as a special case.  */
2022       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023     return 0;
2024 
2025   /* DEST must either be a REG or CC0.  */
2026   if (REG_P (dest))
2027     {
2028       /* If register alignment is being enforced for multi-word items in all
2029 	 cases except for parameters, it is possible to have a register copy
2030 	 insn referencing a hard register that is not allowed to contain the
2031 	 mode being copied and which would not be valid as an operand of most
2032 	 insns.  Eliminate this problem by not combining with such an insn.
2033 
2034 	 Also, on some machines we don't want to extend the life of a hard
2035 	 register.  */
2036 
2037       if (REG_P (src)
2038 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 	       && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 	      /* Don't extend the life of a hard register unless it is
2041 		 user variable (if we have few registers) or it can't
2042 		 fit into the desired register (meaning something special
2043 		 is going on).
2044 		 Also avoid substituting a return register into I3, because
2045 		 reload can't handle a conflict with constraints of other
2046 		 inputs.  */
2047 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 		  && !targetm.hard_regno_mode_ok (REGNO (src),
2049 						  GET_MODE (src)))))
2050 	return 0;
2051     }
2052   else if (GET_CODE (dest) != CC0)
2053     return 0;
2054 
2055 
2056   if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2059 	{
2060 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2061 
2062 	  /* If the clobber represents an earlyclobber operand, we must not
2063 	     substitute an expression containing the clobbered register.
2064 	     As we do not analyze the constraint strings here, we have to
2065 	     make the conservative assumption.  However, if the register is
2066 	     a fixed hard reg, the clobber cannot represent any operand;
2067 	     we leave it up to the machine description to either accept or
2068 	     reject use-and-clobber patterns.  */
2069 	  if (!REG_P (reg)
2070 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 	      || !fixed_regs[REGNO (reg)])
2072 	    if (reg_overlap_mentioned_p (reg, src))
2073 	      return 0;
2074 	}
2075 
2076   /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077      or not), reject, unless nothing volatile comes between it and I3 */
2078 
2079   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2080     {
2081       /* Make sure neither succ nor succ2 contains a volatile reference.  */
2082       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 	return 0;
2084       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 	return 0;
2086       /* We'll check insns between INSN and I3 below.  */
2087     }
2088 
2089   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090      to be an explicit register variable, and was chosen for a reason.  */
2091 
2092   if (GET_CODE (src) == ASM_OPERANDS
2093       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094     return 0;
2095 
2096   /* If INSN contains volatile references (specifically volatile MEMs),
2097      we cannot combine across any other volatile references.
2098      Even if INSN doesn't contain volatile references, any intervening
2099      volatile insn might affect machine state.  */
2100 
2101   is_volatile_p = volatile_refs_p (PATTERN (insn))
2102     ? volatile_refs_p
2103     : volatile_insn_p;
2104 
2105   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107       return 0;
2108 
2109   /* If INSN contains an autoincrement or autodecrement, make sure that
2110      register is not used between there and I3, and not already used in
2111      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2112      Also insist that I3 not be a jump; if it were one
2113      and the incremented register were spilled, we would lose.  */
2114 
2115   if (AUTO_INC_DEC)
2116     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117       if (REG_NOTE_KIND (link) == REG_INC
2118 	  && (JUMP_P (i3)
2119 	      || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 	      || (pred != NULL_RTX
2121 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 	      || (pred2 != NULL_RTX
2123 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 	      || (succ != NULL_RTX
2125 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 	      || (succ2 != NULL_RTX
2127 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 	      || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 	return 0;
2130 
2131   /* Don't combine an insn that follows a CC0-setting insn.
2132      An insn that uses CC0 must not be separated from the one that sets it.
2133      We do, however, allow I2 to follow a CC0-setting insn if that insn
2134      is passed as I1; in that case it will be deleted also.
2135      We also allow combining in this case if all the insns are adjacent
2136      because that would leave the two CC0 insns adjacent as well.
2137      It would be more logical to test whether CC0 occurs inside I1 or I2,
2138      but that would be much slower, and this ought to be equivalent.  */
2139 
2140   if (HAVE_cc0)
2141     {
2142       p = prev_nonnote_insn (insn);
2143       if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 	  && ! all_adjacent)
2145 	return 0;
2146     }
2147 
2148   /* If we get here, we have passed all the tests and the combination is
2149      to be allowed.  */
2150 
2151   *pdest = dest;
2152   *psrc = src;
2153 
2154   return 1;
2155 }
2156 
2157 /* LOC is the location within I3 that contains its pattern or the component
2158    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2159 
2160    One problem is if I3 modifies its output, as opposed to replacing it
2161    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162    doing so would produce an insn that is not equivalent to the original insns.
2163 
2164    Consider:
2165 
2166 	 (set (reg:DI 101) (reg:DI 100))
2167 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2168 
2169    This is NOT equivalent to:
2170 
2171 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 		    (set (reg:DI 101) (reg:DI 100))])
2173 
2174    Not only does this modify 100 (in which case it might still be valid
2175    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2176 
2177    We can also run into a problem if I2 sets a register that I1
2178    uses and I1 gets directly substituted into I3 (not via I2).  In that
2179    case, we would be getting the wrong value of I2DEST into I3, so we
2180    must reject the combination.  This case occurs when I2 and I1 both
2181    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183    of a SET must prevent combination from occurring.  The same situation
2184    can occur for I0, in which case I0_NOT_IN_SRC is set.
2185 
2186    Before doing the above check, we first try to expand a field assignment
2187    into a set of logical operations.
2188 
2189    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190    we place a register that is both set and used within I3.  If more than one
2191    such register is detected, we fail.
2192 
2193    Return 1 if the combination is valid, zero otherwise.  */
2194 
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2198 {
2199   rtx x = *loc;
2200 
2201   if (GET_CODE (x) == SET)
2202     {
2203       rtx set = x ;
2204       rtx dest = SET_DEST (set);
2205       rtx src = SET_SRC (set);
2206       rtx inner_dest = dest;
2207       rtx subdest;
2208 
2209       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 	     || GET_CODE (inner_dest) == SUBREG
2211 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 	inner_dest = XEXP (inner_dest, 0);
2213 
2214       /* Check for the case where I3 modifies its output, as discussed
2215 	 above.  We don't want to prevent pseudos from being combined
2216 	 into the address of a MEM, so only prevent the combination if
2217 	 i1 or i2 set the same MEM.  */
2218       if ((inner_dest != dest &&
2219 	   (!MEM_P (inner_dest)
2220 	    || rtx_equal_p (i2dest, inner_dest)
2221 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2226 
2227 	  /* This is the same test done in can_combine_p except we can't test
2228 	     all_adjacent; we don't have to, since this instruction will stay
2229 	     in place, thus we are not considering increasing the lifetime of
2230 	     INNER_DEST.
2231 
2232 	     Also, if this insn sets a function argument, combining it with
2233 	     something that might need a spill could clobber a previous
2234 	     function argument; the all_adjacent test in can_combine_p also
2235 	     checks this; here, we do a more specific test for this case.  */
2236 
2237 	  || (REG_P (inner_dest)
2238 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 	      && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 					      GET_MODE (inner_dest)))
2241 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 	return 0;
2244 
2245       /* If DEST is used in I3, it is being killed in this insn, so
2246 	 record that for later.  We have to consider paradoxical
2247 	 subregs here, since they kill the whole register, but we
2248 	 ignore partial subregs, STRICT_LOW_PART, etc.
2249 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 	 STACK_POINTER_REGNUM, since these are always considered to be
2251 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2252       subdest = dest;
2253       if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 	subdest = SUBREG_REG (subdest);
2255       if (pi3dest_killed
2256 	  && REG_P (subdest)
2257 	  && reg_referenced_p (subdest, PATTERN (i3))
2258 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 	  && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 	      || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 	  && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 	      || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 		  || ! fixed_regs [REGNO (subdest)]))
2264 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2265 	{
2266 	  if (*pi3dest_killed)
2267 	    return 0;
2268 
2269 	  *pi3dest_killed = subdest;
2270 	}
2271     }
2272 
2273   else if (GET_CODE (x) == PARALLEL)
2274     {
2275       int i;
2276 
2277       for (i = 0; i < XVECLEN (x, 0); i++)
2278 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 	  return 0;
2281     }
2282 
2283   return 1;
2284 }
2285 
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287    and division.  We don't count multiplications by powers of two here.  */
2288 
2289 static int
2290 contains_muldiv (rtx x)
2291 {
2292   switch (GET_CODE (x))
2293     {
2294     case MOD:  case DIV:  case UMOD:  case UDIV:
2295       return 1;
2296 
2297     case MULT:
2298       return ! (CONST_INT_P (XEXP (x, 1))
2299 		&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300     default:
2301       if (BINARY_P (x))
2302 	return contains_muldiv (XEXP (x, 0))
2303 	    || contains_muldiv (XEXP (x, 1));
2304 
2305       if (UNARY_P (x))
2306 	return contains_muldiv (XEXP (x, 0));
2307 
2308       return 0;
2309     }
2310 }
2311 
2312 /* Determine whether INSN can be used in a combination.  Return nonzero if
2313    not.  This is used in try_combine to detect early some cases where we
2314    can't perform combinations.  */
2315 
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2318 {
2319   rtx set;
2320   rtx src, dest;
2321 
2322   /* If this isn't really an insn, we can't do anything.
2323      This can occur when flow deletes an insn that it has merged into an
2324      auto-increment address.  */
2325   if (!NONDEBUG_INSN_P (insn))
2326     return 1;
2327 
2328   /* Never combine loads and stores involving hard regs that are likely
2329      to be spilled.  The register allocator can usually handle such
2330      reg-reg moves by tying.  If we allow the combiner to make
2331      substitutions of likely-spilled regs, reload might die.
2332      As an exception, we allow combinations involving fixed regs; these are
2333      not available to the register allocator so there's no risk involved.  */
2334 
2335   set = single_set (insn);
2336   if (! set)
2337     return 0;
2338   src = SET_SRC (set);
2339   dest = SET_DEST (set);
2340   if (GET_CODE (src) == SUBREG)
2341     src = SUBREG_REG (src);
2342   if (GET_CODE (dest) == SUBREG)
2343     dest = SUBREG_REG (dest);
2344   if (REG_P (src) && REG_P (dest)
2345       && ((HARD_REGISTER_P (src)
2346 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 	  || (HARD_REGISTER_P (dest)
2349 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351     return 1;
2352 
2353   return 0;
2354 }
2355 
2356 struct likely_spilled_retval_info
2357 {
2358   unsigned regno, nregs;
2359   unsigned mask;
2360 };
2361 
2362 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2363    hard registers that are known to be written to / clobbered in full.  */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2366 {
2367   struct likely_spilled_retval_info *const info =
2368     (struct likely_spilled_retval_info *) data;
2369   unsigned regno, nregs;
2370   unsigned new_mask;
2371 
2372   if (!REG_P (XEXP (set, 0)))
2373     return;
2374   regno = REGNO (x);
2375   if (regno >= info->regno + info->nregs)
2376     return;
2377   nregs = REG_NREGS (x);
2378   if (regno + nregs <= info->regno)
2379     return;
2380   new_mask = (2U << (nregs - 1)) - 1;
2381   if (regno < info->regno)
2382     new_mask >>= info->regno - regno;
2383   else
2384     new_mask <<= regno - info->regno;
2385   info->mask &= ~new_mask;
2386 }
2387 
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389    it is likely spilled.  This can happen when more than one insn is needed
2390    to copy the return value, e.g. when we consider to combine into the
2391    second copy insn for a complex value.  */
2392 
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2395 {
2396   rtx_insn *use = BB_END (this_basic_block);
2397   rtx reg;
2398   rtx_insn *p;
2399   unsigned regno, nregs;
2400   /* We assume here that no machine mode needs more than
2401      32 hard registers when the value overlaps with a register
2402      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2403   unsigned mask;
2404   struct likely_spilled_retval_info info;
2405 
2406   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407     return 0;
2408   reg = XEXP (PATTERN (use), 0);
2409   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410     return 0;
2411   regno = REGNO (reg);
2412   nregs = REG_NREGS (reg);
2413   if (nregs == 1)
2414     return 0;
2415   mask = (2U << (nregs - 1)) - 1;
2416 
2417   /* Disregard parts of the return value that are set later.  */
2418   info.regno = regno;
2419   info.nregs = nregs;
2420   info.mask = mask;
2421   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422     if (INSN_P (p))
2423       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424   mask = info.mask;
2425 
2426   /* Check if any of the (probably) live return value registers is
2427      likely spilled.  */
2428   nregs --;
2429   do
2430     {
2431       if ((mask & 1 << nregs)
2432 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 	return 1;
2434     } while (nregs--);
2435   return 0;
2436 }
2437 
2438 /* Adjust INSN after we made a change to its destination.
2439 
2440    Changing the destination can invalidate notes that say something about
2441    the results of the insn and a LOG_LINK pointing to the insn.  */
2442 
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2445 {
2446   /* For notes, be conservative and simply remove them.  */
2447   remove_reg_equal_equiv_notes (insn);
2448 
2449   /* The new insn will have a destination that was previously the destination
2450      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2451      the next use of that destination.  */
2452 
2453   rtx set = single_set (insn);
2454   gcc_assert (set);
2455 
2456   rtx reg = SET_DEST (set);
2457 
2458   while (GET_CODE (reg) == ZERO_EXTRACT
2459 	 || GET_CODE (reg) == STRICT_LOW_PART
2460 	 || GET_CODE (reg) == SUBREG)
2461     reg = XEXP (reg, 0);
2462   gcc_assert (REG_P (reg));
2463 
2464   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2465 
2466   df_insn_rescan (insn);
2467 }
2468 
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470    ADDED_SETS is nonzero if the original set is still required.  */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2473 {
2474   unsigned int regno;
2475 
2476   if (!REG_P (x))
2477     return false;
2478 
2479   /* Don't change between modes with different underlying register sizes,
2480      since this could lead to invalid subregs.  */
2481   if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2482 		REGMODE_NATURAL_SIZE (GET_MODE (x))))
2483     return false;
2484 
2485   regno = REGNO (x);
2486   /* Allow hard registers if the new mode is legal, and occupies no more
2487      registers than the old mode.  */
2488   if (regno < FIRST_PSEUDO_REGISTER)
2489     return (targetm.hard_regno_mode_ok (regno, mode)
2490 	    && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2491 
2492   /* Or a pseudo that is only used once.  */
2493   return (regno < reg_n_sets_max
2494 	  && REG_N_SETS (regno) == 1
2495 	  && !added_sets
2496 	  && !REG_USERVAR_P (x));
2497 }
2498 
2499 
2500 /* Check whether X, the destination of a set, refers to part of
2501    the register specified by REG.  */
2502 
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2505 {
2506   /* Check that reg is an integer mode register.  */
2507   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508     return false;
2509 
2510   if (GET_CODE (x) == STRICT_LOW_PART
2511       || GET_CODE (x) == ZERO_EXTRACT)
2512     x = XEXP (x, 0);
2513 
2514   return GET_CODE (x) == SUBREG
2515 	 && SUBREG_REG (x) == reg
2516 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2517 }
2518 
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520    Note that the INSN should be deleted *after* removing dead edges, so
2521    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522    but not for a (set (pc) (label_ref FOO)).  */
2523 
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2526 {
2527   basic_block bb = BLOCK_FOR_INSN (insn);
2528   gcc_assert (BB_END (bb) == insn);
2529 
2530   purge_dead_edges (bb);
2531 
2532   delete_insn (insn);
2533   if (EDGE_COUNT (bb->succs) == 1)
2534     {
2535       rtx_insn *insn;
2536 
2537       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2538 
2539       /* Remove barriers from the footer if there are any.  */
2540       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 	if (BARRIER_P (insn))
2542 	  {
2543 	    if (PREV_INSN (insn))
2544 	      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 	    else
2546 	      BB_FOOTER (bb) = NEXT_INSN (insn);
2547 	    if (NEXT_INSN (insn))
2548 	      SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2549 	  }
2550 	else if (LABEL_P (insn))
2551 	  break;
2552     }
2553 }
2554 
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556    by an arbitrary number of CLOBBERs.  */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2559 {
2560   if (GET_CODE (pat) != PARALLEL)
2561     return false;
2562 
2563   int len = XVECLEN (pat, 0);
2564   if (len < n)
2565     return false;
2566 
2567   int i;
2568   for (i = 0; i < n; i++)
2569     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571       return false;
2572   for ( ; i < len; i++)
2573     if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 	|| XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575       return false;
2576 
2577   return true;
2578 }
2579 
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581    CLOBBERs), can be split into individual SETs in that order, without
2582    changing semantics.  */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2585 {
2586   if (!insn_nothrow_p (insn))
2587     return false;
2588 
2589   rtx pat = PATTERN (insn);
2590 
2591   int i, j;
2592   for (i = 0; i < n; i++)
2593     {
2594       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 	return false;
2596 
2597       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2598 
2599       for (j = i + 1; j < n; j++)
2600 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 	  return false;
2602     }
2603 
2604   return true;
2605 }
2606 
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608    Here I0, I1 and I2 appear earlier than I3.
2609    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2610    I3.
2611 
2612    If we are combining more than two insns and the resulting insn is not
2613    recognized, try splitting it into two insns.  If that happens, I2 and I3
2614    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615    Otherwise, I0, I1 and I2 are pseudo-deleted.
2616 
2617    Return 0 if the combination does not work.  Then nothing is changed.
2618    If we did the combination, return the insn at which combine should
2619    resume scanning.
2620 
2621    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622    new direct jump instruction.
2623 
2624    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625    been I3 passed to an earlier try_combine within the same basic
2626    block.  */
2627 
2628 static rtx_insn *
2629 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2630 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2631 {
2632   /* New patterns for I3 and I2, respectively.  */
2633   rtx newpat, newi2pat = 0;
2634   rtvec newpat_vec_with_clobbers = 0;
2635   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2636   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2637      dead.  */
2638   int added_sets_0, added_sets_1, added_sets_2;
2639   /* Total number of SETs to put into I3.  */
2640   int total_sets;
2641   /* Nonzero if I2's or I1's body now appears in I3.  */
2642   int i2_is_used = 0, i1_is_used = 0;
2643   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2644   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2645   /* Contains I3 if the destination of I3 is used in its source, which means
2646      that the old life of I3 is being killed.  If that usage is placed into
2647      I2 and not in I3, a REG_DEAD note must be made.  */
2648   rtx i3dest_killed = 0;
2649   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2650   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2651   /* Copy of SET_SRC of I1 and I0, if needed.  */
2652   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2653   /* Set if I2DEST was reused as a scratch register.  */
2654   bool i2scratch = false;
2655   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2656   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2657   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2658   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2659   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2660   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2661   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2662   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2663   rtx new_i3_notes, new_i2_notes;
2664   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2665   int i3_subst_into_i2 = 0;
2666   /* Notes that I1, I2 or I3 is a MULT operation.  */
2667   int have_mult = 0;
2668   int swap_i2i3 = 0;
2669   int split_i2i3 = 0;
2670   int changed_i3_dest = 0;
2671 
2672   int maxreg;
2673   rtx_insn *temp_insn;
2674   rtx temp_expr;
2675   struct insn_link *link;
2676   rtx other_pat = 0;
2677   rtx new_other_notes;
2678   int i;
2679   scalar_int_mode dest_mode, temp_mode;
2680 
2681   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2682      never be).  */
2683   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2684     return 0;
2685 
2686   /* Only try four-insn combinations when there's high likelihood of
2687      success.  Look for simple insns, such as loads of constants or
2688      binary operations involving a constant.  */
2689   if (i0)
2690     {
2691       int i;
2692       int ngood = 0;
2693       int nshift = 0;
2694       rtx set0, set3;
2695 
2696       if (!flag_expensive_optimizations)
2697 	return 0;
2698 
2699       for (i = 0; i < 4; i++)
2700 	{
2701 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2702 	  rtx set = single_set (insn);
2703 	  rtx src;
2704 	  if (!set)
2705 	    continue;
2706 	  src = SET_SRC (set);
2707 	  if (CONSTANT_P (src))
2708 	    {
2709 	      ngood += 2;
2710 	      break;
2711 	    }
2712 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2713 	    ngood++;
2714 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2715 		   || GET_CODE (src) == LSHIFTRT)
2716 	    nshift++;
2717 	}
2718 
2719       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2720 	 are likely manipulating its value.  Ideally we'll be able to combine
2721 	 all four insns into a bitfield insertion of some kind.
2722 
2723 	 Note the source in I0 might be inside a sign/zero extension and the
2724 	 memory modes in I0 and I3 might be different.  So extract the address
2725 	 from the destination of I3 and search for it in the source of I0.
2726 
2727 	 In the event that there's a match but the source/dest do not actually
2728 	 refer to the same memory, the worst that happens is we try some
2729 	 combinations that we wouldn't have otherwise.  */
2730       if ((set0 = single_set (i0))
2731 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2732 	     an extension.  */
2733 	  && (GET_CODE (SET_SRC (set0)) == MEM
2734 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2735 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2736 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2737 	  && (set3 = single_set (i3))
2738 	  /* Ensure the destination of SET3 is a MEM.  */
2739 	  && GET_CODE (SET_DEST (set3)) == MEM
2740 	  /* Would it be better to extract the base address for the MEM
2741 	     in SET3 and look for that?  I don't have cases where it matters
2742 	     but I could envision such cases.  */
2743 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2744 	ngood += 2;
2745 
2746       if (ngood < 2 && nshift < 2)
2747 	return 0;
2748     }
2749 
2750   /* Exit early if one of the insns involved can't be used for
2751      combinations.  */
2752   if (CALL_P (i2)
2753       || (i1 && CALL_P (i1))
2754       || (i0 && CALL_P (i0))
2755       || cant_combine_insn_p (i3)
2756       || cant_combine_insn_p (i2)
2757       || (i1 && cant_combine_insn_p (i1))
2758       || (i0 && cant_combine_insn_p (i0))
2759       || likely_spilled_retval_p (i3))
2760     return 0;
2761 
2762   combine_attempts++;
2763   undobuf.other_insn = 0;
2764 
2765   /* Reset the hard register usage information.  */
2766   CLEAR_HARD_REG_SET (newpat_used_regs);
2767 
2768   if (dump_file && (dump_flags & TDF_DETAILS))
2769     {
2770       if (i0)
2771 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2772 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2773       else if (i1)
2774 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2775 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2776       else
2777 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2778 		 INSN_UID (i2), INSN_UID (i3));
2779 
2780       if (i0)
2781 	dump_insn_slim (dump_file, i0);
2782       if (i1)
2783 	dump_insn_slim (dump_file, i1);
2784       dump_insn_slim (dump_file, i2);
2785       dump_insn_slim (dump_file, i3);
2786     }
2787 
2788   /* If multiple insns feed into one of I2 or I3, they can be in any
2789      order.  To simplify the code below, reorder them in sequence.  */
2790   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2791     std::swap (i0, i2);
2792   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2793     std::swap (i0, i1);
2794   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2795     std::swap (i1, i2);
2796 
2797   added_links_insn = 0;
2798   added_notes_insn = 0;
2799 
2800   /* First check for one important special case that the code below will
2801      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2802      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2803      we may be able to replace that destination with the destination of I3.
2804      This occurs in the common code where we compute both a quotient and
2805      remainder into a structure, in which case we want to do the computation
2806      directly into the structure to avoid register-register copies.
2807 
2808      Note that this case handles both multiple sets in I2 and also cases
2809      where I2 has a number of CLOBBERs inside the PARALLEL.
2810 
2811      We make very conservative checks below and only try to handle the
2812      most common cases of this.  For example, we only handle the case
2813      where I2 and I3 are adjacent to avoid making difficult register
2814      usage tests.  */
2815 
2816   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2817       && REG_P (SET_SRC (PATTERN (i3)))
2818       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2819       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2820       && GET_CODE (PATTERN (i2)) == PARALLEL
2821       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2822       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2823 	 below would need to check what is inside (and reg_overlap_mentioned_p
2824 	 doesn't support those codes anyway).  Don't allow those destinations;
2825 	 the resulting insn isn't likely to be recognized anyway.  */
2826       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2827       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2828       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2829 				    SET_DEST (PATTERN (i3)))
2830       && next_active_insn (i2) == i3)
2831     {
2832       rtx p2 = PATTERN (i2);
2833 
2834       /* Make sure that the destination of I3,
2835 	 which we are going to substitute into one output of I2,
2836 	 is not used within another output of I2.  We must avoid making this:
2837 	 (parallel [(set (mem (reg 69)) ...)
2838 		    (set (reg 69) ...)])
2839 	 which is not well-defined as to order of actions.
2840 	 (Besides, reload can't handle output reloads for this.)
2841 
2842 	 The problem can also happen if the dest of I3 is a memory ref,
2843 	 if another dest in I2 is an indirect memory ref.
2844 
2845 	 Neither can this PARALLEL be an asm.  We do not allow combining
2846 	 that usually (see can_combine_p), so do not here either.  */
2847       bool ok = true;
2848       for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2849 	{
2850 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2851 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2852 	      && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2853 					  SET_DEST (XVECEXP (p2, 0, i))))
2854 	    ok = false;
2855 	  else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2856 		   && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2857 	    ok = false;
2858 	}
2859 
2860       if (ok)
2861 	for (i = 0; i < XVECLEN (p2, 0); i++)
2862 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2863 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2864 	    {
2865 	      combine_merges++;
2866 
2867 	      subst_insn = i3;
2868 	      subst_low_luid = DF_INSN_LUID (i2);
2869 
2870 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2871 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2872 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2873 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2874 
2875 	      /* Replace the dest in I2 with our dest and make the resulting
2876 		 insn the new pattern for I3.  Then skip to where we validate
2877 		 the pattern.  Everything was set up above.  */
2878 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2879 	      newpat = p2;
2880 	      i3_subst_into_i2 = 1;
2881 	      goto validate_replacement;
2882 	    }
2883     }
2884 
2885   /* If I2 is setting a pseudo to a constant and I3 is setting some
2886      sub-part of it to another constant, merge them by making a new
2887      constant.  */
2888   if (i1 == 0
2889       && (temp_expr = single_set (i2)) != 0
2890       && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2891       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2892       && GET_CODE (PATTERN (i3)) == SET
2893       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2894       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2895     {
2896       rtx dest = SET_DEST (PATTERN (i3));
2897       rtx temp_dest = SET_DEST (temp_expr);
2898       int offset = -1;
2899       int width = 0;
2900 
2901       if (GET_CODE (dest) == ZERO_EXTRACT)
2902 	{
2903 	  if (CONST_INT_P (XEXP (dest, 1))
2904 	      && CONST_INT_P (XEXP (dest, 2))
2905 	      && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2906 					 &dest_mode))
2907 	    {
2908 	      width = INTVAL (XEXP (dest, 1));
2909 	      offset = INTVAL (XEXP (dest, 2));
2910 	      dest = XEXP (dest, 0);
2911 	      if (BITS_BIG_ENDIAN)
2912 		offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2913 	    }
2914 	}
2915       else
2916 	{
2917 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2918 	    dest = XEXP (dest, 0);
2919 	  if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2920 	    {
2921 	      width = GET_MODE_PRECISION (dest_mode);
2922 	      offset = 0;
2923 	    }
2924 	}
2925 
2926       if (offset >= 0)
2927 	{
2928 	  /* If this is the low part, we're done.  */
2929 	  if (subreg_lowpart_p (dest))
2930 	    ;
2931 	  /* Handle the case where inner is twice the size of outer.  */
2932 	  else if (GET_MODE_PRECISION (temp_mode)
2933 		   == 2 * GET_MODE_PRECISION (dest_mode))
2934 	    offset += GET_MODE_PRECISION (dest_mode);
2935 	  /* Otherwise give up for now.  */
2936 	  else
2937 	    offset = -1;
2938 	}
2939 
2940       if (offset >= 0)
2941 	{
2942 	  rtx inner = SET_SRC (PATTERN (i3));
2943 	  rtx outer = SET_SRC (temp_expr);
2944 
2945 	  wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2946 				   rtx_mode_t (inner, dest_mode),
2947 				   offset, width);
2948 
2949 	  combine_merges++;
2950 	  subst_insn = i3;
2951 	  subst_low_luid = DF_INSN_LUID (i2);
2952 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2953 	  i2dest = temp_dest;
2954 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2955 
2956 	  /* Replace the source in I2 with the new constant and make the
2957 	     resulting insn the new pattern for I3.  Then skip to where we
2958 	     validate the pattern.  Everything was set up above.  */
2959 	  SUBST (SET_SRC (temp_expr),
2960 		 immed_wide_int_const (o, temp_mode));
2961 
2962 	  newpat = PATTERN (i2);
2963 
2964           /* The dest of I3 has been replaced with the dest of I2.  */
2965           changed_i3_dest = 1;
2966 	  goto validate_replacement;
2967 	}
2968     }
2969 
2970   /* If we have no I1 and I2 looks like:
2971 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2972 		   (set Y OP)])
2973      make up a dummy I1 that is
2974 	(set Y OP)
2975      and change I2 to be
2976 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2977 
2978      (We can ignore any trailing CLOBBERs.)
2979 
2980      This undoes a previous combination and allows us to match a branch-and-
2981      decrement insn.  */
2982 
2983   if (!HAVE_cc0 && i1 == 0
2984       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2985       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2986 	  == MODE_CC)
2987       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2988       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2989       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2990 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2991       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2992       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2993     {
2994       /* We make I1 with the same INSN_UID as I2.  This gives it
2995 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2996 	 never appear in the insn stream so giving it the same INSN_UID
2997 	 as I2 will not cause a problem.  */
2998 
2999       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3000 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3001 			 -1, NULL_RTX);
3002       INSN_UID (i1) = INSN_UID (i2);
3003 
3004       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3005       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3006 	     SET_DEST (PATTERN (i1)));
3007       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3008       SUBST_LINK (LOG_LINKS (i2),
3009 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3010     }
3011 
3012   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3013      make those two SETs separate I1 and I2 insns, and make an I0 that is
3014      the original I1.  */
3015   if (!HAVE_cc0 && i0 == 0
3016       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3017       && can_split_parallel_of_n_reg_sets (i2, 2)
3018       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3020       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3021       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3022     {
3023       /* If there is no I1, there is no I0 either.  */
3024       i0 = i1;
3025 
3026       /* We make I1 with the same INSN_UID as I2.  This gives it
3027 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
3028 	 never appear in the insn stream so giving it the same INSN_UID
3029 	 as I2 will not cause a problem.  */
3030 
3031       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3032 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3033 			 -1, NULL_RTX);
3034       INSN_UID (i1) = INSN_UID (i2);
3035 
3036       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3037     }
3038 
3039   /* Verify that I2 and maybe I1 and I0 can be combined into I3.  */
3040   if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3041     {
3042       if (dump_file)
3043 	fprintf (dump_file, "Can't combine i2 into i3\n");
3044       undo_all ();
3045       return 0;
3046     }
3047   if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3048     {
3049       if (dump_file)
3050 	fprintf (dump_file, "Can't combine i1 into i3\n");
3051       undo_all ();
3052       return 0;
3053     }
3054   if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3055     {
3056       if (dump_file)
3057 	fprintf (dump_file, "Can't combine i0 into i3\n");
3058       undo_all ();
3059       return 0;
3060     }
3061 
3062   /* Record whether I2DEST is used in I2SRC and similarly for the other
3063      cases.  Knowing this will help in register status updating below.  */
3064   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3065   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3066   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3067   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3068   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3069   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3070   i2dest_killed = dead_or_set_p (i2, i2dest);
3071   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3072   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3073 
3074   /* For the earlier insns, determine which of the subsequent ones they
3075      feed.  */
3076   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3077   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3078   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3079 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
3080 			     && reg_overlap_mentioned_p (i0dest, i2src))));
3081 
3082   /* Ensure that I3's pattern can be the destination of combines.  */
3083   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3084 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3085 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3086 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3087 			  &i3dest_killed))
3088     {
3089       undo_all ();
3090       return 0;
3091     }
3092 
3093   /* See if any of the insns is a MULT operation.  Unless one is, we will
3094      reject a combination that is, since it must be slower.  Be conservative
3095      here.  */
3096   if (GET_CODE (i2src) == MULT
3097       || (i1 != 0 && GET_CODE (i1src) == MULT)
3098       || (i0 != 0 && GET_CODE (i0src) == MULT)
3099       || (GET_CODE (PATTERN (i3)) == SET
3100 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3101     have_mult = 1;
3102 
3103   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3104      We used to do this EXCEPT in one case: I3 has a post-inc in an
3105      output operand.  However, that exception can give rise to insns like
3106 	mov r3,(r3)+
3107      which is a famous insn on the PDP-11 where the value of r3 used as the
3108      source was model-dependent.  Avoid this sort of thing.  */
3109 
3110 #if 0
3111   if (!(GET_CODE (PATTERN (i3)) == SET
3112 	&& REG_P (SET_SRC (PATTERN (i3)))
3113 	&& MEM_P (SET_DEST (PATTERN (i3)))
3114 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3115 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3116     /* It's not the exception.  */
3117 #endif
3118     if (AUTO_INC_DEC)
3119       {
3120 	rtx link;
3121 	for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3122 	  if (REG_NOTE_KIND (link) == REG_INC
3123 	      && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3124 		  || (i1 != 0
3125 		      && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3126 	    {
3127 	      undo_all ();
3128 	      return 0;
3129 	    }
3130       }
3131 
3132   /* See if the SETs in I1 or I2 need to be kept around in the merged
3133      instruction: whenever the value set there is still needed past I3.
3134      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3135 
3136      For the SET in I1, we have two cases: if I1 and I2 independently feed
3137      into I3, the set in I1 needs to be kept around unless I1DEST dies
3138      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3139      in I1 needs to be kept around unless I1DEST dies or is set in either
3140      I2 or I3.  The same considerations apply to I0.  */
3141 
3142   added_sets_2 = !dead_or_set_p (i3, i2dest);
3143 
3144   if (i1)
3145     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3146 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3147   else
3148     added_sets_1 = 0;
3149 
3150   if (i0)
3151     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3152 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3153 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3154 			  && dead_or_set_p (i2, i0dest)));
3155   else
3156     added_sets_0 = 0;
3157 
3158   /* We are about to copy insns for the case where they need to be kept
3159      around.  Check that they can be copied in the merged instruction.  */
3160 
3161   if (targetm.cannot_copy_insn_p
3162       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3163 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3164 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3165     {
3166       undo_all ();
3167       return 0;
3168     }
3169 
3170   /* If the set in I2 needs to be kept around, we must make a copy of
3171      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3172      PATTERN (I2), we are only substituting for the original I1DEST, not into
3173      an already-substituted copy.  This also prevents making self-referential
3174      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3175      I2DEST.  */
3176 
3177   if (added_sets_2)
3178     {
3179       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3180 	i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3181       else
3182 	i2pat = copy_rtx (PATTERN (i2));
3183     }
3184 
3185   if (added_sets_1)
3186     {
3187       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3188 	i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3189       else
3190 	i1pat = copy_rtx (PATTERN (i1));
3191     }
3192 
3193   if (added_sets_0)
3194     {
3195       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3196 	i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3197       else
3198 	i0pat = copy_rtx (PATTERN (i0));
3199     }
3200 
3201   combine_merges++;
3202 
3203   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3204 
3205   maxreg = max_reg_num ();
3206 
3207   subst_insn = i3;
3208 
3209   /* Many machines that don't use CC0 have insns that can both perform an
3210      arithmetic operation and set the condition code.  These operations will
3211      be represented as a PARALLEL with the first element of the vector
3212      being a COMPARE of an arithmetic operation with the constant zero.
3213      The second element of the vector will set some pseudo to the result
3214      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3215      match such a pattern and so will generate an extra insn.   Here we test
3216      for this case, where both the comparison and the operation result are
3217      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3218      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3219 
3220   if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3221       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3222       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3223       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3224     {
3225       rtx newpat_dest;
3226       rtx *cc_use_loc = NULL;
3227       rtx_insn *cc_use_insn = NULL;
3228       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3229       machine_mode compare_mode, orig_compare_mode;
3230       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3231       scalar_int_mode mode;
3232 
3233       newpat = PATTERN (i3);
3234       newpat_dest = SET_DEST (newpat);
3235       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3236 
3237       if (undobuf.other_insn == 0
3238 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3239 					    &cc_use_insn)))
3240 	{
3241 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3242 	  if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3243 	    compare_code = simplify_compare_const (compare_code, mode,
3244 						   op0, &op1);
3245 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3246 	}
3247 
3248       /* Do the rest only if op1 is const0_rtx, which may be the
3249 	 result of simplification.  */
3250       if (op1 == const0_rtx)
3251 	{
3252 	  /* If a single use of the CC is found, prepare to modify it
3253 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3254 	     the above simplify_compare_const() returned a new comparison
3255 	     operator.  undobuf.other_insn is assigned the CC use insn
3256 	     when modifying it.  */
3257 	  if (cc_use_loc)
3258 	    {
3259 #ifdef SELECT_CC_MODE
3260 	      machine_mode new_mode
3261 		= SELECT_CC_MODE (compare_code, op0, op1);
3262 	      if (new_mode != orig_compare_mode
3263 		  && can_change_dest_mode (SET_DEST (newpat),
3264 					   added_sets_2, new_mode))
3265 		{
3266 		  unsigned int regno = REGNO (newpat_dest);
3267 		  compare_mode = new_mode;
3268 		  if (regno < FIRST_PSEUDO_REGISTER)
3269 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3270 		  else
3271 		    {
3272 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3273 		      newpat_dest = regno_reg_rtx[regno];
3274 		    }
3275 		}
3276 #endif
3277 	      /* Cases for modifying the CC-using comparison.  */
3278 	      if (compare_code != orig_compare_code
3279 		  /* ??? Do we need to verify the zero rtx?  */
3280 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3281 		{
3282 		  /* Replace cc_use_loc with entire new RTX.  */
3283 		  SUBST (*cc_use_loc,
3284 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3285 					 newpat_dest, const0_rtx));
3286 		  undobuf.other_insn = cc_use_insn;
3287 		}
3288 	      else if (compare_mode != orig_compare_mode)
3289 		{
3290 		  /* Just replace the CC reg with a new mode.  */
3291 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3292 		  undobuf.other_insn = cc_use_insn;
3293 		}
3294 	    }
3295 
3296 	  /* Now we modify the current newpat:
3297 	     First, SET_DEST(newpat) is updated if the CC mode has been
3298 	     altered. For targets without SELECT_CC_MODE, this should be
3299 	     optimized away.  */
3300 	  if (compare_mode != orig_compare_mode)
3301 	    SUBST (SET_DEST (newpat), newpat_dest);
3302 	  /* This is always done to propagate i2src into newpat.  */
3303 	  SUBST (SET_SRC (newpat),
3304 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3305 	  /* Create new version of i2pat if needed; the below PARALLEL
3306 	     creation needs this to work correctly.  */
3307 	  if (! rtx_equal_p (i2src, op0))
3308 	    i2pat = gen_rtx_SET (i2dest, op0);
3309 	  i2_is_used = 1;
3310 	}
3311     }
3312 
3313   if (i2_is_used == 0)
3314     {
3315       /* It is possible that the source of I2 or I1 may be performing
3316 	 an unneeded operation, such as a ZERO_EXTEND of something
3317 	 that is known to have the high part zero.  Handle that case
3318 	 by letting subst look at the inner insns.
3319 
3320 	 Another way to do this would be to have a function that tries
3321 	 to simplify a single insn instead of merging two or more
3322 	 insns.  We don't do this because of the potential of infinite
3323 	 loops and because of the potential extra memory required.
3324 	 However, doing it the way we are is a bit of a kludge and
3325 	 doesn't catch all cases.
3326 
3327 	 But only do this if -fexpensive-optimizations since it slows
3328 	 things down and doesn't usually win.
3329 
3330 	 This is not done in the COMPARE case above because the
3331 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3332 	 with a modified I2SRC would not match.  */
3333 
3334       if (flag_expensive_optimizations)
3335 	{
3336 	  /* Pass pc_rtx so no substitutions are done, just
3337 	     simplifications.  */
3338 	  if (i1)
3339 	    {
3340 	      subst_low_luid = DF_INSN_LUID (i1);
3341 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3342 	    }
3343 
3344 	  subst_low_luid = DF_INSN_LUID (i2);
3345 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3346 	}
3347 
3348       n_occurrences = 0;		/* `subst' counts here */
3349       subst_low_luid = DF_INSN_LUID (i2);
3350 
3351       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3352 	 copy of I2SRC each time we substitute it, in order to avoid creating
3353 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3354 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3355 	 through I1, and I0DEST is in I0SRC.  */
3356       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3357 		      (i1_feeds_i2_n && i1dest_in_i1src)
3358 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3359 			  && i0dest_in_i0src));
3360       substed_i2 = 1;
3361 
3362       /* Record whether I2's body now appears within I3's body.  */
3363       i2_is_used = n_occurrences;
3364     }
3365 
3366   /* If we already got a failure, don't try to do more.  Otherwise, try to
3367      substitute I1 if we have it.  */
3368 
3369   if (i1 && GET_CODE (newpat) != CLOBBER)
3370     {
3371       /* Check that an autoincrement side-effect on I1 has not been lost.
3372 	 This happens if I1DEST is mentioned in I2 and dies there, and
3373 	 has disappeared from the new pattern.  */
3374       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3375 	   && i1_feeds_i2_n
3376 	   && dead_or_set_p (i2, i1dest)
3377 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3378 	   /* Before we can do this substitution, we must redo the test done
3379 	      above (see detailed comments there) that ensures I1DEST isn't
3380 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3381 	  || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3382 				0, 0, 0))
3383 	{
3384 	  undo_all ();
3385 	  return 0;
3386 	}
3387 
3388       n_occurrences = 0;
3389       subst_low_luid = DF_INSN_LUID (i1);
3390 
3391       /* If the following substitution will modify I1SRC, make a copy of it
3392 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3393       if (added_sets_2 && i1_feeds_i2_n)
3394 	i1src_copy = copy_rtx (i1src);
3395 
3396       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3397 	 copy of I1SRC each time we substitute it, in order to avoid creating
3398 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3399 	 later.  */
3400       newpat = subst (newpat, i1dest, i1src, 0, 0,
3401 		      i0_feeds_i1_n && i0dest_in_i0src);
3402       substed_i1 = 1;
3403 
3404       /* Record whether I1's body now appears within I3's body.  */
3405       i1_is_used = n_occurrences;
3406     }
3407 
3408   /* Likewise for I0 if we have it.  */
3409 
3410   if (i0 && GET_CODE (newpat) != CLOBBER)
3411     {
3412       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3413 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3414 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3415 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3416 	  || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3417 				0, 0, 0))
3418 	{
3419 	  undo_all ();
3420 	  return 0;
3421 	}
3422 
3423       /* If the following substitution will modify I0SRC, make a copy of it
3424 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3425       if (added_sets_1 && i0_feeds_i1_n)
3426 	i0src_copy = copy_rtx (i0src);
3427       /* And a copy for I0DEST in I2PAT substitution.  */
3428       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3429 			   || (i0_feeds_i2_n)))
3430 	i0src_copy2 = copy_rtx (i0src);
3431 
3432       n_occurrences = 0;
3433       subst_low_luid = DF_INSN_LUID (i0);
3434       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3435       substed_i0 = 1;
3436     }
3437 
3438   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3439      to count all the ways that I2SRC and I1SRC can be used.  */
3440   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3441        && i2_is_used + added_sets_2 > 1)
3442       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3443 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3444 	      > 1))
3445       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3446 	  && (n_occurrences + added_sets_0
3447 	      + (added_sets_1 && i0_feeds_i1_n)
3448 	      + (added_sets_2 && i0_feeds_i2_n)
3449 	      > 1))
3450       /* Fail if we tried to make a new register.  */
3451       || max_reg_num () != maxreg
3452       /* Fail if we couldn't do something and have a CLOBBER.  */
3453       || GET_CODE (newpat) == CLOBBER
3454       /* Fail if this new pattern is a MULT and we didn't have one before
3455 	 at the outer level.  */
3456       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3457 	  && ! have_mult))
3458     {
3459       undo_all ();
3460       return 0;
3461     }
3462 
3463   /* If the actions of the earlier insns must be kept
3464      in addition to substituting them into the latest one,
3465      we must make a new PARALLEL for the latest insn
3466      to hold additional the SETs.  */
3467 
3468   if (added_sets_0 || added_sets_1 || added_sets_2)
3469     {
3470       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3471       combine_extras++;
3472 
3473       if (GET_CODE (newpat) == PARALLEL)
3474 	{
3475 	  rtvec old = XVEC (newpat, 0);
3476 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3477 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3478 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3479 		  sizeof (old->elem[0]) * old->num_elem);
3480 	}
3481       else
3482 	{
3483 	  rtx old = newpat;
3484 	  total_sets = 1 + extra_sets;
3485 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3486 	  XVECEXP (newpat, 0, 0) = old;
3487 	}
3488 
3489       if (added_sets_0)
3490 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3491 
3492       if (added_sets_1)
3493 	{
3494 	  rtx t = i1pat;
3495 	  if (i0_feeds_i1_n)
3496 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3497 
3498 	  XVECEXP (newpat, 0, --total_sets) = t;
3499 	}
3500       if (added_sets_2)
3501 	{
3502 	  rtx t = i2pat;
3503 	  if (i1_feeds_i2_n)
3504 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3505 		       i0_feeds_i1_n && i0dest_in_i0src);
3506 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3507 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3508 
3509 	  XVECEXP (newpat, 0, --total_sets) = t;
3510 	}
3511     }
3512 
3513  validate_replacement:
3514 
3515   /* Note which hard regs this insn has as inputs.  */
3516   mark_used_regs_combine (newpat);
3517 
3518   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3519      consider splitting this pattern, we might need these clobbers.  */
3520   if (i1 && GET_CODE (newpat) == PARALLEL
3521       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3522     {
3523       int len = XVECLEN (newpat, 0);
3524 
3525       newpat_vec_with_clobbers = rtvec_alloc (len);
3526       for (i = 0; i < len; i++)
3527 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3528     }
3529 
3530   /* We have recognized nothing yet.  */
3531   insn_code_number = -1;
3532 
3533   /* See if this is a PARALLEL of two SETs where one SET's destination is
3534      a register that is unused and this isn't marked as an instruction that
3535      might trap in an EH region.  In that case, we just need the other SET.
3536      We prefer this over the PARALLEL.
3537 
3538      This can occur when simplifying a divmod insn.  We *must* test for this
3539      case here because the code below that splits two independent SETs doesn't
3540      handle this case correctly when it updates the register status.
3541 
3542      It's pointless doing this if we originally had two sets, one from
3543      i3, and one from i2.  Combining then splitting the parallel results
3544      in the original i2 again plus an invalid insn (which we delete).
3545      The net effect is only to move instructions around, which makes
3546      debug info less accurate.
3547 
3548      If the remaining SET came from I2 its destination should not be used
3549      between I2 and I3.  See PR82024.  */
3550 
3551   if (!(added_sets_2 && i1 == 0)
3552       && is_parallel_of_n_reg_sets (newpat, 2)
3553       && asm_noperands (newpat) < 0)
3554     {
3555       rtx set0 = XVECEXP (newpat, 0, 0);
3556       rtx set1 = XVECEXP (newpat, 0, 1);
3557       rtx oldpat = newpat;
3558 
3559       if (((REG_P (SET_DEST (set1))
3560 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3561 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3562 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3563 	  && insn_nothrow_p (i3)
3564 	  && !side_effects_p (SET_SRC (set1)))
3565 	{
3566 	  newpat = set0;
3567 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3568 	}
3569 
3570       else if (((REG_P (SET_DEST (set0))
3571 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3572 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3573 		    && find_reg_note (i3, REG_UNUSED,
3574 				      SUBREG_REG (SET_DEST (set0)))))
3575 	       && insn_nothrow_p (i3)
3576 	       && !side_effects_p (SET_SRC (set0)))
3577 	{
3578 	  rtx dest = SET_DEST (set1);
3579 	  if (GET_CODE (dest) == SUBREG)
3580 	    dest = SUBREG_REG (dest);
3581 	  if (!reg_used_between_p (dest, i2, i3))
3582 	    {
3583 	      newpat = set1;
3584 	      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3585 
3586 	      if (insn_code_number >= 0)
3587 		changed_i3_dest = 1;
3588 	    }
3589 	}
3590 
3591       if (insn_code_number < 0)
3592 	newpat = oldpat;
3593     }
3594 
3595   /* Is the result of combination a valid instruction?  */
3596   if (insn_code_number < 0)
3597     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3598 
3599   /* If we were combining three insns and the result is a simple SET
3600      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3601      insns.  There are two ways to do this.  It can be split using a
3602      machine-specific method (like when you have an addition of a large
3603      constant) or by combine in the function find_split_point.  */
3604 
3605   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3606       && asm_noperands (newpat) < 0)
3607     {
3608       rtx parallel, *split;
3609       rtx_insn *m_split_insn;
3610 
3611       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3612 	 use I2DEST as a scratch register will help.  In the latter case,
3613 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3614 
3615       m_split_insn = combine_split_insns (newpat, i3);
3616 
3617       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3618 	 inputs of NEWPAT.  */
3619 
3620       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3621 	 possible to try that as a scratch reg.  This would require adding
3622 	 more code to make it work though.  */
3623 
3624       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3625 	{
3626 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3627 
3628 	  /* ??? Reusing i2dest without resetting the reg_stat entry for it
3629 	     (temporarily, until we are committed to this instruction
3630 	     combination) does not work: for example, any call to nonzero_bits
3631 	     on the register (from a splitter in the MD file, for example)
3632 	     will get the old information, which is invalid.
3633 
3634 	     Since nowadays we can create registers during combine just fine,
3635 	     we should just create a new one here, not reuse i2dest.  */
3636 
3637 	  /* First try to split using the original register as a
3638 	     scratch register.  */
3639 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3640 				       gen_rtvec (2, newpat,
3641 						  gen_rtx_CLOBBER (VOIDmode,
3642 								   i2dest)));
3643 	  m_split_insn = combine_split_insns (parallel, i3);
3644 
3645 	  /* If that didn't work, try changing the mode of I2DEST if
3646 	     we can.  */
3647 	  if (m_split_insn == 0
3648 	      && new_mode != GET_MODE (i2dest)
3649 	      && new_mode != VOIDmode
3650 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3651 	    {
3652 	      machine_mode old_mode = GET_MODE (i2dest);
3653 	      rtx ni2dest;
3654 
3655 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3656 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3657 	      else
3658 		{
3659 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3660 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3661 		}
3662 
3663 	      parallel = (gen_rtx_PARALLEL
3664 			  (VOIDmode,
3665 			   gen_rtvec (2, newpat,
3666 				      gen_rtx_CLOBBER (VOIDmode,
3667 						       ni2dest))));
3668 	      m_split_insn = combine_split_insns (parallel, i3);
3669 
3670 	      if (m_split_insn == 0
3671 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3672 		{
3673 		  struct undo *buf;
3674 
3675 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3676 		  buf = undobuf.undos;
3677 		  undobuf.undos = buf->next;
3678 		  buf->next = undobuf.frees;
3679 		  undobuf.frees = buf;
3680 		}
3681 	    }
3682 
3683 	  i2scratch = m_split_insn != 0;
3684 	}
3685 
3686       /* If recog_for_combine has discarded clobbers, try to use them
3687 	 again for the split.  */
3688       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3689 	{
3690 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3691 	  m_split_insn = combine_split_insns (parallel, i3);
3692 	}
3693 
3694       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3695 	{
3696 	  rtx m_split_pat = PATTERN (m_split_insn);
3697 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3698 	  if (insn_code_number >= 0)
3699 	    newpat = m_split_pat;
3700 	}
3701       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3702 	       && (next_nonnote_nondebug_insn (i2) == i3
3703 		   || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3704 	{
3705 	  rtx i2set, i3set;
3706 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3707 	  newi2pat = PATTERN (m_split_insn);
3708 
3709 	  i3set = single_set (NEXT_INSN (m_split_insn));
3710 	  i2set = single_set (m_split_insn);
3711 
3712 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3713 
3714 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3715 	     register status, so don't use these insns.  If I2's destination
3716 	     is used between I2 and I3, we also can't use these insns.  */
3717 
3718 	  if (i2_code_number >= 0 && i2set && i3set
3719 	      && (next_nonnote_nondebug_insn (i2) == i3
3720 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3721 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3722 						  &new_i3_notes);
3723 	  if (insn_code_number >= 0)
3724 	    newpat = newi3pat;
3725 
3726 	  /* It is possible that both insns now set the destination of I3.
