1 /* Fold a constant sub-tree into a single node for C-compiler 2 Copyright (C) 1987-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /*@@ This file should be rewritten to use an arbitrary precision 21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst". 22 @@ Perhaps the routines could also be used for bc/dc, and made a lib. 23 @@ The routines that translate from the ap rep should 24 @@ warn if precision et. al. is lost. 25 @@ This would also make life easier when this technology is used 26 @@ for cross-compilers. */ 27 28 /* The entry points in this file are fold, size_int_wide and size_binop. 29 30 fold takes a tree as argument and returns a simplified tree. 31 32 size_binop takes a tree code for an arithmetic operation 33 and two operands that are trees, and produces a tree for the 34 result, assuming the type comes from `sizetype'. 35 36 size_int takes an integer value, and creates a tree constant 37 with type from `sizetype'. 38 39 Note: Since the folders get called on non-gimple code as well as 40 gimple code, we need to handle GIMPLE tuples as well as their 41 corresponding tree equivalents. */ 42 43 #include "config.h" 44 #include "system.h" 45 #include "coretypes.h" 46 #include "backend.h" 47 #include "target.h" 48 #include "rtl.h" 49 #include "tree.h" 50 #include "gimple.h" 51 #include "predict.h" 52 #include "memmodel.h" 53 #include "tm_p.h" 54 #include "tree-ssa-operands.h" 55 #include "optabs-query.h" 56 #include "cgraph.h" 57 #include "diagnostic-core.h" 58 #include "flags.h" 59 #include "alias.h" 60 #include "fold-const.h" 61 #include "fold-const-call.h" 62 #include "stor-layout.h" 63 #include "calls.h" 64 #include "tree-iterator.h" 65 #include "expr.h" 66 #include "intl.h" 67 #include "langhooks.h" 68 #include "tree-eh.h" 69 #include "gimplify.h" 70 #include "tree-dfa.h" 71 #include "builtins.h" 72 #include "generic-match.h" 73 #include "gimple-fold.h" 74 #include "params.h" 75 #include "tree-into-ssa.h" 76 #include "md5.h" 77 #include "case-cfn-macros.h" 78 #include "stringpool.h" 79 #include "tree-vrp.h" 80 #include "tree-ssanames.h" 81 #include "selftest.h" 82 #include "stringpool.h" 83 #include "attribs.h" 84 #include "tree-vector-builder.h" 85 #include "vec-perm-indices.h" 86 87 /* Nonzero if we are folding constants inside an initializer; zero 88 otherwise. */ 89 int folding_initializer = 0; 90 91 /* The following constants represent a bit based encoding of GCC's 92 comparison operators. This encoding simplifies transformations 93 on relational comparison operators, such as AND and OR. */ 94 enum comparison_code { 95 COMPCODE_FALSE = 0, 96 COMPCODE_LT = 1, 97 COMPCODE_EQ = 2, 98 COMPCODE_LE = 3, 99 COMPCODE_GT = 4, 100 COMPCODE_LTGT = 5, 101 COMPCODE_GE = 6, 102 COMPCODE_ORD = 7, 103 COMPCODE_UNORD = 8, 104 COMPCODE_UNLT = 9, 105 COMPCODE_UNEQ = 10, 106 COMPCODE_UNLE = 11, 107 COMPCODE_UNGT = 12, 108 COMPCODE_NE = 13, 109 COMPCODE_UNGE = 14, 110 COMPCODE_TRUE = 15 111 }; 112 113 static bool negate_expr_p (tree); 114 static tree negate_expr (tree); 115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree); 116 static enum comparison_code comparison_to_compcode (enum tree_code); 117 static enum tree_code compcode_to_comparison (enum comparison_code); 118 static int twoval_comparison_p (tree, tree *, tree *); 119 static tree eval_subst (location_t, tree, tree, tree, tree, tree); 120 static tree optimize_bit_field_compare (location_t, enum tree_code, 121 tree, tree, tree); 122 static int simple_operand_p (const_tree); 123 static bool simple_operand_p_2 (tree); 124 static tree range_binop (enum tree_code, tree, tree, int, tree, int); 125 static tree range_predecessor (tree); 126 static tree range_successor (tree); 127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree); 128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree); 129 static tree unextend (tree, int, int, tree); 130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *); 131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *); 132 static tree fold_binary_op_with_conditional_arg (location_t, 133 enum tree_code, tree, 134 tree, tree, 135 tree, tree, int); 136 static tree fold_negate_const (tree, tree); 137 static tree fold_not_const (const_tree, tree); 138 static tree fold_relational_const (enum tree_code, tree, tree, tree); 139 static tree fold_convert_const (enum tree_code, tree, tree); 140 static tree fold_view_convert_expr (tree, tree); 141 static tree fold_negate_expr (location_t, tree); 142 143 144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION. 145 Otherwise, return LOC. */ 146 147 static location_t 148 expr_location_or (tree t, location_t loc) 149 { 150 location_t tloc = EXPR_LOCATION (t); 151 return tloc == UNKNOWN_LOCATION ? loc : tloc; 152 } 153 154 /* Similar to protected_set_expr_location, but never modify x in place, 155 if location can and needs to be set, unshare it. */ 156 157 static inline tree 158 protected_set_expr_location_unshare (tree x, location_t loc) 159 { 160 if (CAN_HAVE_LOCATION_P (x) 161 && EXPR_LOCATION (x) != loc 162 && !(TREE_CODE (x) == SAVE_EXPR 163 || TREE_CODE (x) == TARGET_EXPR 164 || TREE_CODE (x) == BIND_EXPR)) 165 { 166 x = copy_node (x); 167 SET_EXPR_LOCATION (x, loc); 168 } 169 return x; 170 } 171 172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact 173 division and returns the quotient. Otherwise returns 174 NULL_TREE. */ 175 176 tree 177 div_if_zero_remainder (const_tree arg1, const_tree arg2) 178 { 179 widest_int quo; 180 181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2), 182 SIGNED, &quo)) 183 return wide_int_to_tree (TREE_TYPE (arg1), quo); 184 185 return NULL_TREE; 186 } 187 188 /* This is nonzero if we should defer warnings about undefined 189 overflow. This facility exists because these warnings are a 190 special case. The code to estimate loop iterations does not want 191 to issue any warnings, since it works with expressions which do not 192 occur in user code. Various bits of cleanup code call fold(), but 193 only use the result if it has certain characteristics (e.g., is a 194 constant); that code only wants to issue a warning if the result is 195 used. */ 196 197 static int fold_deferring_overflow_warnings; 198 199 /* If a warning about undefined overflow is deferred, this is the 200 warning. Note that this may cause us to turn two warnings into 201 one, but that is fine since it is sufficient to only give one 202 warning per expression. */ 203 204 static const char* fold_deferred_overflow_warning; 205 206 /* If a warning about undefined overflow is deferred, this is the 207 level at which the warning should be emitted. */ 208 209 static enum warn_strict_overflow_code fold_deferred_overflow_code; 210 211 /* Start deferring overflow warnings. We could use a stack here to 212 permit nested calls, but at present it is not necessary. */ 213 214 void 215 fold_defer_overflow_warnings (void) 216 { 217 ++fold_deferring_overflow_warnings; 218 } 219 220 /* Stop deferring overflow warnings. If there is a pending warning, 221 and ISSUE is true, then issue the warning if appropriate. STMT is 222 the statement with which the warning should be associated (used for 223 location information); STMT may be NULL. CODE is the level of the 224 warning--a warn_strict_overflow_code value. This function will use 225 the smaller of CODE and the deferred code when deciding whether to 226 issue the warning. CODE may be zero to mean to always use the 227 deferred code. */ 228 229 void 230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code) 231 { 232 const char *warnmsg; 233 location_t locus; 234 235 gcc_assert (fold_deferring_overflow_warnings > 0); 236 --fold_deferring_overflow_warnings; 237 if (fold_deferring_overflow_warnings > 0) 238 { 239 if (fold_deferred_overflow_warning != NULL 240 && code != 0 241 && code < (int) fold_deferred_overflow_code) 242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code; 243 return; 244 } 245 246 warnmsg = fold_deferred_overflow_warning; 247 fold_deferred_overflow_warning = NULL; 248 249 if (!issue || warnmsg == NULL) 250 return; 251 252 if (gimple_no_warning_p (stmt)) 253 return; 254 255 /* Use the smallest code level when deciding to issue the 256 warning. */ 257 if (code == 0 || code > (int) fold_deferred_overflow_code) 258 code = fold_deferred_overflow_code; 259 260 if (!issue_strict_overflow_warning (code)) 261 return; 262 263 if (stmt == NULL) 264 locus = input_location; 265 else 266 locus = gimple_location (stmt); 267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg); 268 } 269 270 /* Stop deferring overflow warnings, ignoring any deferred 271 warnings. */ 272 273 void 274 fold_undefer_and_ignore_overflow_warnings (void) 275 { 276 fold_undefer_overflow_warnings (false, NULL, 0); 277 } 278 279 /* Whether we are deferring overflow warnings. */ 280 281 bool 282 fold_deferring_overflow_warnings_p (void) 283 { 284 return fold_deferring_overflow_warnings > 0; 285 } 286 287 /* This is called when we fold something based on the fact that signed 288 overflow is undefined. */ 289 290 void 291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc) 292 { 293 if (fold_deferring_overflow_warnings > 0) 294 { 295 if (fold_deferred_overflow_warning == NULL 296 || wc < fold_deferred_overflow_code) 297 { 298 fold_deferred_overflow_warning = gmsgid; 299 fold_deferred_overflow_code = wc; 300 } 301 } 302 else if (issue_strict_overflow_warning (wc)) 303 warning (OPT_Wstrict_overflow, gmsgid); 304 } 305 306 /* Return true if the built-in mathematical function specified by CODE 307 is odd, i.e. -f(x) == f(-x). */ 308 309 bool 310 negate_mathfn_p (combined_fn fn) 311 { 312 switch (fn) 313 { 314 CASE_CFN_ASIN: 315 CASE_CFN_ASINH: 316 CASE_CFN_ATAN: 317 CASE_CFN_ATANH: 318 CASE_CFN_CASIN: 319 CASE_CFN_CASINH: 320 CASE_CFN_CATAN: 321 CASE_CFN_CATANH: 322 CASE_CFN_CBRT: 323 CASE_CFN_CPROJ: 324 CASE_CFN_CSIN: 325 CASE_CFN_CSINH: 326 CASE_CFN_CTAN: 327 CASE_CFN_CTANH: 328 CASE_CFN_ERF: 329 CASE_CFN_LLROUND: 330 CASE_CFN_LROUND: 331 CASE_CFN_ROUND: 332 CASE_CFN_SIN: 333 CASE_CFN_SINH: 334 CASE_CFN_TAN: 335 CASE_CFN_TANH: 336 CASE_CFN_TRUNC: 337 return true; 338 339 CASE_CFN_LLRINT: 340 CASE_CFN_LRINT: 341 CASE_CFN_NEARBYINT: 342 CASE_CFN_RINT: 343 return !flag_rounding_math; 344 345 default: 346 break; 347 } 348 return false; 349 } 350 351 /* Check whether we may negate an integer constant T without causing 352 overflow. */ 353 354 bool 355 may_negate_without_overflow_p (const_tree t) 356 { 357 tree type; 358 359 gcc_assert (TREE_CODE (t) == INTEGER_CST); 360 361 type = TREE_TYPE (t); 362 if (TYPE_UNSIGNED (type)) 363 return false; 364 365 return !wi::only_sign_bit_p (wi::to_wide (t)); 366 } 367 368 /* Determine whether an expression T can be cheaply negated using 369 the function negate_expr without introducing undefined overflow. */ 370 371 static bool 372 negate_expr_p (tree t) 373 { 374 tree type; 375 376 if (t == 0) 377 return false; 378 379 type = TREE_TYPE (t); 380 381 STRIP_SIGN_NOPS (t); 382 switch (TREE_CODE (t)) 383 { 384 case INTEGER_CST: 385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) 386 return true; 387 388 /* Check that -CST will not overflow type. */ 389 return may_negate_without_overflow_p (t); 390 case BIT_NOT_EXPR: 391 return (INTEGRAL_TYPE_P (type) 392 && TYPE_OVERFLOW_WRAPS (type)); 393 394 case FIXED_CST: 395 return true; 396 397 case NEGATE_EXPR: 398 return !TYPE_OVERFLOW_SANITIZED (type); 399 400 case REAL_CST: 401 /* We want to canonicalize to positive real constants. Pretend 402 that only negative ones can be easily negated. */ 403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 404 405 case COMPLEX_CST: 406 return negate_expr_p (TREE_REALPART (t)) 407 && negate_expr_p (TREE_IMAGPART (t)); 408 409 case VECTOR_CST: 410 { 411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type)) 412 return true; 413 414 /* Steps don't prevent negation. */ 415 unsigned int count = vector_cst_encoded_nelts (t); 416 for (unsigned int i = 0; i < count; ++i) 417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i))) 418 return false; 419 420 return true; 421 } 422 423 case COMPLEX_EXPR: 424 return negate_expr_p (TREE_OPERAND (t, 0)) 425 && negate_expr_p (TREE_OPERAND (t, 1)); 426 427 case CONJ_EXPR: 428 return negate_expr_p (TREE_OPERAND (t, 0)); 429 430 case PLUS_EXPR: 431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 432 || HONOR_SIGNED_ZEROS (element_mode (type)) 433 || (ANY_INTEGRAL_TYPE_P (type) 434 && ! TYPE_OVERFLOW_WRAPS (type))) 435 return false; 436 /* -(A + B) -> (-B) - A. */ 437 if (negate_expr_p (TREE_OPERAND (t, 1))) 438 return true; 439 /* -(A + B) -> (-A) - B. */ 440 return negate_expr_p (TREE_OPERAND (t, 0)); 441 442 case MINUS_EXPR: 443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */ 444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 445 && !HONOR_SIGNED_ZEROS (element_mode (type)) 446 && (! ANY_INTEGRAL_TYPE_P (type) 447 || TYPE_OVERFLOW_WRAPS (type)); 448 449 case MULT_EXPR: 450 if (TYPE_UNSIGNED (type)) 451 break; 452 /* INT_MIN/n * n doesn't overflow while negating one operand it does 453 if n is a (negative) power of two. */ 454 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 457 && (wi::popcount 458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1) 459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 460 && (wi::popcount 461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1))) 462 break; 463 464 /* Fall through. */ 465 466 case RDIV_EXPR: 467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t)))) 468 return negate_expr_p (TREE_OPERAND (t, 1)) 469 || negate_expr_p (TREE_OPERAND (t, 0)); 470 break; 471 472 case TRUNC_DIV_EXPR: 473 case ROUND_DIV_EXPR: 474 case EXACT_DIV_EXPR: 475 if (TYPE_UNSIGNED (type)) 476 break; 477 if (negate_expr_p (TREE_OPERAND (t, 0))) 478 return true; 479 /* In general we can't negate B in A / B, because if A is INT_MIN and 480 B is 1, we may turn this into INT_MIN / -1 which is undefined 481 and actually traps on some architectures. */ 482 if (! INTEGRAL_TYPE_P (TREE_TYPE (t)) 483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 484 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 485 && ! integer_onep (TREE_OPERAND (t, 1)))) 486 return negate_expr_p (TREE_OPERAND (t, 1)); 487 break; 488 489 case NOP_EXPR: 490 /* Negate -((double)float) as (double)(-float). */ 491 if (TREE_CODE (type) == REAL_TYPE) 492 { 493 tree tem = strip_float_extensions (t); 494 if (tem != t) 495 return negate_expr_p (tem); 496 } 497 break; 498 499 case CALL_EXPR: 500 /* Negate -f(x) as f(-x). */ 501 if (negate_mathfn_p (get_call_combined_fn (t))) 502 return negate_expr_p (CALL_EXPR_ARG (t, 0)); 503 break; 504 505 case RSHIFT_EXPR: 506 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 507 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 508 { 509 tree op1 = TREE_OPERAND (t, 1); 510 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 511 return true; 512 } 513 break; 514 515 default: 516 break; 517 } 518 return false; 519 } 520 521 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no 522 simplification is possible. 523 If negate_expr_p would return true for T, NULL_TREE will never be 524 returned. */ 525 526 static tree 527 fold_negate_expr_1 (location_t loc, tree t) 528 { 529 tree type = TREE_TYPE (t); 530 tree tem; 531 532 switch (TREE_CODE (t)) 533 { 534 /* Convert - (~A) to A + 1. */ 535 case BIT_NOT_EXPR: 536 if (INTEGRAL_TYPE_P (type)) 537 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0), 538 build_one_cst (type)); 539 break; 540 541 case INTEGER_CST: 542 tem = fold_negate_const (t, type); 543 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t) 544 || (ANY_INTEGRAL_TYPE_P (type) 545 && !TYPE_OVERFLOW_TRAPS (type) 546 && TYPE_OVERFLOW_WRAPS (type)) 547 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0) 548 return tem; 549 break; 550 551 case POLY_INT_CST: 552 case REAL_CST: 553 case FIXED_CST: 554 tem = fold_negate_const (t, type); 555 return tem; 556 557 case COMPLEX_CST: 558 { 559 tree rpart = fold_negate_expr (loc, TREE_REALPART (t)); 560 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t)); 561 if (rpart && ipart) 562 return build_complex (type, rpart, ipart); 563 } 564 break; 565 566 case VECTOR_CST: 567 { 568 tree_vector_builder elts; 569 elts.new_unary_operation (type, t, true); 570 unsigned int count = elts.encoded_nelts (); 571 for (unsigned int i = 0; i < count; ++i) 572 { 573 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i)); 574 if (elt == NULL_TREE) 575 return NULL_TREE; 576 elts.quick_push (elt); 577 } 578 579 return elts.build (); 580 } 581 582 case COMPLEX_EXPR: 583 if (negate_expr_p (t)) 584 return fold_build2_loc (loc, COMPLEX_EXPR, type, 585 fold_negate_expr (loc, TREE_OPERAND (t, 0)), 586 fold_negate_expr (loc, TREE_OPERAND (t, 1))); 587 break; 588 589 case CONJ_EXPR: 590 if (negate_expr_p (t)) 591 return fold_build1_loc (loc, CONJ_EXPR, type, 592 fold_negate_expr (loc, TREE_OPERAND (t, 0))); 593 break; 594 595 case NEGATE_EXPR: 596 if (!TYPE_OVERFLOW_SANITIZED (type)) 597 return TREE_OPERAND (t, 0); 598 break; 599 600 case PLUS_EXPR: 601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 602 && !HONOR_SIGNED_ZEROS (element_mode (type))) 603 { 604 /* -(A + B) -> (-B) - A. */ 605 if (negate_expr_p (TREE_OPERAND (t, 1))) 606 { 607 tem = negate_expr (TREE_OPERAND (t, 1)); 608 return fold_build2_loc (loc, MINUS_EXPR, type, 609 tem, TREE_OPERAND (t, 0)); 610 } 611 612 /* -(A + B) -> (-A) - B. */ 613 if (negate_expr_p (TREE_OPERAND (t, 0))) 614 { 615 tem = negate_expr (TREE_OPERAND (t, 0)); 616 return fold_build2_loc (loc, MINUS_EXPR, type, 617 tem, TREE_OPERAND (t, 1)); 618 } 619 } 620 break; 621 622 case MINUS_EXPR: 623 /* - (A - B) -> B - A */ 624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 625 && !HONOR_SIGNED_ZEROS (element_mode (type))) 626 return fold_build2_loc (loc, MINUS_EXPR, type, 627 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0)); 628 break; 629 630 case MULT_EXPR: 631 if (TYPE_UNSIGNED (type)) 632 break; 633 634 /* Fall through. */ 635 636 case RDIV_EXPR: 637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))) 638 { 639 tem = TREE_OPERAND (t, 1); 640 if (negate_expr_p (tem)) 641 return fold_build2_loc (loc, TREE_CODE (t), type, 642 TREE_OPERAND (t, 0), negate_expr (tem)); 643 tem = TREE_OPERAND (t, 0); 644 if (negate_expr_p (tem)) 645 return fold_build2_loc (loc, TREE_CODE (t), type, 646 negate_expr (tem), TREE_OPERAND (t, 1)); 647 } 648 break; 649 650 case TRUNC_DIV_EXPR: 651 case ROUND_DIV_EXPR: 652 case EXACT_DIV_EXPR: 653 if (TYPE_UNSIGNED (type)) 654 break; 655 if (negate_expr_p (TREE_OPERAND (t, 0))) 656 return fold_build2_loc (loc, TREE_CODE (t), type, 657 negate_expr (TREE_OPERAND (t, 0)), 658 TREE_OPERAND (t, 1)); 659 /* In general we can't negate B in A / B, because if A is INT_MIN and 660 B is 1, we may turn this into INT_MIN / -1 which is undefined 661 and actually traps on some architectures. */ 662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t)) 663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 664 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 665 && ! integer_onep (TREE_OPERAND (t, 1)))) 666 && negate_expr_p (TREE_OPERAND (t, 1))) 667 return fold_build2_loc (loc, TREE_CODE (t), type, 668 TREE_OPERAND (t, 0), 669 negate_expr (TREE_OPERAND (t, 1))); 670 break; 671 672 case NOP_EXPR: 673 /* Convert -((double)float) into (double)(-float). */ 674 if (TREE_CODE (type) == REAL_TYPE) 675 { 676 tem = strip_float_extensions (t); 677 if (tem != t && negate_expr_p (tem)) 678 return fold_convert_loc (loc, type, negate_expr (tem)); 679 } 680 break; 681 682 case CALL_EXPR: 683 /* Negate -f(x) as f(-x). */ 684 if (negate_mathfn_p (get_call_combined_fn (t)) 685 && negate_expr_p (CALL_EXPR_ARG (t, 0))) 686 { 687 tree fndecl, arg; 688 689 fndecl = get_callee_fndecl (t); 690 arg = negate_expr (CALL_EXPR_ARG (t, 0)); 691 return build_call_expr_loc (loc, fndecl, 1, arg); 692 } 693 break; 694 695 case RSHIFT_EXPR: 696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 697 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 698 { 699 tree op1 = TREE_OPERAND (t, 1); 700 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 701 { 702 tree ntype = TYPE_UNSIGNED (type) 703 ? signed_type_for (type) 704 : unsigned_type_for (type); 705 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0)); 706 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1); 707 return fold_convert_loc (loc, type, temp); 708 } 709 } 710 break; 711 712 default: 713 break; 714 } 715 716 return NULL_TREE; 717 } 718 719 /* A wrapper for fold_negate_expr_1. */ 720 721 static tree 722 fold_negate_expr (location_t loc, tree t) 723 { 724 tree type = TREE_TYPE (t); 725 STRIP_SIGN_NOPS (t); 726 tree tem = fold_negate_expr_1 (loc, t); 727 if (tem == NULL_TREE) 728 return NULL_TREE; 729 return fold_convert_loc (loc, type, tem); 730 } 731 732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be 733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case 734 return NULL_TREE. */ 735 736 static tree 737 negate_expr (tree t) 738 { 739 tree type, tem; 740 location_t loc; 741 742 if (t == NULL_TREE) 743 return NULL_TREE; 744 745 loc = EXPR_LOCATION (t); 746 type = TREE_TYPE (t); 747 STRIP_SIGN_NOPS (t); 748 749 tem = fold_negate_expr (loc, t); 750 if (!tem) 751 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t); 752 return fold_convert_loc (loc, type, tem); 753 } 754 755 /* Split a tree IN into a constant, literal and variable parts that could be 756 combined with CODE to make IN. "constant" means an expression with 757 TREE_CONSTANT but that isn't an actual constant. CODE must be a 758 commutative arithmetic operation. Store the constant part into *CONP, 759 the literal in *LITP and return the variable part. If a part isn't 760 present, set it to null. If the tree does not decompose in this way, 761 return the entire tree as the variable part and the other parts as null. 762 763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that 764 case, we negate an operand that was subtracted. Except if it is a 765 literal for which we use *MINUS_LITP instead. 766 767 If NEGATE_P is true, we are negating all of IN, again except a literal 768 for which we use *MINUS_LITP instead. If a variable part is of pointer 769 type, it is negated after converting to TYPE. This prevents us from 770 generating illegal MINUS pointer expression. LOC is the location of 771 the converted variable part. 772 773 If IN is itself a literal or constant, return it as appropriate. 774 775 Note that we do not guarantee that any of the three values will be the 776 same type as IN, but they will have the same signedness and mode. */ 777 778 static tree 779 split_tree (tree in, tree type, enum tree_code code, 780 tree *minus_varp, tree *conp, tree *minus_conp, 781 tree *litp, tree *minus_litp, int negate_p) 782 { 783 tree var = 0; 784 *minus_varp = 0; 785 *conp = 0; 786 *minus_conp = 0; 787 *litp = 0; 788 *minus_litp = 0; 789 790 /* Strip any conversions that don't change the machine mode or signedness. */ 791 STRIP_SIGN_NOPS (in); 792 793 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST 794 || TREE_CODE (in) == FIXED_CST) 795 *litp = in; 796 else if (TREE_CODE (in) == code 797 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math) 798 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in)) 799 /* We can associate addition and subtraction together (even 800 though the C standard doesn't say so) for integers because 801 the value is not affected. For reals, the value might be 802 affected, so we can't. */ 803 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR) 804 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR) 805 || (code == MINUS_EXPR 806 && (TREE_CODE (in) == PLUS_EXPR 807 || TREE_CODE (in) == POINTER_PLUS_EXPR))))) 808 { 809 tree op0 = TREE_OPERAND (in, 0); 810 tree op1 = TREE_OPERAND (in, 1); 811 int neg1_p = TREE_CODE (in) == MINUS_EXPR; 812 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0; 813 814 /* First see if either of the operands is a literal, then a constant. */ 815 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST 816 || TREE_CODE (op0) == FIXED_CST) 817 *litp = op0, op0 = 0; 818 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST 819 || TREE_CODE (op1) == FIXED_CST) 820 *litp = op1, neg_litp_p = neg1_p, op1 = 0; 821 822 if (op0 != 0 && TREE_CONSTANT (op0)) 823 *conp = op0, op0 = 0; 824 else if (op1 != 0 && TREE_CONSTANT (op1)) 825 *conp = op1, neg_conp_p = neg1_p, op1 = 0; 826 827 /* If we haven't dealt with either operand, this is not a case we can 828 decompose. Otherwise, VAR is either of the ones remaining, if any. */ 829 if (op0 != 0 && op1 != 0) 830 var = in; 831 else if (op0 != 0) 832 var = op0; 833 else 834 var = op1, neg_var_p = neg1_p; 835 836 /* Now do any needed negations. */ 837 if (neg_litp_p) 838 *minus_litp = *litp, *litp = 0; 839 if (neg_conp_p && *conp) 840 *minus_conp = *conp, *conp = 0; 841 if (neg_var_p && var) 842 *minus_varp = var, var = 0; 843 } 844 else if (TREE_CONSTANT (in)) 845 *conp = in; 846 else if (TREE_CODE (in) == BIT_NOT_EXPR 847 && code == PLUS_EXPR) 848 { 849 /* -1 - X is folded to ~X, undo that here. Do _not_ do this 850 when IN is constant. */ 851 *litp = build_minus_one_cst (type); 852 *minus_varp = TREE_OPERAND (in, 0); 853 } 854 else 855 var = in; 856 857 if (negate_p) 858 { 859 if (*litp) 860 *minus_litp = *litp, *litp = 0; 861 else if (*minus_litp) 862 *litp = *minus_litp, *minus_litp = 0; 863 if (*conp) 864 *minus_conp = *conp, *conp = 0; 865 else if (*minus_conp) 866 *conp = *minus_conp, *minus_conp = 0; 867 if (var) 868 *minus_varp = var, var = 0; 869 else if (*minus_varp) 870 var = *minus_varp, *minus_varp = 0; 871 } 872 873 if (*litp 874 && TREE_OVERFLOW_P (*litp)) 875 *litp = drop_tree_overflow (*litp); 876 if (*minus_litp 877 && TREE_OVERFLOW_P (*minus_litp)) 878 *minus_litp = drop_tree_overflow (*minus_litp); 879 880 return var; 881 } 882 883 /* Re-associate trees split by the above function. T1 and T2 are 884 either expressions to associate or null. Return the new 885 expression, if any. LOC is the location of the new expression. If 886 we build an operation, do it in TYPE and with CODE. */ 887 888 static tree 889 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type) 890 { 891 if (t1 == 0) 892 { 893 gcc_assert (t2 == 0 || code != MINUS_EXPR); 894 return t2; 895 } 896 else if (t2 == 0) 897 return t1; 898 899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't 900 try to fold this since we will have infinite recursion. But do 901 deal with any NEGATE_EXPRs. */ 902 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code 903 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR 904 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR) 905 { 906 if (code == PLUS_EXPR) 907 { 908 if (TREE_CODE (t1) == NEGATE_EXPR) 909 return build2_loc (loc, MINUS_EXPR, type, 910 fold_convert_loc (loc, type, t2), 911 fold_convert_loc (loc, type, 912 TREE_OPERAND (t1, 0))); 913 else if (TREE_CODE (t2) == NEGATE_EXPR) 914 return build2_loc (loc, MINUS_EXPR, type, 915 fold_convert_loc (loc, type, t1), 916 fold_convert_loc (loc, type, 917 TREE_OPERAND (t2, 0))); 918 else if (integer_zerop (t2)) 919 return fold_convert_loc (loc, type, t1); 920 } 921 else if (code == MINUS_EXPR) 922 { 923 if (integer_zerop (t2)) 924 return fold_convert_loc (loc, type, t1); 925 } 926 927 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 928 fold_convert_loc (loc, type, t2)); 929 } 930 931 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 932 fold_convert_loc (loc, type, t2)); 933 } 934 935 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable 936 for use in int_const_binop, size_binop and size_diffop. */ 937 938 static bool 939 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2) 940 { 941 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1)) 942 return false; 943 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2)) 944 return false; 945 946 switch (code) 947 { 948 case LSHIFT_EXPR: 949 case RSHIFT_EXPR: 950 case LROTATE_EXPR: 951 case RROTATE_EXPR: 952 return true; 953 954 default: 955 break; 956 } 957 958 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2) 959 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2) 960 && TYPE_MODE (type1) == TYPE_MODE (type2); 961 } 962 963 /* Subroutine of int_const_binop_1 that handles two INTEGER_CSTs. */ 964 965 static tree 966 int_const_binop_2 (enum tree_code code, const_tree parg1, const_tree parg2, 967 int overflowable) 968 { 969 wide_int res; 970 tree t; 971 tree type = TREE_TYPE (parg1); 972 signop sign = TYPE_SIGN (type); 973 bool overflow = false; 974 975 wi::tree_to_wide_ref arg1 = wi::to_wide (parg1); 976 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type)); 977 978 switch (code) 979 { 980 case BIT_IOR_EXPR: 981 res = wi::bit_or (arg1, arg2); 982 break; 983 984 case BIT_XOR_EXPR: 985 res = wi::bit_xor (arg1, arg2); 986 break; 987 988 case BIT_AND_EXPR: 989 res = wi::bit_and (arg1, arg2); 990 break; 991 992 case RSHIFT_EXPR: 993 case LSHIFT_EXPR: 994 if (wi::neg_p (arg2)) 995 { 996 arg2 = -arg2; 997 if (code == RSHIFT_EXPR) 998 code = LSHIFT_EXPR; 999 else 1000 code = RSHIFT_EXPR; 1001 } 1002 1003 if (code == RSHIFT_EXPR) 1004 /* It's unclear from the C standard whether shifts can overflow. 1005 The following code ignores overflow; perhaps a C standard 1006 interpretation ruling is needed. */ 1007 res = wi::rshift (arg1, arg2, sign); 1008 else 1009 res = wi::lshift (arg1, arg2); 1010 break; 1011 1012 case RROTATE_EXPR: 1013 case LROTATE_EXPR: 1014 if (wi::neg_p (arg2)) 1015 { 1016 arg2 = -arg2; 1017 if (code == RROTATE_EXPR) 1018 code = LROTATE_EXPR; 1019 else 1020 code = RROTATE_EXPR; 1021 } 1022 1023 if (code == RROTATE_EXPR) 1024 res = wi::rrotate (arg1, arg2); 1025 else 1026 res = wi::lrotate (arg1, arg2); 1027 break; 1028 1029 case PLUS_EXPR: 1030 res = wi::add (arg1, arg2, sign, &overflow); 1031 break; 1032 1033 case MINUS_EXPR: 1034 res = wi::sub (arg1, arg2, sign, &overflow); 1035 break; 1036 1037 case MULT_EXPR: 1038 res = wi::mul (arg1, arg2, sign, &overflow); 1039 break; 1040 1041 case MULT_HIGHPART_EXPR: 1042 res = wi::mul_high (arg1, arg2, sign); 1043 break; 1044 1045 case TRUNC_DIV_EXPR: 1046 case EXACT_DIV_EXPR: 1047 if (arg2 == 0) 1048 return NULL_TREE; 1049 res = wi::div_trunc (arg1, arg2, sign, &overflow); 1050 break; 1051 1052 case FLOOR_DIV_EXPR: 1053 if (arg2 == 0) 1054 return NULL_TREE; 1055 res = wi::div_floor (arg1, arg2, sign, &overflow); 1056 break; 1057 1058 case CEIL_DIV_EXPR: 1059 if (arg2 == 0) 1060 return NULL_TREE; 1061 res = wi::div_ceil (arg1, arg2, sign, &overflow); 1062 break; 1063 1064 case ROUND_DIV_EXPR: 1065 if (arg2 == 0) 1066 return NULL_TREE; 1067 res = wi::div_round (arg1, arg2, sign, &overflow); 1068 break; 1069 1070 case TRUNC_MOD_EXPR: 1071 if (arg2 == 0) 1072 return NULL_TREE; 1073 res = wi::mod_trunc (arg1, arg2, sign, &overflow); 1074 break; 1075 1076 case FLOOR_MOD_EXPR: 1077 if (arg2 == 0) 1078 return NULL_TREE; 1079 res = wi::mod_floor (arg1, arg2, sign, &overflow); 1080 break; 1081 1082 case CEIL_MOD_EXPR: 1083 if (arg2 == 0) 1084 return NULL_TREE; 1085 res = wi::mod_ceil (arg1, arg2, sign, &overflow); 1086 break; 1087 1088 case ROUND_MOD_EXPR: 1089 if (arg2 == 0) 1090 return NULL_TREE; 1091 res = wi::mod_round (arg1, arg2, sign, &overflow); 1092 break; 1093 1094 case MIN_EXPR: 1095 res = wi::min (arg1, arg2, sign); 1096 break; 1097 1098 case MAX_EXPR: 1099 res = wi::max (arg1, arg2, sign); 1100 break; 1101 1102 default: 1103 return NULL_TREE; 1104 } 1105 1106 t = force_fit_type (type, res, overflowable, 1107 (((sign == SIGNED || overflowable == -1) 1108 && overflow) 1109 | TREE_OVERFLOW (parg1) | TREE_OVERFLOW (parg2))); 1110 1111 return t; 1112 } 1113 1114 /* Combine two integer constants PARG1 and PARG2 under operation CODE 1115 to produce a new constant. Return NULL_TREE if we don't know how 1116 to evaluate CODE at compile-time. */ 1117 1118 static tree 1119 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2, 1120 int overflowable) 1121 { 1122 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1123 return int_const_binop_2 (code, arg1, arg2, overflowable); 1124 1125 gcc_assert (NUM_POLY_INT_COEFFS != 1); 1126 1127 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1128 { 1129 poly_wide_int res; 1130 bool overflow; 1131 tree type = TREE_TYPE (arg1); 1132 signop sign = TYPE_SIGN (type); 1133 switch (code) 1134 { 1135 case PLUS_EXPR: 1136 res = wi::add (wi::to_poly_wide (arg1), 1137 wi::to_poly_wide (arg2), sign, &overflow); 1138 break; 1139 1140 case MINUS_EXPR: 1141 res = wi::sub (wi::to_poly_wide (arg1), 1142 wi::to_poly_wide (arg2), sign, &overflow); 1143 break; 1144 1145 case MULT_EXPR: 1146 if (TREE_CODE (arg2) == INTEGER_CST) 1147 res = wi::mul (wi::to_poly_wide (arg1), 1148 wi::to_wide (arg2), sign, &overflow); 1149 else if (TREE_CODE (arg1) == INTEGER_CST) 1150 res = wi::mul (wi::to_poly_wide (arg2), 1151 wi::to_wide (arg1), sign, &overflow); 1152 else 1153 return NULL_TREE; 1154 break; 1155 1156 case LSHIFT_EXPR: 1157 if (TREE_CODE (arg2) == INTEGER_CST) 1158 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2); 1159 else 1160 return NULL_TREE; 1161 break; 1162 1163 case BIT_IOR_EXPR: 1164 if (TREE_CODE (arg2) != INTEGER_CST 1165 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2), 1166 &res)) 1167 return NULL_TREE; 1168 break; 1169 1170 default: 1171 return NULL_TREE; 1172 } 1173 return force_fit_type (type, res, overflowable, 1174 (((sign == SIGNED || overflowable == -1) 1175 && overflow) 1176 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))); 1177 } 1178 1179 return NULL_TREE; 1180 } 1181 1182 tree 1183 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2) 1184 { 1185 return int_const_binop_1 (code, arg1, arg2, 1); 1186 } 1187 1188 /* Return true if binary operation OP distributes over addition in operand 1189 OPNO, with the other operand being held constant. OPNO counts from 1. */ 1190 1191 static bool 1192 distributes_over_addition_p (tree_code op, int opno) 1193 { 1194 switch (op) 1195 { 1196 case PLUS_EXPR: 1197 case MINUS_EXPR: 1198 case MULT_EXPR: 1199 return true; 1200 1201 case LSHIFT_EXPR: 1202 return opno == 1; 1203 1204 default: 1205 return false; 1206 } 1207 } 1208 1209 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new 1210 constant. We assume ARG1 and ARG2 have the same data type, or at least 1211 are the same kind of constant and the same machine mode. Return zero if 1212 combining the constants is not allowed in the current operating mode. */ 1213 1214 static tree 1215 const_binop (enum tree_code code, tree arg1, tree arg2) 1216 { 1217 /* Sanity check for the recursive cases. */ 1218 if (!arg1 || !arg2) 1219 return NULL_TREE; 1220 1221 STRIP_NOPS (arg1); 1222 STRIP_NOPS (arg2); 1223 1224 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1225 { 1226 if (code == POINTER_PLUS_EXPR) 1227 return int_const_binop (PLUS_EXPR, 1228 arg1, fold_convert (TREE_TYPE (arg1), arg2)); 1229 1230 return int_const_binop (code, arg1, arg2); 1231 } 1232 1233 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST) 1234 { 1235 machine_mode mode; 1236 REAL_VALUE_TYPE d1; 1237 REAL_VALUE_TYPE d2; 1238 REAL_VALUE_TYPE value; 1239 REAL_VALUE_TYPE result; 1240 bool inexact; 1241 tree t, type; 1242 1243 /* The following codes are handled by real_arithmetic. */ 1244 switch (code) 1245 { 1246 case PLUS_EXPR: 1247 case MINUS_EXPR: 1248 case MULT_EXPR: 1249 case RDIV_EXPR: 1250 case MIN_EXPR: 1251 case MAX_EXPR: 1252 break; 1253 1254 default: 1255 return NULL_TREE; 1256 } 1257 1258 d1 = TREE_REAL_CST (arg1); 1259 d2 = TREE_REAL_CST (arg2); 1260 1261 type = TREE_TYPE (arg1); 1262 mode = TYPE_MODE (type); 1263 1264 /* Don't perform operation if we honor signaling NaNs and 1265 either operand is a signaling NaN. */ 1266 if (HONOR_SNANS (mode) 1267 && (REAL_VALUE_ISSIGNALING_NAN (d1) 1268 || REAL_VALUE_ISSIGNALING_NAN (d2))) 1269 return NULL_TREE; 1270 1271 /* Don't perform operation if it would raise a division 1272 by zero exception. */ 1273 if (code == RDIV_EXPR 1274 && real_equal (&d2, &dconst0) 1275 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode))) 1276 return NULL_TREE; 1277 1278 /* If either operand is a NaN, just return it. Otherwise, set up 1279 for floating-point trap; we return an overflow. */ 1280 if (REAL_VALUE_ISNAN (d1)) 1281 { 1282 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1283 is off. */ 1284 d1.signalling = 0; 1285 t = build_real (type, d1); 1286 return t; 1287 } 1288 else if (REAL_VALUE_ISNAN (d2)) 1289 { 1290 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1291 is off. */ 1292 d2.signalling = 0; 1293 t = build_real (type, d2); 1294 return t; 1295 } 1296 1297 inexact = real_arithmetic (&value, code, &d1, &d2); 1298 real_convert (&result, mode, &value); 1299 1300 /* Don't constant fold this floating point operation if 1301 the result has overflowed and flag_trapping_math. */ 1302 if (flag_trapping_math 1303 && MODE_HAS_INFINITIES (mode) 1304 && REAL_VALUE_ISINF (result) 1305 && !REAL_VALUE_ISINF (d1) 1306 && !REAL_VALUE_ISINF (d2)) 1307 return NULL_TREE; 1308 1309 /* Don't constant fold this floating point operation if the 1310 result may dependent upon the run-time rounding mode and 1311 flag_rounding_math is set, or if GCC's software emulation 1312 is unable to accurately represent the result. */ 1313 if ((flag_rounding_math 1314 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations)) 1315 && (inexact || !real_identical (&result, &value))) 1316 return NULL_TREE; 1317 1318 t = build_real (type, result); 1319 1320 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2); 1321 return t; 1322 } 1323 1324 if (TREE_CODE (arg1) == FIXED_CST) 1325 { 1326 FIXED_VALUE_TYPE f1; 1327 FIXED_VALUE_TYPE f2; 1328 FIXED_VALUE_TYPE result; 1329 tree t, type; 1330 int sat_p; 1331 bool overflow_p; 1332 1333 /* The following codes are handled by fixed_arithmetic. */ 1334 switch (code) 1335 { 1336 case PLUS_EXPR: 1337 case MINUS_EXPR: 1338 case MULT_EXPR: 1339 case TRUNC_DIV_EXPR: 1340 if (TREE_CODE (arg2) != FIXED_CST) 1341 return NULL_TREE; 1342 f2 = TREE_FIXED_CST (arg2); 1343 break; 1344 1345 case LSHIFT_EXPR: 1346 case RSHIFT_EXPR: 1347 { 1348 if (TREE_CODE (arg2) != INTEGER_CST) 1349 return NULL_TREE; 1350 wi::tree_to_wide_ref w2 = wi::to_wide (arg2); 1351 f2.data.high = w2.elt (1); 1352 f2.data.low = w2.ulow (); 1353 f2.mode = SImode; 1354 } 1355 break; 1356 1357 default: 1358 return NULL_TREE; 1359 } 1360 1361 f1 = TREE_FIXED_CST (arg1); 1362 type = TREE_TYPE (arg1); 1363 sat_p = TYPE_SATURATING (type); 1364 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p); 1365 t = build_fixed (type, result); 1366 /* Propagate overflow flags. */ 1367 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)) 1368 TREE_OVERFLOW (t) = 1; 1369 return t; 1370 } 1371 1372 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST) 1373 { 1374 tree type = TREE_TYPE (arg1); 1375 tree r1 = TREE_REALPART (arg1); 1376 tree i1 = TREE_IMAGPART (arg1); 1377 tree r2 = TREE_REALPART (arg2); 1378 tree i2 = TREE_IMAGPART (arg2); 1379 tree real, imag; 1380 1381 switch (code) 1382 { 1383 case PLUS_EXPR: 1384 case MINUS_EXPR: 1385 real = const_binop (code, r1, r2); 1386 imag = const_binop (code, i1, i2); 1387 break; 1388 1389 case MULT_EXPR: 1390 if (COMPLEX_FLOAT_TYPE_P (type)) 1391 return do_mpc_arg2 (arg1, arg2, type, 1392 /* do_nonfinite= */ folding_initializer, 1393 mpc_mul); 1394 1395 real = const_binop (MINUS_EXPR, 1396 const_binop (MULT_EXPR, r1, r2), 1397 const_binop (MULT_EXPR, i1, i2)); 1398 imag = const_binop (PLUS_EXPR, 1399 const_binop (MULT_EXPR, r1, i2), 1400 const_binop (MULT_EXPR, i1, r2)); 1401 break; 1402 1403 case RDIV_EXPR: 1404 if (COMPLEX_FLOAT_TYPE_P (type)) 1405 return do_mpc_arg2 (arg1, arg2, type, 1406 /* do_nonfinite= */ folding_initializer, 1407 mpc_div); 1408 /* Fallthru. */ 1409 case TRUNC_DIV_EXPR: 1410 case CEIL_DIV_EXPR: 1411 case FLOOR_DIV_EXPR: 1412 case ROUND_DIV_EXPR: 1413 if (flag_complex_method == 0) 1414 { 1415 /* Keep this algorithm in sync with 1416 tree-complex.c:expand_complex_div_straight(). 