3727 	     If so, we must show an extra use of it.  */
3728 
3729 	  if (insn_code_number >= 0)
3730 	    {
3731 	      rtx new_i3_dest = SET_DEST (i3set);
3732 	      rtx new_i2_dest = SET_DEST (i2set);
3733 
3734 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3735 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3736 		     || GET_CODE (new_i3_dest) == SUBREG)
3737 		new_i3_dest = XEXP (new_i3_dest, 0);
3738 
3739 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3740 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3741 		     || GET_CODE (new_i2_dest) == SUBREG)
3742 		new_i2_dest = XEXP (new_i2_dest, 0);
3743 
3744 	      if (REG_P (new_i3_dest)
3745 		  && REG_P (new_i2_dest)
3746 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3747 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3748 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3749 	    }
3750 	}
3751 
3752       /* If we can split it and use I2DEST, go ahead and see if that
3753 	 helps things be recognized.  Verify that none of the registers
3754 	 are set between I2 and I3.  */
3755       if (insn_code_number < 0
3756           && (split = find_split_point (&newpat, i3, false)) != 0
3757 	  && (!HAVE_cc0 || REG_P (i2dest))
3758 	  /* We need I2DEST in the proper mode.  If it is a hard register
3759 	     or the only use of a pseudo, we can change its mode.
3760 	     Make sure we don't change a hard register to have a mode that
3761 	     isn't valid for it, or change the number of registers.  */
3762 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3763 	      || GET_MODE (*split) == VOIDmode
3764 	      || can_change_dest_mode (i2dest, added_sets_2,
3765 				       GET_MODE (*split)))
3766 	  && (next_nonnote_nondebug_insn (i2) == i3
3767 	      || !modified_between_p (*split, i2, i3))
3768 	  /* We can't overwrite I2DEST if its value is still used by
3769 	     NEWPAT.  */
3770 	  && ! reg_referenced_p (i2dest, newpat))
3771 	{
3772 	  rtx newdest = i2dest;
3773 	  enum rtx_code split_code = GET_CODE (*split);
3774 	  machine_mode split_mode = GET_MODE (*split);
3775 	  bool subst_done = false;
3776 	  newi2pat = NULL_RTX;
3777 
3778 	  i2scratch = true;
3779 
3780 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3781 	     original expression around for later debug processing.
3782 	     We should not need I2SRC any more in other cases.  */
3783 	  if (MAY_HAVE_DEBUG_BIND_INSNS)
3784 	    i2src = copy_rtx (i2src);
3785 	  else
3786 	    i2src = NULL;
3787 
3788 	  /* Get NEWDEST as a register in the proper mode.  We have already
3789 	     validated that we can do this.  */
3790 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3791 	    {
3792 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3793 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3794 	      else
3795 		{
3796 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3797 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3798 		}
3799 	    }
3800 
3801 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3802 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3803 	     appeared to be a memory address.  This is a kludge.  */
3804 	  if (split_code == MULT
3805 	      && CONST_INT_P (XEXP (*split, 1))
3806 	      && INTVAL (XEXP (*split, 1)) > 0
3807 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3808 	    {
3809 	      rtx i_rtx = gen_int_shift_amount (split_mode, i);
3810 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3811 					     XEXP (*split, 0), i_rtx));
3812 	      /* Update split_code because we may not have a multiply
3813 		 anymore.  */
3814 	      split_code = GET_CODE (*split);
3815 	    }
3816 
3817 	  /* Similarly for (plus (mult FOO (const_int pow2))).  */
3818 	  if (split_code == PLUS
3819 	      && GET_CODE (XEXP (*split, 0)) == MULT
3820 	      && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3821 	      && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3822 	      && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3823 	    {
3824 	      rtx nsplit = XEXP (*split, 0);
3825 	      rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3826 	      SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3827 						       XEXP (nsplit, 0),
3828 						       i_rtx));
3829 	      /* Update split_code because we may not have a multiply
3830 		 anymore.  */
3831 	      split_code = GET_CODE (*split);
3832 	    }
3833 
3834 #ifdef INSN_SCHEDULING
3835 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3836 	     be written as a ZERO_EXTEND.  */
3837 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3838 	    {
3839 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3840 		 what it really is.  */
3841 	      if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3842 		  == SIGN_EXTEND)
3843 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3844 						    SUBREG_REG (*split)));
3845 	      else
3846 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3847 						    SUBREG_REG (*split)));
3848 	    }
3849 #endif
3850 
3851 	  /* Attempt to split binary operators using arithmetic identities.  */
3852 	  if (BINARY_P (SET_SRC (newpat))
3853 	      && split_mode == GET_MODE (SET_SRC (newpat))
3854 	      && ! side_effects_p (SET_SRC (newpat)))
3855 	    {
3856 	      rtx setsrc = SET_SRC (newpat);
3857 	      machine_mode mode = GET_MODE (setsrc);
3858 	      enum rtx_code code = GET_CODE (setsrc);
3859 	      rtx src_op0 = XEXP (setsrc, 0);
3860 	      rtx src_op1 = XEXP (setsrc, 1);
3861 
3862 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3863 	      if (rtx_equal_p (src_op0, src_op1))
3864 		{
3865 		  newi2pat = gen_rtx_SET (newdest, src_op0);
3866 		  SUBST (XEXP (setsrc, 0), newdest);
3867 		  SUBST (XEXP (setsrc, 1), newdest);
3868 		  subst_done = true;
3869 		}
3870 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3871 	      else if ((code == PLUS || code == MULT)
3872 		       && GET_CODE (src_op0) == code
3873 		       && GET_CODE (XEXP (src_op0, 0)) == code
3874 		       && (INTEGRAL_MODE_P (mode)
3875 			   || (FLOAT_MODE_P (mode)
3876 			       && flag_unsafe_math_optimizations)))
3877 		{
3878 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3879 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3880 		  rtx r = XEXP (src_op0, 1);
3881 		  rtx s = src_op1;
3882 
3883 		  /* Split both "((X op Y) op X) op Y" and
3884 		     "((X op Y) op Y) op X" as "T op T" where T is
3885 		     "X op Y".  */
3886 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3887 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3888 		    {
3889 		      newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3890 		      SUBST (XEXP (setsrc, 0), newdest);
3891 		      SUBST (XEXP (setsrc, 1), newdest);
3892 		      subst_done = true;
3893 		    }
3894 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3895 		     T is "X op Y".  */
3896 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3897 		    {
3898 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3899 		      newi2pat = gen_rtx_SET (newdest, tmp);
3900 		      SUBST (XEXP (setsrc, 0), newdest);
3901 		      SUBST (XEXP (setsrc, 1), newdest);
3902 		      subst_done = true;
3903 		    }
3904 		}
3905 	    }
3906 
3907 	  if (!subst_done)
3908 	    {
3909 	      newi2pat = gen_rtx_SET (newdest, *split);
3910 	      SUBST (*split, newdest);
3911 	    }
3912 
3913 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3914 
3915 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3916 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3917 	  if (GET_CODE (newi2pat) == PARALLEL)
3918 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3919 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3920 		{
3921 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3922 		  if (reg_overlap_mentioned_p (reg, newpat))
3923 		    {
3924 		      undo_all ();
3925 		      return 0;
3926 		    }
3927 		}
3928 
3929 	  /* If the split point was a MULT and we didn't have one before,
3930 	     don't use one now.  */
3931 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3932 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3933 	}
3934     }
3935 
3936   /* Check for a case where we loaded from memory in a narrow mode and
3937      then sign extended it, but we need both registers.  In that case,
3938      we have a PARALLEL with both loads from the same memory location.
3939      We can split this into a load from memory followed by a register-register
3940      copy.  This saves at least one insn, more if register allocation can
3941      eliminate the copy.
3942 
3943      We cannot do this if the destination of the first assignment is a
3944      condition code register or cc0.  We eliminate this case by making sure
3945      the SET_DEST and SET_SRC have the same mode.
3946 
3947      We cannot do this if the destination of the second assignment is
3948      a register that we have already assumed is zero-extended.  Similarly
3949      for a SUBREG of such a register.  */
3950 
3951   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3952 	   && GET_CODE (newpat) == PARALLEL
3953 	   && XVECLEN (newpat, 0) == 2
3954 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3955 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3956 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3957 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3958 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3959 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3960 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3961 	   && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3962 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3963 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3964 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3965 		 (REG_P (temp_expr)
3966 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3967 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3968 			       BITS_PER_WORD)
3969 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3970 			       HOST_BITS_PER_INT)
3971 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3972 		      != GET_MODE_MASK (word_mode))))
3973 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3974 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3975 		     (REG_P (temp_expr)
3976 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3977 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3978 				   BITS_PER_WORD)
3979 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3980 				   HOST_BITS_PER_INT)
3981 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3982 			  != GET_MODE_MASK (word_mode)))))
3983 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3984 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3985 	   && ! find_reg_note (i3, REG_UNUSED,
3986 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3987     {
3988       rtx ni2dest;
3989 
3990       newi2pat = XVECEXP (newpat, 0, 0);
3991       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3992       newpat = XVECEXP (newpat, 0, 1);
3993       SUBST (SET_SRC (newpat),
3994 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3995       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3996 
3997       if (i2_code_number >= 0)
3998 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3999 
4000       if (insn_code_number >= 0)
4001 	swap_i2i3 = 1;
4002     }
4003 
4004   /* Similarly, check for a case where we have a PARALLEL of two independent
4005      SETs but we started with three insns.  In this case, we can do the sets
4006      as two separate insns.  This case occurs when some SET allows two
4007      other insns to combine, but the destination of that SET is still live.
4008 
4009      Also do this if we started with two insns and (at least) one of the
4010      resulting sets is a noop; this noop will be deleted later.  */
4011 
4012   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4013 	   && GET_CODE (newpat) == PARALLEL
4014 	   && XVECLEN (newpat, 0) == 2
4015 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4016 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4017 	   && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4018 		  || set_noop_p (XVECEXP (newpat, 0, 1)))
4019 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4020 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4021 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4022 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4023 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4024 				  XVECEXP (newpat, 0, 0))
4025 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4026 				  XVECEXP (newpat, 0, 1))
4027 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4028 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4029     {
4030       rtx set0 = XVECEXP (newpat, 0, 0);
4031       rtx set1 = XVECEXP (newpat, 0, 1);
4032 
4033       /* Normally, it doesn't matter which of the two is done first,
4034 	 but the one that references cc0 can't be the second, and
4035 	 one which uses any regs/memory set in between i2 and i3 can't
4036 	 be first.  The PARALLEL might also have been pre-existing in i3,
4037 	 so we need to make sure that we won't wrongly hoist a SET to i2
4038 	 that would conflict with a death note present in there.  */
4039       if (!modified_between_p (SET_SRC (set1), i2, i3)
4040 	  && !(REG_P (SET_DEST (set1))
4041 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4042 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
4043 	       && find_reg_note (i2, REG_DEAD,
4044 				 SUBREG_REG (SET_DEST (set1))))
4045 	  && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4046 	  /* If I3 is a jump, ensure that set0 is a jump so that
4047 	     we do not create invalid RTL.  */
4048 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4049 	 )
4050 	{
4051 	  newi2pat = set1;
4052 	  newpat = set0;
4053 	}
4054       else if (!modified_between_p (SET_SRC (set0), i2, i3)
4055 	       && !(REG_P (SET_DEST (set0))
4056 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4057 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
4058 		    && find_reg_note (i2, REG_DEAD,
4059 				      SUBREG_REG (SET_DEST (set0))))
4060 	       && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4061 	       /* If I3 is a jump, ensure that set1 is a jump so that
4062 		  we do not create invalid RTL.  */
4063 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4064 	      )
4065 	{
4066 	  newi2pat = set0;
4067 	  newpat = set1;
4068 	}
4069       else
4070 	{
4071 	  undo_all ();
4072 	  return 0;
4073 	}
4074 
4075       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4076 
4077       if (i2_code_number >= 0)
4078 	{
4079 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
4080 	     Make sure NEWPAT does not depend on the clobbered regs.  */
4081 	  if (GET_CODE (newi2pat) == PARALLEL)
4082 	    {
4083 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4084 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4085 		  {
4086 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4087 		    if (reg_overlap_mentioned_p (reg, newpat))
4088 		      {
4089 			undo_all ();
4090 			return 0;
4091 		      }
4092 		  }
4093 	    }
4094 
4095 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4096 
4097 	  if (insn_code_number >= 0)
4098 	    split_i2i3 = 1;
4099 	}
4100     }
4101 
4102   /* If it still isn't recognized, fail and change things back the way they
4103      were.  */
4104   if ((insn_code_number < 0
4105        /* Is the result a reasonable ASM_OPERANDS?  */
4106        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4107     {
4108       undo_all ();
4109       return 0;
4110     }
4111 
4112   /* If we had to change another insn, make sure it is valid also.  */
4113   if (undobuf.other_insn)
4114     {
4115       CLEAR_HARD_REG_SET (newpat_used_regs);
4116 
4117       other_pat = PATTERN (undobuf.other_insn);
4118       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4119 					     &new_other_notes);
4120 
4121       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4122 	{
4123 	  undo_all ();
4124 	  return 0;
4125 	}
4126     }
4127 
4128   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4129      they are adjacent to each other or not.  */
4130   if (HAVE_cc0)
4131     {
4132       rtx_insn *p = prev_nonnote_insn (i3);
4133       if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4134 	  && sets_cc0_p (newi2pat))
4135 	{
4136 	  undo_all ();
4137 	  return 0;
4138 	}
4139     }
4140 
4141   /* Only allow this combination if insn_cost reports that the
4142      replacement instructions are cheaper than the originals.  */
4143   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4144     {
4145       undo_all ();
4146       return 0;
4147     }
4148 
4149   if (MAY_HAVE_DEBUG_BIND_INSNS)
4150     {
4151       struct undo *undo;
4152 
4153       for (undo = undobuf.undos; undo; undo = undo->next)
4154 	if (undo->kind == UNDO_MODE)
4155 	  {
4156 	    rtx reg = *undo->where.r;
4157 	    machine_mode new_mode = GET_MODE (reg);
4158 	    machine_mode old_mode = undo->old_contents.m;
4159 
4160 	    /* Temporarily revert mode back.  */
4161 	    adjust_reg_mode (reg, old_mode);
4162 
4163 	    if (reg == i2dest && i2scratch)
4164 	      {
4165 		/* If we used i2dest as a scratch register with a
4166 		   different mode, substitute it for the original
4167 		   i2src while its original mode is temporarily
4168 		   restored, and then clear i2scratch so that we don't
4169 		   do it again later.  */
4170 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4171 				     this_basic_block);
4172 		i2scratch = false;
4173 		/* Put back the new mode.  */
4174 		adjust_reg_mode (reg, new_mode);
4175 	      }
4176 	    else
4177 	      {
4178 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4179 		rtx_insn *first, *last;
4180 
4181 		if (reg == i2dest)
4182 		  {
4183 		    first = i2;
4184 		    last = last_combined_insn;
4185 		  }
4186 		else
4187 		  {
4188 		    first = i3;
4189 		    last = undobuf.other_insn;
4190 		    gcc_assert (last);
4191 		    if (DF_INSN_LUID (last)
4192 			< DF_INSN_LUID (last_combined_insn))
4193 		      last = last_combined_insn;
4194 		  }
4195 
4196 		/* We're dealing with a reg that changed mode but not
4197 		   meaning, so we want to turn it into a subreg for
4198 		   the new mode.  However, because of REG sharing and
4199 		   because its mode had already changed, we have to do
4200 		   it in two steps.  First, replace any debug uses of
4201 		   reg, with its original mode temporarily restored,
4202 		   with this copy we have created; then, replace the
4203 		   copy with the SUBREG of the original shared reg,
4204 		   once again changed to the new mode.  */
4205 		propagate_for_debug (first, last, reg, tempreg,
4206 				     this_basic_block);
4207 		adjust_reg_mode (reg, new_mode);
4208 		propagate_for_debug (first, last, tempreg,
4209 				     lowpart_subreg (old_mode, reg, new_mode),
4210 				     this_basic_block);
4211 	      }
4212 	  }
4213     }
4214 
4215   /* If we will be able to accept this, we have made a
4216      change to the destination of I3.  This requires us to
4217      do a few adjustments.  */
4218 
4219   if (changed_i3_dest)
4220     {
4221       PATTERN (i3) = newpat;
4222       adjust_for_new_dest (i3);
4223     }
4224 
4225   /* We now know that we can do this combination.  Merge the insns and
4226      update the status of registers and LOG_LINKS.  */
4227 
4228   if (undobuf.other_insn)
4229     {
4230       rtx note, next;
4231 
4232       PATTERN (undobuf.other_insn) = other_pat;
4233 
4234       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4235 	 ensure that they are still valid.  Then add any non-duplicate
4236 	 notes added by recog_for_combine.  */
4237       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4238 	{
4239 	  next = XEXP (note, 1);
4240 
4241 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4242 	       && !reg_referenced_p (XEXP (note, 0),
4243 				     PATTERN (undobuf.other_insn)))
4244 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4245 		 && !reg_set_p (XEXP (note, 0),
4246 				PATTERN (undobuf.other_insn)))
4247 	      /* Simply drop equal note since it may be no longer valid
4248 		 for other_insn.  It may be possible to record that CC
4249 		 register is changed and only discard those notes, but
4250 		 in practice it's unnecessary complication and doesn't
4251 		 give any meaningful improvement.
4252 
4253 		 See PR78559.  */
4254 	      || REG_NOTE_KIND (note) == REG_EQUAL
4255 	      || REG_NOTE_KIND (note) == REG_EQUIV)
4256 	    remove_note (undobuf.other_insn, note);
4257 	}
4258 
4259       distribute_notes  (new_other_notes, undobuf.other_insn,
4260 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4261 			NULL_RTX);
4262     }
4263 
4264   if (swap_i2i3)
4265     {
4266       /* I3 now uses what used to be its destination and which is now
4267 	 I2's destination.  This requires us to do a few adjustments.  */
4268       PATTERN (i3) = newpat;
4269       adjust_for_new_dest (i3);
4270     }
4271 
4272   if (swap_i2i3 || split_i2i3)
4273     {
4274       /* We might need a LOG_LINK from I3 to I2.  But then we used to
4275 	 have one, so we still will.
4276 
4277 	 However, some later insn might be using I2's dest and have
4278 	 a LOG_LINK pointing at I3.  We should change it to point at
4279 	 I2 instead.  */
4280 
4281       /* newi2pat is usually a SET here; however, recog_for_combine might
4282 	 have added some clobbers.  */
4283       rtx x = newi2pat;
4284       if (GET_CODE (x) == PARALLEL)
4285 	x = XVECEXP (newi2pat, 0, 0);
4286 
4287       /* It can only be a SET of a REG or of a SUBREG of a REG.  */
4288       unsigned int regno = reg_or_subregno (SET_DEST (x));
4289 
4290       bool done = false;
4291       for (rtx_insn *insn = NEXT_INSN (i3);
4292 	   !done
4293 	   && insn
4294 	   && NONDEBUG_INSN_P (insn)
4295 	   && BLOCK_FOR_INSN (insn) == this_basic_block;
4296 	   insn = NEXT_INSN (insn))
4297 	{
4298 	  struct insn_link *link;
4299 	  FOR_EACH_LOG_LINK (link, insn)
4300 	    if (link->insn == i3 && link->regno == regno)
4301 	      {
4302 		link->insn = i2;
4303 		done = true;
4304 		break;
4305 	      }
4306 	}
4307     }
4308 
4309   {
4310     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4311     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4312     rtx midnotes = 0;
4313     int from_luid;
4314     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4315        either i3dest or i2dest, so we must check it.  */
4316     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4317 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4318 		   || !i2dest_killed
4319 		   ? 0 : i2dest);
4320     /* For i1, we need to compute both local elimination and global
4321        elimination information with respect to newi2pat because i1dest
4322        may be the same as i3dest, in which case newi2pat may be setting
4323        i1dest.  Global information is used when distributing REG_DEAD
4324        note for i2 and i3, in which case it does matter if newi2pat sets
4325        i1dest or not.
4326 
4327        Local information is used when distributing REG_DEAD note for i1,
4328        in which case it doesn't matter if newi2pat sets i1dest or not.
4329        See PR62151, if we have four insns combination:
4330 	   i0: r0 <- i0src
4331 	   i1: r1 <- i1src (using r0)
4332 		     REG_DEAD (r0)
4333 	   i2: r0 <- i2src (using r1)
4334 	   i3: r3 <- i3src (using r0)
4335 	   ix: using r0
4336        From i1's point of view, r0 is eliminated, no matter if it is set
4337        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4338        should be discarded.
4339 
4340        Note local information only affects cases in forms like "I1->I2->I3",
4341        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4342        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4343        i0dest anyway.  */
4344     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4345 			 || !i1dest_killed
4346 			 ? 0 : i1dest);
4347     rtx elim_i1 = (local_elim_i1 == 0
4348 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4349 		   ? 0 : i1dest);
4350     /* Same case as i1.  */
4351     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4352 			 ? 0 : i0dest);
4353     rtx elim_i0 = (local_elim_i0 == 0
4354 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4355 		   ? 0 : i0dest);
4356 
4357     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4358        clear them.  */
4359     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4360     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4361     if (i1)
4362       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4363     if (i0)
4364       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4365 
4366     /* Ensure that we do not have something that should not be shared but
4367        occurs multiple times in the new insns.  Check this by first
4368        resetting all the `used' flags and then copying anything is shared.  */
4369 
4370     reset_used_flags (i3notes);
4371     reset_used_flags (i2notes);
4372     reset_used_flags (i1notes);
4373     reset_used_flags (i0notes);
4374     reset_used_flags (newpat);
4375     reset_used_flags (newi2pat);
4376     if (undobuf.other_insn)
4377       reset_used_flags (PATTERN (undobuf.other_insn));
4378 
4379     i3notes = copy_rtx_if_shared (i3notes);
4380     i2notes = copy_rtx_if_shared (i2notes);
4381     i1notes = copy_rtx_if_shared (i1notes);
4382     i0notes = copy_rtx_if_shared (i0notes);
4383     newpat = copy_rtx_if_shared (newpat);
4384     newi2pat = copy_rtx_if_shared (newi2pat);
4385     if (undobuf.other_insn)
4386       reset_used_flags (PATTERN (undobuf.other_insn));
4387 
4388     INSN_CODE (i3) = insn_code_number;
4389     PATTERN (i3) = newpat;
4390 
4391     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4392       {
4393 	for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4394 	     link = XEXP (link, 1))
4395 	  {
4396 	    if (substed_i2)
4397 	      {
4398 		/* I2SRC must still be meaningful at this point.  Some
4399 		   splitting operations can invalidate I2SRC, but those
4400 		   operations do not apply to calls.  */
4401 		gcc_assert (i2src);
4402 		XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4403 						       i2dest, i2src);
4404 	      }
4405 	    if (substed_i1)
4406 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4407 						     i1dest, i1src);
4408 	    if (substed_i0)
4409 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4410 						     i0dest, i0src);
4411 	  }
4412       }
4413 
4414     if (undobuf.other_insn)
4415       INSN_CODE (undobuf.other_insn) = other_code_number;
4416 
4417     /* We had one special case above where I2 had more than one set and
4418        we replaced a destination of one of those sets with the destination
4419        of I3.  In that case, we have to update LOG_LINKS of insns later
4420        in this basic block.  Note that this (expensive) case is rare.
4421 
4422        Also, in this case, we must pretend that all REG_NOTEs for I2
4423        actually came from I3, so that REG_UNUSED notes from I2 will be
4424        properly handled.  */
4425 
4426     if (i3_subst_into_i2)
4427       {
4428 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4429 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4430 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4431 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4432 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4433 	      && ! find_reg_note (i2, REG_UNUSED,
4434 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4435 	    for (temp_insn = NEXT_INSN (i2);
4436 		 temp_insn
4437 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4438 		     || BB_HEAD (this_basic_block) != temp_insn);
4439 		 temp_insn = NEXT_INSN (temp_insn))
4440 	      if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4441 		FOR_EACH_LOG_LINK (link, temp_insn)
4442 		  if (link->insn == i2)
4443 		    link->insn = i3;
4444 
4445 	if (i3notes)
4446 	  {
4447 	    rtx link = i3notes;
4448 	    while (XEXP (link, 1))
4449 	      link = XEXP (link, 1);
4450 	    XEXP (link, 1) = i2notes;
4451 	  }
4452 	else
4453 	  i3notes = i2notes;
4454 	i2notes = 0;
4455       }
4456 
4457     LOG_LINKS (i3) = NULL;
4458     REG_NOTES (i3) = 0;
4459     LOG_LINKS (i2) = NULL;
4460     REG_NOTES (i2) = 0;
4461 
4462     if (newi2pat)
4463       {
4464 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4465 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4466 			       this_basic_block);
4467 	INSN_CODE (i2) = i2_code_number;
4468 	PATTERN (i2) = newi2pat;
4469       }
4470     else
4471       {
4472 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4473 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4474 			       this_basic_block);
4475 	SET_INSN_DELETED (i2);
4476       }
4477 
4478     if (i1)
4479       {
4480 	LOG_LINKS (i1) = NULL;
4481 	REG_NOTES (i1) = 0;
4482 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4483 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4484 			       this_basic_block);
4485 	SET_INSN_DELETED (i1);
4486       }
4487 
4488     if (i0)
4489       {
4490 	LOG_LINKS (i0) = NULL;
4491 	REG_NOTES (i0) = 0;
4492 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4493 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4494 			       this_basic_block);
4495 	SET_INSN_DELETED (i0);
4496       }
4497 
4498     /* Get death notes for everything that is now used in either I3 or
4499        I2 and used to die in a previous insn.  If we built two new
4500        patterns, move from I1 to I2 then I2 to I3 so that we get the
4501        proper movement on registers that I2 modifies.  */
4502 
4503     if (i0)
4504       from_luid = DF_INSN_LUID (i0);
4505     else if (i1)
4506       from_luid = DF_INSN_LUID (i1);
4507     else
4508       from_luid = DF_INSN_LUID (i2);
4509     if (newi2pat)
4510       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4511     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4512 
4513     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4514     if (i3notes)
4515       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4516 			elim_i2, elim_i1, elim_i0);
4517     if (i2notes)
4518       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4519 			elim_i2, elim_i1, elim_i0);
4520     if (i1notes)
4521       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4522 			elim_i2, local_elim_i1, local_elim_i0);
4523     if (i0notes)
4524       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4525 			elim_i2, elim_i1, local_elim_i0);
4526     if (midnotes)
4527       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4528 			elim_i2, elim_i1, elim_i0);
4529 
4530     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4531        know these are REG_UNUSED and want them to go to the desired insn,
4532        so we always pass it as i3.  */
4533 
4534     if (newi2pat && new_i2_notes)
4535       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4536 			NULL_RTX);
4537 
4538     if (new_i3_notes)
4539       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4540 			NULL_RTX);
4541 
4542     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4543        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4544        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4545        in that case, it might delete I2.  Similarly for I2 and I1.
4546        Show an additional death due to the REG_DEAD note we make here.  If
4547        we discard it in distribute_notes, we will decrement it again.  */
4548 
4549     if (i3dest_killed)
4550       {
4551 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4552 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4553 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4554 			    elim_i1, elim_i0);
4555 	else
4556 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4557 			    elim_i2, elim_i1, elim_i0);
4558       }
4559 
4560     if (i2dest_in_i2src)
4561       {
4562 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4563 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4564 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4565 			    NULL_RTX, NULL_RTX);
4566 	else
4567 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 			    NULL_RTX, NULL_RTX, NULL_RTX);
4569       }
4570 
4571     if (i1dest_in_i1src)
4572       {
4573 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4574 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4575 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4576 			    NULL_RTX, NULL_RTX);
4577 	else
4578 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 			    NULL_RTX, NULL_RTX, NULL_RTX);
4580       }
4581 
4582     if (i0dest_in_i0src)
4583       {
4584 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4585 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4586 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4587 			    NULL_RTX, NULL_RTX);
4588 	else
4589 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4590 			    NULL_RTX, NULL_RTX, NULL_RTX);
4591       }
4592 
4593     distribute_links (i3links);
4594     distribute_links (i2links);
4595     distribute_links (i1links);
4596     distribute_links (i0links);
4597 
4598     if (REG_P (i2dest))
4599       {
4600 	struct insn_link *link;
4601 	rtx_insn *i2_insn = 0;
4602 	rtx i2_val = 0, set;
4603 
4604 	/* The insn that used to set this register doesn't exist, and
4605 	   this life of the register may not exist either.  See if one of
4606 	   I3's links points to an insn that sets I2DEST.  If it does,
4607 	   that is now the last known value for I2DEST. If we don't update
4608 	   this and I2 set the register to a value that depended on its old
4609 	   contents, we will get confused.  If this insn is used, thing
4610 	   will be set correctly in combine_instructions.  */
4611 	FOR_EACH_LOG_LINK (link, i3)
4612 	  if ((set = single_set (link->insn)) != 0
4613 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4614 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4615 
4616 	record_value_for_reg (i2dest, i2_insn, i2_val);
4617 
4618 	/* If the reg formerly set in I2 died only once and that was in I3,
4619 	   zero its use count so it won't make `reload' do any work.  */
4620 	if (! added_sets_2
4621 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4622 	    && ! i2dest_in_i2src
4623 	    && REGNO (i2dest) < reg_n_sets_max)
4624 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4625       }
4626 
4627     if (i1 && REG_P (i1dest))
4628       {
4629 	struct insn_link *link;
4630 	rtx_insn *i1_insn = 0;
4631 	rtx i1_val = 0, set;
4632 
4633 	FOR_EACH_LOG_LINK (link, i3)
4634 	  if ((set = single_set (link->insn)) != 0
4635 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4636 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4637 
4638 	record_value_for_reg (i1dest, i1_insn, i1_val);
4639 
4640 	if (! added_sets_1
4641 	    && ! i1dest_in_i1src
4642 	    && REGNO (i1dest) < reg_n_sets_max)
4643 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4644       }
4645 
4646     if (i0 && REG_P (i0dest))
4647       {
4648 	struct insn_link *link;
4649 	rtx_insn *i0_insn = 0;
4650 	rtx i0_val = 0, set;
4651 
4652 	FOR_EACH_LOG_LINK (link, i3)
4653 	  if ((set = single_set (link->insn)) != 0
4654 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4655 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4656 
4657 	record_value_for_reg (i0dest, i0_insn, i0_val);
4658 
4659 	if (! added_sets_0
4660 	    && ! i0dest_in_i0src
4661 	    && REGNO (i0dest) < reg_n_sets_max)
4662 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4663       }
4664 
4665     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4666        been made to this insn.  The order is important, because newi2pat
4667        can affect nonzero_bits of newpat.  */
4668     if (newi2pat)
4669       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4670     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4671   }
4672 
4673   if (undobuf.other_insn != NULL_RTX)
4674     {
4675       if (dump_file)
4676 	{
4677 	  fprintf (dump_file, "modifying other_insn ");
4678 	  dump_insn_slim (dump_file, undobuf.other_insn);
4679 	}
4680       df_insn_rescan (undobuf.other_insn);
4681     }
4682 
4683   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4684     {
4685       if (dump_file)
4686 	{
4687 	  fprintf (dump_file, "modifying insn i0 ");
4688 	  dump_insn_slim (dump_file, i0);
4689 	}
4690       df_insn_rescan (i0);
4691     }
4692 
4693   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4694     {
4695       if (dump_file)
4696 	{
4697 	  fprintf (dump_file, "modifying insn i1 ");
4698 	  dump_insn_slim (dump_file, i1);
4699 	}
4700       df_insn_rescan (i1);
4701     }
4702 
4703   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4704     {
4705       if (dump_file)
4706 	{
4707 	  fprintf (dump_file, "modifying insn i2 ");
4708 	  dump_insn_slim (dump_file, i2);
4709 	}
4710       df_insn_rescan (i2);
4711     }
4712 
4713   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4714     {
4715       if (dump_file)
4716 	{
4717 	  fprintf (dump_file, "modifying insn i3 ");
4718 	  dump_insn_slim (dump_file, i3);
4719 	}
4720       df_insn_rescan (i3);
4721     }
4722 
4723   /* Set new_direct_jump_p if a new return or simple jump instruction
4724      has been created.  Adjust the CFG accordingly.  */
4725   if (returnjump_p (i3) || any_uncondjump_p (i3))
4726     {
4727       *new_direct_jump_p = 1;
4728       mark_jump_label (PATTERN (i3), i3, 0);
4729       update_cfg_for_uncondjump (i3);
4730     }
4731 
4732   if (undobuf.other_insn != NULL_RTX
4733       && (returnjump_p (undobuf.other_insn)
4734 	  || any_uncondjump_p (undobuf.other_insn)))
4735     {
4736       *new_direct_jump_p = 1;
4737       update_cfg_for_uncondjump (undobuf.other_insn);
4738     }
4739 
4740   if (GET_CODE (PATTERN (i3)) == TRAP_IF
4741       && XEXP (PATTERN (i3), 0) == const1_rtx)
4742     {
4743       basic_block bb = BLOCK_FOR_INSN (i3);
4744       gcc_assert (bb);
4745       remove_edge (split_block (bb, i3));
4746       emit_barrier_after_bb (bb);
4747       *new_direct_jump_p = 1;
4748     }
4749 
4750   if (undobuf.other_insn
4751       && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4752       && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4753     {
4754       basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4755       gcc_assert (bb);
4756       remove_edge (split_block (bb, undobuf.other_insn));
4757       emit_barrier_after_bb (bb);
4758       *new_direct_jump_p = 1;
4759     }
4760 
4761   /* A noop might also need cleaning up of CFG, if it comes from the
4762      simplification of a jump.  */
4763   if (JUMP_P (i3)
4764       && GET_CODE (newpat) == SET
4765       && SET_SRC (newpat) == pc_rtx
4766       && SET_DEST (newpat) == pc_rtx)
4767     {
4768       *new_direct_jump_p = 1;
4769       update_cfg_for_uncondjump (i3);
4770     }
4771 
4772   if (undobuf.other_insn != NULL_RTX
4773       && JUMP_P (undobuf.other_insn)
4774       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4775       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4776       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4777     {
4778       *new_direct_jump_p = 1;
4779       update_cfg_for_uncondjump (undobuf.other_insn);
4780     }
4781 
4782   combine_successes++;
4783   undo_commit ();
4784 
4785   rtx_insn *ret = newi2pat ? i2 : i3;
4786   if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4787     ret = added_links_insn;
4788   if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4789     ret = added_notes_insn;
4790 
4791   return ret;
4792 }
4793 
4794 /* Get a marker for undoing to the current state.  */
4795 
4796 static void *
4797 get_undo_marker (void)
4798 {
4799   return undobuf.undos;
4800 }
4801 
4802 /* Undo the modifications up to the marker.  */
4803 
4804 static void
4805 undo_to_marker (void *marker)
4806 {
4807   struct undo *undo, *next;
4808 
4809   for (undo = undobuf.undos; undo != marker; undo = next)
4810     {
4811       gcc_assert (undo);
4812 
4813       next = undo->next;
4814       switch (undo->kind)
4815 	{
4816 	case UNDO_RTX:
4817 	  *undo->where.r = undo->old_contents.r;
4818 	  break;
4819 	case UNDO_INT:
4820 	  *undo->where.i = undo->old_contents.i;
4821 	  break;
4822 	case UNDO_MODE:
4823 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4824 	  break;
4825 	case UNDO_LINKS:
4826 	  *undo->where.l = undo->old_contents.l;
4827 	  break;
4828 	default:
4829 	  gcc_unreachable ();
4830 	}
4831 
4832       undo->next = undobuf.frees;
4833       undobuf.frees = undo;
4834     }
4835 
4836   undobuf.undos = (struct undo *) marker;
4837 }
4838 
4839 /* Undo all the modifications recorded in undobuf.  */
4840 
4841 static void
4842 undo_all (void)
4843 {
4844   undo_to_marker (0);
4845 }
4846 
4847 /* We've committed to accepting the changes we made.  Move all
4848    of the undos to the free list.  */
4849 
4850 static void
4851 undo_commit (void)
4852 {
4853   struct undo *undo, *next;
4854 
4855   for (undo = undobuf.undos; undo; undo = next)
4856     {
4857       next = undo->next;
4858       undo->next = undobuf.frees;
4859       undobuf.frees = undo;
4860     }
4861   undobuf.undos = 0;
4862 }
4863 
4864 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4865    where we have an arithmetic expression and return that point.  LOC will
4866    be inside INSN.
4867 
4868    try_combine will call this function to see if an insn can be split into
4869    two insns.  */
4870 
4871 static rtx *
4872 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4873 {
4874   rtx x = *loc;
4875   enum rtx_code code = GET_CODE (x);
4876   rtx *split;
4877   unsigned HOST_WIDE_INT len = 0;
4878   HOST_WIDE_INT pos = 0;
4879   int unsignedp = 0;
4880   rtx inner = NULL_RTX;
4881   scalar_int_mode mode, inner_mode;
4882 
4883   /* First special-case some codes.  */
4884   switch (code)
4885     {
4886     case SUBREG:
4887 #ifdef INSN_SCHEDULING
4888       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4889 	 point.  */
4890       if (MEM_P (SUBREG_REG (x)))
4891 	return loc;
4892 #endif
4893       return find_split_point (&SUBREG_REG (x), insn, false);
4894 
4895     case MEM:
4896       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4897 	 using LO_SUM and HIGH.  */
4898       if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4899 			  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4900 	{
4901 	  machine_mode address_mode = get_address_mode (x);
4902 
4903 	  SUBST (XEXP (x, 0),
4904 		 gen_rtx_LO_SUM (address_mode,
4905 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4906 				 XEXP (x, 0)));
4907 	  return &XEXP (XEXP (x, 0), 0);
4908 	}
4909 
4910       /* If we have a PLUS whose second operand is a constant and the
4911 	 address is not valid, perhaps will can split it up using
4912 	 the machine-specific way to split large constants.  We use
4913 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4914 	 it will not remain in the result.  */
4915       if (GET_CODE (XEXP (x, 0)) == PLUS
4916 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4917 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4918 					    MEM_ADDR_SPACE (x)))
4919 	{
4920 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4921 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4922 					       subst_insn);
4923 
4924 	  /* This should have produced two insns, each of which sets our
4925 	     placeholder.  If the source of the second is a valid address,
4926 	     we can make put both sources together and make a split point
4927 	     in the middle.  */
4928 
4929 	  if (seq
4930 	      && NEXT_INSN (seq) != NULL_RTX
4931 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4932 	      && NONJUMP_INSN_P (seq)
4933 	      && GET_CODE (PATTERN (seq)) == SET
4934 	      && SET_DEST (PATTERN (seq)) == reg
4935 	      && ! reg_mentioned_p (reg,
4936 				    SET_SRC (PATTERN (seq)))
4937 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4938 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4939 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4940 	      && memory_address_addr_space_p
4941 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4942 		    MEM_ADDR_SPACE (x)))
4943 	    {
4944 	      rtx src1 = SET_SRC (PATTERN (seq));
4945 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4946 
4947 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4948 		 find where in SRC2 it was placed, that can become our
4949 		 split point and we can replace this address with SRC2.
4950 		 Just try two obvious places.  */
4951 
4952 	      src2 = replace_rtx (src2, reg, src1);
4953 	      split = 0;
4954 	      if (XEXP (src2, 0) == src1)
4955 		split = &XEXP (src2, 0);
4956 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4957 		       && XEXP (XEXP (src2, 0), 0) == src1)
4958 		split = &XEXP (XEXP (src2, 0), 0);
4959 
4960 	      if (split)
4961 		{
4962 		  SUBST (XEXP (x, 0), src2);
4963 		  return split;
4964 		}
4965 	    }
4966 
4967 	  /* If that didn't work, perhaps the first operand is complex and
4968 	     needs to be computed separately, so make a split point there.
4969 	     This will occur on machines that just support REG + CONST
4970 	     and have a constant moved through some previous computation.  */
4971 
4972 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4973 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4974 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4975 	    return &XEXP (XEXP (x, 0), 0);
4976 	}
4977 
4978       /* If we have a PLUS whose first operand is complex, try computing it
4979          separately by making a split there.  */
4980       if (GET_CODE (XEXP (x, 0)) == PLUS
4981           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4982 					    MEM_ADDR_SPACE (x))
4983           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4984           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4985                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4986         return &XEXP (XEXP (x, 0), 0);
4987       break;
4988 
4989     case SET:
4990       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4991 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4992 	 we need to put the operand into a register.  So split at that
4993 	 point.  */
4994 
4995       if (SET_DEST (x) == cc0_rtx
4996 	  && GET_CODE (SET_SRC (x)) != COMPARE
4997 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4998 	  && !OBJECT_P (SET_SRC (x))
4999 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
5000 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5001 	return &SET_SRC (x);
5002 
5003       /* See if we can split SET_SRC as it stands.  */
5004       split = find_split_point (&SET_SRC (x), insn, true);
5005       if (split && split != &SET_SRC (x))
5006 	return split;
5007 
5008       /* See if we can split SET_DEST as it stands.  */
5009       split = find_split_point (&SET_DEST (x), insn, false);
5010       if (split && split != &SET_DEST (x))
5011 	return split;
5012 
5013       /* See if this is a bitfield assignment with everything constant.  If
5014 	 so, this is an IOR of an AND, so split it into that.  */
5015       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5016 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5017 				     &inner_mode)
5018 	  && HWI_COMPUTABLE_MODE_P (inner_mode)
5019 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
5020 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
5021 	  && CONST_INT_P (SET_SRC (x))
5022 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
5023 	       + INTVAL (XEXP (SET_DEST (x), 2)))
5024 	      <= GET_MODE_PRECISION (inner_mode))
5025 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5026 	{
5027 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5028 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5029 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5030 	  rtx dest = XEXP (SET_DEST (x), 0);
5031 	  unsigned HOST_WIDE_INT mask
5032 	    = (HOST_WIDE_INT_1U << len) - 1;
5033 	  rtx or_mask;
5034 
5035 	  if (BITS_BIG_ENDIAN)
5036 	    pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5037 
5038 	  or_mask = gen_int_mode (src << pos, inner_mode);
5039 	  if (src == mask)
5040 	    SUBST (SET_SRC (x),
5041 		   simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5042 	  else
5043 	    {
5044 	      rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5045 	      SUBST (SET_SRC (x),
5046 		     simplify_gen_binary (IOR, inner_mode,
5047 					  simplify_gen_binary (AND, inner_mode,
5048 							       dest, negmask),
5049 					  or_mask));
5050 	    }
5051 
5052 	  SUBST (SET_DEST (x), dest);
5053 
5054 	  split = find_split_point (&SET_SRC (x), insn, true);
5055 	  if (split && split != &SET_SRC (x))
5056 	    return split;
5057 	}
5058 
5059       /* Otherwise, see if this is an operation that we can split into two.
5060 	 If so, try to split that.  */
5061       code = GET_CODE (SET_SRC (x));
5062 
5063       switch (code)
5064 	{
5065 	case AND:
5066 	  /* If we are AND'ing with a large constant that is only a single
5067 	     bit and the result is only being used in a context where we
5068 	     need to know if it is zero or nonzero, replace it with a bit
5069 	     extraction.  This will avoid the large constant, which might
5070 	     have taken more than one insn to make.  If the constant were
5071 	     not a valid argument to the AND but took only one insn to make,
5072 	     this is no worse, but if it took more than one insn, it will
5073 	     be better.  */
5074 
5075 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5076 	      && REG_P (XEXP (SET_SRC (x), 0))
5077 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5078 	      && REG_P (SET_DEST (x))
5079 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5080 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5081 	      && XEXP (*split, 0) == SET_DEST (x)
5082 	      && XEXP (*split, 1) == const0_rtx)
5083 	    {
5084 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5085 						XEXP (SET_SRC (x), 0),
5086 						pos, NULL_RTX, 1, 1, 0, 0);
5087 	      if (extraction != 0)
5088 		{
5089 		  SUBST (SET_SRC (x), extraction);
5090 		  return find_split_point (loc, insn, false);
5091 		}
5092 	    }
5093 	  break;
5094 
5095 	case NE:
5096 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5097 	     is known to be on, this can be converted into a NEG of a shift.  */
5098 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5099 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5100 	      && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5101 						   GET_MODE (XEXP (SET_SRC (x),
5102 							     0))))) >= 1))
5103 	    {
5104 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5105 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5106 	      SUBST (SET_SRC (x),
5107 		     gen_rtx_NEG (mode,
5108 				  gen_rtx_LSHIFTRT (mode,
5109 						    XEXP (SET_SRC (x), 0),
5110 						    pos_rtx)));
5111 
5112 	      split = find_split_point (&SET_SRC (x), insn, true);
5113 	      if (split && split != &SET_SRC (x))
5114 		return split;
5115 	    }
5116 	  break;
5117 
5118 	case SIGN_EXTEND:
5119 	  inner = XEXP (SET_SRC (x), 0);
5120 
5121 	  /* We can't optimize if either mode is a partial integer
5122 	     mode as we don't know how many bits are significant
5123 	     in those modes.  */
5124 	  if (!is_int_mode (GET_MODE (inner), &inner_mode)
5125 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5126 	    break;
5127 
5128 	  pos = 0;
5129 	  len = GET_MODE_PRECISION (inner_mode);
5130 	  unsignedp = 0;
5131 	  break;
5132 
5133 	case SIGN_EXTRACT:
5134 	case ZERO_EXTRACT:
5135 	  if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5136 				      &inner_mode)
5137 	      && CONST_INT_P (XEXP (SET_SRC (x), 1))
5138 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5139 	    {
5140 	      inner = XEXP (SET_SRC (x), 0);
5141 	      len = INTVAL (XEXP (SET_SRC (x), 1));
5142 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
5143 
5144 	      if (BITS_BIG_ENDIAN)
5145 		pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5146 	      unsignedp = (code == ZERO_EXTRACT);
5147 	    }
5148 	  break;
5149 
5150 	default:
5151 	  break;
5152 	}
5153 
5154       if (len
5155 	  && known_subrange_p (pos, len,
5156 			       0, GET_MODE_PRECISION (GET_MODE (inner)))
5157 	  && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5158 	{
5159 	  /* For unsigned, we have a choice of a shift followed by an
5160 	     AND or two shifts.  Use two shifts for field sizes where the
5161 	     constant might be too large.  We assume here that we can
5162 	     always at least get 8-bit constants in an AND insn, which is
5163 	     true for every current RISC.  */
5164 
5165 	  if (unsignedp && len <= 8)
5166 	    {
5167 	      unsigned HOST_WIDE_INT mask
5168 		= (HOST_WIDE_INT_1U << len) - 1;
5169 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5170 	      SUBST (SET_SRC (x),
5171 		     gen_rtx_AND (mode,
5172 				  gen_rtx_LSHIFTRT
5173 				  (mode, gen_lowpart (mode, inner), pos_rtx),
5174 				  gen_int_mode (mask, mode)));
5175 
5176 	      split = find_split_point (&SET_SRC (x), insn, true);
5177 	      if (split && split != &SET_SRC (x))
5178 		return split;
5179 	    }
5180 	  else
5181 	    {
5182 	      int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5183 	      int right_bits = GET_MODE_PRECISION (mode) - len;
5184 	      SUBST (SET_SRC (x),
5185 		     gen_rtx_fmt_ee
5186 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5187 		      gen_rtx_ASHIFT (mode,
5188 				      gen_lowpart (mode, inner),
5189 				      gen_int_shift_amount (mode, left_bits)),
5190 		      gen_int_shift_amount (mode, right_bits)));
5191 
5192 	      split = find_split_point (&SET_SRC (x), insn, true);
5193 	      if (split && split != &SET_SRC (x))
5194 		return split;
5195 	    }
5196 	}
5197 
5198       /* See if this is a simple operation with a constant as the second
5199 	 operand.  It might be that this constant is out of range and hence
5200 	 could be used as a split point.  */
5201       if (BINARY_P (SET_SRC (x))
5202 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5203 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5204 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5205 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5206 	return &XEXP (SET_SRC (x), 1);
5207 
5208       /* Finally, see if this is a simple operation with its first operand
5209 	 not in a register.  The operation might require this operand in a
5210 	 register, so return it as a split point.  We can always do this
5211 	 because if the first operand were another operation, we would have
5212 	 already found it as a split point.  */
5213       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5214 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5215 	return &XEXP (SET_SRC (x), 0);
5216 
5217       return 0;
5218 
5219     case AND:
5220     case IOR:
5221       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5222 	 it is better to write this as (not (ior A B)) so we can split it.
5223 	 Similarly for IOR.  */
5224       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5225 	{
5226 	  SUBST (*loc,
5227 		 gen_rtx_NOT (GET_MODE (x),
5228 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5229 					      GET_MODE (x),
5230 					      XEXP (XEXP (x, 0), 0),
5231 					      XEXP (XEXP (x, 1), 0))));
5232 	  return find_split_point (loc, insn, set_src);
5233 	}
5234 
5235       /* Many RISC machines have a large set of logical insns.  If the
5236 	 second operand is a NOT, put it first so we will try to split the
5237 	 other operand first.  */
5238       if (GET_CODE (XEXP (x, 1)) == NOT)
5239 	{
5240 	  rtx tem = XEXP (x, 0);
5241 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5242 	  SUBST (XEXP (x, 1), tem);
5243 	}
5244       break;
5245 
5246     case PLUS:
5247     case MINUS:
5248       /* Canonicalization can produce (minus A (mult B C)), where C is a
5249 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5250 	 instead if this isn't a multiply by a power of two.  */
5251       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5252 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5253 	  && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5254 	{
5255 	  machine_mode mode = GET_MODE (x);
5256 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5257 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5258 	  SUBST (*loc, gen_rtx_PLUS (mode,
5259 				     gen_rtx_MULT (mode,
5260 						   XEXP (XEXP (x, 1), 0),
5261 						   gen_int_mode (other_int,
5262 								 mode)),
5263 				     XEXP (x, 0)));
5264 	  return find_split_point (loc, insn, set_src);
5265 	}
5266 
5267       /* Split at a multiply-accumulate instruction.  However if this is
5268          the SET_SRC, we likely do not have such an instruction and it's
5269          worthless to try this split.  */
5270       if (!set_src
5271 	  && (GET_CODE (XEXP (x, 0)) == MULT
5272 	      || (GET_CODE (XEXP (x, 0)) == ASHIFT
5273 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5274         return loc;
5275 
5276     default:
5277       break;
5278     }
5279 
5280   /* Otherwise, select our actions depending on our rtx class.  */
5281   switch (GET_RTX_CLASS (code))
5282     {
5283     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5284     case RTX_TERNARY:
5285       split = find_split_point (&XEXP (x, 2), insn, false);
5286       if (split)
5287 	return split;
5288       /* fall through */
5289     case RTX_BIN_ARITH:
5290     case RTX_COMM_ARITH:
5291     case RTX_COMPARE:
5292     case RTX_COMM_COMPARE:
5293       split = find_split_point (&XEXP (x, 1), insn, false);
5294       if (split)
5295 	return split;
5296       /* fall through */
5297     case RTX_UNARY:
5298       /* Some machines have (and (shift ...) ...) insns.  If X is not
5299 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5300       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5301 	return &XEXP (x, 0);
5302 
5303       split = find_split_point (&XEXP (x, 0), insn, false);
5304       if (split)
5305 	return split;
5306       return loc;
5307 
5308     default:
5309       /* Otherwise, we don't have a split point.  */
5310       return 0;
5311     }
5312 }
5313 
5314 /* Throughout X, replace FROM with TO, and return the result.
5315    The result is TO if X is FROM;
5316    otherwise the result is X, but its contents may have been modified.
5317    If they were modified, a record was made in undobuf so that
5318    undo_all will (among other things) return X to its original state.
5319 
5320    If the number of changes necessary is too much to record to undo,
5321    the excess changes are not made, so the result is invalid.
5322    The changes already made can still be undone.
5323    undobuf.num_undo is incremented for such changes, so by testing that
5324    the caller can tell whether the result is valid.
5325 
5326    `n_occurrences' is incremented each time FROM is replaced.
5327 
5328    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5329 
5330    IN_COND is nonzero if we are at the top level of a condition.
5331 
5332    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5333    by copying if `n_occurrences' is nonzero.  */
5334 
5335 static rtx
5336 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5337 {
5338   enum rtx_code code = GET_CODE (x);
5339   machine_mode op0_mode = VOIDmode;
5340   const char *fmt;
5341   int len, i;
5342   rtx new_rtx;
5343 
5344 /* Two expressions are equal if they are identical copies of a shared
5345    RTX or if they are both registers with the same register number
5346    and mode.  */
5347 
5348 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5349   ((X) == (Y)						\
5350    || (REG_P (X) && REG_P (Y)	\
5351        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5352 
5353   /* Do not substitute into clobbers of regs -- this will never result in
5354      valid RTL.  */
5355   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5356     return x;
5357 
5358   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5359     {
5360       n_occurrences++;
5361       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5362     }
5363 
5364   /* If X and FROM are the same register but different modes, they
5365      will not have been seen as equal above.  However, the log links code
5366      will make a LOG_LINKS entry for that case.  If we do nothing, we
5367      will try to rerecognize our original insn and, when it succeeds,
5368      we will delete the feeding insn, which is incorrect.
5369 
5370      So force this insn not to match in this (rare) case.  */
5371   if (! in_dest && code == REG && REG_P (from)
5372       && reg_overlap_mentioned_p (x, from))
5373     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5374 
5375   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5376      of which may contain things that can be combined.  */
5377   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5378     return x;
5379 
5380   /* It is possible to have a subexpression appear twice in the insn.
5381      Suppose that FROM is a register that appears within TO.
5382      Then, after that subexpression has been scanned once by `subst',
5383      the second time it is scanned, TO may be found.  If we were
5384      to scan TO here, we would find FROM within it and create a
5385      self-referent rtl structure which is completely wrong.  */
5386   if (COMBINE_RTX_EQUAL_P (x, to))
5387     return to;
5388 
5389   /* Parallel asm_operands need special attention because all of the
5390      inputs are shared across the arms.  Furthermore, unsharing the
5391      rtl results in recognition failures.  Failure to handle this case
5392      specially can result in circular rtl.
5393 
5394      Solve this by doing a normal pass across the first entry of the
5395      parallel, and only processing the SET_DESTs of the subsequent
5396      entries.  Ug.  */
5397 
5398   if (code == PARALLEL
5399       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5400       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5401     {
5402       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5403 
5404       /* If this substitution failed, this whole thing fails.  */
5405       if (GET_CODE (new_rtx) == CLOBBER
5406 	  && XEXP (new_rtx, 0) == const0_rtx)
5407 	return new_rtx;
5408 
5409       SUBST (XVECEXP (x, 0, 0), new_rtx);
5410 
5411       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5412 	{
5413 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5414 
5415 	  if (!REG_P (dest)
5416 	      && GET_CODE (dest) != CC0
5417 	      && GET_CODE (dest) != PC)
5418 	    {
5419 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5420 
5421 	      /* If this substitution failed, this whole thing fails.  */
5422 	      if (GET_CODE (new_rtx) == CLOBBER
5423 		  && XEXP (new_rtx, 0) == const0_rtx)
5424 		return new_rtx;
5425 
5426 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5427 	    }
5428 	}
5429     }
5430   else
5431     {
5432       len = GET_RTX_LENGTH (code);
5433       fmt = GET_RTX_FORMAT (code);
5434 
5435       /* We don't need to process a SET_DEST that is a register, CC0,
5436 	 or PC, so set up to skip this common case.  All other cases
5437 	 where we want to suppress replacing something inside a
5438 	 SET_SRC are handled via the IN_DEST operand.  */
5439       if (code == SET
5440 	  && (REG_P (SET_DEST (x))
5441 	      || GET_CODE (SET_DEST (x)) == CC0
5442 	      || GET_CODE (SET_DEST (x)) == PC))
5443 	fmt = "ie";
5444 
5445       /* Trying to simplify the operands of a widening MULT is not likely
5446 	 to create RTL matching a machine insn.  */
5447       if (code == MULT
5448 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5449 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5450 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5451 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5452 	  && REG_P (XEXP (XEXP (x, 0), 0))
5453 	  && REG_P (XEXP (XEXP (x, 1), 0))
5454 	  && from == to)
5455 	return x;
5456 
5457 
5458       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5459 	 constant.  */
5460       if (fmt[0] == 'e')
5461 	op0_mode = GET_MODE (XEXP (x, 0));
5462 
5463       for (i = 0; i < len; i++)
5464 	{
5465 	  if (fmt[i] == 'E')
5466 	    {
5467 	      int j;
5468 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5469 		{
5470 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5471 		    {
5472 		      new_rtx = (unique_copy && n_occurrences
5473 			     ? copy_rtx (to) : to);
5474 		      n_occurrences++;
5475 		    }
5476 		  else
5477 		    {
5478 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5479 				       unique_copy);
5480 
5481 		      /* If this substitution failed, this whole thing
5482 			 fails.  */
5483 		      if (GET_CODE (new_rtx) == CLOBBER
5484 			  && XEXP (new_rtx, 0) == const0_rtx)
5485 			return new_rtx;
5486 		    }
5487 
5488 		  SUBST (XVECEXP (x, i, j), new_rtx);
5489 		}
5490 	    }
5491 	  else if (fmt[i] == 'e')
5492 	    {
5493 	      /* If this is a register being set, ignore it.  */
5494 	      new_rtx = XEXP (x, i);
5495 	      if (in_dest
5496 		  && i == 0
5497 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5498 		       && REG_P (new_rtx))
5499 		      || code == STRICT_LOW_PART))
5500 		;
5501 
5502 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5503 		{
5504 		  /* In general, don't install a subreg involving two
5505 		     modes not tieable.  It can worsen register
5506 		     allocation, and can even make invalid reload
5507 		     insns, since the reg inside may need to be copied
5508 		     from in the outside mode, and that may be invalid
5509 		     if it is an fp reg copied in integer mode.
5510 
5511 		     We allow two exceptions to this: It is valid if
5512 		     it is inside another SUBREG and the mode of that
5513 		     SUBREG and the mode of the inside of TO is
5514 		     tieable and it is valid if X is a SET that copies
5515 		     FROM to CC0.  */
5516 
5517 		  if (GET_CODE (to) == SUBREG
5518 		      && !targetm.modes_tieable_p (GET_MODE (to),
5519 						   GET_MODE (SUBREG_REG (to)))
5520 		      && ! (code == SUBREG
5521 			    && (targetm.modes_tieable_p
5522 				(GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5523 		      && (!HAVE_cc0
5524 			  || (! (code == SET
5525 				 && i == 1
5526 				 && XEXP (x, 0) == cc0_rtx))))
5527 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5528 
5529 		  if (code == SUBREG
5530 		      && REG_P (to)
5531 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5532 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5533 						SUBREG_BYTE (x),
5534 						GET_MODE (x)) < 0)
5535 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5536 
5537 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5538 		  n_occurrences++;
5539 		}
5540 	      else
5541 		/* If we are in a SET_DEST, suppress most cases unless we
5542 		   have gone inside a MEM, in which case we want to
5543 		   simplify the address.  We assume here that things that
5544 		   are actually part of the destination have their inner
5545 		   parts in the first expression.  This is true for SUBREG,
5546 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5547 		   things aside from REG and MEM that should appear in a
5548 		   SET_DEST.  */
5549 		new_rtx = subst (XEXP (x, i), from, to,
5550 			     (((in_dest
5551 				&& (code == SUBREG || code == STRICT_LOW_PART
5552 				    || code == ZERO_EXTRACT))
5553 			       || code == SET)
5554 			      && i == 0),
5555 				 code == IF_THEN_ELSE && i == 0,
5556 				 unique_copy);
5557 
5558 	      /* If we found that we will have to reject this combination,
5559 		 indicate that by returning the CLOBBER ourselves, rather than
5560 		 an expression containing it.  This will speed things up as
5561 		 well as prevent accidents where two CLOBBERs are considered
5562 		 to be equal, thus producing an incorrect simplification.  */
5563 
5564 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5565 		return new_rtx;
5566 
5567 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5568 		{
5569 		  machine_mode mode = GET_MODE (x);
5570 
5571 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5572 				       GET_MODE (SUBREG_REG (x)),
5573 				       SUBREG_BYTE (x));
5574 		  if (! x)
5575 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5576 		}
5577 	      else if (CONST_SCALAR_INT_P (new_rtx)
5578 		       && (GET_CODE (x) == ZERO_EXTEND
5579 			   || GET_CODE (x) == FLOAT
5580 			   || GET_CODE (x) == UNSIGNED_FLOAT))
5581 		{
5582 		  x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5583 						new_rtx,
5584 						GET_MODE (XEXP (x, 0)));
5585 		  if (!x)
5586 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5587 		}
5588 	      else
5589 		SUBST (XEXP (x, i), new_rtx);
5590 	    }
5591 	}
5592     }
5593 
5594   /* Check if we are loading something from the constant pool via float
5595      extension; in this case we would undo compress_float_constant
5596      optimization and degenerate constant load to an immediate value.  */
5597   if (GET_CODE (x) == FLOAT_EXTEND
5598       && MEM_P (XEXP (x, 0))
5599       && MEM_READONLY_P (XEXP (x, 0)))
5600     {
5601       rtx tmp = avoid_constant_pool_reference (x);
5602       if (x != tmp)
5603         return x;
5604     }
5605 
5606   /* Try to simplify X.  If the simplification changed the code, it is likely
5607      that further simplification will help, so loop, but limit the number
5608      of repetitions that will be performed.  */
5609 
5610   for (i = 0; i < 4; i++)
5611     {
5612       /* If X is sufficiently simple, don't bother trying to do anything
5613 	 with it.  */
5614       if (code != CONST_INT && code != REG && code != CLOBBER)
5615 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5616 
5617       if (GET_CODE (x) == code)
5618 	break;
5619 
5620       code = GET_CODE (x);
5621 
5622       /* We no longer know the original mode of operand 0 since we
5623 	 have changed the form of X)  */
5624       op0_mode = VOIDmode;
5625     }
5626 
5627   return x;
5628 }
5629 
5630 /* If X is a commutative operation whose operands are not in the canonical
5631    order, use substitutions to swap them.  */
5632 
5633 static void
5634 maybe_swap_commutative_operands (rtx x)
5635 {
5636   if (COMMUTATIVE_ARITH_P (x)
5637       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5638     {
5639       rtx temp = XEXP (x, 0);
5640       SUBST (XEXP (x, 0), XEXP (x, 1));
5641       SUBST (XEXP (x, 1), temp);
5642     }
5643 }
5644 
5645 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5646    outer level; call `subst' to simplify recursively.  Return the new
5647    expression.
5648 
5649    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5650    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5651    of a condition.  */
5652 
5653 static rtx
5654 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5655 		      int in_cond)
5656 {
5657   enum rtx_code code = GET_CODE (x);
5658   machine_mode mode = GET_MODE (x);
5659   scalar_int_mode int_mode;
5660   rtx temp;
5661   int i;
5662 
5663   /* If this is a commutative operation, put a constant last and a complex
5664      expression first.  We don't need to do this for comparisons here.  */
5665   maybe_swap_commutative_operands (x);
5666 
5667   /* Try to fold this expression in case we have constants that weren't
5668      present before.  */
5669   temp = 0;
5670   switch (GET_RTX_CLASS (code))
5671     {
5672     case RTX_UNARY:
5673       if (op0_mode == VOIDmode)
5674 	op0_mode = GET_MODE (XEXP (x, 0));
5675       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5676       break;
5677     case RTX_COMPARE:
5678     case RTX_COMM_COMPARE:
5679       {
5680 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5681 	if (cmp_mode == VOIDmode)
5682 	  {
5683 	    cmp_mode = GET_MODE (XEXP (x, 1));
5684 	    if (cmp_mode == VOIDmode)
5685 	      cmp_mode = op0_mode;
5686 	  }
5687 	temp = simplify_relational_operation (code, mode, cmp_mode,
5688 					      XEXP (x, 0), XEXP (x, 1));
5689       }
5690       break;
5691     case RTX_COMM_ARITH:
5692     case RTX_BIN_ARITH:
5693       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5694       break;
5695     case RTX_BITFIELD_OPS:
5696     case RTX_TERNARY:
5697       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5698 					 XEXP (x, 1), XEXP (x, 2));
5699       break;
5700     default:
5701       break;
5702     }
5703 
5704   if (temp)
5705     {
5706       x = temp;
5707       code = GET_CODE (temp);
5708       op0_mode = VOIDmode;
5709       mode = GET_MODE (temp);
5710     }
5711 
5712   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5713      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5714      things.  Check for cases where both arms are testing the same
5715      condition.
5716 
5717      Don't do anything if all operands are very simple.  */
5718 
5719   if ((BINARY_P (x)
5720        && ((!OBJECT_P (XEXP (x, 0))
5721 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5722 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5723 	   || (!OBJECT_P (XEXP (x, 1))
5724 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5725 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5726       || (UNARY_P (x)
5727 	  && (!OBJECT_P (XEXP (x, 0))
5728 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5729 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5730     {
5731       rtx cond, true_rtx, false_rtx;
5732 
5733       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5734       if (cond != 0
5735 	  /* If everything is a comparison, what we have is highly unlikely
5736 	     to be simpler, so don't use it.  */
5737 	  && ! (COMPARISON_P (x)
5738 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5739 	  /* Similarly, if we end up with one of the expressions the same
5740 	     as the original, it is certainly not simpler.  */
5741 	  && ! rtx_equal_p (x, true_rtx)
5742 	  && ! rtx_equal_p (x, false_rtx))
5743 	{
5744 	  rtx cop1 = const0_rtx;
5745 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5746 
5747 	  if (cond_code == NE && COMPARISON_P (cond))
5748 	    return x;
5749 
5750 	  /* Simplify the alternative arms; this may collapse the true and
5751 	     false arms to store-flag values.  Be careful to use copy_rtx
5752 	     here since true_rtx or false_rtx might share RTL with x as a
5753 	     result of the if_then_else_cond call above.  */
5754 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5755 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5756 
5757 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5758 	     is unlikely to be simpler.  */
5759 	  if (general_operand (true_rtx, VOIDmode)
5760 	      && general_operand (false_rtx, VOIDmode))
5761 	    {
5762 	      enum rtx_code reversed;
5763 
5764 	      /* Restarting if we generate a store-flag expression will cause
5765 		 us to loop.  Just drop through in this case.  */
5766 
5767 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5768 		 just make the comparison operation.  */
5769 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5770 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5771 					     cond, cop1);
5772 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5773 		       && ((reversed = reversed_comparison_code_parts
5774 					(cond_code, cond, cop1, NULL))
5775 			   != UNKNOWN))
5776 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5777 					     cond, cop1);
5778 
5779 	      /* Likewise, we can make the negate of a comparison operation
5780 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5781 	      else if (CONST_INT_P (true_rtx)
5782 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5783 		       && false_rtx == const0_rtx)
5784 		x = simplify_gen_unary (NEG, mode,
5785 					simplify_gen_relational (cond_code,
5786 								 mode, VOIDmode,
5787 								 cond, cop1),
5788 					mode);
5789 	      else if (CONST_INT_P (false_rtx)
5790 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5791 		       && true_rtx == const0_rtx
5792 		       && ((reversed = reversed_comparison_code_parts
5793 					(cond_code, cond, cop1, NULL))
5794 			   != UNKNOWN))
5795 		x = simplify_gen_unary (NEG, mode,
5796 					simplify_gen_relational (reversed,
5797 								 mode, VOIDmode,
5798 								 cond, cop1),
5799 					mode);
5800 	      else
5801 		return gen_rtx_IF_THEN_ELSE (mode,
5802 					     simplify_gen_relational (cond_code,
5803 								      mode,
5804 								      VOIDmode,
5805 								      cond,
5806 								      cop1),
5807 					     true_rtx, false_rtx);
5808 
5809 	      code = GET_CODE (x);
5810 	      op0_mode = VOIDmode;
5811 	    }
5812 	}
5813     }
5814 
5815   /* First see if we can apply the inverse distributive law.  */
5816   if (code == PLUS || code == MINUS
5817       || code == AND || code == IOR || code == XOR)
5818     {
5819       x = apply_distributive_law (x);
5820       code = GET_CODE (x);
5821       op0_mode = VOIDmode;
5822     }
5823 
5824   /* If CODE is an associative operation not otherwise handled, see if we
5825      can associate some operands.  This can win if they are constants or
5826      if they are logically related (i.e. (a & b) & a).  */
5827   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5828        || code == AND || code == IOR || code == XOR
5829        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5830       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5831 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5832     {
5833       if (GET_CODE (XEXP (x, 0)) == code)
5834 	{
5835 	  rtx other = XEXP (XEXP (x, 0), 0);
5836 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5837 	  rtx inner_op1 = XEXP (x, 1);
5838 	  rtx inner;
5839 
5840 	  /* Make sure we pass the constant operand if any as the second
5841 	     one if this is a commutative operation.  */
5842 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5843 	    std::swap (inner_op0, inner_op1);
5844 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5845 					     : code == DIV ? MULT
5846 					     : code,
5847 					     mode, inner_op0, inner_op1);
5848 
5849 	  /* For commutative operations, try the other pair if that one
5850 	     didn't simplify.  */
5851 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5852 	    {
5853 	      other = XEXP (XEXP (x, 0), 1);
5854 	      inner = simplify_binary_operation (code, mode,
5855 						 XEXP (XEXP (x, 0), 0),
5856 						 XEXP (x, 1));
5857 	    }
5858 
5859 	  if (inner)
5860 	    return simplify_gen_binary (code, mode, other, inner);
5861 	}
5862     }
5863 
5864   /* A little bit of algebraic simplification here.  */
5865   switch (code)
5866     {
5867     case MEM:
5868       /* Ensure that our address has any ASHIFTs converted to MULT in case
5869 	 address-recognizing predicates are called later.  */
5870       temp = make_compound_operation (XEXP (x, 0), MEM);
5871       SUBST (XEXP (x, 0), temp);
5872       break;
5873 
5874     case SUBREG:
5875       if (op0_mode == VOIDmode)
5876 	op0_mode = GET_MODE (SUBREG_REG (x));
5877 
5878       /* See if this can be moved to simplify_subreg.  */
5879       if (CONSTANT_P (SUBREG_REG (x))
5880 	  && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5881 	     /* Don't call gen_lowpart if the inner mode
5882 		is VOIDmode and we cannot simplify it, as SUBREG without
5883 		inner mode is invalid.  */
5884 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5885 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5886 	return gen_lowpart (mode, SUBREG_REG (x));
5887 
5888       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5889 	break;
5890       {
5891 	rtx temp;
5892 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5893 				SUBREG_BYTE (x));
5894 	if (temp)
5895 	  return temp;
5896 
5897 	/* If op is known to have all lower bits zero, the result is zero.  */
5898 	scalar_int_mode int_mode, int_op0_mode;
5899 	if (!in_dest
5900 	    && is_a <scalar_int_mode> (mode, &int_mode)
5901 	    && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5902 	    && (GET_MODE_PRECISION (int_mode)
5903 		< GET_MODE_PRECISION (int_op0_mode))
5904 	    && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5905 			 SUBREG_BYTE (x))
5906 	    && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5907 	    && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5908 		& GET_MODE_MASK (int_mode)) == 0)
5909 	  return CONST0_RTX (int_mode);
5910       }
5911 
5912       /* Don't change the mode of the MEM if that would change the meaning
5913 	 of the address.  */
5914       if (MEM_P (SUBREG_REG (x))
5915 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5916 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5917 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5918 	return gen_rtx_CLOBBER (mode, const0_rtx);
5919 
5920       /* Note that we cannot do any narrowing for non-constants since
5921 	 we might have been counting on using the fact that some bits were
5922 	 zero.  We now do this in the SET.  */
5923 
5924       break;
5925 
5926     case NEG:
5927       temp = expand_compound_operation (XEXP (x, 0));
5928 
5929       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5930 	 replaced by (lshiftrt X C).  This will convert
5931 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5932 
5933       if (GET_CODE (temp) == ASHIFTRT
5934 	  && CONST_INT_P (XEXP (temp, 1))
5935 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5936 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5937 				     INTVAL (XEXP (temp, 1)));
5938 
5939       /* If X has only a single bit that might be nonzero, say, bit I, convert
5940 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5941 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5942 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5943 	 or a SUBREG of one since we'd be making the expression more
5944 	 complex if it was just a register.  */
5945 
5946       if (!REG_P (temp)
5947 	  && ! (GET_CODE (temp) == SUBREG
5948 		&& REG_P (SUBREG_REG (temp)))
5949 	  && is_a <scalar_int_mode> (mode, &int_mode)
5950 	  && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5951 	{
5952 	  rtx temp1 = simplify_shift_const
5953 	    (NULL_RTX, ASHIFTRT, int_mode,
5954 	     simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5955 				   GET_MODE_PRECISION (int_mode) - 1 - i),
5956 	     GET_MODE_PRECISION (int_mode) - 1 - i);
5957 
5958 	  /* If all we did was surround TEMP with the two shifts, we
5959 	     haven't improved anything, so don't use it.  Otherwise,
5960 	     we are better off with TEMP1.  */
5961 	  if (GET_CODE (temp1) != ASHIFTRT
5962 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5963 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5964 	    return temp1;
5965 	}
5966       break;
5967 
5968     case TRUNCATE:
5969       /* We can't handle truncation to a partial integer mode here
5970 	 because we don't know the real bitsize of the partial
5971 	 integer mode.  */
5972       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5973 	break;
5974 
5975       if (HWI_COMPUTABLE_MODE_P (mode))
5976 	SUBST (XEXP (x, 0),
5977 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5978 			      GET_MODE_MASK (mode), 0));
5979 
5980       /* We can truncate a constant value and return it.  */
5981       if (CONST_INT_P (XEXP (x, 0)))
5982 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5983 
5984       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5985 	 whose value is a comparison can be replaced with a subreg if
5986 	 STORE_FLAG_VALUE permits.  */
5987       if (HWI_COMPUTABLE_MODE_P (mode)
5988 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5989 	  && (temp = get_last_value (XEXP (x, 0)))
5990 	  && COMPARISON_P (temp))
5991 	return gen_lowpart (mode, XEXP (x, 0));
5992       break;
5993 
5994     case CONST:
5995       /* (const (const X)) can become (const X).  Do it this way rather than
5996 	 returning the inner CONST since CONST can be shared with a
5997 	 REG_EQUAL note.  */
5998       if (GET_CODE (XEXP (x, 0)) == CONST)
5999 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6000       break;
6001 
6002     case LO_SUM:
6003       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
6004 	 can add in an offset.  find_split_point will split this address up
6005 	 again if it doesn't match.  */
6006       if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6007 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6008 	return XEXP (x, 1);
6009       break;
6010 
6011     case PLUS:
6012       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6013 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6014 	 bit-field and can be replaced by either a sign_extend or a
6015 	 sign_extract.  The `and' may be a zero_extend and the two
6016 	 <c>, -<c> constants may be reversed.  */
6017       if (GET_CODE (XEXP (x, 0)) == XOR
6018 	  && is_a <scalar_int_mode> (mode, &int_mode)
6019 	  && CONST_INT_P (XEXP (x, 1))
6020 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6021 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6022 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6023 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6024 	  && HWI_COMPUTABLE_MODE_P (int_mode)
6025 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6026 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6027 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6028 		   == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6029 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6030 		  && known_eq ((GET_MODE_PRECISION
6031 				(GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6032 			       (unsigned int) i + 1))))
6033 	return simplify_shift_const
6034 	  (NULL_RTX, ASHIFTRT, int_mode,
6035 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6036 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
6037 				 GET_MODE_PRECISION (int_mode) - (i + 1)),
6038 	   GET_MODE_PRECISION (int_mode) - (i + 1));
6039 
6040       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6041 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6042 	 the bitsize of the mode - 1.  This allows simplification of
6043 	 "a = (b & 8) == 0;"  */
6044       if (XEXP (x, 1) == constm1_rtx
6045 	  && !REG_P (XEXP (x, 0))
6046 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6047 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
6048 	  && is_a <scalar_int_mode> (mode, &int_mode)
6049 	  && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6050 	return simplify_shift_const
6051 	  (NULL_RTX, ASHIFTRT, int_mode,
6052 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6053 				 gen_rtx_XOR (int_mode, XEXP (x, 0),
6054 					      const1_rtx),
6055 				 GET_MODE_PRECISION (int_mode) - 1),
6056 	   GET_MODE_PRECISION (int_mode) - 1);
6057 
6058       /* If we are adding two things that have no bits in common, convert
6059 	 the addition into an IOR.  This will often be further simplified,
6060 	 for example in cases like ((a & 1) + (a & 2)), which can
6061 	 become a & 3.  */
6062 
6063       if (HWI_COMPUTABLE_MODE_P (mode)
6064 	  && (nonzero_bits (XEXP (x, 0), mode)
6065 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
6066 	{
6067 	  /* Try to simplify the expression further.  */
6068 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6069 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6070 
6071 	  /* If we could, great.  If not, do not go ahead with the IOR
6072 	     replacement, since PLUS appears in many special purpose
6073 	     address arithmetic instructions.  */
6074 	  if (GET_CODE (temp) != CLOBBER
6075 	      && (GET_CODE (temp) != IOR
6076 		  || ((XEXP (temp, 0) != XEXP (x, 0)
6077 		       || XEXP (temp, 1) != XEXP (x, 1))
6078 		      && (XEXP (temp, 0) != XEXP (x, 1)
6079 			  || XEXP (temp, 1) != XEXP (x, 0)))))
6080 	    return temp;
6081 	}
6082 
6083       /* Canonicalize x + x into x << 1.  */
6084       if (GET_MODE_CLASS (mode) == MODE_INT
6085 	  && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6086 	  && !side_effects_p (XEXP (x, 0)))
6087 	return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6088 
6089       break;
6090 
6091     case MINUS:
6092       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6093 	 (and <foo> (const_int pow2-1))  */
6094       if (is_a <scalar_int_mode> (mode, &int_mode)
6095 	  && GET_CODE (XEXP (x, 1)) == AND
6096 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6097 	  && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6098 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6099 	return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6100 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6101       break;
6102 
6103     case MULT:
6104       /* If we have (mult (plus A B) C), apply the distributive law and then
6105 	 the inverse distributive law to see if things simplify.  This
6106 	 occurs mostly in addresses, often when unrolling loops.  */
6107 
6108       if (GET_CODE (XEXP (x, 0)) == PLUS)
6109 	{
6110 	  rtx result = distribute_and_simplify_rtx (x, 0);
6111 	  if (result)
6112 	    return result;
6113 	}
6114 
6115       /* Try simplify a*(b/c) as (a*b)/c.  */
6116       if (FLOAT_MODE_P (mode) && flag_associative_math
6117 	  && GET_CODE (XEXP (x, 0)) == DIV)
6118 	{
6119 	  rtx tem = simplify_binary_operation (MULT, mode,
6120 					       XEXP (XEXP (x, 0), 0),
6121 					       XEXP (x, 1));
6122 	  if (tem)
6123 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6124 	}
6125       break;
6126 
6127     case UDIV:
6128       /* If this is a divide by a power of two, treat it as a shift if
6129 	 its first operand is a shift.  */
6130       if (is_a <scalar_int_mode> (mode, &int_mode)
6131 	  && CONST_INT_P (XEXP (x, 1))
6132 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6133 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
6134 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6135 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6136 	      || GET_CODE (XEXP (x, 0)) == ROTATE
6137 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
6138 	return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6139 				     XEXP (x, 0), i);
6140       break;
6141 
6142     case EQ:  case NE:
6143     case GT:  case GTU:  case GE:  case GEU:
6144     case LT:  case LTU:  case LE:  case LEU:
6145     case UNEQ:  case LTGT:
6146     case UNGT:  case UNGE:
6147     case UNLT:  case UNLE:
6148     case UNORDERED: case ORDERED:
6149       /* If the first operand is a condition code, we can't do anything
6150 	 with it.  */
6151       if (GET_CODE (XEXP (x, 0)) == COMPARE
6152 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6153 	      && ! CC0_P (XEXP (x, 0))))
6154 	{
6155 	  rtx op0 = XEXP (x, 0);
6156 	  rtx op1 = XEXP (x, 1);
6157 	  enum rtx_code new_code;
6158 
6159 	  if (GET_CODE (op0) == COMPARE)
6160 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6161 
6162 	  /* Simplify our comparison, if possible.  */
6163 	  new_code = simplify_comparison (code, &op0, &op1);
6164 
6165 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6166 	     if only the low-order bit is possibly nonzero in X (such as when
6167 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
6168 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
6169 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
6170 	     (plus X 1).
6171 
6172 	     Remove any ZERO_EXTRACT we made when thinking this was a
6173 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
6174 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
6175 	     the call to make_compound_operation in the SET case.
6176 
6177 	     Don't apply these optimizations if the caller would
6178 	     prefer a comparison rather than a value.
6179 	     E.g., for the condition in an IF_THEN_ELSE most targets need
6180 	     an explicit comparison.  */
6181 
6182 	  if (in_cond)
6183 	    ;
6184 
6185 	  else if (STORE_FLAG_VALUE == 1
6186 		   && new_code == NE
6187 		   && is_int_mode (mode, &int_mode)
6188 		   && op1 == const0_rtx
6189 		   && int_mode == GET_MODE (op0)
6190 		   && nonzero_bits (op0, int_mode) == 1)
6191 	    return gen_lowpart (int_mode,
6192 				expand_compound_operation (op0));
6193 
6194 	  else if (STORE_FLAG_VALUE == 1
6195 		   && new_code == NE
6196 		   && is_int_mode (mode, &int_mode)
6197 		   && op1 == const0_rtx
6198 		   && int_mode == GET_MODE (op0)
6199 		   && (num_sign_bit_copies (op0, int_mode)
6200 		       == GET_MODE_PRECISION (int_mode)))
6201 	    {
6202 	      op0 = expand_compound_operation (op0);
6203 	      return simplify_gen_unary (NEG, int_mode,
6204 					 gen_lowpart (int_mode, op0),
6205 					 int_mode);
6206 	    }
6207 
6208 	  else if (STORE_FLAG_VALUE == 1
6209 		   && new_code == EQ
6210 		   && is_int_mode (mode, &int_mode)
6211 		   && op1 == const0_rtx
6212 		   && int_mode == GET_MODE (op0)
6213 		   && nonzero_bits (op0, int_mode) == 1)
6214 	    {
6215 	      op0 = expand_compound_operation (op0);
6216 	      return simplify_gen_binary (XOR, int_mode,
6217 					  gen_lowpart (int_mode, op0),
6218 					  const1_rtx);
6219 	    }
6220 
6221 	  else if (STORE_FLAG_VALUE == 1
6222 		   && new_code == EQ
6223 		   && is_int_mode (mode, &int_mode)
6224 		   && op1 == const0_rtx
6225 		   && int_mode == GET_MODE (op0)
6226 		   && (num_sign_bit_copies (op0, int_mode)
6227 		       == GET_MODE_PRECISION (int_mode)))
6228 	    {
6229 	      op0 = expand_compound_operation (op0);
6230 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6231 	    }
6232 
6233 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6234 	     those above.  */
6235 	  if (in_cond)
6236 	    ;
6237 
6238 	  else if (STORE_FLAG_VALUE == -1
6239 		   && new_code == NE
6240 		   && is_int_mode (mode, &int_mode)
6241 		   && op1 == const0_rtx
6242 		   && int_mode == GET_MODE (op0)
6243 		   && (num_sign_bit_copies (op0, int_mode)
6244 		       == GET_MODE_PRECISION (int_mode)))
6245 	    return gen_lowpart (int_mode, expand_compound_operation (op0));
6246 
6247 	  else if (STORE_FLAG_VALUE == -1
6248 		   && new_code == NE
6249 		   && is_int_mode (mode, &int_mode)
6250 		   && op1 == const0_rtx
6251 		   && int_mode == GET_MODE (op0)
6252 		   && nonzero_bits (op0, int_mode) == 1)
6253 	    {
6254 	      op0 = expand_compound_operation (op0);
6255 	      return simplify_gen_unary (NEG, int_mode,
6256 					 gen_lowpart (int_mode, op0),
6257 					 int_mode);
6258 	    }
6259 
6260 	  else if (STORE_FLAG_VALUE == -1
6261 		   && new_code == EQ
6262 		   && is_int_mode (mode, &int_mode)
6263 		   && op1 == const0_rtx
6264 		   && int_mode == GET_MODE (op0)
6265 		   && (num_sign_bit_copies (op0, int_mode)
6266 		       == GET_MODE_PRECISION (int_mode)))
6267 	    {
6268 	      op0 = expand_compound_operation (op0);
6269 	      return simplify_gen_unary (NOT, int_mode,
6270 					 gen_lowpart (int_mode, op0),
6271 					 int_mode);
6272 	    }
6273 
6274 	  /* If X is 0/1, (eq X 0) is X-1.  */
6275 	  else if (STORE_FLAG_VALUE == -1
6276 		   && new_code == EQ
6277 		   && is_int_mode (mode, &int_mode)
6278 		   && op1 == const0_rtx
6279 		   && int_mode == GET_MODE (op0)
6280 		   && nonzero_bits (op0, int_mode) == 1)
6281 	    {
6282 	      op0 = expand_compound_operation (op0);
6283 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6284 	    }
6285 
6286 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6287 	     one bit that might be nonzero, we can convert (ne x 0) to
6288 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6289 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6290 	     going to test the sign bit.  */
6291 	  if (new_code == NE
6292 	      && is_int_mode (mode, &int_mode)
6293 	      && HWI_COMPUTABLE_MODE_P (int_mode)
6294 	      && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6295 	      && op1 == const0_rtx
6296 	      && int_mode == GET_MODE (op0)
6297 	      && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6298 	    {
6299 	      x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6300 					expand_compound_operation (op0),
6301 					GET_MODE_PRECISION (int_mode) - 1 - i);
6302 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6303 		return XEXP (x, 0);
6304 	      else
6305 		return x;
6306 	    }
6307 
6308 	  /* If the code changed, return a whole new comparison.
6309 	     We also need to avoid using SUBST in cases where
6310 	     simplify_comparison has widened a comparison with a CONST_INT,
6311 	     since in that case the wider CONST_INT may fail the sanity
6312 	     checks in do_SUBST.  */
6313 	  if (new_code != code
6314 	      || (CONST_INT_P (op1)
6315 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6316 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6317 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6318 
6319 	  /* Otherwise, keep this operation, but maybe change its operands.
6320 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6321 	  SUBST (XEXP (x, 0), op0);
6322 	  SUBST (XEXP (x, 1), op1);
6323 	}
6324       break;
6325 
6326     case IF_THEN_ELSE:
6327       return simplify_if_then_else (x);
6328 
6329     case ZERO_EXTRACT:
6330     case SIGN_EXTRACT:
6331     case ZERO_EXTEND:
6332     case SIGN_EXTEND:
6333       /* If we are processing SET_DEST, we are done.  */
6334       if (in_dest)
6335 	return x;
6336 
6337       return expand_compound_operation (x);
6338 
6339     case SET:
6340       return simplify_set (x);
6341 
6342     case AND:
6343     case IOR:
6344       return simplify_logical (x);
6345 
6346     case ASHIFT:
6347     case LSHIFTRT:
6348     case ASHIFTRT:
6349     case ROTATE:
6350     case ROTATERT:
6351       /* If this is a shift by a constant amount, simplify it.  */
6352       if (CONST_INT_P (XEXP (x, 1)))
6353 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6354 				     INTVAL (XEXP (x, 1)));
6355 
6356       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6357 	SUBST (XEXP (x, 1),
6358 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6359 			      (HOST_WIDE_INT_1U
6360 			       << exact_log2 (GET_MODE_UNIT_BITSIZE
6361 					      (GET_MODE (x))))
6362 			      - 1,
6363 			      0));
6364       break;
6365 
6366     default:
6367       break;
6368     }
6369 
6370   return x;
6371 }
6372 
6373 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6374 
6375 static rtx
6376 simplify_if_then_else (rtx x)
6377 {
6378   machine_mode mode = GET_MODE (x);
6379   rtx cond = XEXP (x, 0);
6380   rtx true_rtx = XEXP (x, 1);
6381   rtx false_rtx = XEXP (x, 2);
6382   enum rtx_code true_code = GET_CODE (cond);
6383   int comparison_p = COMPARISON_P (cond);
6384   rtx temp;
6385   int i;
6386   enum rtx_code false_code;
6387   rtx reversed;
6388   scalar_int_mode int_mode, inner_mode;
6389 
6390   /* Simplify storing of the truth value.  */
6391   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6392     return simplify_gen_relational (true_code, mode, VOIDmode,
6393 				    XEXP (cond, 0), XEXP (cond, 1));
6394 
6395   /* Also when the truth value has to be reversed.  */
6396   if (comparison_p
6397       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6398       && (reversed = reversed_comparison (cond, mode)))
6399     return reversed;
6400 
6401   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6402      in it is being compared against certain values.  Get the true and false
6403      comparisons and see if that says anything about the value of each arm.  */
6404 
6405   if (comparison_p
6406       && ((false_code = reversed_comparison_code (cond, NULL))
6407 	  != UNKNOWN)
6408       && REG_P (XEXP (cond, 0)))
6409     {
6410       HOST_WIDE_INT nzb;
6411       rtx from = XEXP (cond, 0);
6412       rtx true_val = XEXP (cond, 1);
6413       rtx false_val = true_val;
6414       int swapped = 0;
6415 
6416       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6417 
6418       if (false_code == EQ)
6419 	{
6420 	  swapped = 1, true_code = EQ, false_code = NE;
6421 	  std::swap (true_rtx, false_rtx);
6422 	}
6423 
6424       scalar_int_mode from_mode;
6425       if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6426 	{
6427 	  /* If we are comparing against zero and the expression being
6428 	     tested has only a single bit that might be nonzero, that is
6429 	     its value when it is not equal to zero.  Similarly if it is
6430 	     known to be -1 or 0.  */
6431 	  if (true_code == EQ
6432 	      && true_val == const0_rtx
6433 	      && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6434 	    {
6435 	      false_code = EQ;
6436 	      false_val = gen_int_mode (nzb, from_mode);
6437 	    }
6438 	  else if (true_code == EQ
6439 		   && true_val == const0_rtx
6440 		   && (num_sign_bit_copies (from, from_mode)
6441 		       == GET_MODE_PRECISION (from_mode)))
6442 	    {
6443 	      false_code = EQ;
6444 	      false_val = constm1_rtx;
6445 	    }
6446 	}
6447 
6448       /* Now simplify an arm if we know the value of the register in the
6449 	 branch and it is used in the arm.  Be careful due to the potential
6450 	 of locally-shared RTL.  */
6451 
6452       if (reg_mentioned_p (from, true_rtx))
6453 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6454 				      from, true_val),
6455 			  pc_rtx, pc_rtx, 0, 0, 0);
6456       if (reg_mentioned_p (from, false_rtx))
6457 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6458 				   from, false_val),
6459 			   pc_rtx, pc_rtx, 0, 0, 0);
6460 
6461       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6462       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6463 
6464       true_rtx = XEXP (x, 1);
6465       false_rtx = XEXP (x, 2);
6466       true_code = GET_CODE (cond);
6467     }
6468 
6469   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6470      reversed, do so to avoid needing two sets of patterns for
6471      subtract-and-branch insns.  Similarly if we have a constant in the true
6472      arm, the false arm is the same as the first operand of the comparison, or
6473      the false arm is more complicated than the true arm.  */
6474 
6475   if (comparison_p
6476       && reversed_comparison_code (cond, NULL) != UNKNOWN
6477       && (true_rtx == pc_rtx
6478 	  || (CONSTANT_P (true_rtx)
6479 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6480 	  || true_rtx == const0_rtx
6481 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6482 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6483 	      && !OBJECT_P (false_rtx))
6484 	  || reg_mentioned_p (true_rtx, false_rtx)
6485 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6486     {
6487       true_code = reversed_comparison_code (cond, NULL);
6488       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6489       SUBST (XEXP (x, 1), false_rtx);
6490       SUBST (XEXP (x, 2), true_rtx);
6491 
6492       std::swap (true_rtx, false_rtx);
6493       cond = XEXP (x, 0);
6494 
6495       /* It is possible that the conditional has been simplified out.  */
6496       true_code = GET_CODE (cond);
6497       comparison_p = COMPARISON_P (cond);
6498     }
6499 
6500   /* If the two arms are identical, we don't need the comparison.  */
6501 
6502   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6503     return true_rtx;
6504 
6505   /* Convert a == b ? b : a to "a".  */
6506   if (true_code == EQ && ! side_effects_p (cond)
6507       && !HONOR_NANS (mode)
6508       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6509       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6510     return false_rtx;
6511   else if (true_code == NE && ! side_effects_p (cond)
6512 	   && !HONOR_NANS (mode)
6513 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6514 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6515     return true_rtx;
6516 
6517   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6518 
6519   if (GET_MODE_CLASS (mode) == MODE_INT
6520       && comparison_p
6521       && XEXP (cond, 1) == const0_rtx
6522       && GET_CODE (false_rtx) == NEG
6523       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6524       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6525       && ! side_effects_p (true_rtx))
6526     switch (true_code)
6527       {
6528       case GT:
6529       case GE:
6530 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6531       case LT:
6532       case LE:
6533 	return
6534 	  simplify_gen_unary (NEG, mode,
6535 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6536 			      mode);
6537       default:
6538 	break;
6539       }
6540 
6541   /* Look for MIN or MAX.  */
6542 
6543   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6544       && comparison_p
6545       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6546       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6547       && ! side_effects_p (cond))
6548     switch (true_code)
6549       {
6550       case GE:
6551       case GT:
6552 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6553       case LE:
6554       case LT:
6555 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6556       case GEU:
6557       case GTU:
6558 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6559       case LEU:
6560       case LTU:
6561 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6562       default:
6563 	break;
6564       }
6565 
6566   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6567      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6568      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6569      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6570      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6571      neither 1 or -1, but it isn't worth checking for.  */
6572 
6573   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6574       && comparison_p
6575       && is_int_mode (mode, &int_mode)
6576       && ! side_effects_p (x))
6577     {
6578       rtx t = make_compound_operation (true_rtx, SET);
6579       rtx f = make_compound_operation (false_rtx, SET);
6580       rtx cond_op0 = XEXP (cond, 0);
6581       rtx cond_op1 = XEXP (cond, 1);
6582       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6583       scalar_int_mode m = int_mode;
6584       rtx z = 0, c1 = NULL_RTX;
6585 
6586       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6587 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6588 	   || GET_CODE (t) == ASHIFT
6589 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6590 	  && rtx_equal_p (XEXP (t, 0), f))
6591 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6592 
6593       /* If an identity-zero op is commutative, check whether there
6594 	 would be a match if we swapped the operands.  */
6595       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6596 		|| GET_CODE (t) == XOR)
6597 	       && rtx_equal_p (XEXP (t, 1), f))
6598 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6599       else if (GET_CODE (t) == SIGN_EXTEND
6600 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6601 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6602 		   || GET_CODE (XEXP (t, 0)) == MINUS
6603 		   || GET_CODE (XEXP (t, 0)) == IOR
6604 		   || GET_CODE (XEXP (t, 0)) == XOR
6605 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6606 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6607 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6608 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6609 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6610 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6611 	       && (num_sign_bit_copies (f, GET_MODE (f))
6612 		   > (unsigned int)
6613 		     (GET_MODE_PRECISION (int_mode)
6614 		      - GET_MODE_PRECISION (inner_mode))))
6615 	{
6616 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6617 	  extend_op = SIGN_EXTEND;
6618 	  m = inner_mode;
6619 	}
6620       else if (GET_CODE (t) == SIGN_EXTEND
6621 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6622 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6623 		   || GET_CODE (XEXP (t, 0)) == IOR
6624 		   || GET_CODE (XEXP (t, 0)) == XOR)
6625 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6626 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6627 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6628 	       && (num_sign_bit_copies (f, GET_MODE (f))
6629 		   > (unsigned int)
6630 		     (GET_MODE_PRECISION (int_mode)
6631 		      - GET_MODE_PRECISION (inner_mode))))
6632 	{
6633 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6634 	  extend_op = SIGN_EXTEND;
6635 	  m = inner_mode;
6636 	}
6637       else if (GET_CODE (t) == ZERO_EXTEND
6638 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6639 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6640 		   || GET_CODE (XEXP (t, 0)) == MINUS
6641 		   || GET_CODE (XEXP (t, 0)) == IOR
6642 		   || GET_CODE (XEXP (t, 0)) == XOR
6643 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6644 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6645 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6646 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6647 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6648 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6649 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6650 	       && ((nonzero_bits (f, GET_MODE (f))
6651 		    & ~GET_MODE_MASK (inner_mode))
6652 		   == 0))
6653 	{
6654 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6655 	  extend_op = ZERO_EXTEND;
6656 	  m = inner_mode;
6657 	}
6658       else if (GET_CODE (t) == ZERO_EXTEND
6659 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6660 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6661 		   || GET_CODE (XEXP (t, 0)) == IOR
6662 		   || GET_CODE (XEXP (t, 0)) == XOR)
6663 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6664 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6665 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6666 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6667 	       && ((nonzero_bits (f, GET_MODE (f))
6668 		    & ~GET_MODE_MASK (inner_mode))
6669 		   == 0))
6670 	{
6671 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6672 	  extend_op = ZERO_EXTEND;
6673 	  m = inner_mode;
6674 	}
6675 
6676       if (z)
6677 	{
6678 	  machine_mode cm = m;
6679 	  if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6680 	      && GET_MODE (c1) != VOIDmode)
6681 	    cm = GET_MODE (c1);
6682 	  temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6683 						 cond_op0, cond_op1),
6684 			pc_rtx, pc_rtx, 0, 0, 0);
6685 	  temp = simplify_gen_binary (MULT, cm, temp,
6686 				      simplify_gen_binary (MULT, cm, c1,
6687 							   const_true_rtx));
6688 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6689 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6690 
6691 	  if (extend_op != UNKNOWN)
6692 	    temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6693 
6694 	  return temp;
6695 	}
6696     }
6697 
6698   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6699      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6700      negation of a single bit, we can convert this operation to a shift.  We
6701      can actually do this more generally, but it doesn't seem worth it.  */
6702 
6703   if (true_code == NE
6704       && is_a <scalar_int_mode> (mode, &int_mode)
6705       && XEXP (cond, 1) == const0_rtx
6706       && false_rtx == const0_rtx
6707       && CONST_INT_P (true_rtx)
6708       && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6709 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6710 	  || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6711 	       == GET_MODE_PRECISION (int_mode))
6712 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6713     return
6714       simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6715 			    gen_lowpart (int_mode, XEXP (cond, 0)), i);
6716 
6717   /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6718      non-zero bit in A is C1.  */
6719   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6720       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6721       && is_a <scalar_int_mode> (mode, &int_mode)
6722       && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6723       && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6724 	  == nonzero_bits (XEXP (cond, 0), inner_mode)
6725       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6726     {
6727       rtx val = XEXP (cond, 0);
6728       if (inner_mode == int_mode)
6729         return val;
6730       else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6731         return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6732     }
6733 
6734   return x;
6735 }
6736 
6737 /* Simplify X, a SET expression.  Return the new expression.  */
6738 
6739 static rtx
6740 simplify_set (rtx x)
6741 {
6742   rtx src = SET_SRC (x);
6743   rtx dest = SET_DEST (x);
6744   machine_mode mode
6745     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6746   rtx_insn *other_insn;
6747   rtx *cc_use;
6748   scalar_int_mode int_mode;
6749 
6750   /* (set (pc) (return)) gets written as (return).  */
6751   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6752     return src;
6753 
6754   /* Now that we know for sure which bits of SRC we are using, see if we can
6755      simplify the expression for the object knowing that we only need the
6756      low-order bits.  */
6757 
6758   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6759     {
6760       src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6761       SUBST (SET_SRC (x), src);
6762     }
6763 
6764   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6765      the comparison result and try to simplify it unless we already have used
6766      undobuf.other_insn.  */
6767   if ((GET_MODE_CLASS (mode) == MODE_CC
6768        || GET_CODE (src) == COMPARE
6769        || CC0_P (dest))
6770       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6771       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6772       && COMPARISON_P (*cc_use)
6773       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6774     {
6775       enum rtx_code old_code = GET_CODE (*cc_use);
6776       enum rtx_code new_code;
6777       rtx op0, op1, tmp;
6778       int other_changed = 0;
6779       rtx inner_compare = NULL_RTX;
6780       machine_mode compare_mode = GET_MODE (dest);
6781 
6782       if (GET_CODE (src) == COMPARE)
6783 	{
6784 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6785 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6786 	    {
6787 	      inner_compare = op0;
6788 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6789 	    }
6790 	}
6791       else
6792 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6793 
6794       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6795 					   op0, op1);
6796       if (!tmp)
6797 	new_code = old_code;
6798       else if (!CONSTANT_P (tmp))
6799 	{
6800 	  new_code = GET_CODE (tmp);
6801 	  op0 = XEXP (tmp, 0);
6802 	  op1 = XEXP (tmp, 1);
6803 	}
6804       else
6805 	{
6806 	  rtx pat = PATTERN (other_insn);
6807 	  undobuf.other_insn = other_insn;
6808 	  SUBST (*cc_use, tmp);
6809 
6810 	  /* Attempt to simplify CC user.  */
6811 	  if (GET_CODE (pat) == SET)
6812 	    {
6813 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6814 	      if (new_rtx != NULL_RTX)
6815 		SUBST (SET_SRC (pat), new_rtx);
6816 	    }
6817 
6818 	  /* Convert X into a no-op move.  */
6819 	  SUBST (SET_DEST (x), pc_rtx);
6820 	  SUBST (SET_SRC (x), pc_rtx);
6821 	  return x;
6822 	}
6823 
6824       /* Simplify our comparison, if possible.  */
6825       new_code = simplify_comparison (new_code, &op0, &op1);
6826 
6827 #ifdef SELECT_CC_MODE
6828       /* If this machine has CC modes other than CCmode, check to see if we
6829 	 need to use a different CC mode here.  */
6830       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6831 	compare_mode = GET_MODE (op0);
6832       else if (inner_compare
6833 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6834 	       && new_code == old_code
6835 	       && op0 == XEXP (inner_compare, 0)
6836 	       && op1 == XEXP (inner_compare, 1))
6837 	compare_mode = GET_MODE (inner_compare);
6838       else
6839 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6840 
6841       /* If the mode changed, we have to change SET_DEST, the mode in the
6842 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6843 	 a hard register, just build new versions with the proper mode.  If it
6844 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6845 	 which case we can safely change its mode.  */
6846       if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6847 	{
6848 	  if (can_change_dest_mode (dest, 0, compare_mode))
6849 	    {
6850 	      unsigned int regno = REGNO (dest);
6851 	      rtx new_dest;
6852 
6853 	      if (regno < FIRST_PSEUDO_REGISTER)
6854 		new_dest = gen_rtx_REG (compare_mode, regno);
6855 	      else
6856 		{
6857 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6858 		  new_dest = regno_reg_rtx[regno];
6859 		}
6860 
6861 	      SUBST (SET_DEST (x), new_dest);
6862 	      SUBST (XEXP (*cc_use, 0), new_dest);
6863 	      other_changed = 1;
6864 
6865 	      dest = new_dest;
6866 	    }
6867 	}
6868 #endif  /* SELECT_CC_MODE */
6869 
6870       /* If the code changed, we have to build a new comparison in
6871 	 undobuf.other_insn.  */
6872       if (new_code != old_code)
6873 	{
6874 	  int other_changed_previously = other_changed;
6875 	  unsigned HOST_WIDE_INT mask;
6876 	  rtx old_cc_use = *cc_use;
6877 
6878 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6879 					  dest, const0_rtx));
6880 	  other_changed = 1;
6881 
6882 	  /* If the only change we made was to change an EQ into an NE or
6883 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6884 	     is zero, check if changing the user of the condition code will
6885 	     produce a valid insn.  If it won't, we can keep the original code
6886 	     in that insn by surrounding our operation with an XOR.  */
6887 
6888 	  if (((old_code == NE && new_code == EQ)
6889 	       || (old_code == EQ && new_code == NE))
6890 	      && ! other_changed_previously && op1 == const0_rtx
6891 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6892 	      && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6893 	    {
6894 	      rtx pat = PATTERN (other_insn), note = 0;
6895 
6896 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6897 		   && ! check_asm_operands (pat)))
6898 		{
6899 		  *cc_use = old_cc_use;
6900 		  other_changed = 0;
6901 
6902 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6903 					     gen_int_mode (mask,
6904 							   GET_MODE (op0)));
6905 		}
6906 	    }
6907 	}
6908 
6909       if (other_changed)
6910 	undobuf.other_insn = other_insn;
6911 
6912       /* Don't generate a compare of a CC with 0, just use that CC.  */
6913       if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6914 	{
6915 	  SUBST (SET_SRC (x), op0);
6916 	  src = SET_SRC (x);
6917 	}
6918       /* Otherwise, if we didn't previously have the same COMPARE we
6919 	 want, create it from scratch.  */
6920       else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6921 	       || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6922 	{
6923 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6924 	  src = SET_SRC (x);
6925 	}
6926     }
6927   else
6928     {
6929       /* Get SET_SRC in a form where we have placed back any
6930 	 compound expressions.  Then do the checks below.  */
6931       src = make_compound_operation (src, SET);
6932       SUBST (SET_SRC (x), src);
6933     }
6934 
6935   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6936      and X being a REG or (subreg (reg)), we may be able to convert this to
6937      (set (subreg:m2 x) (op)).