1417 1418 Expand complex division to scalars, straightforward algorithm. 1419 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1420 t = br*br + bi*bi 1421 */ 1422 tree magsquared 1423 = const_binop (PLUS_EXPR, 1424 const_binop (MULT_EXPR, r2, r2), 1425 const_binop (MULT_EXPR, i2, i2)); 1426 tree t1 1427 = const_binop (PLUS_EXPR, 1428 const_binop (MULT_EXPR, r1, r2), 1429 const_binop (MULT_EXPR, i1, i2)); 1430 tree t2 1431 = const_binop (MINUS_EXPR, 1432 const_binop (MULT_EXPR, i1, r2), 1433 const_binop (MULT_EXPR, r1, i2)); 1434 1435 real = const_binop (code, t1, magsquared); 1436 imag = const_binop (code, t2, magsquared); 1437 } 1438 else 1439 { 1440 /* Keep this algorithm in sync with 1441 tree-complex.c:expand_complex_div_wide(). 1442 1443 Expand complex division to scalars, modified algorithm to minimize 1444 overflow with wide input ranges. */ 1445 tree compare = fold_build2 (LT_EXPR, boolean_type_node, 1446 fold_abs_const (r2, TREE_TYPE (type)), 1447 fold_abs_const (i2, TREE_TYPE (type))); 1448 1449 if (integer_nonzerop (compare)) 1450 { 1451 /* In the TRUE branch, we compute 1452 ratio = br/bi; 1453 div = (br * ratio) + bi; 1454 tr = (ar * ratio) + ai; 1455 ti = (ai * ratio) - ar; 1456 tr = tr / div; 1457 ti = ti / div; */ 1458 tree ratio = const_binop (code, r2, i2); 1459 tree div = const_binop (PLUS_EXPR, i2, 1460 const_binop (MULT_EXPR, r2, ratio)); 1461 real = const_binop (MULT_EXPR, r1, ratio); 1462 real = const_binop (PLUS_EXPR, real, i1); 1463 real = const_binop (code, real, div); 1464 1465 imag = const_binop (MULT_EXPR, i1, ratio); 1466 imag = const_binop (MINUS_EXPR, imag, r1); 1467 imag = const_binop (code, imag, div); 1468 } 1469 else 1470 { 1471 /* In the FALSE branch, we compute 1472 ratio = d/c; 1473 divisor = (d * ratio) + c; 1474 tr = (b * ratio) + a; 1475 ti = b - (a * ratio); 1476 tr = tr / div; 1477 ti = ti / div; */ 1478 tree ratio = const_binop (code, i2, r2); 1479 tree div = const_binop (PLUS_EXPR, r2, 1480 const_binop (MULT_EXPR, i2, ratio)); 1481 1482 real = const_binop (MULT_EXPR, i1, ratio); 1483 real = const_binop (PLUS_EXPR, real, r1); 1484 real = const_binop (code, real, div); 1485 1486 imag = const_binop (MULT_EXPR, r1, ratio); 1487 imag = const_binop (MINUS_EXPR, i1, imag); 1488 imag = const_binop (code, imag, div); 1489 } 1490 } 1491 break; 1492 1493 default: 1494 return NULL_TREE; 1495 } 1496 1497 if (real && imag) 1498 return build_complex (type, real, imag); 1499 } 1500 1501 if (TREE_CODE (arg1) == VECTOR_CST 1502 && TREE_CODE (arg2) == VECTOR_CST 1503 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), 1504 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)))) 1505 { 1506 tree type = TREE_TYPE (arg1); 1507 bool step_ok_p; 1508 if (VECTOR_CST_STEPPED_P (arg1) 1509 && VECTOR_CST_STEPPED_P (arg2)) 1510 /* We can operate directly on the encoding if: 1511 1512 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1 1513 implies 1514 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1) 1515 1516 Addition and subtraction are the supported operators 1517 for which this is true. */ 1518 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR); 1519 else if (VECTOR_CST_STEPPED_P (arg1)) 1520 /* We can operate directly on stepped encodings if: 1521 1522 a3 - a2 == a2 - a1 1523 implies: 1524 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c) 1525 1526 which is true if (x -> x op c) distributes over addition. */ 1527 step_ok_p = distributes_over_addition_p (code, 1); 1528 else 1529 /* Similarly in reverse. */ 1530 step_ok_p = distributes_over_addition_p (code, 2); 1531 tree_vector_builder elts; 1532 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p)) 1533 return NULL_TREE; 1534 unsigned int count = elts.encoded_nelts (); 1535 for (unsigned int i = 0; i < count; ++i) 1536 { 1537 tree elem1 = VECTOR_CST_ELT (arg1, i); 1538 tree elem2 = VECTOR_CST_ELT (arg2, i); 1539 1540 tree elt = const_binop (code, elem1, elem2); 1541 1542 /* It is possible that const_binop cannot handle the given 1543 code and return NULL_TREE */ 1544 if (elt == NULL_TREE) 1545 return NULL_TREE; 1546 elts.quick_push (elt); 1547 } 1548 1549 return elts.build (); 1550 } 1551 1552 /* Shifts allow a scalar offset for a vector. */ 1553 if (TREE_CODE (arg1) == VECTOR_CST 1554 && TREE_CODE (arg2) == INTEGER_CST) 1555 { 1556 tree type = TREE_TYPE (arg1); 1557 bool step_ok_p = distributes_over_addition_p (code, 1); 1558 tree_vector_builder elts; 1559 if (!elts.new_unary_operation (type, arg1, step_ok_p)) 1560 return NULL_TREE; 1561 unsigned int count = elts.encoded_nelts (); 1562 for (unsigned int i = 0; i < count; ++i) 1563 { 1564 tree elem1 = VECTOR_CST_ELT (arg1, i); 1565 1566 tree elt = const_binop (code, elem1, arg2); 1567 1568 /* It is possible that const_binop cannot handle the given 1569 code and return NULL_TREE. */ 1570 if (elt == NULL_TREE) 1571 return NULL_TREE; 1572 elts.quick_push (elt); 1573 } 1574 1575 return elts.build (); 1576 } 1577 return NULL_TREE; 1578 } 1579 1580 /* Overload that adds a TYPE parameter to be able to dispatch 1581 to fold_relational_const. */ 1582 1583 tree 1584 const_binop (enum tree_code code, tree type, tree arg1, tree arg2) 1585 { 1586 if (TREE_CODE_CLASS (code) == tcc_comparison) 1587 return fold_relational_const (code, type, arg1, arg2); 1588 1589 /* ??? Until we make the const_binop worker take the type of the 1590 result as argument put those cases that need it here. */ 1591 switch (code) 1592 { 1593 case VEC_SERIES_EXPR: 1594 if (CONSTANT_CLASS_P (arg1) 1595 && CONSTANT_CLASS_P (arg2)) 1596 return build_vec_series (type, arg1, arg2); 1597 return NULL_TREE; 1598 1599 case COMPLEX_EXPR: 1600 if ((TREE_CODE (arg1) == REAL_CST 1601 && TREE_CODE (arg2) == REAL_CST) 1602 || (TREE_CODE (arg1) == INTEGER_CST 1603 && TREE_CODE (arg2) == INTEGER_CST)) 1604 return build_complex (type, arg1, arg2); 1605 return NULL_TREE; 1606 1607 case POINTER_DIFF_EXPR: 1608 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1609 { 1610 offset_int res = wi::sub (wi::to_offset (arg1), 1611 wi::to_offset (arg2)); 1612 return force_fit_type (type, res, 1, 1613 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)); 1614 } 1615 return NULL_TREE; 1616 1617 case VEC_PACK_TRUNC_EXPR: 1618 case VEC_PACK_FIX_TRUNC_EXPR: 1619 { 1620 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i; 1621 1622 if (TREE_CODE (arg1) != VECTOR_CST 1623 || TREE_CODE (arg2) != VECTOR_CST) 1624 return NULL_TREE; 1625 1626 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1627 return NULL_TREE; 1628 1629 out_nelts = in_nelts * 2; 1630 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1631 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1632 1633 tree_vector_builder elts (type, out_nelts, 1); 1634 for (i = 0; i < out_nelts; i++) 1635 { 1636 tree elt = (i < in_nelts 1637 ? VECTOR_CST_ELT (arg1, i) 1638 : VECTOR_CST_ELT (arg2, i - in_nelts)); 1639 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR 1640 ? NOP_EXPR : FIX_TRUNC_EXPR, 1641 TREE_TYPE (type), elt); 1642 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1643 return NULL_TREE; 1644 elts.quick_push (elt); 1645 } 1646 1647 return elts.build (); 1648 } 1649 1650 case VEC_WIDEN_MULT_LO_EXPR: 1651 case VEC_WIDEN_MULT_HI_EXPR: 1652 case VEC_WIDEN_MULT_EVEN_EXPR: 1653 case VEC_WIDEN_MULT_ODD_EXPR: 1654 { 1655 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale; 1656 1657 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST) 1658 return NULL_TREE; 1659 1660 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1661 return NULL_TREE; 1662 out_nelts = in_nelts / 2; 1663 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1664 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1665 1666 if (code == VEC_WIDEN_MULT_LO_EXPR) 1667 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0; 1668 else if (code == VEC_WIDEN_MULT_HI_EXPR) 1669 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts; 1670 else if (code == VEC_WIDEN_MULT_EVEN_EXPR) 1671 scale = 1, ofs = 0; 1672 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */ 1673 scale = 1, ofs = 1; 1674 1675 tree_vector_builder elts (type, out_nelts, 1); 1676 for (out = 0; out < out_nelts; out++) 1677 { 1678 unsigned int in = (out << scale) + ofs; 1679 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1680 VECTOR_CST_ELT (arg1, in)); 1681 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1682 VECTOR_CST_ELT (arg2, in)); 1683 1684 if (t1 == NULL_TREE || t2 == NULL_TREE) 1685 return NULL_TREE; 1686 tree elt = const_binop (MULT_EXPR, t1, t2); 1687 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1688 return NULL_TREE; 1689 elts.quick_push (elt); 1690 } 1691 1692 return elts.build (); 1693 } 1694 1695 default:; 1696 } 1697 1698 if (TREE_CODE_CLASS (code) != tcc_binary) 1699 return NULL_TREE; 1700 1701 /* Make sure type and arg0 have the same saturating flag. */ 1702 gcc_checking_assert (TYPE_SATURATING (type) 1703 == TYPE_SATURATING (TREE_TYPE (arg1))); 1704 1705 return const_binop (code, arg1, arg2); 1706 } 1707 1708 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant. 1709 Return zero if computing the constants is not possible. */ 1710 1711 tree 1712 const_unop (enum tree_code code, tree type, tree arg0) 1713 { 1714 /* Don't perform the operation, other than NEGATE and ABS, if 1715 flag_signaling_nans is on and the operand is a signaling NaN. */ 1716 if (TREE_CODE (arg0) == REAL_CST 1717 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))) 1718 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)) 1719 && code != NEGATE_EXPR 1720 && code != ABS_EXPR) 1721 return NULL_TREE; 1722 1723 switch (code) 1724 { 1725 CASE_CONVERT: 1726 case FLOAT_EXPR: 1727 case FIX_TRUNC_EXPR: 1728 case FIXED_CONVERT_EXPR: 1729 return fold_convert_const (code, type, arg0); 1730 1731 case ADDR_SPACE_CONVERT_EXPR: 1732 /* If the source address is 0, and the source address space 1733 cannot have a valid object at 0, fold to dest type null. */ 1734 if (integer_zerop (arg0) 1735 && !(targetm.addr_space.zero_address_valid 1736 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))))) 1737 return fold_convert_const (code, type, arg0); 1738 break; 1739 1740 case VIEW_CONVERT_EXPR: 1741 return fold_view_convert_expr (type, arg0); 1742 1743 case NEGATE_EXPR: 1744 { 1745 /* Can't call fold_negate_const directly here as that doesn't 1746 handle all cases and we might not be able to negate some 1747 constants. */ 1748 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0); 1749 if (tem && CONSTANT_CLASS_P (tem)) 1750 return tem; 1751 break; 1752 } 1753 1754 case ABS_EXPR: 1755 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST) 1756 return fold_abs_const (arg0, type); 1757 break; 1758 1759 case CONJ_EXPR: 1760 if (TREE_CODE (arg0) == COMPLEX_CST) 1761 { 1762 tree ipart = fold_negate_const (TREE_IMAGPART (arg0), 1763 TREE_TYPE (type)); 1764 return build_complex (type, TREE_REALPART (arg0), ipart); 1765 } 1766 break; 1767 1768 case BIT_NOT_EXPR: 1769 if (TREE_CODE (arg0) == INTEGER_CST) 1770 return fold_not_const (arg0, type); 1771 else if (POLY_INT_CST_P (arg0)) 1772 return wide_int_to_tree (type, -poly_int_cst_value (arg0)); 1773 /* Perform BIT_NOT_EXPR on each element individually. */ 1774 else if (TREE_CODE (arg0) == VECTOR_CST) 1775 { 1776 tree elem; 1777 1778 /* This can cope with stepped encodings because ~x == -1 - x. */ 1779 tree_vector_builder elements; 1780 elements.new_unary_operation (type, arg0, true); 1781 unsigned int i, count = elements.encoded_nelts (); 1782 for (i = 0; i < count; ++i) 1783 { 1784 elem = VECTOR_CST_ELT (arg0, i); 1785 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem); 1786 if (elem == NULL_TREE) 1787 break; 1788 elements.quick_push (elem); 1789 } 1790 if (i == count) 1791 return elements.build (); 1792 } 1793 break; 1794 1795 case TRUTH_NOT_EXPR: 1796 if (TREE_CODE (arg0) == INTEGER_CST) 1797 return constant_boolean_node (integer_zerop (arg0), type); 1798 break; 1799 1800 case REALPART_EXPR: 1801 if (TREE_CODE (arg0) == COMPLEX_CST) 1802 return fold_convert (type, TREE_REALPART (arg0)); 1803 break; 1804 1805 case IMAGPART_EXPR: 1806 if (TREE_CODE (arg0) == COMPLEX_CST) 1807 return fold_convert (type, TREE_IMAGPART (arg0)); 1808 break; 1809 1810 case VEC_UNPACK_LO_EXPR: 1811 case VEC_UNPACK_HI_EXPR: 1812 case VEC_UNPACK_FLOAT_LO_EXPR: 1813 case VEC_UNPACK_FLOAT_HI_EXPR: 1814 { 1815 unsigned HOST_WIDE_INT out_nelts, in_nelts, i; 1816 enum tree_code subcode; 1817 1818 if (TREE_CODE (arg0) != VECTOR_CST) 1819 return NULL_TREE; 1820 1821 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts)) 1822 return NULL_TREE; 1823 out_nelts = in_nelts / 2; 1824 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1825 1826 unsigned int offset = 0; 1827 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR 1828 || code == VEC_UNPACK_FLOAT_LO_EXPR)) 1829 offset = out_nelts; 1830 1831 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR) 1832 subcode = NOP_EXPR; 1833 else 1834 subcode = FLOAT_EXPR; 1835 1836 tree_vector_builder elts (type, out_nelts, 1); 1837 for (i = 0; i < out_nelts; i++) 1838 { 1839 tree elt = fold_convert_const (subcode, TREE_TYPE (type), 1840 VECTOR_CST_ELT (arg0, i + offset)); 1841 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1842 return NULL_TREE; 1843 elts.quick_push (elt); 1844 } 1845 1846 return elts.build (); 1847 } 1848 1849 case VEC_DUPLICATE_EXPR: 1850 if (CONSTANT_CLASS_P (arg0)) 1851 return build_vector_from_val (type, arg0); 1852 return NULL_TREE; 1853 1854 default: 1855 break; 1856 } 1857 1858 return NULL_TREE; 1859 } 1860 1861 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND 1862 indicates which particular sizetype to create. */ 1863 1864 tree 1865 size_int_kind (poly_int64 number, enum size_type_kind kind) 1866 { 1867 return build_int_cst (sizetype_tab[(int) kind], number); 1868 } 1869 1870 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE 1871 is a tree code. The type of the result is taken from the operands. 1872 Both must be equivalent integer types, ala int_binop_types_match_p. 1873 If the operands are constant, so is the result. */ 1874 1875 tree 1876 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1) 1877 { 1878 tree type = TREE_TYPE (arg0); 1879 1880 if (arg0 == error_mark_node || arg1 == error_mark_node) 1881 return error_mark_node; 1882 1883 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0), 1884 TREE_TYPE (arg1))); 1885 1886 /* Handle the special case of two poly_int constants faster. */ 1887 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1)) 1888 { 1889 /* And some specific cases even faster than that. */ 1890 if (code == PLUS_EXPR) 1891 { 1892 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0)) 1893 return arg1; 1894 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1895 return arg0; 1896 } 1897 else if (code == MINUS_EXPR) 1898 { 1899 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1900 return arg0; 1901 } 1902 else if (code == MULT_EXPR) 1903 { 1904 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0)) 1905 return arg1; 1906 } 1907 1908 /* Handle general case of two integer constants. For sizetype 1909 constant calculations we always want to know about overflow, 1910 even in the unsigned case. */ 1911 tree res = int_const_binop_1 (code, arg0, arg1, -1); 1912 if (res != NULL_TREE) 1913 return res; 1914 } 1915 1916 return fold_build2_loc (loc, code, type, arg0, arg1); 1917 } 1918 1919 /* Given two values, either both of sizetype or both of bitsizetype, 1920 compute the difference between the two values. Return the value 1921 in signed type corresponding to the type of the operands. */ 1922 1923 tree 1924 size_diffop_loc (location_t loc, tree arg0, tree arg1) 1925 { 1926 tree type = TREE_TYPE (arg0); 1927 tree ctype; 1928 1929 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0), 1930 TREE_TYPE (arg1))); 1931 1932 /* If the type is already signed, just do the simple thing. */ 1933 if (!TYPE_UNSIGNED (type)) 1934 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1); 1935 1936 if (type == sizetype) 1937 ctype = ssizetype; 1938 else if (type == bitsizetype) 1939 ctype = sbitsizetype; 1940 else 1941 ctype = signed_type_for (type); 1942 1943 /* If either operand is not a constant, do the conversions to the signed 1944 type and subtract. The hardware will do the right thing with any 1945 overflow in the subtraction. */ 1946 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST) 1947 return size_binop_loc (loc, MINUS_EXPR, 1948 fold_convert_loc (loc, ctype, arg0), 1949 fold_convert_loc (loc, ctype, arg1)); 1950 1951 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE. 1952 Otherwise, subtract the other way, convert to CTYPE (we know that can't 1953 overflow) and negate (which can't either). Special-case a result 1954 of zero while we're here. */ 1955 if (tree_int_cst_equal (arg0, arg1)) 1956 return build_int_cst (ctype, 0); 1957 else if (tree_int_cst_lt (arg1, arg0)) 1958 return fold_convert_loc (loc, ctype, 1959 size_binop_loc (loc, MINUS_EXPR, arg0, arg1)); 1960 else 1961 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0), 1962 fold_convert_loc (loc, ctype, 1963 size_binop_loc (loc, 1964 MINUS_EXPR, 1965 arg1, arg0))); 1966 } 1967 1968 /* A subroutine of fold_convert_const handling conversions of an 1969 INTEGER_CST to another integer type. */ 1970 1971 static tree 1972 fold_convert_const_int_from_int (tree type, const_tree arg1) 1973 { 1974 /* Given an integer constant, make new constant with new type, 1975 appropriately sign-extended or truncated. Use widest_int 1976 so that any extension is done according ARG1's type. */ 1977 return force_fit_type (type, wi::to_widest (arg1), 1978 !POINTER_TYPE_P (TREE_TYPE (arg1)), 1979 TREE_OVERFLOW (arg1)); 1980 } 1981 1982 /* A subroutine of fold_convert_const handling conversions a REAL_CST 1983 to an integer type. */ 1984 1985 static tree 1986 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1) 1987 { 1988 bool overflow = false; 1989 tree t; 1990 1991 /* The following code implements the floating point to integer 1992 conversion rules required by the Java Language Specification, 1993 that IEEE NaNs are mapped to zero and values that overflow 1994 the target precision saturate, i.e. values greater than 1995 INT_MAX are mapped to INT_MAX, and values less than INT_MIN 1996 are mapped to INT_MIN. These semantics are allowed by the 1997 C and C++ standards that simply state that the behavior of 1998 FP-to-integer conversion is unspecified upon overflow. */ 1999 2000 wide_int val; 2001 REAL_VALUE_TYPE r; 2002 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1); 2003 2004 switch (code) 2005 { 2006 case FIX_TRUNC_EXPR: 2007 real_trunc (&r, VOIDmode, &x); 2008 break; 2009 2010 default: 2011 gcc_unreachable (); 2012 } 2013 2014 /* If R is NaN, return zero and show we have an overflow. */ 2015 if (REAL_VALUE_ISNAN (r)) 2016 { 2017 overflow = true; 2018 val = wi::zero (TYPE_PRECISION (type)); 2019 } 2020 2021 /* See if R is less than the lower bound or greater than the 2022 upper bound. */ 2023 2024 if (! overflow) 2025 { 2026 tree lt = TYPE_MIN_VALUE (type); 2027 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt); 2028 if (real_less (&r, &l)) 2029 { 2030 overflow = true; 2031 val = wi::to_wide (lt); 2032 } 2033 } 2034 2035 if (! overflow) 2036 { 2037 tree ut = TYPE_MAX_VALUE (type); 2038 if (ut) 2039 { 2040 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut); 2041 if (real_less (&u, &r)) 2042 { 2043 overflow = true; 2044 val = wi::to_wide (ut); 2045 } 2046 } 2047 } 2048 2049 if (! overflow) 2050 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type)); 2051 2052 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1)); 2053 return t; 2054 } 2055 2056 /* A subroutine of fold_convert_const handling conversions of a 2057 FIXED_CST to an integer type. */ 2058 2059 static tree 2060 fold_convert_const_int_from_fixed (tree type, const_tree arg1) 2061 { 2062 tree t; 2063 double_int temp, temp_trunc; 2064 scalar_mode mode; 2065 2066 /* Right shift FIXED_CST to temp by fbit. */ 2067 temp = TREE_FIXED_CST (arg1).data; 2068 mode = TREE_FIXED_CST (arg1).mode; 2069 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT) 2070 { 2071 temp = temp.rshift (GET_MODE_FBIT (mode), 2072 HOST_BITS_PER_DOUBLE_INT, 2073 SIGNED_FIXED_POINT_MODE_P (mode)); 2074 2075 /* Left shift temp to temp_trunc by fbit. */ 2076 temp_trunc = temp.lshift (GET_MODE_FBIT (mode), 2077 HOST_BITS_PER_DOUBLE_INT, 2078 SIGNED_FIXED_POINT_MODE_P (mode)); 2079 } 2080 else 2081 { 2082 temp = double_int_zero; 2083 temp_trunc = double_int_zero; 2084 } 2085 2086 /* If FIXED_CST is negative, we need to round the value toward 0. 2087 By checking if the fractional bits are not zero to add 1 to temp. */ 2088 if (SIGNED_FIXED_POINT_MODE_P (mode) 2089 && temp_trunc.is_negative () 2090 && TREE_FIXED_CST (arg1).data != temp_trunc) 2091 temp += double_int_one; 2092 2093 /* Given a fixed-point constant, make new constant with new type, 2094 appropriately sign-extended or truncated. */ 2095 t = force_fit_type (type, temp, -1, 2096 (temp.is_negative () 2097 && (TYPE_UNSIGNED (type) 2098 < TYPE_UNSIGNED (TREE_TYPE (arg1)))) 2099 | TREE_OVERFLOW (arg1)); 2100 2101 return t; 2102 } 2103 2104 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2105 to another floating point type. */ 2106 2107 static tree 2108 fold_convert_const_real_from_real (tree type, const_tree arg1) 2109 { 2110 REAL_VALUE_TYPE value; 2111 tree t; 2112 2113 /* Don't perform the operation if flag_signaling_nans is on 2114 and the operand is a signaling NaN. */ 2115 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))) 2116 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))) 2117 return NULL_TREE; 2118 2119 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1)); 2120 t = build_real (type, value); 2121 2122 /* If converting an infinity or NAN to a representation that doesn't 2123 have one, set the overflow bit so that we can produce some kind of 2124 error message at the appropriate point if necessary. It's not the 2125 most user-friendly message, but it's better than nothing. */ 2126 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1)) 2127 && !MODE_HAS_INFINITIES (TYPE_MODE (type))) 2128 TREE_OVERFLOW (t) = 1; 2129 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)) 2130 && !MODE_HAS_NANS (TYPE_MODE (type))) 2131 TREE_OVERFLOW (t) = 1; 2132 /* Regular overflow, conversion produced an infinity in a mode that 2133 can't represent them. */ 2134 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) 2135 && REAL_VALUE_ISINF (value) 2136 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1))) 2137 TREE_OVERFLOW (t) = 1; 2138 else 2139 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2140 return t; 2141 } 2142 2143 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2144 to a floating point type. */ 2145 2146 static tree 2147 fold_convert_const_real_from_fixed (tree type, const_tree arg1) 2148 { 2149 REAL_VALUE_TYPE value; 2150 tree t; 2151 2152 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type), 2153 &TREE_FIXED_CST (arg1)); 2154 t = build_real (type, value); 2155 2156 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2157 return t; 2158 } 2159 2160 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2161 to another fixed-point type. */ 2162 2163 static tree 2164 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1) 2165 { 2166 FIXED_VALUE_TYPE value; 2167 tree t; 2168 bool overflow_p; 2169 2170 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type), 2171 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type)); 2172 t = build_fixed (type, value); 2173 2174 /* Propagate overflow flags. */ 2175 if (overflow_p | TREE_OVERFLOW (arg1)) 2176 TREE_OVERFLOW (t) = 1; 2177 return t; 2178 } 2179 2180 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST 2181 to a fixed-point type. */ 2182 2183 static tree 2184 fold_convert_const_fixed_from_int (tree type, const_tree arg1) 2185 { 2186 FIXED_VALUE_TYPE value; 2187 tree t; 2188 bool overflow_p; 2189 double_int di; 2190 2191 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2); 2192 2193 di.low = TREE_INT_CST_ELT (arg1, 0); 2194 if (TREE_INT_CST_NUNITS (arg1) == 1) 2195 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0; 2196 else 2197 di.high = TREE_INT_CST_ELT (arg1, 1); 2198 2199 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di, 2200 TYPE_UNSIGNED (TREE_TYPE (arg1)), 2201 TYPE_SATURATING (type)); 2202 t = build_fixed (type, value); 2203 2204 /* Propagate overflow flags. */ 2205 if (overflow_p | TREE_OVERFLOW (arg1)) 2206 TREE_OVERFLOW (t) = 1; 2207 return t; 2208 } 2209 2210 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2211 to a fixed-point type. */ 2212 2213 static tree 2214 fold_convert_const_fixed_from_real (tree type, const_tree arg1) 2215 { 2216 FIXED_VALUE_TYPE value; 2217 tree t; 2218 bool overflow_p; 2219 2220 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type), 2221 &TREE_REAL_CST (arg1), 2222 TYPE_SATURATING (type)); 2223 t = build_fixed (type, value); 2224 2225 /* Propagate overflow flags. */ 2226 if (overflow_p | TREE_OVERFLOW (arg1)) 2227 TREE_OVERFLOW (t) = 1; 2228 return t; 2229 } 2230 2231 /* Attempt to fold type conversion operation CODE of expression ARG1 to 2232 type TYPE. If no simplification can be done return NULL_TREE. */ 2233 2234 static tree 2235 fold_convert_const (enum tree_code code, tree type, tree arg1) 2236 { 2237 tree arg_type = TREE_TYPE (arg1); 2238 if (arg_type == type) 2239 return arg1; 2240 2241 /* We can't widen types, since the runtime value could overflow the 2242 original type before being extended to the new type. */ 2243 if (POLY_INT_CST_P (arg1) 2244 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 2245 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type)) 2246 return build_poly_int_cst (type, 2247 poly_wide_int::from (poly_int_cst_value (arg1), 2248 TYPE_PRECISION (type), 2249 TYPE_SIGN (arg_type))); 2250 2251 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type) 2252 || TREE_CODE (type) == OFFSET_TYPE) 2253 { 2254 if (TREE_CODE (arg1) == INTEGER_CST) 2255 return fold_convert_const_int_from_int (type, arg1); 2256 else if (TREE_CODE (arg1) == REAL_CST) 2257 return fold_convert_const_int_from_real (code, type, arg1); 2258 else if (TREE_CODE (arg1) == FIXED_CST) 2259 return fold_convert_const_int_from_fixed (type, arg1); 2260 } 2261 else if (TREE_CODE (type) == REAL_TYPE) 2262 { 2263 if (TREE_CODE (arg1) == INTEGER_CST) 2264 return build_real_from_int_cst (type, arg1); 2265 else if (TREE_CODE (arg1) == REAL_CST) 2266 return fold_convert_const_real_from_real (type, arg1); 2267 else if (TREE_CODE (arg1) == FIXED_CST) 2268 return fold_convert_const_real_from_fixed (type, arg1); 2269 } 2270 else if (TREE_CODE (type) == FIXED_POINT_TYPE) 2271 { 2272 if (TREE_CODE (arg1) == FIXED_CST) 2273 return fold_convert_const_fixed_from_fixed (type, arg1); 2274 else if (TREE_CODE (arg1) == INTEGER_CST) 2275 return fold_convert_const_fixed_from_int (type, arg1); 2276 else if (TREE_CODE (arg1) == REAL_CST) 2277 return fold_convert_const_fixed_from_real (type, arg1); 2278 } 2279 else if (TREE_CODE (type) == VECTOR_TYPE) 2280 { 2281 if (TREE_CODE (arg1) == VECTOR_CST 2282 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1))) 2283 { 2284 tree elttype = TREE_TYPE (type); 2285 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1)); 2286 /* We can't handle steps directly when extending, since the 2287 values need to wrap at the original precision first. */ 2288 bool step_ok_p 2289 = (INTEGRAL_TYPE_P (elttype) 2290 && INTEGRAL_TYPE_P (arg1_elttype) 2291 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype)); 2292 tree_vector_builder v; 2293 if (!v.new_unary_operation (type, arg1, step_ok_p)) 2294 return NULL_TREE; 2295 unsigned int len = v.encoded_nelts (); 2296 for (unsigned int i = 0; i < len; ++i) 2297 { 2298 tree elt = VECTOR_CST_ELT (arg1, i); 2299 tree cvt = fold_convert_const (code, elttype, elt); 2300 if (cvt == NULL_TREE) 2301 return NULL_TREE; 2302 v.quick_push (cvt); 2303 } 2304 return v.build (); 2305 } 2306 } 2307 return NULL_TREE; 2308 } 2309 2310 /* Construct a vector of zero elements of vector type TYPE. */ 2311 2312 static tree 2313 build_zero_vector (tree type) 2314 { 2315 tree t; 2316 2317 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node); 2318 return build_vector_from_val (type, t); 2319 } 2320 2321 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */ 2322 2323 bool 2324 fold_convertible_p (const_tree type, const_tree arg) 2325 { 2326 tree orig = TREE_TYPE (arg); 2327 2328 if (type == orig) 2329 return true; 2330 2331 if (TREE_CODE (arg) == ERROR_MARK 2332 || TREE_CODE (type) == ERROR_MARK 2333 || TREE_CODE (orig) == ERROR_MARK) 2334 return false; 2335 2336 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2337 return true; 2338 2339 switch (TREE_CODE (type)) 2340 { 2341 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2342 case POINTER_TYPE: case REFERENCE_TYPE: 2343 case OFFSET_TYPE: 2344 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2345 || TREE_CODE (orig) == OFFSET_TYPE); 2346 2347 case REAL_TYPE: 2348 case FIXED_POINT_TYPE: 2349 case VECTOR_TYPE: 2350 case VOID_TYPE: 2351 return TREE_CODE (type) == TREE_CODE (orig); 2352 2353 default: 2354 return false; 2355 } 2356 } 2357 2358 /* Convert expression ARG to type TYPE. Used by the middle-end for 2359 simple conversions in preference to calling the front-end's convert. */ 2360 2361 tree 2362 fold_convert_loc (location_t loc, tree type, tree arg) 2363 { 2364 tree orig = TREE_TYPE (arg); 2365 tree tem; 2366 2367 if (type == orig) 2368 return arg; 2369 2370 if (TREE_CODE (arg) == ERROR_MARK 2371 || TREE_CODE (type) == ERROR_MARK 2372 || TREE_CODE (orig) == ERROR_MARK) 2373 return error_mark_node; 2374 2375 switch (TREE_CODE (type)) 2376 { 2377 case POINTER_TYPE: 2378 case REFERENCE_TYPE: 2379 /* Handle conversions between pointers to different address spaces. */ 2380 if (POINTER_TYPE_P (orig) 2381 && (TYPE_ADDR_SPACE (TREE_TYPE (type)) 2382 != TYPE_ADDR_SPACE (TREE_TYPE (orig)))) 2383 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg); 2384 /* fall through */ 2385 2386 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2387 case OFFSET_TYPE: 2388 if (TREE_CODE (arg) == INTEGER_CST) 2389 { 2390 tem = fold_convert_const (NOP_EXPR, type, arg); 2391 if (tem != NULL_TREE) 2392 return tem; 2393 } 2394 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2395 || TREE_CODE (orig) == OFFSET_TYPE) 2396 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2397 if (TREE_CODE (orig) == COMPLEX_TYPE) 2398 return fold_convert_loc (loc, type, 2399 fold_build1_loc (loc, REALPART_EXPR, 2400 TREE_TYPE (orig), arg)); 2401 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE 2402 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2403 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2404 2405 case REAL_TYPE: 2406 if (TREE_CODE (arg) == INTEGER_CST) 2407 { 2408 tem = fold_convert_const (FLOAT_EXPR, type, arg); 2409 if (tem != NULL_TREE) 2410 return tem; 2411 } 2412 else if (TREE_CODE (arg) == REAL_CST) 2413 { 2414 tem = fold_convert_const (NOP_EXPR, type, arg); 2415 if (tem != NULL_TREE) 2416 return tem; 2417 } 2418 else if (TREE_CODE (arg) == FIXED_CST) 2419 { 2420 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2421 if (tem != NULL_TREE) 2422 return tem; 2423 } 2424 2425 switch (TREE_CODE (orig)) 2426 { 2427 case INTEGER_TYPE: 2428 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2429 case POINTER_TYPE: case REFERENCE_TYPE: 2430 return fold_build1_loc (loc, FLOAT_EXPR, type, arg); 2431 2432 case REAL_TYPE: 2433 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2434 2435 case FIXED_POINT_TYPE: 2436 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2437 2438 case COMPLEX_TYPE: 2439 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2440 return fold_convert_loc (loc, type, tem); 2441 2442 default: 2443 gcc_unreachable (); 2444 } 2445 2446 case FIXED_POINT_TYPE: 2447 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST 2448 || TREE_CODE (arg) == REAL_CST) 2449 { 2450 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2451 if (tem != NULL_TREE) 2452 goto fold_convert_exit; 2453 } 2454 2455 switch (TREE_CODE (orig)) 2456 { 2457 case FIXED_POINT_TYPE: 2458 case INTEGER_TYPE: 2459 case ENUMERAL_TYPE: 2460 case BOOLEAN_TYPE: 2461 case REAL_TYPE: 2462 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2463 2464 case COMPLEX_TYPE: 2465 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2466 return fold_convert_loc (loc, type, tem); 2467 2468 default: 2469 gcc_unreachable (); 2470 } 2471 2472 case COMPLEX_TYPE: 2473 switch (TREE_CODE (orig)) 2474 { 2475 case INTEGER_TYPE: 2476 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2477 case POINTER_TYPE: case REFERENCE_TYPE: 2478 case REAL_TYPE: 2479 case FIXED_POINT_TYPE: 2480 return fold_build2_loc (loc, COMPLEX_EXPR, type, 2481 fold_convert_loc (loc, TREE_TYPE (type), arg), 2482 fold_convert_loc (loc, TREE_TYPE (type), 2483 integer_zero_node)); 2484 case COMPLEX_TYPE: 2485 { 2486 tree rpart, ipart; 2487 2488 if (TREE_CODE (arg) == COMPLEX_EXPR) 2489 { 2490 rpart = fold_convert_loc (loc, TREE_TYPE (type), 2491 TREE_OPERAND (arg, 0)); 2492 ipart = fold_convert_loc (loc, TREE_TYPE (type), 2493 TREE_OPERAND (arg, 1)); 2494 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2495 } 2496 2497 arg = save_expr (arg); 2498 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2499 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg); 2500 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart); 2501 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart); 2502 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2503 } 2504 2505 default: 2506 gcc_unreachable (); 2507 } 2508 2509 case VECTOR_TYPE: 2510 if (integer_zerop (arg)) 2511 return build_zero_vector (type); 2512 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2513 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2514 || TREE_CODE (orig) == VECTOR_TYPE); 2515 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2516 2517 case VOID_TYPE: 2518 tem = fold_ignored_result (arg); 2519 return fold_build1_loc (loc, NOP_EXPR, type, tem); 2520 2521 default: 2522 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2523 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2524 gcc_unreachable (); 2525 } 2526 fold_convert_exit: 2527 protected_set_expr_location_unshare (tem, loc); 2528 return tem; 2529 } 2530 2531 /* Return false if expr can be assumed not to be an lvalue, true 2532 otherwise. */ 2533 2534 static bool 2535 maybe_lvalue_p (const_tree x) 2536 { 2537 /* We only need to wrap lvalue tree codes. */ 2538 switch (TREE_CODE (x)) 2539 { 2540 case VAR_DECL: 2541 case PARM_DECL: 2542 case RESULT_DECL: 2543 case LABEL_DECL: 2544 case FUNCTION_DECL: 2545 case SSA_NAME: 2546 2547 case COMPONENT_REF: 2548 case MEM_REF: 2549 case INDIRECT_REF: 2550 case ARRAY_REF: 2551 case ARRAY_RANGE_REF: 2552 case BIT_FIELD_REF: 2553 case OBJ_TYPE_REF: 2554 2555 case REALPART_EXPR: 2556 case IMAGPART_EXPR: 2557 case PREINCREMENT_EXPR: 2558 case PREDECREMENT_EXPR: 2559 case SAVE_EXPR: 2560 case TRY_CATCH_EXPR: 2561 case WITH_CLEANUP_EXPR: 2562 case COMPOUND_EXPR: 2563 case MODIFY_EXPR: 2564 case TARGET_EXPR: 2565 case COND_EXPR: 2566 case BIND_EXPR: 2567 break; 2568 2569 default: 2570 /* Assume the worst for front-end tree codes. */ 2571 if ((int)TREE_CODE (x) >= NUM_TREE_CODES) 2572 break; 2573 return false; 2574 } 2575 2576 return true; 2577 } 2578 2579 /* Return an expr equal to X but certainly not valid as an lvalue. */ 2580 2581 tree 2582 non_lvalue_loc (location_t loc, tree x) 2583 { 2584 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to 2585 us. */ 2586 if (in_gimple_form) 2587 return x; 2588 2589 if (! maybe_lvalue_p (x)) 2590 return x; 2591 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x); 2592 } 2593 2594 /* When pedantic, return an expr equal to X but certainly not valid as a 2595 pedantic lvalue. Otherwise, return X. */ 2596 2597 static tree 2598 pedantic_non_lvalue_loc (location_t loc, tree x) 2599 { 2600 return protected_set_expr_location_unshare (x, loc); 2601 } 2602 2603 /* Given a tree comparison code, return the code that is the logical inverse. 