6938 
6939      We can always do this if M1 is narrower than M2 because that means that
6940      we only care about the low bits of the result.
6941 
6942      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6943      perform a narrower operation than requested since the high-order bits will
6944      be undefined.  On machine where it is defined, this transformation is safe
6945      as long as M1 and M2 have the same number of words.  */
6946 
6947   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6948       && !OBJECT_P (SUBREG_REG (src))
6949       && (known_equal_after_align_up
6950 	  (GET_MODE_SIZE (GET_MODE (src)),
6951 	   GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6952 	   UNITS_PER_WORD))
6953       && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6954       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6955 	    && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6956 				       GET_MODE (SUBREG_REG (src)),
6957 				       GET_MODE (src)))
6958       && (REG_P (dest)
6959 	  || (GET_CODE (dest) == SUBREG
6960 	      && REG_P (SUBREG_REG (dest)))))
6961     {
6962       SUBST (SET_DEST (x),
6963 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6964 				      dest));
6965       SUBST (SET_SRC (x), SUBREG_REG (src));
6966 
6967       src = SET_SRC (x), dest = SET_DEST (x);
6968     }
6969 
6970   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6971      in SRC.  */
6972   if (dest == cc0_rtx
6973       && partial_subreg_p (src)
6974       && subreg_lowpart_p (src))
6975     {
6976       rtx inner = SUBREG_REG (src);
6977       machine_mode inner_mode = GET_MODE (inner);
6978 
6979       /* Here we make sure that we don't have a sign bit on.  */
6980       if (val_signbit_known_clear_p (GET_MODE (src),
6981 				     nonzero_bits (inner, inner_mode)))
6982 	{
6983 	  SUBST (SET_SRC (x), inner);
6984 	  src = SET_SRC (x);
6985 	}
6986     }
6987 
6988   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6989      would require a paradoxical subreg.  Replace the subreg with a
6990      zero_extend to avoid the reload that would otherwise be required.
6991      Don't do this unless we have a scalar integer mode, otherwise the
6992      transformation is incorrect.  */
6993 
6994   enum rtx_code extend_op;
6995   if (paradoxical_subreg_p (src)
6996       && MEM_P (SUBREG_REG (src))
6997       && SCALAR_INT_MODE_P (GET_MODE (src))
6998       && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6999     {
7000       SUBST (SET_SRC (x),
7001 	     gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7002 
7003       src = SET_SRC (x);
7004     }
7005 
7006   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7007      are comparing an item known to be 0 or -1 against 0, use a logical
7008      operation instead. Check for one of the arms being an IOR of the other
7009      arm with some value.  We compute three terms to be IOR'ed together.  In
7010      practice, at most two will be nonzero.  Then we do the IOR's.  */
7011 
7012   if (GET_CODE (dest) != PC
7013       && GET_CODE (src) == IF_THEN_ELSE
7014       && is_int_mode (GET_MODE (src), &int_mode)
7015       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7016       && XEXP (XEXP (src, 0), 1) == const0_rtx
7017       && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7018       && (!HAVE_conditional_move
7019 	  || ! can_conditionally_move_p (int_mode))
7020       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7021 	  == GET_MODE_PRECISION (int_mode))
7022       && ! side_effects_p (src))
7023     {
7024       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7025 		      ? XEXP (src, 1) : XEXP (src, 2));
7026       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7027 		   ? XEXP (src, 2) : XEXP (src, 1));
7028       rtx term1 = const0_rtx, term2, term3;
7029 
7030       if (GET_CODE (true_rtx) == IOR
7031 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7032 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7033       else if (GET_CODE (true_rtx) == IOR
7034 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7035 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7036       else if (GET_CODE (false_rtx) == IOR
7037 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7038 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7039       else if (GET_CODE (false_rtx) == IOR
7040 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7041 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7042 
7043       term2 = simplify_gen_binary (AND, int_mode,
7044 				   XEXP (XEXP (src, 0), 0), true_rtx);
7045       term3 = simplify_gen_binary (AND, int_mode,
7046 				   simplify_gen_unary (NOT, int_mode,
7047 						       XEXP (XEXP (src, 0), 0),
7048 						       int_mode),
7049 				   false_rtx);
7050 
7051       SUBST (SET_SRC (x),
7052 	     simplify_gen_binary (IOR, int_mode,
7053 				  simplify_gen_binary (IOR, int_mode,
7054 						       term1, term2),
7055 				  term3));
7056 
7057       src = SET_SRC (x);
7058     }
7059 
7060   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7061      whole thing fail.  */
7062   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7063     return src;
7064   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7065     return dest;
7066   else
7067     /* Convert this into a field assignment operation, if possible.  */
7068     return make_field_assignment (x);
7069 }
7070 
7071 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7072    result.  */
7073 
7074 static rtx
7075 simplify_logical (rtx x)
7076 {
7077   rtx op0 = XEXP (x, 0);
7078   rtx op1 = XEXP (x, 1);
7079   scalar_int_mode mode;
7080 
7081   switch (GET_CODE (x))
7082     {
7083     case AND:
7084       /* We can call simplify_and_const_int only if we don't lose
7085 	 any (sign) bits when converting INTVAL (op1) to
7086 	 "unsigned HOST_WIDE_INT".  */
7087       if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7088 	  && CONST_INT_P (op1)
7089 	  && (HWI_COMPUTABLE_MODE_P (mode)
7090 	      || INTVAL (op1) > 0))
7091 	{
7092 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7093 	  if (GET_CODE (x) != AND)
7094 	    return x;
7095 
7096 	  op0 = XEXP (x, 0);
7097 	  op1 = XEXP (x, 1);
7098 	}
7099 
7100       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7101 	 apply the distributive law and then the inverse distributive
7102 	 law to see if things simplify.  */
7103       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7104 	{
7105 	  rtx result = distribute_and_simplify_rtx (x, 0);
7106 	  if (result)
7107 	    return result;
7108 	}
7109       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7110 	{
7111 	  rtx result = distribute_and_simplify_rtx (x, 1);
7112 	  if (result)
7113 	    return result;
7114 	}
7115       break;
7116 
7117     case IOR:
7118       /* If we have (ior (and A B) C), apply the distributive law and then
7119 	 the inverse distributive law to see if things simplify.  */
7120 
7121       if (GET_CODE (op0) == AND)
7122 	{
7123 	  rtx result = distribute_and_simplify_rtx (x, 0);
7124 	  if (result)
7125 	    return result;
7126 	}
7127 
7128       if (GET_CODE (op1) == AND)
7129 	{
7130 	  rtx result = distribute_and_simplify_rtx (x, 1);
7131 	  if (result)
7132 	    return result;
7133 	}
7134       break;
7135 
7136     default:
7137       gcc_unreachable ();
7138     }
7139 
7140   return x;
7141 }
7142 
7143 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7144    operations" because they can be replaced with two more basic operations.
7145    ZERO_EXTEND is also considered "compound" because it can be replaced with
7146    an AND operation, which is simpler, though only one operation.
7147 
7148    The function expand_compound_operation is called with an rtx expression
7149    and will convert it to the appropriate shifts and AND operations,
7150    simplifying at each stage.
7151 
7152    The function make_compound_operation is called to convert an expression
7153    consisting of shifts and ANDs into the equivalent compound expression.
7154    It is the inverse of this function, loosely speaking.  */
7155 
7156 static rtx
7157 expand_compound_operation (rtx x)
7158 {
7159   unsigned HOST_WIDE_INT pos = 0, len;
7160   int unsignedp = 0;
7161   unsigned int modewidth;
7162   rtx tem;
7163   scalar_int_mode inner_mode;
7164 
7165   switch (GET_CODE (x))
7166     {
7167     case ZERO_EXTEND:
7168       unsignedp = 1;
7169       /* FALLTHRU */
7170     case SIGN_EXTEND:
7171       /* We can't necessarily use a const_int for a multiword mode;
7172 	 it depends on implicitly extending the value.
7173 	 Since we don't know the right way to extend it,
7174 	 we can't tell whether the implicit way is right.
7175 
7176 	 Even for a mode that is no wider than a const_int,
7177 	 we can't win, because we need to sign extend one of its bits through
7178 	 the rest of it, and we don't know which bit.  */
7179       if (CONST_INT_P (XEXP (x, 0)))
7180 	return x;
7181 
7182       /* Reject modes that aren't scalar integers because turning vector
7183 	 or complex modes into shifts causes problems.  */
7184       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7185 	return x;
7186 
7187       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7188 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
7189 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7190 	 reloaded. If not for that, MEM's would very rarely be safe.
7191 
7192 	 Reject modes bigger than a word, because we might not be able
7193 	 to reference a two-register group starting with an arbitrary register
7194 	 (and currently gen_lowpart might crash for a SUBREG).  */
7195 
7196       if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7197 	return x;
7198 
7199       len = GET_MODE_PRECISION (inner_mode);
7200       /* If the inner object has VOIDmode (the only way this can happen
7201 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
7202 	 know how much masking to do.  */
7203       if (len == 0)
7204 	return x;
7205 
7206       break;
7207 
7208     case ZERO_EXTRACT:
7209       unsignedp = 1;
7210 
7211       /* fall through */
7212 
7213     case SIGN_EXTRACT:
7214       /* If the operand is a CLOBBER, just return it.  */
7215       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7216 	return XEXP (x, 0);
7217 
7218       if (!CONST_INT_P (XEXP (x, 1))
7219 	  || !CONST_INT_P (XEXP (x, 2)))
7220 	return x;
7221 
7222       /* Reject modes that aren't scalar integers because turning vector
7223 	 or complex modes into shifts causes problems.  */
7224       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7225 	return x;
7226 
7227       len = INTVAL (XEXP (x, 1));
7228       pos = INTVAL (XEXP (x, 2));
7229 
7230       /* This should stay within the object being extracted, fail otherwise.  */
7231       if (len + pos > GET_MODE_PRECISION (inner_mode))
7232 	return x;
7233 
7234       if (BITS_BIG_ENDIAN)
7235 	pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7236 
7237       break;
7238 
7239     default:
7240       return x;
7241     }
7242 
7243   /* We've rejected non-scalar operations by now.  */
7244   scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7245 
7246   /* Convert sign extension to zero extension, if we know that the high
7247      bit is not set, as this is easier to optimize.  It will be converted
7248      back to cheaper alternative in make_extraction.  */
7249   if (GET_CODE (x) == SIGN_EXTEND
7250       && HWI_COMPUTABLE_MODE_P (mode)
7251       && ((nonzero_bits (XEXP (x, 0), inner_mode)
7252 	   & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7253 	  == 0))
7254     {
7255       rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7256       rtx temp2 = expand_compound_operation (temp);
7257 
7258       /* Make sure this is a profitable operation.  */
7259       if (set_src_cost (x, mode, optimize_this_for_speed_p)
7260           > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7261        return temp2;
7262       else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7263                > set_src_cost (temp, mode, optimize_this_for_speed_p))
7264        return temp;
7265       else
7266        return x;
7267     }
7268 
7269   /* We can optimize some special cases of ZERO_EXTEND.  */
7270   if (GET_CODE (x) == ZERO_EXTEND)
7271     {
7272       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7273 	 know that the last value didn't have any inappropriate bits
7274 	 set.  */
7275       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7276 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7277 	  && HWI_COMPUTABLE_MODE_P (mode)
7278 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7279 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7280 	return XEXP (XEXP (x, 0), 0);
7281 
7282       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7283       if (GET_CODE (XEXP (x, 0)) == SUBREG
7284 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7285 	  && subreg_lowpart_p (XEXP (x, 0))
7286 	  && HWI_COMPUTABLE_MODE_P (mode)
7287 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7288 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7289 	return SUBREG_REG (XEXP (x, 0));
7290 
7291       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7292 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7293 	 the first case, but it works even when MODE is larger
7294 	 than HOST_WIDE_INT.  */
7295       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7296 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7297 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7298 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7299 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7300 	return XEXP (XEXP (x, 0), 0);
7301 
7302       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7303       if (GET_CODE (XEXP (x, 0)) == SUBREG
7304 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7305 	  && subreg_lowpart_p (XEXP (x, 0))
7306 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7307 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7308 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7309 	return SUBREG_REG (XEXP (x, 0));
7310 
7311     }
7312 
7313   /* If we reach here, we want to return a pair of shifts.  The inner
7314      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7315      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7316      logical depending on the value of UNSIGNEDP.
7317 
7318      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7319      converted into an AND of a shift.
7320 
7321      We must check for the case where the left shift would have a negative
7322      count.  This can happen in a case like (x >> 31) & 255 on machines
7323      that can't shift by a constant.  On those machines, we would first
7324      combine the shift with the AND to produce a variable-position
7325      extraction.  Then the constant of 31 would be substituted in
7326      to produce such a position.  */
7327 
7328   modewidth = GET_MODE_PRECISION (mode);
7329   if (modewidth >= pos + len)
7330     {
7331       tem = gen_lowpart (mode, XEXP (x, 0));
7332       if (!tem || GET_CODE (tem) == CLOBBER)
7333 	return x;
7334       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7335 				  tem, modewidth - pos - len);
7336       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7337 				  mode, tem, modewidth - len);
7338     }
7339   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7340     tem = simplify_and_const_int (NULL_RTX, mode,
7341 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
7342 							mode, XEXP (x, 0),
7343 							pos),
7344 				  (HOST_WIDE_INT_1U << len) - 1);
7345   else
7346     /* Any other cases we can't handle.  */
7347     return x;
7348 
7349   /* If we couldn't do this for some reason, return the original
7350      expression.  */
7351   if (GET_CODE (tem) == CLOBBER)
7352     return x;
7353 
7354   return tem;
7355 }
7356 
7357 /* X is a SET which contains an assignment of one object into
7358    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7359    or certain SUBREGS). If possible, convert it into a series of
7360    logical operations.
7361 
7362    We half-heartedly support variable positions, but do not at all
7363    support variable lengths.  */
7364 
7365 static const_rtx
7366 expand_field_assignment (const_rtx x)
7367 {
7368   rtx inner;
7369   rtx pos;			/* Always counts from low bit.  */
7370   int len, inner_len;
7371   rtx mask, cleared, masked;
7372   scalar_int_mode compute_mode;
7373 
7374   /* Loop until we find something we can't simplify.  */
7375   while (1)
7376     {
7377       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7378 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7379 	{
7380 	  rtx x0 = XEXP (SET_DEST (x), 0);
7381 	  if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7382 	    break;
7383 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7384 	  pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7385 			      MAX_MODE_INT);
7386 	}
7387       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7388 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7389 	{
7390 	  inner = XEXP (SET_DEST (x), 0);
7391 	  if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7392 	    break;
7393 
7394 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7395 	  pos = XEXP (SET_DEST (x), 2);
7396 
7397 	  /* A constant position should stay within the width of INNER.  */
7398 	  if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7399 	    break;
7400 
7401 	  if (BITS_BIG_ENDIAN)
7402 	    {
7403 	      if (CONST_INT_P (pos))
7404 		pos = GEN_INT (inner_len - len - INTVAL (pos));
7405 	      else if (GET_CODE (pos) == MINUS
7406 		       && CONST_INT_P (XEXP (pos, 1))
7407 		       && INTVAL (XEXP (pos, 1)) == inner_len - len)
7408 		/* If position is ADJUST - X, new position is X.  */
7409 		pos = XEXP (pos, 0);
7410 	      else
7411 		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7412 					   gen_int_mode (inner_len - len,
7413 							 GET_MODE (pos)),
7414 					   pos);
7415 	    }
7416 	}
7417 
7418       /* If the destination is a subreg that overwrites the whole of the inner
7419 	 register, we can move the subreg to the source.  */
7420       else if (GET_CODE (SET_DEST (x)) == SUBREG
7421 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7422 	       && nonzero_sign_valid
7423 	       && !read_modify_subreg_p (SET_DEST (x)))
7424 	{
7425 	  x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7426 			   gen_lowpart
7427 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7428 			    SET_SRC (x)));
7429 	  continue;
7430 	}
7431       else
7432 	break;
7433 
7434       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7435 	inner = SUBREG_REG (inner);
7436 
7437       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7438       if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7439 	{
7440 	  /* Don't do anything for vector or complex integral types.  */
7441 	  if (! FLOAT_MODE_P (GET_MODE (inner)))
7442 	    break;
7443 
7444 	  /* Try to find an integral mode to pun with.  */
7445 	  if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7446 	      .exists (&compute_mode))
7447 	    break;
7448 
7449 	  inner = gen_lowpart (compute_mode, inner);
7450 	}
7451 
7452       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7453       if (len >= HOST_BITS_PER_WIDE_INT)
7454 	break;
7455 
7456       /* Don't try to compute in too wide unsupported modes.  */
7457       if (!targetm.scalar_mode_supported_p (compute_mode))
7458 	break;
7459 
7460       /* Now compute the equivalent expression.  Make a copy of INNER
7461 	 for the SET_DEST in case it is a MEM into which we will substitute;
7462 	 we don't want shared RTL in that case.  */
7463       mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7464 			   compute_mode);
7465       cleared = simplify_gen_binary (AND, compute_mode,
7466 				     simplify_gen_unary (NOT, compute_mode,
7467 				       simplify_gen_binary (ASHIFT,
7468 							    compute_mode,
7469 							    mask, pos),
7470 				       compute_mode),
7471 				     inner);
7472       masked = simplify_gen_binary (ASHIFT, compute_mode,
7473 				    simplify_gen_binary (
7474 				      AND, compute_mode,
7475 				      gen_lowpart (compute_mode, SET_SRC (x)),
7476 				      mask),
7477 				    pos);
7478 
7479       x = gen_rtx_SET (copy_rtx (inner),
7480 		       simplify_gen_binary (IOR, compute_mode,
7481 					    cleared, masked));
7482     }
7483 
7484   return x;
7485 }
7486 
7487 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7488    it is an RTX that represents the (variable) starting position; otherwise,
7489    POS is the (constant) starting bit position.  Both are counted from the LSB.
7490 
7491    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7492 
7493    IN_DEST is nonzero if this is a reference in the destination of a SET.
7494    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7495    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7496    be used.
7497 
7498    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7499    ZERO_EXTRACT should be built even for bits starting at bit 0.
7500 
7501    MODE is the desired mode of the result (if IN_DEST == 0).
7502 
7503    The result is an RTX for the extraction or NULL_RTX if the target
7504    can't handle it.  */
7505 
7506 static rtx
7507 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7508 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7509 		 int in_dest, int in_compare)
7510 {
7511   /* This mode describes the size of the storage area
7512      to fetch the overall value from.  Within that, we
7513      ignore the POS lowest bits, etc.  */
7514   machine_mode is_mode = GET_MODE (inner);
7515   machine_mode inner_mode;
7516   scalar_int_mode wanted_inner_mode;
7517   scalar_int_mode wanted_inner_reg_mode = word_mode;
7518   scalar_int_mode pos_mode = word_mode;
7519   machine_mode extraction_mode = word_mode;
7520   rtx new_rtx = 0;
7521   rtx orig_pos_rtx = pos_rtx;
7522   HOST_WIDE_INT orig_pos;
7523 
7524   if (pos_rtx && CONST_INT_P (pos_rtx))
7525     pos = INTVAL (pos_rtx), pos_rtx = 0;
7526 
7527   if (GET_CODE (inner) == SUBREG
7528       && subreg_lowpart_p (inner)
7529       && (paradoxical_subreg_p (inner)
7530 	  /* If trying or potentionally trying to extract
7531 	     bits outside of is_mode, don't look through
7532 	     non-paradoxical SUBREGs.  See PR82192.  */
7533 	  || (pos_rtx == NULL_RTX
7534 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7535     {
7536       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7537 	 consider just the QI as the memory to extract from.
7538 	 The subreg adds or removes high bits; its mode is
7539 	 irrelevant to the meaning of this extraction,
7540 	 since POS and LEN count from the lsb.  */
7541       if (MEM_P (SUBREG_REG (inner)))
7542 	is_mode = GET_MODE (SUBREG_REG (inner));
7543       inner = SUBREG_REG (inner);
7544     }
7545   else if (GET_CODE (inner) == ASHIFT
7546 	   && CONST_INT_P (XEXP (inner, 1))
7547 	   && pos_rtx == 0 && pos == 0
7548 	   && len > UINTVAL (XEXP (inner, 1)))
7549     {
7550       /* We're extracting the least significant bits of an rtx
7551 	 (ashift X (const_int C)), where LEN > C.  Extract the
7552 	 least significant (LEN - C) bits of X, giving an rtx
7553 	 whose mode is MODE, then shift it left C times.  */
7554       new_rtx = make_extraction (mode, XEXP (inner, 0),
7555 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7556 			     unsignedp, in_dest, in_compare);
7557       if (new_rtx != 0)
7558 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7559     }
7560   else if (GET_CODE (inner) == TRUNCATE
7561 	   /* If trying or potentionally trying to extract
7562 	      bits outside of is_mode, don't look through
7563 	      TRUNCATE.  See PR82192.  */
7564 	   && pos_rtx == NULL_RTX
7565 	   && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7566     inner = XEXP (inner, 0);
7567 
7568   inner_mode = GET_MODE (inner);
7569 
7570   /* See if this can be done without an extraction.  We never can if the
7571      width of the field is not the same as that of some integer mode. For
7572      registers, we can only avoid the extraction if the position is at the
7573      low-order bit and this is either not in the destination or we have the
7574      appropriate STRICT_LOW_PART operation available.
7575 
7576      For MEM, we can avoid an extract if the field starts on an appropriate
7577      boundary and we can change the mode of the memory reference.  */
7578 
7579   scalar_int_mode tmode;
7580   if (int_mode_for_size (len, 1).exists (&tmode)
7581       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7582 	   && !MEM_P (inner)
7583 	   && (pos == 0 || REG_P (inner))
7584 	   && (inner_mode == tmode
7585 	       || !REG_P (inner)
7586 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7587 	       || reg_truncated_to_mode (tmode, inner))
7588 	   && (! in_dest
7589 	       || (REG_P (inner)
7590 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7591 	  || (MEM_P (inner) && pos_rtx == 0
7592 	      && (pos
7593 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7594 		     : BITS_PER_UNIT)) == 0
7595 	      /* We can't do this if we are widening INNER_MODE (it
7596 		 may not be aligned, for one thing).  */
7597 	      && !paradoxical_subreg_p (tmode, inner_mode)
7598 	      && (inner_mode == tmode
7599 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7600 						  MEM_ADDR_SPACE (inner))
7601 		      && ! MEM_VOLATILE_P (inner))))))
7602     {
7603       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7604 	 field.  If the original and current mode are the same, we need not
7605 	 adjust the offset.  Otherwise, we do if bytes big endian.
7606 
7607 	 If INNER is not a MEM, get a piece consisting of just the field
7608 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7609 
7610       if (MEM_P (inner))
7611 	{
7612 	  poly_int64 offset;
7613 
7614 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7615 	  if (BYTES_BIG_ENDIAN)
7616 	    offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7617 					       - len - pos);
7618 	  else
7619 	    offset = pos / BITS_PER_UNIT;
7620 
7621 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7622 	}
7623       else if (REG_P (inner))
7624 	{
7625 	  if (tmode != inner_mode)
7626 	    {
7627 	      /* We can't call gen_lowpart in a DEST since we
7628 		 always want a SUBREG (see below) and it would sometimes
7629 		 return a new hard register.  */
7630 	      if (pos || in_dest)
7631 		{
7632 		  poly_uint64 offset
7633 		    = subreg_offset_from_lsb (tmode, inner_mode, pos);
7634 
7635 		  /* Avoid creating invalid subregs, for example when
7636 		     simplifying (x>>32)&255.  */
7637 		  if (!validate_subreg (tmode, inner_mode, inner, offset))
7638 		    return NULL_RTX;
7639 
7640 		  new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7641 		}
7642 	      else
7643 		new_rtx = gen_lowpart (tmode, inner);
7644 	    }
7645 	  else
7646 	    new_rtx = inner;
7647 	}
7648       else
7649 	new_rtx = force_to_mode (inner, tmode,
7650 				 len >= HOST_BITS_PER_WIDE_INT
7651 				 ? HOST_WIDE_INT_M1U
7652 				 : (HOST_WIDE_INT_1U << len) - 1, 0);
7653 
7654       /* If this extraction is going into the destination of a SET,
7655 	 make a STRICT_LOW_PART unless we made a MEM.  */
7656 
7657       if (in_dest)
7658 	return (MEM_P (new_rtx) ? new_rtx
7659 		: (GET_CODE (new_rtx) != SUBREG
7660 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7661 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7662 
7663       if (mode == tmode)
7664 	return new_rtx;
7665 
7666       if (CONST_SCALAR_INT_P (new_rtx))
7667 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7668 					 mode, new_rtx, tmode);
7669 
7670       /* If we know that no extraneous bits are set, and that the high
7671 	 bit is not set, convert the extraction to the cheaper of
7672 	 sign and zero extension, that are equivalent in these cases.  */
7673       if (flag_expensive_optimizations
7674 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7675 	      && ((nonzero_bits (new_rtx, tmode)
7676 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7677 		  == 0)))
7678 	{
7679 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7680 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7681 
7682 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7683 	     backends.  */
7684 	  if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7685 	      <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7686 	    return temp;
7687 	  return temp1;
7688 	}
7689 
7690       /* Otherwise, sign- or zero-extend unless we already are in the
7691 	 proper mode.  */
7692 
7693       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7694 			     mode, new_rtx));
7695     }
7696 
7697   /* Unless this is a COMPARE or we have a funny memory reference,
7698      don't do anything with zero-extending field extracts starting at
7699      the low-order bit since they are simple AND operations.  */
7700   if (pos_rtx == 0 && pos == 0 && ! in_dest
7701       && ! in_compare && unsignedp)
7702     return 0;
7703 
7704   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7705      if the position is not a constant and the length is not 1.  In all
7706      other cases, we would only be going outside our object in cases when
7707      an original shift would have been undefined.  */
7708   if (MEM_P (inner)
7709       && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7710 	  || (pos_rtx != 0 && len != 1)))
7711     return 0;
7712 
7713   enum extraction_pattern pattern = (in_dest ? EP_insv
7714 				     : unsignedp ? EP_extzv : EP_extv);
7715 
7716   /* If INNER is not from memory, we want it to have the mode of a register
7717      extraction pattern's structure operand, or word_mode if there is no
7718      such pattern.  The same applies to extraction_mode and pos_mode
7719      and their respective operands.
7720 
7721      For memory, assume that the desired extraction_mode and pos_mode
7722      are the same as for a register operation, since at present we don't
7723      have named patterns for aligned memory structures.  */
7724   struct extraction_insn insn;
7725   unsigned int inner_size;
7726   if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7727       && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7728     {
7729       wanted_inner_reg_mode = insn.struct_mode.require ();
7730       pos_mode = insn.pos_mode;
7731       extraction_mode = insn.field_mode;
7732     }
7733 
7734   /* Never narrow an object, since that might not be safe.  */
7735 
7736   if (mode != VOIDmode
7737       && partial_subreg_p (extraction_mode, mode))
7738     extraction_mode = mode;
7739 
7740   if (!MEM_P (inner))
7741     wanted_inner_mode = wanted_inner_reg_mode;
7742   else
7743     {
7744       /* Be careful not to go beyond the extracted object and maintain the
7745 	 natural alignment of the memory.  */
7746       wanted_inner_mode = smallest_int_mode_for_size (len);
7747       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7748 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7749 	wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7750     }
7751 
7752   orig_pos = pos;
7753 
7754   if (BITS_BIG_ENDIAN)
7755     {
7756       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7757 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7758 	 position.  Otherwise, build subtraction.
7759 	 Note that POS is relative to the mode of the original argument.
7760 	 If it's a MEM we need to recompute POS relative to that.
7761 	 However, if we're extracting from (or inserting into) a register,
7762 	 we want to recompute POS relative to wanted_inner_mode.  */
7763       int width;
7764       if (!MEM_P (inner))
7765 	width = GET_MODE_BITSIZE (wanted_inner_mode);
7766       else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7767 	return NULL_RTX;
7768 
7769       if (pos_rtx == 0)
7770 	pos = width - len - pos;
7771       else
7772 	pos_rtx
7773 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7774 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7775 			   pos_rtx);
7776       /* POS may be less than 0 now, but we check for that below.
7777 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7778     }
7779 
7780   /* If INNER has a wider mode, and this is a constant extraction, try to
7781      make it smaller and adjust the byte to point to the byte containing
7782      the value.  */
7783   if (wanted_inner_mode != VOIDmode
7784       && inner_mode != wanted_inner_mode
7785       && ! pos_rtx
7786       && partial_subreg_p (wanted_inner_mode, is_mode)
7787       && MEM_P (inner)
7788       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7789       && ! MEM_VOLATILE_P (inner))
7790     {
7791       poly_int64 offset = 0;
7792 
7793       /* The computations below will be correct if the machine is big
7794 	 endian in both bits and bytes or little endian in bits and bytes.
7795 	 If it is mixed, we must adjust.  */
7796 
7797       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7798 	 adjust OFFSET to compensate.  */
7799       if (BYTES_BIG_ENDIAN
7800 	  && paradoxical_subreg_p (is_mode, inner_mode))
7801 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7802 
7803       /* We can now move to the desired byte.  */
7804       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7805 		* GET_MODE_SIZE (wanted_inner_mode);
7806       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7807 
7808       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7809 	  && is_mode != wanted_inner_mode)
7810 	offset = (GET_MODE_SIZE (is_mode)
7811 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7812 
7813       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7814     }
7815 
7816   /* If INNER is not memory, get it into the proper mode.  If we are changing
7817      its mode, POS must be a constant and smaller than the size of the new
7818      mode.  */
7819   else if (!MEM_P (inner))
7820     {
7821       /* On the LHS, don't create paradoxical subregs implicitely truncating
7822 	 the register unless TARGET_TRULY_NOOP_TRUNCATION.  */
7823       if (in_dest
7824 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7825 					     wanted_inner_mode))
7826 	return NULL_RTX;
7827 
7828       if (GET_MODE (inner) != wanted_inner_mode
7829 	  && (pos_rtx != 0
7830 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7831 	return NULL_RTX;
7832 
7833       if (orig_pos < 0)
7834 	return NULL_RTX;
7835 
7836       inner = force_to_mode (inner, wanted_inner_mode,
7837 			     pos_rtx
7838 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7839 			     ? HOST_WIDE_INT_M1U
7840 			     : (((HOST_WIDE_INT_1U << len) - 1)
7841 				<< orig_pos),
7842 			     0);
7843     }
7844 
7845   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7846      have to zero extend.  Otherwise, we can just use a SUBREG.
7847 
7848      We dealt with constant rtxes earlier, so pos_rtx cannot
7849      have VOIDmode at this point.  */
7850   if (pos_rtx != 0
7851       && (GET_MODE_SIZE (pos_mode)
7852 	  > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7853     {
7854       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7855 				     GET_MODE (pos_rtx));
7856 
7857       /* If we know that no extraneous bits are set, and that the high
7858 	 bit is not set, convert extraction to cheaper one - either
7859 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7860 	 cases.  */
7861       if (flag_expensive_optimizations
7862 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7863 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7864 		   & ~(((unsigned HOST_WIDE_INT)
7865 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7866 		       >> 1))
7867 		  == 0)))
7868 	{
7869 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7870 					  GET_MODE (pos_rtx));
7871 
7872 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7873 	     backends.  */
7874 	  if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7875 	      < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7876 	    temp = temp1;
7877 	}
7878       pos_rtx = temp;
7879     }
7880 
7881   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7882      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7883      be a CONST_INT.  */
7884   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7885     pos_rtx = orig_pos_rtx;
7886 
7887   else if (pos_rtx == 0)
7888     pos_rtx = GEN_INT (pos);
7889 
7890   /* Make the required operation.  See if we can use existing rtx.  */
7891   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7892 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7893   if (! in_dest)
7894     new_rtx = gen_lowpart (mode, new_rtx);
7895 
7896   return new_rtx;
7897 }
7898 
7899 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7900    can be commuted with any other operations in X.  Return X without
7901    that shift if so.  */
7902 
7903 static rtx
7904 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7905 {
7906   enum rtx_code code = GET_CODE (x);
7907   rtx tem;
7908 
7909   switch (code)
7910     {
7911     case ASHIFT:
7912       /* This is the shift itself.  If it is wide enough, we will return
7913 	 either the value being shifted if the shift count is equal to
7914 	 COUNT or a shift for the difference.  */
7915       if (CONST_INT_P (XEXP (x, 1))
7916 	  && INTVAL (XEXP (x, 1)) >= count)
7917 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7918 				     INTVAL (XEXP (x, 1)) - count);
7919       break;
7920 
7921     case NEG:  case NOT:
7922       if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7923 	return simplify_gen_unary (code, mode, tem, mode);
7924 
7925       break;
7926 
7927     case PLUS:  case IOR:  case XOR:  case AND:
7928       /* If we can safely shift this constant and we find the inner shift,
7929 	 make a new operation.  */
7930       if (CONST_INT_P (XEXP (x, 1))
7931 	  && (UINTVAL (XEXP (x, 1))
7932 	      & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7933 	  && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7934 	{
7935 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7936 	  return simplify_gen_binary (code, mode, tem,
7937 				      gen_int_mode (val, mode));
7938 	}
7939       break;
7940 
7941     default:
7942       break;
7943     }
7944 
7945   return 0;
7946 }
7947 
7948 /* Subroutine of make_compound_operation.  *X_PTR is the rtx at the current
7949    level of the expression and MODE is its mode.  IN_CODE is as for
7950    make_compound_operation.  *NEXT_CODE_PTR is the value of IN_CODE
7951    that should be used when recursing on operands of *X_PTR.
7952 
7953    There are two possible actions:
7954 
7955    - Return null.  This tells the caller to recurse on *X_PTR with IN_CODE
7956      equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7957 
7958    - Return a new rtx, which the caller returns directly.  */
7959 
7960 static rtx
7961 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7962 			     enum rtx_code in_code,
7963 			     enum rtx_code *next_code_ptr)
7964 {
7965   rtx x = *x_ptr;
7966   enum rtx_code next_code = *next_code_ptr;
7967   enum rtx_code code = GET_CODE (x);
7968   int mode_width = GET_MODE_PRECISION (mode);
7969   rtx rhs, lhs;
7970   rtx new_rtx = 0;
7971   int i;
7972   rtx tem;
7973   scalar_int_mode inner_mode;
7974   bool equality_comparison = false;
7975 
7976   if (in_code == EQ)
7977     {
7978       equality_comparison = true;
7979       in_code = COMPARE;
7980     }
7981 
7982   /* Process depending on the code of this operation.  If NEW is set
7983      nonzero, it will be returned.  */
7984 
7985   switch (code)
7986     {
7987     case ASHIFT:
7988       /* Convert shifts by constants into multiplications if inside
7989 	 an address.  */
7990       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7991 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7992 	  && INTVAL (XEXP (x, 1)) >= 0)
7993 	{
7994 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7995 	  HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7996 
7997 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7998 	  if (GET_CODE (new_rtx) == NEG)
7999 	    {
8000 	      new_rtx = XEXP (new_rtx, 0);
8001 	      multval = -multval;
8002 	    }
8003 	  multval = trunc_int_for_mode (multval, mode);
8004 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8005 	}
8006       break;
8007 
8008     case PLUS:
8009       lhs = XEXP (x, 0);
8010       rhs = XEXP (x, 1);
8011       lhs = make_compound_operation (lhs, next_code);
8012       rhs = make_compound_operation (rhs, next_code);
8013       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8014 	{
8015 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8016 				     XEXP (lhs, 1));
8017 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8018 	}
8019       else if (GET_CODE (lhs) == MULT
8020 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8021 	{
8022 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8023 				     simplify_gen_unary (NEG, mode,
8024 							 XEXP (lhs, 1),
8025 							 mode));
8026 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8027 	}
8028       else
8029 	{
8030 	  SUBST (XEXP (x, 0), lhs);
8031 	  SUBST (XEXP (x, 1), rhs);
8032 	}
8033       maybe_swap_commutative_operands (x);
8034       return x;
8035 
8036     case MINUS:
8037       lhs = XEXP (x, 0);
8038       rhs = XEXP (x, 1);
8039       lhs = make_compound_operation (lhs, next_code);
8040       rhs = make_compound_operation (rhs, next_code);
8041       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8042 	{
8043 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8044 				     XEXP (rhs, 1));
8045 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8046 	}
8047       else if (GET_CODE (rhs) == MULT
8048 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8049 	{
8050 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8051 				     simplify_gen_unary (NEG, mode,
8052 							 XEXP (rhs, 1),
8053 							 mode));
8054 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8055 	}
8056       else
8057 	{
8058 	  SUBST (XEXP (x, 0), lhs);
8059 	  SUBST (XEXP (x, 1), rhs);
8060 	  return x;
8061 	}
8062 
8063     case AND:
8064       /* If the second operand is not a constant, we can't do anything
8065 	 with it.  */
8066       if (!CONST_INT_P (XEXP (x, 1)))
8067 	break;
8068 
8069       /* If the constant is a power of two minus one and the first operand
8070 	 is a logical right shift, make an extraction.  */
8071       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8072 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8073 	{
8074 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8075 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8076 				     i, 1, 0, in_code == COMPARE);
8077 	}
8078 
8079       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
8080       else if (GET_CODE (XEXP (x, 0)) == SUBREG
8081 	       && subreg_lowpart_p (XEXP (x, 0))
8082 	       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8083 					  &inner_mode)
8084 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8085 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8086 	{
8087 	  rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8088 	  new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8089 	  new_rtx = make_extraction (inner_mode, new_rtx, 0,
8090 				     XEXP (inner_x0, 1),
8091 				     i, 1, 0, in_code == COMPARE);
8092 
8093 	  /* If we narrowed the mode when dropping the subreg, then we lose.  */
8094 	  if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8095 	    new_rtx = NULL;
8096 
8097 	  /* If that didn't give anything, see if the AND simplifies on
8098 	     its own.  */
8099 	  if (!new_rtx && i >= 0)
8100 	    {
8101 	      new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8102 	      new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8103 					 0, in_code == COMPARE);
8104 	    }
8105 	}
8106       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
8107       else if ((GET_CODE (XEXP (x, 0)) == XOR
8108 		|| GET_CODE (XEXP (x, 0)) == IOR)
8109 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8110 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8111 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8112 	{
8113 	  /* Apply the distributive law, and then try to make extractions.  */
8114 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8115 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8116 						 XEXP (x, 1)),
8117 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8118 						 XEXP (x, 1)));
8119 	  new_rtx = make_compound_operation (new_rtx, in_code);
8120 	}
8121 
8122       /* If we are have (and (rotate X C) M) and C is larger than the number
8123 	 of bits in M, this is an extraction.  */
8124 
8125       else if (GET_CODE (XEXP (x, 0)) == ROTATE
8126 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8127 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8128 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8129 	{
8130 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8131 	  new_rtx = make_extraction (mode, new_rtx,
8132 				     (GET_MODE_PRECISION (mode)
8133 				      - INTVAL (XEXP (XEXP (x, 0), 1))),
8134 				     NULL_RTX, i, 1, 0, in_code == COMPARE);
8135 	}
8136 
8137       /* On machines without logical shifts, if the operand of the AND is
8138 	 a logical shift and our mask turns off all the propagated sign
8139 	 bits, we can replace the logical shift with an arithmetic shift.  */
8140       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8141 	       && !have_insn_for (LSHIFTRT, mode)
8142 	       && have_insn_for (ASHIFTRT, mode)
8143 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8144 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8145 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8146 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
8147 	{
8148 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8149 
8150 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8151 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8152 	    SUBST (XEXP (x, 0),
8153 		   gen_rtx_ASHIFTRT (mode,
8154 				     make_compound_operation (XEXP (XEXP (x,
8155 									  0),
8156 								    0),
8157 							      next_code),
8158 				     XEXP (XEXP (x, 0), 1)));
8159 	}
8160 
8161       /* If the constant is one less than a power of two, this might be
8162 	 representable by an extraction even if no shift is present.
8163 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8164 	 we are in a COMPARE.  */
8165       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8166 	new_rtx = make_extraction (mode,
8167 				   make_compound_operation (XEXP (x, 0),
8168 							    next_code),
8169 				   0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8170 
8171       /* If we are in a comparison and this is an AND with a power of two,
8172 	 convert this into the appropriate bit extract.  */
8173       else if (in_code == COMPARE
8174 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8175 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8176 	new_rtx = make_extraction (mode,
8177 				   make_compound_operation (XEXP (x, 0),
8178 							    next_code),
8179 				   i, NULL_RTX, 1, 1, 0, 1);
8180 
8181       /* If the one operand is a paradoxical subreg of a register or memory and
8182 	 the constant (limited to the smaller mode) has only zero bits where
8183 	 the sub expression has known zero bits, this can be expressed as
8184 	 a zero_extend.  */
8185       else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8186 	{
8187 	  rtx sub;
8188 
8189 	  sub = XEXP (XEXP (x, 0), 0);
8190 	  machine_mode sub_mode = GET_MODE (sub);
8191 	  int sub_width;
8192 	  if ((REG_P (sub) || MEM_P (sub))
8193 	      && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8194 	      && sub_width < mode_width)
8195 	    {
8196 	      unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8197 	      unsigned HOST_WIDE_INT mask;
8198 
8199 	      /* original AND constant with all the known zero bits set */
8200 	      mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8201 	      if ((mask & mode_mask) == mode_mask)
8202 		{
8203 		  new_rtx = make_compound_operation (sub, next_code);
8204 		  new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8205 					     1, 0, in_code == COMPARE);
8206 		}
8207 	    }
8208 	}
8209 
8210       break;
8211 
8212     case LSHIFTRT:
8213       /* If the sign bit is known to be zero, replace this with an
8214 	 arithmetic shift.  */
8215       if (have_insn_for (ASHIFTRT, mode)
8216 	  && ! have_insn_for (LSHIFTRT, mode)
8217 	  && mode_width <= HOST_BITS_PER_WIDE_INT
8218 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8219 	{
8220 	  new_rtx = gen_rtx_ASHIFTRT (mode,
8221 				      make_compound_operation (XEXP (x, 0),
8222 							       next_code),
8223 				      XEXP (x, 1));
8224 	  break;
8225 	}
8226 
8227       /* fall through */
8228 
8229     case ASHIFTRT:
8230       lhs = XEXP (x, 0);
8231       rhs = XEXP (x, 1);
8232 
8233       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8234 	 this is a SIGN_EXTRACT.  */
8235       if (CONST_INT_P (rhs)
8236 	  && GET_CODE (lhs) == ASHIFT
8237 	  && CONST_INT_P (XEXP (lhs, 1))
8238 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8239 	  && INTVAL (XEXP (lhs, 1)) >= 0
8240 	  && INTVAL (rhs) < mode_width)
8241 	{
8242 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8243 	  new_rtx = make_extraction (mode, new_rtx,
8244 				     INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8245 				     NULL_RTX, mode_width - INTVAL (rhs),
8246 				     code == LSHIFTRT, 0, in_code == COMPARE);
8247 	  break;
8248 	}
8249 
8250       /* See if we have operations between an ASHIFTRT and an ASHIFT.
8251 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
8252 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
8253 	 seem worth the effort; the case checked for occurs on Alpha.  */
8254 
8255       if (!OBJECT_P (lhs)
8256 	  && ! (GET_CODE (lhs) == SUBREG
8257 		&& (OBJECT_P (SUBREG_REG (lhs))))
8258 	  && CONST_INT_P (rhs)
8259 	  && INTVAL (rhs) >= 0
8260 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8261 	  && INTVAL (rhs) < mode_width
8262 	  && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8263 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8264 								  next_code),
8265 				   0, NULL_RTX, mode_width - INTVAL (rhs),
8266 				   code == LSHIFTRT, 0, in_code == COMPARE);
8267 
8268       break;
8269 
8270     case SUBREG:
8271       /* Call ourselves recursively on the inner expression.  If we are
8272 	 narrowing the object and it has a different RTL code from
8273 	 what it originally did, do this SUBREG as a force_to_mode.  */
8274       {
8275 	rtx inner = SUBREG_REG (x), simplified;
8276 	enum rtx_code subreg_code = in_code;
8277 
8278 	/* If the SUBREG is masking of a logical right shift,
8279 	   make an extraction.  */
8280 	if (GET_CODE (inner) == LSHIFTRT
8281 	    && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8282 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8283 	    && CONST_INT_P (XEXP (inner, 1))
8284 	    && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8285 	    && subreg_lowpart_p (x))
8286 	  {
8287 	    new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8288 	    int width = GET_MODE_PRECISION (inner_mode)
8289 			- INTVAL (XEXP (inner, 1));
8290 	    if (width > mode_width)
8291 	      width = mode_width;
8292 	    new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8293 				       width, 1, 0, in_code == COMPARE);
8294 	    break;
8295 	  }
8296 
8297 	/* If in_code is COMPARE, it isn't always safe to pass it through
8298 	   to the recursive make_compound_operation call.  */
8299 	if (subreg_code == COMPARE
8300 	    && (!subreg_lowpart_p (x)
8301 		|| GET_CODE (inner) == SUBREG
8302 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8303 		   is (const_int 0), rather than
8304 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8305 		   Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8306 		   for non-equality comparisons against 0 is not equivalent
8307 		   to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0).  */
8308 		|| (GET_CODE (inner) == AND
8309 		    && CONST_INT_P (XEXP (inner, 1))
8310 		    && partial_subreg_p (x)
8311 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8312 		       >= GET_MODE_BITSIZE (mode) - 1)))
8313 	  subreg_code = SET;
8314 
8315 	tem = make_compound_operation (inner, subreg_code);
8316 
8317 	simplified
8318 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8319 	if (simplified)
8320 	  tem = simplified;
8321 
8322 	if (GET_CODE (tem) != GET_CODE (inner)
8323 	    && partial_subreg_p (x)
8324 	    && subreg_lowpart_p (x))
8325 	  {
8326 	    rtx newer
8327 	      = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8328 
8329 	    /* If we have something other than a SUBREG, we might have
8330 	       done an expansion, so rerun ourselves.  */
8331 	    if (GET_CODE (newer) != SUBREG)
8332 	      newer = make_compound_operation (newer, in_code);
8333 
8334 	    /* force_to_mode can expand compounds.  If it just re-expanded
8335 	       the compound, use gen_lowpart to convert to the desired
8336 	       mode.  */
8337 	    if (rtx_equal_p (newer, x)
8338 		/* Likewise if it re-expanded the compound only partially.
8339 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8340 		   the same number of bits.  */
8341 		|| (GET_CODE (newer) == SUBREG
8342 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8343 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8344 		    && GET_CODE (inner) == AND
8345 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8346 	      return gen_lowpart (GET_MODE (x), tem);
8347 
8348 	    return newer;
8349 	  }
8350 
8351 	if (simplified)
8352 	  return tem;
8353       }
8354       break;
8355 
8356     default:
8357       break;
8358     }
8359 
8360   if (new_rtx)
8361     *x_ptr = gen_lowpart (mode, new_rtx);
8362   *next_code_ptr = next_code;
8363   return NULL_RTX;
8364 }
8365 
8366 /* Look at the expression rooted at X.  Look for expressions
8367    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8368    Form these expressions.
8369 
8370    Return the new rtx, usually just X.
8371 
8372    Also, for machines like the VAX that don't have logical shift insns,
8373    try to convert logical to arithmetic shift operations in cases where
8374    they are equivalent.  This undoes the canonicalizations to logical
8375    shifts done elsewhere.
8376 
8377    We try, as much as possible, to re-use rtl expressions to save memory.
8378 
8379    IN_CODE says what kind of expression we are processing.  Normally, it is
8380    SET.  In a memory address it is MEM.  When processing the arguments of
8381    a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8382    precisely it is an equality comparison against zero.  */
8383 
8384 rtx
8385 make_compound_operation (rtx x, enum rtx_code in_code)
8386 {
8387   enum rtx_code code = GET_CODE (x);
8388   const char *fmt;
8389   int i, j;
8390   enum rtx_code next_code;
8391   rtx new_rtx, tem;
8392 
8393   /* Select the code to be used in recursive calls.  Once we are inside an
8394      address, we stay there.  If we have a comparison, set to COMPARE,
8395      but once inside, go back to our default of SET.  */
8396 
8397   next_code = (code == MEM ? MEM
8398 	       : ((code == COMPARE || COMPARISON_P (x))
8399 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
8400 	       : in_code == COMPARE || in_code == EQ ? SET : in_code);
8401 
8402   scalar_int_mode mode;
8403   if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8404     {
8405       rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8406 						 &next_code);
8407       if (new_rtx)
8408 	return new_rtx;
8409       code = GET_CODE (x);
8410     }
8411 
8412   /* Now recursively process each operand of this operation.  We need to
8413      handle ZERO_EXTEND specially so that we don't lose track of the
8414      inner mode.  */
8415   if (code == ZERO_EXTEND)
8416     {
8417       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8418       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8419 					    new_rtx, GET_MODE (XEXP (x, 0)));
8420       if (tem)
8421 	return tem;
8422       SUBST (XEXP (x, 0), new_rtx);
8423       return x;
8424     }
8425 
8426   fmt = GET_RTX_FORMAT (code);
8427   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8428     if (fmt[i] == 'e')
8429       {
8430 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8431 	SUBST (XEXP (x, i), new_rtx);
8432       }
8433     else if (fmt[i] == 'E')
8434       for (j = 0; j < XVECLEN (x, i); j++)
8435 	{
8436 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8437 	  SUBST (XVECEXP (x, i, j), new_rtx);
8438 	}
8439 
8440   maybe_swap_commutative_operands (x);
8441   return x;
8442 }
8443 
8444 /* Given M see if it is a value that would select a field of bits
8445    within an item, but not the entire word.  Return -1 if not.
8446    Otherwise, return the starting position of the field, where 0 is the
8447    low-order bit.
8448 
8449    *PLEN is set to the length of the field.  */
8450 
8451 static int
8452 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8453 {
8454   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8455   int pos = m ? ctz_hwi (m) : -1;
8456   int len = 0;
8457 
8458   if (pos >= 0)
8459     /* Now shift off the low-order zero bits and see if we have a
8460        power of two minus 1.  */
8461     len = exact_log2 ((m >> pos) + 1);
8462 
8463   if (len <= 0)
8464     pos = -1;
8465 
8466   *plen = len;
8467   return pos;
8468 }
8469 
8470 /* If X refers to a register that equals REG in value, replace these
8471    references with REG.  */
8472 static rtx
8473 canon_reg_for_combine (rtx x, rtx reg)
8474 {
8475   rtx op0, op1, op2;
8476   const char *fmt;
8477   int i;
8478   bool copied;
8479 
8480   enum rtx_code code = GET_CODE (x);
8481   switch (GET_RTX_CLASS (code))
8482     {
8483     case RTX_UNARY:
8484       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8485       if (op0 != XEXP (x, 0))
8486 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8487 				   GET_MODE (reg));
8488       break;
8489 
8490     case RTX_BIN_ARITH:
8491     case RTX_COMM_ARITH:
8492       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8493       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8494       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8495 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8496       break;
8497 
8498     case RTX_COMPARE:
8499     case RTX_COMM_COMPARE:
8500       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8501       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8502       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8503 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8504 					GET_MODE (op0), op0, op1);
8505       break;
8506 
8507     case RTX_TERNARY:
8508     case RTX_BITFIELD_OPS:
8509       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8510       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8511       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8512       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8513 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8514 				     GET_MODE (op0), op0, op1, op2);
8515       /* FALLTHRU */
8516 
8517     case RTX_OBJ:
8518       if (REG_P (x))
8519 	{
8520 	  if (rtx_equal_p (get_last_value (reg), x)
8521 	      || rtx_equal_p (reg, get_last_value (x)))
8522 	    return reg;
8523 	  else
8524 	    break;
8525 	}
8526 
8527       /* fall through */
8528 
8529     default:
8530       fmt = GET_RTX_FORMAT (code);
8531       copied = false;
8532       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8533 	if (fmt[i] == 'e')
8534 	  {
8535 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8536 	    if (op != XEXP (x, i))
8537 	      {
8538 		if (!copied)
8539 		  {
8540 		    copied = true;
8541 		    x = copy_rtx (x);
8542 		  }
8543 		XEXP (x, i) = op;
8544 	      }
8545 	  }
8546 	else if (fmt[i] == 'E')
8547 	  {
8548 	    int j;
8549 	    for (j = 0; j < XVECLEN (x, i); j++)
8550 	      {
8551 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8552 		if (op != XVECEXP (x, i, j))
8553 		  {
8554 		    if (!copied)
8555 		      {
8556 			copied = true;
8557 			x = copy_rtx (x);
8558 		      }
8559 		    XVECEXP (x, i, j) = op;
8560 		  }
8561 	      }
8562 	  }
8563 
8564       break;
8565     }
8566 
8567   return x;
8568 }
8569 
8570 /* Return X converted to MODE.  If the value is already truncated to
8571    MODE we can just return a subreg even though in the general case we
8572    would need an explicit truncation.  */
8573 
8574 static rtx
8575 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8576 {
8577   if (!CONST_INT_P (x)
8578       && partial_subreg_p (mode, GET_MODE (x))
8579       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8580       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8581     {
8582       /* Bit-cast X into an integer mode.  */
8583       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8584 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8585       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8586 			      x, GET_MODE (x));
8587     }
8588 
8589   return gen_lowpart (mode, x);
8590 }
8591 
8592 /* See if X can be simplified knowing that we will only refer to it in
8593    MODE and will only refer to those bits that are nonzero in MASK.
8594    If other bits are being computed or if masking operations are done
8595    that select a superset of the bits in MASK, they can sometimes be
8596    ignored.
8597 
8598    Return a possibly simplified expression, but always convert X to
8599    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8600 
8601    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8602    are all off in X.  This is used when X will be complemented, by either
8603    NOT, NEG, or XOR.  */
8604 
8605 static rtx
8606 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8607 	       int just_select)
8608 {
8609   enum rtx_code code = GET_CODE (x);
8610   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8611   machine_mode op_mode;
8612   unsigned HOST_WIDE_INT nonzero;
8613 
8614   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8615      code below will do the wrong thing since the mode of such an
8616      expression is VOIDmode.
8617 
8618      Also do nothing if X is a CLOBBER; this can happen if X was
8619      the return value from a call to gen_lowpart.  */
8620   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8621     return x;
8622 
8623   /* We want to perform the operation in its present mode unless we know
8624      that the operation is valid in MODE, in which case we do the operation
8625      in MODE.  */
8626   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8627 	      && have_insn_for (code, mode))
8628 	     ? mode : GET_MODE (x));
8629 
8630   /* It is not valid to do a right-shift in a narrower mode
8631      than the one it came in with.  */
8632   if ((code == LSHIFTRT || code == ASHIFTRT)
8633       && partial_subreg_p (mode, GET_MODE (x)))
8634     op_mode = GET_MODE (x);
8635 
8636   /* Truncate MASK to fit OP_MODE.  */
8637   if (op_mode)
8638     mask &= GET_MODE_MASK (op_mode);
8639 
8640   /* Determine what bits of X are guaranteed to be (non)zero.  */
8641   nonzero = nonzero_bits (x, mode);
8642 
8643   /* If none of the bits in X are needed, return a zero.  */
8644   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8645     x = const0_rtx;
8646 
8647   /* If X is a CONST_INT, return a new one.  Do this here since the
8648      test below will fail.  */
8649   if (CONST_INT_P (x))
8650     {
8651       if (SCALAR_INT_MODE_P (mode))
8652 	return gen_int_mode (INTVAL (x) & mask, mode);
8653       else
8654 	{
8655 	  x = GEN_INT (INTVAL (x) & mask);
8656 	  return gen_lowpart_common (mode, x);
8657 	}
8658     }
8659 
8660   /* If X is narrower than MODE and we want all the bits in X's mode, just
8661      get X in the proper mode.  */
8662   if (paradoxical_subreg_p (mode, GET_MODE (x))
8663       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8664     return gen_lowpart (mode, x);
8665 
8666   /* We can ignore the effect of a SUBREG if it narrows the mode or
8667      if the constant masks to zero all the bits the mode doesn't have.  */
8668   if (GET_CODE (x) == SUBREG
8669       && subreg_lowpart_p (x)
8670       && (partial_subreg_p (x)
8671 	  || (mask
8672 	      & GET_MODE_MASK (GET_MODE (x))
8673 	      & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8674     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8675 
8676   scalar_int_mode int_mode, xmode;
8677   if (is_a <scalar_int_mode> (mode, &int_mode)
8678       && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8679     /* OP_MODE is either MODE or XMODE, so it must be a scalar
8680        integer too.  */
8681     return force_int_to_mode (x, int_mode, xmode,
8682 			      as_a <scalar_int_mode> (op_mode),
8683 			      mask, just_select);
8684 
8685   return gen_lowpart_or_truncate (mode, x);
8686 }
8687 
8688 /* Subroutine of force_to_mode that handles cases in which both X and
8689    the result are scalar integers.  MODE is the mode of the result,
8690    XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8691    is preferred for simplified versions of X.  The other arguments
8692    are as for force_to_mode.  */
8693 
8694 static rtx
8695 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8696 		   scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8697 		   int just_select)
8698 {
8699   enum rtx_code code = GET_CODE (x);
8700   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8701   unsigned HOST_WIDE_INT fuller_mask;
8702   rtx op0, op1, temp;
8703 
8704   /* When we have an arithmetic operation, or a shift whose count we
8705      do not know, we need to assume that all bits up to the highest-order
8706      bit in MASK will be needed.  This is how we form such a mask.  */
8707   if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8708     fuller_mask = HOST_WIDE_INT_M1U;
8709   else
8710     fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8711 		   - 1);
8712 
8713   switch (code)
8714     {
8715     case CLOBBER:
8716       /* If X is a (clobber (const_int)), return it since we know we are
8717 	 generating something that won't match.  */
8718       return x;
8719 
8720     case SIGN_EXTEND:
8721     case ZERO_EXTEND:
8722     case ZERO_EXTRACT:
8723     case SIGN_EXTRACT:
8724       x = expand_compound_operation (x);
8725       if (GET_CODE (x) != code)
8726 	return force_to_mode (x, mode, mask, next_select);
8727       break;
8728 
8729     case TRUNCATE:
8730       /* Similarly for a truncate.  */
8731       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8732 
8733     case AND:
8734       /* If this is an AND with a constant, convert it into an AND
8735 	 whose constant is the AND of that constant with MASK.  If it
8736 	 remains an AND of MASK, delete it since it is redundant.  */
8737 
8738       if (CONST_INT_P (XEXP (x, 1)))
8739 	{
8740 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8741 				      mask & INTVAL (XEXP (x, 1)));
8742 	  xmode = op_mode;
8743 
8744 	  /* If X is still an AND, see if it is an AND with a mask that
8745 	     is just some low-order bits.  If so, and it is MASK, we don't
8746 	     need it.  */
8747 
8748 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8749 	      && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8750 	    x = XEXP (x, 0);
8751 
8752 	  /* If it remains an AND, try making another AND with the bits
8753 	     in the mode mask that aren't in MASK turned on.  If the
8754 	     constant in the AND is wide enough, this might make a
8755 	     cheaper constant.  */
8756 
8757 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8758 	      && GET_MODE_MASK (xmode) != mask
8759 	      && HWI_COMPUTABLE_MODE_P (xmode))
8760 	    {
8761 	      unsigned HOST_WIDE_INT cval
8762 		= UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8763 	      rtx y;
8764 
8765 	      y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8766 				       gen_int_mode (cval, xmode));
8767 	      if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8768 		  < set_src_cost (x, xmode, optimize_this_for_speed_p))
8769 		x = y;
8770 	    }
8771 
8772 	  break;
8773 	}
8774 
8775       goto binop;
8776 
8777     case PLUS:
8778       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8779 	 low-order bits (as in an alignment operation) and FOO is already
8780 	 aligned to that boundary, mask C1 to that boundary as well.
8781 	 This may eliminate that PLUS and, later, the AND.  */
8782 
8783       {
8784 	unsigned int width = GET_MODE_PRECISION (mode);
8785 	unsigned HOST_WIDE_INT smask = mask;
8786 
8787 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8788 	   number, sign extend it.  */
8789 
8790 	if (width < HOST_BITS_PER_WIDE_INT
8791 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8792 	  smask |= HOST_WIDE_INT_M1U << width;
8793 
8794 	if (CONST_INT_P (XEXP (x, 1))
8795 	    && pow2p_hwi (- smask)
8796 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8797 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8798 	  return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8799 					       (INTVAL (XEXP (x, 1)) & smask)),
8800 				mode, smask, next_select);
8801       }
8802 
8803       /* fall through */
8804 
8805     case MULT:
8806       /* Substituting into the operands of a widening MULT is not likely to
8807 	 create RTL matching a machine insn.  */
8808       if (code == MULT
8809 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8810 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8811 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8812 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8813 	  && REG_P (XEXP (XEXP (x, 0), 0))
8814 	  && REG_P (XEXP (XEXP (x, 1), 0)))
8815 	return gen_lowpart_or_truncate (mode, x);
8816 
8817       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8818 	 most significant bit in MASK since carries from those bits will
8819 	 affect the bits we are interested in.  */
8820       mask = fuller_mask;
8821       goto binop;
8822 
8823     case MINUS:
8824       /* If X is (minus C Y) where C's least set bit is larger than any bit
8825 	 in the mask, then we may replace with (neg Y).  */
8826       if (CONST_INT_P (XEXP (x, 0))
8827 	  && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8828 	{
8829 	  x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8830 	  return force_to_mode (x, mode, mask, next_select);
8831 	}
8832 
8833       /* Similarly, if C contains every bit in the fuller_mask, then we may
8834 	 replace with (not Y).  */
8835       if (CONST_INT_P (XEXP (x, 0))
8836 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8837 	{
8838 	  x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8839 	  return force_to_mode (x, mode, mask, next_select);
8840 	}
8841 
8842       mask = fuller_mask;
8843       goto binop;
8844 
8845     case IOR:
8846     case XOR:
8847       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8848 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8849 	 operation which may be a bitfield extraction.  Ensure that the
8850 	 constant we form is not wider than the mode of X.  */
8851 
8852       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8853 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8854 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8855 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8856 	  && CONST_INT_P (XEXP (x, 1))
8857 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8858 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8859 	      < GET_MODE_PRECISION (xmode))
8860 	  && (UINTVAL (XEXP (x, 1))
8861 	      & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8862 	{
8863 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8864 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8865 			       xmode);
8866 	  temp = simplify_gen_binary (GET_CODE (x), xmode,
8867 				      XEXP (XEXP (x, 0), 0), temp);
8868 	  x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8869 				   XEXP (XEXP (x, 0), 1));
8870 	  return force_to_mode (x, mode, mask, next_select);
8871 	}
8872 
8873     binop:
8874       /* For most binary operations, just propagate into the operation and
8875 	 change the mode if we have an operation of that mode.  */
8876 
8877       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8878       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8879 
8880       /* If we ended up truncating both operands, truncate the result of the
8881 	 operation instead.  */
8882       if (GET_CODE (op0) == TRUNCATE
8883 	  && GET_CODE (op1) == TRUNCATE)
8884 	{
8885 	  op0 = XEXP (op0, 0);
8886 	  op1 = XEXP (op1, 0);
8887 	}
8888 
8889       op0 = gen_lowpart_or_truncate (op_mode, op0);
8890       op1 = gen_lowpart_or_truncate (op_mode, op1);
8891 
8892       if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8893 	{
8894 	  x = simplify_gen_binary (code, op_mode, op0, op1);
8895 	  xmode = op_mode;
8896 	}
8897       break;
8898 
8899     case ASHIFT:
8900       /* For left shifts, do the same, but just for the first operand.
8901 	 However, we cannot do anything with shifts where we cannot
8902 	 guarantee that the counts are smaller than the size of the mode
8903 	 because such a count will have a different meaning in a
8904 	 wider mode.  */
8905 
8906       if (! (CONST_INT_P (XEXP (x, 1))
8907 	     && INTVAL (XEXP (x, 1)) >= 0
8908 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8909 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8910 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8911 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8912 	break;
8913 
8914       /* If the shift count is a constant and we can do arithmetic in
8915 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8916 	 conservative form of the mask.  */
8917       if (CONST_INT_P (XEXP (x, 1))
8918 	  && INTVAL (XEXP (x, 1)) >= 0
8919 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8920 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8921 	mask >>= INTVAL (XEXP (x, 1));
8922       else
8923 	mask = fuller_mask;
8924 
8925       op0 = gen_lowpart_or_truncate (op_mode,
8926 				     force_to_mode (XEXP (x, 0), mode,
8927 						    mask, next_select));
8928 
8929       if (op_mode != xmode || op0 != XEXP (x, 0))
8930 	{
8931 	  x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8932 	  xmode = op_mode;
8933 	}
8934       break;
8935 
8936     case LSHIFTRT:
8937       /* Here we can only do something if the shift count is a constant,
8938 	 this shift constant is valid for the host, and we can do arithmetic
8939 	 in OP_MODE.  */
8940 
8941       if (CONST_INT_P (XEXP (x, 1))
8942 	  && INTVAL (XEXP (x, 1)) >= 0
8943 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8944 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8945 	{
8946 	  rtx inner = XEXP (x, 0);
8947 	  unsigned HOST_WIDE_INT inner_mask;
8948 
8949 	  /* Select the mask of the bits we need for the shift operand.  */
8950 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8951 
8952 	  /* We can only change the mode of the shift if we can do arithmetic
8953 	     in the mode of the shift and INNER_MASK is no wider than the
8954 	     width of X's mode.  */
8955 	  if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8956 	    op_mode = xmode;
8957 
8958 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8959 
8960 	  if (xmode != op_mode || inner != XEXP (x, 0))
8961 	    {
8962 	      x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8963 	      xmode = op_mode;
8964 	    }
8965 	}
8966 
8967       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8968 	 shift and AND produces only copies of the sign bit (C2 is one less
8969 	 than a power of two), we can do this with just a shift.  */
8970 
8971       if (GET_CODE (x) == LSHIFTRT
8972 	  && CONST_INT_P (XEXP (x, 1))
8973 	  /* The shift puts one of the sign bit copies in the least significant
8974 	     bit.  */
8975 	  && ((INTVAL (XEXP (x, 1))
8976 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8977 	      >= GET_MODE_PRECISION (xmode))
8978 	  && pow2p_hwi (mask + 1)
8979 	  /* Number of bits left after the shift must be more than the mask
8980 	     needs.  */
8981 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8982 	      <= GET_MODE_PRECISION (xmode))
8983 	  /* Must be more sign bit copies than the mask needs.  */
8984 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8985 	      >= exact_log2 (mask + 1)))
8986 	{
8987 	  int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8988 	  x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8989 				   gen_int_shift_amount (xmode, nbits));
8990 	}
8991       goto shiftrt;
8992 
8993     case ASHIFTRT:
8994       /* If we are just looking for the sign bit, we don't need this shift at
8995 	 all, even if it has a variable count.  */
8996       if (val_signbit_p (xmode, mask))
8997 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8998 
8999       /* If this is a shift by a constant, get a mask that contains those bits
9000 	 that are not copies of the sign bit.  We then have two cases:  If
9001 	 MASK only includes those bits, this can be a logical shift, which may
9002 	 allow simplifications.  If MASK is a single-bit field not within
9003 	 those bits, we are requesting a copy of the sign bit and hence can
9004 	 shift the sign bit to the appropriate location.  */
9005 
9006       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9007 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9008 	{
9009 	  unsigned HOST_WIDE_INT nonzero;
9010 	  int i;
9011 
9012 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
9013 	     represent a mask for all its bits in a single scalar.
9014 	     But we only care about the lower bits, so calculate these.  */
9015 
9016 	  if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9017 	    {
9018 	      nonzero = HOST_WIDE_INT_M1U;
9019 
9020 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9021 		 is the number of bits a full-width mask would have set.
9022 		 We need only shift if these are fewer than nonzero can
9023 		 hold.  If not, we must keep all bits set in nonzero.  */
9024 
9025 	      if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9026 		  < HOST_BITS_PER_WIDE_INT)
9027 		nonzero >>= INTVAL (XEXP (x, 1))
9028 			    + HOST_BITS_PER_WIDE_INT
9029 			    - GET_MODE_PRECISION (xmode);
9030 	    }
9031 	  else
9032 	    {
9033 	      nonzero = GET_MODE_MASK (xmode);
9034 	      nonzero >>= INTVAL (XEXP (x, 1));
9035 	    }
9036 
9037 	  if ((mask & ~nonzero) == 0)
9038 	    {
9039 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9040 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
9041 	      if (GET_CODE (x) != ASHIFTRT)
9042 		return force_to_mode (x, mode, mask, next_select);
9043 	    }
9044 
9045 	  else if ((i = exact_log2 (mask)) >= 0)
9046 	    {
9047 	      x = simplify_shift_const
9048 		  (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9049 		   GET_MODE_PRECISION (xmode) - 1 - i);
9050 
9051 	      if (GET_CODE (x) != ASHIFTRT)
9052 		return force_to_mode (x, mode, mask, next_select);
9053 	    }
9054 	}
9055 
9056       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
9057 	 even if the shift count isn't a constant.  */
9058       if (mask == 1)
9059 	x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9060 
9061     shiftrt:
9062 
9063       /* If this is a zero- or sign-extension operation that just affects bits
9064 	 we don't care about, remove it.  Be sure the call above returned
9065 	 something that is still a shift.  */
9066 
9067       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9068 	  && CONST_INT_P (XEXP (x, 1))
9069 	  && INTVAL (XEXP (x, 1)) >= 0
9070 	  && (INTVAL (XEXP (x, 1))
9071 	      <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9072 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
9073 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9074 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9075 			      next_select);
9076 
9077       break;
9078 
9079     case ROTATE:
9080     case ROTATERT:
9081       /* If the shift count is constant and we can do computations
9082 	 in the mode of X, compute where the bits we care about are.
9083 	 Otherwise, we can't do anything.  Don't change the mode of
9084 	 the shift or propagate MODE into the shift, though.  */
9085       if (CONST_INT_P (XEXP (x, 1))
9086 	  && INTVAL (XEXP (x, 1)) >= 0)
9087 	{
9088 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9089 					    xmode, gen_int_mode (mask, xmode),
9090 					    XEXP (x, 1));
9091 	  if (temp && CONST_INT_P (temp))
9092 	    x = simplify_gen_binary (code, xmode,
9093 				     force_to_mode (XEXP (x, 0), xmode,
9094 						    INTVAL (temp), next_select),
9095 				     XEXP (x, 1));
9096 	}
9097       break;
9098 
9099     case NEG:
9100       /* If we just want the low-order bit, the NEG isn't needed since it
9101 	 won't change the low-order bit.  */
9102       if (mask == 1)
9103 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9104 
9105       /* We need any bits less significant than the most significant bit in
9106 	 MASK since carries from those bits will affect the bits we are
9107 	 interested in.  */
9108       mask = fuller_mask;
9109       goto unop;
9110 
9111     case NOT:
9112       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9113 	 same as the XOR case above.  Ensure that the constant we form is not
9114 	 wider than the mode of X.  */
9115 
9116       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9117 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9118 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9119 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9120 	      < GET_MODE_PRECISION (xmode))
9121 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9122 	{
9123 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9124 	  temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9125 	  x = simplify_gen_binary (LSHIFTRT, xmode,
9126 				   temp, XEXP (XEXP (x, 0), 1));
9127 
9128 	  return force_to_mode (x, mode, mask, next_select);
9129 	}
9130 
9131       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9132 	 use the full mask inside the NOT.  */
9133       mask = fuller_mask;
9134 
9135     unop:
9136       op0 = gen_lowpart_or_truncate (op_mode,
9137 				     force_to_mode (XEXP (x, 0), mode, mask,
9138 						    next_select));
9139       if (op_mode != xmode || op0 != XEXP (x, 0))
9140 	{
9141 	  x = simplify_gen_unary (code, op_mode, op0, op_mode);
9142 	  xmode = op_mode;
9143 	}
9144       break;
9145 
9146     case NE:
9147       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9148 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9149 	 which is equal to STORE_FLAG_VALUE.  */
9150       if ((mask & ~STORE_FLAG_VALUE) == 0
9151 	  && XEXP (x, 1) == const0_rtx
9152 	  && GET_MODE (XEXP (x, 0)) == mode
9153 	  && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9154 	  && (nonzero_bits (XEXP (x, 0), mode)
9155 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9156 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9157 
9158       break;
9159 
9160     case IF_THEN_ELSE:
9161       /* We have no way of knowing if the IF_THEN_ELSE can itself be
9162 	 written in a narrower mode.  We play it safe and do not do so.  */
9163 
9164       op0 = gen_lowpart_or_truncate (xmode,
9165 				     force_to_mode (XEXP (x, 1), mode,
9166 						    mask, next_select));
9167       op1 = gen_lowpart_or_truncate (xmode,
9168 				     force_to_mode (XEXP (x, 2), mode,
9169 						    mask, next_select));
9170       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9171 	x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9172 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9173 				  op0, op1);
9174       break;
9175 
9176     default:
9177       break;
9178     }
9179 
9180   /* Ensure we return a value of the proper mode.  */
9181   return gen_lowpart_or_truncate (mode, x);
9182 }
9183 
9184 /* Return nonzero if X is an expression that has one of two values depending on
9185    whether some other value is zero or nonzero.  In that case, we return the
9186    value that is being tested, *PTRUE is set to the value if the rtx being
9187    returned has a nonzero value, and *PFALSE is set to the other alternative.
9188 
9189    If we return zero, we set *PTRUE and *PFALSE to X.  */
9190 
9191 static rtx
9192 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9193 {
9194   machine_mode mode = GET_MODE (x);
9195   enum rtx_code code = GET_CODE (x);
9196   rtx cond0, cond1, true0, true1, false0, false1;
9197   unsigned HOST_WIDE_INT nz;
9198   scalar_int_mode int_mode;
9199 
9200   /* If we are comparing a value against zero, we are done.  */
9201   if ((code == NE || code == EQ)
9202       && XEXP (x, 1) == const0_rtx)
9203     {
9204       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9205       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9206       return XEXP (x, 0);
9207     }
9208 
9209   /* If this is a unary operation whose operand has one of two values, apply
9210      our opcode to compute those values.  */
9211   else if (UNARY_P (x)
9212 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9213     {
9214       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9215       *pfalse = simplify_gen_unary (code, mode, false0,
9216 				    GET_MODE (XEXP (x, 0)));
9217       return cond0;
9218     }
9219 
9220   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9221      make can't possibly match and would suppress other optimizations.  */
9222   else if (code == COMPARE)
9223     ;
9224 
9225   /* If this is a binary operation, see if either side has only one of two
9226      values.  If either one does or if both do and they are conditional on
9227      the same value, compute the new true and false values.  */
9228   else if (BINARY_P (x))
9229     {
9230       rtx op0 = XEXP (x, 0);
9231       rtx op1 = XEXP (x, 1);
9232       cond0 = if_then_else_cond (op0, &true0, &false0);
9233       cond1 = if_then_else_cond (op1, &true1, &false1);
9234 
9235       if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9236 	  && (REG_P (op0) || REG_P (op1)))
9237 	{
9238 	  /* Try to enable a simplification by undoing work done by
9239 	     if_then_else_cond if it converted a REG into something more
9240 	     complex.  */
9241 	  if (REG_P (op0))
9242 	    {
9243 	      cond0 = 0;
9244 	      true0 = false0 = op0;
9245 	    }
9246 	  else
9247 	    {
9248 	      cond1 = 0;
9249 	      true1 = false1 = op1;
9250 	    }
9251 	}
9252 
9253       if ((cond0 != 0 || cond1 != 0)
9254 	  && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9255 	{
9256 	  /* If if_then_else_cond returned zero, then true/false are the
9257 	     same rtl.  We must copy one of them to prevent invalid rtl
9258 	     sharing.  */
9259 	  if (cond0 == 0)
9260 	    true0 = copy_rtx (true0);
9261 	  else if (cond1 == 0)
9262 	    true1 = copy_rtx (true1);
9263 
9264 	  if (COMPARISON_P (x))
9265 	    {
9266 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9267 						true0, true1);
9268 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9269 						 false0, false1);
9270 	     }
9271 	  else
9272 	    {
9273 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
9274 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
9275 	    }
9276 
9277 	  return cond0 ? cond0 : cond1;
9278 	}
9279 
9280       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9281 	 operands is zero when the other is nonzero, and vice-versa,
9282 	 and STORE_FLAG_VALUE is 1 or -1.  */
9283 
9284       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9285 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
9286 	      || code == UMAX)
9287 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9288 	{
9289 	  rtx op0 = XEXP (XEXP (x, 0), 1);
9290 	  rtx op1 = XEXP (XEXP (x, 1), 1);
9291 
9292 	  cond0 = XEXP (XEXP (x, 0), 0);
9293 	  cond1 = XEXP (XEXP (x, 1), 0);
9294 
9295 	  if (COMPARISON_P (cond0)
9296 	      && COMPARISON_P (cond1)
9297 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9298 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9299 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9300 		  || ((swap_condition (GET_CODE (cond0))
9301 		       == reversed_comparison_code (cond1, NULL))
9302 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9303 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9304 	      && ! side_effects_p (x))
9305 	    {
9306 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9307 	      *pfalse = simplify_gen_binary (MULT, mode,
9308 					     (code == MINUS
9309 					      ? simplify_gen_unary (NEG, mode,
9310 								    op1, mode)
9311 					      : op1),
9312 					      const_true_rtx);
9313 	      return cond0;
9314 	    }
9315 	}
9316 
9317       /* Similarly for MULT, AND and UMIN, except that for these the result
9318 	 is always zero.  */
9319       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9320 	  && (code == MULT || code == AND || code == UMIN)
9321 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9322 	{
9323 	  cond0 = XEXP (XEXP (x, 0), 0);
9324 	  cond1 = XEXP (XEXP (x, 1), 0);
9325 
9326 	  if (COMPARISON_P (cond0)
9327 	      && COMPARISON_P (cond1)
9328 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9329 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9330 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9331 		  || ((swap_condition (GET_CODE (cond0))
9332 		       == reversed_comparison_code (cond1, NULL))
9333 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9334 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9335 	      && ! side_effects_p (x))
9336 	    {
9337 	      *ptrue = *pfalse = const0_rtx;
9338 	      return cond0;
9339 	    }
9340 	}
9341     }
9342 
9343   else if (code == IF_THEN_ELSE)
9344     {
9345       /* If we have IF_THEN_ELSE already, extract the condition and
9346 	 canonicalize it if it is NE or EQ.  */
9347       cond0 = XEXP (x, 0);
9348       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9349       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9350 	return XEXP (cond0, 0);
9351       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9352 	{
9353 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9354 	  return XEXP (cond0, 0);
9355 	}
9356       else
9357 	return cond0;
9358     }
9359 
9360   /* If X is a SUBREG, we can narrow both the true and false values
9361      if the inner expression, if there is a condition.  */
9362   else if (code == SUBREG
9363 	   && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9364 					  &false0)) != 0)
9365     {
9366       true0 = simplify_gen_subreg (mode, true0,
9367 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9368       false0 = simplify_gen_subreg (mode, false0,
9369 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9370       if (true0 && false0)
9371 	{
9372 	  *ptrue = true0;
9373 	  *pfalse = false0;
9374 	  return cond0;
9375 	}
9376     }
9377 
9378   /* If X is a constant, this isn't special and will cause confusions
9379      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9380   else if (CONSTANT_P (x)
9381 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9382     ;
9383 
9384   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9385      will be least confusing to the rest of the compiler.  */
9386   else if (mode == BImode)
9387     {
9388       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9389       return x;
9390     }
9391 
9392   /* If X is known to be either 0 or -1, those are the true and
9393      false values when testing X.  */
9394   else if (x == constm1_rtx || x == const0_rtx
9395 	   || (is_a <scalar_int_mode> (mode, &int_mode)
9396 	       && (num_sign_bit_copies (x, int_mode)
9397 		   == GET_MODE_PRECISION (int_mode))))
9398     {
9399       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9400       return x;
9401     }
9402 
9403   /* Likewise for 0 or a single bit.  */
9404   else if (HWI_COMPUTABLE_MODE_P (mode)
9405 	   && pow2p_hwi (nz = nonzero_bits (x, mode)))
9406     {
9407       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9408       return x;
9409     }
9410 
9411   /* Otherwise fail; show no condition with true and false values the same.  */
9412   *ptrue = *pfalse = x;
9413   return 0;
9414 }
9415 
9416 /* Return the value of expression X given the fact that condition COND
9417    is known to be true when applied to REG as its first operand and VAL
9418    as its second.  X is known to not be shared and so can be modified in
9419    place.
9420 
9421    We only handle the simplest cases, and specifically those cases that
9422    arise with IF_THEN_ELSE expressions.  */
9423 
9424 static rtx
9425 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9426 {
9427   enum rtx_code code = GET_CODE (x);
9428   const char *fmt;
9429   int i, j;
9430 
9431   if (side_effects_p (x))
9432     return x;
9433 
9434   /* If either operand of the condition is a floating point value,
9435      then we have to avoid collapsing an EQ comparison.  */
9436   if (cond == EQ
9437       && rtx_equal_p (x, reg)
9438       && ! FLOAT_MODE_P (GET_MODE (x))
9439       && ! FLOAT_MODE_P (GET_MODE (val)))
9440     return val;
9441 
9442   if (cond == UNEQ && rtx_equal_p (x, reg))
9443     return val;
9444 
9445   /* If X is (abs REG) and we know something about REG's relationship
9446      with zero, we may be able to simplify this.  */
9447 
9448   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9449     switch (cond)
9450       {
9451       case GE:  case GT:  case EQ:
9452 	return XEXP (x, 0);
9453       case LT:  case LE:
9454 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9455 				   XEXP (x, 0),
9456 				   GET_MODE (XEXP (x, 0)));
9457       default:
9458 	break;
9459       }
9460 
9461   /* The only other cases we handle are MIN, MAX, and comparisons if the
9462      operands are the same as REG and VAL.  */
9463 
9464   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9465     {
9466       if (rtx_equal_p (XEXP (x, 0), val))
9467         {
9468 	  std::swap (val, reg);
9469 	  cond = swap_condition (cond);
9470         }
9471 
9472       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9473 	{
9474 	  if (COMPARISON_P (x))
9475 	    {
9476 	      if (comparison_dominates_p (cond, code))
9477 		return const_true_rtx;
9478 
9479 	      code = reversed_comparison_code (x, NULL);
9480 	      if (code != UNKNOWN
9481 		  && comparison_dominates_p (cond, code))
9482 		return const0_rtx;
9483 	      else
9484 		return x;
9485 	    }
9486 	  else if (code == SMAX || code == SMIN
9487 		   || code == UMIN || code == UMAX)
9488 	    {
9489 	      int unsignedp = (code == UMIN || code == UMAX);
9490 
9491 	      /* Do not reverse the condition when it is NE or EQ.
9492 		 This is because we cannot conclude anything about
9493 		 the value of 'SMAX (x, y)' when x is not equal to y,
9494 		 but we can when x equals y.  */
9495 	      if ((code == SMAX || code == UMAX)
9496 		  && ! (cond == EQ || cond == NE))
9497 		cond = reverse_condition (cond);
9498 
9499 	      switch (cond)
9500 		{
9501 		case GE:   case GT:
9502 		  return unsignedp ? x : XEXP (x, 1);
9503 		case LE:   case LT:
9504 		  return unsignedp ? x : XEXP (x, 0);
9505 		case GEU:  case GTU:
9506 		  return unsignedp ? XEXP (x, 1) : x;
9507 		case LEU:  case LTU:
9508 		  return unsignedp ? XEXP (x, 0) : x;
9509 		default:
9510 		  break;
9511 		}
9512 	    }
9513 	}
9514     }
9515   else if (code == SUBREG)
9516     {
9517       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9518       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9519 
9520       if (SUBREG_REG (x) != r)
9521 	{
9522 	  /* We must simplify subreg here, before we lose track of the
9523 	     original inner_mode.  */
9524 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9525 				 inner_mode, SUBREG_BYTE (x));
9526 	  if (new_rtx)
9527 	    return new_rtx;
9528 	  else
9529 	    SUBST (SUBREG_REG (x), r);
9530 	}
9531 
9532       return x;
9533     }
9534   /* We don't have to handle SIGN_EXTEND here, because even in the
9535      case of replacing something with a modeless CONST_INT, a
9536      CONST_INT is already (supposed to be) a valid sign extension for
9537      its narrower mode, which implies it's already properly
9538      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9539      story is different.  */
9540   else if (code == ZERO_EXTEND)
9541     {
9542       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9543       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9544 
9545       if (XEXP (x, 0) != r)
9546 	{
9547 	  /* We must simplify the zero_extend here, before we lose
9548 	     track of the original inner_mode.  */
9549 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9550 					  r, inner_mode);
9551 	  if (new_rtx)
9552 	    return new_rtx;
9553 	  else
9554 	    SUBST (XEXP (x, 0), r);
9555 	}
9556 
9557       return x;
9558     }
9559 
9560   fmt = GET_RTX_FORMAT (code);
9561   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9562     {
9563       if (fmt[i] == 'e')
9564 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9565       else if (fmt[i] == 'E')
9566 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9567 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9568 						cond, reg, val));
9569     }
9570 
9571   return x;
9572 }
9573 
9574 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9575    assignment as a field assignment.  */
9576 
9577 static int
9578 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9579 {
9580   if (widen_x && GET_MODE (x) != GET_MODE (y))
9581     {
9582       if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9583 	return 0;
9584       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9585 	return 0;
9586       x = adjust_address_nv (x, GET_MODE (y),
9587 			     byte_lowpart_offset (GET_MODE (y),
9588 						  GET_MODE (x)));
9589     }
9590 
9591   if (x == y || rtx_equal_p (x, y))
9592     return 1;
9593 
9594   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9595     return 0;
9596 
9597   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9598      Note that all SUBREGs of MEM are paradoxical; otherwise they
9599      would have been rewritten.  */
9600   if (MEM_P (x) && GET_CODE (y) == SUBREG
9601       && MEM_P (SUBREG_REG (y))
9602       && rtx_equal_p (SUBREG_REG (y),
9603 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9604     return 1;
9605 
9606   if (MEM_P (y) && GET_CODE (x) == SUBREG
9607       && MEM_P (SUBREG_REG (x))
9608       && rtx_equal_p (SUBREG_REG (x),
9609 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9610     return 1;
9611 
9612   /* We used to see if get_last_value of X and Y were the same but that's
9613      not correct.  In one direction, we'll cause the assignment to have
9614      the wrong destination and in the case, we'll import a register into this
9615      insn that might have already have been dead.   So fail if none of the
9616      above cases are true.  */
9617   return 0;
9618 }
9619 
9620 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9621    Return that assignment if so.
9622 
9623    We only handle the most common cases.  */
9624 
9625 static rtx
9626 make_field_assignment (rtx x)
9627 {
9628   rtx dest = SET_DEST (x);
9629   rtx src = SET_SRC (x);
9630   rtx assign;
9631   rtx rhs, lhs;
9632   HOST_WIDE_INT c1;
9633   HOST_WIDE_INT pos;
9634   unsigned HOST_WIDE_INT len;
9635   rtx other;
9636 
9637   /* All the rules in this function are specific to scalar integers.  */
9638   scalar_int_mode mode;
9639   if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9640     return x;
9641 
9642   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9643      a clear of a one-bit field.  We will have changed it to
9644      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9645      for a SUBREG.  */
9646 
9647   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9648       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9649       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9650       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9651     {
9652       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9653 				1, 1, 1, 0);
9654       if (assign != 0)
9655 	return gen_rtx_SET (assign, const0_rtx);
9656       return x;
9657     }
9658 
9659   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9660       && subreg_lowpart_p (XEXP (src, 0))
9661       && partial_subreg_p (XEXP (src, 0))
9662       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9663       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9664       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9665       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9666     {
9667       assign = make_extraction (VOIDmode, dest, 0,
9668 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9669 				1, 1, 1, 0);
9670       if (assign != 0)
9671 	return gen_rtx_SET (assign, const0_rtx);
9672       return x;
9673     }
9674 
9675   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9676      one-bit field.  */
9677   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9678       && XEXP (XEXP (src, 0), 0) == const1_rtx
9679       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9680     {
9681       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9682 				1, 1, 1, 0);
9683       if (assign != 0)
9684 	return gen_rtx_SET (assign, const1_rtx);
9685       return x;
9686     }
9687 
9688   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9689      SRC is an AND with all bits of that field set, then we can discard
9690      the AND.  */
9691   if (GET_CODE (dest) == ZERO_EXTRACT
9692       && CONST_INT_P (XEXP (dest, 1))
9693       && GET_CODE (src) == AND
9694       && CONST_INT_P (XEXP (src, 1)))
9695     {
9696       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9697       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9698       unsigned HOST_WIDE_INT ze_mask;
9699 
9700       if (width >= HOST_BITS_PER_WIDE_INT)
9701 	ze_mask = -1;
9702       else
9703 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9704 
9705       /* Complete overlap.  We can remove the source AND.  */
9706       if ((and_mask & ze_mask) == ze_mask)
9707 	return gen_rtx_SET (dest, XEXP (src, 0));
9708 
9709       /* Partial overlap.  We can reduce the source AND.  */
9710       if ((and_mask & ze_mask) != and_mask)
9711 	{
9712 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9713 			     gen_int_mode (and_mask & ze_mask, mode));
9714 	  return gen_rtx_SET (dest, src);
9715 	}
9716     }
9717 
9718   /* The other case we handle is assignments into a constant-position
9719      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9720      a mask that has all one bits except for a group of zero bits and
9721      OTHER is known to have zeros where C1 has ones, this is such an
9722      assignment.  Compute the position and length from C1.  Shift OTHER
9723      to the appropriate position, force it to the required mode, and
9724      make the extraction.  Check for the AND in both operands.  */
9725 
9726   /* One or more SUBREGs might obscure the constant-position field
9727      assignment.  The first one we are likely to encounter is an outer
9728      narrowing SUBREG, which we can just strip for the purposes of
9729      identifying the constant-field assignment.  */
9730   scalar_int_mode src_mode = mode;
9731   if (GET_CODE (src) == SUBREG
9732       && subreg_lowpart_p (src)
9733       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9734     src = SUBREG_REG (src);
9735 
9736   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9737     return x;
9738 
9739   rhs = expand_compound_operation (XEXP (src, 0));
9740   lhs = expand_compound_operation (XEXP (src, 1));
9741 
9742   if (GET_CODE (rhs) == AND
9743       && CONST_INT_P (XEXP (rhs, 1))
9744       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9745     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9746   /* The second SUBREG that might get in the way is a paradoxical
9747      SUBREG around the first operand of the AND.  We want to
9748      pretend the operand is as wide as the destination here.   We
9749      do this by adjusting the MEM to wider mode for the sole
9750      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9751      note this trick only works for MEMs.  */
9752   else if (GET_CODE (rhs) == AND
9753 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9754 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9755 	   && CONST_INT_P (XEXP (rhs, 1))
9756 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9757 						dest, true))
9758     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9759   else if (GET_CODE (lhs) == AND
9760 	   && CONST_INT_P (XEXP (lhs, 1))
9761 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9762     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9763   /* The second SUBREG that might get in the way is a paradoxical
9764      SUBREG around the first operand of the AND.  We want to
9765      pretend the operand is as wide as the destination here.   We
9766      do this by adjusting the MEM to wider mode for the sole
9767      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9768      note this trick only works for MEMs.  */
9769   else if (GET_CODE (lhs) == AND
9770 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9771 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9772 	   && CONST_INT_P (XEXP (lhs, 1))
9773 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9774 						dest, true))
9775     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9776   else
9777     return x;
9778 
9779   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9780   if (pos < 0
9781       || pos + len > GET_MODE_PRECISION (mode)
9782       || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9783       || (c1 & nonzero_bits (other, mode)) != 0)
9784     return x;
9785 
9786   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9787   if (assign == 0)
9788     return x;
9789 
9790   /* The mode to use for the source is the mode of the assignment, or of
9791      what is inside a possible STRICT_LOW_PART.  */
9792   machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9793 			   ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9794 
9795   /* Shift OTHER right POS places and make it the source, restricting it
9796      to the proper length and mode.  */
9797 
9798   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9799 						     src_mode, other, pos),
9800 			       dest);
9801   src = force_to_mode (src, new_mode,
9802 		       len >= HOST_BITS_PER_WIDE_INT
9803 		       ? HOST_WIDE_INT_M1U
9804 		       : (HOST_WIDE_INT_1U << len) - 1,
9805 		       0);
9806 
9807   /* If SRC is masked by an AND that does not make a difference in
9808      the value being stored, strip it.  */
9809   if (GET_CODE (assign) == ZERO_EXTRACT
9810       && CONST_INT_P (XEXP (assign, 1))
9811       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9812       && GET_CODE (src) == AND
9813       && CONST_INT_P (XEXP (src, 1))
9814       && UINTVAL (XEXP (src, 1))
9815 	 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9816     src = XEXP (src, 0);
9817 
9818   return gen_rtx_SET (assign, src);
9819 }
9820 
9821 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9822    if so.  */
9823 
9824 static rtx
9825 apply_distributive_law (rtx x)
9826 {
9827   enum rtx_code code = GET_CODE (x);
9828   enum rtx_code inner_code;
9829   rtx lhs, rhs, other;
9830   rtx tem;
9831 
9832   /* Distributivity is not true for floating point as it can change the
9833      value.  So we don't do it unless -funsafe-math-optimizations.  */
9834   if (FLOAT_MODE_P (GET_MODE (x))
9835       && ! flag_unsafe_math_optimizations)
9836     return x;
9837 
9838   /* The outer operation can only be one of the following:  */
9839   if (code != IOR && code != AND && code != XOR
9840       && code != PLUS && code != MINUS)
9841     return x;
9842 
9843   lhs = XEXP (x, 0);
9844   rhs = XEXP (x, 1);
9845 
9846   /* If either operand is a primitive we can't do anything, so get out
9847      fast.  */
9848   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9849     return x;
9850 
9851   lhs = expand_compound_operation (lhs);
9852   rhs = expand_compound_operation (rhs);
9853   inner_code = GET_CODE (lhs);
9854   if (inner_code != GET_CODE (rhs))
9855     return x;
9856 
9857   /* See if the inner and outer operations distribute.  */
9858   switch (inner_code)
9859     {
9860     case LSHIFTRT:
9861     case ASHIFTRT:
9862     case AND:
9863     case IOR:
9864       /* These all distribute except over PLUS.  */
9865       if (code == PLUS || code == MINUS)
9866 	return x;
9867       break;
9868 
9869     case MULT:
9870       if (code != PLUS && code != MINUS)
9871 	return x;
9872       break;
9873 
9874     case ASHIFT:
9875       /* This is also a multiply, so it distributes over everything.  */
9876       break;
9877 
9878     /* This used to handle SUBREG, but this turned out to be counter-
9879        productive, since (subreg (op ...)) usually is not handled by
9880        insn patterns, and this "optimization" therefore transformed
9881        recognizable patterns into unrecognizable ones.  Therefore the
9882        SUBREG case was removed from here.
9883 
9884        It is possible that distributing SUBREG over arithmetic operations
9885        leads to an intermediate result than can then be optimized further,
9886        e.g. by moving the outer SUBREG to the other side of a SET as done
9887        in simplify_set.  This seems to have been the original intent of
9888        handling SUBREGs here.
9889 
9890        However, with current GCC this does not appear to actually happen,
9891        at least on major platforms.  If some case is found where removing
9892        the SUBREG case here prevents follow-on optimizations, distributing
9893        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9894 
9895     default:
9896       return x;
9897     }
9898 
9899   /* Set LHS and RHS to the inner operands (A and B in the example
9900      above) and set OTHER to the common operand (C in the example).
9901      There is only one way to do this unless the inner operation is
9902      commutative.  */
9903   if (COMMUTATIVE_ARITH_P (lhs)
9904       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9905     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9906   else if (COMMUTATIVE_ARITH_P (lhs)
9907 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9908     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9909   else if (COMMUTATIVE_ARITH_P (lhs)
9910 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9911     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9912   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9913     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9914   else
9915     return x;
9916 
9917   /* Form the new inner operation, seeing if it simplifies first.  */
9918   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9919 
9920   /* There is one exception to the general way of distributing:
9921      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9922   if (code == XOR && inner_code == IOR)
9923     {
9924       inner_code = AND;
9925       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9926     }
9927 
9928   /* We may be able to continuing distributing the result, so call
9929      ourselves recursively on the inner operation before forming the
9930      outer operation, which we return.  */
9931   return simplify_gen_binary (inner_code, GET_MODE (x),
9932 			      apply_distributive_law (tem), other);
9933 }
9934 
9935 /* See if X is of the form (* (+ A B) C), and if so convert to
9936    (+ (* A C) (* B C)) and try to simplify.
9937 
9938    Most of the time, this results in no change.  However, if some of
9939    the operands are the same or inverses of each other, simplifications
9940    will result.
9941 
9942    For example, (and (ior A B) (not B)) can occur as the result of
9943    expanding a bit field assignment.  When we apply the distributive
9944    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9945    which then simplifies to (and (A (not B))).
9946 
9947    Note that no checks happen on the validity of applying the inverse
9948    distributive law.  This is pointless since we can do it in the
9949    few places where this routine is called.
9950 
9951    N is the index of the term that is decomposed (the arithmetic operation,
9952    i.e. (+ A B) in the first example above).  !N is the index of the term that
9953    is distributed, i.e. of C in the first example above.  */
9954 static rtx
9955 distribute_and_simplify_rtx (rtx x, int n)
9956 {
9957   machine_mode mode;
9958   enum rtx_code outer_code, inner_code;
9959   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9960 
9961   /* Distributivity is not true for floating point as it can change the
9962      value.  So we don't do it unless -funsafe-math-optimizations.  */
9963   if (FLOAT_MODE_P (GET_MODE (x))
9964       && ! flag_unsafe_math_optimizations)
9965     return NULL_RTX;
9966 
9967   decomposed = XEXP (x, n);
9968   if (!ARITHMETIC_P (decomposed))
9969     return NULL_RTX;
9970 
9971   mode = GET_MODE (x);
9972   outer_code = GET_CODE (x);
9973   distributed = XEXP (x, !n);
9974 
9975   inner_code = GET_CODE (decomposed);
9976   inner_op0 = XEXP (decomposed, 0);
9977   inner_op1 = XEXP (decomposed, 1);
9978 
9979   /* Special case (and (xor B C) (not A)), which is equivalent to
9980      (xor (ior A B) (ior A C))  */
9981   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9982     {
9983       distributed = XEXP (distributed, 0);
9984       outer_code = IOR;
9985     }
9986 
9987   if (n == 0)
9988     {
9989       /* Distribute the second term.  */
9990       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9991       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9992     }
9993   else
9994     {
9995       /* Distribute the first term.  */
9996       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9997       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9998     }
9999 
10000   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10001 						     new_op0, new_op1));
10002   if (GET_CODE (tmp) != outer_code
10003       && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10004 	  < set_src_cost (x, mode, optimize_this_for_speed_p)))
10005     return tmp;
10006 
10007   return NULL_RTX;
10008 }
10009 
10010 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10011    in MODE.  Return an equivalent form, if different from (and VAROP
10012    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
10013 
10014 static rtx
10015 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10016 			  unsigned HOST_WIDE_INT constop)
10017 {
10018   unsigned HOST_WIDE_INT nonzero;
10019   unsigned HOST_WIDE_INT orig_constop;
10020   rtx orig_varop;
10021   int i;
10022 
10023   orig_varop = varop;
10024   orig_constop = constop;
10025   if (GET_CODE (varop) == CLOBBER)
10026     return NULL_RTX;
10027 
10028   /* Simplify VAROP knowing that we will be only looking at some of the
10029      bits in it.
10030 
10031      Note by passing in CONSTOP, we guarantee that the bits not set in
10032      CONSTOP are not significant and will never be examined.  We must
10033      ensure that is the case by explicitly masking out those bits
10034      before returning.  */
10035   varop = force_to_mode (varop, mode, constop, 0);
10036 
10037   /* If VAROP is a CLOBBER, we will fail so return it.  */
10038   if (GET_CODE (varop) == CLOBBER)
10039     return varop;
10040 
10041   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10042      to VAROP and return the new constant.  */
10043   if (CONST_INT_P (varop))
10044     return gen_int_mode (INTVAL (varop) & constop, mode);
10045 
10046   /* See what bits may be nonzero in VAROP.  Unlike the general case of
10047      a call to nonzero_bits, here we don't care about bits outside
10048      MODE.  */
10049 
10050   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10051 
10052   /* Turn off all bits in the constant that are known to already be zero.
10053      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10054      which is tested below.  */
10055 
10056   constop &= nonzero;
10057 
10058   /* If we don't have any bits left, return zero.  */
10059   if (constop == 0)
10060     return const0_rtx;
10061 
10062   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10063      a power of two, we can replace this with an ASHIFT.  */
10064   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10065       && (i = exact_log2 (constop)) >= 0)
10066     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10067 
10068   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10069      or XOR, then try to apply the distributive law.  This may eliminate
10070      operations if either branch can be simplified because of the AND.
10071      It may also make some cases more complex, but those cases probably
10072      won't match a pattern either with or without this.  */
10073 
10074   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10075     {
10076       scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10077       return
10078 	gen_lowpart
10079 	  (mode,
10080 	   apply_distributive_law
10081 	   (simplify_gen_binary (GET_CODE (varop), varop_mode,
10082 				 simplify_and_const_int (NULL_RTX, varop_mode,
10083 							 XEXP (varop, 0),
10084 							 constop),
10085 				 simplify_and_const_int (NULL_RTX, varop_mode,
10086 							 XEXP (varop, 1),
10087 							 constop))));
10088     }
10089 
10090   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10091      the AND and see if one of the operands simplifies to zero.  If so, we
10092      may eliminate it.  */
10093 
10094   if (GET_CODE (varop) == PLUS
10095       && pow2p_hwi (constop + 1))
10096     {
10097       rtx o0, o1;
10098 
10099       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10100       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10101       if (o0 == const0_rtx)
10102 	return o1;
10103       if (o1 == const0_rtx)
10104 	return o0;
10105     }
10106 
10107   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10108   varop = gen_lowpart (mode, varop);
10109   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10110     return NULL_RTX;
10111 
10112   /* If we are only masking insignificant bits, return VAROP.  */
10113   if (constop == nonzero)
10114     return varop;
10115 
10116   if (varop == orig_varop && constop == orig_constop)
10117     return NULL_RTX;
10118 
10119   /* Otherwise, return an AND.  */
10120   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10121 }
10122 
10123 
10124 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10125    in MODE.