2604 It is generally not safe to do this for floating-point comparisons, except 2605 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return 2606 ERROR_MARK in this case. */ 2607 2608 enum tree_code 2609 invert_tree_comparison (enum tree_code code, bool honor_nans) 2610 { 2611 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR 2612 && code != ORDERED_EXPR && code != UNORDERED_EXPR) 2613 return ERROR_MARK; 2614 2615 switch (code) 2616 { 2617 case EQ_EXPR: 2618 return NE_EXPR; 2619 case NE_EXPR: 2620 return EQ_EXPR; 2621 case GT_EXPR: 2622 return honor_nans ? UNLE_EXPR : LE_EXPR; 2623 case GE_EXPR: 2624 return honor_nans ? UNLT_EXPR : LT_EXPR; 2625 case LT_EXPR: 2626 return honor_nans ? UNGE_EXPR : GE_EXPR; 2627 case LE_EXPR: 2628 return honor_nans ? UNGT_EXPR : GT_EXPR; 2629 case LTGT_EXPR: 2630 return UNEQ_EXPR; 2631 case UNEQ_EXPR: 2632 return LTGT_EXPR; 2633 case UNGT_EXPR: 2634 return LE_EXPR; 2635 case UNGE_EXPR: 2636 return LT_EXPR; 2637 case UNLT_EXPR: 2638 return GE_EXPR; 2639 case UNLE_EXPR: 2640 return GT_EXPR; 2641 case ORDERED_EXPR: 2642 return UNORDERED_EXPR; 2643 case UNORDERED_EXPR: 2644 return ORDERED_EXPR; 2645 default: 2646 gcc_unreachable (); 2647 } 2648 } 2649 2650 /* Similar, but return the comparison that results if the operands are 2651 swapped. This is safe for floating-point. */ 2652 2653 enum tree_code 2654 swap_tree_comparison (enum tree_code code) 2655 { 2656 switch (code) 2657 { 2658 case EQ_EXPR: 2659 case NE_EXPR: 2660 case ORDERED_EXPR: 2661 case UNORDERED_EXPR: 2662 case LTGT_EXPR: 2663 case UNEQ_EXPR: 2664 return code; 2665 case GT_EXPR: 2666 return LT_EXPR; 2667 case GE_EXPR: 2668 return LE_EXPR; 2669 case LT_EXPR: 2670 return GT_EXPR; 2671 case LE_EXPR: 2672 return GE_EXPR; 2673 case UNGT_EXPR: 2674 return UNLT_EXPR; 2675 case UNGE_EXPR: 2676 return UNLE_EXPR; 2677 case UNLT_EXPR: 2678 return UNGT_EXPR; 2679 case UNLE_EXPR: 2680 return UNGE_EXPR; 2681 default: 2682 gcc_unreachable (); 2683 } 2684 } 2685 2686 2687 /* Convert a comparison tree code from an enum tree_code representation 2688 into a compcode bit-based encoding. This function is the inverse of 2689 compcode_to_comparison. */ 2690 2691 static enum comparison_code 2692 comparison_to_compcode (enum tree_code code) 2693 { 2694 switch (code) 2695 { 2696 case LT_EXPR: 2697 return COMPCODE_LT; 2698 case EQ_EXPR: 2699 return COMPCODE_EQ; 2700 case LE_EXPR: 2701 return COMPCODE_LE; 2702 case GT_EXPR: 2703 return COMPCODE_GT; 2704 case NE_EXPR: 2705 return COMPCODE_NE; 2706 case GE_EXPR: 2707 return COMPCODE_GE; 2708 case ORDERED_EXPR: 2709 return COMPCODE_ORD; 2710 case UNORDERED_EXPR: 2711 return COMPCODE_UNORD; 2712 case UNLT_EXPR: 2713 return COMPCODE_UNLT; 2714 case UNEQ_EXPR: 2715 return COMPCODE_UNEQ; 2716 case UNLE_EXPR: 2717 return COMPCODE_UNLE; 2718 case UNGT_EXPR: 2719 return COMPCODE_UNGT; 2720 case LTGT_EXPR: 2721 return COMPCODE_LTGT; 2722 case UNGE_EXPR: 2723 return COMPCODE_UNGE; 2724 default: 2725 gcc_unreachable (); 2726 } 2727 } 2728 2729 /* Convert a compcode bit-based encoding of a comparison operator back 2730 to GCC's enum tree_code representation. This function is the 2731 inverse of comparison_to_compcode. */ 2732 2733 static enum tree_code 2734 compcode_to_comparison (enum comparison_code code) 2735 { 2736 switch (code) 2737 { 2738 case COMPCODE_LT: 2739 return LT_EXPR; 2740 case COMPCODE_EQ: 2741 return EQ_EXPR; 2742 case COMPCODE_LE: 2743 return LE_EXPR; 2744 case COMPCODE_GT: 2745 return GT_EXPR; 2746 case COMPCODE_NE: 2747 return NE_EXPR; 2748 case COMPCODE_GE: 2749 return GE_EXPR; 2750 case COMPCODE_ORD: 2751 return ORDERED_EXPR; 2752 case COMPCODE_UNORD: 2753 return UNORDERED_EXPR; 2754 case COMPCODE_UNLT: 2755 return UNLT_EXPR; 2756 case COMPCODE_UNEQ: 2757 return UNEQ_EXPR; 2758 case COMPCODE_UNLE: 2759 return UNLE_EXPR; 2760 case COMPCODE_UNGT: 2761 return UNGT_EXPR; 2762 case COMPCODE_LTGT: 2763 return LTGT_EXPR; 2764 case COMPCODE_UNGE: 2765 return UNGE_EXPR; 2766 default: 2767 gcc_unreachable (); 2768 } 2769 } 2770 2771 /* Return a tree for the comparison which is the combination of 2772 doing the AND or OR (depending on CODE) of the two operations LCODE 2773 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account 2774 the possibility of trapping if the mode has NaNs, and return NULL_TREE 2775 if this makes the transformation invalid. */ 2776 2777 tree 2778 combine_comparisons (location_t loc, 2779 enum tree_code code, enum tree_code lcode, 2780 enum tree_code rcode, tree truth_type, 2781 tree ll_arg, tree lr_arg) 2782 { 2783 bool honor_nans = HONOR_NANS (ll_arg); 2784 enum comparison_code lcompcode = comparison_to_compcode (lcode); 2785 enum comparison_code rcompcode = comparison_to_compcode (rcode); 2786 int compcode; 2787 2788 switch (code) 2789 { 2790 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR: 2791 compcode = lcompcode & rcompcode; 2792 break; 2793 2794 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR: 2795 compcode = lcompcode | rcompcode; 2796 break; 2797 2798 default: 2799 return NULL_TREE; 2800 } 2801 2802 if (!honor_nans) 2803 { 2804 /* Eliminate unordered comparisons, as well as LTGT and ORD 2805 which are not used unless the mode has NaNs. */ 2806 compcode &= ~COMPCODE_UNORD; 2807 if (compcode == COMPCODE_LTGT) 2808 compcode = COMPCODE_NE; 2809 else if (compcode == COMPCODE_ORD) 2810 compcode = COMPCODE_TRUE; 2811 } 2812 else if (flag_trapping_math) 2813 { 2814 /* Check that the original operation and the optimized ones will trap 2815 under the same condition. */ 2816 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0 2817 && (lcompcode != COMPCODE_EQ) 2818 && (lcompcode != COMPCODE_ORD); 2819 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0 2820 && (rcompcode != COMPCODE_EQ) 2821 && (rcompcode != COMPCODE_ORD); 2822 bool trap = (compcode & COMPCODE_UNORD) == 0 2823 && (compcode != COMPCODE_EQ) 2824 && (compcode != COMPCODE_ORD); 2825 2826 /* In a short-circuited boolean expression the LHS might be 2827 such that the RHS, if evaluated, will never trap. For 2828 example, in ORD (x, y) && (x < y), we evaluate the RHS only 2829 if neither x nor y is NaN. (This is a mixed blessing: for 2830 example, the expression above will never trap, hence 2831 optimizing it to x < y would be invalid). */ 2832 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD)) 2833 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD))) 2834 rtrap = false; 2835 2836 /* If the comparison was short-circuited, and only the RHS 2837 trapped, we may now generate a spurious trap. */ 2838 if (rtrap && !ltrap 2839 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 2840 return NULL_TREE; 2841 2842 /* If we changed the conditions that cause a trap, we lose. */ 2843 if ((ltrap || rtrap) != trap) 2844 return NULL_TREE; 2845 } 2846 2847 if (compcode == COMPCODE_TRUE) 2848 return constant_boolean_node (true, truth_type); 2849 else if (compcode == COMPCODE_FALSE) 2850 return constant_boolean_node (false, truth_type); 2851 else 2852 { 2853 enum tree_code tcode; 2854 2855 tcode = compcode_to_comparison ((enum comparison_code) compcode); 2856 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg); 2857 } 2858 } 2859 2860 /* Return nonzero if two operands (typically of the same tree node) 2861 are necessarily equal. FLAGS modifies behavior as follows: 2862 2863 If OEP_ONLY_CONST is set, only return nonzero for constants. 2864 This function tests whether the operands are indistinguishable; 2865 it does not test whether they are equal using C's == operation. 2866 The distinction is important for IEEE floating point, because 2867 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and 2868 (2) two NaNs may be indistinguishable, but NaN!=NaN. 2869 2870 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself 2871 even though it may hold multiple values during a function. 2872 This is because a GCC tree node guarantees that nothing else is 2873 executed between the evaluation of its "operands" (which may often 2874 be evaluated in arbitrary order). Hence if the operands themselves 2875 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the 2876 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST 2877 unset means assuming isochronic (or instantaneous) tree equivalence. 2878 Unless comparing arbitrary expression trees, such as from different 2879 statements, this flag can usually be left unset. 2880 2881 If OEP_PURE_SAME is set, then pure functions with identical arguments 2882 are considered the same. It is used when the caller has other ways 2883 to ensure that global memory is unchanged in between. 2884 2885 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects, 2886 not values of expressions. 2887 2888 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects 2889 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs. 2890 2891 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on 2892 any operand with side effect. This is unnecesarily conservative in the 2893 case we know that arg0 and arg1 are in disjoint code paths (such as in 2894 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing 2895 addresses with TREE_CONSTANT flag set so we know that &var == &var 2896 even if var is volatile. */ 2897 2898 int 2899 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags) 2900 { 2901 /* When checking, verify at the outermost operand_equal_p call that 2902 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same 2903 hash value. */ 2904 if (flag_checking && !(flags & OEP_NO_HASH_CHECK)) 2905 { 2906 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK)) 2907 { 2908 if (arg0 != arg1) 2909 { 2910 inchash::hash hstate0 (0), hstate1 (0); 2911 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK); 2912 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK); 2913 hashval_t h0 = hstate0.end (); 2914 hashval_t h1 = hstate1.end (); 2915 gcc_assert (h0 == h1); 2916 } 2917 return 1; 2918 } 2919 else 2920 return 0; 2921 } 2922 2923 /* If either is ERROR_MARK, they aren't equal. */ 2924 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK 2925 || TREE_TYPE (arg0) == error_mark_node 2926 || TREE_TYPE (arg1) == error_mark_node) 2927 return 0; 2928 2929 /* Similar, if either does not have a type (like a released SSA name), 2930 they aren't equal. */ 2931 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1)) 2932 return 0; 2933 2934 /* We cannot consider pointers to different address space equal. */ 2935 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 2936 && POINTER_TYPE_P (TREE_TYPE (arg1)) 2937 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))) 2938 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1))))) 2939 return 0; 2940 2941 /* Check equality of integer constants before bailing out due to 2942 precision differences. */ 2943 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST) 2944 { 2945 /* Address of INTEGER_CST is not defined; check that we did not forget 2946 to drop the OEP_ADDRESS_OF flags. */ 2947 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 2948 return tree_int_cst_equal (arg0, arg1); 2949 } 2950 2951 if (!(flags & OEP_ADDRESS_OF)) 2952 { 2953 /* If both types don't have the same signedness, then we can't consider 2954 them equal. We must check this before the STRIP_NOPS calls 2955 because they may change the signedness of the arguments. As pointers 2956 strictly don't have a signedness, require either two pointers or 2957 two non-pointers as well. */ 2958 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)) 2959 || POINTER_TYPE_P (TREE_TYPE (arg0)) 2960 != POINTER_TYPE_P (TREE_TYPE (arg1))) 2961 return 0; 2962 2963 /* If both types don't have the same precision, then it is not safe 2964 to strip NOPs. */ 2965 if (element_precision (TREE_TYPE (arg0)) 2966 != element_precision (TREE_TYPE (arg1))) 2967 return 0; 2968 2969 STRIP_NOPS (arg0); 2970 STRIP_NOPS (arg1); 2971 } 2972 #if 0 2973 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the 2974 sanity check once the issue is solved. */ 2975 else 2976 /* Addresses of conversions and SSA_NAMEs (and many other things) 2977 are not defined. Check that we did not forget to drop the 2978 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */ 2979 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1) 2980 && TREE_CODE (arg0) != SSA_NAME); 2981 #endif 2982 2983 /* In case both args are comparisons but with different comparison 2984 code, try to swap the comparison operands of one arg to produce 2985 a match and compare that variant. */ 2986 if (TREE_CODE (arg0) != TREE_CODE (arg1) 2987 && COMPARISON_CLASS_P (arg0) 2988 && COMPARISON_CLASS_P (arg1)) 2989 { 2990 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1)); 2991 2992 if (TREE_CODE (arg0) == swap_code) 2993 return operand_equal_p (TREE_OPERAND (arg0, 0), 2994 TREE_OPERAND (arg1, 1), flags) 2995 && operand_equal_p (TREE_OPERAND (arg0, 1), 2996 TREE_OPERAND (arg1, 0), flags); 2997 } 2998 2999 if (TREE_CODE (arg0) != TREE_CODE (arg1)) 3000 { 3001 /* NOP_EXPR and CONVERT_EXPR are considered equal. */ 3002 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)) 3003 ; 3004 else if (flags & OEP_ADDRESS_OF) 3005 { 3006 /* If we are interested in comparing addresses ignore 3007 MEM_REF wrappings of the base that can appear just for 3008 TBAA reasons. */ 3009 if (TREE_CODE (arg0) == MEM_REF 3010 && DECL_P (arg1) 3011 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR 3012 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1 3013 && integer_zerop (TREE_OPERAND (arg0, 1))) 3014 return 1; 3015 else if (TREE_CODE (arg1) == MEM_REF 3016 && DECL_P (arg0) 3017 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR 3018 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0 3019 && integer_zerop (TREE_OPERAND (arg1, 1))) 3020 return 1; 3021 return 0; 3022 } 3023 else 3024 return 0; 3025 } 3026 3027 /* When not checking adddresses, this is needed for conversions and for 3028 COMPONENT_REF. Might as well play it safe and always test this. */ 3029 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK 3030 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK 3031 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)) 3032 && !(flags & OEP_ADDRESS_OF))) 3033 return 0; 3034 3035 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal. 3036 We don't care about side effects in that case because the SAVE_EXPR 3037 takes care of that for us. In all other cases, two expressions are 3038 equal if they have no side effects. If we have two identical 3039 expressions with side effects that should be treated the same due 3040 to the only side effects being identical SAVE_EXPR's, that will 3041 be detected in the recursive calls below. 3042 If we are taking an invariant address of two identical objects 3043 they are necessarily equal as well. */ 3044 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST) 3045 && (TREE_CODE (arg0) == SAVE_EXPR 3046 || (flags & OEP_MATCH_SIDE_EFFECTS) 3047 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1)))) 3048 return 1; 3049 3050 /* Next handle constant cases, those for which we can return 1 even 3051 if ONLY_CONST is set. */ 3052 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)) 3053 switch (TREE_CODE (arg0)) 3054 { 3055 case INTEGER_CST: 3056 return tree_int_cst_equal (arg0, arg1); 3057 3058 case FIXED_CST: 3059 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0), 3060 TREE_FIXED_CST (arg1)); 3061 3062 case REAL_CST: 3063 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1))) 3064 return 1; 3065 3066 3067 if (!HONOR_SIGNED_ZEROS (arg0)) 3068 { 3069 /* If we do not distinguish between signed and unsigned zero, 3070 consider them equal. */ 3071 if (real_zerop (arg0) && real_zerop (arg1)) 3072 return 1; 3073 } 3074 return 0; 3075 3076 case VECTOR_CST: 3077 { 3078 if (VECTOR_CST_LOG2_NPATTERNS (arg0) 3079 != VECTOR_CST_LOG2_NPATTERNS (arg1)) 3080 return 0; 3081 3082 if (VECTOR_CST_NELTS_PER_PATTERN (arg0) 3083 != VECTOR_CST_NELTS_PER_PATTERN (arg1)) 3084 return 0; 3085 3086 unsigned int count = vector_cst_encoded_nelts (arg0); 3087 for (unsigned int i = 0; i < count; ++i) 3088 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i), 3089 VECTOR_CST_ENCODED_ELT (arg1, i), flags)) 3090 return 0; 3091 return 1; 3092 } 3093 3094 case COMPLEX_CST: 3095 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1), 3096 flags) 3097 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1), 3098 flags)); 3099 3100 case STRING_CST: 3101 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1) 3102 && ! memcmp (TREE_STRING_POINTER (arg0), 3103 TREE_STRING_POINTER (arg1), 3104 TREE_STRING_LENGTH (arg0))); 3105 3106 case ADDR_EXPR: 3107 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3108 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 3109 flags | OEP_ADDRESS_OF 3110 | OEP_MATCH_SIDE_EFFECTS); 3111 case CONSTRUCTOR: 3112 /* In GIMPLE empty constructors are allowed in initializers of 3113 aggregates. */ 3114 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1); 3115 default: 3116 break; 3117 } 3118 3119 if (flags & OEP_ONLY_CONST) 3120 return 0; 3121 3122 /* Define macros to test an operand from arg0 and arg1 for equality and a 3123 variant that allows null and views null as being different from any 3124 non-null value. In the latter case, if either is null, the both 3125 must be; otherwise, do the normal comparison. */ 3126 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \ 3127 TREE_OPERAND (arg1, N), flags) 3128 3129 #define OP_SAME_WITH_NULL(N) \ 3130 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \ 3131 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N)) 3132 3133 switch (TREE_CODE_CLASS (TREE_CODE (arg0))) 3134 { 3135 case tcc_unary: 3136 /* Two conversions are equal only if signedness and modes match. */ 3137 switch (TREE_CODE (arg0)) 3138 { 3139 CASE_CONVERT: 3140 case FIX_TRUNC_EXPR: 3141 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) 3142 != TYPE_UNSIGNED (TREE_TYPE (arg1))) 3143 return 0; 3144 break; 3145 default: 3146 break; 3147 } 3148 3149 return OP_SAME (0); 3150 3151 3152 case tcc_comparison: 3153 case tcc_binary: 3154 if (OP_SAME (0) && OP_SAME (1)) 3155 return 1; 3156 3157 /* For commutative ops, allow the other order. */ 3158 return (commutative_tree_code (TREE_CODE (arg0)) 3159 && operand_equal_p (TREE_OPERAND (arg0, 0), 3160 TREE_OPERAND (arg1, 1), flags) 3161 && operand_equal_p (TREE_OPERAND (arg0, 1), 3162 TREE_OPERAND (arg1, 0), flags)); 3163 3164 case tcc_reference: 3165 /* If either of the pointer (or reference) expressions we are 3166 dereferencing contain a side effect, these cannot be equal, 3167 but their addresses can be. */ 3168 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0 3169 && (TREE_SIDE_EFFECTS (arg0) 3170 || TREE_SIDE_EFFECTS (arg1))) 3171 return 0; 3172 3173 switch (TREE_CODE (arg0)) 3174 { 3175 case INDIRECT_REF: 3176 if (!(flags & OEP_ADDRESS_OF) 3177 && (TYPE_ALIGN (TREE_TYPE (arg0)) 3178 != TYPE_ALIGN (TREE_TYPE (arg1)))) 3179 return 0; 3180 flags &= ~OEP_ADDRESS_OF; 3181 return OP_SAME (0); 3182 3183 case IMAGPART_EXPR: 3184 /* Require the same offset. */ 3185 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3186 TYPE_SIZE (TREE_TYPE (arg1)), 3187 flags & ~OEP_ADDRESS_OF)) 3188 return 0; 3189 3190 /* Fallthru. */ 3191 case REALPART_EXPR: 3192 case VIEW_CONVERT_EXPR: 3193 return OP_SAME (0); 3194 3195 case TARGET_MEM_REF: 3196 case MEM_REF: 3197 if (!(flags & OEP_ADDRESS_OF)) 3198 { 3199 /* Require equal access sizes */ 3200 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1)) 3201 && (!TYPE_SIZE (TREE_TYPE (arg0)) 3202 || !TYPE_SIZE (TREE_TYPE (arg1)) 3203 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3204 TYPE_SIZE (TREE_TYPE (arg1)), 3205 flags))) 3206 return 0; 3207 /* Verify that access happens in similar types. */ 3208 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) 3209 return 0; 3210 /* Verify that accesses are TBAA compatible. */ 3211 if (!alias_ptr_types_compatible_p 3212 (TREE_TYPE (TREE_OPERAND (arg0, 1)), 3213 TREE_TYPE (TREE_OPERAND (arg1, 1))) 3214 || (MR_DEPENDENCE_CLIQUE (arg0) 3215 != MR_DEPENDENCE_CLIQUE (arg1)) 3216 || (MR_DEPENDENCE_BASE (arg0) 3217 != MR_DEPENDENCE_BASE (arg1))) 3218 return 0; 3219 /* Verify that alignment is compatible. */ 3220 if (TYPE_ALIGN (TREE_TYPE (arg0)) 3221 != TYPE_ALIGN (TREE_TYPE (arg1))) 3222 return 0; 3223 } 3224 flags &= ~OEP_ADDRESS_OF; 3225 return (OP_SAME (0) && OP_SAME (1) 3226 /* TARGET_MEM_REF require equal extra operands. */ 3227 && (TREE_CODE (arg0) != TARGET_MEM_REF 3228 || (OP_SAME_WITH_NULL (2) 3229 && OP_SAME_WITH_NULL (3) 3230 && OP_SAME_WITH_NULL (4)))); 3231 3232 case ARRAY_REF: 3233 case ARRAY_RANGE_REF: 3234 if (!OP_SAME (0)) 3235 return 0; 3236 flags &= ~OEP_ADDRESS_OF; 3237 /* Compare the array index by value if it is constant first as we 3238 may have different types but same value here. */ 3239 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1), 3240 TREE_OPERAND (arg1, 1)) 3241 || OP_SAME (1)) 3242 && OP_SAME_WITH_NULL (2) 3243 && OP_SAME_WITH_NULL (3) 3244 /* Compare low bound and element size as with OEP_ADDRESS_OF 3245 we have to account for the offset of the ref. */ 3246 && (TREE_TYPE (TREE_OPERAND (arg0, 0)) 3247 == TREE_TYPE (TREE_OPERAND (arg1, 0)) 3248 || (operand_equal_p (array_ref_low_bound 3249 (CONST_CAST_TREE (arg0)), 3250 array_ref_low_bound 3251 (CONST_CAST_TREE (arg1)), flags) 3252 && operand_equal_p (array_ref_element_size 3253 (CONST_CAST_TREE (arg0)), 3254 array_ref_element_size 3255 (CONST_CAST_TREE (arg1)), 3256 flags)))); 3257 3258 case COMPONENT_REF: 3259 /* Handle operand 2 the same as for ARRAY_REF. Operand 0 3260 may be NULL when we're called to compare MEM_EXPRs. */ 3261 if (!OP_SAME_WITH_NULL (0) 3262 || !OP_SAME (1)) 3263 return 0; 3264 flags &= ~OEP_ADDRESS_OF; 3265 return OP_SAME_WITH_NULL (2); 3266 3267 case BIT_FIELD_REF: 3268 if (!OP_SAME (0)) 3269 return 0; 3270 flags &= ~OEP_ADDRESS_OF; 3271 return OP_SAME (1) && OP_SAME (2); 3272 3273 default: 3274 return 0; 3275 } 3276 3277 case tcc_expression: 3278 switch (TREE_CODE (arg0)) 3279 { 3280 case ADDR_EXPR: 3281 /* Be sure we pass right ADDRESS_OF flag. */ 3282 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3283 return operand_equal_p (TREE_OPERAND (arg0, 0), 3284 TREE_OPERAND (arg1, 0), 3285 flags | OEP_ADDRESS_OF); 3286 3287 case TRUTH_NOT_EXPR: 3288 return OP_SAME (0); 3289 3290 case TRUTH_ANDIF_EXPR: 3291 case TRUTH_ORIF_EXPR: 3292 return OP_SAME (0) && OP_SAME (1); 3293 3294 case FMA_EXPR: 3295 case WIDEN_MULT_PLUS_EXPR: 3296 case WIDEN_MULT_MINUS_EXPR: 3297 if (!OP_SAME (2)) 3298 return 0; 3299 /* The multiplcation operands are commutative. */ 3300 /* FALLTHRU */ 3301 3302 case TRUTH_AND_EXPR: 3303 case TRUTH_OR_EXPR: 3304 case TRUTH_XOR_EXPR: 3305 if (OP_SAME (0) && OP_SAME (1)) 3306 return 1; 3307 3308 /* Otherwise take into account this is a commutative operation. */ 3309 return (operand_equal_p (TREE_OPERAND (arg0, 0), 3310 TREE_OPERAND (arg1, 1), flags) 3311 && operand_equal_p (TREE_OPERAND (arg0, 1), 3312 TREE_OPERAND (arg1, 0), flags)); 3313 3314 case COND_EXPR: 3315 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2)) 3316 return 0; 3317 flags &= ~OEP_ADDRESS_OF; 3318 return OP_SAME (0); 3319 3320 case BIT_INSERT_EXPR: 3321 /* BIT_INSERT_EXPR has an implict operand as the type precision 3322 of op1. Need to check to make sure they are the same. */ 3323 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 3324 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 3325 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1))) 3326 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1)))) 3327 return false; 3328 /* FALLTHRU */ 3329 3330 case VEC_COND_EXPR: 3331 case DOT_PROD_EXPR: 3332 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2); 3333 3334 case MODIFY_EXPR: 3335 case INIT_EXPR: 3336 case COMPOUND_EXPR: 3337 case PREDECREMENT_EXPR: 3338 case PREINCREMENT_EXPR: 3339 case POSTDECREMENT_EXPR: 3340 case POSTINCREMENT_EXPR: 3341 if (flags & OEP_LEXICOGRAPHIC) 3342 return OP_SAME (0) && OP_SAME (1); 3343 return 0; 3344 3345 case CLEANUP_POINT_EXPR: 3346 case EXPR_STMT: 3347 if (flags & OEP_LEXICOGRAPHIC) 3348 return OP_SAME (0); 3349 return 0; 3350 3351 default: 3352 return 0; 3353 } 3354 3355 case tcc_vl_exp: 3356 switch (TREE_CODE (arg0)) 3357 { 3358 case CALL_EXPR: 3359 if ((CALL_EXPR_FN (arg0) == NULL_TREE) 3360 != (CALL_EXPR_FN (arg1) == NULL_TREE)) 3361 /* If not both CALL_EXPRs are either internal or normal function 3362 functions, then they are not equal. */ 3363 return 0; 3364 else if (CALL_EXPR_FN (arg0) == NULL_TREE) 3365 { 3366 /* If the CALL_EXPRs call different internal functions, then they 3367 are not equal. */ 3368 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1)) 3369 return 0; 3370 } 3371 else 3372 { 3373 /* If the CALL_EXPRs call different functions, then they are not 3374 equal. */ 3375 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1), 3376 flags)) 3377 return 0; 3378 } 3379 3380 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */ 3381 { 3382 unsigned int cef = call_expr_flags (arg0); 3383 if (flags & OEP_PURE_SAME) 3384 cef &= ECF_CONST | ECF_PURE; 3385 else 3386 cef &= ECF_CONST; 3387 if (!cef && !(flags & OEP_LEXICOGRAPHIC)) 3388 return 0; 3389 } 3390 3391 /* Now see if all the arguments are the same. */ 3392 { 3393 const_call_expr_arg_iterator iter0, iter1; 3394 const_tree a0, a1; 3395 for (a0 = first_const_call_expr_arg (arg0, &iter0), 3396 a1 = first_const_call_expr_arg (arg1, &iter1); 3397 a0 && a1; 3398 a0 = next_const_call_expr_arg (&iter0), 3399 a1 = next_const_call_expr_arg (&iter1)) 3400 if (! operand_equal_p (a0, a1, flags)) 3401 return 0; 3402 3403 /* If we get here and both argument lists are exhausted 3404 then the CALL_EXPRs are equal. */ 3405 return ! (a0 || a1); 3406 } 3407 default: 3408 return 0; 3409 } 3410 3411 case tcc_declaration: 3412 /* Consider __builtin_sqrt equal to sqrt. */ 3413 return (TREE_CODE (arg0) == FUNCTION_DECL 3414 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1) 3415 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1) 3416 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1)); 3417 3418 case tcc_exceptional: 3419 if (TREE_CODE (arg0) == CONSTRUCTOR) 3420 { 3421 /* In GIMPLE constructors are used only to build vectors from 3422 elements. Individual elements in the constructor must be 3423 indexed in increasing order and form an initial sequence. 3424 3425 We make no effort to compare constructors in generic. 3426 (see sem_variable::equals in ipa-icf which can do so for 3427 constants). */ 3428 if (!VECTOR_TYPE_P (TREE_TYPE (arg0)) 3429 || !VECTOR_TYPE_P (TREE_TYPE (arg1))) 3430 return 0; 3431 3432 /* Be sure that vectors constructed have the same representation. 3433 We only tested element precision and modes to match. 3434 Vectors may be BLKmode and thus also check that the number of 3435 parts match. */ 3436 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), 3437 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))) 3438 return 0; 3439 3440 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0); 3441 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1); 3442 unsigned int len = vec_safe_length (v0); 3443 3444 if (len != vec_safe_length (v1)) 3445 return 0; 3446 3447 for (unsigned int i = 0; i < len; i++) 3448 { 3449 constructor_elt *c0 = &(*v0)[i]; 3450 constructor_elt *c1 = &(*v1)[i]; 3451 3452 if (!operand_equal_p (c0->value, c1->value, flags) 3453 /* In GIMPLE the indexes can be either NULL or matching i. 3454 Double check this so we won't get false 3455 positives for GENERIC. */ 3456 || (c0->index 3457 && (TREE_CODE (c0->index) != INTEGER_CST 3458 || !compare_tree_int (c0->index, i))) 3459 || (c1->index 3460 && (TREE_CODE (c1->index) != INTEGER_CST 3461 || !compare_tree_int (c1->index, i)))) 3462 return 0; 3463 } 3464 return 1; 3465 } 3466 else if (TREE_CODE (arg0) == STATEMENT_LIST 3467 && (flags & OEP_LEXICOGRAPHIC)) 3468 { 3469 /* Compare the STATEMENT_LISTs. */ 3470 tree_stmt_iterator tsi1, tsi2; 3471 tree body1 = CONST_CAST_TREE (arg0); 3472 tree body2 = CONST_CAST_TREE (arg1); 3473 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ; 3474 tsi_next (&tsi1), tsi_next (&tsi2)) 3475 { 3476 /* The lists don't have the same number of statements. */ 3477 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2)) 3478 return 0; 3479 if (tsi_end_p (tsi1) && tsi_end_p (tsi2)) 3480 return 1; 3481 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2), 3482 flags & (OEP_LEXICOGRAPHIC 3483 | OEP_NO_HASH_CHECK))) 3484 return 0; 3485 } 3486 } 3487 return 0; 3488 3489 case tcc_statement: 3490 switch (TREE_CODE (arg0)) 3491 { 3492 case RETURN_EXPR: 3493 if (flags & OEP_LEXICOGRAPHIC) 3494 return OP_SAME_WITH_NULL (0); 3495 return 0; 3496 case DEBUG_BEGIN_STMT: 3497 if (flags & OEP_LEXICOGRAPHIC) 3498 return 1; 3499 return 0; 3500 default: 3501 return 0; 3502 } 3503 3504 default: 3505 return 0; 3506 } 3507 3508 #undef OP_SAME 3509 #undef OP_SAME_WITH_NULL 3510 } 3511 3512 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1 3513 with a different signedness or a narrower precision. */ 3514 3515 static bool 3516 operand_equal_for_comparison_p (tree arg0, tree arg1) 3517 { 3518 if (operand_equal_p (arg0, arg1, 0)) 3519 return true; 3520 3521 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 3522 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1))) 3523 return false; 3524 3525 /* Discard any conversions that don't change the modes of ARG0 and ARG1 3526 and see if the inner values are the same. This removes any 3527 signedness comparison, which doesn't matter here. */ 3528 tree op0 = arg0; 3529 tree op1 = arg1; 3530 STRIP_NOPS (op0); 3531 STRIP_NOPS (op1); 3532 if (operand_equal_p (op0, op1, 0)) 3533 return true; 3534 3535 /* Discard a single widening conversion from ARG1 and see if the inner 3536 value is the same as ARG0. */ 3537 if (CONVERT_EXPR_P (arg1) 3538 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3539 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3540 < TYPE_PRECISION (TREE_TYPE (arg1)) 3541 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 3542 return true; 3543 3544 return false; 3545 } 3546 3547 /* See if ARG is an expression that is either a comparison or is performing 3548 arithmetic on comparisons. The comparisons must only be comparing 3549 two different values, which will be stored in *CVAL1 and *CVAL2; if 3550 they are nonzero it means that some operands have already been found. 3551 No variables may be used anywhere else in the expression except in the 3552 comparisons. 3553 3554 If this is true, return 1. Otherwise, return zero. */ 3555 3556 static int 3557 twoval_comparison_p (tree arg, tree *cval1, tree *cval2) 3558 { 3559 enum tree_code code = TREE_CODE (arg); 3560 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3561 3562 /* We can handle some of the tcc_expression cases here. */ 3563 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3564 tclass = tcc_unary; 3565 else if (tclass == tcc_expression 3566 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR 3567 || code == COMPOUND_EXPR)) 3568 tclass = tcc_binary; 3569 3570 switch (tclass) 3571 { 3572 case tcc_unary: 3573 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2); 3574 3575 case tcc_binary: 3576 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3577 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)); 3578 3579 case tcc_constant: 3580 return 1; 3581 3582 case tcc_expression: 3583 if (code == COND_EXPR) 3584 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3585 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2) 3586 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2)); 3587 return 0; 3588 3589 case tcc_comparison: 3590 /* First see if we can handle the first operand, then the second. For 3591 the second operand, we know *CVAL1 can't be zero. It must be that 3592 one side of the comparison is each of the values; test for the 3593 case where this isn't true by failing if the two operands 3594 are the same. */ 3595 3596 if (operand_equal_p (TREE_OPERAND (arg, 0), 3597 TREE_OPERAND (arg, 1), 0)) 3598 return 0; 3599 3600 if (*cval1 == 0) 3601 *cval1 = TREE_OPERAND (arg, 0); 3602 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0)) 3603 ; 3604 else if (*cval2 == 0) 3605 *cval2 = TREE_OPERAND (arg, 0); 3606 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0)) 3607 ; 3608 else 3609 return 0; 3610 3611 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0)) 3612 ; 3613 else if (*cval2 == 0) 3614 *cval2 = TREE_OPERAND (arg, 1); 3615 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0)) 3616 ; 3617 else 3618 return 0; 3619 3620 return 1; 3621 3622 default: 3623 return 0; 3624 } 3625 } 3626 3627 /* ARG is a tree that is known to contain just arithmetic operations and 3628 comparisons. Evaluate the operations in the tree substituting NEW0 for 3629 any occurrence of OLD0 as an operand of a comparison and likewise for 3630 NEW1 and OLD1. */ 3631 3632 static tree 3633 eval_subst (location_t loc, tree arg, tree old0, tree new0, 3634 tree old1, tree new1) 3635 { 3636 tree type = TREE_TYPE (arg); 3637 enum tree_code code = TREE_CODE (arg); 3638 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3639 3640 /* We can handle some of the tcc_expression cases here. */ 3641 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3642 tclass = tcc_unary; 3643 else if (tclass == tcc_expression 3644 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 3645 tclass = tcc_binary; 3646 3647 switch (tclass) 3648 { 3649 case tcc_unary: 3650 return fold_build1_loc (loc, code, type, 3651 eval_subst (loc, TREE_OPERAND (arg, 0), 3652 old0, new0, old1, new1)); 3653 3654 case tcc_binary: 3655 return fold_build2_loc (loc, code, type, 3656 eval_subst (loc, TREE_OPERAND (arg, 0), 3657 old0, new0, old1, new1), 3658 eval_subst (loc, TREE_OPERAND (arg, 1), 3659 old0, new0, old1, new1)); 3660 3661 case tcc_expression: 3662 switch (code) 3663 { 3664 case SAVE_EXPR: 3665 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0, 3666 old1, new1); 3667 3668 case COMPOUND_EXPR: 3669 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0, 3670 old1, new1); 3671 3672 case COND_EXPR: 3673 return fold_build3_loc (loc, code, type, 3674 eval_subst (loc, TREE_OPERAND (arg, 0), 3675 old0, new0, old1, new1), 3676 eval_subst (loc, TREE_OPERAND (arg, 1), 3677 old0, new0, old1, new1), 3678 eval_subst (loc, TREE_OPERAND (arg, 2), 3679 old0, new0, old1, new1)); 3680 default: 3681 break; 3682 } 3683 /* Fall through - ??? */ 3684 3685 case tcc_comparison: 3686 { 3687 tree arg0 = TREE_OPERAND (arg, 0); 3688 tree arg1 = TREE_OPERAND (arg, 1); 3689 3690 /* We need to check both for exact equality and tree equality. The 3691 former will be true if the operand has a side-effect. In that 3692 case, we know the operand occurred exactly once. */ 3693 3694 if (arg0 == old0 || operand_equal_p (arg0, old0, 0)) 3695 arg0 = new0; 3696 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0)) 3697 arg0 = new1; 3698 3699 if (arg1 == old0 || operand_equal_p (arg1, old0, 0)) 3700 arg1 = new0; 3701 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0)) 3702 arg1 = new1; 3703 3704 return fold_build2_loc (loc, code, type, arg0, arg1); 3705 } 3706 3707 default: 3708 return arg; 3709 } 3710 } 3711 3712 /* Return a tree for the case when the result of an expression is RESULT 3713 converted to TYPE and OMITTED was previously an operand of the expression 3714 but is now not needed (e.g., we folded OMITTED * 0). 