10126 
10127    Return an equivalent form, if different from X.  Otherwise, return X.  If
10128    X is zero, we are to always construct the equivalent form.  */
10129 
10130 static rtx
10131 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10132 			unsigned HOST_WIDE_INT constop)
10133 {
10134   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10135   if (tem)
10136     return tem;
10137 
10138   if (!x)
10139     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10140 			     gen_int_mode (constop, mode));
10141   if (GET_MODE (x) != mode)
10142     x = gen_lowpart (mode, x);
10143   return x;
10144 }
10145 
10146 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10147    We don't care about bits outside of those defined in MODE.
10148 
10149    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10150    a shift, AND, or zero_extract, we can do better.  */
10151 
10152 static rtx
10153 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10154 			      scalar_int_mode mode,
10155 			      unsigned HOST_WIDE_INT *nonzero)
10156 {
10157   rtx tem;
10158   reg_stat_type *rsp;
10159 
10160   /* If X is a register whose nonzero bits value is current, use it.
10161      Otherwise, if X is a register whose value we can find, use that
10162      value.  Otherwise, use the previously-computed global nonzero bits
10163      for this register.  */
10164 
10165   rsp = &reg_stat[REGNO (x)];
10166   if (rsp->last_set_value != 0
10167       && (rsp->last_set_mode == mode
10168 	  || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10169 	      && GET_MODE_CLASS (mode) == MODE_INT))
10170       && ((rsp->last_set_label >= label_tick_ebb_start
10171 	   && rsp->last_set_label < label_tick)
10172 	  || (rsp->last_set_label == label_tick
10173               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10174 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10175 	      && REGNO (x) < reg_n_sets_max
10176 	      && REG_N_SETS (REGNO (x)) == 1
10177 	      && !REGNO_REG_SET_P
10178 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10179 		   REGNO (x)))))
10180     {
10181       /* Note that, even if the precision of last_set_mode is lower than that
10182 	 of mode, record_value_for_reg invoked nonzero_bits on the register
10183 	 with nonzero_bits_mode (because last_set_mode is necessarily integral
10184 	 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10185 	 are all valid, hence in mode too since nonzero_bits_mode is defined
10186 	 to the largest HWI_COMPUTABLE_MODE_P mode.  */
10187       *nonzero &= rsp->last_set_nonzero_bits;
10188       return NULL;
10189     }
10190 
10191   tem = get_last_value (x);
10192   if (tem)
10193     {
10194       if (SHORT_IMMEDIATES_SIGN_EXTEND)
10195 	tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10196 
10197       return tem;
10198     }
10199 
10200   if (nonzero_sign_valid && rsp->nonzero_bits)
10201     {
10202       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10203 
10204       if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10205 	/* We don't know anything about the upper bits.  */
10206 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10207 
10208       *nonzero &= mask;
10209     }
10210 
10211   return NULL;
10212 }
10213 
10214 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10215    end of X that are known to be equal to the sign bit.  X will be used
10216    in mode MODE; the returned value will always be between 1 and the
10217    number of bits in MODE.  */
10218 
10219 static rtx
10220 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10221 				     scalar_int_mode mode,
10222 				     unsigned int *result)
10223 {
10224   rtx tem;
10225   reg_stat_type *rsp;
10226 
10227   rsp = &reg_stat[REGNO (x)];
10228   if (rsp->last_set_value != 0
10229       && rsp->last_set_mode == mode
10230       && ((rsp->last_set_label >= label_tick_ebb_start
10231 	   && rsp->last_set_label < label_tick)
10232 	  || (rsp->last_set_label == label_tick
10233               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10234 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10235 	      && REGNO (x) < reg_n_sets_max
10236 	      && REG_N_SETS (REGNO (x)) == 1
10237 	      && !REGNO_REG_SET_P
10238 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10239 		   REGNO (x)))))
10240     {
10241       *result = rsp->last_set_sign_bit_copies;
10242       return NULL;
10243     }
10244 
10245   tem = get_last_value (x);
10246   if (tem != 0)
10247     return tem;
10248 
10249   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10250       && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10251     *result = rsp->sign_bit_copies;
10252 
10253   return NULL;
10254 }
10255 
10256 /* Return the number of "extended" bits there are in X, when interpreted
10257    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
10258    unsigned quantities, this is the number of high-order zero bits.
10259    For signed quantities, this is the number of copies of the sign bit
10260    minus 1.  In both case, this function returns the number of "spare"
10261    bits.  For example, if two quantities for which this function returns
10262    at least 1 are added, the addition is known not to overflow.
10263 
10264    This function will always return 0 unless called during combine, which
10265    implies that it must be called from a define_split.  */
10266 
10267 unsigned int
10268 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10269 {
10270   if (nonzero_sign_valid == 0)
10271     return 0;
10272 
10273   scalar_int_mode int_mode;
10274   return (unsignedp
10275 	  ? (is_a <scalar_int_mode> (mode, &int_mode)
10276 	     && HWI_COMPUTABLE_MODE_P (int_mode)
10277 	     ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10278 			       - floor_log2 (nonzero_bits (x, int_mode)))
10279 	     : 0)
10280 	  : num_sign_bit_copies (x, mode) - 1);
10281 }
10282 
10283 /* This function is called from `simplify_shift_const' to merge two
10284    outer operations.  Specifically, we have already found that we need
10285    to perform operation *POP0 with constant *PCONST0 at the outermost
10286    position.  We would now like to also perform OP1 with constant CONST1
10287    (with *POP0 being done last).
10288 
10289    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10290    the resulting operation.  *PCOMP_P is set to 1 if we would need to
10291    complement the innermost operand, otherwise it is unchanged.
10292 
10293    MODE is the mode in which the operation will be done.  No bits outside
10294    the width of this mode matter.  It is assumed that the width of this mode
10295    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10296 
10297    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
10298    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
10299    result is simply *PCONST0.
10300 
10301    If the resulting operation cannot be expressed as one operation, we
10302    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
10303 
10304 static int
10305 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10306 {
10307   enum rtx_code op0 = *pop0;
10308   HOST_WIDE_INT const0 = *pconst0;
10309 
10310   const0 &= GET_MODE_MASK (mode);
10311   const1 &= GET_MODE_MASK (mode);
10312 
10313   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
10314   if (op0 == AND)
10315     const1 &= const0;
10316 
10317   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
10318      if OP0 is SET.  */
10319 
10320   if (op1 == UNKNOWN || op0 == SET)
10321     return 1;
10322 
10323   else if (op0 == UNKNOWN)
10324     op0 = op1, const0 = const1;
10325 
10326   else if (op0 == op1)
10327     {
10328       switch (op0)
10329 	{
10330 	case AND:
10331 	  const0 &= const1;
10332 	  break;
10333 	case IOR:
10334 	  const0 |= const1;
10335 	  break;
10336 	case XOR:
10337 	  const0 ^= const1;
10338 	  break;
10339 	case PLUS:
10340 	  const0 += const1;
10341 	  break;
10342 	case NEG:
10343 	  op0 = UNKNOWN;
10344 	  break;
10345 	default:
10346 	  break;
10347 	}
10348     }
10349 
10350   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
10351   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10352     return 0;
10353 
10354   /* If the two constants aren't the same, we can't do anything.  The
10355      remaining six cases can all be done.  */
10356   else if (const0 != const1)
10357     return 0;
10358 
10359   else
10360     switch (op0)
10361       {
10362       case IOR:
10363 	if (op1 == AND)
10364 	  /* (a & b) | b == b */
10365 	  op0 = SET;
10366 	else /* op1 == XOR */
10367 	  /* (a ^ b) | b == a | b */
10368 	  {;}
10369 	break;
10370 
10371       case XOR:
10372 	if (op1 == AND)
10373 	  /* (a & b) ^ b == (~a) & b */
10374 	  op0 = AND, *pcomp_p = 1;
10375 	else /* op1 == IOR */
10376 	  /* (a | b) ^ b == a & ~b */
10377 	  op0 = AND, const0 = ~const0;
10378 	break;
10379 
10380       case AND:
10381 	if (op1 == IOR)
10382 	  /* (a | b) & b == b */
10383 	op0 = SET;
10384 	else /* op1 == XOR */
10385 	  /* (a ^ b) & b) == (~a) & b */
10386 	  *pcomp_p = 1;
10387 	break;
10388       default:
10389 	break;
10390       }
10391 
10392   /* Check for NO-OP cases.  */
10393   const0 &= GET_MODE_MASK (mode);
10394   if (const0 == 0
10395       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10396     op0 = UNKNOWN;
10397   else if (const0 == 0 && op0 == AND)
10398     op0 = SET;
10399   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10400 	   && op0 == AND)
10401     op0 = UNKNOWN;
10402 
10403   *pop0 = op0;
10404 
10405   /* ??? Slightly redundant with the above mask, but not entirely.
10406      Moving this above means we'd have to sign-extend the mode mask
10407      for the final test.  */
10408   if (op0 != UNKNOWN && op0 != NEG)
10409     *pconst0 = trunc_int_for_mode (const0, mode);
10410 
10411   return 1;
10412 }
10413 
10414 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10415    the shift in.  The original shift operation CODE is performed on OP in
10416    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10417    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10418    result of the shift is subject to operation OUTER_CODE with operand
10419    OUTER_CONST.  */
10420 
10421 static scalar_int_mode
10422 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10423 		      scalar_int_mode orig_mode, scalar_int_mode mode,
10424 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10425 {
10426   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10427 
10428   /* In general we can't perform in wider mode for right shift and rotate.  */
10429   switch (code)
10430     {
10431     case ASHIFTRT:
10432       /* We can still widen if the bits brought in from the left are identical
10433 	 to the sign bit of ORIG_MODE.  */
10434       if (num_sign_bit_copies (op, mode)
10435 	  > (unsigned) (GET_MODE_PRECISION (mode)
10436 			- GET_MODE_PRECISION (orig_mode)))
10437 	return mode;
10438       return orig_mode;
10439 
10440     case LSHIFTRT:
10441       /* Similarly here but with zero bits.  */
10442       if (HWI_COMPUTABLE_MODE_P (mode)
10443 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10444 	return mode;
10445 
10446       /* We can also widen if the bits brought in will be masked off.  This
10447 	 operation is performed in ORIG_MODE.  */
10448       if (outer_code == AND)
10449 	{
10450 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10451 
10452 	  if (care_bits >= 0
10453 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10454 	    return mode;
10455 	}
10456       /* fall through */
10457 
10458     case ROTATE:
10459       return orig_mode;
10460 
10461     case ROTATERT:
10462       gcc_unreachable ();
10463 
10464     default:
10465       return mode;
10466     }
10467 }
10468 
10469 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10470    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10471    if we cannot simplify it.  Otherwise, return a simplified value.
10472 
10473    The shift is normally computed in the widest mode we find in VAROP, as
10474    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10475    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10476 
10477 static rtx
10478 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10479 			rtx varop, int orig_count)
10480 {
10481   enum rtx_code orig_code = code;
10482   rtx orig_varop = varop;
10483   int count, log2;
10484   machine_mode mode = result_mode;
10485   machine_mode shift_mode;
10486   scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10487   /* We form (outer_op (code varop count) (outer_const)).  */
10488   enum rtx_code outer_op = UNKNOWN;
10489   HOST_WIDE_INT outer_const = 0;
10490   int complement_p = 0;
10491   rtx new_rtx, x;
10492 
10493   /* Make sure and truncate the "natural" shift on the way in.  We don't
10494      want to do this inside the loop as it makes it more difficult to
10495      combine shifts.  */
10496   if (SHIFT_COUNT_TRUNCATED)
10497     orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10498 
10499   /* If we were given an invalid count, don't do anything except exactly
10500      what was requested.  */
10501 
10502   if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10503     return NULL_RTX;
10504 
10505   count = orig_count;
10506 
10507   /* Unless one of the branches of the `if' in this loop does a `continue',
10508      we will `break' the loop after the `if'.  */
10509 
10510   while (count != 0)
10511     {
10512       /* If we have an operand of (clobber (const_int 0)), fail.  */
10513       if (GET_CODE (varop) == CLOBBER)
10514 	return NULL_RTX;
10515 
10516       /* Convert ROTATERT to ROTATE.  */
10517       if (code == ROTATERT)
10518 	{
10519 	  unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10520 	  code = ROTATE;
10521 	  count = bitsize - count;
10522 	}
10523 
10524       shift_mode = result_mode;
10525       if (shift_mode != mode)
10526 	{
10527 	  /* We only change the modes of scalar shifts.  */
10528 	  int_mode = as_a <scalar_int_mode> (mode);
10529 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10530 	  shift_mode = try_widen_shift_mode (code, varop, count,
10531 					     int_result_mode, int_mode,
10532 					     outer_op, outer_const);
10533 	}
10534 
10535       scalar_int_mode shift_unit_mode
10536 	= as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10537 
10538       /* Handle cases where the count is greater than the size of the mode
10539 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10540 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10541 	 take the count modulo the size.  For other shifts, the result is
10542 	 zero.
10543 
10544 	 Since these shifts are being produced by the compiler by combining
10545 	 multiple operations, each of which are defined, we know what the
10546 	 result is supposed to be.  */
10547 
10548       if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10549 	{
10550 	  if (code == ASHIFTRT)
10551 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10552 	  else if (code == ROTATE || code == ROTATERT)
10553 	    count %= GET_MODE_PRECISION (shift_unit_mode);
10554 	  else
10555 	    {
10556 	      /* We can't simply return zero because there may be an
10557 		 outer op.  */
10558 	      varop = const0_rtx;
10559 	      count = 0;
10560 	      break;
10561 	    }
10562 	}
10563 
10564       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10565 	 here would cause an infinite loop.  */
10566       if (complement_p)
10567 	break;
10568 
10569       if (shift_mode == shift_unit_mode)
10570 	{
10571 	  /* An arithmetic right shift of a quantity known to be -1 or 0
10572 	     is a no-op.  */
10573 	  if (code == ASHIFTRT
10574 	      && (num_sign_bit_copies (varop, shift_unit_mode)
10575 		  == GET_MODE_PRECISION (shift_unit_mode)))
10576 	    {
10577 	      count = 0;
10578 	      break;
10579 	    }
10580 
10581 	  /* If we are doing an arithmetic right shift and discarding all but
10582 	     the sign bit copies, this is equivalent to doing a shift by the
10583 	     bitsize minus one.  Convert it into that shift because it will
10584 	     often allow other simplifications.  */
10585 
10586 	  if (code == ASHIFTRT
10587 	      && (count + num_sign_bit_copies (varop, shift_unit_mode)
10588 		  >= GET_MODE_PRECISION (shift_unit_mode)))
10589 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10590 
10591 	  /* We simplify the tests below and elsewhere by converting
10592 	     ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10593 	     `make_compound_operation' will convert it to an ASHIFTRT for
10594 	     those machines (such as VAX) that don't have an LSHIFTRT.  */
10595 	  if (code == ASHIFTRT
10596 	      && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10597 	      && val_signbit_known_clear_p (shift_unit_mode,
10598 					    nonzero_bits (varop,
10599 							  shift_unit_mode)))
10600 	    code = LSHIFTRT;
10601 
10602 	  if (((code == LSHIFTRT
10603 		&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10604 		&& !(nonzero_bits (varop, shift_unit_mode) >> count))
10605 	       || (code == ASHIFT
10606 		   && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10607 		   && !((nonzero_bits (varop, shift_unit_mode) << count)
10608 			& GET_MODE_MASK (shift_unit_mode))))
10609 	      && !side_effects_p (varop))
10610 	    varop = const0_rtx;
10611 	}
10612 
10613       switch (GET_CODE (varop))
10614 	{
10615 	case SIGN_EXTEND:
10616 	case ZERO_EXTEND:
10617 	case SIGN_EXTRACT:
10618 	case ZERO_EXTRACT:
10619 	  new_rtx = expand_compound_operation (varop);
10620 	  if (new_rtx != varop)
10621 	    {
10622 	      varop = new_rtx;
10623 	      continue;
10624 	    }
10625 	  break;
10626 
10627 	case MEM:
10628 	  /* The following rules apply only to scalars.  */
10629 	  if (shift_mode != shift_unit_mode)
10630 	    break;
10631 	  int_mode = as_a <scalar_int_mode> (mode);
10632 
10633 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10634 	     minus the width of a smaller mode, we can do this with a
10635 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10636 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10637 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10638 					     MEM_ADDR_SPACE (varop))
10639 	      && ! MEM_VOLATILE_P (varop)
10640 	      && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10641 		  .exists (&tmode)))
10642 	    {
10643 	      new_rtx = adjust_address_nv (varop, tmode,
10644 					   BYTES_BIG_ENDIAN ? 0
10645 					   : count / BITS_PER_UNIT);
10646 
10647 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10648 				     : ZERO_EXTEND, int_mode, new_rtx);
10649 	      count = 0;
10650 	      continue;
10651 	    }
10652 	  break;
10653 
10654 	case SUBREG:
10655 	  /* The following rules apply only to scalars.  */
10656 	  if (shift_mode != shift_unit_mode)
10657 	    break;
10658 	  int_mode = as_a <scalar_int_mode> (mode);
10659 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10660 
10661 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10662 	     the same number of words as what we've seen so far.  Then store
10663 	     the widest mode in MODE.  */
10664 	  if (subreg_lowpart_p (varop)
10665 	      && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10666 	      && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10667 	      && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10668 		  == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10669 	      && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10670 	    {
10671 	      varop = SUBREG_REG (varop);
10672 	      if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10673 		mode = inner_mode;
10674 	      continue;
10675 	    }
10676 	  break;
10677 
10678 	case MULT:
10679 	  /* Some machines use MULT instead of ASHIFT because MULT
10680 	     is cheaper.  But it is still better on those machines to
10681 	     merge two shifts into one.  */
10682 	  if (CONST_INT_P (XEXP (varop, 1))
10683 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10684 	    {
10685 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10686 	      varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10687 					   XEXP (varop, 0), log2_rtx);
10688 	      continue;
10689 	    }
10690 	  break;
10691 
10692 	case UDIV:
10693 	  /* Similar, for when divides are cheaper.  */
10694 	  if (CONST_INT_P (XEXP (varop, 1))
10695 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10696 	    {
10697 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10698 	      varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10699 					   XEXP (varop, 0), log2_rtx);
10700 	      continue;
10701 	    }
10702 	  break;
10703 
10704 	case ASHIFTRT:
10705 	  /* If we are extracting just the sign bit of an arithmetic
10706 	     right shift, that shift is not needed.  However, the sign
10707 	     bit of a wider mode may be different from what would be
10708 	     interpreted as the sign bit in a narrower mode, so, if
10709 	     the result is narrower, don't discard the shift.  */
10710 	  if (code == LSHIFTRT
10711 	      && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10712 	      && (GET_MODE_UNIT_BITSIZE (result_mode)
10713 		  >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10714 	    {
10715 	      varop = XEXP (varop, 0);
10716 	      continue;
10717 	    }
10718 
10719 	  /* fall through */
10720 
10721 	case LSHIFTRT:
10722 	case ASHIFT:
10723 	case ROTATE:
10724 	  /* The following rules apply only to scalars.  */
10725 	  if (shift_mode != shift_unit_mode)
10726 	    break;
10727 	  int_mode = as_a <scalar_int_mode> (mode);
10728 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10729 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10730 
10731 	  /* Here we have two nested shifts.  The result is usually the
10732 	     AND of a new shift with a mask.  We compute the result below.  */
10733 	  if (CONST_INT_P (XEXP (varop, 1))
10734 	      && INTVAL (XEXP (varop, 1)) >= 0
10735 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10736 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
10737 	      && HWI_COMPUTABLE_MODE_P (int_mode))
10738 	    {
10739 	      enum rtx_code first_code = GET_CODE (varop);
10740 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10741 	      unsigned HOST_WIDE_INT mask;
10742 	      rtx mask_rtx;
10743 
10744 	      /* We have one common special case.  We can't do any merging if
10745 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10746 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10747 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10748 		 we can convert it to
10749 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10750 		 This simplifies certain SIGN_EXTEND operations.  */
10751 	      if (code == ASHIFT && first_code == ASHIFTRT
10752 		  && count == (GET_MODE_PRECISION (int_result_mode)
10753 			       - GET_MODE_PRECISION (int_varop_mode)))
10754 		{
10755 		  /* C3 has the low-order C1 bits zero.  */
10756 
10757 		  mask = GET_MODE_MASK (int_mode)
10758 			 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10759 
10760 		  varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10761 						  XEXP (varop, 0), mask);
10762 		  varop = simplify_shift_const (NULL_RTX, ASHIFT,
10763 						int_result_mode, varop, count);
10764 		  count = first_count;
10765 		  code = ASHIFTRT;
10766 		  continue;
10767 		}
10768 
10769 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10770 		 than C1 high-order bits equal to the sign bit, we can convert
10771 		 this to either an ASHIFT or an ASHIFTRT depending on the
10772 		 two counts.
10773 
10774 		 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE.  */
10775 
10776 	      if (code == ASHIFTRT && first_code == ASHIFT
10777 		  && int_varop_mode == shift_unit_mode
10778 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10779 		      > first_count))
10780 		{
10781 		  varop = XEXP (varop, 0);
10782 		  count -= first_count;
10783 		  if (count < 0)
10784 		    {
10785 		      count = -count;
10786 		      code = ASHIFT;
10787 		    }
10788 
10789 		  continue;
10790 		}
10791 
10792 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10793 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10794 
10795 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10796 		 ASHIFTRT.
10797 
10798 		 If the mode of this shift is not the mode of the outer shift,
10799 		 we can't do this if either shift is a right shift or ROTATE.
10800 
10801 		 Finally, we can't do any of these if the mode is too wide
10802 		 unless the codes are the same.
10803 
10804 		 Handle the case where the shift codes are the same
10805 		 first.  */
10806 
10807 	      if (code == first_code)
10808 		{
10809 		  if (int_varop_mode != int_result_mode
10810 		      && (code == ASHIFTRT || code == LSHIFTRT
10811 			  || code == ROTATE))
10812 		    break;
10813 
10814 		  count += first_count;
10815 		  varop = XEXP (varop, 0);
10816 		  continue;
10817 		}
10818 
10819 	      if (code == ASHIFTRT
10820 		  || (code == ROTATE && first_code == ASHIFTRT)
10821 		  || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10822 		  || (int_varop_mode != int_result_mode
10823 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10824 			  || first_code == ROTATE
10825 			  || code == ROTATE)))
10826 		break;
10827 
10828 	      /* To compute the mask to apply after the shift, shift the
10829 		 nonzero bits of the inner shift the same way the
10830 		 outer shift will.  */
10831 
10832 	      mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10833 				       int_result_mode);
10834 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10835 	      mask_rtx
10836 		= simplify_const_binary_operation (code, int_result_mode,
10837 						   mask_rtx, count_rtx);
10838 
10839 	      /* Give up if we can't compute an outer operation to use.  */
10840 	      if (mask_rtx == 0
10841 		  || !CONST_INT_P (mask_rtx)
10842 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10843 					INTVAL (mask_rtx),
10844 					int_result_mode, &complement_p))
10845 		break;
10846 
10847 	      /* If the shifts are in the same direction, we add the
10848 		 counts.  Otherwise, we subtract them.  */
10849 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10850 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10851 		count += first_count;
10852 	      else
10853 		count -= first_count;
10854 
10855 	      /* If COUNT is positive, the new shift is usually CODE,
10856 		 except for the two exceptions below, in which case it is
10857 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10858 		 always be used  */
10859 	      if (count > 0
10860 		  && ((first_code == ROTATE && code == ASHIFT)
10861 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10862 		code = first_code;
10863 	      else if (count < 0)
10864 		code = first_code, count = -count;
10865 
10866 	      varop = XEXP (varop, 0);
10867 	      continue;
10868 	    }
10869 
10870 	  /* If we have (A << B << C) for any shift, we can convert this to
10871 	     (A << C << B).  This wins if A is a constant.  Only try this if
10872 	     B is not a constant.  */
10873 
10874 	  else if (GET_CODE (varop) == code
10875 		   && CONST_INT_P (XEXP (varop, 0))
10876 		   && !CONST_INT_P (XEXP (varop, 1)))
10877 	    {
10878 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10879 		 sure the result will be masked.  See PR70222.  */
10880 	      if (code == LSHIFTRT
10881 		  && int_mode != int_result_mode
10882 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10883 				       GET_MODE_MASK (int_result_mode)
10884 				       >> orig_count, int_result_mode,
10885 				       &complement_p))
10886 		break;
10887 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10888 		 up outer sign extension (often left and right shift) is
10889 		 hardly more efficient than the original.  See PR70429.  */
10890 	      if (code == ASHIFTRT && int_mode != int_result_mode)
10891 		break;
10892 
10893 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10894 	      rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10895 							     XEXP (varop, 0),
10896 							     count_rtx);
10897 	      varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10898 	      count = 0;
10899 	      continue;
10900 	    }
10901 	  break;
10902 
10903 	case NOT:
10904 	  /* The following rules apply only to scalars.  */
10905 	  if (shift_mode != shift_unit_mode)
10906 	    break;
10907 
10908 	  /* Make this fit the case below.  */
10909 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10910 	  continue;
10911 
10912 	case IOR:
10913 	case AND:
10914 	case XOR:
10915 	  /* The following rules apply only to scalars.  */
10916 	  if (shift_mode != shift_unit_mode)
10917 	    break;
10918 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10919 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10920 
10921 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10922 	     with C the size of VAROP - 1 and the shift is logical if
10923 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10924 	     we have an (le X 0) operation.   If we have an arithmetic shift
10925 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10926 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10927 
10928 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10929 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10930 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10931 	      && (code == LSHIFTRT || code == ASHIFTRT)
10932 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10933 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10934 	    {
10935 	      count = 0;
10936 	      varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10937 				  const0_rtx);
10938 
10939 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10940 		varop = gen_rtx_NEG (int_varop_mode, varop);
10941 
10942 	      continue;
10943 	    }
10944 
10945 	  /* If we have (shift (logical)), move the logical to the outside
10946 	     to allow it to possibly combine with another logical and the
10947 	     shift to combine with another shift.  This also canonicalizes to
10948 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10949 	     (and (shift)) insns.  */
10950 
10951 	  if (CONST_INT_P (XEXP (varop, 1))
10952 	      /* We can't do this if we have (ashiftrt (xor))  and the
10953 		 constant has its sign bit set in shift_unit_mode with
10954 		 shift_unit_mode wider than result_mode.  */
10955 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10956 		   && int_result_mode != shift_unit_mode
10957 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10958 					  shift_unit_mode) < 0)
10959 	      && (new_rtx = simplify_const_binary_operation
10960 		  (code, int_result_mode,
10961 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10962 		   gen_int_shift_amount (int_result_mode, count))) != 0
10963 	      && CONST_INT_P (new_rtx)
10964 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10965 				  INTVAL (new_rtx), int_result_mode,
10966 				  &complement_p))
10967 	    {
10968 	      varop = XEXP (varop, 0);
10969 	      continue;
10970 	    }
10971 
10972 	  /* If we can't do that, try to simplify the shift in each arm of the
10973 	     logical expression, make a new logical expression, and apply
10974 	     the inverse distributive law.  This also can't be done for
10975 	     (ashiftrt (xor)) where we've widened the shift and the constant
10976 	     changes the sign bit.  */
10977 	  if (CONST_INT_P (XEXP (varop, 1))
10978 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10979 		   && int_result_mode != shift_unit_mode
10980 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10981 					  shift_unit_mode) < 0))
10982 	    {
10983 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10984 					      XEXP (varop, 0), count);
10985 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10986 					      XEXP (varop, 1), count);
10987 
10988 	      varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10989 					   lhs, rhs);
10990 	      varop = apply_distributive_law (varop);
10991 
10992 	      count = 0;
10993 	      continue;
10994 	    }
10995 	  break;
10996 
10997 	case EQ:
10998 	  /* The following rules apply only to scalars.  */
10999 	  if (shift_mode != shift_unit_mode)
11000 	    break;
11001 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11002 
11003 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11004 	     says that the sign bit can be tested, FOO has mode MODE, C is
11005 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11006 	     that may be nonzero.  */
11007 	  if (code == LSHIFTRT
11008 	      && XEXP (varop, 1) == const0_rtx
11009 	      && GET_MODE (XEXP (varop, 0)) == int_result_mode
11010 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11011 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
11012 	      && STORE_FLAG_VALUE == -1
11013 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11014 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11015 				  int_result_mode, &complement_p))
11016 	    {
11017 	      varop = XEXP (varop, 0);
11018 	      count = 0;
11019 	      continue;
11020 	    }
11021 	  break;
11022 
11023 	case NEG:
11024 	  /* The following rules apply only to scalars.  */
11025 	  if (shift_mode != shift_unit_mode)
11026 	    break;
11027 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11028 
11029 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11030 	     than the number of bits in the mode is equivalent to A.  */
11031 	  if (code == LSHIFTRT
11032 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11033 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11034 	    {
11035 	      varop = XEXP (varop, 0);
11036 	      count = 0;
11037 	      continue;
11038 	    }
11039 
11040 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
11041 	     NEG outside to allow shifts to combine.  */
11042 	  if (code == ASHIFT
11043 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11044 				  int_result_mode, &complement_p))
11045 	    {
11046 	      varop = XEXP (varop, 0);
11047 	      continue;
11048 	    }
11049 	  break;
11050 
11051 	case PLUS:
11052 	  /* The following rules apply only to scalars.  */
11053 	  if (shift_mode != shift_unit_mode)
11054 	    break;
11055 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11056 
11057 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11058 	     is one less than the number of bits in the mode is
11059 	     equivalent to (xor A 1).  */
11060 	  if (code == LSHIFTRT
11061 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11062 	      && XEXP (varop, 1) == constm1_rtx
11063 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11064 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11065 				  int_result_mode, &complement_p))
11066 	    {
11067 	      count = 0;
11068 	      varop = XEXP (varop, 0);
11069 	      continue;
11070 	    }
11071 
11072 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11073 	     that might be nonzero in BAR are those being shifted out and those
11074 	     bits are known zero in FOO, we can replace the PLUS with FOO.
11075 	     Similarly in the other operand order.  This code occurs when
11076 	     we are computing the size of a variable-size array.  */
11077 
11078 	  if ((code == ASHIFTRT || code == LSHIFTRT)
11079 	      && count < HOST_BITS_PER_WIDE_INT
11080 	      && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11081 	      && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11082 		  & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11083 	    {
11084 	      varop = XEXP (varop, 0);
11085 	      continue;
11086 	    }
11087 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
11088 		   && count < HOST_BITS_PER_WIDE_INT
11089 		   && HWI_COMPUTABLE_MODE_P (int_result_mode)
11090 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11091 		       >> count) == 0
11092 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11093 		       & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11094 	    {
11095 	      varop = XEXP (varop, 1);
11096 	      continue;
11097 	    }
11098 
11099 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
11100 	  if (code == ASHIFT
11101 	      && CONST_INT_P (XEXP (varop, 1))
11102 	      && (new_rtx = simplify_const_binary_operation
11103 		  (ASHIFT, int_result_mode,
11104 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11105 		   gen_int_shift_amount (int_result_mode, count))) != 0
11106 	      && CONST_INT_P (new_rtx)
11107 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
11108 				  INTVAL (new_rtx), int_result_mode,
11109 				  &complement_p))
11110 	    {
11111 	      varop = XEXP (varop, 0);
11112 	      continue;
11113 	    }
11114 
11115 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11116 	     signbit', and attempt to change the PLUS to an XOR and move it to
11117 	     the outer operation as is done above in the AND/IOR/XOR case
11118 	     leg for shift(logical). See details in logical handling above
11119 	     for reasoning in doing so.  */
11120 	  if (code == LSHIFTRT
11121 	      && CONST_INT_P (XEXP (varop, 1))
11122 	      && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11123 	      && (new_rtx = simplify_const_binary_operation
11124 		  (code, int_result_mode,
11125 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11126 		   gen_int_shift_amount (int_result_mode, count))) != 0
11127 	      && CONST_INT_P (new_rtx)
11128 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
11129 				  INTVAL (new_rtx), int_result_mode,
11130 				  &complement_p))
11131 	    {
11132 	      varop = XEXP (varop, 0);
11133 	      continue;
11134 	    }
11135 
11136 	  break;
11137 
11138 	case MINUS:
11139 	  /* The following rules apply only to scalars.  */
11140 	  if (shift_mode != shift_unit_mode)
11141 	    break;
11142 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11143 
11144 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11145 	     with C the size of VAROP - 1 and the shift is logical if
11146 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11147 	     we have a (gt X 0) operation.  If the shift is arithmetic with
11148 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11149 	     we have a (neg (gt X 0)) operation.  */
11150 
11151 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11152 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11153 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11154 	      && (code == LSHIFTRT || code == ASHIFTRT)
11155 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11156 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11157 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11158 	    {
11159 	      count = 0;
11160 	      varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11161 				  const0_rtx);
11162 
11163 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11164 		varop = gen_rtx_NEG (int_varop_mode, varop);
11165 
11166 	      continue;
11167 	    }
11168 	  break;
11169 
11170 	case TRUNCATE:
11171 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11172 	     if the truncate does not affect the value.  */
11173 	  if (code == LSHIFTRT
11174 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11175 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11176 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
11177 		  >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11178 		      - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11179 	    {
11180 	      rtx varop_inner = XEXP (varop, 0);
11181 	      int new_count = count + INTVAL (XEXP (varop_inner, 1));
11182 	      rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11183 							new_count);
11184 	      varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11185 					      XEXP (varop_inner, 0),
11186 					      new_count_rtx);
11187 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11188 	      count = 0;
11189 	      continue;
11190 	    }
11191 	  break;
11192 
11193 	default:
11194 	  break;
11195 	}
11196 
11197       break;
11198     }
11199 
11200   shift_mode = result_mode;
11201   if (shift_mode != mode)
11202     {
11203       /* We only change the modes of scalar shifts.  */
11204       int_mode = as_a <scalar_int_mode> (mode);
11205       int_result_mode = as_a <scalar_int_mode> (result_mode);
11206       shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11207 					 int_mode, outer_op, outer_const);
11208     }
11209 
11210   /* We have now finished analyzing the shift.  The result should be
11211      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
11212      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11213      to the result of the shift.  OUTER_CONST is the relevant constant,
11214      but we must turn off all bits turned off in the shift.  */
11215 
11216   if (outer_op == UNKNOWN
11217       && orig_code == code && orig_count == count
11218       && varop == orig_varop
11219       && shift_mode == GET_MODE (varop))
11220     return NULL_RTX;
11221 
11222   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
11223   varop = gen_lowpart (shift_mode, varop);
11224   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11225     return NULL_RTX;
11226 
11227   /* If we have an outer operation and we just made a shift, it is
11228      possible that we could have simplified the shift were it not
11229      for the outer operation.  So try to do the simplification
11230      recursively.  */
11231 
11232   if (outer_op != UNKNOWN)
11233     x = simplify_shift_const_1 (code, shift_mode, varop, count);
11234   else
11235     x = NULL_RTX;
11236 
11237   if (x == NULL_RTX)
11238     x = simplify_gen_binary (code, shift_mode, varop,
11239 			     gen_int_shift_amount (shift_mode, count));
11240 
11241   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11242      turn off all the bits that the shift would have turned off.  */
11243   if (orig_code == LSHIFTRT && result_mode != shift_mode)
11244     /* We only change the modes of scalar shifts.  */
11245     x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11246 				x, GET_MODE_MASK (result_mode) >> orig_count);
11247 
11248   /* Do the remainder of the processing in RESULT_MODE.  */
11249   x = gen_lowpart_or_truncate (result_mode, x);
11250 
11251   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11252      operation.  */
11253   if (complement_p)
11254     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11255 
11256   if (outer_op != UNKNOWN)
11257     {
11258       int_result_mode = as_a <scalar_int_mode> (result_mode);
11259 
11260       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11261 	  && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11262 	outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11263 
11264       if (outer_op == AND)
11265 	x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11266       else if (outer_op == SET)
11267 	{
11268 	  /* This means that we have determined that the result is
11269 	     equivalent to a constant.  This should be rare.  */
11270 	  if (!side_effects_p (x))
11271 	    x = GEN_INT (outer_const);
11272 	}
11273       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11274 	x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11275       else
11276 	x = simplify_gen_binary (outer_op, int_result_mode, x,
11277 				 GEN_INT (outer_const));
11278     }
11279 
11280   return x;
11281 }
11282 
11283 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
11284    The result of the shift is RESULT_MODE.  If we cannot simplify it,
11285    return X or, if it is NULL, synthesize the expression with
11286    simplify_gen_binary.  Otherwise, return a simplified value.
11287 
11288    The shift is normally computed in the widest mode we find in VAROP, as
11289    long as it isn't a different number of words than RESULT_MODE.  Exceptions
11290    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
11291 
11292 static rtx
11293 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11294 		      rtx varop, int count)
11295 {
11296   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11297   if (tem)
11298     return tem;
11299 
11300   if (!x)
11301     x = simplify_gen_binary (code, GET_MODE (varop), varop,
11302 			     gen_int_shift_amount (GET_MODE (varop), count));
11303   if (GET_MODE (x) != result_mode)
11304     x = gen_lowpart (result_mode, x);
11305   return x;
11306 }
11307 
11308 
11309 /* A subroutine of recog_for_combine.  See there for arguments and
11310    return value.  */
11311 
11312 static int
11313 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11314 {
11315   rtx pat = *pnewpat;
11316   rtx pat_without_clobbers;
11317   int insn_code_number;
11318   int num_clobbers_to_add = 0;
11319   int i;
11320   rtx notes = NULL_RTX;
11321   rtx old_notes, old_pat;
11322   int old_icode;
11323 
11324   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11325      we use to indicate that something didn't match.  If we find such a
11326      thing, force rejection.  */
11327   if (GET_CODE (pat) == PARALLEL)
11328     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11329       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11330 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11331 	return -1;
11332 
11333   old_pat = PATTERN (insn);
11334   old_notes = REG_NOTES (insn);
11335   PATTERN (insn) = pat;
11336   REG_NOTES (insn) = NULL_RTX;
11337 
11338   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11339   if (dump_file && (dump_flags & TDF_DETAILS))
11340     {
11341       if (insn_code_number < 0)
11342 	fputs ("Failed to match this instruction:\n", dump_file);
11343       else
11344 	fputs ("Successfully matched this instruction:\n", dump_file);
11345       print_rtl_single (dump_file, pat);
11346     }
11347 
11348   /* If it isn't, there is the possibility that we previously had an insn
11349      that clobbered some register as a side effect, but the combined
11350      insn doesn't need to do that.  So try once more without the clobbers
11351      unless this represents an ASM insn.  */
11352 
11353   if (insn_code_number < 0 && ! check_asm_operands (pat)
11354       && GET_CODE (pat) == PARALLEL)
11355     {
11356       int pos;
11357 
11358       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11359 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11360 	  {
11361 	    if (i != pos)
11362 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11363 	    pos++;
11364 	  }
11365 
11366       SUBST_INT (XVECLEN (pat, 0), pos);
11367 
11368       if (pos == 1)
11369 	pat = XVECEXP (pat, 0, 0);
11370 
11371       PATTERN (insn) = pat;
11372       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11373       if (dump_file && (dump_flags & TDF_DETAILS))
11374 	{
11375 	  if (insn_code_number < 0)
11376 	    fputs ("Failed to match this instruction:\n", dump_file);
11377 	  else
11378 	    fputs ("Successfully matched this instruction:\n", dump_file);
11379 	  print_rtl_single (dump_file, pat);
11380 	}
11381     }
11382 
11383   pat_without_clobbers = pat;
11384 
11385   PATTERN (insn) = old_pat;
11386   REG_NOTES (insn) = old_notes;
11387 
11388   /* Recognize all noop sets, these will be killed by followup pass.  */
11389   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11390     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11391 
11392   /* If we had any clobbers to add, make a new pattern than contains
11393      them.  Then check to make sure that all of them are dead.  */
11394   if (num_clobbers_to_add)
11395     {
11396       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11397 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
11398 						  ? (XVECLEN (pat, 0)
11399 						     + num_clobbers_to_add)
11400 						  : num_clobbers_to_add + 1));
11401 
11402       if (GET_CODE (pat) == PARALLEL)
11403 	for (i = 0; i < XVECLEN (pat, 0); i++)
11404 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11405       else
11406 	XVECEXP (newpat, 0, 0) = pat;
11407 
11408       add_clobbers (newpat, insn_code_number);
11409 
11410       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11411 	   i < XVECLEN (newpat, 0); i++)
11412 	{
11413 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11414 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11415 	    return -1;
11416 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11417 	    {
11418 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11419 	      notes = alloc_reg_note (REG_UNUSED,
11420 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
11421 	    }
11422 	}
11423       pat = newpat;
11424     }
11425 
11426   if (insn_code_number >= 0
11427       && insn_code_number != NOOP_MOVE_INSN_CODE)
11428     {
11429       old_pat = PATTERN (insn);
11430       old_notes = REG_NOTES (insn);
11431       old_icode = INSN_CODE (insn);
11432       PATTERN (insn) = pat;
11433       REG_NOTES (insn) = notes;
11434       INSN_CODE (insn) = insn_code_number;
11435 
11436       /* Allow targets to reject combined insn.  */
11437       if (!targetm.legitimate_combined_insn (insn))
11438 	{
11439 	  if (dump_file && (dump_flags & TDF_DETAILS))
11440 	    fputs ("Instruction not appropriate for target.",
11441 		   dump_file);
11442 
11443 	  /* Callers expect recog_for_combine to strip
11444 	     clobbers from the pattern on failure.  */
11445 	  pat = pat_without_clobbers;
11446 	  notes = NULL_RTX;
11447 
11448 	  insn_code_number = -1;
11449 	}
11450 
11451       PATTERN (insn) = old_pat;
11452       REG_NOTES (insn) = old_notes;
11453       INSN_CODE (insn) = old_icode;
11454     }
11455 
11456   *pnewpat = pat;
11457   *pnotes = notes;
11458 
11459   return insn_code_number;
11460 }
11461 
11462 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11463    expressed as an AND and maybe an LSHIFTRT, to that formulation.
11464    Return whether anything was so changed.  */
11465 
11466 static bool
11467 change_zero_ext (rtx pat)
11468 {
11469   bool changed = false;
11470   rtx *src = &SET_SRC (pat);
11471 
11472   subrtx_ptr_iterator::array_type array;
11473   FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11474     {
11475       rtx x = **iter;
11476       scalar_int_mode mode, inner_mode;
11477       if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11478 	continue;
11479       int size;
11480 
11481       if (GET_CODE (x) == ZERO_EXTRACT
11482 	  && CONST_INT_P (XEXP (x, 1))
11483 	  && CONST_INT_P (XEXP (x, 2))
11484 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11485 	  && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11486 	{
11487 	  size = INTVAL (XEXP (x, 1));
11488 
11489 	  int start = INTVAL (XEXP (x, 2));
11490 	  if (BITS_BIG_ENDIAN)
11491 	    start = GET_MODE_PRECISION (inner_mode) - size - start;
11492 
11493 	  if (start != 0)
11494 	    x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11495 				  gen_int_shift_amount (inner_mode, start));
11496 	  else
11497 	    x = XEXP (x, 0);
11498 
11499 	  if (mode != inner_mode)
11500 	    {
11501 	      if (REG_P (x) && HARD_REGISTER_P (x)
11502 		  && !can_change_dest_mode (x, 0, mode))
11503 		continue;
11504 
11505 	      x = gen_lowpart_SUBREG (mode, x);
11506 	    }
11507 	}
11508       else if (GET_CODE (x) == ZERO_EXTEND
11509 	       && GET_CODE (XEXP (x, 0)) == SUBREG
11510 	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11511 	       && !paradoxical_subreg_p (XEXP (x, 0))
11512 	       && subreg_lowpart_p (XEXP (x, 0)))
11513 	{
11514 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11515 	  size = GET_MODE_PRECISION (inner_mode);
11516 	  x = SUBREG_REG (XEXP (x, 0));
11517 	  if (GET_MODE (x) != mode)
11518 	    {
11519 	      if (REG_P (x) && HARD_REGISTER_P (x)
11520 		  && !can_change_dest_mode (x, 0, mode))
11521 		continue;
11522 
11523 	      x = gen_lowpart_SUBREG (mode, x);
11524 	    }
11525 	}
11526       else if (GET_CODE (x) == ZERO_EXTEND
11527 	       && REG_P (XEXP (x, 0))
11528 	       && HARD_REGISTER_P (XEXP (x, 0))
11529 	       && can_change_dest_mode (XEXP (x, 0), 0, mode))
11530 	{
11531 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11532 	  size = GET_MODE_PRECISION (inner_mode);
11533 	  x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11534 	}
11535       else
11536 	continue;
11537 
11538       if (!(GET_CODE (x) == LSHIFTRT
11539 	    && CONST_INT_P (XEXP (x, 1))
11540 	    && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11541 	{
11542 	  wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11543 	  x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11544 	}
11545 
11546       SUBST (**iter, x);
11547       changed = true;
11548     }
11549 
11550   if (changed)
11551     FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11552       maybe_swap_commutative_operands (**iter);
11553 
11554   rtx *dst = &SET_DEST (pat);
11555   scalar_int_mode mode;
11556   if (GET_CODE (*dst) == ZERO_EXTRACT
11557       && REG_P (XEXP (*dst, 0))
11558       && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11559       && CONST_INT_P (XEXP (*dst, 1))
11560       && CONST_INT_P (XEXP (*dst, 2)))
11561     {
11562       rtx reg = XEXP (*dst, 0);
11563       int width = INTVAL (XEXP (*dst, 1));
11564       int offset = INTVAL (XEXP (*dst, 2));
11565       int reg_width = GET_MODE_PRECISION (mode);
11566       if (BITS_BIG_ENDIAN)
11567 	offset = reg_width - width - offset;
11568 
11569       rtx x, y, z, w;
11570       wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11571       wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11572       x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11573       if (offset)
11574 	y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11575       else
11576 	y = SET_SRC (pat);
11577       z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11578       w = gen_rtx_IOR (mode, x, z);
11579       SUBST (SET_DEST (pat), reg);
11580       SUBST (SET_SRC (pat), w);
11581 
11582       changed = true;
11583     }
11584 
11585   return changed;
11586 }
11587 
11588 /* Like recog, but we receive the address of a pointer to a new pattern.
11589    We try to match the rtx that the pointer points to.
11590    If that fails, we may try to modify or replace the pattern,
11591    storing the replacement into the same pointer object.
11592 
11593    Modifications include deletion or addition of CLOBBERs.  If the
11594    instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11595    to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11596    (and undo if that fails).
11597 
11598    PNOTES is a pointer to a location where any REG_UNUSED notes added for
11599    the CLOBBERs are placed.
11600 
11601    The value is the final insn code from the pattern ultimately matched,
11602    or -1.  */
11603 
11604 static int
11605 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11606 {
11607   rtx pat = *pnewpat;
11608   int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11609   if (insn_code_number >= 0 || check_asm_operands (pat))
11610     return insn_code_number;
11611 
11612   void *marker = get_undo_marker ();
11613   bool changed = false;
11614 
11615   if (GET_CODE (pat) == SET)
11616     changed = change_zero_ext (pat);
11617   else if (GET_CODE (pat) == PARALLEL)
11618     {
11619       int i;
11620       for (i = 0; i < XVECLEN (pat, 0); i++)
11621 	{
11622 	  rtx set = XVECEXP (pat, 0, i);
11623 	  if (GET_CODE (set) == SET)
11624 	    changed |= change_zero_ext (set);
11625 	}
11626     }
11627 
11628   if (changed)
11629     {
11630       insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11631 
11632       if (insn_code_number < 0)
11633 	undo_to_marker (marker);
11634     }
11635 
11636   return insn_code_number;
11637 }
11638 
11639 /* Like gen_lowpart_general but for use by combine.  In combine it
11640    is not possible to create any new pseudoregs.  However, it is
11641    safe to create invalid memory addresses, because combine will
11642    try to recognize them and all they will do is make the combine
11643    attempt fail.
11644 
11645    If for some reason this cannot do its job, an rtx
11646    (clobber (const_int 0)) is returned.
11647    An insn containing that will not be recognized.  */
11648 
11649 static rtx
11650 gen_lowpart_for_combine (machine_mode omode, rtx x)
11651 {
11652   machine_mode imode = GET_MODE (x);
11653   rtx result;
11654 
11655   if (omode == imode)
11656     return x;
11657 
11658   /* We can only support MODE being wider than a word if X is a
11659      constant integer or has a mode the same size.  */
11660   if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11661       && ! (CONST_SCALAR_INT_P (x)
11662 	    || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11663     goto fail;
11664 
11665   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11666      won't know what to do.  So we will strip off the SUBREG here and
11667      process normally.  */
11668   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11669     {
11670       x = SUBREG_REG (x);
11671 
11672       /* For use in case we fall down into the address adjustments
11673 	 further below, we need to adjust the known mode and size of
11674 	 x; imode and isize, since we just adjusted x.  */
11675       imode = GET_MODE (x);
11676 
11677       if (imode == omode)
11678 	return x;
11679     }
11680 
11681   result = gen_lowpart_common (omode, x);
11682 
11683   if (result)
11684     return result;
11685 
11686   if (MEM_P (x))
11687     {
11688       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11689 	 address.  */
11690       if (MEM_VOLATILE_P (x)
11691 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11692 	goto fail;
11693 
11694       /* If we want to refer to something bigger than the original memref,
11695 	 generate a paradoxical subreg instead.  That will force a reload
11696 	 of the original memref X.  */
11697       if (paradoxical_subreg_p (omode, imode))
11698 	return gen_rtx_SUBREG (omode, x, 0);
11699 
11700       poly_int64 offset = byte_lowpart_offset (omode, imode);
11701       return adjust_address_nv (x, omode, offset);
11702     }
11703 
11704   /* If X is a comparison operator, rewrite it in a new mode.  This
11705      probably won't match, but may allow further simplifications.  */
11706   else if (COMPARISON_P (x))
11707     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11708 
11709   /* If we couldn't simplify X any other way, just enclose it in a
11710      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11711      include an explicit SUBREG or we may simplify it further in combine.  */
11712   else
11713     {
11714       rtx res;
11715 
11716       if (imode == VOIDmode)
11717 	{
11718 	  imode = int_mode_for_mode (omode).require ();
11719 	  x = gen_lowpart_common (imode, x);
11720 	  if (x == NULL)
11721 	    goto fail;
11722 	}
11723       res = lowpart_subreg (omode, x, imode);
11724       if (res)
11725 	return res;
11726     }
11727 
11728  fail:
11729   return gen_rtx_CLOBBER (omode, const0_rtx);
11730 }
11731 
11732 /* Try to simplify a comparison between OP0 and a constant OP1,
11733    where CODE is the comparison code that will be tested, into a
11734    (CODE OP0 const0_rtx) form.
11735 
11736    The result is a possibly different comparison code to use.
11737    *POP1 may be updated.  */
11738 
11739 static enum rtx_code
11740 simplify_compare_const (enum rtx_code code, machine_mode mode,
11741 			rtx op0, rtx *pop1)
11742 {
11743   scalar_int_mode int_mode;
11744   HOST_WIDE_INT const_op = INTVAL (*pop1);
11745 
11746   /* Get the constant we are comparing against and turn off all bits
11747      not on in our mode.  */
11748   if (mode != VOIDmode)
11749     const_op = trunc_int_for_mode (const_op, mode);
11750 
11751   /* If we are comparing against a constant power of two and the value
11752      being compared can only have that single bit nonzero (e.g., it was
11753      `and'ed with that bit), we can replace this with a comparison
11754      with zero.  */
11755   if (const_op
11756       && (code == EQ || code == NE || code == GE || code == GEU
11757 	  || code == LT || code == LTU)
11758       && is_a <scalar_int_mode> (mode, &int_mode)
11759       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11760       && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11761       && (nonzero_bits (op0, int_mode)
11762 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11763     {
11764       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11765       const_op = 0;
11766     }
11767 
11768   /* Similarly, if we are comparing a value known to be either -1 or
11769      0 with -1, change it to the opposite comparison against zero.  */
11770   if (const_op == -1
11771       && (code == EQ || code == NE || code == GT || code == LE
11772 	  || code == GEU || code == LTU)
11773       && is_a <scalar_int_mode> (mode, &int_mode)
11774       && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11775     {
11776       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11777       const_op = 0;
11778     }
11779 
11780   /* Do some canonicalizations based on the comparison code.  We prefer
11781      comparisons against zero and then prefer equality comparisons.