3715 3716 If OMITTED has side effects, we must evaluate it. Otherwise, just do 3717 the conversion of RESULT to TYPE. */ 3718 3719 tree 3720 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted) 3721 { 3722 tree t = fold_convert_loc (loc, type, result); 3723 3724 /* If the resulting operand is an empty statement, just return the omitted 3725 statement casted to void. */ 3726 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted)) 3727 return build1_loc (loc, NOP_EXPR, void_type_node, 3728 fold_ignored_result (omitted)); 3729 3730 if (TREE_SIDE_EFFECTS (omitted)) 3731 return build2_loc (loc, COMPOUND_EXPR, type, 3732 fold_ignored_result (omitted), t); 3733 3734 return non_lvalue_loc (loc, t); 3735 } 3736 3737 /* Return a tree for the case when the result of an expression is RESULT 3738 converted to TYPE and OMITTED1 and OMITTED2 were previously operands 3739 of the expression but are now not needed. 3740 3741 If OMITTED1 or OMITTED2 has side effects, they must be evaluated. 3742 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is 3743 evaluated before OMITTED2. Otherwise, if neither has side effects, 3744 just do the conversion of RESULT to TYPE. */ 3745 3746 tree 3747 omit_two_operands_loc (location_t loc, tree type, tree result, 3748 tree omitted1, tree omitted2) 3749 { 3750 tree t = fold_convert_loc (loc, type, result); 3751 3752 if (TREE_SIDE_EFFECTS (omitted2)) 3753 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t); 3754 if (TREE_SIDE_EFFECTS (omitted1)) 3755 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t); 3756 3757 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t; 3758 } 3759 3760 3761 /* Return a simplified tree node for the truth-negation of ARG. This 3762 never alters ARG itself. We assume that ARG is an operation that 3763 returns a truth value (0 or 1). 3764 3765 FIXME: one would think we would fold the result, but it causes 3766 problems with the dominator optimizer. */ 3767 3768 static tree 3769 fold_truth_not_expr (location_t loc, tree arg) 3770 { 3771 tree type = TREE_TYPE (arg); 3772 enum tree_code code = TREE_CODE (arg); 3773 location_t loc1, loc2; 3774 3775 /* If this is a comparison, we can simply invert it, except for 3776 floating-point non-equality comparisons, in which case we just 3777 enclose a TRUTH_NOT_EXPR around what we have. */ 3778 3779 if (TREE_CODE_CLASS (code) == tcc_comparison) 3780 { 3781 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0)); 3782 if (FLOAT_TYPE_P (op_type) 3783 && flag_trapping_math 3784 && code != ORDERED_EXPR && code != UNORDERED_EXPR 3785 && code != NE_EXPR && code != EQ_EXPR) 3786 return NULL_TREE; 3787 3788 code = invert_tree_comparison (code, HONOR_NANS (op_type)); 3789 if (code == ERROR_MARK) 3790 return NULL_TREE; 3791 3792 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0), 3793 TREE_OPERAND (arg, 1)); 3794 if (TREE_NO_WARNING (arg)) 3795 TREE_NO_WARNING (ret) = 1; 3796 return ret; 3797 } 3798 3799 switch (code) 3800 { 3801 case INTEGER_CST: 3802 return constant_boolean_node (integer_zerop (arg), type); 3803 3804 case TRUTH_AND_EXPR: 3805 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3806 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3807 return build2_loc (loc, TRUTH_OR_EXPR, type, 3808 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3809 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3810 3811 case TRUTH_OR_EXPR: 3812 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3813 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3814 return build2_loc (loc, TRUTH_AND_EXPR, type, 3815 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3816 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3817 3818 case TRUTH_XOR_EXPR: 3819 /* Here we can invert either operand. We invert the first operand 3820 unless the second operand is a TRUTH_NOT_EXPR in which case our 3821 result is the XOR of the first operand with the inside of the 3822 negation of the second operand. */ 3823 3824 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR) 3825 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0), 3826 TREE_OPERAND (TREE_OPERAND (arg, 1), 0)); 3827 else 3828 return build2_loc (loc, TRUTH_XOR_EXPR, type, 3829 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)), 3830 TREE_OPERAND (arg, 1)); 3831 3832 case TRUTH_ANDIF_EXPR: 3833 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3834 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3835 return build2_loc (loc, TRUTH_ORIF_EXPR, type, 3836 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3837 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3838 3839 case TRUTH_ORIF_EXPR: 3840 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3841 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3842 return build2_loc (loc, TRUTH_ANDIF_EXPR, type, 3843 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3844 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3845 3846 case TRUTH_NOT_EXPR: 3847 return TREE_OPERAND (arg, 0); 3848 3849 case COND_EXPR: 3850 { 3851 tree arg1 = TREE_OPERAND (arg, 1); 3852 tree arg2 = TREE_OPERAND (arg, 2); 3853 3854 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3855 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc); 3856 3857 /* A COND_EXPR may have a throw as one operand, which 3858 then has void type. Just leave void operands 3859 as they are. */ 3860 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0), 3861 VOID_TYPE_P (TREE_TYPE (arg1)) 3862 ? arg1 : invert_truthvalue_loc (loc1, arg1), 3863 VOID_TYPE_P (TREE_TYPE (arg2)) 3864 ? arg2 : invert_truthvalue_loc (loc2, arg2)); 3865 } 3866 3867 case COMPOUND_EXPR: 3868 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3869 return build2_loc (loc, COMPOUND_EXPR, type, 3870 TREE_OPERAND (arg, 0), 3871 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1))); 3872 3873 case NON_LVALUE_EXPR: 3874 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3875 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)); 3876 3877 CASE_CONVERT: 3878 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE) 3879 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3880 3881 /* fall through */ 3882 3883 case FLOAT_EXPR: 3884 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3885 return build1_loc (loc, TREE_CODE (arg), type, 3886 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3887 3888 case BIT_AND_EXPR: 3889 if (!integer_onep (TREE_OPERAND (arg, 1))) 3890 return NULL_TREE; 3891 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0)); 3892 3893 case SAVE_EXPR: 3894 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3895 3896 case CLEANUP_POINT_EXPR: 3897 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3898 return build1_loc (loc, CLEANUP_POINT_EXPR, type, 3899 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3900 3901 default: 3902 return NULL_TREE; 3903 } 3904 } 3905 3906 /* Fold the truth-negation of ARG. This never alters ARG itself. We 3907 assume that ARG is an operation that returns a truth value (0 or 1 3908 for scalars, 0 or -1 for vectors). Return the folded expression if 3909 folding is successful. Otherwise, return NULL_TREE. */ 3910 3911 static tree 3912 fold_invert_truthvalue (location_t loc, tree arg) 3913 { 3914 tree type = TREE_TYPE (arg); 3915 return fold_unary_loc (loc, VECTOR_TYPE_P (type) 3916 ? BIT_NOT_EXPR 3917 : TRUTH_NOT_EXPR, 3918 type, arg); 3919 } 3920 3921 /* Return a simplified tree node for the truth-negation of ARG. This 3922 never alters ARG itself. We assume that ARG is an operation that 3923 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */ 3924 3925 tree 3926 invert_truthvalue_loc (location_t loc, tree arg) 3927 { 3928 if (TREE_CODE (arg) == ERROR_MARK) 3929 return arg; 3930 3931 tree type = TREE_TYPE (arg); 3932 return fold_build1_loc (loc, VECTOR_TYPE_P (type) 3933 ? BIT_NOT_EXPR 3934 : TRUTH_NOT_EXPR, 3935 type, arg); 3936 } 3937 3938 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER 3939 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero 3940 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER 3941 is the original memory reference used to preserve the alias set of 3942 the access. */ 3943 3944 static tree 3945 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type, 3946 HOST_WIDE_INT bitsize, poly_int64 bitpos, 3947 int unsignedp, int reversep) 3948 { 3949 tree result, bftype; 3950 3951 /* Attempt not to lose the access path if possible. */ 3952 if (TREE_CODE (orig_inner) == COMPONENT_REF) 3953 { 3954 tree ninner = TREE_OPERAND (orig_inner, 0); 3955 machine_mode nmode; 3956 poly_int64 nbitsize, nbitpos; 3957 tree noffset; 3958 int nunsignedp, nreversep, nvolatilep = 0; 3959 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos, 3960 &noffset, &nmode, &nunsignedp, 3961 &nreversep, &nvolatilep); 3962 if (base == inner 3963 && noffset == NULL_TREE 3964 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize) 3965 && !reversep 3966 && !nreversep 3967 && !nvolatilep) 3968 { 3969 inner = ninner; 3970 bitpos -= nbitpos; 3971 } 3972 } 3973 3974 alias_set_type iset = get_alias_set (orig_inner); 3975 if (iset == 0 && get_alias_set (inner) != iset) 3976 inner = fold_build2 (MEM_REF, TREE_TYPE (inner), 3977 build_fold_addr_expr (inner), 3978 build_int_cst (ptr_type_node, 0)); 3979 3980 if (known_eq (bitpos, 0) && !reversep) 3981 { 3982 tree size = TYPE_SIZE (TREE_TYPE (inner)); 3983 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner)) 3984 || POINTER_TYPE_P (TREE_TYPE (inner))) 3985 && tree_fits_shwi_p (size) 3986 && tree_to_shwi (size) == bitsize) 3987 return fold_convert_loc (loc, type, inner); 3988 } 3989 3990 bftype = type; 3991 if (TYPE_PRECISION (bftype) != bitsize 3992 || TYPE_UNSIGNED (bftype) == !unsignedp) 3993 bftype = build_nonstandard_integer_type (bitsize, 0); 3994 3995 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner, 3996 bitsize_int (bitsize), bitsize_int (bitpos)); 3997 REF_REVERSE_STORAGE_ORDER (result) = reversep; 3998 3999 if (bftype != type) 4000 result = fold_convert_loc (loc, type, result); 4001 4002 return result; 4003 } 4004 4005 /* Optimize a bit-field compare. 4006 4007 There are two cases: First is a compare against a constant and the 4008 second is a comparison of two items where the fields are at the same 4009 bit position relative to the start of a chunk (byte, halfword, word) 4010 large enough to contain it. In these cases we can avoid the shift 4011 implicit in bitfield extractions. 4012 4013 For constants, we emit a compare of the shifted constant with the 4014 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being 4015 compared. For two fields at the same position, we do the ANDs with the 4016 similar mask and compare the result of the ANDs. 4017 4018 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR. 4019 COMPARE_TYPE is the type of the comparison, and LHS and RHS 4020 are the left and right operands of the comparison, respectively. 4021 4022 If the optimization described above can be done, we return the resulting 4023 tree. Otherwise we return zero. */ 4024 4025 static tree 4026 optimize_bit_field_compare (location_t loc, enum tree_code code, 4027 tree compare_type, tree lhs, tree rhs) 4028 { 4029 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize; 4030 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize; 4031 tree type = TREE_TYPE (lhs); 4032 tree unsigned_type; 4033 int const_p = TREE_CODE (rhs) == INTEGER_CST; 4034 machine_mode lmode, rmode; 4035 scalar_int_mode nmode; 4036 int lunsignedp, runsignedp; 4037 int lreversep, rreversep; 4038 int lvolatilep = 0, rvolatilep = 0; 4039 tree linner, rinner = NULL_TREE; 4040 tree mask; 4041 tree offset; 4042 4043 /* Get all the information about the extractions being done. If the bit size 4044 is the same as the size of the underlying object, we aren't doing an 4045 extraction at all and so can do nothing. We also don't want to 4046 do anything if the inner expression is a PLACEHOLDER_EXPR since we 4047 then will no longer be able to replace it. */ 4048 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode, 4049 &lunsignedp, &lreversep, &lvolatilep); 4050 if (linner == lhs 4051 || !known_size_p (plbitsize) 4052 || !plbitsize.is_constant (&lbitsize) 4053 || !plbitpos.is_constant (&lbitpos) 4054 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode)) 4055 || offset != 0 4056 || TREE_CODE (linner) == PLACEHOLDER_EXPR 4057 || lvolatilep) 4058 return 0; 4059 4060 if (const_p) 4061 rreversep = lreversep; 4062 else 4063 { 4064 /* If this is not a constant, we can only do something if bit positions, 4065 sizes, signedness and storage order are the same. */ 4066 rinner 4067 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode, 4068 &runsignedp, &rreversep, &rvolatilep); 4069 4070 if (rinner == rhs 4071 || maybe_ne (lbitpos, rbitpos) 4072 || maybe_ne (lbitsize, rbitsize) 4073 || lunsignedp != runsignedp 4074 || lreversep != rreversep 4075 || offset != 0 4076 || TREE_CODE (rinner) == PLACEHOLDER_EXPR 4077 || rvolatilep) 4078 return 0; 4079 } 4080 4081 /* Honor the C++ memory model and mimic what RTL expansion does. */ 4082 poly_uint64 bitstart = 0; 4083 poly_uint64 bitend = 0; 4084 if (TREE_CODE (lhs) == COMPONENT_REF) 4085 { 4086 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset); 4087 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE) 4088 return 0; 4089 } 4090 4091 /* See if we can find a mode to refer to this field. We should be able to, 4092 but fail if we can't. */ 4093 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend, 4094 const_p ? TYPE_ALIGN (TREE_TYPE (linner)) 4095 : MIN (TYPE_ALIGN (TREE_TYPE (linner)), 4096 TYPE_ALIGN (TREE_TYPE (rinner))), 4097 BITS_PER_WORD, false, &nmode)) 4098 return 0; 4099 4100 /* Set signed and unsigned types of the precision of this mode for the 4101 shifts below. */ 4102 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1); 4103 4104 /* Compute the bit position and size for the new reference and our offset 4105 within it. If the new reference is the same size as the original, we 4106 won't optimize anything, so return zero. */ 4107 nbitsize = GET_MODE_BITSIZE (nmode); 4108 nbitpos = lbitpos & ~ (nbitsize - 1); 4109 lbitpos -= nbitpos; 4110 if (nbitsize == lbitsize) 4111 return 0; 4112 4113 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 4114 lbitpos = nbitsize - lbitsize - lbitpos; 4115 4116 /* Make the mask to be used against the extracted field. */ 4117 mask = build_int_cst_type (unsigned_type, -1); 4118 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize)); 4119 mask = const_binop (RSHIFT_EXPR, mask, 4120 size_int (nbitsize - lbitsize - lbitpos)); 4121 4122 if (! const_p) 4123 { 4124 if (nbitpos < 0) 4125 return 0; 4126 4127 /* If not comparing with constant, just rework the comparison 4128 and return. */ 4129 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4130 nbitsize, nbitpos, 1, lreversep); 4131 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask); 4132 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type, 4133 nbitsize, nbitpos, 1, rreversep); 4134 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask); 4135 return fold_build2_loc (loc, code, compare_type, t1, t2); 4136 } 4137 4138 /* Otherwise, we are handling the constant case. See if the constant is too 4139 big for the field. Warn and return a tree for 0 (false) if so. We do 4140 this not only for its own sake, but to avoid having to test for this 4141 error case below. If we didn't, we might generate wrong code. 4142 4143 For unsigned fields, the constant shifted right by the field length should 4144 be all zero. For signed fields, the high-order bits should agree with 4145 the sign bit. */ 4146 4147 if (lunsignedp) 4148 { 4149 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0) 4150 { 4151 warning (0, "comparison is always %d due to width of bit-field", 4152 code == NE_EXPR); 4153 return constant_boolean_node (code == NE_EXPR, compare_type); 4154 } 4155 } 4156 else 4157 { 4158 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1); 4159 if (tem != 0 && tem != -1) 4160 { 4161 warning (0, "comparison is always %d due to width of bit-field", 4162 code == NE_EXPR); 4163 return constant_boolean_node (code == NE_EXPR, compare_type); 4164 } 4165 } 4166 4167 if (nbitpos < 0) 4168 return 0; 4169 4170 /* Single-bit compares should always be against zero. */ 4171 if (lbitsize == 1 && ! integer_zerop (rhs)) 4172 { 4173 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR; 4174 rhs = build_int_cst (type, 0); 4175 } 4176 4177 /* Make a new bitfield reference, shift the constant over the 4178 appropriate number of bits and mask it with the computed mask 4179 (in case this was a signed field). If we changed it, make a new one. */ 4180 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4181 nbitsize, nbitpos, 1, lreversep); 4182 4183 rhs = const_binop (BIT_AND_EXPR, 4184 const_binop (LSHIFT_EXPR, 4185 fold_convert_loc (loc, unsigned_type, rhs), 4186 size_int (lbitpos)), 4187 mask); 4188 4189 lhs = build2_loc (loc, code, compare_type, 4190 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs); 4191 return lhs; 4192 } 4193 4194 /* Subroutine for fold_truth_andor_1: decode a field reference. 4195 4196 If EXP is a comparison reference, we return the innermost reference. 4197 4198 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is 4199 set to the starting bit number. 4200 4201 If the innermost field can be completely contained in a mode-sized 4202 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode. 4203 4204 *PVOLATILEP is set to 1 if the any expression encountered is volatile; 4205 otherwise it is not changed. 4206 4207 *PUNSIGNEDP is set to the signedness of the field. 4208 4209 *PREVERSEP is set to the storage order of the field. 4210 4211 *PMASK is set to the mask used. This is either contained in a 4212 BIT_AND_EXPR or derived from the width of the field. 4213 4214 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any. 4215 4216 Return 0 if this is not a component reference or is one that we can't 4217 do anything with. */ 4218 4219 static tree 4220 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize, 4221 HOST_WIDE_INT *pbitpos, machine_mode *pmode, 4222 int *punsignedp, int *preversep, int *pvolatilep, 4223 tree *pmask, tree *pand_mask) 4224 { 4225 tree exp = *exp_; 4226 tree outer_type = 0; 4227 tree and_mask = 0; 4228 tree mask, inner, offset; 4229 tree unsigned_type; 4230 unsigned int precision; 4231 4232 /* All the optimizations using this function assume integer fields. 4233 There are problems with FP fields since the type_for_size call 4234 below can fail for, e.g., XFmode. */ 4235 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp))) 4236 return 0; 4237 4238 /* We are interested in the bare arrangement of bits, so strip everything 4239 that doesn't affect the machine mode. However, record the type of the 4240 outermost expression if it may matter below. */ 4241 if (CONVERT_EXPR_P (exp) 4242 || TREE_CODE (exp) == NON_LVALUE_EXPR) 4243 outer_type = TREE_TYPE (exp); 4244 STRIP_NOPS (exp); 4245 4246 if (TREE_CODE (exp) == BIT_AND_EXPR) 4247 { 4248 and_mask = TREE_OPERAND (exp, 1); 4249 exp = TREE_OPERAND (exp, 0); 4250 STRIP_NOPS (exp); STRIP_NOPS (and_mask); 4251 if (TREE_CODE (and_mask) != INTEGER_CST) 4252 return 0; 4253 } 4254 4255 poly_int64 poly_bitsize, poly_bitpos; 4256 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset, 4257 pmode, punsignedp, preversep, pvolatilep); 4258 if ((inner == exp && and_mask == 0) 4259 || !poly_bitsize.is_constant (pbitsize) 4260 || !poly_bitpos.is_constant (pbitpos) 4261 || *pbitsize < 0 4262 || offset != 0 4263 || TREE_CODE (inner) == PLACEHOLDER_EXPR 4264 /* Reject out-of-bound accesses (PR79731). */ 4265 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner)) 4266 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)), 4267 *pbitpos + *pbitsize) < 0)) 4268 return 0; 4269 4270 *exp_ = exp; 4271 4272 /* If the number of bits in the reference is the same as the bitsize of 4273 the outer type, then the outer type gives the signedness. Otherwise 4274 (in case of a small bitfield) the signedness is unchanged. */ 4275 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type)) 4276 *punsignedp = TYPE_UNSIGNED (outer_type); 4277 4278 /* Compute the mask to access the bitfield. */ 4279 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1); 4280 precision = TYPE_PRECISION (unsigned_type); 4281 4282 mask = build_int_cst_type (unsigned_type, -1); 4283 4284 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4285 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4286 4287 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */ 4288 if (and_mask != 0) 4289 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, 4290 fold_convert_loc (loc, unsigned_type, and_mask), mask); 4291 4292 *pmask = mask; 4293 *pand_mask = and_mask; 4294 return inner; 4295 } 4296 4297 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order 4298 bit positions and MASK is SIGNED. */ 4299 4300 static int 4301 all_ones_mask_p (const_tree mask, unsigned int size) 4302 { 4303 tree type = TREE_TYPE (mask); 4304 unsigned int precision = TYPE_PRECISION (type); 4305 4306 /* If this function returns true when the type of the mask is 4307 UNSIGNED, then there will be errors. In particular see 4308 gcc.c-torture/execute/990326-1.c. There does not appear to be 4309 any documentation paper trail as to why this is so. But the pre 4310 wide-int worked with that restriction and it has been preserved 4311 here. */ 4312 if (size > precision || TYPE_SIGN (type) == UNSIGNED) 4313 return false; 4314 4315 return wi::mask (size, false, precision) == wi::to_wide (mask); 4316 } 4317 4318 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that 4319 represents the sign bit of EXP's type. If EXP represents a sign 4320 or zero extension, also test VAL against the unextended type. 4321 The return value is the (sub)expression whose sign bit is VAL, 4322 or NULL_TREE otherwise. */ 4323 4324 tree 4325 sign_bit_p (tree exp, const_tree val) 4326 { 4327 int width; 4328 tree t; 4329 4330 /* Tree EXP must have an integral type. */ 4331 t = TREE_TYPE (exp); 4332 if (! INTEGRAL_TYPE_P (t)) 4333 return NULL_TREE; 4334 4335 /* Tree VAL must be an integer constant. */ 4336 if (TREE_CODE (val) != INTEGER_CST 4337 || TREE_OVERFLOW (val)) 4338 return NULL_TREE; 4339 4340 width = TYPE_PRECISION (t); 4341 if (wi::only_sign_bit_p (wi::to_wide (val), width)) 4342 return exp; 4343 4344 /* Handle extension from a narrower type. */ 4345 if (TREE_CODE (exp) == NOP_EXPR 4346 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width) 4347 return sign_bit_p (TREE_OPERAND (exp, 0), val); 4348 4349 return NULL_TREE; 4350 } 4351 4352 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough 4353 to be evaluated unconditionally. */ 4354 4355 static int 4356 simple_operand_p (const_tree exp) 4357 { 4358 /* Strip any conversions that don't change the machine mode. */ 4359 STRIP_NOPS (exp); 4360 4361 return (CONSTANT_CLASS_P (exp) 4362 || TREE_CODE (exp) == SSA_NAME 4363 || (DECL_P (exp) 4364 && ! TREE_ADDRESSABLE (exp) 4365 && ! TREE_THIS_VOLATILE (exp) 4366 && ! DECL_NONLOCAL (exp) 4367 /* Don't regard global variables as simple. They may be 4368 allocated in ways unknown to the compiler (shared memory, 4369 #pragma weak, etc). */ 4370 && ! TREE_PUBLIC (exp) 4371 && ! DECL_EXTERNAL (exp) 4372 /* Weakrefs are not safe to be read, since they can be NULL. 4373 They are !TREE_PUBLIC && !DECL_EXTERNAL but still 4374 have DECL_WEAK flag set. */ 4375 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp)) 4376 /* Loading a static variable is unduly expensive, but global 4377 registers aren't expensive. */ 4378 && (! TREE_STATIC (exp) || DECL_REGISTER (exp)))); 4379 } 4380 4381 /* Subroutine for fold_truth_andor: determine if an operand is simple enough 4382 to be evaluated unconditionally. 4383 I addition to simple_operand_p, we assume that comparisons, conversions, 4384 and logic-not operations are simple, if their operands are simple, too. */ 4385 4386 static bool 4387 simple_operand_p_2 (tree exp) 4388 { 4389 enum tree_code code; 4390 4391 if (TREE_SIDE_EFFECTS (exp) 4392 || tree_could_trap_p (exp)) 4393 return false; 4394 4395 while (CONVERT_EXPR_P (exp)) 4396 exp = TREE_OPERAND (exp, 0); 4397 4398 code = TREE_CODE (exp); 4399 4400 if (TREE_CODE_CLASS (code) == tcc_comparison) 4401 return (simple_operand_p (TREE_OPERAND (exp, 0)) 4402 && simple_operand_p (TREE_OPERAND (exp, 1))); 4403 4404 if (code == TRUTH_NOT_EXPR) 4405 return simple_operand_p_2 (TREE_OPERAND (exp, 0)); 4406 4407 return simple_operand_p (exp); 4408 } 4409 4410 4411 /* The following functions are subroutines to fold_range_test and allow it to 4412 try to change a logical combination of comparisons into a range test. 4413 4414 For example, both 4415 X == 2 || X == 3 || X == 4 || X == 5 4416 and 4417 X >= 2 && X <= 5 4418 are converted to 4419 (unsigned) (X - 2) <= 3 4420 4421 We describe each set of comparisons as being either inside or outside 4422 a range, using a variable named like IN_P, and then describe the 4423 range with a lower and upper bound. If one of the bounds is omitted, 4424 it represents either the highest or lowest value of the type. 4425 4426 In the comments below, we represent a range by two numbers in brackets 4427 preceded by a "+" to designate being inside that range, or a "-" to 4428 designate being outside that range, so the condition can be inverted by 4429 flipping the prefix. An omitted bound is represented by a "-". For 4430 example, "- [-, 10]" means being outside the range starting at the lowest 4431 possible value and ending at 10, in other words, being greater than 10. 4432 The range "+ [-, -]" is always true and hence the range "- [-, -]" is 4433 always false. 4434 4435 We set up things so that the missing bounds are handled in a consistent 4436 manner so neither a missing bound nor "true" and "false" need to be 4437 handled using a special case. */ 4438 4439 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case 4440 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P 4441 and UPPER1_P are nonzero if the respective argument is an upper bound 4442 and zero for a lower. TYPE, if nonzero, is the type of the result; it 4443 must be specified for a comparison. ARG1 will be converted to ARG0's 4444 type if both are specified. */ 4445 4446 static tree 4447 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p, 4448 tree arg1, int upper1_p) 4449 { 4450 tree tem; 4451 int result; 4452 int sgn0, sgn1; 4453 4454 /* If neither arg represents infinity, do the normal operation. 4455 Else, if not a comparison, return infinity. Else handle the special 4456 comparison rules. Note that most of the cases below won't occur, but 4457 are handled for consistency. */ 4458 4459 if (arg0 != 0 && arg1 != 0) 4460 { 4461 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0), 4462 arg0, fold_convert (TREE_TYPE (arg0), arg1)); 4463 STRIP_NOPS (tem); 4464 return TREE_CODE (tem) == INTEGER_CST ? tem : 0; 4465 } 4466 4467 if (TREE_CODE_CLASS (code) != tcc_comparison) 4468 return 0; 4469 4470 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0 4471 for neither. In real maths, we cannot assume open ended ranges are 4472 the same. But, this is computer arithmetic, where numbers are finite. 4473 We can therefore make the transformation of any unbounded range with 4474 the value Z, Z being greater than any representable number. This permits 4475 us to treat unbounded ranges as equal. */ 4476 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1); 4477 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1); 4478 switch (code) 4479 { 4480 case EQ_EXPR: 4481 result = sgn0 == sgn1; 4482 break; 4483 case NE_EXPR: 4484 result = sgn0 != sgn1; 4485 break; 4486 case LT_EXPR: 4487 result = sgn0 < sgn1; 4488 break; 4489 case LE_EXPR: 4490 result = sgn0 <= sgn1; 4491 break; 4492 case GT_EXPR: 4493 result = sgn0 > sgn1; 4494 break; 4495 case GE_EXPR: 4496 result = sgn0 >= sgn1; 4497 break; 4498 default: 4499 gcc_unreachable (); 4500 } 4501 4502 return constant_boolean_node (result, type); 4503 } 4504 4505 /* Helper routine for make_range. Perform one step for it, return 4506 new expression if the loop should continue or NULL_TREE if it should 4507 stop. */ 4508 4509 tree 4510 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1, 4511 tree exp_type, tree *p_low, tree *p_high, int *p_in_p, 4512 bool *strict_overflow_p) 4513 { 4514 tree arg0_type = TREE_TYPE (arg0); 4515 tree n_low, n_high, low = *p_low, high = *p_high; 4516 int in_p = *p_in_p, n_in_p; 4517 4518 switch (code) 4519 { 4520 case TRUTH_NOT_EXPR: 4521 /* We can only do something if the range is testing for zero. */ 4522 if (low == NULL_TREE || high == NULL_TREE 4523 || ! integer_zerop (low) || ! integer_zerop (high)) 4524 return NULL_TREE; 4525 *p_in_p = ! in_p; 4526 return arg0; 4527 4528 case EQ_EXPR: case NE_EXPR: 4529 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR: 4530 /* We can only do something if the range is testing for zero 4531 and if the second operand is an integer constant. Note that 4532 saying something is "in" the range we make is done by 4533 complementing IN_P since it will set in the initial case of 4534 being not equal to zero; "out" is leaving it alone. */ 4535 if (low == NULL_TREE || high == NULL_TREE 4536 || ! integer_zerop (low) || ! integer_zerop (high) 4537 || TREE_CODE (arg1) != INTEGER_CST) 4538 return NULL_TREE; 4539 4540 switch (code) 4541 { 4542 case NE_EXPR: /* - [c, c] */ 4543 low = high = arg1; 4544 break; 4545 case EQ_EXPR: /* + [c, c] */ 4546 in_p = ! in_p, low = high = arg1; 4547 break; 4548 case GT_EXPR: /* - [-, c] */ 4549 low = 0, high = arg1; 4550 break; 4551 case GE_EXPR: /* + [c, -] */ 4552 in_p = ! in_p, low = arg1, high = 0; 4553 break; 4554 case LT_EXPR: /* - [c, -] */ 4555 low = arg1, high = 0; 4556 break; 4557 case LE_EXPR: /* + [-, c] */ 4558 in_p = ! in_p, low = 0, high = arg1; 4559 break; 4560 default: 4561 gcc_unreachable (); 4562 } 4563 4564 /* If this is an unsigned comparison, we also know that EXP is 4565 greater than or equal to zero. We base the range tests we make 4566 on that fact, so we record it here so we can parse existing 4567 range tests. We test arg0_type since often the return type 4568 of, e.g. EQ_EXPR, is boolean. */ 4569 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0)) 4570 { 4571 if (! merge_ranges (&n_in_p, &n_low, &n_high, 4572 in_p, low, high, 1, 4573 build_int_cst (arg0_type, 0), 4574 NULL_TREE)) 4575 return NULL_TREE; 4576 4577 in_p = n_in_p, low = n_low, high = n_high; 4578 4579 /* If the high bound is missing, but we have a nonzero low 4580 bound, reverse the range so it goes from zero to the low bound 4581 minus 1. */ 4582 if (high == 0 && low && ! integer_zerop (low)) 4583 { 4584 in_p = ! in_p; 4585 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0, 4586 build_int_cst (TREE_TYPE (low), 1), 0); 4587 low = build_int_cst (arg0_type, 0); 4588 } 4589 } 4590 4591 *p_low = low; 4592 *p_high = high; 4593 *p_in_p = in_p; 4594 return arg0; 4595 4596 case NEGATE_EXPR: 4597 /* If flag_wrapv and ARG0_TYPE is signed, make sure 4598 low and high are non-NULL, then normalize will DTRT. */ 4599 if (!TYPE_UNSIGNED (arg0_type) 4600 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4601 { 4602 if (low == NULL_TREE) 4603 low = TYPE_MIN_VALUE (arg0_type); 4604 if (high == NULL_TREE) 4605 high = TYPE_MAX_VALUE (arg0_type); 4606 } 4607 4608 /* (-x) IN [a,b] -> x in [-b, -a] */ 4609 n_low = range_binop (MINUS_EXPR, exp_type, 4610 build_int_cst (exp_type, 0), 4611 0, high, 1); 4612 n_high = range_binop (MINUS_EXPR, exp_type, 4613 build_int_cst (exp_type, 0), 4614 0, low, 0); 4615 if (n_high != 0 && TREE_OVERFLOW (n_high)) 4616 return NULL_TREE; 4617 goto normalize; 4618 4619 case BIT_NOT_EXPR: 4620 /* ~ X -> -X - 1 */ 4621 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0), 4622 build_int_cst (exp_type, 1)); 4623 4624 case PLUS_EXPR: 4625 case MINUS_EXPR: 4626 if (TREE_CODE (arg1) != INTEGER_CST) 4627 return NULL_TREE; 4628 4629 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot 4630 move a constant to the other side. */ 4631 if (!TYPE_UNSIGNED (arg0_type) 4632 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4633 return NULL_TREE; 4634 4635 /* If EXP is signed, any overflow in the computation is undefined, 4636 so we don't worry about it so long as our computations on 4637 the bounds don't overflow. For unsigned, overflow is defined 4638 and this is exactly the right thing. */ 4639 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4640 arg0_type, low, 0, arg1, 0); 4641 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4642 arg0_type, high, 1, arg1, 0); 4643 if ((n_low != 0 && TREE_OVERFLOW (n_low)) 4644 || (n_high != 0 && TREE_OVERFLOW (n_high))) 4645 return NULL_TREE; 4646 4647 if (TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4648 *strict_overflow_p = true; 4649 4650 normalize: 4651 /* Check for an unsigned range which has wrapped around the maximum 4652 value thus making n_high < n_low, and normalize it. */ 4653 if (n_low && n_high && tree_int_cst_lt (n_high, n_low)) 4654 { 4655 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0, 4656 build_int_cst (TREE_TYPE (n_high), 1), 0); 4657 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0, 4658 build_int_cst (TREE_TYPE (n_low), 1), 0); 4659 4660 /* If the range is of the form +/- [ x+1, x ], we won't 4661 be able to normalize it. But then, it represents the 4662 whole range or the empty set, so make it 4663 +/- [ -, - ]. */ 4664 if (tree_int_cst_equal (n_low, low) 4665 && tree_int_cst_equal (n_high, high)) 4666 low = high = 0; 4667 else 4668 in_p = ! in_p; 4669 } 4670 else 4671 low = n_low, high = n_high; 4672 4673 *p_low = low; 4674 *p_high = high; 4675 *p_in_p = in_p; 4676 return arg0; 4677 4678 CASE_CONVERT: 4679 case NON_LVALUE_EXPR: 4680 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type)) 4681 return NULL_TREE; 4682 4683 if (! INTEGRAL_TYPE_P (arg0_type) 4684 || (low != 0 && ! int_fits_type_p (low, arg0_type)) 4685 || (high != 0 && ! int_fits_type_p (high, arg0_type))) 4686 return NULL_TREE; 4687 4688 n_low = low, n_high = high; 4689 4690 if (n_low != 0) 4691 n_low = fold_convert_loc (loc, arg0_type, n_low); 4692 4693 if (n_high != 0) 4694 n_high = fold_convert_loc (loc, arg0_type, n_high); 4695 4696 /* If we're converting arg0 from an unsigned type, to exp, 4697 a signed type, we will be doing the comparison as unsigned. 4698 The tests above have already verified that LOW and HIGH 4699 are both positive. 4700 4701 So we have to ensure that we will handle large unsigned 4702 values the same way that the current signed bounds treat 4703 negative values. */ 4704 4705 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type)) 4706 { 4707 tree high_positive; 4708 tree equiv_type; 4709 /* For fixed-point modes, we need to pass the saturating flag 4710 as the 2nd parameter. */ 4711 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type))) 4712 equiv_type 4713 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 4714 TYPE_SATURATING (arg0_type)); 4715 else 4716 equiv_type 4717 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1); 4718 4719 /* A range without an upper bound is, naturally, unbounded. 