11782      If we can reduce the size of a constant, we will do that too.  */
11783   switch (code)
11784     {
11785     case LT:
11786       /* < C is equivalent to <= (C - 1) */
11787       if (const_op > 0)
11788 	{
11789 	  const_op -= 1;
11790 	  code = LE;
11791 	  /* ... fall through to LE case below.  */
11792 	  gcc_fallthrough ();
11793 	}
11794       else
11795 	break;
11796 
11797     case LE:
11798       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11799       if (const_op < 0)
11800 	{
11801 	  const_op += 1;
11802 	  code = LT;
11803 	}
11804 
11805       /* If we are doing a <= 0 comparison on a value known to have
11806 	 a zero sign bit, we can replace this with == 0.  */
11807       else if (const_op == 0
11808 	       && is_a <scalar_int_mode> (mode, &int_mode)
11809 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11810 	       && (nonzero_bits (op0, int_mode)
11811 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11812 	       == 0)
11813 	code = EQ;
11814       break;
11815 
11816     case GE:
11817       /* >= C is equivalent to > (C - 1).  */
11818       if (const_op > 0)
11819 	{
11820 	  const_op -= 1;
11821 	  code = GT;
11822 	  /* ... fall through to GT below.  */
11823 	  gcc_fallthrough ();
11824 	}
11825       else
11826 	break;
11827 
11828     case GT:
11829       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11830       if (const_op < 0)
11831 	{
11832 	  const_op += 1;
11833 	  code = GE;
11834 	}
11835 
11836       /* If we are doing a > 0 comparison on a value known to have
11837 	 a zero sign bit, we can replace this with != 0.  */
11838       else if (const_op == 0
11839 	       && is_a <scalar_int_mode> (mode, &int_mode)
11840 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11841 	       && (nonzero_bits (op0, int_mode)
11842 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11843 	       == 0)
11844 	code = NE;
11845       break;
11846 
11847     case LTU:
11848       /* < C is equivalent to <= (C - 1).  */
11849       if (const_op > 0)
11850 	{
11851 	  const_op -= 1;
11852 	  code = LEU;
11853 	  /* ... fall through ...  */
11854 	  gcc_fallthrough ();
11855 	}
11856       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11857       else if (is_a <scalar_int_mode> (mode, &int_mode)
11858 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11859 	       && ((unsigned HOST_WIDE_INT) const_op
11860 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11861 	{
11862 	  const_op = 0;
11863 	  code = GE;
11864 	  break;
11865 	}
11866       else
11867 	break;
11868 
11869     case LEU:
11870       /* unsigned <= 0 is equivalent to == 0 */
11871       if (const_op == 0)
11872 	code = EQ;
11873       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11874       else if (is_a <scalar_int_mode> (mode, &int_mode)
11875 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11876 	       && ((unsigned HOST_WIDE_INT) const_op
11877 		   == ((HOST_WIDE_INT_1U
11878 			<< (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11879 	{
11880 	  const_op = 0;
11881 	  code = GE;
11882 	}
11883       break;
11884 
11885     case GEU:
11886       /* >= C is equivalent to > (C - 1).  */
11887       if (const_op > 1)
11888 	{
11889 	  const_op -= 1;
11890 	  code = GTU;
11891 	  /* ... fall through ...  */
11892 	  gcc_fallthrough ();
11893 	}
11894 
11895       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11896       else if (is_a <scalar_int_mode> (mode, &int_mode)
11897 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11898 	       && ((unsigned HOST_WIDE_INT) const_op
11899 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11900 	{
11901 	  const_op = 0;
11902 	  code = LT;
11903 	  break;
11904 	}
11905       else
11906 	break;
11907 
11908     case GTU:
11909       /* unsigned > 0 is equivalent to != 0 */
11910       if (const_op == 0)
11911 	code = NE;
11912       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11913       else if (is_a <scalar_int_mode> (mode, &int_mode)
11914 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11915 	       && ((unsigned HOST_WIDE_INT) const_op
11916 		   == (HOST_WIDE_INT_1U
11917 		       << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11918 	{
11919 	  const_op = 0;
11920 	  code = LT;
11921 	}
11922       break;
11923 
11924     default:
11925       break;
11926     }
11927 
11928   *pop1 = GEN_INT (const_op);
11929   return code;
11930 }
11931 
11932 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11933    comparison code that will be tested.
11934 
11935    The result is a possibly different comparison code to use.  *POP0 and
11936    *POP1 may be updated.
11937 
11938    It is possible that we might detect that a comparison is either always
11939    true or always false.  However, we do not perform general constant
11940    folding in combine, so this knowledge isn't useful.  Such tautologies
11941    should have been detected earlier.  Hence we ignore all such cases.  */
11942 
11943 static enum rtx_code
11944 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11945 {
11946   rtx op0 = *pop0;
11947   rtx op1 = *pop1;
11948   rtx tem, tem1;
11949   int i;
11950   scalar_int_mode mode, inner_mode, tmode;
11951   opt_scalar_int_mode tmode_iter;
11952 
11953   /* Try a few ways of applying the same transformation to both operands.  */
11954   while (1)
11955     {
11956       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11957 	 so check specially.  */
11958       if (!WORD_REGISTER_OPERATIONS
11959 	  && code != GTU && code != GEU && code != LTU && code != LEU
11960 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11961 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11962 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11963 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11964 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11965 	  && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11966 	  && (is_a <scalar_int_mode>
11967 	      (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11968 	  && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11969 	  && CONST_INT_P (XEXP (op0, 1))
11970 	  && XEXP (op0, 1) == XEXP (op1, 1)
11971 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11972 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11973 	  && (INTVAL (XEXP (op0, 1))
11974 	      == (GET_MODE_PRECISION (mode)
11975 		  - GET_MODE_PRECISION (inner_mode))))
11976 	{
11977 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11978 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11979 	}
11980 
11981       /* If both operands are the same constant shift, see if we can ignore the
11982 	 shift.  We can if the shift is a rotate or if the bits shifted out of
11983 	 this shift are known to be zero for both inputs and if the type of
11984 	 comparison is compatible with the shift.  */
11985       if (GET_CODE (op0) == GET_CODE (op1)
11986 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11987 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11988 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11989 		  && (code != GT && code != LT && code != GE && code != LE))
11990 	      || (GET_CODE (op0) == ASHIFTRT
11991 		  && (code != GTU && code != LTU
11992 		      && code != GEU && code != LEU)))
11993 	  && CONST_INT_P (XEXP (op0, 1))
11994 	  && INTVAL (XEXP (op0, 1)) >= 0
11995 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11996 	  && XEXP (op0, 1) == XEXP (op1, 1))
11997 	{
11998 	  machine_mode mode = GET_MODE (op0);
11999 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12000 	  int shift_count = INTVAL (XEXP (op0, 1));
12001 
12002 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12003 	    mask &= (mask >> shift_count) << shift_count;
12004 	  else if (GET_CODE (op0) == ASHIFT)
12005 	    mask = (mask & (mask << shift_count)) >> shift_count;
12006 
12007 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12008 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12009 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12010 	  else
12011 	    break;
12012 	}
12013 
12014       /* If both operands are AND's of a paradoxical SUBREG by constant, the
12015 	 SUBREGs are of the same mode, and, in both cases, the AND would
12016 	 be redundant if the comparison was done in the narrower mode,
12017 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12018 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
12019 	 if we only care about QImode, we don't need the AND).  This case
12020 	 occurs if the output mode of an scc insn is not SImode and
12021 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
12022 
12023 	 Similarly, check for a case where the AND's are ZERO_EXTEND
12024 	 operations from some narrower mode even though a SUBREG is not
12025 	 present.  */
12026 
12027       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12028 	       && CONST_INT_P (XEXP (op0, 1))
12029 	       && CONST_INT_P (XEXP (op1, 1)))
12030 	{
12031 	  rtx inner_op0 = XEXP (op0, 0);
12032 	  rtx inner_op1 = XEXP (op1, 0);
12033 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12034 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12035 	  int changed = 0;
12036 
12037 	  if (paradoxical_subreg_p (inner_op0)
12038 	      && GET_CODE (inner_op1) == SUBREG
12039 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12040 	      && (GET_MODE (SUBREG_REG (inner_op0))
12041 		  == GET_MODE (SUBREG_REG (inner_op1)))
12042 	      && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12043 					GET_MODE (SUBREG_REG (inner_op0)))) == 0
12044 	      && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12045 					GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12046 	    {
12047 	      op0 = SUBREG_REG (inner_op0);
12048 	      op1 = SUBREG_REG (inner_op1);
12049 
12050 	      /* The resulting comparison is always unsigned since we masked
12051 		 off the original sign bit.  */
12052 	      code = unsigned_condition (code);
12053 
12054 	      changed = 1;
12055 	    }
12056 
12057 	  else if (c0 == c1)
12058 	    FOR_EACH_MODE_UNTIL (tmode,
12059 				 as_a <scalar_int_mode> (GET_MODE (op0)))
12060 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12061 		{
12062 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12063 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12064 		  code = unsigned_condition (code);
12065 		  changed = 1;
12066 		  break;
12067 		}
12068 
12069 	  if (! changed)
12070 	    break;
12071 	}
12072 
12073       /* If both operands are NOT, we can strip off the outer operation
12074 	 and adjust the comparison code for swapped operands; similarly for
12075 	 NEG, except that this must be an equality comparison.  */
12076       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12077 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12078 		   && (code == EQ || code == NE)))
12079 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12080 
12081       else
12082 	break;
12083     }
12084 
12085   /* If the first operand is a constant, swap the operands and adjust the
12086      comparison code appropriately, but don't do this if the second operand
12087      is already a constant integer.  */
12088   if (swap_commutative_operands_p (op0, op1))
12089     {
12090       std::swap (op0, op1);
12091       code = swap_condition (code);
12092     }
12093 
12094   /* We now enter a loop during which we will try to simplify the comparison.
12095      For the most part, we only are concerned with comparisons with zero,
12096      but some things may really be comparisons with zero but not start
12097      out looking that way.  */
12098 
12099   while (CONST_INT_P (op1))
12100     {
12101       machine_mode raw_mode = GET_MODE (op0);
12102       scalar_int_mode int_mode;
12103       int equality_comparison_p;
12104       int sign_bit_comparison_p;
12105       int unsigned_comparison_p;
12106       HOST_WIDE_INT const_op;
12107 
12108       /* We only want to handle integral modes.  This catches VOIDmode,
12109 	 CCmode, and the floating-point modes.  An exception is that we
12110 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
12111 	 operation.  */
12112 
12113       if (GET_MODE_CLASS (raw_mode) != MODE_INT
12114 	  && ! (raw_mode == VOIDmode
12115 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12116 	break;
12117 
12118       /* Try to simplify the compare to constant, possibly changing the
12119 	 comparison op, and/or changing op1 to zero.  */
12120       code = simplify_compare_const (code, raw_mode, op0, &op1);
12121       const_op = INTVAL (op1);
12122 
12123       /* Compute some predicates to simplify code below.  */
12124 
12125       equality_comparison_p = (code == EQ || code == NE);
12126       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12127       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12128 			       || code == GEU);
12129 
12130       /* If this is a sign bit comparison and we can do arithmetic in
12131 	 MODE, say that we will only be needing the sign bit of OP0.  */
12132       if (sign_bit_comparison_p
12133 	  && is_a <scalar_int_mode> (raw_mode, &int_mode)
12134 	  && HWI_COMPUTABLE_MODE_P (int_mode))
12135 	op0 = force_to_mode (op0, int_mode,
12136 			     HOST_WIDE_INT_1U
12137 			     << (GET_MODE_PRECISION (int_mode) - 1),
12138 			     0);
12139 
12140       if (COMPARISON_P (op0))
12141 	{
12142 	  /* We can't do anything if OP0 is a condition code value, rather
12143 	     than an actual data value.  */
12144 	  if (const_op != 0
12145 	      || CC0_P (XEXP (op0, 0))
12146 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12147 	    break;
12148 
12149 	  /* Get the two operands being compared.  */
12150 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12151 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12152 	  else
12153 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12154 
12155 	  /* Check for the cases where we simply want the result of the
12156 	     earlier test or the opposite of that result.  */
12157 	  if (code == NE || code == EQ
12158 	      || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12159 		  && (code == LT || code == GE)))
12160 	    {
12161 	      enum rtx_code new_code;
12162 	      if (code == LT || code == NE)
12163 		new_code = GET_CODE (op0);
12164 	      else
12165 		new_code = reversed_comparison_code (op0, NULL);
12166 
12167 	      if (new_code != UNKNOWN)
12168 		{
12169 		  code = new_code;
12170 		  op0 = tem;
12171 		  op1 = tem1;
12172 		  continue;
12173 		}
12174 	    }
12175 	  break;
12176 	}
12177 
12178       if (raw_mode == VOIDmode)
12179 	break;
12180       scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12181 
12182       /* Now try cases based on the opcode of OP0.  If none of the cases
12183 	 does a "continue", we exit this loop immediately after the
12184 	 switch.  */
12185 
12186       unsigned int mode_width = GET_MODE_PRECISION (mode);
12187       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12188       switch (GET_CODE (op0))
12189 	{
12190 	case ZERO_EXTRACT:
12191 	  /* If we are extracting a single bit from a variable position in
12192 	     a constant that has only a single bit set and are comparing it
12193 	     with zero, we can convert this into an equality comparison
12194 	     between the position and the location of the single bit.  */
12195 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12196 	     have already reduced the shift count modulo the word size.  */
12197 	  if (!SHIFT_COUNT_TRUNCATED
12198 	      && CONST_INT_P (XEXP (op0, 0))
12199 	      && XEXP (op0, 1) == const1_rtx
12200 	      && equality_comparison_p && const_op == 0
12201 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12202 	    {
12203 	      if (BITS_BIG_ENDIAN)
12204 		i = BITS_PER_WORD - 1 - i;
12205 
12206 	      op0 = XEXP (op0, 2);
12207 	      op1 = GEN_INT (i);
12208 	      const_op = i;
12209 
12210 	      /* Result is nonzero iff shift count is equal to I.  */
12211 	      code = reverse_condition (code);
12212 	      continue;
12213 	    }
12214 
12215 	  /* fall through */
12216 
12217 	case SIGN_EXTRACT:
12218 	  tem = expand_compound_operation (op0);
12219 	  if (tem != op0)
12220 	    {
12221 	      op0 = tem;
12222 	      continue;
12223 	    }
12224 	  break;
12225 
12226 	case NOT:
12227 	  /* If testing for equality, we can take the NOT of the constant.  */
12228 	  if (equality_comparison_p
12229 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12230 	    {
12231 	      op0 = XEXP (op0, 0);
12232 	      op1 = tem;
12233 	      continue;
12234 	    }
12235 
12236 	  /* If just looking at the sign bit, reverse the sense of the
12237 	     comparison.  */
12238 	  if (sign_bit_comparison_p)
12239 	    {
12240 	      op0 = XEXP (op0, 0);
12241 	      code = (code == GE ? LT : GE);
12242 	      continue;
12243 	    }
12244 	  break;
12245 
12246 	case NEG:
12247 	  /* If testing for equality, we can take the NEG of the constant.  */
12248 	  if (equality_comparison_p
12249 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12250 	    {
12251 	      op0 = XEXP (op0, 0);
12252 	      op1 = tem;
12253 	      continue;
12254 	    }
12255 
12256 	  /* The remaining cases only apply to comparisons with zero.  */
12257 	  if (const_op != 0)
12258 	    break;
12259 
12260 	  /* When X is ABS or is known positive,
12261 	     (neg X) is < 0 if and only if X != 0.  */
12262 
12263 	  if (sign_bit_comparison_p
12264 	      && (GET_CODE (XEXP (op0, 0)) == ABS
12265 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
12266 		      && (nonzero_bits (XEXP (op0, 0), mode)
12267 			  & (HOST_WIDE_INT_1U << (mode_width - 1)))
12268 			 == 0)))
12269 	    {
12270 	      op0 = XEXP (op0, 0);
12271 	      code = (code == LT ? NE : EQ);
12272 	      continue;
12273 	    }
12274 
12275 	  /* If we have NEG of something whose two high-order bits are the
12276 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
12277 	  if (num_sign_bit_copies (op0, mode) >= 2)
12278 	    {
12279 	      op0 = XEXP (op0, 0);
12280 	      code = swap_condition (code);
12281 	      continue;
12282 	    }
12283 	  break;
12284 
12285 	case ROTATE:
12286 	  /* If we are testing equality and our count is a constant, we
12287 	     can perform the inverse operation on our RHS.  */
12288 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12289 	      && (tem = simplify_binary_operation (ROTATERT, mode,
12290 						   op1, XEXP (op0, 1))) != 0)
12291 	    {
12292 	      op0 = XEXP (op0, 0);
12293 	      op1 = tem;
12294 	      continue;
12295 	    }
12296 
12297 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12298 	     a particular bit.  Convert it to an AND of a constant of that
12299 	     bit.  This will be converted into a ZERO_EXTRACT.  */
12300 	  if (const_op == 0 && sign_bit_comparison_p
12301 	      && CONST_INT_P (XEXP (op0, 1))
12302 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12303 	    {
12304 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12305 					    (HOST_WIDE_INT_1U
12306 					     << (mode_width - 1
12307 						 - INTVAL (XEXP (op0, 1)))));
12308 	      code = (code == LT ? NE : EQ);
12309 	      continue;
12310 	    }
12311 
12312 	  /* Fall through.  */
12313 
12314 	case ABS:
12315 	  /* ABS is ignorable inside an equality comparison with zero.  */
12316 	  if (const_op == 0 && equality_comparison_p)
12317 	    {
12318 	      op0 = XEXP (op0, 0);
12319 	      continue;
12320 	    }
12321 	  break;
12322 
12323 	case SIGN_EXTEND:
12324 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12325 	     (compare FOO CONST) if CONST fits in FOO's mode and we
12326 	     are either testing inequality or have an unsigned
12327 	     comparison with ZERO_EXTEND or a signed comparison with
12328 	     SIGN_EXTEND.  But don't do it if we don't have a compare
12329 	     insn of the given mode, since we'd have to revert it
12330 	     later on, and then we wouldn't know whether to sign- or
12331 	     zero-extend.  */
12332 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12333 	      && ! unsigned_comparison_p
12334 	      && HWI_COMPUTABLE_MODE_P (mode)
12335 	      && trunc_int_for_mode (const_op, mode) == const_op
12336 	      && have_insn_for (COMPARE, mode))
12337 	    {
12338 	      op0 = XEXP (op0, 0);
12339 	      continue;
12340 	    }
12341 	  break;
12342 
12343 	case SUBREG:
12344 	  /* Check for the case where we are comparing A - C1 with C2, that is
12345 
12346 	       (subreg:MODE (plus (A) (-C1))) op (C2)
12347 
12348 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
12349 	     comparison in the wider mode.  One of the following two conditions
12350 	     must be true in order for this to be valid:
12351 
12352 	       1. The mode extension results in the same bit pattern being added
12353 		  on both sides and the comparison is equality or unsigned.  As
12354 		  C2 has been truncated to fit in MODE, the pattern can only be
12355 		  all 0s or all 1s.
12356 
12357 	       2. The mode extension results in the sign bit being copied on
12358 		  each side.
12359 
12360 	     The difficulty here is that we have predicates for A but not for
12361 	     (A - C1) so we need to check that C1 is within proper bounds so
12362 	     as to perturbate A as little as possible.  */
12363 
12364 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
12365 	      && subreg_lowpart_p (op0)
12366 	      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12367 					 &inner_mode)
12368 	      && GET_MODE_PRECISION (inner_mode) > mode_width
12369 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
12370 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12371 	    {
12372 	      rtx a = XEXP (SUBREG_REG (op0), 0);
12373 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12374 
12375 	      if ((c1 > 0
12376 		   && (unsigned HOST_WIDE_INT) c1
12377 		       < HOST_WIDE_INT_1U << (mode_width - 1)
12378 		   && (equality_comparison_p || unsigned_comparison_p)
12379 		   /* (A - C1) zero-extends if it is positive and sign-extends
12380 		      if it is negative, C2 both zero- and sign-extends.  */
12381 		   && (((nonzero_bits (a, inner_mode)
12382 			 & ~GET_MODE_MASK (mode)) == 0
12383 			&& const_op >= 0)
12384 		       /* (A - C1) sign-extends if it is positive and 1-extends
12385 			  if it is negative, C2 both sign- and 1-extends.  */
12386 		       || (num_sign_bit_copies (a, inner_mode)
12387 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12388 					     - mode_width)
12389 			   && const_op < 0)))
12390 		  || ((unsigned HOST_WIDE_INT) c1
12391 		       < HOST_WIDE_INT_1U << (mode_width - 2)
12392 		      /* (A - C1) always sign-extends, like C2.  */
12393 		      && num_sign_bit_copies (a, inner_mode)
12394 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12395 					   - (mode_width - 1))))
12396 		{
12397 		  op0 = SUBREG_REG (op0);
12398 		  continue;
12399 		}
12400 	    }
12401 
12402 	  /* If the inner mode is narrower and we are extracting the low part,
12403 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
12404 	  if (paradoxical_subreg_p (op0))
12405 	    ;
12406 	  else if (subreg_lowpart_p (op0)
12407 		   && GET_MODE_CLASS (mode) == MODE_INT
12408 		   && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12409 		   && (code == NE || code == EQ)
12410 		   && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12411 		   && !paradoxical_subreg_p (op0)
12412 		   && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12413 		       & ~GET_MODE_MASK (mode)) == 0)
12414 	    {
12415 	      /* Remove outer subregs that don't do anything.  */
12416 	      tem = gen_lowpart (inner_mode, op1);
12417 
12418 	      if ((nonzero_bits (tem, inner_mode)
12419 		   & ~GET_MODE_MASK (mode)) == 0)
12420 		{
12421 		  op0 = SUBREG_REG (op0);
12422 		  op1 = tem;
12423 		  continue;
12424 		}
12425 	      break;
12426 	    }
12427 	  else
12428 	    break;
12429 
12430 	  /* FALLTHROUGH */
12431 
12432 	case ZERO_EXTEND:
12433 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12434 	      && (unsigned_comparison_p || equality_comparison_p)
12435 	      && HWI_COMPUTABLE_MODE_P (mode)
12436 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12437 	      && const_op >= 0
12438 	      && have_insn_for (COMPARE, mode))
12439 	    {
12440 	      op0 = XEXP (op0, 0);
12441 	      continue;
12442 	    }
12443 	  break;
12444 
12445 	case PLUS:
12446 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
12447 	     this for equality comparisons due to pathological cases involving
12448 	     overflows.  */
12449 	  if (equality_comparison_p
12450 	      && (tem = simplify_binary_operation (MINUS, mode,
12451 						   op1, XEXP (op0, 1))) != 0)
12452 	    {
12453 	      op0 = XEXP (op0, 0);
12454 	      op1 = tem;
12455 	      continue;
12456 	    }
12457 
12458 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
12459 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12460 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12461 	    {
12462 	      op0 = XEXP (XEXP (op0, 0), 0);
12463 	      code = (code == LT ? EQ : NE);
12464 	      continue;
12465 	    }
12466 	  break;
12467 
12468 	case MINUS:
12469 	  /* We used to optimize signed comparisons against zero, but that
12470 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
12471 	     arrive here as equality comparisons, or (GEU, LTU) are
12472 	     optimized away.  No need to special-case them.  */
12473 
12474 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
12475 	     (eq B (minus A C)), whichever simplifies.  We can only do
12476 	     this for equality comparisons due to pathological cases involving
12477 	     overflows.  */
12478 	  if (equality_comparison_p
12479 	      && (tem = simplify_binary_operation (PLUS, mode,
12480 						   XEXP (op0, 1), op1)) != 0)
12481 	    {
12482 	      op0 = XEXP (op0, 0);
12483 	      op1 = tem;
12484 	      continue;
12485 	    }
12486 
12487 	  if (equality_comparison_p
12488 	      && (tem = simplify_binary_operation (MINUS, mode,
12489 						   XEXP (op0, 0), op1)) != 0)
12490 	    {
12491 	      op0 = XEXP (op0, 1);
12492 	      op1 = tem;
12493 	      continue;
12494 	    }
12495 
12496 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12497 	     of bits in X minus 1, is one iff X > 0.  */
12498 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12499 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12500 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12501 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12502 	    {
12503 	      op0 = XEXP (op0, 1);
12504 	      code = (code == GE ? LE : GT);
12505 	      continue;
12506 	    }
12507 	  break;
12508 
12509 	case XOR:
12510 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
12511 	     if C is zero or B is a constant.  */
12512 	  if (equality_comparison_p
12513 	      && (tem = simplify_binary_operation (XOR, mode,
12514 						   XEXP (op0, 1), op1)) != 0)
12515 	    {
12516 	      op0 = XEXP (op0, 0);
12517 	      op1 = tem;
12518 	      continue;
12519 	    }
12520 	  break;
12521 
12522 
12523 	case IOR:
12524 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12525 	     iff X <= 0.  */
12526 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12527 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12528 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12529 	    {
12530 	      op0 = XEXP (op0, 1);
12531 	      code = (code == GE ? GT : LE);
12532 	      continue;
12533 	    }
12534 	  break;
12535 
12536 	case AND:
12537 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
12538 	     will be converted to a ZERO_EXTRACT later.  */
12539 	  if (const_op == 0 && equality_comparison_p
12540 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12541 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12542 	    {
12543 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12544 				      XEXP (XEXP (op0, 0), 1));
12545 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12546 	      continue;
12547 	    }
12548 
12549 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12550 	     zero and X is a comparison and C1 and C2 describe only bits set
12551 	     in STORE_FLAG_VALUE, we can compare with X.  */
12552 	  if (const_op == 0 && equality_comparison_p
12553 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12554 	      && CONST_INT_P (XEXP (op0, 1))
12555 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12556 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12557 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12558 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12559 	    {
12560 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12561 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
12562 	      if ((~STORE_FLAG_VALUE & mask) == 0
12563 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12564 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12565 			  && COMPARISON_P (tem))))
12566 		{
12567 		  op0 = XEXP (XEXP (op0, 0), 0);
12568 		  continue;
12569 		}
12570 	    }
12571 
12572 	  /* If we are doing an equality comparison of an AND of a bit equal
12573 	     to the sign bit, replace this with a LT or GE comparison of
12574 	     the underlying value.  */
12575 	  if (equality_comparison_p
12576 	      && const_op == 0
12577 	      && CONST_INT_P (XEXP (op0, 1))
12578 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12579 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12580 		  == HOST_WIDE_INT_1U << (mode_width - 1)))
12581 	    {
12582 	      op0 = XEXP (op0, 0);
12583 	      code = (code == EQ ? GE : LT);
12584 	      continue;
12585 	    }
12586 
12587 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
12588 	     mode, the constant fits within that mode, and this is either an
12589 	     equality or unsigned comparison, try to do this comparison in
12590 	     the narrower mode.
12591 
12592 	     Note that in:
12593 
12594 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12595 	     -> (ne:DI (reg:SI 4) (const_int 0))
12596 
12597 	     unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12598 	     known to hold a value of the required mode the
12599 	     transformation is invalid.  */
12600 	  if ((equality_comparison_p || unsigned_comparison_p)
12601 	      && CONST_INT_P (XEXP (op0, 1))
12602 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12603 				   & GET_MODE_MASK (mode))
12604 				  + 1)) >= 0
12605 	      && const_op >> i == 0
12606 	      && int_mode_for_size (i, 1).exists (&tmode))
12607 	    {
12608 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12609 	      continue;
12610 	    }
12611 
12612 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12613 	     fits in both M1 and M2 and the SUBREG is either paradoxical
12614 	     or represents the low part, permute the SUBREG and the AND
12615 	     and try again.  */
12616 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
12617 	      && CONST_INT_P (XEXP (op0, 1)))
12618 	    {
12619 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12620 	      /* Require an integral mode, to avoid creating something like
12621 		 (AND:SF ...).  */
12622 	      if ((is_a <scalar_int_mode>
12623 		   (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12624 		  /* It is unsafe to commute the AND into the SUBREG if the
12625 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12626 		     not defined.  As originally written the upper bits
12627 		     have a defined value due to the AND operation.
12628 		     However, if we commute the AND inside the SUBREG then
12629 		     they no longer have defined values and the meaning of
12630 		     the code has been changed.
12631 		     Also C1 should not change value in the smaller mode,
12632 		     see PR67028 (a positive C1 can become negative in the
12633 		     smaller mode, so that the AND does no longer mask the
12634 		     upper bits).  */
12635 		  && ((WORD_REGISTER_OPERATIONS
12636 		       && mode_width > GET_MODE_PRECISION (tmode)
12637 		       && mode_width <= BITS_PER_WORD
12638 		       && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12639 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12640 			  && subreg_lowpart_p (XEXP (op0, 0))))
12641 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12642 		  && HWI_COMPUTABLE_MODE_P (tmode)
12643 		  && (c1 & ~mask) == 0
12644 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12645 		  && c1 != mask
12646 		  && c1 != GET_MODE_MASK (tmode))
12647 		{
12648 		  op0 = simplify_gen_binary (AND, tmode,
12649 					     SUBREG_REG (XEXP (op0, 0)),
12650 					     gen_int_mode (c1, tmode));
12651 		  op0 = gen_lowpart (mode, op0);
12652 		  continue;
12653 		}
12654 	    }
12655 
12656 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12657 	  if (const_op == 0 && equality_comparison_p
12658 	      && XEXP (op0, 1) == const1_rtx
12659 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12660 	    {
12661 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12662 					    XEXP (XEXP (op0, 0), 0), 1);
12663 	      code = (code == NE ? EQ : NE);
12664 	      continue;
12665 	    }
12666 
12667 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12668 	     (eq (and (lshiftrt X) 1) 0).
12669 	     Also handle the case where (not X) is expressed using xor.  */
12670 	  if (const_op == 0 && equality_comparison_p
12671 	      && XEXP (op0, 1) == const1_rtx
12672 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12673 	    {
12674 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12675 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12676 
12677 	      if (GET_CODE (shift_op) == NOT
12678 		  || (GET_CODE (shift_op) == XOR
12679 		      && CONST_INT_P (XEXP (shift_op, 1))
12680 		      && CONST_INT_P (shift_count)
12681 		      && HWI_COMPUTABLE_MODE_P (mode)
12682 		      && (UINTVAL (XEXP (shift_op, 1))
12683 			  == HOST_WIDE_INT_1U
12684 			       << INTVAL (shift_count))))
12685 		{
12686 		  op0
12687 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12688 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12689 		  code = (code == NE ? EQ : NE);
12690 		  continue;
12691 		}
12692 	    }
12693 	  break;
12694 
12695 	case ASHIFT:
12696 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12697 	     the high order N bits of FOO (N+1 if an inequality comparison)
12698 	     are known to be zero, we can do this by comparing FOO with C
12699 	     shifted right N bits so long as the low-order N bits of C are
12700 	     zero.  */
12701 	  if (CONST_INT_P (XEXP (op0, 1))
12702 	      && INTVAL (XEXP (op0, 1)) >= 0
12703 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12704 		  < HOST_BITS_PER_WIDE_INT)
12705 	      && (((unsigned HOST_WIDE_INT) const_op
12706 		   & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12707 		      - 1)) == 0)
12708 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12709 	      && (nonzero_bits (XEXP (op0, 0), mode)
12710 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12711 			       + ! equality_comparison_p))) == 0)
12712 	    {
12713 	      /* We must perform a logical shift, not an arithmetic one,
12714 		 as we want the top N bits of C to be zero.  */
12715 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12716 
12717 	      temp >>= INTVAL (XEXP (op0, 1));
12718 	      op1 = gen_int_mode (temp, mode);
12719 	      op0 = XEXP (op0, 0);
12720 	      continue;
12721 	    }
12722 
12723 	  /* If we are doing a sign bit comparison, it means we are testing
12724 	     a particular bit.  Convert it to the appropriate AND.  */
12725 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12726 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12727 	    {
12728 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12729 					    (HOST_WIDE_INT_1U
12730 					     << (mode_width - 1
12731 						 - INTVAL (XEXP (op0, 1)))));
12732 	      code = (code == LT ? NE : EQ);
12733 	      continue;
12734 	    }
12735 
12736 	  /* If this an equality comparison with zero and we are shifting
12737 	     the low bit to the sign bit, we can convert this to an AND of the
12738 	     low-order bit.  */
12739 	  if (const_op == 0 && equality_comparison_p
12740 	      && CONST_INT_P (XEXP (op0, 1))
12741 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12742 	    {
12743 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12744 	      continue;
12745 	    }
12746 	  break;
12747 
12748 	case ASHIFTRT:
12749 	  /* If this is an equality comparison with zero, we can do this
12750 	     as a logical shift, which might be much simpler.  */
12751 	  if (equality_comparison_p && const_op == 0
12752 	      && CONST_INT_P (XEXP (op0, 1)))
12753 	    {
12754 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12755 					  XEXP (op0, 0),
12756 					  INTVAL (XEXP (op0, 1)));
12757 	      continue;
12758 	    }
12759 
12760 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12761 	     do the comparison in a narrower mode.  */
12762 	  if (! unsigned_comparison_p
12763 	      && CONST_INT_P (XEXP (op0, 1))
12764 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12765 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12766 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12767 		  .exists (&tmode))
12768 	      && (((unsigned HOST_WIDE_INT) const_op
12769 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12770 		  <= GET_MODE_MASK (tmode)))
12771 	    {
12772 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12773 	      continue;
12774 	    }
12775 
12776 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12777 	     constant, which is usually represented with the PLUS
12778 	     between the shifts.  */
12779 	  if (! unsigned_comparison_p
12780 	      && CONST_INT_P (XEXP (op0, 1))
12781 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12782 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12783 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12784 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12785 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12786 		  .exists (&tmode))
12787 	      && (((unsigned HOST_WIDE_INT) const_op
12788 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12789 		  <= GET_MODE_MASK (tmode)))
12790 	    {
12791 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12792 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12793 	      rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12794 						   add_const, XEXP (op0, 1));
12795 
12796 	      op0 = simplify_gen_binary (PLUS, tmode,
12797 					 gen_lowpart (tmode, inner),
12798 					 new_const);
12799 	      continue;
12800 	    }
12801 
12802 	  /* FALLTHROUGH */
12803 	case LSHIFTRT:
12804 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12805 	     the low order N bits of FOO are known to be zero, we can do this
12806 	     by comparing FOO with C shifted left N bits so long as no
12807 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12808 	     to be zero, if the comparison is >= or < we can use the same
12809 	     optimization and for > or <= by setting all the low
12810 	     order N bits in the comparison constant.  */
12811 	  if (CONST_INT_P (XEXP (op0, 1))
12812 	      && INTVAL (XEXP (op0, 1)) > 0
12813 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12814 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12815 	      && (((unsigned HOST_WIDE_INT) const_op
12816 		   + (GET_CODE (op0) != LSHIFTRT
12817 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12818 			 + 1)
12819 		      : 0))
12820 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12821 	    {
12822 	      unsigned HOST_WIDE_INT low_bits
12823 		= (nonzero_bits (XEXP (op0, 0), mode)
12824 		   & ((HOST_WIDE_INT_1U
12825 		       << INTVAL (XEXP (op0, 1))) - 1));
12826 	      if (low_bits == 0 || !equality_comparison_p)
12827 		{
12828 		  /* If the shift was logical, then we must make the condition
12829 		     unsigned.  */
12830 		  if (GET_CODE (op0) == LSHIFTRT)
12831 		    code = unsigned_condition (code);
12832 
12833 		  const_op = (unsigned HOST_WIDE_INT) const_op
12834 			      << INTVAL (XEXP (op0, 1));
12835 		  if (low_bits != 0
12836 		      && (code == GT || code == GTU
12837 			  || code == LE || code == LEU))
12838 		    const_op
12839 		      |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12840 		  op1 = GEN_INT (const_op);
12841 		  op0 = XEXP (op0, 0);
12842 		  continue;
12843 		}
12844 	    }
12845 
12846 	  /* If we are using this shift to extract just the sign bit, we
12847 	     can replace this with an LT or GE comparison.  */
12848 	  if (const_op == 0
12849 	      && (equality_comparison_p || sign_bit_comparison_p)
12850 	      && CONST_INT_P (XEXP (op0, 1))
12851 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12852 	    {
12853 	      op0 = XEXP (op0, 0);
12854 	      code = (code == NE || code == GT ? LT : GE);
12855 	      continue;
12856 	    }
12857 	  break;
12858 
12859 	default:
12860 	  break;
12861 	}
12862 
12863       break;
12864     }
12865 
12866   /* Now make any compound operations involved in this comparison.  Then,
12867      check for an outmost SUBREG on OP0 that is not doing anything or is
12868      paradoxical.  The latter transformation must only be performed when
12869      it is known that the "extra" bits will be the same in op0 and op1 or
12870      that they don't matter.  There are three cases to consider:
12871 
12872      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12873      care bits and we can assume they have any convenient value.  So
12874      making the transformation is safe.
12875 
12876      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12877      In this case the upper bits of op0 are undefined.  We should not make
12878      the simplification in that case as we do not know the contents of
12879      those bits.
12880 
12881      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12882      In that case we know those bits are zeros or ones.  We must also be
12883      sure that they are the same as the upper bits of op1.
12884 
12885      We can never remove a SUBREG for a non-equality comparison because
12886      the sign bit is in a different place in the underlying object.  */
12887 
12888   rtx_code op0_mco_code = SET;
12889   if (op1 == const0_rtx)
12890     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12891 
12892   op0 = make_compound_operation (op0, op0_mco_code);
12893   op1 = make_compound_operation (op1, SET);
12894 
12895   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12896       && is_int_mode (GET_MODE (op0), &mode)
12897       && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12898       && (code == NE || code == EQ))
12899     {
12900       if (paradoxical_subreg_p (op0))
12901 	{
12902 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12903 	     implemented.  */
12904 	  if (REG_P (SUBREG_REG (op0)))
12905 	    {
12906 	      op0 = SUBREG_REG (op0);
12907 	      op1 = gen_lowpart (inner_mode, op1);
12908 	    }
12909 	}
12910       else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12911 	       && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12912 		   & ~GET_MODE_MASK (mode)) == 0)
12913 	{
12914 	  tem = gen_lowpart (inner_mode, op1);
12915 
12916 	  if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12917 	    op0 = SUBREG_REG (op0), op1 = tem;
12918 	}
12919     }
12920 
12921   /* We now do the opposite procedure: Some machines don't have compare
12922      insns in all modes.  If OP0's mode is an integer mode smaller than a
12923      word and we can't do a compare in that mode, see if there is a larger
12924      mode for which we can do the compare.  There are a number of cases in
12925      which we can use the wider mode.  */
12926 
12927   if (is_int_mode (GET_MODE (op0), &mode)
12928       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12929       && ! have_insn_for (COMPARE, mode))
12930     FOR_EACH_WIDER_MODE (tmode_iter, mode)
12931       {
12932 	tmode = tmode_iter.require ();
12933 	if (!HWI_COMPUTABLE_MODE_P (tmode))
12934 	  break;
12935 	if (have_insn_for (COMPARE, tmode))
12936 	  {
12937 	    int zero_extended;
12938 
12939 	    /* If this is a test for negative, we can make an explicit
12940 	       test of the sign bit.  Test this first so we can use
12941 	       a paradoxical subreg to extend OP0.  */
12942 
12943 	    if (op1 == const0_rtx && (code == LT || code == GE)
12944 		&& HWI_COMPUTABLE_MODE_P (mode))
12945 	      {
12946 		unsigned HOST_WIDE_INT sign
12947 		  = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12948 		op0 = simplify_gen_binary (AND, tmode,
12949 					   gen_lowpart (tmode, op0),
12950 					   gen_int_mode (sign, tmode));
12951 		code = (code == LT) ? NE : EQ;
12952 		break;
12953 	      }
12954 
12955 	    /* If the only nonzero bits in OP0 and OP1 are those in the
12956 	       narrower mode and this is an equality or unsigned comparison,
12957 	       we can use the wider mode.  Similarly for sign-extended
12958 	       values, in which case it is true for all comparisons.  */
12959 	    zero_extended = ((code == EQ || code == NE
12960 			      || code == GEU || code == GTU
12961 			      || code == LEU || code == LTU)
12962 			     && (nonzero_bits (op0, tmode)
12963 				 & ~GET_MODE_MASK (mode)) == 0
12964 			     && ((CONST_INT_P (op1)
12965 				  || (nonzero_bits (op1, tmode)
12966 				      & ~GET_MODE_MASK (mode)) == 0)));
12967 
12968 	    if (zero_extended
12969 		|| ((num_sign_bit_copies (op0, tmode)
12970 		     > (unsigned int) (GET_MODE_PRECISION (tmode)
12971 				       - GET_MODE_PRECISION (mode)))
12972 		    && (num_sign_bit_copies (op1, tmode)
12973 			> (unsigned int) (GET_MODE_PRECISION (tmode)
12974 					  - GET_MODE_PRECISION (mode)))))
12975 	      {
12976 		/* If OP0 is an AND and we don't have an AND in MODE either,
12977 		   make a new AND in the proper mode.  */
12978 		if (GET_CODE (op0) == AND
12979 		    && !have_insn_for (AND, mode))
12980 		  op0 = simplify_gen_binary (AND, tmode,
12981 					     gen_lowpart (tmode,
12982 							  XEXP (op0, 0)),
12983 					     gen_lowpart (tmode,
12984 							  XEXP (op0, 1)));
12985 		else
12986 		  {
12987 		    if (zero_extended)
12988 		      {
12989 			op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12990 						  op0, mode);
12991 			op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12992 						  op1, mode);
12993 		      }
12994 		    else
12995 		      {
12996 			op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12997 						  op0, mode);
12998 			op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12999 						  op1, mode);
13000 		      }
13001 		    break;
13002 		  }
13003 	      }
13004 	  }
13005       }
13006 
13007   /* We may have changed the comparison operands.  Re-canonicalize.  */
13008   if (swap_commutative_operands_p (op0, op1))
13009     {
13010       std::swap (op0, op1);
13011       code = swap_condition (code);
13012     }
13013 
13014   /* If this machine only supports a subset of valid comparisons, see if we
13015      can convert an unsupported one into a supported one.  */
13016   target_canonicalize_comparison (&code, &op0, &op1, 0);
13017 
13018   *pop0 = op0;
13019   *pop1 = op1;
13020 
13021   return code;
13022 }
13023 
13024 /* Utility function for record_value_for_reg.  Count number of
13025    rtxs in X.  */
13026 static int
13027 count_rtxs (rtx x)
13028 {
13029   enum rtx_code code = GET_CODE (x);
13030   const char *fmt;
13031   int i, j, ret = 1;
13032 
13033   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13034       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13035     {
13036       rtx x0 = XEXP (x, 0);
13037       rtx x1 = XEXP (x, 1);
13038 
13039       if (x0 == x1)
13040 	return 1 + 2 * count_rtxs (x0);
13041 
13042       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13043 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13044 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13045 	return 2 + 2 * count_rtxs (x0)
13046 	       + count_rtxs (x == XEXP (x1, 0)
13047 			     ? XEXP (x1, 1) : XEXP (x1, 0));
13048 
13049       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13050 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13051 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13052 	return 2 + 2 * count_rtxs (x1)
13053 	       + count_rtxs (x == XEXP (x0, 0)
13054 			     ? XEXP (x0, 1) : XEXP (x0, 0));
13055     }
13056 
13057   fmt = GET_RTX_FORMAT (code);
13058   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13059     if (fmt[i] == 'e')
13060       ret += count_rtxs (XEXP (x, i));
13061     else if (fmt[i] == 'E')
13062       for (j = 0; j < XVECLEN (x, i); j++)
13063 	ret += count_rtxs (XVECEXP (x, i, j));
13064 
13065   return ret;
13066 }
13067 
13068 /* Utility function for following routine.  Called when X is part of a value
13069    being stored into last_set_value.  Sets last_set_table_tick
13070    for each register mentioned.  Similar to mention_regs in cse.c  */
13071 
13072 static void
13073 update_table_tick (rtx x)
13074 {
13075   enum rtx_code code = GET_CODE (x);
13076   const char *fmt = GET_RTX_FORMAT (code);
13077   int i, j;
13078 
13079   if (code == REG)
13080     {
13081       unsigned int regno = REGNO (x);
13082       unsigned int endregno = END_REGNO (x);
13083       unsigned int r;
13084 
13085       for (r = regno; r < endregno; r++)
13086 	{
13087 	  reg_stat_type *rsp = &reg_stat[r];
13088 	  rsp->last_set_table_tick = label_tick;
13089 	}
13090 
13091       return;
13092     }
13093 
13094   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13095     if (fmt[i] == 'e')
13096       {
13097 	/* Check for identical subexpressions.  If x contains
13098 	   identical subexpression we only have to traverse one of
13099 	   them.  */
13100 	if (i == 0 && ARITHMETIC_P (x))
13101 	  {
13102 	    /* Note that at this point x1 has already been
13103 	       processed.  */
13104 	    rtx x0 = XEXP (x, 0);
13105 	    rtx x1 = XEXP (x, 1);
13106 
13107 	    /* If x0 and x1 are identical then there is no need to
13108 	       process x0.  */
13109 	    if (x0 == x1)
13110 	      break;
13111 
13112 	    /* If x0 is identical to a subexpression of x1 then while
13113 	       processing x1, x0 has already been processed.  Thus we
13114 	       are done with x.  */
13115 	    if (ARITHMETIC_P (x1)
13116 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13117 	      break;
13118 
13119 	    /* If x1 is identical to a subexpression of x0 then we
13120 	       still have to process the rest of x0.  */
13121 	    if (ARITHMETIC_P (x0)
13122 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13123 	      {
13124 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13125 		break;
13126 	      }
13127 	  }
13128 
13129 	update_table_tick (XEXP (x, i));
13130       }
13131     else if (fmt[i] == 'E')
13132       for (j = 0; j < XVECLEN (x, i); j++)
13133 	update_table_tick (XVECEXP (x, i, j));
13134 }
13135 
13136 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
13137    are saying that the register is clobbered and we no longer know its
13138    value.  If INSN is zero, don't update reg_stat[].last_set; this is
13139    only permitted with VALUE also zero and is used to invalidate the
13140    register.  */
13141 
13142 static void
13143 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13144 {
13145   unsigned int regno = REGNO (reg);
13146   unsigned int endregno = END_REGNO (reg);
13147   unsigned int i;
13148   reg_stat_type *rsp;
13149 
13150   /* If VALUE contains REG and we have a previous value for REG, substitute
13151      the previous value.  */
13152   if (value && insn && reg_overlap_mentioned_p (reg, value))
13153     {
13154       rtx tem;
13155 
13156       /* Set things up so get_last_value is allowed to see anything set up to
13157 	 our insn.  */
13158       subst_low_luid = DF_INSN_LUID (insn);
13159       tem = get_last_value (reg);
13160 
13161       /* If TEM is simply a binary operation with two CLOBBERs as operands,
13162 	 it isn't going to be useful and will take a lot of time to process,
13163 	 so just use the CLOBBER.  */
13164 
13165       if (tem)
13166 	{
13167 	  if (ARITHMETIC_P (tem)
13168 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
13169 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13170 	    tem = XEXP (tem, 0);
13171 	  else if (count_occurrences (value, reg, 1) >= 2)
13172 	    {
13173 	      /* If there are two or more occurrences of REG in VALUE,
13174 		 prevent the value from growing too much.  */
13175 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13176 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13177 	    }
13178 
13179 	  value = replace_rtx (copy_rtx (value), reg, tem);
13180 	}
13181     }
13182 
13183   /* For each register modified, show we don't know its value, that
13184      we don't know about its bitwise content, that its value has been
13185      updated, and that we don't know the location of the death of the
13186      register.  */
13187   for (i = regno; i < endregno; i++)
13188     {
13189       rsp = &reg_stat[i];
13190 
13191       if (insn)
13192 	rsp->last_set = insn;
13193 
13194       rsp->last_set_value = 0;
13195       rsp->last_set_mode = VOIDmode;
13196       rsp->last_set_nonzero_bits = 0;
13197       rsp->last_set_sign_bit_copies = 0;
13198       rsp->last_death = 0;
13199       rsp->truncated_to_mode = VOIDmode;
13200     }
13201 
13202   /* Mark registers that are being referenced in this value.  */
13203   if (value)
13204     update_table_tick (value);
13205 
13206   /* Now update the status of each register being set.
13207      If someone is using this register in this block, set this register
13208      to invalid since we will get confused between the two lives in this
13209      basic block.  This makes using this register always invalid.  In cse, we
13210      scan the table to invalidate all entries using this register, but this
13211      is too much work for us.  */
13212 
13213   for (i = regno; i < endregno; i++)
13214     {
13215       rsp = &reg_stat[i];
13216       rsp->last_set_label = label_tick;
13217       if (!insn
13218 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13219 	rsp->last_set_invalid = 1;
13220       else
13221 	rsp->last_set_invalid = 0;
13222     }
13223 
13224   /* The value being assigned might refer to X (like in "x++;").  In that
13225      case, we must replace it with (clobber (const_int 0)) to prevent
13226      infinite loops.  */
13227   rsp = &reg_stat[regno];
13228   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13229     {
13230       value = copy_rtx (value);
13231       if (!get_last_value_validate (&value, insn, label_tick, 1))
13232 	value = 0;
13233     }
13234 
13235   /* For the main register being modified, update the value, the mode, the
13236      nonzero bits, and the number of sign bit copies.  */
13237 
13238   rsp->last_set_value = value;
13239 
13240   if (value)
13241     {
13242       machine_mode mode = GET_MODE (reg);
13243       subst_low_luid = DF_INSN_LUID (insn);
13244       rsp->last_set_mode = mode;
13245       if (GET_MODE_CLASS (mode) == MODE_INT
13246 	  && HWI_COMPUTABLE_MODE_P (mode))
13247 	mode = nonzero_bits_mode;
13248       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13249       rsp->last_set_sign_bit_copies
13250 	= num_sign_bit_copies (value, GET_MODE (reg));
13251     }
13252 }
13253 
13254 /* Called via note_stores from record_dead_and_set_regs to handle one
13255    SET or CLOBBER in an insn.  DATA is the instruction in which the
13256    set is occurring.  */
13257 
13258 static void
13259 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13260 {
13261   rtx_insn *record_dead_insn = (rtx_insn *) data;
13262 
13263   if (GET_CODE (dest) == SUBREG)
13264     dest = SUBREG_REG (dest);
13265 
13266   if (!record_dead_insn)
13267     {
13268       if (REG_P (dest))
13269 	record_value_for_reg (dest, NULL, NULL_RTX);
13270       return;
13271     }
13272 
13273   if (REG_P (dest))
13274     {
13275       /* If we are setting the whole register, we know its value.  Otherwise
13276 	 show that we don't know the value.  We can handle a SUBREG if it's
13277 	 the low part, but we must be careful with paradoxical SUBREGs on
13278 	 RISC architectures because we cannot strip e.g. an extension around
13279 	 a load and record the naked load since the RTL middle-end considers
13280 	 that the upper bits are defined according to LOAD_EXTEND_OP.  */
13281       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13282 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13283       else if (GET_CODE (setter) == SET
13284 	       && GET_CODE (SET_DEST (setter)) == SUBREG
13285 	       && SUBREG_REG (SET_DEST (setter)) == dest
13286 	       && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13287 			    BITS_PER_WORD)
13288 	       && subreg_lowpart_p (SET_DEST (setter)))
13289 	record_value_for_reg (dest, record_dead_insn,
13290 			      WORD_REGISTER_OPERATIONS
13291 			      && paradoxical_subreg_p (SET_DEST (setter))
13292 			      ? SET_SRC (setter)
13293 			      : gen_lowpart (GET_MODE (dest),
13294 					     SET_SRC (setter)));
13295       else
13296 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13297     }
13298   else if (MEM_P (dest)
13299 	   /* Ignore pushes, they clobber nothing.  */
13300 	   && ! push_operand (dest, GET_MODE (dest)))
13301     mem_last_set = DF_INSN_LUID (record_dead_insn);
13302 }
13303 
13304 /* Update the records of when each REG was most recently set or killed
13305    for the things done by INSN.  This is the last thing done in processing
13306    INSN in the combiner loop.
13307 
13308    We update reg_stat[], in particular fields last_set, last_set_value,
13309    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13310    last_death, and also the similar information mem_last_set (which insn
13311    most recently modified memory) and last_call_luid (which insn was the
13312    most recent subroutine call).  */
13313 
13314 static void
13315 record_dead_and_set_regs (rtx_insn *insn)
13316 {
13317   rtx link;
13318   unsigned int i;
13319 
13320   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13321     {
13322       if (REG_NOTE_KIND (link) == REG_DEAD
13323 	  && REG_P (XEXP (link, 0)))
13324 	{
13325 	  unsigned int regno = REGNO (XEXP (link, 0));
13326 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
13327 
13328 	  for (i = regno; i < endregno; i++)
13329 	    {
13330 	      reg_stat_type *rsp;
13331 
13332 	      rsp = &reg_stat[i];
13333 	      rsp->last_death = insn;
13334 	    }
13335 	}
13336       else if (REG_NOTE_KIND (link) == REG_INC)
13337 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13338     }
13339 
13340   if (CALL_P (insn))
13341     {
13342       hard_reg_set_iterator hrsi;
13343       EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13344 	{
13345 	  reg_stat_type *rsp;
13346 
13347 	  rsp = &reg_stat[i];
13348 	  rsp->last_set_invalid = 1;
13349 	  rsp->last_set = insn;
13350 	  rsp->last_set_value = 0;
13351 	  rsp->last_set_mode = VOIDmode;
13352 	  rsp->last_set_nonzero_bits = 0;
13353 	  rsp->last_set_sign_bit_copies = 0;
13354 	  rsp->last_death = 0;
13355 	  rsp->truncated_to_mode = VOIDmode;
13356 	}
13357 
13358       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13359 
13360       /* We can't combine into a call pattern.  Remember, though, that
13361 	 the return value register is set at this LUID.  We could
13362 	 still replace a register with the return value from the
13363 	 wrong subroutine call!  */
13364       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13365     }
13366   else
13367     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13368 }
13369 
13370 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13371    register present in the SUBREG, so for each such SUBREG go back and
13372    adjust nonzero and sign bit information of the registers that are
13373    known to have some zero/sign bits set.