4720 Since convert would have cropped a very large value, use 4721 the max value for the destination type. */ 4722 high_positive 4723 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type) 4724 : TYPE_MAX_VALUE (arg0_type); 4725 4726 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type)) 4727 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type, 4728 fold_convert_loc (loc, arg0_type, 4729 high_positive), 4730 build_int_cst (arg0_type, 1)); 4731 4732 /* If the low bound is specified, "and" the range with the 4733 range for which the original unsigned value will be 4734 positive. */ 4735 if (low != 0) 4736 { 4737 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high, 4738 1, fold_convert_loc (loc, arg0_type, 4739 integer_zero_node), 4740 high_positive)) 4741 return NULL_TREE; 4742 4743 in_p = (n_in_p == in_p); 4744 } 4745 else 4746 { 4747 /* Otherwise, "or" the range with the range of the input 4748 that will be interpreted as negative. */ 4749 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high, 4750 1, fold_convert_loc (loc, arg0_type, 4751 integer_zero_node), 4752 high_positive)) 4753 return NULL_TREE; 4754 4755 in_p = (in_p != n_in_p); 4756 } 4757 } 4758 4759 *p_low = n_low; 4760 *p_high = n_high; 4761 *p_in_p = in_p; 4762 return arg0; 4763 4764 default: 4765 return NULL_TREE; 4766 } 4767 } 4768 4769 /* Given EXP, a logical expression, set the range it is testing into 4770 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression 4771 actually being tested. *PLOW and *PHIGH will be made of the same 4772 type as the returned expression. If EXP is not a comparison, we 4773 will most likely not be returning a useful value and range. Set 4774 *STRICT_OVERFLOW_P to true if the return value is only valid 4775 because signed overflow is undefined; otherwise, do not change 4776 *STRICT_OVERFLOW_P. */ 4777 4778 tree 4779 make_range (tree exp, int *pin_p, tree *plow, tree *phigh, 4780 bool *strict_overflow_p) 4781 { 4782 enum tree_code code; 4783 tree arg0, arg1 = NULL_TREE; 4784 tree exp_type, nexp; 4785 int in_p; 4786 tree low, high; 4787 location_t loc = EXPR_LOCATION (exp); 4788 4789 /* Start with simply saying "EXP != 0" and then look at the code of EXP 4790 and see if we can refine the range. Some of the cases below may not 4791 happen, but it doesn't seem worth worrying about this. We "continue" 4792 the outer loop when we've changed something; otherwise we "break" 4793 the switch, which will "break" the while. */ 4794 4795 in_p = 0; 4796 low = high = build_int_cst (TREE_TYPE (exp), 0); 4797 4798 while (1) 4799 { 4800 code = TREE_CODE (exp); 4801 exp_type = TREE_TYPE (exp); 4802 arg0 = NULL_TREE; 4803 4804 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) 4805 { 4806 if (TREE_OPERAND_LENGTH (exp) > 0) 4807 arg0 = TREE_OPERAND (exp, 0); 4808 if (TREE_CODE_CLASS (code) == tcc_binary 4809 || TREE_CODE_CLASS (code) == tcc_comparison 4810 || (TREE_CODE_CLASS (code) == tcc_expression 4811 && TREE_OPERAND_LENGTH (exp) > 1)) 4812 arg1 = TREE_OPERAND (exp, 1); 4813 } 4814 if (arg0 == NULL_TREE) 4815 break; 4816 4817 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low, 4818 &high, &in_p, strict_overflow_p); 4819 if (nexp == NULL_TREE) 4820 break; 4821 exp = nexp; 4822 } 4823 4824 /* If EXP is a constant, we can evaluate whether this is true or false. */ 4825 if (TREE_CODE (exp) == INTEGER_CST) 4826 { 4827 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node, 4828 exp, 0, low, 0)) 4829 && integer_onep (range_binop (LE_EXPR, integer_type_node, 4830 exp, 1, high, 1))); 4831 low = high = 0; 4832 exp = 0; 4833 } 4834 4835 *pin_p = in_p, *plow = low, *phigh = high; 4836 return exp; 4837 } 4838 4839 /* Returns TRUE if [LOW, HIGH] range check can be optimized to 4840 a bitwise check i.e. when 4841 LOW == 0xXX...X00...0 4842 HIGH == 0xXX...X11...1 4843 Return corresponding mask in MASK and stem in VALUE. */ 4844 4845 static bool 4846 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask, 4847 tree *value) 4848 { 4849 if (TREE_CODE (low) != INTEGER_CST 4850 || TREE_CODE (high) != INTEGER_CST) 4851 return false; 4852 4853 unsigned prec = TYPE_PRECISION (type); 4854 wide_int lo = wi::to_wide (low, prec); 4855 wide_int hi = wi::to_wide (high, prec); 4856 4857 wide_int end_mask = lo ^ hi; 4858 if ((end_mask & (end_mask + 1)) != 0 4859 || (lo & end_mask) != 0) 4860 return false; 4861 4862 wide_int stem_mask = ~end_mask; 4863 wide_int stem = lo & stem_mask; 4864 if (stem != (hi & stem_mask)) 4865 return false; 4866 4867 *mask = wide_int_to_tree (type, stem_mask); 4868 *value = wide_int_to_tree (type, stem); 4869 4870 return true; 4871 } 4872 4873 /* Helper routine for build_range_check and match.pd. Return the type to 4874 perform the check or NULL if it shouldn't be optimized. */ 4875 4876 tree 4877 range_check_type (tree etype) 4878 { 4879 /* First make sure that arithmetics in this type is valid, then make sure 4880 that it wraps around. */ 4881 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE) 4882 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 4883 TYPE_UNSIGNED (etype)); 4884 4885 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype)) 4886 { 4887 tree utype, minv, maxv; 4888 4889 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN 4890 for the type in question, as we rely on this here. */ 4891 utype = unsigned_type_for (etype); 4892 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype)); 4893 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1, 4894 build_int_cst (TREE_TYPE (maxv), 1), 1); 4895 minv = fold_convert (utype, TYPE_MIN_VALUE (etype)); 4896 4897 if (integer_zerop (range_binop (NE_EXPR, integer_type_node, 4898 minv, 1, maxv, 1))) 4899 etype = utype; 4900 else 4901 return NULL_TREE; 4902 } 4903 return etype; 4904 } 4905 4906 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result 4907 type, TYPE, return an expression to test if EXP is in (or out of, depending 4908 on IN_P) the range. Return 0 if the test couldn't be created. */ 4909 4910 tree 4911 build_range_check (location_t loc, tree type, tree exp, int in_p, 4912 tree low, tree high) 4913 { 4914 tree etype = TREE_TYPE (exp), mask, value; 4915 4916 /* Disable this optimization for function pointer expressions 4917 on targets that require function pointer canonicalization. */ 4918 if (targetm.have_canonicalize_funcptr_for_compare () 4919 && TREE_CODE (etype) == POINTER_TYPE 4920 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE) 4921 return NULL_TREE; 4922 4923 if (! in_p) 4924 { 4925 value = build_range_check (loc, type, exp, 1, low, high); 4926 if (value != 0) 4927 return invert_truthvalue_loc (loc, value); 4928 4929 return 0; 4930 } 4931 4932 if (low == 0 && high == 0) 4933 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp); 4934 4935 if (low == 0) 4936 return fold_build2_loc (loc, LE_EXPR, type, exp, 4937 fold_convert_loc (loc, etype, high)); 4938 4939 if (high == 0) 4940 return fold_build2_loc (loc, GE_EXPR, type, exp, 4941 fold_convert_loc (loc, etype, low)); 4942 4943 if (operand_equal_p (low, high, 0)) 4944 return fold_build2_loc (loc, EQ_EXPR, type, exp, 4945 fold_convert_loc (loc, etype, low)); 4946 4947 if (TREE_CODE (exp) == BIT_AND_EXPR 4948 && maskable_range_p (low, high, etype, &mask, &value)) 4949 return fold_build2_loc (loc, EQ_EXPR, type, 4950 fold_build2_loc (loc, BIT_AND_EXPR, etype, 4951 exp, mask), 4952 value); 4953 4954 if (integer_zerop (low)) 4955 { 4956 if (! TYPE_UNSIGNED (etype)) 4957 { 4958 etype = unsigned_type_for (etype); 4959 high = fold_convert_loc (loc, etype, high); 4960 exp = fold_convert_loc (loc, etype, exp); 4961 } 4962 return build_range_check (loc, type, exp, 1, 0, high); 4963 } 4964 4965 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */ 4966 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST) 4967 { 4968 int prec = TYPE_PRECISION (etype); 4969 4970 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high)) 4971 { 4972 if (TYPE_UNSIGNED (etype)) 4973 { 4974 tree signed_etype = signed_type_for (etype); 4975 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype)) 4976 etype 4977 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0); 4978 else 4979 etype = signed_etype; 4980 exp = fold_convert_loc (loc, etype, exp); 4981 } 4982 return fold_build2_loc (loc, GT_EXPR, type, exp, 4983 build_int_cst (etype, 0)); 4984 } 4985 } 4986 4987 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low). 4988 This requires wrap-around arithmetics for the type of the expression. */ 4989 etype = range_check_type (etype); 4990 if (etype == NULL_TREE) 4991 return NULL_TREE; 4992 4993 if (POINTER_TYPE_P (etype)) 4994 etype = unsigned_type_for (etype); 4995 4996 high = fold_convert_loc (loc, etype, high); 4997 low = fold_convert_loc (loc, etype, low); 4998 exp = fold_convert_loc (loc, etype, exp); 4999 5000 value = const_binop (MINUS_EXPR, high, low); 5001 5002 if (value != 0 && !TREE_OVERFLOW (value)) 5003 return build_range_check (loc, type, 5004 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low), 5005 1, build_int_cst (etype, 0), value); 5006 5007 return 0; 5008 } 5009 5010 /* Return the predecessor of VAL in its type, handling the infinite case. */ 5011 5012 static tree 5013 range_predecessor (tree val) 5014 { 5015 tree type = TREE_TYPE (val); 5016 5017 if (INTEGRAL_TYPE_P (type) 5018 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0)) 5019 return 0; 5020 else 5021 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, 5022 build_int_cst (TREE_TYPE (val), 1), 0); 5023 } 5024 5025 /* Return the successor of VAL in its type, handling the infinite case. */ 5026 5027 static tree 5028 range_successor (tree val) 5029 { 5030 tree type = TREE_TYPE (val); 5031 5032 if (INTEGRAL_TYPE_P (type) 5033 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0)) 5034 return 0; 5035 else 5036 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, 5037 build_int_cst (TREE_TYPE (val), 1), 0); 5038 } 5039 5040 /* Given two ranges, see if we can merge them into one. Return 1 if we 5041 can, 0 if we can't. Set the output range into the specified parameters. */ 5042 5043 bool 5044 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0, 5045 tree high0, int in1_p, tree low1, tree high1) 5046 { 5047 int no_overlap; 5048 int subset; 5049 int temp; 5050 tree tem; 5051 int in_p; 5052 tree low, high; 5053 int lowequal = ((low0 == 0 && low1 == 0) 5054 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5055 low0, 0, low1, 0))); 5056 int highequal = ((high0 == 0 && high1 == 0) 5057 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5058 high0, 1, high1, 1))); 5059 5060 /* Make range 0 be the range that starts first, or ends last if they 5061 start at the same value. Swap them if it isn't. */ 5062 if (integer_onep (range_binop (GT_EXPR, integer_type_node, 5063 low0, 0, low1, 0)) 5064 || (lowequal 5065 && integer_onep (range_binop (GT_EXPR, integer_type_node, 5066 high1, 1, high0, 1)))) 5067 { 5068 temp = in0_p, in0_p = in1_p, in1_p = temp; 5069 tem = low0, low0 = low1, low1 = tem; 5070 tem = high0, high0 = high1, high1 = tem; 5071 } 5072 5073 /* Now flag two cases, whether the ranges are disjoint or whether the 5074 second range is totally subsumed in the first. Note that the tests 5075 below are simplified by the ones above. */ 5076 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node, 5077 high0, 1, low1, 0)); 5078 subset = integer_onep (range_binop (LE_EXPR, integer_type_node, 5079 high1, 1, high0, 1)); 5080 5081 /* We now have four cases, depending on whether we are including or 5082 excluding the two ranges. */ 5083 if (in0_p && in1_p) 5084 { 5085 /* If they don't overlap, the result is false. If the second range 5086 is a subset it is the result. Otherwise, the range is from the start 5087 of the second to the end of the first. */ 5088 if (no_overlap) 5089 in_p = 0, low = high = 0; 5090 else if (subset) 5091 in_p = 1, low = low1, high = high1; 5092 else 5093 in_p = 1, low = low1, high = high0; 5094 } 5095 5096 else if (in0_p && ! in1_p) 5097 { 5098 /* If they don't overlap, the result is the first range. If they are 5099 equal, the result is false. If the second range is a subset of the 5100 first, and the ranges begin at the same place, we go from just after 5101 the end of the second range to the end of the first. If the second 5102 range is not a subset of the first, or if it is a subset and both 5103 ranges end at the same place, the range starts at the start of the 5104 first range and ends just before the second range. 5105 Otherwise, we can't describe this as a single range. */ 5106 if (no_overlap) 5107 in_p = 1, low = low0, high = high0; 5108 else if (lowequal && highequal) 5109 in_p = 0, low = high = 0; 5110 else if (subset && lowequal) 5111 { 5112 low = range_successor (high1); 5113 high = high0; 5114 in_p = 1; 5115 if (low == 0) 5116 { 5117 /* We are in the weird situation where high0 > high1 but 5118 high1 has no successor. Punt. */ 5119 return 0; 5120 } 5121 } 5122 else if (! subset || highequal) 5123 { 5124 low = low0; 5125 high = range_predecessor (low1); 5126 in_p = 1; 5127 if (high == 0) 5128 { 5129 /* low0 < low1 but low1 has no predecessor. Punt. */ 5130 return 0; 5131 } 5132 } 5133 else 5134 return 0; 5135 } 5136 5137 else if (! in0_p && in1_p) 5138 { 5139 /* If they don't overlap, the result is the second range. If the second 5140 is a subset of the first, the result is false. Otherwise, 5141 the range starts just after the first range and ends at the 5142 end of the second. */ 5143 if (no_overlap) 5144 in_p = 1, low = low1, high = high1; 5145 else if (subset || highequal) 5146 in_p = 0, low = high = 0; 5147 else 5148 { 5149 low = range_successor (high0); 5150 high = high1; 5151 in_p = 1; 5152 if (low == 0) 5153 { 5154 /* high1 > high0 but high0 has no successor. Punt. */ 5155 return 0; 5156 } 5157 } 5158 } 5159 5160 else 5161 { 5162 /* The case where we are excluding both ranges. Here the complex case 5163 is if they don't overlap. In that case, the only time we have a 5164 range is if they are adjacent. If the second is a subset of the 5165 first, the result is the first. Otherwise, the range to exclude 5166 starts at the beginning of the first range and ends at the end of the 5167 second. */ 5168 if (no_overlap) 5169 { 5170 if (integer_onep (range_binop (EQ_EXPR, integer_type_node, 5171 range_successor (high0), 5172 1, low1, 0))) 5173 in_p = 0, low = low0, high = high1; 5174 else 5175 { 5176 /* Canonicalize - [min, x] into - [-, x]. */ 5177 if (low0 && TREE_CODE (low0) == INTEGER_CST) 5178 switch (TREE_CODE (TREE_TYPE (low0))) 5179 { 5180 case ENUMERAL_TYPE: 5181 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)), 5182 GET_MODE_BITSIZE 5183 (TYPE_MODE (TREE_TYPE (low0))))) 5184 break; 5185 /* FALLTHROUGH */ 5186 case INTEGER_TYPE: 5187 if (tree_int_cst_equal (low0, 5188 TYPE_MIN_VALUE (TREE_TYPE (low0)))) 5189 low0 = 0; 5190 break; 5191 case POINTER_TYPE: 5192 if (TYPE_UNSIGNED (TREE_TYPE (low0)) 5193 && integer_zerop (low0)) 5194 low0 = 0; 5195 break; 5196 default: 5197 break; 5198 } 5199 5200 /* Canonicalize - [x, max] into - [x, -]. */ 5201 if (high1 && TREE_CODE (high1) == INTEGER_CST) 5202 switch (TREE_CODE (TREE_TYPE (high1))) 5203 { 5204 case ENUMERAL_TYPE: 5205 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)), 5206 GET_MODE_BITSIZE 5207 (TYPE_MODE (TREE_TYPE (high1))))) 5208 break; 5209 /* FALLTHROUGH */ 5210 case INTEGER_TYPE: 5211 if (tree_int_cst_equal (high1, 5212 TYPE_MAX_VALUE (TREE_TYPE (high1)))) 5213 high1 = 0; 5214 break; 5215 case POINTER_TYPE: 5216 if (TYPE_UNSIGNED (TREE_TYPE (high1)) 5217 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE, 5218 high1, 1, 5219 build_int_cst (TREE_TYPE (high1), 1), 5220 1))) 5221 high1 = 0; 5222 break; 5223 default: 5224 break; 5225 } 5226 5227 /* The ranges might be also adjacent between the maximum and 5228 minimum values of the given type. For 5229 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y 5230 return + [x + 1, y - 1]. */ 5231 if (low0 == 0 && high1 == 0) 5232 { 5233 low = range_successor (high0); 5234 high = range_predecessor (low1); 5235 if (low == 0 || high == 0) 5236 return 0; 5237 5238 in_p = 1; 5239 } 5240 else 5241 return 0; 5242 } 5243 } 5244 else if (subset) 5245 in_p = 0, low = low0, high = high0; 5246 else 5247 in_p = 0, low = low0, high = high1; 5248 } 5249 5250 *pin_p = in_p, *plow = low, *phigh = high; 5251 return 1; 5252 } 5253 5254 5255 /* Subroutine of fold, looking inside expressions of the form 5256 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands 5257 of the COND_EXPR. This function is being used also to optimize 5258 A op B ? C : A, by reversing the comparison first. 5259 5260 Return a folded expression whose code is not a COND_EXPR 5261 anymore, or NULL_TREE if no folding opportunity is found. */ 5262 5263 static tree 5264 fold_cond_expr_with_comparison (location_t loc, tree type, 5265 tree arg0, tree arg1, tree arg2) 5266 { 5267 enum tree_code comp_code = TREE_CODE (arg0); 5268 tree arg00 = TREE_OPERAND (arg0, 0); 5269 tree arg01 = TREE_OPERAND (arg0, 1); 5270 tree arg1_type = TREE_TYPE (arg1); 5271 tree tem; 5272 5273 STRIP_NOPS (arg1); 5274 STRIP_NOPS (arg2); 5275 5276 /* If we have A op 0 ? A : -A, consider applying the following 5277 transformations: 5278 5279 A == 0? A : -A same as -A 5280 A != 0? A : -A same as A 5281 A >= 0? A : -A same as abs (A) 5282 A > 0? A : -A same as abs (A) 5283 A <= 0? A : -A same as -abs (A) 5284 A < 0? A : -A same as -abs (A) 5285 5286 None of these transformations work for modes with signed 5287 zeros. If A is +/-0, the first two transformations will 5288 change the sign of the result (from +0 to -0, or vice 5289 versa). The last four will fix the sign of the result, 5290 even though the original expressions could be positive or 5291 negative, depending on the sign of A. 5292 5293 Note that all these transformations are correct if A is 5294 NaN, since the two alternatives (A and -A) are also NaNs. */ 5295 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5296 && (FLOAT_TYPE_P (TREE_TYPE (arg01)) 5297 ? real_zerop (arg01) 5298 : integer_zerop (arg01)) 5299 && ((TREE_CODE (arg2) == NEGATE_EXPR 5300 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0)) 5301 /* In the case that A is of the form X-Y, '-A' (arg2) may 5302 have already been folded to Y-X, check for that. */ 5303 || (TREE_CODE (arg1) == MINUS_EXPR 5304 && TREE_CODE (arg2) == MINUS_EXPR 5305 && operand_equal_p (TREE_OPERAND (arg1, 0), 5306 TREE_OPERAND (arg2, 1), 0) 5307 && operand_equal_p (TREE_OPERAND (arg1, 1), 5308 TREE_OPERAND (arg2, 0), 0)))) 5309 switch (comp_code) 5310 { 5311 case EQ_EXPR: 5312 case UNEQ_EXPR: 5313 tem = fold_convert_loc (loc, arg1_type, arg1); 5314 return fold_convert_loc (loc, type, negate_expr (tem)); 5315 case NE_EXPR: 5316 case LTGT_EXPR: 5317 return fold_convert_loc (loc, type, arg1); 5318 case UNGE_EXPR: 5319 case UNGT_EXPR: 5320 if (flag_trapping_math) 5321 break; 5322 /* Fall through. */ 5323 case GE_EXPR: 5324 case GT_EXPR: 5325 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5326 break; 5327 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5328 return fold_convert_loc (loc, type, tem); 5329 case UNLE_EXPR: 5330 case UNLT_EXPR: 5331 if (flag_trapping_math) 5332 break; 5333 /* FALLTHRU */ 5334 case LE_EXPR: 5335 case LT_EXPR: 5336 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5337 break; 5338 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5339 return negate_expr (fold_convert_loc (loc, type, tem)); 5340 default: 5341 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5342 break; 5343 } 5344 5345 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise 5346 A == 0 ? A : 0 is always 0 unless A is -0. Note that 5347 both transformations are correct when A is NaN: A != 0 5348 is then true, and A == 0 is false. */ 5349 5350 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5351 && integer_zerop (arg01) && integer_zerop (arg2)) 5352 { 5353 if (comp_code == NE_EXPR) 5354 return fold_convert_loc (loc, type, arg1); 5355 else if (comp_code == EQ_EXPR) 5356 return build_zero_cst (type); 5357 } 5358 5359 /* Try some transformations of A op B ? A : B. 5360 5361 A == B? A : B same as B 5362 A != B? A : B same as A 5363 A >= B? A : B same as max (A, B) 5364 A > B? A : B same as max (B, A) 5365 A <= B? A : B same as min (A, B) 5366 A < B? A : B same as min (B, A) 5367 5368 As above, these transformations don't work in the presence 5369 of signed zeros. For example, if A and B are zeros of 5370 opposite sign, the first two transformations will change 5371 the sign of the result. In the last four, the original 5372 expressions give different results for (A=+0, B=-0) and 5373 (A=-0, B=+0), but the transformed expressions do not. 5374 5375 The first two transformations are correct if either A or B 5376 is a NaN. In the first transformation, the condition will 5377 be false, and B will indeed be chosen. In the case of the 5378 second transformation, the condition A != B will be true, 5379 and A will be chosen. 5380 5381 The conversions to max() and min() are not correct if B is 5382 a number and A is not. The conditions in the original 5383 expressions will be false, so all four give B. The min() 5384 and max() versions would give a NaN instead. */ 5385 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5386 && operand_equal_for_comparison_p (arg01, arg2) 5387 /* Avoid these transformations if the COND_EXPR may be used 5388 as an lvalue in the C++ front-end. PR c++/19199. */ 5389 && (in_gimple_form 5390 || VECTOR_TYPE_P (type) 5391 || (! lang_GNU_CXX () 5392 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0) 5393 || ! maybe_lvalue_p (arg1) 5394 || ! maybe_lvalue_p (arg2))) 5395 { 5396 tree comp_op0 = arg00; 5397 tree comp_op1 = arg01; 5398 tree comp_type = TREE_TYPE (comp_op0); 5399 5400 switch (comp_code) 5401 { 5402 case EQ_EXPR: 5403 return fold_convert_loc (loc, type, arg2); 5404 case NE_EXPR: 5405 return fold_convert_loc (loc, type, arg1); 5406 case LE_EXPR: 5407 case LT_EXPR: 5408 case UNLE_EXPR: 5409 case UNLT_EXPR: 5410 /* In C++ a ?: expression can be an lvalue, so put the 5411 operand which will be used if they are equal first 5412 so that we can convert this back to the 5413 corresponding COND_EXPR. */ 5414 if (!HONOR_NANS (arg1)) 5415 { 5416 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5417 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5418 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR) 5419 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1) 5420 : fold_build2_loc (loc, MIN_EXPR, comp_type, 5421 comp_op1, comp_op0); 5422 return fold_convert_loc (loc, type, tem); 5423 } 5424 break; 5425 case GE_EXPR: 5426 case GT_EXPR: 5427 case UNGE_EXPR: 5428 case UNGT_EXPR: 5429 if (!HONOR_NANS (arg1)) 5430 { 5431 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5432 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5433 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR) 5434 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1) 5435 : fold_build2_loc (loc, MAX_EXPR, comp_type, 5436 comp_op1, comp_op0); 5437 return fold_convert_loc (loc, type, tem); 5438 } 5439 break; 5440 case UNEQ_EXPR: 5441 if (!HONOR_NANS (arg1)) 5442 return fold_convert_loc (loc, type, arg2); 5443 break; 5444 case LTGT_EXPR: 5445 if (!HONOR_NANS (arg1)) 5446 return fold_convert_loc (loc, type, arg1); 5447 break; 5448 default: 5449 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5450 break; 5451 } 5452 } 5453 5454 return NULL_TREE; 5455 } 5456 5457 5458 5459 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT 5460 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 5461 (BRANCH_COST (optimize_function_for_speed_p (cfun), \ 5462 false) >= 2) 5463 #endif 5464 5465 /* EXP is some logical combination of boolean tests. See if we can 5466 merge it into some range test. Return the new tree if so. */ 5467 5468 static tree 5469 fold_range_test (location_t loc, enum tree_code code, tree type, 5470 tree op0, tree op1) 5471 { 5472 int or_op = (code == TRUTH_ORIF_EXPR 5473 || code == TRUTH_OR_EXPR); 5474 int in0_p, in1_p, in_p; 5475 tree low0, low1, low, high0, high1, high; 5476 bool strict_overflow_p = false; 5477 tree tem, lhs, rhs; 5478 const char * const warnmsg = G_("assuming signed overflow does not occur " 5479 "when simplifying range test"); 5480 5481 if (!INTEGRAL_TYPE_P (type)) 5482 return 0; 5483 5484 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p); 5485 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p); 5486 5487 /* If this is an OR operation, invert both sides; we will invert 5488 again at the end. */ 5489 if (or_op) 5490 in0_p = ! in0_p, in1_p = ! in1_p; 5491 5492 /* If both expressions are the same, if we can merge the ranges, and we 5493 can build the range test, return it or it inverted. If one of the 5494 ranges is always true or always false, consider it to be the same 5495 expression as the other. */ 5496 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0)) 5497 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0, 5498 in1_p, low1, high1) 5499 && (tem = (build_range_check (loc, type, 5500 lhs != 0 ? lhs 5501 : rhs != 0 ? rhs : integer_zero_node, 5502 in_p, low, high))) != 0) 5503 { 5504 if (strict_overflow_p) 5505 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 5506 return or_op ? invert_truthvalue_loc (loc, tem) : tem; 5507 } 5508 5509 /* On machines where the branch cost is expensive, if this is a 5510 short-circuited branch and the underlying object on both sides 5511 is the same, make a non-short-circuit operation. */ 5512 else if (LOGICAL_OP_NON_SHORT_CIRCUIT 5513 && !flag_sanitize_coverage 5514 && lhs != 0 && rhs != 0 5515 && (code == TRUTH_ANDIF_EXPR 5516 || code == TRUTH_ORIF_EXPR) 5517 && operand_equal_p (lhs, rhs, 0)) 5518 { 5519 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR 5520 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in 5521 which cases we can't do this. */ 5522 if (simple_operand_p (lhs)) 5523 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5524 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5525 type, op0, op1); 5526 5527 else if (!lang_hooks.decls.global_bindings_p () 5528 && !CONTAINS_PLACEHOLDER_P (lhs)) 5529 { 5530 tree common = save_expr (lhs); 5531 5532 if ((lhs = build_range_check (loc, type, common, 5533 or_op ? ! in0_p : in0_p, 5534 low0, high0)) != 0 5535 && (rhs = build_range_check (loc, type, common, 5536 or_op ? ! in1_p : in1_p, 5537 low1, high1)) != 0) 5538 { 5539 if (strict_overflow_p) 5540 fold_overflow_warning (warnmsg, 5541 WARN_STRICT_OVERFLOW_COMPARISON); 5542 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5543 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5544 type, lhs, rhs); 5545 } 5546 } 5547 } 5548 5549 return 0; 5550 } 5551 5552 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P 5553 bit value. Arrange things so the extra bits will be set to zero if and 5554 only if C is signed-extended to its full width. If MASK is nonzero, 5555 it is an INTEGER_CST that should be AND'ed with the extra bits. */ 5556 5557 static tree 5558 unextend (tree c, int p, int unsignedp, tree mask) 5559 { 5560 tree type = TREE_TYPE (c); 5561 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type)); 5562 tree temp; 5563 5564 if (p == modesize || unsignedp) 5565 return c; 5566 5567 /* We work by getting just the sign bit into the low-order bit, then 5568 into the high-order bit, then sign-extend. We then XOR that value 5569 with C. */ 5570 temp = build_int_cst (TREE_TYPE (c), 5571 wi::extract_uhwi (wi::to_wide (c), p - 1, 1)); 5572 5573 /* We must use a signed type in order to get an arithmetic right shift. 5574 However, we must also avoid introducing accidental overflows, so that 5575 a subsequent call to integer_zerop will work. Hence we must 5576 do the type conversion here. At this point, the constant is either 5577 zero or one, and the conversion to a signed type can never overflow. 5578 We could get an overflow if this conversion is done anywhere else. */ 5579 if (TYPE_UNSIGNED (type)) 5580 temp = fold_convert (signed_type_for (type), temp); 5581 5582 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1)); 5583 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1)); 5584 if (mask != 0) 5585 temp = const_binop (BIT_AND_EXPR, temp, 5586 fold_convert (TREE_TYPE (c), mask)); 5587 /* If necessary, convert the type back to match the type of C. */ 5588 if (TYPE_UNSIGNED (type)) 5589 temp = fold_convert (type, temp); 5590 5591 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp)); 5592 } 5593 5594 /* For an expression that has the form 5595 (A && B) || ~B 5596 or 5597 (A || B) && ~B, 5598 we can drop one of the inner expressions and simplify to 5599 A || ~B 5600 or 5601 A && ~B 5602 LOC is the location of the resulting expression. OP is the inner 5603 logical operation; the left-hand side in the examples above, while CMPOP 5604 is the right-hand side. RHS_ONLY is used to prevent us from accidentally 5605 removing a condition that guards another, as in 5606 (A != NULL && A->...) || A == NULL 5607 which we must not transform. If RHS_ONLY is true, only eliminate the 5608 right-most operand of the inner logical operation. */ 5609 5610 static tree 5611 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop, 5612 bool rhs_only) 5613 { 5614 tree type = TREE_TYPE (cmpop); 5615 enum tree_code code = TREE_CODE (cmpop); 5616 enum tree_code truthop_code = TREE_CODE (op); 5617 tree lhs = TREE_OPERAND (op, 0); 5618 tree rhs = TREE_OPERAND (op, 1); 5619 tree orig_lhs = lhs, orig_rhs = rhs; 5620 enum tree_code rhs_code = TREE_CODE (rhs); 5621 enum tree_code lhs_code = TREE_CODE (lhs); 5622 enum tree_code inv_code; 5623 5624 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop)) 5625 return NULL_TREE; 5626 5627 if (TREE_CODE_CLASS (code) != tcc_comparison) 5628 return NULL_TREE; 5629 5630 if (rhs_code == truthop_code) 5631 { 5632 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only); 5633 if (newrhs != NULL_TREE) 5634 { 5635 rhs = newrhs; 5636 rhs_code = TREE_CODE (rhs); 5637 } 5638 } 5639 if (lhs_code == truthop_code && !rhs_only) 5640 { 5641 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false); 5642 if (newlhs != NULL_TREE) 5643 { 5644 lhs = newlhs; 5645 lhs_code = TREE_CODE (lhs); 5646 } 5647 } 5648 5649 inv_code = invert_tree_comparison (code, HONOR_NANS (type)); 5650 if (inv_code == rhs_code 5651 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0) 5652 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5653 return lhs; 5654 if (!rhs_only && inv_code == lhs_code 5655 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0) 5656 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5657 return rhs; 5658 if (rhs != orig_rhs || lhs != orig_lhs) 5659 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop), 5660 lhs, rhs); 5661 return NULL_TREE; 5662 } 5663 5664 /* Find ways of folding logical expressions of LHS and RHS: 5665 Try to merge two comparisons to the same innermost item. 5666 Look for range tests like "ch >= '0' && ch <= '9'". 5667 Look for combinations of simple terms on machines with expensive branches 5668 and evaluate the RHS unconditionally. 5669 5670 For example, if we have p->a == 2 && p->b == 4 and we can make an 5671 object large enough to span both A and B, we can do this with a comparison 5672 against the object ANDed with the a mask. 5673 5674 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking 5675 operations to do this with one comparison. 5676 5677 We check for both normal comparisons and the BIT_AND_EXPRs made this by 5678 function and the one above. 5679 5680 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR, 5681 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR. 5682 5683 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its 5684 two operands. 5685 5686 We return the simplified tree or 0 if no optimization is possible. */ 5687 5688 static tree 5689 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type, 5690 tree lhs, tree rhs) 5691 { 5692 /* If this is the "or" of two comparisons, we can do something if 5693 the comparisons are NE_EXPR. If this is the "and", we can do something 5694 if the comparisons are EQ_EXPR. I.e., 5695 (a->b == 2 && a->c == 4) can become (a->new == NEW). 5696 5697 WANTED_CODE is this operation code. For single bit fields, we can 5698 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong" 5699 comparison for one-bit fields. */ 5700 5701 enum tree_code wanted_code; 5702 enum tree_code lcode, rcode; 5703 tree ll_arg, lr_arg, rl_arg, rr_arg; 5704 tree ll_inner, lr_inner, rl_inner, rr_inner; 5705 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos; 5706 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos; 5707 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos; 5708 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos; 5709 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp; 5710 int ll_reversep, lr_reversep, rl_reversep, rr_reversep; 5711 machine_mode ll_mode, lr_mode, rl_mode, rr_mode; 5712 scalar_int_mode lnmode, rnmode; 5713 tree ll_mask, lr_mask, rl_mask, rr_mask; 5714 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask; 5715 tree l_const, r_const; 5716 tree lntype, rntype, result; 5717 HOST_WIDE_INT first_bit, end_bit; 5718 int volatilep; 5719 5720 /* Start by getting the comparison codes. Fail if anything is volatile. 5721 If one operand is a BIT_AND_EXPR with the constant one, treat it as if 5722 it were surrounded with a NE_EXPR. */ 5723 5724 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs)) 5725 return 0; 5726 5727 lcode = TREE_CODE (lhs); 5728 rcode = TREE_CODE (rhs); 5729 5730 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1))) 5731 { 5732 lhs = build2 (NE_EXPR, truth_type, lhs, 5733 build_int_cst (TREE_TYPE (lhs), 0)); 5734 lcode = NE_EXPR; 5735 } 5736 5737 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1))) 5738 { 5739 rhs = build2 (NE_EXPR, truth_type, rhs, 5740 build_int_cst (TREE_TYPE (rhs), 0)); 5741 rcode = NE_EXPR; 5742 } 5743 5744 if (TREE_CODE_CLASS (lcode) != tcc_comparison 5745 || TREE_CODE_CLASS (rcode) != tcc_comparison) 5746 return 0; 5747 5748 ll_arg = TREE_OPERAND (lhs, 0); 5749 lr_arg = TREE_OPERAND (lhs, 1); 5750 rl_arg = TREE_OPERAND (rhs, 0); 5751 rr_arg = TREE_OPERAND (rhs, 1); 5752 5753 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */ 5754 if (simple_operand_p (ll_arg) 5755 && simple_operand_p (lr_arg)) 5756 { 5757 if (operand_equal_p (ll_arg, rl_arg, 0) 5758 && operand_equal_p (lr_arg, rr_arg, 0)) 5759 { 5760 result = combine_comparisons (loc, code, lcode, rcode, 5761 truth_type, ll_arg, lr_arg); 5762 if (result) 5763 return result; 5764 } 5765 else if (operand_equal_p (ll_arg, rr_arg, 0) 5766 && operand_equal_p (lr_arg, rl_arg, 0)) 5767 { 5768 result = combine_comparisons (loc, code, lcode, 5769 swap_tree_comparison (rcode), 5770 truth_type, ll_arg, lr_arg); 5771 if (result) 5772 return result; 5773 } 5774 } 5775 5776 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR) 5777 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR); 5778 5779 /* If the RHS can be evaluated unconditionally and its operands are 5780 simple, it wins to evaluate the RHS unconditionally on machines 5781 with expensive branches. In this case, this isn't a comparison 5782 that can be merged. */ 5783 5784 if (BRANCH_COST (optimize_function_for_speed_p (cfun), 5785 false) >= 2 5786 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg)) 5787 && simple_operand_p (rl_arg) 5788 && simple_operand_p (rr_arg)) 5789 { 5790 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */ 5791 if (code == TRUTH_OR_EXPR 5792 && lcode == NE_EXPR && integer_zerop (lr_arg) 5793 && rcode == NE_EXPR && integer_zerop (rr_arg) 5794 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5795 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5796 return build2_loc (loc, NE_EXPR, truth_type, 5797 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5798 ll_arg, rl_arg), 5799 build_int_cst (TREE_TYPE (ll_arg), 0)); 5800 5801 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */ 5802 if (code == TRUTH_AND_EXPR 5803 && lcode == EQ_EXPR && integer_zerop (lr_arg) 5804 && rcode == EQ_EXPR && integer_zerop (rr_arg) 5805 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5806 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5807 return build2_loc (loc, EQ_EXPR, truth_type, 5808 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5809 ll_arg, rl_arg), 5810 build_int_cst (TREE_TYPE (ll_arg), 0)); 5811 } 5812 5813 /* See if the comparisons can be merged. Then get all the parameters for 5814 each side. */ 5815 5816 if ((lcode != EQ_EXPR && lcode != NE_EXPR) 5817 || (rcode != EQ_EXPR && rcode != NE_EXPR)) 5818 return 0; 5819 5820 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0; 5821 volatilep = 0; 5822 ll_inner = decode_field_reference (loc, &ll_arg, 5823 &ll_bitsize, &ll_bitpos, &ll_mode, 5824 &ll_unsignedp, &ll_reversep, &volatilep, 5825 &ll_mask, &ll_and_mask); 5826 lr_inner = decode_field_reference (loc, &lr_arg, 5827 &lr_bitsize, &lr_bitpos, &lr_mode, 5828 &lr_unsignedp, &lr_reversep, &volatilep, 5829 &lr_mask, &lr_and_mask); 5830 rl_inner = decode_field_reference (loc, &rl_arg, 5831 &rl_bitsize, &rl_bitpos, &rl_mode, 5832 &rl_unsignedp, &rl_reversep, &volatilep, 5833 &rl_mask, &rl_and_mask); 5834 rr_inner = decode_field_reference (loc, &rr_arg, 5835 &rr_bitsize, &rr_bitpos, &rr_mode, 5836 &rr_unsignedp, &rr_reversep, &volatilep, 5837 &rr_mask, &rr_and_mask); 5838 5839 /* It must be true that the inner operation on the lhs of each 5840 comparison must be the same if we are to be able to do anything. 