13374 
13375    This is needed because when combine blows the SUBREGs away, the
13376    information on zero/sign bits is lost and further combines can be
13377    missed because of that.  */
13378 
13379 static void
13380 record_promoted_value (rtx_insn *insn, rtx subreg)
13381 {
13382   struct insn_link *links;
13383   rtx set;
13384   unsigned int regno = REGNO (SUBREG_REG (subreg));
13385   machine_mode mode = GET_MODE (subreg);
13386 
13387   if (!HWI_COMPUTABLE_MODE_P (mode))
13388     return;
13389 
13390   for (links = LOG_LINKS (insn); links;)
13391     {
13392       reg_stat_type *rsp;
13393 
13394       insn = links->insn;
13395       set = single_set (insn);
13396 
13397       if (! set || !REG_P (SET_DEST (set))
13398 	  || REGNO (SET_DEST (set)) != regno
13399 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13400 	{
13401 	  links = links->next;
13402 	  continue;
13403 	}
13404 
13405       rsp = &reg_stat[regno];
13406       if (rsp->last_set == insn)
13407 	{
13408 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13409 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13410 	}
13411 
13412       if (REG_P (SET_SRC (set)))
13413 	{
13414 	  regno = REGNO (SET_SRC (set));
13415 	  links = LOG_LINKS (insn);
13416 	}
13417       else
13418 	break;
13419     }
13420 }
13421 
13422 /* Check if X, a register, is known to contain a value already
13423    truncated to MODE.  In this case we can use a subreg to refer to
13424    the truncated value even though in the generic case we would need
13425    an explicit truncation.  */
13426 
13427 static bool
13428 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13429 {
13430   reg_stat_type *rsp = &reg_stat[REGNO (x)];
13431   machine_mode truncated = rsp->truncated_to_mode;
13432 
13433   if (truncated == 0
13434       || rsp->truncation_label < label_tick_ebb_start)
13435     return false;
13436   if (!partial_subreg_p (mode, truncated))
13437     return true;
13438   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13439     return true;
13440   return false;
13441 }
13442 
13443 /* If X is a hard reg or a subreg record the mode that the register is
13444    accessed in.  For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13445    able to turn a truncate into a subreg using this information.  Return true
13446    if traversing X is complete.  */
13447 
13448 static bool
13449 record_truncated_value (rtx x)
13450 {
13451   machine_mode truncated_mode;
13452   reg_stat_type *rsp;
13453 
13454   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13455     {
13456       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13457       truncated_mode = GET_MODE (x);
13458 
13459       if (!partial_subreg_p (truncated_mode, original_mode))
13460 	return true;
13461 
13462       truncated_mode = GET_MODE (x);
13463       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13464 	return true;
13465 
13466       x = SUBREG_REG (x);
13467     }
13468   /* ??? For hard-regs we now record everything.  We might be able to
13469      optimize this using last_set_mode.  */
13470   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13471     truncated_mode = GET_MODE (x);
13472   else
13473     return false;
13474 
13475   rsp = &reg_stat[REGNO (x)];
13476   if (rsp->truncated_to_mode == 0
13477       || rsp->truncation_label < label_tick_ebb_start
13478       || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13479     {
13480       rsp->truncated_to_mode = truncated_mode;
13481       rsp->truncation_label = label_tick;
13482     }
13483 
13484   return true;
13485 }
13486 
13487 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
13488    the modes they are used in.  This can help truning TRUNCATEs into
13489    SUBREGs.  */
13490 
13491 static void
13492 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13493 {
13494   subrtx_var_iterator::array_type array;
13495   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13496     if (record_truncated_value (*iter))
13497       iter.skip_subrtxes ();
13498 }
13499 
13500 /* Scan X for promoted SUBREGs.  For each one found,
13501    note what it implies to the registers used in it.  */
13502 
13503 static void
13504 check_promoted_subreg (rtx_insn *insn, rtx x)
13505 {
13506   if (GET_CODE (x) == SUBREG
13507       && SUBREG_PROMOTED_VAR_P (x)
13508       && REG_P (SUBREG_REG (x)))
13509     record_promoted_value (insn, x);
13510   else
13511     {
13512       const char *format = GET_RTX_FORMAT (GET_CODE (x));
13513       int i, j;
13514 
13515       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13516 	switch (format[i])
13517 	  {
13518 	  case 'e':
13519 	    check_promoted_subreg (insn, XEXP (x, i));
13520 	    break;
13521 	  case 'V':
13522 	  case 'E':
13523 	    if (XVEC (x, i) != 0)
13524 	      for (j = 0; j < XVECLEN (x, i); j++)
13525 		check_promoted_subreg (insn, XVECEXP (x, i, j));
13526 	    break;
13527 	  }
13528     }
13529 }
13530 
13531 /* Verify that all the registers and memory references mentioned in *LOC are
13532    still valid.  *LOC was part of a value set in INSN when label_tick was
13533    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
13534    the invalid references with (clobber (const_int 0)) and return 1.  This
13535    replacement is useful because we often can get useful information about
13536    the form of a value (e.g., if it was produced by a shift that always
13537    produces -1 or 0) even though we don't know exactly what registers it
13538    was produced from.  */
13539 
13540 static int
13541 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13542 {
13543   rtx x = *loc;
13544   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13545   int len = GET_RTX_LENGTH (GET_CODE (x));
13546   int i, j;
13547 
13548   if (REG_P (x))
13549     {
13550       unsigned int regno = REGNO (x);
13551       unsigned int endregno = END_REGNO (x);
13552       unsigned int j;
13553 
13554       for (j = regno; j < endregno; j++)
13555 	{
13556 	  reg_stat_type *rsp = &reg_stat[j];
13557 	  if (rsp->last_set_invalid
13558 	      /* If this is a pseudo-register that was only set once and not
13559 		 live at the beginning of the function, it is always valid.  */
13560 	      || (! (regno >= FIRST_PSEUDO_REGISTER
13561 		     && regno < reg_n_sets_max
13562 		     && REG_N_SETS (regno) == 1
13563 		     && (!REGNO_REG_SET_P
13564 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13565 			  regno)))
13566 		  && rsp->last_set_label > tick))
13567 	  {
13568 	    if (replace)
13569 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13570 	    return replace;
13571 	  }
13572 	}
13573 
13574       return 1;
13575     }
13576   /* If this is a memory reference, make sure that there were no stores after
13577      it that might have clobbered the value.  We don't have alias info, so we
13578      assume any store invalidates it.  Moreover, we only have local UIDs, so
13579      we also assume that there were stores in the intervening basic blocks.  */
13580   else if (MEM_P (x) && !MEM_READONLY_P (x)
13581 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13582     {
13583       if (replace)
13584 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13585       return replace;
13586     }
13587 
13588   for (i = 0; i < len; i++)
13589     {
13590       if (fmt[i] == 'e')
13591 	{
13592 	  /* Check for identical subexpressions.  If x contains
13593 	     identical subexpression we only have to traverse one of
13594 	     them.  */
13595 	  if (i == 1 && ARITHMETIC_P (x))
13596 	    {
13597 	      /* Note that at this point x0 has already been checked
13598 		 and found valid.  */
13599 	      rtx x0 = XEXP (x, 0);
13600 	      rtx x1 = XEXP (x, 1);
13601 
13602 	      /* If x0 and x1 are identical then x is also valid.  */
13603 	      if (x0 == x1)
13604 		return 1;
13605 
13606 	      /* If x1 is identical to a subexpression of x0 then
13607 		 while checking x0, x1 has already been checked.  Thus
13608 		 it is valid and so as x.  */
13609 	      if (ARITHMETIC_P (x0)
13610 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13611 		return 1;
13612 
13613 	      /* If x0 is identical to a subexpression of x1 then x is
13614 		 valid iff the rest of x1 is valid.  */
13615 	      if (ARITHMETIC_P (x1)
13616 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13617 		return
13618 		  get_last_value_validate (&XEXP (x1,
13619 						  x0 == XEXP (x1, 0) ? 1 : 0),
13620 					   insn, tick, replace);
13621 	    }
13622 
13623 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
13624 				       replace) == 0)
13625 	    return 0;
13626 	}
13627       else if (fmt[i] == 'E')
13628 	for (j = 0; j < XVECLEN (x, i); j++)
13629 	  if (get_last_value_validate (&XVECEXP (x, i, j),
13630 				       insn, tick, replace) == 0)
13631 	    return 0;
13632     }
13633 
13634   /* If we haven't found a reason for it to be invalid, it is valid.  */
13635   return 1;
13636 }
13637 
13638 /* Get the last value assigned to X, if known.  Some registers
13639    in the value may be replaced with (clobber (const_int 0)) if their value
13640    is known longer known reliably.  */
13641 
13642 static rtx
13643 get_last_value (const_rtx x)
13644 {
13645   unsigned int regno;
13646   rtx value;
13647   reg_stat_type *rsp;
13648 
13649   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13650      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13651      we cannot predict what values the "extra" bits might have.  */
13652   if (GET_CODE (x) == SUBREG
13653       && subreg_lowpart_p (x)
13654       && !paradoxical_subreg_p (x)
13655       && (value = get_last_value (SUBREG_REG (x))) != 0)
13656     return gen_lowpart (GET_MODE (x), value);
13657 
13658   if (!REG_P (x))
13659     return 0;
13660 
13661   regno = REGNO (x);
13662   rsp = &reg_stat[regno];
13663   value = rsp->last_set_value;
13664 
13665   /* If we don't have a value, or if it isn't for this basic block and
13666      it's either a hard register, set more than once, or it's a live
13667      at the beginning of the function, return 0.
13668 
13669      Because if it's not live at the beginning of the function then the reg
13670      is always set before being used (is never used without being set).
13671      And, if it's set only once, and it's always set before use, then all
13672      uses must have the same last value, even if it's not from this basic
13673      block.  */
13674 
13675   if (value == 0
13676       || (rsp->last_set_label < label_tick_ebb_start
13677 	  && (regno < FIRST_PSEUDO_REGISTER
13678 	      || regno >= reg_n_sets_max
13679 	      || REG_N_SETS (regno) != 1
13680 	      || REGNO_REG_SET_P
13681 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13682     return 0;
13683 
13684   /* If the value was set in a later insn than the ones we are processing,
13685      we can't use it even if the register was only set once.  */
13686   if (rsp->last_set_label == label_tick
13687       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13688     return 0;
13689 
13690   /* If fewer bits were set than what we are asked for now, we cannot use
13691      the value.  */
13692   if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13693 		GET_MODE_PRECISION (GET_MODE (x))))
13694     return 0;
13695 
13696   /* If the value has all its registers valid, return it.  */
13697   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13698     return value;
13699 
13700   /* Otherwise, make a copy and replace any invalid register with
13701      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13702 
13703   value = copy_rtx (value);
13704   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13705     return value;
13706 
13707   return 0;
13708 }
13709 
13710 /* Define three variables used for communication between the following
13711    routines.  */
13712 
13713 static unsigned int reg_dead_regno, reg_dead_endregno;
13714 static int reg_dead_flag;
13715 
13716 /* Function called via note_stores from reg_dead_at_p.
13717 
13718    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13719    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13720 
13721 static void
13722 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13723 {
13724   unsigned int regno, endregno;
13725 
13726   if (!REG_P (dest))
13727     return;
13728 
13729   regno = REGNO (dest);
13730   endregno = END_REGNO (dest);
13731   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13732     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13733 }
13734 
13735 /* Return nonzero if REG is known to be dead at INSN.
13736 
13737    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13738    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13739    live.  Otherwise, see if it is live or dead at the start of the basic
13740    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13741    must be assumed to be always live.  */
13742 
13743 static int
13744 reg_dead_at_p (rtx reg, rtx_insn *insn)
13745 {
13746   basic_block block;
13747   unsigned int i;
13748 
13749   /* Set variables for reg_dead_at_p_1.  */
13750   reg_dead_regno = REGNO (reg);
13751   reg_dead_endregno = END_REGNO (reg);
13752 
13753   reg_dead_flag = 0;
13754 
13755   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13756      we allow the machine description to decide whether use-and-clobber
13757      patterns are OK.  */
13758   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13759     {
13760       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13761 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13762 	  return 0;
13763     }
13764 
13765   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13766      beginning of basic block.  */
13767   block = BLOCK_FOR_INSN (insn);
13768   for (;;)
13769     {
13770       if (INSN_P (insn))
13771         {
13772 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13773 	    return 1;
13774 
13775 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13776 	  if (reg_dead_flag)
13777 	    return reg_dead_flag == 1 ? 1 : 0;
13778 
13779 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13780 	    return 1;
13781         }
13782 
13783       if (insn == BB_HEAD (block))
13784 	break;
13785 
13786       insn = PREV_INSN (insn);
13787     }
13788 
13789   /* Look at live-in sets for the basic block that we were in.  */
13790   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13791     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13792       return 0;
13793 
13794   return 1;
13795 }
13796 
13797 /* Note hard registers in X that are used.  */
13798 
13799 static void
13800 mark_used_regs_combine (rtx x)
13801 {
13802   RTX_CODE code = GET_CODE (x);
13803   unsigned int regno;
13804   int i;
13805 
13806   switch (code)
13807     {
13808     case LABEL_REF:
13809     case SYMBOL_REF:
13810     case CONST:
13811     CASE_CONST_ANY:
13812     case PC:
13813     case ADDR_VEC:
13814     case ADDR_DIFF_VEC:
13815     case ASM_INPUT:
13816     /* CC0 must die in the insn after it is set, so we don't need to take
13817        special note of it here.  */
13818     case CC0:
13819       return;
13820 
13821     case CLOBBER:
13822       /* If we are clobbering a MEM, mark any hard registers inside the
13823 	 address as used.  */
13824       if (MEM_P (XEXP (x, 0)))
13825 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13826       return;
13827 
13828     case REG:
13829       regno = REGNO (x);
13830       /* A hard reg in a wide mode may really be multiple registers.
13831 	 If so, mark all of them just like the first.  */
13832       if (regno < FIRST_PSEUDO_REGISTER)
13833 	{
13834 	  /* None of this applies to the stack, frame or arg pointers.  */
13835 	  if (regno == STACK_POINTER_REGNUM
13836 	      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13837 		  && regno == HARD_FRAME_POINTER_REGNUM)
13838 	      || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13839 		  && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13840 	      || regno == FRAME_POINTER_REGNUM)
13841 	    return;
13842 
13843 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13844 	}
13845       return;
13846 
13847     case SET:
13848       {
13849 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13850 	   the address.  */
13851 	rtx testreg = SET_DEST (x);
13852 
13853 	while (GET_CODE (testreg) == SUBREG
13854 	       || GET_CODE (testreg) == ZERO_EXTRACT
13855 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13856 	  testreg = XEXP (testreg, 0);
13857 
13858 	if (MEM_P (testreg))
13859 	  mark_used_regs_combine (XEXP (testreg, 0));
13860 
13861 	mark_used_regs_combine (SET_SRC (x));
13862       }
13863       return;
13864 
13865     default:
13866       break;
13867     }
13868 
13869   /* Recursively scan the operands of this expression.  */
13870 
13871   {
13872     const char *fmt = GET_RTX_FORMAT (code);
13873 
13874     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13875       {
13876 	if (fmt[i] == 'e')
13877 	  mark_used_regs_combine (XEXP (x, i));
13878 	else if (fmt[i] == 'E')
13879 	  {
13880 	    int j;
13881 
13882 	    for (j = 0; j < XVECLEN (x, i); j++)
13883 	      mark_used_regs_combine (XVECEXP (x, i, j));
13884 	  }
13885       }
13886   }
13887 }
13888 
13889 /* Remove register number REGNO from the dead registers list of INSN.
13890 
13891    Return the note used to record the death, if there was one.  */
13892 
13893 rtx
13894 remove_death (unsigned int regno, rtx_insn *insn)
13895 {
13896   rtx note = find_regno_note (insn, REG_DEAD, regno);
13897 
13898   if (note)
13899     remove_note (insn, note);
13900 
13901   return note;
13902 }
13903 
13904 /* For each register (hardware or pseudo) used within expression X, if its
13905    death is in an instruction with luid between FROM_LUID (inclusive) and
13906    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13907    list headed by PNOTES.
13908 
13909    That said, don't move registers killed by maybe_kill_insn.
13910 
13911    This is done when X is being merged by combination into TO_INSN.  These
13912    notes will then be distributed as needed.  */
13913 
13914 static void
13915 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13916 	     rtx *pnotes)
13917 {
13918   const char *fmt;
13919   int len, i;
13920   enum rtx_code code = GET_CODE (x);
13921 
13922   if (code == REG)
13923     {
13924       unsigned int regno = REGNO (x);
13925       rtx_insn *where_dead = reg_stat[regno].last_death;
13926 
13927       /* If we do not know where the register died, it may still die between
13928 	 FROM_LUID and TO_INSN.  If so, find it.  This is PR83304.  */
13929       if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13930 	{
13931 	  rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13932 	  while (insn
13933 		 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13934 		 && DF_INSN_LUID (insn) >= from_luid)
13935 	    {
13936 	      if (dead_or_set_regno_p (insn, regno))
13937 		{
13938 		  if (find_regno_note (insn, REG_DEAD, regno))
13939 		    where_dead = insn;
13940 		  break;
13941 		}
13942 
13943 	      insn = prev_real_nondebug_insn (insn);
13944 	    }
13945 	}
13946 
13947       /* Don't move the register if it gets killed in between from and to.  */
13948       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13949 	  && ! reg_referenced_p (x, maybe_kill_insn))
13950 	return;
13951 
13952       if (where_dead
13953 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13954 	  && DF_INSN_LUID (where_dead) >= from_luid
13955 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13956 	{
13957 	  rtx note = remove_death (regno, where_dead);
13958 
13959 	  /* It is possible for the call above to return 0.  This can occur
13960 	     when last_death points to I2 or I1 that we combined with.
13961 	     In that case make a new note.
13962 
13963 	     We must also check for the case where X is a hard register
13964 	     and NOTE is a death note for a range of hard registers
13965 	     including X.  In that case, we must put REG_DEAD notes for
13966 	     the remaining registers in place of NOTE.  */
13967 
13968 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13969 	      && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13970 	    {
13971 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13972 	      unsigned int deadend = END_REGNO (XEXP (note, 0));
13973 	      unsigned int ourend = END_REGNO (x);
13974 	      unsigned int i;
13975 
13976 	      for (i = deadregno; i < deadend; i++)
13977 		if (i < regno || i >= ourend)
13978 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13979 	    }
13980 
13981 	  /* If we didn't find any note, or if we found a REG_DEAD note that
13982 	     covers only part of the given reg, and we have a multi-reg hard
13983 	     register, then to be safe we must check for REG_DEAD notes
13984 	     for each register other than the first.  They could have
13985 	     their own REG_DEAD notes lying around.  */
13986 	  else if ((note == 0
13987 		    || (note != 0
13988 			&& partial_subreg_p (GET_MODE (XEXP (note, 0)),
13989 					     GET_MODE (x))))
13990 		   && regno < FIRST_PSEUDO_REGISTER
13991 		   && REG_NREGS (x) > 1)
13992 	    {
13993 	      unsigned int ourend = END_REGNO (x);
13994 	      unsigned int i, offset;
13995 	      rtx oldnotes = 0;
13996 
13997 	      if (note)
13998 		offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13999 	      else
14000 		offset = 1;
14001 
14002 	      for (i = regno + offset; i < ourend; i++)
14003 		move_deaths (regno_reg_rtx[i],
14004 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
14005 	    }
14006 
14007 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14008 	    {
14009 	      XEXP (note, 1) = *pnotes;
14010 	      *pnotes = note;
14011 	    }
14012 	  else
14013 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14014 	}
14015 
14016       return;
14017     }
14018 
14019   else if (GET_CODE (x) == SET)
14020     {
14021       rtx dest = SET_DEST (x);
14022 
14023       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14024 
14025       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14026 	 that accesses one word of a multi-word item, some
14027 	 piece of everything register in the expression is used by
14028 	 this insn, so remove any old death.  */
14029       /* ??? So why do we test for equality of the sizes?  */
14030 
14031       if (GET_CODE (dest) == ZERO_EXTRACT
14032 	  || GET_CODE (dest) == STRICT_LOW_PART
14033 	  || (GET_CODE (dest) == SUBREG
14034 	      && !read_modify_subreg_p (dest)))
14035 	{
14036 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14037 	  return;
14038 	}
14039 
14040       /* If this is some other SUBREG, we know it replaces the entire
14041 	 value, so use that as the destination.  */
14042       if (GET_CODE (dest) == SUBREG)
14043 	dest = SUBREG_REG (dest);
14044 
14045       /* If this is a MEM, adjust deaths of anything used in the address.
14046 	 For a REG (the only other possibility), the entire value is
14047 	 being replaced so the old value is not used in this insn.  */
14048 
14049       if (MEM_P (dest))
14050 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14051 		     to_insn, pnotes);
14052       return;
14053     }
14054 
14055   else if (GET_CODE (x) == CLOBBER)
14056     return;
14057 
14058   len = GET_RTX_LENGTH (code);
14059   fmt = GET_RTX_FORMAT (code);
14060 
14061   for (i = 0; i < len; i++)
14062     {
14063       if (fmt[i] == 'E')
14064 	{
14065 	  int j;
14066 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14067 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14068 			 to_insn, pnotes);
14069 	}
14070       else if (fmt[i] == 'e')
14071 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14072     }
14073 }
14074 
14075 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14076    pattern of an insn.  X must be a REG.  */
14077 
14078 static int
14079 reg_bitfield_target_p (rtx x, rtx body)
14080 {
14081   int i;
14082 
14083   if (GET_CODE (body) == SET)
14084     {
14085       rtx dest = SET_DEST (body);
14086       rtx target;
14087       unsigned int regno, tregno, endregno, endtregno;
14088 
14089       if (GET_CODE (dest) == ZERO_EXTRACT)
14090 	target = XEXP (dest, 0);
14091       else if (GET_CODE (dest) == STRICT_LOW_PART)
14092 	target = SUBREG_REG (XEXP (dest, 0));
14093       else
14094 	return 0;
14095 
14096       if (GET_CODE (target) == SUBREG)
14097 	target = SUBREG_REG (target);
14098 
14099       if (!REG_P (target))
14100 	return 0;
14101 
14102       tregno = REGNO (target), regno = REGNO (x);
14103       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14104 	return target == x;
14105 
14106       endtregno = end_hard_regno (GET_MODE (target), tregno);
14107       endregno = end_hard_regno (GET_MODE (x), regno);
14108 
14109       return endregno > tregno && regno < endtregno;
14110     }
14111 
14112   else if (GET_CODE (body) == PARALLEL)
14113     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14114       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14115 	return 1;
14116 
14117   return 0;
14118 }
14119 
14120 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14121    as appropriate.  I3 and I2 are the insns resulting from the combination
14122    insns including FROM (I2 may be zero).
14123 
14124    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14125    not need REG_DEAD notes because they are being substituted for.  This
14126    saves searching in the most common cases.
14127 
14128    Each note in the list is either ignored or placed on some insns, depending
14129    on the type of note.  */
14130 
14131 static void
14132 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14133 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
14134 {
14135   rtx note, next_note;
14136   rtx tem_note;
14137   rtx_insn *tem_insn;
14138 
14139   for (note = notes; note; note = next_note)
14140     {
14141       rtx_insn *place = 0, *place2 = 0;
14142 
14143       next_note = XEXP (note, 1);
14144       switch (REG_NOTE_KIND (note))
14145 	{
14146 	case REG_BR_PROB:
14147 	case REG_BR_PRED:
14148 	  /* Doesn't matter much where we put this, as long as it's somewhere.
14149 	     It is preferable to keep these notes on branches, which is most
14150 	     likely to be i3.  */
14151 	  place = i3;
14152 	  break;
14153 
14154 	case REG_NON_LOCAL_GOTO:
14155 	  if (JUMP_P (i3))
14156 	    place = i3;
14157 	  else
14158 	    {
14159 	      gcc_assert (i2 && JUMP_P (i2));
14160 	      place = i2;
14161 	    }
14162 	  break;
14163 
14164 	case REG_EH_REGION:
14165 	  /* These notes must remain with the call or trapping instruction.  */
14166 	  if (CALL_P (i3))
14167 	    place = i3;
14168 	  else if (i2 && CALL_P (i2))
14169 	    place = i2;
14170 	  else
14171 	    {
14172 	      gcc_assert (cfun->can_throw_non_call_exceptions);
14173 	      if (may_trap_p (i3))
14174 		place = i3;
14175 	      else if (i2 && may_trap_p (i2))
14176 		place = i2;
14177 	      /* ??? Otherwise assume we've combined things such that we
14178 		 can now prove that the instructions can't trap.  Drop the
14179 		 note in this case.  */
14180 	    }
14181 	  break;
14182 
14183 	case REG_ARGS_SIZE:
14184 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
14185 	     entire adjustment.  Assert i3 contains at least some adjust.  */
14186 	  if (!noop_move_p (i3))
14187 	    {
14188 	      poly_int64 old_size, args_size = get_args_size (note);
14189 	      /* fixup_args_size_notes looks at REG_NORETURN note,
14190 		 so ensure the note is placed there first.  */
14191 	      if (CALL_P (i3))
14192 		{
14193 		  rtx *np;
14194 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
14195 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
14196 		      {
14197 			rtx n = *np;
14198 			*np = XEXP (n, 1);
14199 			XEXP (n, 1) = REG_NOTES (i3);
14200 			REG_NOTES (i3) = n;
14201 			break;
14202 		      }
14203 		}
14204 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14205 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14206 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
14207 	      gcc_assert (maybe_ne (old_size, args_size)
14208 			  || (CALL_P (i3)
14209 			      && !ACCUMULATE_OUTGOING_ARGS
14210 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14211 	    }
14212 	  break;
14213 
14214 	case REG_NORETURN:
14215 	case REG_SETJMP:
14216 	case REG_TM:
14217 	case REG_CALL_DECL:
14218 	case REG_CALL_NOCF_CHECK:
14219 	  /* These notes must remain with the call.  It should not be
14220 	     possible for both I2 and I3 to be a call.  */
14221 	  if (CALL_P (i3))
14222 	    place = i3;
14223 	  else
14224 	    {
14225 	      gcc_assert (i2 && CALL_P (i2));
14226 	      place = i2;
14227 	    }
14228 	  break;
14229 
14230 	case REG_UNUSED:
14231 	  /* Any clobbers for i3 may still exist, and so we must process
14232 	     REG_UNUSED notes from that insn.
14233 
14234 	     Any clobbers from i2 or i1 can only exist if they were added by
14235 	     recog_for_combine.  In that case, recog_for_combine created the
14236 	     necessary REG_UNUSED notes.  Trying to keep any original
14237 	     REG_UNUSED notes from these insns can cause incorrect output
14238 	     if it is for the same register as the original i3 dest.
14239 	     In that case, we will notice that the register is set in i3,
14240 	     and then add a REG_UNUSED note for the destination of i3, which
14241 	     is wrong.  However, it is possible to have REG_UNUSED notes from
14242 	     i2 or i1 for register which were both used and clobbered, so
14243 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
14244 	     notes.  */
14245 
14246 	  /* If this register is set or clobbered in I3, put the note there
14247 	     unless there is one already.  */
14248 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14249 	    {
14250 	      if (from_insn != i3)
14251 		break;
14252 
14253 	      if (! (REG_P (XEXP (note, 0))
14254 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14255 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14256 		place = i3;
14257 	    }
14258 	  /* Otherwise, if this register is used by I3, then this register
14259 	     now dies here, so we must put a REG_DEAD note here unless there
14260 	     is one already.  */
14261 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14262 		   && ! (REG_P (XEXP (note, 0))
14263 			 ? find_regno_note (i3, REG_DEAD,
14264 					    REGNO (XEXP (note, 0)))
14265 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14266 	    {
14267 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
14268 	      place = i3;
14269 	    }
14270 
14271 	  /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14272 	     but we can't tell which at this point.  We must reset any
14273 	     expectations we had about the value that was previously
14274 	     stored in the reg.  ??? Ideally, we'd adjust REG_N_SETS
14275 	     and, if appropriate, restore its previous value, but we
14276 	     don't have enough information for that at this point.  */
14277 	  else
14278 	    {
14279 	      record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14280 
14281 	      /* Otherwise, if this register is now referenced in i2
14282 		 then the register used to be modified in one of the
14283 		 original insns.  If it was i3 (say, in an unused
14284 		 parallel), it's now completely gone, so the note can
14285 		 be discarded.  But if it was modified in i2, i1 or i0
14286 		 and we still reference it in i2, then we're
14287 		 referencing the previous value, and since the
14288 		 register was modified and REG_UNUSED, we know that
14289 		 the previous value is now dead.  So, if we only
14290 		 reference the register in i2, we change the note to
14291 		 REG_DEAD, to reflect the previous value.  However, if
14292 		 we're also setting or clobbering the register as
14293 		 scratch, we know (because the register was not
14294 		 referenced in i3) that it's unused, just as it was
14295 		 unused before, and we place the note in i2.  */
14296 	      if (from_insn != i3 && i2 && INSN_P (i2)
14297 		  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14298 		{
14299 		  if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14300 		    PUT_REG_NOTE_KIND (note, REG_DEAD);
14301 		  if (! (REG_P (XEXP (note, 0))
14302 			 ? find_regno_note (i2, REG_NOTE_KIND (note),
14303 					    REGNO (XEXP (note, 0)))
14304 			 : find_reg_note (i2, REG_NOTE_KIND (note),
14305 					  XEXP (note, 0))))
14306 		    place = i2;
14307 		}
14308 	    }
14309 
14310 	  break;
14311 
14312 	case REG_EQUAL:
14313 	case REG_EQUIV:
14314 	case REG_NOALIAS:
14315 	  /* These notes say something about results of an insn.  We can
14316 	     only support them if they used to be on I3 in which case they
14317 	     remain on I3.  Otherwise they are ignored.
14318 
14319 	     If the note refers to an expression that is not a constant, we
14320 	     must also ignore the note since we cannot tell whether the
14321 	     equivalence is still true.  It might be possible to do
14322 	     slightly better than this (we only have a problem if I2DEST
14323 	     or I1DEST is present in the expression), but it doesn't
14324 	     seem worth the trouble.  */
14325 
14326 	  if (from_insn == i3
14327 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14328 	    place = i3;
14329 	  break;
14330 
14331 	case REG_INC:
14332 	  /* These notes say something about how a register is used.  They must
14333 	     be present on any use of the register in I2 or I3.  */
14334 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14335 	    place = i3;
14336 
14337 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14338 	    {
14339 	      if (place)
14340 		place2 = i2;
14341 	      else
14342 		place = i2;
14343 	    }
14344 	  break;
14345 
14346 	case REG_LABEL_TARGET:
14347 	case REG_LABEL_OPERAND:
14348 	  /* This can show up in several ways -- either directly in the
14349 	     pattern, or hidden off in the constant pool with (or without?)
14350 	     a REG_EQUAL note.  */
14351 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
14352 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14353 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14354 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14355 		  && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14356 	    place = i3;
14357 
14358 	  if (i2
14359 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14360 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14361 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14362 		      && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14363 	    {
14364 	      if (place)
14365 		place2 = i2;
14366 	      else
14367 		place = i2;
14368 	    }
14369 
14370 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14371 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14372 	     there.  */
14373 	  if (place && JUMP_P (place)
14374 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14375 	      && (JUMP_LABEL (place) == NULL
14376 		  || JUMP_LABEL (place) == XEXP (note, 0)))
14377 	    {
14378 	      rtx label = JUMP_LABEL (place);
14379 
14380 	      if (!label)
14381 		JUMP_LABEL (place) = XEXP (note, 0);
14382 	      else if (LABEL_P (label))
14383 		LABEL_NUSES (label)--;
14384 	    }
14385 
14386 	  if (place2 && JUMP_P (place2)
14387 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14388 	      && (JUMP_LABEL (place2) == NULL
14389 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
14390 	    {
14391 	      rtx label = JUMP_LABEL (place2);
14392 
14393 	      if (!label)
14394 		JUMP_LABEL (place2) = XEXP (note, 0);
14395 	      else if (LABEL_P (label))
14396 		LABEL_NUSES (label)--;
14397 	      place2 = 0;
14398 	    }
14399 	  break;
14400 
14401 	case REG_NONNEG:
14402 	  /* This note says something about the value of a register prior
14403 	     to the execution of an insn.  It is too much trouble to see
14404 	     if the note is still correct in all situations.  It is better
14405 	     to simply delete it.  */
14406 	  break;
14407 
14408 	case REG_DEAD:
14409 	  /* If we replaced the right hand side of FROM_INSN with a
14410 	     REG_EQUAL note, the original use of the dying register
14411 	     will not have been combined into I3 and I2.  In such cases,
14412 	     FROM_INSN is guaranteed to be the first of the combined
14413 	     instructions, so we simply need to search back before
14414 	     FROM_INSN for the previous use or set of this register,
14415 	     then alter the notes there appropriately.
14416 
14417 	     If the register is used as an input in I3, it dies there.
14418 	     Similarly for I2, if it is nonzero and adjacent to I3.
14419 
14420 	     If the register is not used as an input in either I3 or I2
14421 	     and it is not one of the registers we were supposed to eliminate,
14422 	     there are two possibilities.  We might have a non-adjacent I2
14423 	     or we might have somehow eliminated an additional register
14424 	     from a computation.  For example, we might have had A & B where
14425 	     we discover that B will always be zero.  In this case we will
14426 	     eliminate the reference to A.
14427 
14428 	     In both cases, we must search to see if we can find a previous
14429 	     use of A and put the death note there.  */
14430 
14431 	  if (from_insn
14432 	      && from_insn == i2mod
14433 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14434 	    tem_insn = from_insn;
14435 	  else
14436 	    {
14437 	      if (from_insn
14438 		  && CALL_P (from_insn)
14439 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14440 		place = from_insn;
14441 	      else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14442 		{
14443 		  /* If the new I2 sets the same register that is marked
14444 		     dead in the note, we do not in general know where to
14445 		     put the note.  One important case we _can_ handle is
14446 		     when the note comes from I3.  */
14447 		  if (from_insn == i3)
14448 		    place = i3;
14449 		  else
14450 		    break;
14451 		}
14452 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14453 		place = i3;
14454 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14455 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14456 		place = i2;
14457 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14458 			&& !(i2mod
14459 			     && reg_overlap_mentioned_p (XEXP (note, 0),
14460 							 i2mod_old_rhs)))
14461 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
14462 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
14463 		break;
14464 	      tem_insn = i3;
14465 	    }
14466 
14467 	  if (place == 0)
14468 	    {
14469 	      basic_block bb = this_basic_block;
14470 
14471 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14472 		{
14473 		  if (!NONDEBUG_INSN_P (tem_insn))
14474 		    {
14475 		      if (tem_insn == BB_HEAD (bb))
14476 			break;
14477 		      continue;
14478 		    }
14479 
14480 		  /* If the register is being set at TEM_INSN, see if that is all
14481 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
14482 		     into a REG_UNUSED note instead. Don't delete sets to
14483 		     global register vars.  */
14484 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14485 		       || !global_regs[REGNO (XEXP (note, 0))])
14486 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14487 		    {
14488 		      rtx set = single_set (tem_insn);
14489 		      rtx inner_dest = 0;
14490 		      rtx_insn *cc0_setter = NULL;
14491 
14492 		      if (set != 0)
14493 			for (inner_dest = SET_DEST (set);
14494 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
14495 			      || GET_CODE (inner_dest) == SUBREG
14496 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
14497 			     inner_dest = XEXP (inner_dest, 0))
14498 			  ;
14499 
14500 		      /* Verify that it was the set, and not a clobber that
14501 			 modified the register.
14502 
14503 			 CC0 targets must be careful to maintain setter/user
14504 			 pairs.  If we cannot delete the setter due to side
14505 			 effects, mark the user with an UNUSED note instead
14506 			 of deleting it.  */
14507 
14508 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
14509 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
14510 			  && (!HAVE_cc0
14511 			      || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14512 				  || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14513 				      && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14514 			{
14515 			  /* Move the notes and links of TEM_INSN elsewhere.
14516 			     This might delete other dead insns recursively.
14517 			     First set the pattern to something that won't use
14518 			     any register.  */
14519 			  rtx old_notes = REG_NOTES (tem_insn);
14520 
14521 			  PATTERN (tem_insn) = pc_rtx;
14522 			  REG_NOTES (tem_insn) = NULL;
14523 
14524 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14525 					    NULL_RTX, NULL_RTX, NULL_RTX);
14526 			  distribute_links (LOG_LINKS (tem_insn));
14527 
14528 			  unsigned int regno = REGNO (XEXP (note, 0));
14529 			  reg_stat_type *rsp = &reg_stat[regno];
14530 			  if (rsp->last_set == tem_insn)
14531 			    record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14532 
14533 			  SET_INSN_DELETED (tem_insn);
14534 			  if (tem_insn == i2)
14535 			    i2 = NULL;
14536 
14537 			  /* Delete the setter too.  */
14538 			  if (cc0_setter)
14539 			    {
14540 			      PATTERN (cc0_setter) = pc_rtx;
14541 			      old_notes = REG_NOTES (cc0_setter);
14542 			      REG_NOTES (cc0_setter) = NULL;
14543 
14544 			      distribute_notes (old_notes, cc0_setter,
14545 						cc0_setter, NULL,
14546 						NULL_RTX, NULL_RTX, NULL_RTX);
14547 			      distribute_links (LOG_LINKS (cc0_setter));
14548 
14549 			      SET_INSN_DELETED (cc0_setter);
14550 			      if (cc0_setter == i2)
14551 				i2 = NULL;
14552 			    }
14553 			}
14554 		      else
14555 			{
14556 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
14557 
14558 			  /*  If there isn't already a REG_UNUSED note, put one
14559 			      here.  Do not place a REG_DEAD note, even if
14560 			      the register is also used here; that would not
14561 			      match the algorithm used in lifetime analysis
14562 			      and can cause the consistency check in the
14563 			      scheduler to fail.  */
14564 			  if (! find_regno_note (tem_insn, REG_UNUSED,
14565 						 REGNO (XEXP (note, 0))))
14566 			    place = tem_insn;
14567 			  break;
14568 			}
14569 		    }
14570 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14571 			   || (CALL_P (tem_insn)
14572 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14573 		    {
14574 		      place = tem_insn;
14575 
14576 		      /* If we are doing a 3->2 combination, and we have a
14577 			 register which formerly died in i3 and was not used
14578 			 by i2, which now no longer dies in i3 and is used in
14579 			 i2 but does not die in i2, and place is between i2
14580 			 and i3, then we may need to move a link from place to
14581 			 i2.  */
14582 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14583 			  && from_insn
14584 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14585 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14586 			{
14587 			  struct insn_link *links = LOG_LINKS (place);
14588 			  LOG_LINKS (place) = NULL;
14589 			  distribute_links (links);
14590 			}
14591 		      break;
14592 		    }
14593 
14594 		  if (tem_insn == BB_HEAD (bb))
14595 		    break;
14596 		}
14597 
14598 	    }
14599 
14600 	  /* If the register is set or already dead at PLACE, we needn't do
14601 	     anything with this note if it is still a REG_DEAD note.
14602 	     We check here if it is set at all, not if is it totally replaced,
14603 	     which is what `dead_or_set_p' checks, so also check for it being
14604 	     set partially.  */
14605 
14606 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
14607 	    {
14608 	      unsigned int regno = REGNO (XEXP (note, 0));
14609 	      reg_stat_type *rsp = &reg_stat[regno];
14610 
14611 	      if (dead_or_set_p (place, XEXP (note, 0))
14612 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14613 		{
14614 		  /* Unless the register previously died in PLACE, clear
14615 		     last_death.  [I no longer understand why this is
14616 		     being done.] */
14617 		  if (rsp->last_death != place)
14618 		    rsp->last_death = 0;
14619 		  place = 0;
14620 		}
14621 	      else
14622 		rsp->last_death = place;
14623 
14624 	      /* If this is a death note for a hard reg that is occupying
14625 		 multiple registers, ensure that we are still using all
14626 		 parts of the object.  If we find a piece of the object
14627 		 that is unused, we must arrange for an appropriate REG_DEAD
14628 		 note to be added for it.  However, we can't just emit a USE
14629 		 and tag the note to it, since the register might actually
14630 		 be dead; so we recourse, and the recursive call then finds
14631 		 the previous insn that used this register.  */
14632 
14633 	      if (place && REG_NREGS (XEXP (note, 0)) > 1)
14634 		{
14635 		  unsigned int endregno = END_REGNO (XEXP (note, 0));
14636 		  bool all_used = true;
14637 		  unsigned int i;
14638 
14639 		  for (i = regno; i < endregno; i++)
14640 		    if ((! refers_to_regno_p (i, PATTERN (place))
14641 			 && ! find_regno_fusage (place, USE, i))
14642 			|| dead_or_set_regno_p (place, i))
14643 		      {
14644 			all_used = false;
14645 			break;
14646 		      }
14647 
14648 		  if (! all_used)
14649 		    {
14650 		      /* Put only REG_DEAD notes for pieces that are
14651 			 not already dead or set.  */
14652 
14653 		      for (i = regno; i < endregno;
14654 			   i += hard_regno_nregs (i, reg_raw_mode[i]))
14655 			{
14656 			  rtx piece = regno_reg_rtx[i];
14657 			  basic_block bb = this_basic_block;
14658 
14659 			  if (! dead_or_set_p (place, piece)
14660 			      && ! reg_bitfield_target_p (piece,
14661 							  PATTERN (place)))
14662 			    {
14663 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14664 							     NULL_RTX);
14665 
14666 			      distribute_notes (new_note, place, place,
14667 						NULL, NULL_RTX, NULL_RTX,
14668 						NULL_RTX);
14669 			    }
14670 			  else if (! refers_to_regno_p (i, PATTERN (place))
14671 				   && ! find_regno_fusage (place, USE, i))
14672 			    for (tem_insn = PREV_INSN (place); ;
14673 				 tem_insn = PREV_INSN (tem_insn))
14674 			      {
14675 				if (!NONDEBUG_INSN_P (tem_insn))
14676 				  {
14677 				    if (tem_insn == BB_HEAD (bb))
14678 			 	      break;
14679 				    continue;
14680 				  }
14681 				if (dead_or_set_p (tem_insn, piece)
14682 				    || reg_bitfield_target_p (piece,
14683 							      PATTERN (tem_insn)))
14684 				  {
14685 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14686 				    break;
14687 				  }
14688 			      }
14689 			}
14690 
14691 		      place = 0;
14692 		    }
14693 		}
14694 	    }
14695 	  break;
14696 
14697 	default:
14698 	  /* Any other notes should not be present at this point in the
14699 	     compilation.  */
14700 	  gcc_unreachable ();
14701 	}
14702 
14703       if (place)
14704 	{
14705 	  XEXP (note, 1) = REG_NOTES (place);
14706 	  REG_NOTES (place) = note;
14707 
14708 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14709 	  if (added_notes_insn == 0
14710 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14711 	    added_notes_insn = place;
14712 	}
14713 
14714       if (place2)
14715 	{
14716 	  add_shallow_copy_of_reg_note (place2, note);
14717 
14718 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14719 	  if (added_notes_insn == 0
14720 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14721 	    added_notes_insn = place2;
14722 	}
14723     }
14724 }
14725 
14726 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14727    I3, I2, and I1 to new locations.  This is also called to add a link
14728    pointing at I3 when I3's destination is changed.  */
14729 
14730 static void
14731 distribute_links (struct insn_link *links)
14732 {
14733   struct insn_link *link, *next_link;
14734 
14735   for (link = links; link; link = next_link)
14736     {
14737       rtx_insn *place = 0;
14738       rtx_insn *insn;
14739       rtx set, reg;
14740 
14741       next_link = link->next;
14742 
14743       /* If the insn that this link points to is a NOTE, ignore it.  */
14744       if (NOTE_P (link->insn))
14745 	continue;
14746 
14747       set = 0;
14748       rtx pat = PATTERN (link->insn);
14749       if (GET_CODE (pat) == SET)
14750 	set = pat;
14751       else if (GET_CODE (pat) == PARALLEL)
14752 	{
14753 	  int i;
14754 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14755 	    {
14756 	      set = XVECEXP (pat, 0, i);
14757 	      if (GET_CODE (set) != SET)
14758 		continue;
14759 
14760 	      reg = SET_DEST (set);
14761 	      while (GET_CODE (reg) == ZERO_EXTRACT
14762 		     || GET_CODE (reg) == STRICT_LOW_PART
14763 		     || GET_CODE (reg) == SUBREG)
14764 		reg = XEXP (reg, 0);
14765 
14766 	      if (!REG_P (reg))
14767 		continue;
14768 
14769 	      if (REGNO (reg) == link->regno)
14770 		break;
14771 	    }
14772 	  if (i == XVECLEN (pat, 0))
14773 	    continue;
14774 	}
14775       else
14776 	continue;
14777 
14778       reg = SET_DEST (set);
14779 
14780       while (GET_CODE (reg) == ZERO_EXTRACT
14781 	     || GET_CODE (reg) == STRICT_LOW_PART
14782 	     || GET_CODE (reg) == SUBREG)
14783 	reg = XEXP (reg, 0);
14784 
14785       if (reg == pc_rtx)
14786 	continue;
14787 
14788       /* A LOG_LINK is defined as being placed on the first insn that uses
14789 	 a register and points to the insn that sets the register.  Start
14790 	 searching at the next insn after the target of the link and stop
14791 	 when we reach a set of the register or the end of the basic block.
14792 
14793 	 Note that this correctly handles the link that used to point from
14794 	 I3 to I2.  Also note that not much searching is typically done here
14795 	 since most links don't point very far away.  */
14796 
14797       for (insn = NEXT_INSN (link->insn);
14798 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14799 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14800 	   insn = NEXT_INSN (insn))
14801 	if (DEBUG_INSN_P (insn))
14802 	  continue;
14803 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14804 	  {
14805 	    if (reg_referenced_p (reg, PATTERN (insn)))
14806 	      place = insn;
14807 	    break;
14808 	  }
14809 	else if (CALL_P (insn)
14810 		 && find_reg_fusage (insn, USE, reg))
14811 	  {
14812 	    place = insn;
14813 	    break;
14814 	  }
14815 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14816 	  break;
14817 
14818       /* If we found a place to put the link, place it there unless there
14819 	 is already a link to the same insn as LINK at that point.  */
14820 
14821       if (place)
14822 	{
14823 	  struct insn_link *link2;
14824 
14825 	  FOR_EACH_LOG_LINK (link2, place)
14826 	    if (link2->insn == link->insn && link2->regno == link->regno)
14827 	      break;
14828 
14829 	  if (link2 == NULL)
14830 	    {
14831 	      link->next = LOG_LINKS (place);
14832 	      LOG_LINKS (place) = link;
14833 
14834 	      /* Set added_links_insn to the earliest insn we added a
14835 		 link to.  */
14836 	      if (added_links_insn == 0
14837 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14838 		added_links_insn = place;
14839 	    }
14840 	}
14841     }
14842 }
14843 
14844 /* Check for any register or memory mentioned in EQUIV that is not
14845    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14846    of EXPR where some registers may have been replaced by constants.  */
14847 
14848 static bool
14849 unmentioned_reg_p (rtx equiv, rtx expr)
14850 {
14851   subrtx_iterator::array_type array;
14852   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14853     {
14854       const_rtx x = *iter;
14855       if ((REG_P (x) || MEM_P (x))
14856 	  && !reg_mentioned_p (x, expr))
14857 	return true;
14858     }
14859   return false;
14860 }
14861 
14862 DEBUG_FUNCTION void
14863 dump_combine_stats (FILE *file)
14864 {
14865   fprintf
14866     (file,
14867      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14868      combine_attempts, combine_merges, combine_extras, combine_successes);
14869 }
14870 
14871 void
14872 dump_combine_total_stats (FILE *file)
14873 {
14874   fprintf
14875     (file,
14876      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14877      total_attempts, total_merges, total_extras, total_successes);
14878 }
14879 
14880 /* Try combining insns through substitution.  */
14881 static unsigned int
14882 rest_of_handle_combine (void)
14883 {
14884   int rebuild_jump_labels_after_combine;
14885 
14886   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14887   df_note_add_problem ();
14888   df_analyze ();
14889 
14890   regstat_init_n_sets_and_refs ();
14891   reg_n_sets_max = max_reg_num ();
14892 
14893   rebuild_jump_labels_after_combine
14894     = combine_instructions (get_insns (), max_reg_num ());
14895 
14896   /* Combining insns may have turned an indirect jump into a
14897      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14898      instructions.  */
14899   if (rebuild_jump_labels_after_combine)
14900     {
14901       if (dom_info_available_p (CDI_DOMINATORS))
14902 	free_dominance_info (CDI_DOMINATORS);
14903       timevar_push (TV_JUMP);
14904       rebuild_jump_labels (get_insns ());
14905       cleanup_cfg (0);
14906       timevar_pop (TV_JUMP);
14907     }
14908 
14909   regstat_free_n_sets_and_refs ();
14910   return 0;
14911 }
14912 
14913 namespace {
14914 
14915 const pass_data pass_data_combine =
14916 {
14917   RTL_PASS, /* type */
14918   "combine", /* name */
14919   OPTGROUP_NONE, /* optinfo_flags */
14920   TV_COMBINE, /* tv_id */
14921   PROP_cfglayout, /* properties_required */
14922   0, /* properties_provided */
14923   0, /* properties_destroyed */
14924   0, /* todo_flags_start */
14925   TODO_df_finish, /* todo_flags_finish */
14926 };
14927 
14928 class pass_combine : public rtl_opt_pass
14929 {
14930 public:
14931   pass_combine (gcc::context *ctxt)
14932     : rtl_opt_pass (pass_data_combine, ctxt)
14933   {}
14934 
14935   /* opt_pass methods: */
14936   virtual bool gate (function *) { return (optimize > 0); }
14937   virtual unsigned int execute (function *)
14938     {
14939       return rest_of_handle_combine ();
14940     }
14941 
14942 }; // class pass_combine
14943 
14944 } // anon namespace
14945 
14946 rtl_opt_pass *
14947 make_pass_combine (gcc::context *ctxt)
14948 {
14949   return new pass_combine (ctxt);
14950 }
14951