5841 Then see if we have constants. If not, the same must be true for 5842 the rhs's. */ 5843 if (volatilep 5844 || ll_reversep != rl_reversep 5845 || ll_inner == 0 || rl_inner == 0 5846 || ! operand_equal_p (ll_inner, rl_inner, 0)) 5847 return 0; 5848 5849 if (TREE_CODE (lr_arg) == INTEGER_CST 5850 && TREE_CODE (rr_arg) == INTEGER_CST) 5851 { 5852 l_const = lr_arg, r_const = rr_arg; 5853 lr_reversep = ll_reversep; 5854 } 5855 else if (lr_reversep != rr_reversep 5856 || lr_inner == 0 || rr_inner == 0 5857 || ! operand_equal_p (lr_inner, rr_inner, 0)) 5858 return 0; 5859 else 5860 l_const = r_const = 0; 5861 5862 /* If either comparison code is not correct for our logical operation, 5863 fail. However, we can convert a one-bit comparison against zero into 5864 the opposite comparison against that bit being set in the field. */ 5865 5866 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR); 5867 if (lcode != wanted_code) 5868 { 5869 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask)) 5870 { 5871 /* Make the left operand unsigned, since we are only interested 5872 in the value of one bit. Otherwise we are doing the wrong 5873 thing below. */ 5874 ll_unsignedp = 1; 5875 l_const = ll_mask; 5876 } 5877 else 5878 return 0; 5879 } 5880 5881 /* This is analogous to the code for l_const above. */ 5882 if (rcode != wanted_code) 5883 { 5884 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask)) 5885 { 5886 rl_unsignedp = 1; 5887 r_const = rl_mask; 5888 } 5889 else 5890 return 0; 5891 } 5892 5893 /* See if we can find a mode that contains both fields being compared on 5894 the left. If we can't, fail. Otherwise, update all constants and masks 5895 to be relative to a field of that size. */ 5896 first_bit = MIN (ll_bitpos, rl_bitpos); 5897 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize); 5898 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5899 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD, 5900 volatilep, &lnmode)) 5901 return 0; 5902 5903 lnbitsize = GET_MODE_BITSIZE (lnmode); 5904 lnbitpos = first_bit & ~ (lnbitsize - 1); 5905 lntype = lang_hooks.types.type_for_size (lnbitsize, 1); 5906 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos; 5907 5908 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 5909 { 5910 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize; 5911 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize; 5912 } 5913 5914 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask), 5915 size_int (xll_bitpos)); 5916 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask), 5917 size_int (xrl_bitpos)); 5918 5919 if (l_const) 5920 { 5921 l_const = fold_convert_loc (loc, lntype, l_const); 5922 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask); 5923 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos)); 5924 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const, 5925 fold_build1_loc (loc, BIT_NOT_EXPR, 5926 lntype, ll_mask)))) 5927 { 5928 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5929 5930 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5931 } 5932 } 5933 if (r_const) 5934 { 5935 r_const = fold_convert_loc (loc, lntype, r_const); 5936 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask); 5937 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos)); 5938 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const, 5939 fold_build1_loc (loc, BIT_NOT_EXPR, 5940 lntype, rl_mask)))) 5941 { 5942 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5943 5944 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5945 } 5946 } 5947 5948 /* If the right sides are not constant, do the same for it. Also, 5949 disallow this optimization if a size or signedness mismatch occurs 5950 between the left and right sides. */ 5951 if (l_const == 0) 5952 { 5953 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize 5954 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp 5955 /* Make sure the two fields on the right 5956 correspond to the left without being swapped. */ 5957 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos) 5958 return 0; 5959 5960 first_bit = MIN (lr_bitpos, rr_bitpos); 5961 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize); 5962 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5963 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD, 5964 volatilep, &rnmode)) 5965 return 0; 5966 5967 rnbitsize = GET_MODE_BITSIZE (rnmode); 5968 rnbitpos = first_bit & ~ (rnbitsize - 1); 5969 rntype = lang_hooks.types.type_for_size (rnbitsize, 1); 5970 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos; 5971 5972 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 5973 { 5974 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize; 5975 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize; 5976 } 5977 5978 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 5979 rntype, lr_mask), 5980 size_int (xlr_bitpos)); 5981 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 5982 rntype, rr_mask), 5983 size_int (xrr_bitpos)); 5984 5985 /* Make a mask that corresponds to both fields being compared. 5986 Do this for both items being compared. If the operands are the 5987 same size and the bits being compared are in the same position 5988 then we can do this by masking both and comparing the masked 5989 results. */ 5990 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 5991 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask); 5992 if (lnbitsize == rnbitsize 5993 && xll_bitpos == xlr_bitpos 5994 && lnbitpos >= 0 5995 && rnbitpos >= 0) 5996 { 5997 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, 5998 lntype, lnbitsize, lnbitpos, 5999 ll_unsignedp || rl_unsignedp, ll_reversep); 6000 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6001 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask); 6002 6003 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, 6004 rntype, rnbitsize, rnbitpos, 6005 lr_unsignedp || rr_unsignedp, lr_reversep); 6006 if (! all_ones_mask_p (lr_mask, rnbitsize)) 6007 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask); 6008 6009 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6010 } 6011 6012 /* There is still another way we can do something: If both pairs of 6013 fields being compared are adjacent, we may be able to make a wider 6014 field containing them both. 6015 6016 Note that we still must mask the lhs/rhs expressions. Furthermore, 6017 the mask must be shifted to account for the shift done by 6018 make_bit_field_ref. */ 6019 if (((ll_bitsize + ll_bitpos == rl_bitpos 6020 && lr_bitsize + lr_bitpos == rr_bitpos) 6021 || (ll_bitpos == rl_bitpos + rl_bitsize 6022 && lr_bitpos == rr_bitpos + rr_bitsize)) 6023 && ll_bitpos >= 0 6024 && rl_bitpos >= 0 6025 && lr_bitpos >= 0 6026 && rr_bitpos >= 0) 6027 { 6028 tree type; 6029 6030 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype, 6031 ll_bitsize + rl_bitsize, 6032 MIN (ll_bitpos, rl_bitpos), 6033 ll_unsignedp, ll_reversep); 6034 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype, 6035 lr_bitsize + rr_bitsize, 6036 MIN (lr_bitpos, rr_bitpos), 6037 lr_unsignedp, lr_reversep); 6038 6039 ll_mask = const_binop (RSHIFT_EXPR, ll_mask, 6040 size_int (MIN (xll_bitpos, xrl_bitpos))); 6041 lr_mask = const_binop (RSHIFT_EXPR, lr_mask, 6042 size_int (MIN (xlr_bitpos, xrr_bitpos))); 6043 6044 /* Convert to the smaller type before masking out unwanted bits. */ 6045 type = lntype; 6046 if (lntype != rntype) 6047 { 6048 if (lnbitsize > rnbitsize) 6049 { 6050 lhs = fold_convert_loc (loc, rntype, lhs); 6051 ll_mask = fold_convert_loc (loc, rntype, ll_mask); 6052 type = rntype; 6053 } 6054 else if (lnbitsize < rnbitsize) 6055 { 6056 rhs = fold_convert_loc (loc, lntype, rhs); 6057 lr_mask = fold_convert_loc (loc, lntype, lr_mask); 6058 type = lntype; 6059 } 6060 } 6061 6062 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize)) 6063 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask); 6064 6065 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize)) 6066 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask); 6067 6068 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6069 } 6070 6071 return 0; 6072 } 6073 6074 /* Handle the case of comparisons with constants. If there is something in 6075 common between the masks, those bits of the constants must be the same. 6076 If not, the condition is always false. Test for this to avoid generating 6077 incorrect code below. */ 6078 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask); 6079 if (! integer_zerop (result) 6080 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const), 6081 const_binop (BIT_AND_EXPR, result, r_const)) != 1) 6082 { 6083 if (wanted_code == NE_EXPR) 6084 { 6085 warning (0, "%<or%> of unmatched not-equal tests is always 1"); 6086 return constant_boolean_node (true, truth_type); 6087 } 6088 else 6089 { 6090 warning (0, "%<and%> of mutually exclusive equal-tests is always 0"); 6091 return constant_boolean_node (false, truth_type); 6092 } 6093 } 6094 6095 if (lnbitpos < 0) 6096 return 0; 6097 6098 /* Construct the expression we will return. First get the component 6099 reference we will make. Unless the mask is all ones the width of 6100 that field, perform the mask operation. Then compare with the 6101 merged constant. */ 6102 result = make_bit_field_ref (loc, ll_inner, ll_arg, 6103 lntype, lnbitsize, lnbitpos, 6104 ll_unsignedp || rl_unsignedp, ll_reversep); 6105 6106 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 6107 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6108 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask); 6109 6110 return build2_loc (loc, wanted_code, truth_type, result, 6111 const_binop (BIT_IOR_EXPR, l_const, r_const)); 6112 } 6113 6114 /* T is an integer expression that is being multiplied, divided, or taken a 6115 modulus (CODE says which and what kind of divide or modulus) by a 6116 constant C. See if we can eliminate that operation by folding it with 6117 other operations already in T. WIDE_TYPE, if non-null, is a type that 6118 should be used for the computation if wider than our type. 6119 6120 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return 6121 (X * 2) + (Y * 4). We must, however, be assured that either the original 6122 expression would not overflow or that overflow is undefined for the type 6123 in the language in question. 6124 6125 If we return a non-null expression, it is an equivalent form of the 6126 original computation, but need not be in the original type. 6127 6128 We set *STRICT_OVERFLOW_P to true if the return values depends on 6129 signed overflow being undefined. Otherwise we do not change 6130 *STRICT_OVERFLOW_P. */ 6131 6132 static tree 6133 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type, 6134 bool *strict_overflow_p) 6135 { 6136 /* To avoid exponential search depth, refuse to allow recursion past 6137 three levels. Beyond that (1) it's highly unlikely that we'll find 6138 something interesting and (2) we've probably processed it before 6139 when we built the inner expression. */ 6140 6141 static int depth; 6142 tree ret; 6143 6144 if (depth > 3) 6145 return NULL; 6146 6147 depth++; 6148 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p); 6149 depth--; 6150 6151 return ret; 6152 } 6153 6154 static tree 6155 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type, 6156 bool *strict_overflow_p) 6157 { 6158 tree type = TREE_TYPE (t); 6159 enum tree_code tcode = TREE_CODE (t); 6160 tree ctype = (wide_type != 0 6161 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type)) 6162 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type))) 6163 ? wide_type : type); 6164 tree t1, t2; 6165 int same_p = tcode == code; 6166 tree op0 = NULL_TREE, op1 = NULL_TREE; 6167 bool sub_strict_overflow_p; 6168 6169 /* Don't deal with constants of zero here; they confuse the code below. */ 6170 if (integer_zerop (c)) 6171 return NULL_TREE; 6172 6173 if (TREE_CODE_CLASS (tcode) == tcc_unary) 6174 op0 = TREE_OPERAND (t, 0); 6175 6176 if (TREE_CODE_CLASS (tcode) == tcc_binary) 6177 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1); 6178 6179 /* Note that we need not handle conditional operations here since fold 6180 already handles those cases. So just do arithmetic here. */ 6181 switch (tcode) 6182 { 6183 case INTEGER_CST: 6184 /* For a constant, we can always simplify if we are a multiply 6185 or (for divide and modulus) if it is a multiple of our constant. */ 6186 if (code == MULT_EXPR 6187 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c), 6188 TYPE_SIGN (type))) 6189 { 6190 tree tem = const_binop (code, fold_convert (ctype, t), 6191 fold_convert (ctype, c)); 6192 /* If the multiplication overflowed, we lost information on it. 6193 See PR68142 and PR69845. */ 6194 if (TREE_OVERFLOW (tem)) 6195 return NULL_TREE; 6196 return tem; 6197 } 6198 break; 6199 6200 CASE_CONVERT: case NON_LVALUE_EXPR: 6201 /* If op0 is an expression ... */ 6202 if ((COMPARISON_CLASS_P (op0) 6203 || UNARY_CLASS_P (op0) 6204 || BINARY_CLASS_P (op0) 6205 || VL_EXP_CLASS_P (op0) 6206 || EXPRESSION_CLASS_P (op0)) 6207 /* ... and has wrapping overflow, and its type is smaller 6208 than ctype, then we cannot pass through as widening. */ 6209 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6210 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))) 6211 && (TYPE_PRECISION (ctype) 6212 > TYPE_PRECISION (TREE_TYPE (op0)))) 6213 /* ... or this is a truncation (t is narrower than op0), 6214 then we cannot pass through this narrowing. */ 6215 || (TYPE_PRECISION (type) 6216 < TYPE_PRECISION (TREE_TYPE (op0))) 6217 /* ... or signedness changes for division or modulus, 6218 then we cannot pass through this conversion. */ 6219 || (code != MULT_EXPR 6220 && (TYPE_UNSIGNED (ctype) 6221 != TYPE_UNSIGNED (TREE_TYPE (op0)))) 6222 /* ... or has undefined overflow while the converted to 6223 type has not, we cannot do the operation in the inner type 6224 as that would introduce undefined overflow. */ 6225 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6226 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))) 6227 && !TYPE_OVERFLOW_UNDEFINED (type)))) 6228 break; 6229 6230 /* Pass the constant down and see if we can make a simplification. If 6231 we can, replace this expression with the inner simplification for 6232 possible later conversion to our or some other type. */ 6233 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0 6234 && TREE_CODE (t2) == INTEGER_CST 6235 && !TREE_OVERFLOW (t2) 6236 && (t1 = extract_muldiv (op0, t2, code, 6237 code == MULT_EXPR ? ctype : NULL_TREE, 6238 strict_overflow_p)) != 0) 6239 return t1; 6240 break; 6241 6242 case ABS_EXPR: 6243 /* If widening the type changes it from signed to unsigned, then we 6244 must avoid building ABS_EXPR itself as unsigned. */ 6245 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type)) 6246 { 6247 tree cstype = (*signed_type_for) (ctype); 6248 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p)) 6249 != 0) 6250 { 6251 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1)); 6252 return fold_convert (ctype, t1); 6253 } 6254 break; 6255 } 6256 /* If the constant is negative, we cannot simplify this. */ 6257 if (tree_int_cst_sgn (c) == -1) 6258 break; 6259 /* FALLTHROUGH */ 6260 case NEGATE_EXPR: 6261 /* For division and modulus, type can't be unsigned, as e.g. 6262 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2. 6263 For signed types, even with wrapping overflow, this is fine. */ 6264 if (code != MULT_EXPR && TYPE_UNSIGNED (type)) 6265 break; 6266 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p)) 6267 != 0) 6268 return fold_build1 (tcode, ctype, fold_convert (ctype, t1)); 6269 break; 6270 6271 case MIN_EXPR: case MAX_EXPR: 6272 /* If widening the type changes the signedness, then we can't perform 6273 this optimization as that changes the result. */ 6274 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type)) 6275 break; 6276 6277 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */ 6278 sub_strict_overflow_p = false; 6279 if ((t1 = extract_muldiv (op0, c, code, wide_type, 6280 &sub_strict_overflow_p)) != 0 6281 && (t2 = extract_muldiv (op1, c, code, wide_type, 6282 &sub_strict_overflow_p)) != 0) 6283 { 6284 if (tree_int_cst_sgn (c) < 0) 6285 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR); 6286 if (sub_strict_overflow_p) 6287 *strict_overflow_p = true; 6288 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6289 fold_convert (ctype, t2)); 6290 } 6291 break; 6292 6293 case LSHIFT_EXPR: case RSHIFT_EXPR: 6294 /* If the second operand is constant, this is a multiplication 6295 or floor division, by a power of two, so we can treat it that 6296 way unless the multiplier or divisor overflows. Signed 6297 left-shift overflow is implementation-defined rather than 6298 undefined in C90, so do not convert signed left shift into 6299 multiplication. */ 6300 if (TREE_CODE (op1) == INTEGER_CST 6301 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0))) 6302 /* const_binop may not detect overflow correctly, 6303 so check for it explicitly here. */ 6304 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 6305 wi::to_wide (op1)) 6306 && (t1 = fold_convert (ctype, 6307 const_binop (LSHIFT_EXPR, size_one_node, 6308 op1))) != 0 6309 && !TREE_OVERFLOW (t1)) 6310 return extract_muldiv (build2 (tcode == LSHIFT_EXPR 6311 ? MULT_EXPR : FLOOR_DIV_EXPR, 6312 ctype, 6313 fold_convert (ctype, op0), 6314 t1), 6315 c, code, wide_type, strict_overflow_p); 6316 break; 6317 6318 case PLUS_EXPR: case MINUS_EXPR: 6319 /* See if we can eliminate the operation on both sides. If we can, we 6320 can return a new PLUS or MINUS. If we can't, the only remaining 6321 cases where we can do anything are if the second operand is a 6322 constant. */ 6323 sub_strict_overflow_p = false; 6324 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p); 6325 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p); 6326 if (t1 != 0 && t2 != 0 6327 && TYPE_OVERFLOW_WRAPS (ctype) 6328 && (code == MULT_EXPR 6329 /* If not multiplication, we can only do this if both operands 6330 are divisible by c. */ 6331 || (multiple_of_p (ctype, op0, c) 6332 && multiple_of_p (ctype, op1, c)))) 6333 { 6334 if (sub_strict_overflow_p) 6335 *strict_overflow_p = true; 6336 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6337 fold_convert (ctype, t2)); 6338 } 6339 6340 /* If this was a subtraction, negate OP1 and set it to be an addition. 6341 This simplifies the logic below. */ 6342 if (tcode == MINUS_EXPR) 6343 { 6344 tcode = PLUS_EXPR, op1 = negate_expr (op1); 6345 /* If OP1 was not easily negatable, the constant may be OP0. */ 6346 if (TREE_CODE (op0) == INTEGER_CST) 6347 { 6348 std::swap (op0, op1); 6349 std::swap (t1, t2); 6350 } 6351 } 6352 6353 if (TREE_CODE (op1) != INTEGER_CST) 6354 break; 6355 6356 /* If either OP1 or C are negative, this optimization is not safe for 6357 some of the division and remainder types while for others we need 6358 to change the code. */ 6359 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0) 6360 { 6361 if (code == CEIL_DIV_EXPR) 6362 code = FLOOR_DIV_EXPR; 6363 else if (code == FLOOR_DIV_EXPR) 6364 code = CEIL_DIV_EXPR; 6365 else if (code != MULT_EXPR 6366 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR) 6367 break; 6368 } 6369 6370 /* If it's a multiply or a division/modulus operation of a multiple 6371 of our constant, do the operation and verify it doesn't overflow. */ 6372 if (code == MULT_EXPR 6373 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6374 TYPE_SIGN (type))) 6375 { 6376 op1 = const_binop (code, fold_convert (ctype, op1), 6377 fold_convert (ctype, c)); 6378 /* We allow the constant to overflow with wrapping semantics. */ 6379 if (op1 == 0 6380 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype))) 6381 break; 6382 } 6383 else 6384 break; 6385 6386 /* If we have an unsigned type, we cannot widen the operation since it 6387 will change the result if the original computation overflowed. */ 6388 if (TYPE_UNSIGNED (ctype) && ctype != type) 6389 break; 6390 6391 /* The last case is if we are a multiply. In that case, we can 6392 apply the distributive law to commute the multiply and addition 6393 if the multiplication of the constants doesn't overflow 6394 and overflow is defined. With undefined overflow 6395 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */ 6396 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype)) 6397 return fold_build2 (tcode, ctype, 6398 fold_build2 (code, ctype, 6399 fold_convert (ctype, op0), 6400 fold_convert (ctype, c)), 6401 op1); 6402 6403 break; 6404 6405 case MULT_EXPR: 6406 /* We have a special case here if we are doing something like 6407 (C * 8) % 4 since we know that's zero. */ 6408 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR 6409 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR) 6410 /* If the multiplication can overflow we cannot optimize this. */ 6411 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)) 6412 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 6413 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6414 TYPE_SIGN (type))) 6415 { 6416 *strict_overflow_p = true; 6417 return omit_one_operand (type, integer_zero_node, op0); 6418 } 6419 6420 /* ... fall through ... */ 6421 6422 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: 6423 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: 6424 /* If we can extract our operation from the LHS, do so and return a 6425 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise, 6426 do something only if the second operand is a constant. */ 6427 if (same_p 6428 && TYPE_OVERFLOW_WRAPS (ctype) 6429 && (t1 = extract_muldiv (op0, c, code, wide_type, 6430 strict_overflow_p)) != 0) 6431 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6432 fold_convert (ctype, op1)); 6433 else if (tcode == MULT_EXPR && code == MULT_EXPR 6434 && TYPE_OVERFLOW_WRAPS (ctype) 6435 && (t1 = extract_muldiv (op1, c, code, wide_type, 6436 strict_overflow_p)) != 0) 6437 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6438 fold_convert (ctype, t1)); 6439 else if (TREE_CODE (op1) != INTEGER_CST) 6440 return 0; 6441 6442 /* If these are the same operation types, we can associate them 6443 assuming no overflow. */ 6444 if (tcode == code) 6445 { 6446 bool overflow_p = false; 6447 bool overflow_mul_p; 6448 signop sign = TYPE_SIGN (ctype); 6449 unsigned prec = TYPE_PRECISION (ctype); 6450 wide_int mul = wi::mul (wi::to_wide (op1, prec), 6451 wi::to_wide (c, prec), 6452 sign, &overflow_mul_p); 6453 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1); 6454 if (overflow_mul_p 6455 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED)) 6456 overflow_p = true; 6457 if (!overflow_p) 6458 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6459 wide_int_to_tree (ctype, mul)); 6460 } 6461 6462 /* If these operations "cancel" each other, we have the main 6463 optimizations of this pass, which occur when either constant is a 6464 multiple of the other, in which case we replace this with either an 6465 operation or CODE or TCODE. 6466 6467 If we have an unsigned type, we cannot do this since it will change 6468 the result if the original computation overflowed. */ 6469 if (TYPE_OVERFLOW_UNDEFINED (ctype) 6470 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR) 6471 || (tcode == MULT_EXPR 6472 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR 6473 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR 6474 && code != MULT_EXPR))) 6475 { 6476 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6477 TYPE_SIGN (type))) 6478 { 6479 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6480 *strict_overflow_p = true; 6481 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6482 fold_convert (ctype, 6483 const_binop (TRUNC_DIV_EXPR, 6484 op1, c))); 6485 } 6486 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1), 6487 TYPE_SIGN (type))) 6488 { 6489 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6490 *strict_overflow_p = true; 6491 return fold_build2 (code, ctype, fold_convert (ctype, op0), 6492 fold_convert (ctype, 6493 const_binop (TRUNC_DIV_EXPR, 6494 c, op1))); 6495 } 6496 } 6497 break; 6498 6499 default: 6500 break; 6501 } 6502 6503 return 0; 6504 } 6505 6506 /* Return a node which has the indicated constant VALUE (either 0 or 6507 1 for scalars or {-1,-1,..} or {0,0,...} for vectors), 6508 and is of the indicated TYPE. */ 6509 6510 tree 6511 constant_boolean_node (bool value, tree type) 6512 { 6513 if (type == integer_type_node) 6514 return value ? integer_one_node : integer_zero_node; 6515 else if (type == boolean_type_node) 6516 return value ? boolean_true_node : boolean_false_node; 6517 else if (TREE_CODE (type) == VECTOR_TYPE) 6518 return build_vector_from_val (type, 6519 build_int_cst (TREE_TYPE (type), 6520 value ? -1 : 0)); 6521 else 6522 return fold_convert (type, value ? integer_one_node : integer_zero_node); 6523 } 6524 6525 6526 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'. 6527 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here 6528 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)' 6529 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the 6530 COND is the first argument to CODE; otherwise (as in the example 6531 given here), it is the second argument. TYPE is the type of the 6532 original expression. Return NULL_TREE if no simplification is 6533 possible. */ 6534 6535 static tree 6536 fold_binary_op_with_conditional_arg (location_t loc, 6537 enum tree_code code, 6538 tree type, tree op0, tree op1, 6539 tree cond, tree arg, int cond_first_p) 6540 { 6541 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1); 6542 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0); 6543 tree test, true_value, false_value; 6544 tree lhs = NULL_TREE; 6545 tree rhs = NULL_TREE; 6546 enum tree_code cond_code = COND_EXPR; 6547 6548 if (TREE_CODE (cond) == COND_EXPR 6549 || TREE_CODE (cond) == VEC_COND_EXPR) 6550 { 6551 test = TREE_OPERAND (cond, 0); 6552 true_value = TREE_OPERAND (cond, 1); 6553 false_value = TREE_OPERAND (cond, 2); 6554 /* If this operand throws an expression, then it does not make 6555 sense to try to perform a logical or arithmetic operation 6556 involving it. */ 6557 if (VOID_TYPE_P (TREE_TYPE (true_value))) 6558 lhs = true_value; 6559 if (VOID_TYPE_P (TREE_TYPE (false_value))) 6560 rhs = false_value; 6561 } 6562 else if (!(TREE_CODE (type) != VECTOR_TYPE 6563 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE)) 6564 { 6565 tree testtype = TREE_TYPE (cond); 6566 test = cond; 6567 true_value = constant_boolean_node (true, testtype); 6568 false_value = constant_boolean_node (false, testtype); 6569 } 6570 else 6571 /* Detect the case of mixing vector and scalar types - bail out. */ 6572 return NULL_TREE; 6573 6574 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE) 6575 cond_code = VEC_COND_EXPR; 6576 6577 /* This transformation is only worthwhile if we don't have to wrap ARG 6578 in a SAVE_EXPR and the operation can be simplified without recursing 6579 on at least one of the branches once its pushed inside the COND_EXPR. */ 6580 if (!TREE_CONSTANT (arg) 6581 && (TREE_SIDE_EFFECTS (arg) 6582 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR 6583 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value))) 6584 return NULL_TREE; 6585 6586 arg = fold_convert_loc (loc, arg_type, arg); 6587 if (lhs == 0) 6588 { 6589 true_value = fold_convert_loc (loc, cond_type, true_value); 6590 if (cond_first_p) 6591 lhs = fold_build2_loc (loc, code, type, true_value, arg); 6592 else 6593 lhs = fold_build2_loc (loc, code, type, arg, true_value); 6594 } 6595 if (rhs == 0) 6596 { 6597 false_value = fold_convert_loc (loc, cond_type, false_value); 6598 if (cond_first_p) 6599 rhs = fold_build2_loc (loc, code, type, false_value, arg); 6600 else 6601 rhs = fold_build2_loc (loc, code, type, arg, false_value); 6602 } 6603 6604 /* Check that we have simplified at least one of the branches. */ 6605 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs)) 6606 return NULL_TREE; 6607 6608 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs); 6609 } 6610 6611 6612 /* Subroutine of fold() that checks for the addition of +/- 0.0. 6613 6614 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type 6615 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X - 6616 ADDEND is the same as X. 6617 6618 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero 6619 and finite. The problematic cases are when X is zero, and its mode 6620 has signed zeros. In the case of rounding towards -infinity, 6621 X - 0 is not the same as X because 0 - 0 is -0. In other rounding 6622 modes, X + 0 is not the same as X because -0 + 0 is 0. */ 6623 6624 bool 6625 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate) 6626 { 6627 if (!real_zerop (addend)) 6628 return false; 6629 6630 /* Don't allow the fold with -fsignaling-nans. */ 6631 if (HONOR_SNANS (element_mode (type))) 6632 return false; 6633 6634 /* Allow the fold if zeros aren't signed, or their sign isn't important. */ 6635 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 6636 return true; 6637 6638 /* In a vector or complex, we would need to check the sign of all zeros. */ 6639 if (TREE_CODE (addend) != REAL_CST) 6640 return false; 6641 6642 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */ 6643 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend))) 6644 negate = !negate; 6645 6646 /* The mode has signed zeros, and we have to honor their sign. 6647 In this situation, there is only one case we can return true for. 6648 X - 0 is the same as X unless rounding towards -infinity is 6649 supported. */ 6650 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)); 6651 } 6652 6653 /* Subroutine of match.pd that optimizes comparisons of a division by 6654 a nonzero integer constant against an integer constant, i.e. 6655 X/C1 op C2. 6656 6657 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, 6658 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */ 6659 6660 enum tree_code 6661 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo, 6662 tree *hi, bool *neg_overflow) 6663 { 6664 tree prod, tmp, type = TREE_TYPE (c1); 6665 signop sign = TYPE_SIGN (type); 6666 bool overflow; 6667 6668 /* We have to do this the hard way to detect unsigned overflow. 6669 prod = int_const_binop (MULT_EXPR, c1, c2); */ 6670 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow); 6671 prod = force_fit_type (type, val, -1, overflow); 6672 *neg_overflow = false; 6673 6674 if (sign == UNSIGNED) 6675 { 6676 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6677 *lo = prod; 6678 6679 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */ 6680 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow); 6681 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod)); 6682 } 6683 else if (tree_int_cst_sgn (c1) >= 0) 6684 { 6685 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6686 switch (tree_int_cst_sgn (c2)) 6687 { 6688 case -1: 6689 *neg_overflow = true; 6690 *lo = int_const_binop (MINUS_EXPR, prod, tmp); 6691 *hi = prod; 6692 break; 6693 6694 case 0: 6695 *lo = fold_negate_const (tmp, type); 6696 *hi = tmp; 6697 break; 6698 6699 case 1: 6700 *hi = int_const_binop (PLUS_EXPR, prod, tmp); 6701 *lo = prod; 6702 break; 6703 6704 default: 6705 gcc_unreachable (); 6706 } 6707 } 6708 else 6709 { 6710 /* A negative divisor reverses the relational operators. */ 6711 code = swap_tree_comparison (code); 6712 6713 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1)); 6714 switch (tree_int_cst_sgn (c2)) 6715 { 6716 case -1: 6717 *hi = int_const_binop (MINUS_EXPR, prod, tmp); 6718 *lo = prod; 6719 break; 6720 6721 case 0: 6722 *hi = fold_negate_const (tmp, type); 6723 *lo = tmp; 6724 break; 6725 6726 case 1: 6727 *neg_overflow = true; 6728 *lo = int_const_binop (PLUS_EXPR, prod, tmp); 6729 *hi = prod; 6730 break; 6731 6732 default: 6733 gcc_unreachable (); 6734 } 6735 } 6736 6737 if (code != EQ_EXPR && code != NE_EXPR) 6738 return code; 6739 6740 if (TREE_OVERFLOW (*lo) 6741 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0)) 6742 *lo = NULL_TREE; 6743 if (TREE_OVERFLOW (*hi) 6744 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0)) 6745 *hi = NULL_TREE; 6746 6747 return code; 6748 } 6749 6750 6751 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6752 equality/inequality test, then return a simplified form of the test 6753 using a sign testing. Otherwise return NULL. TYPE is the desired 6754 result type. */ 6755 6756 static tree 6757 fold_single_bit_test_into_sign_test (location_t loc, 6758 enum tree_code code, tree arg0, tree arg1, 6759 tree result_type) 6760 { 6761 /* If this is testing a single bit, we can optimize the test. */ 6762 if ((code == NE_EXPR || code == EQ_EXPR) 6763 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6764 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6765 { 6766 /* If we have (A & C) != 0 where C is the sign bit of A, convert 6767 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */ 6768 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)); 6769 6770 if (arg00 != NULL_TREE 6771 /* This is only a win if casting to a signed type is cheap, 6772 i.e. when arg00's type is not a partial mode. */ 6773 && type_has_mode_precision_p (TREE_TYPE (arg00))) 6774 { 6775 tree stype = signed_type_for (TREE_TYPE (arg00)); 6776 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 6777 result_type, 6778 fold_convert_loc (loc, stype, arg00), 6779 build_int_cst (stype, 0)); 6780 } 6781 } 6782 6783 return NULL_TREE; 6784 } 6785 6786 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6787 equality/inequality test, then return a simplified form of 6788 the test using shifts and logical operations. Otherwise return 6789 NULL. TYPE is the desired result type. */ 6790 6791 tree 6792 fold_single_bit_test (location_t loc, enum tree_code code, 6793 tree arg0, tree arg1, tree result_type) 6794 { 6795 /* If this is testing a single bit, we can optimize the test. */ 6796 if ((code == NE_EXPR || code == EQ_EXPR) 6797 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6798 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6799 { 6800 tree inner = TREE_OPERAND (arg0, 0); 6801 tree type = TREE_TYPE (arg0); 6802 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1)); 6803 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type); 6804 int ops_unsigned; 6805 tree signed_type, unsigned_type, intermediate_type; 6806 tree tem, one; 6807 6808 /* First, see if we can fold the single bit test into a sign-bit 6809 test. */ 6810 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, 6811 result_type); 6812 if (tem) 6813 return tem; 6814 6815 /* Otherwise we have (A & C) != 0 where C is a single bit, 6816 convert that into ((A >> C2) & 1). Where C2 = log2(C). 6817 Similarly for (A & C) == 0. */ 6818 6819 /* If INNER is a right shift of a constant and it plus BITNUM does 6820 not overflow, adjust BITNUM and INNER. */ 6821 if (TREE_CODE (inner) == RSHIFT_EXPR 6822 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST 6823 && bitnum < TYPE_PRECISION (type) 6824 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)), 6825 TYPE_PRECISION (type) - bitnum)) 6826 { 6827 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1)); 6828 inner = TREE_OPERAND (inner, 0); 6829 } 6830 6831 /* If we are going to be able to omit the AND below, we must do our 6832 operations as unsigned. If we must use the AND, we have a choice. 6833 Normally unsigned is faster, but for some machines signed is. */ 6834 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND 6835 && !flag_syntax_only) ? 0 : 1; 6836 6837 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0); 6838 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1); 6839 intermediate_type = ops_unsigned ? unsigned_type : signed_type; 6840 inner = fold_convert_loc (loc, intermediate_type, inner); 6841 6842 if (bitnum != 0) 6843 inner = build2 (RSHIFT_EXPR, intermediate_type, 6844 inner, size_int (bitnum)); 6845 6846 one = build_int_cst (intermediate_type, 1); 6847 6848 if (code == EQ_EXPR) 6849 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one); 6850 6851 /* Put the AND last so it can combine with more things. */ 6852 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one); 6853 6854 /* Make sure to return the proper type. */ 6855 inner = fold_convert_loc (loc, result_type, inner); 6856 6857 return inner; 6858 } 6859 return NULL_TREE; 6860 } 6861 6862 /* Test whether it is preferable two swap two operands, ARG0 and 6863 ARG1, for example because ARG0 is an integer constant and ARG1 6864 isn't. */ 6865 6866 bool 6867 tree_swap_operands_p (const_tree arg0, const_tree arg1) 6868 { 6869 if (CONSTANT_CLASS_P (arg1)) 6870 return 0; 6871 if (CONSTANT_CLASS_P (arg0)) 6872 return 1; 6873 6874 STRIP_NOPS (arg0); 6875 STRIP_NOPS (arg1); 6876 6877 if (TREE_CONSTANT (arg1)) 6878 return 0; 6879 if (TREE_CONSTANT (arg0)) 6880 return 1; 6881 6882 /* It is preferable to swap two SSA_NAME to ensure a canonical form 6883 for commutative and comparison operators. Ensuring a canonical 6884 form allows the optimizers to find additional redundancies without 6885 having to explicitly check for both orderings. */ 6886 if (TREE_CODE (arg0) == SSA_NAME 6887 && TREE_CODE (arg1) == SSA_NAME 6888 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1)) 6889 return 1; 6890 6891 /* Put SSA_NAMEs last. */ 6892 if (TREE_CODE (arg1) == SSA_NAME) 6893 return 0; 6894 if (TREE_CODE (arg0) == SSA_NAME) 6895 return 1; 6896 6897 /* Put variables last. */ 6898 if (DECL_P (arg1)) 6899 return 0; 6900 if (DECL_P (arg0)) 6901 return 1; 6902 6903 return 0; 6904 } 6905 6906 6907 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y 6908 means A >= Y && A != MAX, but in this case we know that 6909 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */ 6910 6911 static tree 6912 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound) 6913 { 6914 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y; 6915 6916 if (TREE_CODE (bound) == LT_EXPR) 6917 a = TREE_OPERAND (bound, 0); 6918 else if (TREE_CODE (bound) == GT_EXPR) 6919 a = TREE_OPERAND (bound, 1); 6920 else 6921 return NULL_TREE; 6922 6923 typea = TREE_TYPE (a); 6924 if (!INTEGRAL_TYPE_P (typea) 6925 && !POINTER_TYPE_P (typea)) 6926 return NULL_TREE; 6927 6928 if (TREE_CODE (ineq) == LT_EXPR) 6929 { 6930 a1 = TREE_OPERAND (ineq, 1); 6931 y = TREE_OPERAND (ineq, 0); 6932 } 6933 else if (TREE_CODE (ineq) == GT_EXPR) 6934 { 6935 a1 = TREE_OPERAND (ineq, 0); 6936 y = TREE_OPERAND (ineq, 1); 6937 } 6938 else 6939 return NULL_TREE; 6940 6941 if (TREE_TYPE (a1) != typea) 6942 return NULL_TREE; 6943 6944 if (POINTER_TYPE_P (typea)) 6945 { 6946 /* Convert the pointer types into integer before taking the difference. */ 6947 tree ta = fold_convert_loc (loc, ssizetype, a); 6948 tree ta1 = fold_convert_loc (loc, ssizetype, a1); 6949 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta); 6950 } 6951 else 6952 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a); 6953 6954 if (!diff || !integer_onep (diff)) 6955 return NULL_TREE; 6956 6957 return fold_build2_loc (loc, GE_EXPR, type, a, y); 6958 } 6959 6960 /* Fold a sum or difference of at least one multiplication. 6961 Returns the folded tree or NULL if no simplification could be made. */ 6962 6963 static tree 6964 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type, 6965 tree arg0, tree arg1) 6966 { 6967 tree arg00, arg01, arg10, arg11; 6968 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same; 6969 6970 /* (A * C) +- (B * C) -> (A+-B) * C. 6971 (A * C) +- A -> A * (C+-1). 6972 We are most concerned about the case where C is a constant, 6973 but other combinations show up during loop reduction. Since 6974 it is not difficult, try all four possibilities. */ 6975 6976 if (TREE_CODE (arg0) == MULT_EXPR) 6977 { 6978 arg00 = TREE_OPERAND (arg0, 0); 6979 arg01 = TREE_OPERAND (arg0, 1); 6980 } 6981 else if (TREE_CODE (arg0) == INTEGER_CST) 6982 { 6983 arg00 = build_one_cst (type); 6984 arg01 = arg0; 6985 } 6986 else 6987 { 6988 /* We cannot generate constant 1 for fract. */ 6989 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 6990 return NULL_TREE; 6991 arg00 = arg0; 6992 arg01 = build_one_cst (type); 6993 } 6994 if (TREE_CODE (arg1) == MULT_EXPR) 6995 { 6996 arg10 = TREE_OPERAND (arg1, 0); 6997 arg11 = TREE_OPERAND (arg1, 1); 6998 } 6999 else if (TREE_CODE (arg1) == INTEGER_CST) 7000 { 7001 arg10 = build_one_cst (type); 7002 /* As we canonicalize A - 2 to A + -2 get rid of that sign for 7003 the purpose of this canonicalization. */ 7004 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1))) 7005 && negate_expr_p (arg1) 7006 && code == PLUS_EXPR) 7007 { 7008 arg11 = negate_expr (arg1); 7009 code = MINUS_EXPR; 7010 } 7011 else 7012 arg11 = arg1; 7013 } 7014 else 7015 { 7016 /* We cannot generate constant 1 for fract. */ 7017 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 7018 return NULL_TREE; 7019 arg10 = arg1; 7020 arg11 = build_one_cst (type); 7021 } 7022 same = NULL_TREE; 7023 7024 /* Prefer factoring a common non-constant. */ 7025 if (operand_equal_p (arg00, arg10, 0)) 7026 same = arg00, alt0 = arg01, alt1 = arg11; 7027 else if (operand_equal_p (arg01, arg11, 0)) 7028 same = arg01, alt0 = arg00, alt1 = arg10; 7029 else if (operand_equal_p (arg00, arg11, 0)) 7030 same = arg00, alt0 = arg01, alt1 = arg10; 7031 else if (operand_equal_p (arg01, arg10, 0)) 7032 same = arg01, alt0 = arg00, alt1 = arg11; 7033 7034 /* No identical multiplicands; see if we can find a common 7035 power-of-two factor in non-power-of-two multiplies. This 7036 can help in multi-dimensional array access. */ 7037 else if (tree_fits_shwi_p (arg01) 7038 && tree_fits_shwi_p (arg11)) 7039 { 7040 HOST_WIDE_INT int01, int11, tmp; 7041 bool swap = false; 7042 tree maybe_same; 7043 int01 = tree_to_shwi (arg01); 7044 int11 = tree_to_shwi (arg11); 7045 7046 /* Move min of absolute values to int11. */ 7047 if (absu_hwi (int01) < absu_hwi (int11)) 7048 { 7049 tmp = int01, int01 = int11, int11 = tmp; 7050 alt0 = arg00, arg00 = arg10, arg10 = alt0; 7051 maybe_same = arg01; 7052 swap = true; 7053 } 7054 else 7055 maybe_same = arg11; 7056 7057 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0 7058 /* The remainder should not be a constant, otherwise we 7059 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has 7060 increased the number of multiplications necessary. */ 7061 && TREE_CODE (arg10) != INTEGER_CST) 7062 { 7063 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00, 7064 build_int_cst (TREE_TYPE (arg00), 7065 int01 / int11)); 7066 alt1 = arg10; 7067 same = maybe_same; 7068 if (swap) 7069 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same; 7070 } 7071 } 7072 7073 if (!same) 7074 return NULL_TREE; 7075 7076 if (! INTEGRAL_TYPE_P (type) 7077 || TYPE_OVERFLOW_WRAPS (type) 7078 /* We are neither factoring zero nor minus one. */ 7079 || TREE_CODE (same) == INTEGER_CST) 7080 return fold_build2_loc (loc, MULT_EXPR, type, 7081 fold_build2_loc (loc, code, type, 7082 fold_convert_loc (loc, type, alt0), 7083 fold_convert_loc (loc, type, alt1)), 7084 fold_convert_loc (loc, type, same)); 7085 7086 /* Same may be zero and thus the operation 'code' may overflow. Likewise 7087 same may be minus one and thus the multiplication may overflow. Perform 7088 the sum operation in an unsigned type. */ 7089 tree utype = unsigned_type_for (type); 7090 tree tem = fold_build2_loc (loc, code, utype, 7091 fold_convert_loc (loc, utype, alt0), 7092 fold_convert_loc (loc, utype, alt1)); 7093 /* If the sum evaluated to a constant that is not -INF the multiplication 7094 cannot overflow. */ 7095 if (TREE_CODE (tem) == INTEGER_CST 7096 && (wi::to_wide (tem) 7097 != wi::min_value (TYPE_PRECISION (utype), SIGNED))) 7098 return fold_build2_loc (loc, MULT_EXPR, type, 7099 fold_convert (type, tem), same); 7100 7101 /* Do not resort to unsigned multiplication because 7102 we lose the no-overflow property of the expression. */ 7103 return NULL_TREE; 7104 } 7105 7106 /* Subroutine of native_encode_expr. Encode the INTEGER_CST 7107 specified by EXPR into the buffer PTR of length LEN bytes. 7108 Return the number of bytes placed in the buffer, or zero 7109 upon failure. */ 7110 7111 static int 7112 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off) 7113 { 7114 tree type = TREE_TYPE (expr); 7115 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7116 int byte, offset, word, words; 7117 unsigned char value; 7118 7119 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7120 return 0; 7121 if (off == -1) 7122 off = 0; 7123 7124 if (ptr == NULL) 7125 /* Dry run. */ 7126 return MIN (len, total_bytes - off); 7127 7128 words = total_bytes / UNITS_PER_WORD; 7129 7130 for (byte = 0; byte < total_bytes; byte++) 7131 { 7132 int bitpos = byte * BITS_PER_UNIT; 7133 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole 7134 number of bytes. */ 7135 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT); 7136 7137 if (total_bytes > UNITS_PER_WORD) 7138 { 7139 word = byte / UNITS_PER_WORD; 7140 if (WORDS_BIG_ENDIAN) 7141 word = (words - 1) - word; 7142 offset = word * UNITS_PER_WORD; 7143 if (BYTES_BIG_ENDIAN) 7144 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7145 else 7146 offset += byte % UNITS_PER_WORD; 7147 } 7148 else 7149 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte; 7150 if (offset >= off && offset - off < len) 7151 ptr[offset - off] = value; 7152 } 7153 return MIN (len, total_bytes - off); 7154 } 7155 7156 7157 /* Subroutine of native_encode_expr. Encode the FIXED_CST 7158 specified by EXPR into the buffer PTR of length LEN bytes. 7159 Return the number of bytes placed in the buffer, or zero 7160 upon failure. */ 7161 7162 static int 7163 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off) 7164 { 7165 tree type = TREE_TYPE (expr); 7166 scalar_mode mode = SCALAR_TYPE_MODE (type); 7167 int total_bytes = GET_MODE_SIZE (mode); 7168 FIXED_VALUE_TYPE value; 7169 tree i_value, i_type; 7170 7171 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7172 return 0; 7173 7174 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1); 7175 7176 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes) 7177 return 0; 7178 7179 value = TREE_FIXED_CST (expr); 7180 i_value = double_int_to_tree (i_type, value.data); 7181 7182 return native_encode_int (i_value, ptr, len, off); 7183 } 7184 7185 7186 /* Subroutine of native_encode_expr. Encode the REAL_CST 7187 specified by EXPR into the buffer PTR of length LEN bytes. 7188 Return the number of bytes placed in the buffer, or zero 7189 upon failure. */ 7190 7191 static int 7192 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off) 7193 { 7194 tree type = TREE_TYPE (expr); 7195 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type)); 7196 int byte, offset, word, words, bitpos; 7197 unsigned char value; 7198 7199 /* There are always 32 bits in each long, no matter the size of 7200 the hosts long. We handle floating point representations with 7201 up to 192 bits. */ 7202 long tmp[6]; 7203 7204 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7205 return 0; 7206 if (off == -1) 7207 off = 0; 7208 7209 if (ptr == NULL) 7210 /* Dry run. */ 7211 return MIN (len, total_bytes - off); 7212 7213 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7214 7215 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type)); 7216 7217 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7218 bitpos += BITS_PER_UNIT) 7219 { 7220 byte = (bitpos / BITS_PER_UNIT) & 3; 7221 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31)); 7222 7223 if (UNITS_PER_WORD < 4) 7224 { 7225 word = byte / UNITS_PER_WORD; 7226 if (WORDS_BIG_ENDIAN) 7227 word = (words - 1) - word; 7228 offset = word * UNITS_PER_WORD; 7229 if (BYTES_BIG_ENDIAN) 7230 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7231 else 7232 offset += byte % UNITS_PER_WORD; 7233 } 7234 else 7235 { 7236 offset = byte; 7237 if (BYTES_BIG_ENDIAN) 7238 { 7239 /* Reverse bytes within each long, or within the entire float 7240 if it's smaller than a long (for HFmode). */ 7241 offset = MIN (3, total_bytes - 1) - offset; 7242 gcc_assert (offset >= 0); 7243 } 7244 } 7245 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3); 7246 if (offset >= off 7247 && offset - off < len) 7248 ptr[offset - off] = value; 7249 } 7250 return MIN (len, total_bytes - off); 7251 } 7252 7253 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST 7254 specified by EXPR into the buffer PTR of length LEN bytes. 7255 Return the number of bytes placed in the buffer, or zero 7256 upon failure. */ 7257 7258 static int 7259 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off) 7260 { 7261 int rsize, isize; 7262 tree part; 7263 7264 part = TREE_REALPART (expr); 7265 rsize = native_encode_expr (part, ptr, len, off); 7266 if (off == -1 && rsize == 0) 7267 return 0; 7268 part = TREE_IMAGPART (expr); 7269 if (off != -1) 7270 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part)))); 7271 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL, 7272 len - rsize, off); 7273 if (off == -1 && isize != rsize) 7274 return 0; 7275 return rsize + isize; 7276 } 7277 7278 7279 /* Subroutine of native_encode_expr. Encode the VECTOR_CST 7280 specified by EXPR into the buffer PTR of length LEN bytes. 7281 Return the number of bytes placed in the buffer, or zero 7282 upon failure. */ 7283 7284 static int 7285 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off) 7286 { 7287 unsigned HOST_WIDE_INT i, count; 7288 int size, offset; 7289 tree itype, elem; 7290 7291 offset = 0; 7292 if (!VECTOR_CST_NELTS (expr).is_constant (&count)) 7293 return 0; 7294 itype = TREE_TYPE (TREE_TYPE (expr)); 7295 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype)); 7296 for (i = 0; i < count; i++) 7297 { 7298 if (off >= size) 7299 { 7300 off -= size; 7301 continue; 7302 } 7303 elem = VECTOR_CST_ELT (expr, i); 7304 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL, 7305 len - offset, off); 7306 if ((off == -1 && res != size) || res == 0) 7307 return 0; 7308 offset += res; 7309 if (offset >= len) 7310 return (off == -1 && i < count - 1) ? 0 : offset; 7311 if (off != -1) 7312 off = 0; 7313 } 7314 return offset; 7315 } 7316 7317 7318 /* Subroutine of native_encode_expr. Encode the STRING_CST 7319 specified by EXPR into the buffer PTR of length LEN bytes. 7320 Return the number of bytes placed in the buffer, or zero 7321 upon failure. */ 7322 7323 static int 7324 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off) 7325 { 7326 tree type = TREE_TYPE (expr); 7327 7328 /* Wide-char strings are encoded in target byte-order so native 7329 encoding them is trivial. */ 7330 if (BITS_PER_UNIT != CHAR_BIT 7331 || TREE_CODE (type) != ARRAY_TYPE 7332 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE 7333 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type))) 7334 return 0; 7335 7336 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); 7337 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7338 return 0; 7339 if (off == -1) 7340 off = 0; 7341 if (ptr == NULL) 7342 /* Dry run. */; 7343 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len)) 7344 { 7345 int written = 0; 7346 if (off < TREE_STRING_LENGTH (expr)) 7347 { 7348 written = MIN (len, TREE_STRING_LENGTH (expr) - off); 7349 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written); 7350 } 7351 memset (ptr + written, 0, 7352 MIN (total_bytes - written, len - written)); 7353 } 7354 else 7355 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len)); 7356 return MIN (total_bytes - off, len); 7357 } 7358 7359 7360 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, 7361 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the 7362 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store 7363 anything, just do a dry run. If OFF is not -1 then start 7364 the encoding at byte offset OFF and encode at most LEN bytes. 7365 Return the number of bytes placed in the buffer, or zero upon failure. */ 7366 7367 int 7368 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off) 7369 { 7370 /* We don't support starting at negative offset and -1 is special. */ 7371 if (off < -1) 7372 return 0; 7373 7374 switch (TREE_CODE (expr)) 7375 { 7376 case INTEGER_CST: 7377 return native_encode_int (expr, ptr, len, off); 7378 7379 case REAL_CST: 7380 return native_encode_real (expr, ptr, len, off); 7381 7382 case FIXED_CST: 7383 return native_encode_fixed (expr, ptr, len, off); 7384 7385 case COMPLEX_CST: 7386 return native_encode_complex (expr, ptr, len, off); 7387 7388 case VECTOR_CST: 7389 return native_encode_vector (expr, ptr, len, off); 7390 7391 case STRING_CST: 7392 return native_encode_string (expr, ptr, len, off); 7393 7394 default: 7395 return 0; 7396 } 7397 } 7398 7399 7400 /* Subroutine of native_interpret_expr. Interpret the contents of 7401 the buffer PTR of length LEN as an INTEGER_CST of type TYPE. 7402 If the buffer cannot be interpreted, return NULL_TREE. */ 7403 7404 static tree 7405 native_interpret_int (tree type, const unsigned char *ptr, int len) 7406 { 7407 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7408 7409 if (total_bytes > len 7410 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7411 return NULL_TREE; 7412 7413 wide_int result = wi::from_buffer (ptr, total_bytes); 7414 7415 return wide_int_to_tree (type, result); 7416 } 7417 7418 7419 /* Subroutine of native_interpret_expr. Interpret the contents of 7420 the buffer PTR of length LEN as a FIXED_CST of type TYPE. 7421 If the buffer cannot be interpreted, return NULL_TREE. */ 7422 7423 static tree 7424 native_interpret_fixed (tree type, const unsigned char *ptr, int len) 7425 { 7426 scalar_mode mode = SCALAR_TYPE_MODE (type); 7427 int total_bytes = GET_MODE_SIZE (mode); 7428 double_int result; 7429 FIXED_VALUE_TYPE fixed_value; 7430 7431 if (total_bytes > len 7432 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7433 return NULL_TREE; 7434 7435 result = double_int::from_buffer (ptr, total_bytes); 7436 fixed_value = fixed_from_double_int (result, mode); 7437 7438 return build_fixed (type, fixed_value); 7439 } 7440 7441 7442 /* Subroutine of native_interpret_expr. Interpret the contents of 7443 the buffer PTR of length LEN as a REAL_CST of type TYPE. 7444 If the buffer cannot be interpreted, return NULL_TREE. */ 7445 7446 static tree 7447 native_interpret_real (tree type, const unsigned char *ptr, int len) 7448 { 7449 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type); 7450 int total_bytes = GET_MODE_SIZE (mode); 7451 unsigned char value; 7452 /* There are always 32 bits in each long, no matter the size of 7453 the hosts long. We handle floating point representations with 7454 up to 192 bits. */ 7455 REAL_VALUE_TYPE r; 7456 long tmp[6]; 7457 7458 if (total_bytes > len || total_bytes > 24) 7459 return NULL_TREE; 7460 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7461 7462 memset (tmp, 0, sizeof (tmp)); 7463 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7464 bitpos += BITS_PER_UNIT) 7465 { 7466 /* Both OFFSET and BYTE index within a long; 7467 bitpos indexes the whole float. */ 7468 int offset, byte = (bitpos / BITS_PER_UNIT) & 3; 7469 if (UNITS_PER_WORD < 4) 7470 { 7471 int word = byte / UNITS_PER_WORD; 7472 if (WORDS_BIG_ENDIAN) 7473 word = (words - 1) - word; 7474 offset = word * UNITS_PER_WORD; 7475 if (BYTES_BIG_ENDIAN) 7476 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7477 else 7478 offset += byte % UNITS_PER_WORD; 7479 } 7480 else 7481 { 7482 offset = byte; 7483 if (BYTES_BIG_ENDIAN) 7484 { 7485 /* Reverse bytes within each long, or within the entire float 7486 if it's smaller than a long (for HFmode). */ 7487 offset = MIN (3, total_bytes - 1) - offset; 7488 gcc_assert (offset >= 0); 7489 } 7490 } 7491 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)]; 7492 7493 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31); 7494 } 7495 7496 real_from_target (&r, tmp, mode); 7497 return build_real (type, r); 7498 } 7499 7500 7501 /* Subroutine of native_interpret_expr. Interpret the contents of 7502 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE. 7503 If the buffer cannot be interpreted, return NULL_TREE. */ 7504 7505 static tree 7506 native_interpret_complex (tree type, const unsigned char *ptr, int len) 7507 { 7508 tree etype, rpart, ipart; 7509 int size; 7510 7511 etype = TREE_TYPE (type); 7512 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7513 if (size * 2 > len) 7514 return NULL_TREE; 7515 rpart = native_interpret_expr (etype, ptr, size); 7516 if (!rpart) 7517 return NULL_TREE; 7518 ipart = native_interpret_expr (etype, ptr+size, size); 7519 if (!ipart) 7520 return NULL_TREE; 7521 return build_complex (type, rpart, ipart); 7522 } 7523 7524 7525 /* Subroutine of native_interpret_expr. Interpret the contents of 7526 the buffer PTR of length LEN as a VECTOR_CST of type TYPE. 7527 If the buffer cannot be interpreted, return NULL_TREE. */ 7528 7529 static tree 7530 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len) 7531 { 7532 tree etype, elem; 7533 unsigned int i, size; 7534 unsigned HOST_WIDE_INT count; 7535 7536 etype = TREE_TYPE (type); 7537 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7538 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count) 7539 || size * count > len) 7540 return NULL_TREE; 7541 7542 tree_vector_builder elements (type, count, 1); 7543 for (i = 0; i < count; ++i) 7544 { 7545 elem = native_interpret_expr (etype, ptr+(i*size), size); 7546 if (!elem) 7547 return NULL_TREE; 7548 elements.quick_push (elem); 7549 } 7550 return elements.build (); 7551 } 7552 7553 7554 /* Subroutine of fold_view_convert_expr. Interpret the contents of 7555 the buffer PTR of length LEN as a constant of type TYPE. For 7556 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P 7557 we return a REAL_CST, etc... If the buffer cannot be interpreted, 7558 return NULL_TREE. */ 7559 7560 tree 7561 native_interpret_expr (tree type, const unsigned char *ptr, int len) 7562 { 7563 switch (TREE_CODE (type)) 7564 { 7565 case INTEGER_TYPE: 7566 case ENUMERAL_TYPE: 7567 case BOOLEAN_TYPE: 7568 case POINTER_TYPE: 7569 case REFERENCE_TYPE: 7570 return native_interpret_int (type, ptr, len); 7571 7572 case REAL_TYPE: 7573 return native_interpret_real (type, ptr, len); 7574 7575 case FIXED_POINT_TYPE: 7576 return native_interpret_fixed (type, ptr, len); 7577 7578 case COMPLEX_TYPE: 7579 return native_interpret_complex (type, ptr, len); 7580 7581 case VECTOR_TYPE: 7582 return native_interpret_vector (type, ptr, len); 7583 7584 default: 7585 return NULL_TREE; 7586 } 7587 } 7588 7589 /* Returns true if we can interpret the contents of a native encoding 7590 as TYPE. */ 7591 7592 static bool 7593 can_native_interpret_type_p (tree type) 7594 { 7595 switch (TREE_CODE (type)) 7596 { 7597 case INTEGER_TYPE: 7598 case ENUMERAL_TYPE: 7599 case BOOLEAN_TYPE: 7600 case POINTER_TYPE: 7601 case REFERENCE_TYPE: 7602 case FIXED_POINT_TYPE: 7603 case REAL_TYPE: 7604 case COMPLEX_TYPE: 7605 case VECTOR_TYPE: 7606 return true; 7607 default: 7608 return false; 7609 } 7610 } 7611 7612 7613 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type 7614 TYPE at compile-time. If we're unable to perform the conversion 7615 return NULL_TREE. */ 7616 7617 static tree 7618 fold_view_convert_expr (tree type, tree expr) 7619 { 7620 /* We support up to 512-bit values (for V8DFmode). */ 7621 unsigned char buffer[64]; 7622 int len; 7623 7624 /* Check that the host and target are sane. */ 7625 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8) 7626 return NULL_TREE; 7627 7628 len = native_encode_expr (expr, buffer, sizeof (buffer)); 7629 if (len == 0) 7630 return NULL_TREE; 7631 7632 return native_interpret_expr (type, buffer, len); 7633 } 7634 7635 /* Build an expression for the address of T. Folds away INDIRECT_REF 7636 to avoid confusing the gimplify process. */ 7637 7638 tree 7639 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype) 7640 { 7641 /* The size of the object is not relevant when talking about its address. */ 7642 if (TREE_CODE (t) == WITH_SIZE_EXPR) 7643 t = TREE_OPERAND (t, 0); 7644 7645 if (TREE_CODE (t) == INDIRECT_REF) 7646 { 7647 t = TREE_OPERAND (t, 0); 7648 7649 if (TREE_TYPE (t) != ptrtype) 7650 t = build1_loc (loc, NOP_EXPR, ptrtype, t); 7651 } 7652 else if (TREE_CODE (t) == MEM_REF 7653 && integer_zerop (TREE_OPERAND (t, 1))) 7654 return TREE_OPERAND (t, 0); 7655 else if (TREE_CODE (t) == MEM_REF 7656 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST) 7657 return fold_binary (POINTER_PLUS_EXPR, ptrtype, 7658 TREE_OPERAND (t, 0), 7659 convert_to_ptrofftype (TREE_OPERAND (t, 1))); 7660 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR) 7661 { 7662 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0)); 7663 7664 if (TREE_TYPE (t) != ptrtype) 7665 t = fold_convert_loc (loc, ptrtype, t); 7666 } 7667 else 7668 t = build1_loc (loc, ADDR_EXPR, ptrtype, t); 7669 7670 return t; 7671 } 7672 7673 /* Build an expression for the address of T. */ 7674 7675 tree 7676 build_fold_addr_expr_loc (location_t loc, tree t) 7677 { 7678 tree ptrtype = build_pointer_type (TREE_TYPE (t)); 7679 7680 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype); 7681 } 7682 7683 /* Fold a unary expression of code CODE and type TYPE with operand 7684 OP0. Return the folded expression if folding is successful. 7685 Otherwise, return NULL_TREE. */ 7686 7687 tree 7688 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0) 7689 { 7690 tree tem; 7691 tree arg0; 7692 enum tree_code_class kind = TREE_CODE_CLASS (code); 7693 7694 gcc_assert (IS_EXPR_CODE_CLASS (kind) 7695 && TREE_CODE_LENGTH (code) == 1); 7696 7697 arg0 = op0; 7698 if (arg0) 7699 { 7700 if (CONVERT_EXPR_CODE_P (code) 7701 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR) 7702 { 7703 /* Don't use STRIP_NOPS, because signedness of argument type 7704 matters. */ 7705 STRIP_SIGN_NOPS (arg0); 7706 } 7707 else 7708 { 7709 /* Strip any conversions that don't change the mode. This 7710 is safe for every expression, except for a comparison 7711 expression because its signedness is derived from its 7712 operands. 7713 7714 Note that this is done as an internal manipulation within 7715 the constant folder, in order to find the simplest 7716 representation of the arguments so that their form can be 7717 studied. In any cases, the appropriate type conversions 7718 should be put back in the tree that will get out of the 7719 constant folder. */ 7720 STRIP_NOPS (arg0); 7721 } 7722 7723 if (CONSTANT_CLASS_P (arg0)) 7724 { 7725 tree tem = const_unop (code, type, arg0); 7726 if (tem) 7727 { 7728 if (TREE_TYPE (tem) != type) 7729 tem = fold_convert_loc (loc, type, tem); 7730 return tem; 7731 } 7732 } 7733 } 7734 7735 tem = generic_simplify (loc, code, type, op0); 7736 if (tem) 7737 return tem; 7738 7739 if (TREE_CODE_CLASS (code) == tcc_unary) 7740 { 7741 if (TREE_CODE (arg0) == COMPOUND_EXPR) 7742 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 7743 fold_build1_loc (loc, code, type, 7744 fold_convert_loc (loc, TREE_TYPE (op0), 7745 TREE_OPERAND (arg0, 1)))); 7746 else if (TREE_CODE (arg0) == COND_EXPR) 7747 { 7748 tree arg01 = TREE_OPERAND (arg0, 1); 7749 tree arg02 = TREE_OPERAND (arg0, 2); 7750 if (! VOID_TYPE_P (TREE_TYPE (arg01))) 7751 arg01 = fold_build1_loc (loc, code, type, 7752 fold_convert_loc (loc, 7753 TREE_TYPE (op0), arg01)); 7754 if (! VOID_TYPE_P (TREE_TYPE (arg02))) 7755 arg02 = fold_build1_loc (loc, code, type, 7756 fold_convert_loc (loc, 7757 TREE_TYPE (op0), arg02)); 7758 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0), 7759 arg01, arg02); 7760 7761 /* If this was a conversion, and all we did was to move into 7762 inside the COND_EXPR, bring it back out. But leave it if 7763 it is a conversion from integer to integer and the 7764 result precision is no wider than a word since such a 7765 conversion is cheap and may be optimized away by combine, 7766 while it couldn't if it were outside the COND_EXPR. Then return 7767 so we don't get into an infinite recursion loop taking the 7768 conversion out and then back in. */ 7769 7770 if ((CONVERT_EXPR_CODE_P (code) 7771 || code == NON_LVALUE_EXPR) 7772 && TREE_CODE (tem) == COND_EXPR 7773 && TREE_CODE (TREE_OPERAND (tem, 1)) == code 7774 && TREE_CODE (TREE_OPERAND (tem, 2)) == code 7775 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1)) 7776 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2)) 7777 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)) 7778 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0))) 7779 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7780 && (INTEGRAL_TYPE_P 7781 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)))) 7782 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD) 7783 || flag_syntax_only)) 7784 tem = build1_loc (loc, code, type, 7785 build3 (COND_EXPR, 7786 TREE_TYPE (TREE_OPERAND 7787 (TREE_OPERAND (tem, 1), 0)), 7788 TREE_OPERAND (tem, 0), 7789 TREE_OPERAND (TREE_OPERAND (tem, 1), 0), 7790 TREE_OPERAND (TREE_OPERAND (tem, 2), 7791 0))); 7792 return tem; 7793 } 7794 } 7795 7796 switch (code) 7797 { 7798 case NON_LVALUE_EXPR: 7799 if (!maybe_lvalue_p (op0)) 7800 return fold_convert_loc (loc, type, op0); 7801 return NULL_TREE; 7802 7803 CASE_CONVERT: 7804 case FLOAT_EXPR: 7805 case FIX_TRUNC_EXPR: 7806 if (COMPARISON_CLASS_P (op0)) 7807 { 7808 /* If we have (type) (a CMP b) and type is an integral type, return 7809 new expression involving the new type. Canonicalize 7810 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for 7811 non-integral type. 7812 Do not fold the result as that would not simplify further, also 7813 folding again results in recursions. */ 7814 if (TREE_CODE (type) == BOOLEAN_TYPE) 7815 return build2_loc (loc, TREE_CODE (op0), type, 7816 TREE_OPERAND (op0, 0), 7817 TREE_OPERAND (op0, 1)); 7818 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type) 7819 && TREE_CODE (type) != VECTOR_TYPE) 7820 return build3_loc (loc, COND_EXPR, type, op0, 7821 constant_boolean_node (true, type), 7822 constant_boolean_node (false, type)); 7823 } 7824 7825 /* Handle (T *)&A.B.C for A being of type T and B and C 7826 living at offset zero. This occurs frequently in 7827 C++ upcasting and then accessing the base. */ 7828 if (TREE_CODE (op0) == ADDR_EXPR 7829 && POINTER_TYPE_P (type) 7830 && handled_component_p (TREE_OPERAND (op0, 0))) 7831 { 7832 poly_int64 bitsize, bitpos; 7833 tree offset; 7834 machine_mode mode; 7835 int unsignedp, reversep, volatilep; 7836 tree base 7837 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos, 7838 &offset, &mode, &unsignedp, &reversep, 7839 &volatilep); 7840 /* If the reference was to a (constant) zero offset, we can use 7841 the address of the base if it has the same base type 7842 as the result type and the pointer type is unqualified. */ 7843 if (!offset 7844 && known_eq (bitpos, 0) 7845 && (TYPE_MAIN_VARIANT (TREE_TYPE (type)) 7846 == TYPE_MAIN_VARIANT (TREE_TYPE (base))) 7847 && TYPE_QUALS (type) == TYPE_UNQUALIFIED) 7848 return fold_convert_loc (loc, type, 7849 build_fold_addr_expr_loc (loc, base)); 7850 } 7851 7852 if (TREE_CODE (op0) == MODIFY_EXPR 7853 && TREE_CONSTANT (TREE_OPERAND (op0, 1)) 7854 /* Detect assigning a bitfield. */ 7855 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF 7856 && DECL_BIT_FIELD 7857 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1)))) 7858 { 7859 /* Don't leave an assignment inside a conversion 7860 unless assigning a bitfield. */ 7861 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1)); 7862 /* First do the assignment, then return converted constant. */ 7863 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem); 7864 TREE_NO_WARNING (tem) = 1; 7865 TREE_USED (tem) = 1; 7866 return tem; 7867 } 7868 7869 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer 7870 constants (if x has signed type, the sign bit cannot be set 7871 in c). This folds extension into the BIT_AND_EXPR. 7872 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they 7873 very likely don't have maximal range for their precision and this 7874 transformation effectively doesn't preserve non-maximal ranges. */ 7875 if (TREE_CODE (type) == INTEGER_TYPE 7876 && TREE_CODE (op0) == BIT_AND_EXPR 7877 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST) 7878 { 7879 tree and_expr = op0; 7880 tree and0 = TREE_OPERAND (and_expr, 0); 7881 tree and1 = TREE_OPERAND (and_expr, 1); 7882 int change = 0; 7883 7884 if (TYPE_UNSIGNED (TREE_TYPE (and_expr)) 7885 || (TYPE_PRECISION (type) 7886 <= TYPE_PRECISION (TREE_TYPE (and_expr)))) 7887 change = 1; 7888 else if (TYPE_PRECISION (TREE_TYPE (and1)) 7889 <= HOST_BITS_PER_WIDE_INT 7890 && tree_fits_uhwi_p (and1)) 7891 { 7892 unsigned HOST_WIDE_INT cst; 7893 7894 cst = tree_to_uhwi (and1); 7895 cst &= HOST_WIDE_INT_M1U 7896 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1); 7897 change = (cst == 0); 7898 if (change 7899 && !flag_syntax_only 7900 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0))) 7901 == ZERO_EXTEND)) 7902 { 7903 tree uns = unsigned_type_for (TREE_TYPE (and0)); 7904 and0 = fold_convert_loc (loc, uns, and0); 7905 and1 = fold_convert_loc (loc, uns, and1); 7906 } 7907 } 7908 if (change) 7909 { 7910 tem = force_fit_type (type, wi::to_widest (and1), 0, 7911 TREE_OVERFLOW (and1)); 7912 return fold_build2_loc (loc, BIT_AND_EXPR, type, 7913 fold_convert_loc (loc, type, and0), tem); 7914 } 7915 } 7916 7917 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new 7918 cast (T1)X will fold away. We assume that this happens when X itself 7919 is a cast. */ 7920 if (POINTER_TYPE_P (type) 7921 && TREE_CODE (arg0) == POINTER_PLUS_EXPR 7922 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0))) 7923 { 7924 tree arg00 = TREE_OPERAND (arg0, 0); 7925 tree arg01 = TREE_OPERAND (arg0, 1); 7926 7927 return fold_build_pointer_plus_loc 7928 (loc, fold_convert_loc (loc, type, arg00), arg01); 7929 } 7930 7931 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types 7932 of the same precision, and X is an integer type not narrower than 7933 types T1 or T2, i.e. the cast (T2)X isn't an extension. */ 7934 if (INTEGRAL_TYPE_P (type) 7935 && TREE_CODE (op0) == BIT_NOT_EXPR 7936 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7937 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0)) 7938 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))) 7939 { 7940 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0); 7941 if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7942 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem))) 7943 return fold_build1_loc (loc, BIT_NOT_EXPR, type, 7944 fold_convert_loc (loc, type, tem)); 7945 } 7946 7947 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the 7948 type of X and Y (integer types only). */ 7949 if (INTEGRAL_TYPE_P (type) 7950 && TREE_CODE (op0) == MULT_EXPR 7951 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7952 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0))) 7953 { 7954 /* Be careful not to introduce new overflows. */ 7955 tree mult_type; 7956 if (TYPE_OVERFLOW_WRAPS (type)) 7957 mult_type = type; 7958 else 7959 mult_type = unsigned_type_for (type); 7960 7961 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0))) 7962 { 7963 tem = fold_build2_loc (loc, MULT_EXPR, mult_type, 7964 fold_convert_loc (loc, mult_type, 7965 TREE_OPERAND (op0, 0)), 7966 fold_convert_loc (loc, mult_type, 7967 TREE_OPERAND (op0, 1))); 7968 return fold_convert_loc (loc, type, tem); 7969 } 7970 } 7971 7972 return NULL_TREE; 7973 7974 case VIEW_CONVERT_EXPR: 7975 if (TREE_CODE (op0) == MEM_REF) 7976 { 7977 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type)) 7978 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0))); 7979 tem = fold_build2_loc (loc, MEM_REF, type, 7980 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); 7981 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0); 7982 return tem; 7983 } 7984 7985 return NULL_TREE; 7986 7987 case NEGATE_EXPR: 7988 tem = fold_negate_expr (loc, arg0); 7989 if (tem) 7990 return fold_convert_loc (loc, type, tem); 7991 return NULL_TREE; 7992 7993 case ABS_EXPR: 7994 /* Convert fabs((double)float) into (double)fabsf(float). */ 7995 if (TREE_CODE (arg0) == NOP_EXPR 7996 && TREE_CODE (type) == REAL_TYPE) 7997 { 7998 tree targ0 = strip_float_extensions (arg0); 7999 if (targ0 != arg0) 8000 return fold_convert_loc (loc, type, 8001 fold_build1_loc (loc, ABS_EXPR, 8002 TREE_TYPE (targ0), 8003 targ0)); 8004 } 8005 return NULL_TREE; 8006 8007 case BIT_NOT_EXPR: 8008 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */ 8009 if (TREE_CODE (arg0) == BIT_XOR_EXPR 8010 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8011 fold_convert_loc (loc, type, 8012 TREE_OPERAND (arg0, 0))))) 8013 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem, 8014 fold_convert_loc (loc, type, 8015 TREE_OPERAND (arg0, 1))); 8016 else if (TREE_CODE (arg0) == BIT_XOR_EXPR 8017 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8018 fold_convert_loc (loc, type, 8019 TREE_OPERAND (arg0, 1))))) 8020 return fold_build2_loc (loc, BIT_XOR_EXPR, type, 8021 fold_convert_loc (loc, type, 8022 TREE_OPERAND (arg0, 0)), tem); 8023 8024 return NULL_TREE; 8025 8026 case TRUTH_NOT_EXPR: 8027 /* Note that the operand of this must be an int 8028 and its values must be 0 or 1. 8029 ("true" is a fixed value perhaps depending on the language, 8030 but we don't handle values other than 1 correctly yet.) */ 8031 tem = fold_truth_not_expr (loc, arg0); 8032 if (!tem) 8033 return NULL_TREE; 8034 return fold_convert_loc (loc, type, tem); 8035 8036 case INDIRECT_REF: 8037 /* Fold *&X to X if X is an lvalue. */ 8038 if (TREE_CODE (op0) == ADDR_EXPR) 8039 { 8040 tree op00 = TREE_OPERAND (op0, 0); 8041 if ((VAR_P (op00) 8042 || TREE_CODE (op00) == PARM_DECL 8043 || TREE_CODE (op00) == RESULT_DECL) 8044 && !TREE_READONLY (op00)) 8045 return op00; 8046 } 8047 return NULL_TREE; 8048 8049 default: 8050 return NULL_TREE; 8051 } /* switch (code) */ 8052 } 8053 8054 8055 /* If the operation was a conversion do _not_ mark a resulting constant 8056 with TREE_OVERFLOW if the original constant was not. These conversions 8057 have implementation defined behavior and retaining the TREE_OVERFLOW 8058 flag here would confuse later passes such as VRP. */ 8059 tree 8060 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code, 8061 tree type, tree op0) 8062 { 8063 tree res = fold_unary_loc (loc, code, type, op0); 8064 if (res 8065 && TREE_CODE (res) == INTEGER_CST 8066 && TREE_CODE (op0) == INTEGER_CST 8067 && CONVERT_EXPR_CODE_P (code)) 8068 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0); 8069 8070 return res; 8071 } 8072 8073 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with 8074 operands OP0 and OP1. LOC is the location of the resulting expression. 8075 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1. 8076 Return the folded expression if folding is successful. Otherwise, 8077 return NULL_TREE. */ 8078 static tree 8079 fold_truth_andor (location_t loc, enum tree_code code, tree type, 8080 tree arg0, tree arg1, tree op0, tree op1) 8081 { 8082 tree tem; 8083 8084 /* We only do these simplifications if we are optimizing. */ 8085 if (!optimize) 8086 return NULL_TREE; 8087 8088 /* Check for things like (A || B) && (A || C). We can convert this 8089 to A || (B && C). Note that either operator can be any of the four 8090 truth and/or operations and the transformation will still be 8091 valid. Also note that we only care about order for the 8092 ANDIF and ORIF operators. If B contains side effects, this 8093 might change the truth-value of A. */ 8094 if (TREE_CODE (arg0) == TREE_CODE (arg1) 8095 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR 8096 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR 8097 || TREE_CODE (arg0) == TRUTH_AND_EXPR 8098 || TREE_CODE (arg0) == TRUTH_OR_EXPR) 8099 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1))) 8100 { 8101 tree a00 = TREE_OPERAND (arg0, 0); 8102 tree a01 = TREE_OPERAND (arg0, 1); 8103 tree a10 = TREE_OPERAND (arg1, 0); 8104 tree a11 = TREE_OPERAND (arg1, 1); 8105 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR 8106 || TREE_CODE (arg0) == TRUTH_AND_EXPR) 8107 && (code == TRUTH_AND_EXPR 8108 || code == TRUTH_OR_EXPR)); 8109 8110 if (operand_equal_p (a00, a10, 0)) 8111 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8112 fold_build2_loc (loc, code, type, a01, a11)); 8113 else if (commutative && operand_equal_p (a00, a11, 0)) 8114 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8115 fold_build2_loc (loc, code, type, a01, a10)); 8116 else if (commutative && operand_equal_p (a01, a10, 0)) 8117 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01, 8118 fold_build2_loc (loc, code, type, a00, a11)); 8119 8120 /* This case if tricky because we must either have commutative 8121 operators or else A10 must not have side-effects. */ 8122 8123 else if ((commutative || ! TREE_SIDE_EFFECTS (a10)) 8124 && operand_equal_p (a01, a11, 0)) 8125 return fold_build2_loc (loc, TREE_CODE (arg0), type, 8126 fold_build2_loc (loc, code, type, a00, a10), 8127 a01); 8128 } 8129 8130 /* See if we can build a range comparison. */ 8131 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0) 8132 return tem; 8133 8134 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR) 8135 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR)) 8136 { 8137 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true); 8138 if (tem) 8139 return fold_build2_loc (loc, code, type, tem, arg1); 8140 } 8141 8142 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR) 8143 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR)) 8144 { 8145 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false); 8146 if (tem) 8147 return fold_build2_loc (loc, code, type, arg0, tem); 8148 } 8149 8150 /* Check for the possibility of merging component references. If our 8151 lhs is another similar operation, try to merge its rhs with our 8152 rhs. Then try to merge our lhs and rhs. */ 8153 if (TREE_CODE (arg0) == code 8154 && (tem = fold_truth_andor_1 (loc, code, type, 8155 TREE_OPERAND (arg0, 1), arg1)) != 0) 8156 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem); 8157 8158 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0) 8159 return tem; 8160 8161 if (LOGICAL_OP_NON_SHORT_CIRCUIT 8162 && !flag_sanitize_coverage 8163 && (code == TRUTH_AND_EXPR 8164 || code == TRUTH_ANDIF_EXPR 8165 || code == TRUTH_OR_EXPR 8166 || code == TRUTH_ORIF_EXPR)) 8167 { 8168 enum tree_code ncode, icode; 8169 8170 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR) 8171 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR; 8172 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR; 8173 8174 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)), 8175 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C)) 8176 We don't want to pack more than two leafs to a non-IF AND/OR 8177 expression. 8178 If tree-code of left-hand operand isn't an AND/OR-IF code and not 8179 equal to IF-CODE, then we don't want to add right-hand operand. 8180 If the inner right-hand side of left-hand operand has 8181 side-effects, or isn't simple, then we can't add to it, 8182 as otherwise we might destroy if-sequence. */ 8183 if (TREE_CODE (arg0) == icode 8184 && simple_operand_p_2 (arg1) 8185 /* Needed for sequence points to handle trappings, and 8186 side-effects. */ 8187 && simple_operand_p_2 (TREE_OPERAND (arg0, 1))) 8188 { 8189 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1), 8190 arg1); 8191 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0), 8192 tem); 8193 } 8194 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C), 8195 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */ 8196 else if (TREE_CODE (arg1) == icode 8197 && simple_operand_p_2 (arg0) 8198 /* Needed for sequence points to handle trappings, and 8199 side-effects. */ 8200 && simple_operand_p_2 (TREE_OPERAND (arg1, 0))) 8201 { 8202 tem = fold_build2_loc (loc, ncode, type, 8203 arg0, TREE_OPERAND (arg1, 0)); 8204 return fold_build2_loc (loc, icode, type, tem, 8205 TREE_OPERAND (arg1, 1)); 8206 } 8207 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B) 8208 into (A OR B). 8209 For sequence point consistancy, we need to check for trapping, 8210 and side-effects. */ 8211 else if (code == icode && simple_operand_p_2 (arg0) 8212 && simple_operand_p_2 (arg1)) 8213 return fold_build2_loc (loc, ncode, type, arg0, arg1); 8214 } 8215 8216 return NULL_TREE; 8217 } 8218 8219 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1 8220 by changing CODE to reduce the magnitude of constants involved in 8221 ARG0 of the comparison. 8222 Returns a canonicalized comparison tree if a simplification was 8223 possible, otherwise returns NULL_TREE. 8224 Set *STRICT_OVERFLOW_P to true if the canonicalization is only 8225 valid if signed overflow is undefined. */ 8226 8227 static tree 8228 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type, 8229 tree arg0, tree arg1, 8230 bool *strict_overflow_p) 8231 { 8232 enum tree_code code0 = TREE_CODE (arg0); 8233 tree t, cst0 = NULL_TREE; 8234 int sgn0; 8235 8236 /* Match A +- CST code arg1. We can change this only if overflow 8237 is undefined. */ 8238 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8239 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))) 8240 /* In principle pointers also have undefined overflow behavior, 8241 but that causes problems elsewhere. */ 8242 && !POINTER_TYPE_P (TREE_TYPE (arg0)) 8243 && (code0 == MINUS_EXPR 8244 || code0 == PLUS_EXPR) 8245 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)) 8246 return NULL_TREE; 8247 8248 /* Identify the constant in arg0 and its sign. */ 8249 cst0 = TREE_OPERAND (arg0, 1); 8250 sgn0 = tree_int_cst_sgn (cst0); 8251 8252 /* Overflowed constants and zero will cause problems. */ 8253 if (integer_zerop (cst0) 8254 || TREE_OVERFLOW (cst0)) 8255 return NULL_TREE; 8256 8257 /* See if we can reduce the magnitude of the constant in 8258 arg0 by changing the comparison code. */ 8259 /* A - CST < arg1 -> A - CST-1 <= arg1. */ 8260 if (code == LT_EXPR 8261 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8262 code = LE_EXPR; 8263 /* A + CST > arg1 -> A + CST-1 >= arg1. */ 8264 else if (code == GT_EXPR 8265 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8266 code = GE_EXPR; 8267 /* A + CST <= arg1 -> A + CST-1 < arg1. */ 8268 else if (code == LE_EXPR 8269 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8270 code = LT_EXPR; 8271 /* A - CST >= arg1 -> A - CST-1 > arg1. */ 8272 else if (code == GE_EXPR 8273 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8274 code = GT_EXPR; 8275 else 8276 return NULL_TREE; 8277 *strict_overflow_p = true; 8278 8279 /* Now build the constant reduced in magnitude. But not if that 8280 would produce one outside of its types range. */ 8281 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0)) 8282 && ((sgn0 == 1 8283 && TYPE_MIN_VALUE (TREE_TYPE (cst0)) 8284 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0)))) 8285 || (sgn0 == -1 8286 && TYPE_MAX_VALUE (TREE_TYPE (cst0)) 8287 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0)))))) 8288 return NULL_TREE; 8289 8290 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR, 8291 cst0, build_int_cst (TREE_TYPE (cst0), 1)); 8292 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t); 8293 t = fold_convert (TREE_TYPE (arg1), t); 8294 8295 return fold_build2_loc (loc, code, type, t, arg1); 8296 } 8297 8298 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined 8299 overflow further. Try to decrease the magnitude of constants involved 8300 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa 8301 and put sole constants at the second argument position. 8302 Returns the canonicalized tree if changed, otherwise NULL_TREE. */ 8303 8304 static tree 8305 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type, 8306 tree arg0, tree arg1) 8307 { 8308 tree t; 8309 bool strict_overflow_p; 8310 const char * const warnmsg = G_("assuming signed overflow does not occur " 8311 "when reducing constant in comparison"); 8312 8313 /* Try canonicalization by simplifying arg0. */ 8314 strict_overflow_p = false; 8315 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1, 8316 &strict_overflow_p); 8317 if (t) 8318 { 8319 if (strict_overflow_p) 8320 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8321 return t; 8322 } 8323 8324 /* Try canonicalization by simplifying arg1 using the swapped 8325 comparison. */ 8326 code = swap_tree_comparison (code); 8327 strict_overflow_p = false; 8328 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0, 8329 &strict_overflow_p); 8330 if (t && strict_overflow_p) 8331 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8332 return t; 8333 } 8334 8335 /* Return whether BASE + OFFSET + BITPOS may wrap around the address 8336 space. This is used to avoid issuing overflow warnings for 8337 expressions like &p->x which can not wrap. */ 8338 8339 static bool 8340 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos) 8341 { 8342 if (!POINTER_TYPE_P (TREE_TYPE (base))) 8343 return true; 8344 8345 if (maybe_lt (bitpos, 0)) 8346 return true; 8347 8348 poly_wide_int wi_offset; 8349 int precision = TYPE_PRECISION (TREE_TYPE (base)); 8350 if (offset == NULL_TREE) 8351 wi_offset = wi::zero (precision); 8352 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset)) 8353 return true; 8354 else 8355 wi_offset = wi::to_poly_wide (offset); 8356 8357 bool overflow; 8358 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos), 8359 precision); 8360 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow); 8361 if (overflow) 8362 return true; 8363 8364 poly_uint64 total_hwi, size; 8365 if (!total.to_uhwi (&total_hwi) 8366 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))), 8367 &size) 8368 || known_eq (size, 0U)) 8369 return true; 8370 8371 if (known_le (total_hwi, size)) 8372 return false; 8373 8374 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an 8375 array. */ 8376 if (TREE_CODE (base) == ADDR_EXPR 8377 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))), 8378 &size) 8379 && maybe_ne (size, 0U) 8380 && known_le (total_hwi, size)) 8381 return false; 8382 8383 return true; 8384 } 8385 8386 /* Return a positive integer when the symbol DECL is known to have 8387 a nonzero address, zero when it's known not to (e.g., it's a weak 8388 symbol), and a negative integer when the symbol is not yet in the 8389 symbol table and so whether or not its address is zero is unknown. 8390 For function local objects always return positive integer. */ 8391 static int 8392 maybe_nonzero_address (tree decl) 8393 { 8394 if (DECL_P (decl) && decl_in_symtab_p (decl)) 8395 if (struct symtab_node *symbol = symtab_node::get_create (decl)) 8396 return symbol->nonzero_address (); 8397 8398 /* Function local objects are never NULL. */ 8399 if (DECL_P (decl) 8400 && (DECL_CONTEXT (decl) 8401 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL 8402 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl)))) 8403 return 1; 8404 8405 return -1; 8406 } 8407 8408 /* Subroutine of fold_binary. This routine performs all of the 8409 transformations that are common to the equality/inequality 8410 operators (EQ_EXPR and NE_EXPR) and the ordering operators 8411 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than 8412 fold_binary should call fold_binary. Fold a comparison with 8413 tree code CODE and type TYPE with operands OP0 and OP1. Return 8414 the folded comparison or NULL_TREE. */ 8415 8416 static tree 8417 fold_comparison (location_t loc, enum tree_code code, tree type, 8418 tree op0, tree op1) 8419 { 8420 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR); 8421 tree arg0, arg1, tem; 8422 8423 arg0 = op0; 8424 arg1 = op1; 8425 8426 STRIP_SIGN_NOPS (arg0); 8427 STRIP_SIGN_NOPS (arg1); 8428 8429 /* For comparisons of pointers we can decompose it to a compile time 8430 comparison of the base objects and the offsets into the object. 8431 This requires at least one operand being an ADDR_EXPR or a 8432 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */ 8433 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 8434 && (TREE_CODE (arg0) == ADDR_EXPR 8435 || TREE_CODE (arg1) == ADDR_EXPR 8436 || TREE_CODE (arg0) == POINTER_PLUS_EXPR 8437 || TREE_CODE (arg1) == POINTER_PLUS_EXPR)) 8438 { 8439 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE; 8440 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0; 8441 machine_mode mode; 8442 int volatilep, reversep, unsignedp; 8443 bool indirect_base0 = false, indirect_base1 = false; 8444 8445 /* Get base and offset for the access. Strip ADDR_EXPR for 8446 get_inner_reference, but put it back by stripping INDIRECT_REF 8447 off the base object if possible. indirect_baseN will be true 8448 if baseN is not an address but refers to the object itself. */ 8449 base0 = arg0; 8450 if (TREE_CODE (arg0) == ADDR_EXPR) 8451 { 8452 base0 8453 = get_inner_reference (TREE_OPERAND (arg0, 0), 8454 &bitsize, &bitpos0, &offset0, &mode, 8455 &unsignedp, &reversep, &volatilep); 8456 if (TREE_CODE (base0) == INDIRECT_REF) 8457 base0 = TREE_OPERAND (base0, 0); 8458 else 8459 indirect_base0 = true; 8460 } 8461 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR) 8462 { 8463 base0 = TREE_OPERAND (arg0, 0); 8464 STRIP_SIGN_NOPS (base0); 8465 if (TREE_CODE (base0) == ADDR_EXPR) 8466 { 8467 base0 8468 = get_inner_reference (TREE_OPERAND (base0, 0), 8469 &bitsize, &bitpos0, &offset0, &mode, 8470 &unsignedp, &reversep, &volatilep); 8471 if (TREE_CODE (base0) == INDIRECT_REF) 8472 base0 = TREE_OPERAND (base0, 0); 8473 else 8474 indirect_base0 = true; 8475 } 8476 if (offset0 == NULL_TREE || integer_zerop (offset0)) 8477 offset0 = TREE_OPERAND (arg0, 1); 8478 else 8479 offset0 = size_binop (PLUS_EXPR, offset0, 8480 TREE_OPERAND (arg0, 1)); 8481 if (poly_int_tree_p (offset0)) 8482 { 8483 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0), 8484 TYPE_PRECISION (sizetype)); 8485 tem <<= LOG2_BITS_PER_UNIT; 8486 tem += bitpos0; 8487 if (tem.to_shwi (&bitpos0)) 8488 offset0 = NULL_TREE; 8489 } 8490 } 8491 8492 base1 = arg1; 8493 if (TREE_CODE (arg1) == ADDR_EXPR) 8494 { 8495 base1 8496 = get_inner_reference (TREE_OPERAND (arg1, 0), 8497 &bitsize, &bitpos1, &offset1, &mode, 8498 &unsignedp, &reversep, &volatilep); 8499 if (TREE_CODE (base1) == INDIRECT_REF) 8500 base1 = TREE_OPERAND (base1, 0); 8501 else 8502 indirect_base1 = true; 8503 } 8504 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR) 8505 { 8506 base1 = TREE_OPERAND (arg1, 0); 8507 STRIP_SIGN_NOPS (base1); 8508 if (TREE_CODE (base1) == ADDR_EXPR) 8509 { 8510 base1 8511 = get_inner_reference (TREE_OPERAND (base1, 0), 8512 &bitsize, &bitpos1, &offset1, &mode, 8513 &unsignedp, &reversep, &volatilep); 8514 if (TREE_CODE (base1) == INDIRECT_REF) 8515 base1 = TREE_OPERAND (base1, 0); 8516 else 8517 indirect_base1 = true; 8518 } 8519 if (offset1 == NULL_TREE || integer_zerop (offset1)) 8520 offset1 = TREE_OPERAND (arg1, 1); 8521 else 8522 offset1 = size_binop (PLUS_EXPR, offset1, 8523 TREE_OPERAND (arg1, 1)); 8524 if (poly_int_tree_p (offset1)) 8525 { 8526 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1), 8527 TYPE_PRECISION (sizetype)); 8528 tem <<= LOG2_BITS_PER_UNIT; 8529 tem += bitpos1; 8530 if (tem.to_shwi (&bitpos1)) 8531 offset1 = NULL_TREE; 8532 } 8533 } 8534 8535 /* If we have equivalent bases we might be able to simplify. */ 8536 if (indirect_base0 == indirect_base1 8537 && operand_equal_p (base0, base1, 8538 indirect_base0 ? OEP_ADDRESS_OF : 0)) 8539 { 8540 /* We can fold this expression to a constant if the non-constant 8541 offset parts are equal. */ 8542 if ((offset0 == offset1 8543 || (offset0 && offset1 8544 && operand_equal_p (offset0, offset1, 0))) 8545 && (equality_code 8546 || (indirect_base0 8547 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8548 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8549 { 8550 if (!equality_code 8551 && maybe_ne (bitpos0, bitpos1) 8552 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8553 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8554 fold_overflow_warning (("assuming pointer wraparound does not " 8555 "occur when comparing P +- C1 with " 8556 "P +- C2"), 8557 WARN_STRICT_OVERFLOW_CONDITIONAL); 8558 8559 switch (code) 8560 { 8561 case EQ_EXPR: 8562 if (known_eq (bitpos0, bitpos1)) 8563 return constant_boolean_node (true, type); 8564 if (known_ne (bitpos0, bitpos1)) 8565 return constant_boolean_node (false, type); 8566 break; 8567 case NE_EXPR: 8568 if (known_ne (bitpos0, bitpos1)) 8569 return constant_boolean_node (true, type); 8570 if (known_eq (bitpos0, bitpos1)) 8571 return constant_boolean_node (false, type); 8572 break; 8573 case LT_EXPR: 8574 if (known_lt (bitpos0, bitpos1)) 8575 return constant_boolean_node (true, type); 8576 if (known_ge (bitpos0, bitpos1)) 8577 return constant_boolean_node (false, type); 8578 break; 8579 case LE_EXPR: 8580 if (known_le (bitpos0, bitpos1)) 8581 return constant_boolean_node (true, type); 8582 if (known_gt (bitpos0, bitpos1)) 8583 return constant_boolean_node (false, type); 8584 break; 8585 case GE_EXPR: 8586 if (known_ge (bitpos0, bitpos1)) 8587 return constant_boolean_node (true, type); 8588 if (known_lt (bitpos0, bitpos1)) 8589 return constant_boolean_node (false, type); 8590 break; 8591 case GT_EXPR: 8592 if (known_gt (bitpos0, bitpos1)) 8593 return constant_boolean_node (true, type); 8594 if (known_le (bitpos0, bitpos1)) 8595 return constant_boolean_node (false, type); 8596 break; 8597 default:; 8598 } 8599 } 8600 /* We can simplify the comparison to a comparison of the variable 8601 offset parts if the constant offset parts are equal. 8602 Be careful to use signed sizetype here because otherwise we 8603 mess with array offsets in the wrong way. This is possible 8604 because pointer arithmetic is restricted to retain within an 8605 object and overflow on pointer differences is undefined as of 8606 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */ 8607 else if (known_eq (bitpos0, bitpos1) 8608 && (equality_code 8609 || (indirect_base0 8610 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8611 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8612 { 8613 /* By converting to signed sizetype we cover middle-end pointer 8614 arithmetic which operates on unsigned pointer types of size 8615 type size and ARRAY_REF offsets which are properly sign or 8616 zero extended from their type in case it is narrower than 8617 sizetype. */ 8618 if (offset0 == NULL_TREE) 8619 offset0 = build_int_cst (ssizetype, 0); 8620 else 8621 offset0 = fold_convert_loc (loc, ssizetype, offset0); 8622 if (offset1 == NULL_TREE) 8623 offset1 = build_int_cst (ssizetype, 0); 8624 else 8625 offset1 = fold_convert_loc (loc, ssizetype, offset1); 8626 8627 if (!equality_code 8628 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8629 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8630 fold_overflow_warning (("assuming pointer wraparound does not " 8631 "occur when comparing P +- C1 with " 8632 "P +- C2"), 8633 WARN_STRICT_OVERFLOW_COMPARISON); 8634 8635 return fold_build2_loc (loc, code, type, offset0, offset1); 8636 } 8637 } 8638 /* For equal offsets we can simplify to a comparison of the 8639 base addresses. */ 8640 else if (known_eq (bitpos0, bitpos1) 8641 && (indirect_base0 8642 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0) 8643 && (indirect_base1 8644 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1) 8645 && ((offset0 == offset1) 8646 || (offset0 && offset1 8647 && operand_equal_p (offset0, offset1, 0)))) 8648 { 8649 if (indirect_base0) 8650 base0 = build_fold_addr_expr_loc (loc, base0); 8651 if (indirect_base1) 8652 base1 = build_fold_addr_expr_loc (loc, base1); 8653 return fold_build2_loc (loc, code, type, base0, base1); 8654 } 8655 /* Comparison between an ordinary (non-weak) symbol and a null 8656 pointer can be eliminated since such symbols must have a non 8657 null address. In C, relational expressions between pointers 8658 to objects and null pointers are undefined. The results 8659 below follow the C++ rules with the additional property that 8660 every object pointer compares greater than a null pointer. 8661 */ 8662 else if (((DECL_P (base0) 8663 && maybe_nonzero_address (base0) > 0 8664 /* Avoid folding references to struct members at offset 0 to 8665 prevent tests like '&ptr->firstmember == 0' from getting 8666 eliminated. When ptr is null, although the -> expression 8667 is strictly speaking invalid, GCC retains it as a matter 8668 of QoI. See PR c/44555. */ 8669 && (offset0 == NULL_TREE && known_ne (bitpos0, 0))) 8670 || CONSTANT_CLASS_P (base0)) 8671 && indirect_base0 8672 /* The caller guarantees that when one of the arguments is 8673 constant (i.e., null in this case) it is second. */ 8674 && integer_zerop (arg1)) 8675 { 8676 switch (code) 8677 { 8678 case EQ_EXPR: 8679 case LE_EXPR: 8680 case LT_EXPR: 8681 return constant_boolean_node (false, type); 8682 case GE_EXPR: 8683 case GT_EXPR: 8684 case NE_EXPR: 8685 return constant_boolean_node (true, type); 8686 default: 8687 gcc_unreachable (); 8688 } 8689 } 8690 } 8691 8692 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to 8693 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if 8694 the resulting offset is smaller in absolute value than the 8695 original one and has the same sign. */ 8696 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8697 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)) 8698 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 8699 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 8700 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))) 8701 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR) 8702 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 8703 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1)))) 8704 { 8705 tree const1 = TREE_OPERAND (arg0, 1); 8706 tree const2 = TREE_OPERAND (arg1, 1); 8707 tree variable1 = TREE_OPERAND (arg0, 0); 8708 tree variable2 = TREE_OPERAND (arg1, 0); 8709 tree cst; 8710 const char * const warnmsg = G_("assuming signed overflow does not " 8711 "occur when combining constants around " 8712 "a comparison"); 8713 8714 /* Put the constant on the side where it doesn't overflow and is 8715 of lower absolute value and of same sign than before. */ 8716 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8717 ? MINUS_EXPR : PLUS_EXPR, 8718 const2, const1); 8719 if (!TREE_OVERFLOW (cst) 8720 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2) 8721 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2)) 8722 { 8723 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8724 return fold_build2_loc (loc, code, type, 8725 variable1, 8726 fold_build2_loc (loc, TREE_CODE (arg1), 8727 TREE_TYPE (arg1), 8728 variable2, cst)); 8729 } 8730 8731 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8732 ? MINUS_EXPR : PLUS_EXPR, 8733 const1, const2); 8734 if (!TREE_OVERFLOW (cst) 8735 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1) 8736 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1)) 8737 { 8738 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8739 return fold_build2_loc (loc, code, type, 8740 fold_build2_loc (loc, TREE_CODE (arg0), 8741 TREE_TYPE (arg0), 8742 variable1, cst), 8743 variable2); 8744 } 8745 } 8746 8747 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1); 8748 if (tem) 8749 return tem; 8750 8751 /* If we are comparing an expression that just has comparisons 8752 of two integer values, arithmetic expressions of those comparisons, 8753 and constants, we can simplify it. There are only three cases 8754 to check: the two values can either be equal, the first can be 8755 greater, or the second can be greater. Fold the expression for 8756 those three values. Since each value must be 0 or 1, we have 8757 eight possibilities, each of which corresponds to the constant 0 8758 or 1 or one of the six possible comparisons. 8759 8760 This handles common cases like (a > b) == 0 but also handles 8761 expressions like ((x > y) - (y > x)) > 0, which supposedly 8762 occur in macroized code. */ 8763 8764 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST) 8765 { 8766 tree cval1 = 0, cval2 = 0; 8767 8768 if (twoval_comparison_p (arg0, &cval1, &cval2) 8769 /* Don't handle degenerate cases here; they should already 8770 have been handled anyway. */ 8771 && cval1 != 0 && cval2 != 0 8772 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2)) 8773 && TREE_TYPE (cval1) == TREE_TYPE (cval2) 8774 && INTEGRAL_TYPE_P (TREE_TYPE (cval1)) 8775 && TYPE_MAX_VALUE (TREE_TYPE (cval1)) 8776 && TYPE_MAX_VALUE (TREE_TYPE (cval2)) 8777 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)), 8778 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0)) 8779 { 8780 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1)); 8781 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1)); 8782 8783 /* We can't just pass T to eval_subst in case cval1 or cval2 8784 was the same as ARG1. */ 8785 8786 tree high_result 8787 = fold_build2_loc (loc, code, type, 8788 eval_subst (loc, arg0, cval1, maxval, 8789 cval2, minval), 8790 arg1); 8791 tree equal_result 8792 = fold_build2_loc (loc, code, type, 8793 eval_subst (loc, arg0, cval1, maxval, 8794 cval2, maxval), 8795 arg1); 8796 tree low_result 8797 = fold_build2_loc (loc, code, type, 8798 eval_subst (loc, arg0, cval1, minval, 8799 cval2, maxval), 8800 arg1); 8801 8802 /* All three of these results should be 0 or 1. Confirm they are. 8803 Then use those values to select the proper code to use. */ 8804 8805 if (TREE_CODE (high_result) == INTEGER_CST 8806 && TREE_CODE (equal_result) == INTEGER_CST 8807 && TREE_CODE (low_result) == INTEGER_CST) 8808 { 8809 /* Make a 3-bit mask with the high-order bit being the 8810 value for `>', the next for '=', and the low for '<'. */ 8811 switch ((integer_onep (high_result) * 4) 8812 + (integer_onep (equal_result) * 2) 8813 + integer_onep (low_result)) 8814 { 8815 case 0: 8816 /* Always false. */ 8817 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 8818 case 1: 8819 code = LT_EXPR; 8820 break; 8821 case 2: 8822 code = EQ_EXPR; 8823 break; 8824 case 3: 8825 code = LE_EXPR; 8826 break; 8827 case 4: 8828 code = GT_EXPR; 8829 break; 8830 case 5: 8831 code = NE_EXPR; 8832 break; 8833 case 6: 8834 code = GE_EXPR; 8835 break; 8836 case 7: 8837 /* Always true. */ 8838 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 8839 } 8840 8841 return fold_build2_loc (loc, code, type, cval1, cval2); 8842 } 8843 } 8844 } 8845 8846 return NULL_TREE; 8847 } 8848 8849 8850 /* Subroutine of fold_binary. Optimize complex multiplications of the 8851 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The 8852 argument EXPR represents the expression "z" of type TYPE. */ 8853 8854 static tree 8855 fold_mult_zconjz (location_t loc, tree type, tree expr) 8856 { 8857 tree itype = TREE_TYPE (type); 8858 tree rpart, ipart, tem; 8859 8860 if (TREE_CODE (expr) == COMPLEX_EXPR) 8861 { 8862 rpart = TREE_OPERAND (expr, 0); 8863 ipart = TREE_OPERAND (expr, 1); 8864 } 8865 else if (TREE_CODE (expr) == COMPLEX_CST) 8866 { 8867 rpart = TREE_REALPART (expr); 8868 ipart = TREE_IMAGPART (expr); 8869 } 8870 else 8871 { 8872 expr = save_expr (expr); 8873 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr); 8874 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr); 8875 } 8876 8877 rpart = save_expr (rpart); 8878 ipart = save_expr (ipart); 8879 tem = fold_build2_loc (loc, PLUS_EXPR, itype, 8880 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart), 8881 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart)); 8882 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem, 8883 build_zero_cst (itype)); 8884 } 8885 8886 8887 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or 8888 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return 8889 true if successful. */ 8890 8891 static bool 8892 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) 8893 { 8894 unsigned HOST_WIDE_INT i, nunits; 8895 8896 if (TREE_CODE (arg) == VECTOR_CST 8897 && VECTOR_CST_NELTS (arg).is_constant (&nunits)) 8898 { 8899 for (i = 0; i < nunits; ++i) 8900 elts[i] = VECTOR_CST_ELT (arg, i); 8901 } 8902 else if (TREE_CODE (arg) == CONSTRUCTOR) 8903 { 8904 constructor_elt *elt; 8905 8906 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt) 8907 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE) 8908 return false; 8909 else 8910 elts[i] = elt->value; 8911 } 8912 else 8913 return false; 8914 for (; i < nelts; i++) 8915 elts[i] 8916 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node); 8917 return true; 8918 } 8919 8920 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL 8921 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful, 8922 NULL_TREE otherwise. */ 8923 8924 static tree 8925 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel) 8926 { 8927 unsigned int i; 8928 unsigned HOST_WIDE_INT nelts; 8929 bool need_ctor = false; 8930 8931 if (!sel.length ().is_constant (&nelts)) 8932 return NULL_TREE; 8933 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts) 8934 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts) 8935 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts)); 8936 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type) 8937 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type)) 8938 return NULL_TREE; 8939 8940 tree *in_elts = XALLOCAVEC (tree, nelts * 2); 8941 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts) 8942 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts)) 8943 return NULL_TREE; 8944 8945 tree_vector_builder out_elts (type, nelts, 1); 8946 for (i = 0; i < nelts; i++) 8947 { 8948 HOST_WIDE_INT index; 8949 if (!sel[i].is_constant (&index)) 8950 return NULL_TREE; 8951 if (!CONSTANT_CLASS_P (in_elts[index])) 8952 need_ctor = true; 8953 out_elts.quick_push (unshare_expr (in_elts[index])); 8954 } 8955 8956 if (need_ctor) 8957 { 8958 vec<constructor_elt, va_gc> *v; 8959 vec_alloc (v, nelts); 8960 for (i = 0; i < nelts; i++) 8961 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]); 8962 return build_constructor (type, v); 8963 } 8964 else 8965 return out_elts.build (); 8966 } 8967 8968 /* Try to fold a pointer difference of type TYPE two address expressions of 8969 array references AREF0 and AREF1 using location LOC. Return a 8970 simplified expression for the difference or NULL_TREE. */ 8971 8972 static tree 8973 fold_addr_of_array_ref_difference (location_t loc, tree type, 8974 tree aref0, tree aref1, 8975 bool use_pointer_diff) 8976 { 8977 tree base0 = TREE_OPERAND (aref0, 0); 8978 tree base1 = TREE_OPERAND (aref1, 0); 8979 tree base_offset = build_int_cst (type, 0); 8980 8981 /* If the bases are array references as well, recurse. If the bases 8982 are pointer indirections compute the difference of the pointers. 8983 If the bases are equal, we are set. */ 8984 if ((TREE_CODE (base0) == ARRAY_REF 8985 && TREE_CODE (base1) == ARRAY_REF 8986 && (base_offset 8987 = fold_addr_of_array_ref_difference (loc, type, base0, base1, 8988 use_pointer_diff))) 8989 || (INDIRECT_REF_P (base0) 8990 && INDIRECT_REF_P (base1) 8991 && (base_offset 8992 = use_pointer_diff 8993 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type, 8994 TREE_OPERAND (base0, 0), 8995 TREE_OPERAND (base1, 0)) 8996 : fold_binary_loc (loc, MINUS_EXPR, type, 8997 fold_convert (type, 8998 TREE_OPERAND (base0, 0)), 8999 fold_convert (type, 9000 TREE_OPERAND (base1, 0))))) 9001 || operand_equal_p (base0, base1, OEP_ADDRESS_OF)) 9002 { 9003 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1)); 9004 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1)); 9005 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0)); 9006 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1); 9007 return fold_build2_loc (loc, PLUS_EXPR, type, 9008 base_offset, 9009 fold_build2_loc (loc, MULT_EXPR, type, 9010 diff, esz)); 9011 } 9012 return NULL_TREE; 9013 } 9014 9015 /* If the real or vector real constant CST of type TYPE has an exact 9016 inverse, return it, else return NULL. */ 9017 9018 tree 9019 exact_inverse (tree type, tree cst) 9020 { 9021 REAL_VALUE_TYPE r; 9022 tree unit_type; 9023 machine_mode mode; 9024 9025 switch (TREE_CODE (cst)) 9026 { 9027 case REAL_CST: 9028 r = TREE_REAL_CST (cst); 9029 9030 if (exact_real_inverse (TYPE_MODE (type), &r)) 9031 return build_real (type, r); 9032 9033 return NULL_TREE; 9034 9035 case VECTOR_CST: 9036 { 9037 unit_type = TREE_TYPE (type); 9038 mode = TYPE_MODE (unit_type); 9039 9040 tree_vector_builder elts; 9041 if (!elts.new_unary_operation (type, cst, false)) 9042 return NULL_TREE; 9043 unsigned int count = elts.encoded_nelts (); 9044 for (unsigned int i = 0; i < count; ++i) 9045 { 9046 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i)); 9047 if (!exact_real_inverse (mode, &r)) 9048 return NULL_TREE; 9049 elts.quick_push (build_real (unit_type, r)); 9050 } 9051 9052 return elts.build (); 9053 } 9054 9055 default: 9056 return NULL_TREE; 9057 } 9058 } 9059 9060 /* Mask out the tz least significant bits of X of type TYPE where 9061 tz is the number of trailing zeroes in Y. */ 9062 static wide_int 9063 mask_with_tz (tree type, const wide_int &x, const wide_int &y) 9064 { 9065 int tz = wi::ctz (y); 9066 if (tz > 0) 9067 return wi::mask (tz, true, TYPE_PRECISION (type)) & x; 9068 return x; 9069 } 9070 9071 /* Return true when T is an address and is known to be nonzero. 9072 For floating point we further ensure that T is not denormal. 9073 Similar logic is present in nonzero_address in rtlanal.h. 9074 9075 If the return value is based on the assumption that signed overflow 9076 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 9077 change *STRICT_OVERFLOW_P. */ 9078 9079 static bool 9080 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p) 9081 { 9082 tree type = TREE_TYPE (t); 9083 enum tree_code code; 9084 9085 /* Doing something useful for floating point would need more work. */ 9086 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) 9087 return false; 9088 9089 code = TREE_CODE (t); 9090 switch (TREE_CODE_CLASS (code)) 9091 { 9092 case tcc_unary: 9093 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9094 strict_overflow_p); 9095 case tcc_binary: 9096 case tcc_comparison: 9097 return tree_binary_nonzero_warnv_p (code, type, 9098 TREE_OPERAND (t, 0), 9099 TREE_OPERAND (t, 1), 9100 strict_overflow_p); 9101 case tcc_constant: 9102 case tcc_declaration: 9103 case tcc_reference: 9104 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9105 9106 default: 9107 break; 9108 } 9109 9110 switch (code) 9111 { 9112 case TRUTH_NOT_EXPR: 9113 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9114 strict_overflow_p); 9115 9116 case TRUTH_AND_EXPR: 9117 case TRUTH_OR_EXPR: 9118 case TRUTH_XOR_EXPR: 9119 return tree_binary_nonzero_warnv_p (code, type, 9120 TREE_OPERAND (t, 0), 9121 TREE_OPERAND (t, 1), 9122 strict_overflow_p); 9123 9124 case COND_EXPR: 9125 case CONSTRUCTOR: 9126 case OBJ_TYPE_REF: 9127 case ASSERT_EXPR: 9128 case ADDR_EXPR: 9129 case WITH_SIZE_EXPR: 9130 case SSA_NAME: 9131 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9132 9133 case COMPOUND_EXPR: 9134 case MODIFY_EXPR: 9135 case BIND_EXPR: 9136 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 9137 strict_overflow_p); 9138 9139 case SAVE_EXPR: 9140 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0), 9141 strict_overflow_p); 9142 9143 case CALL_EXPR: 9144 { 9145 tree fndecl = get_callee_fndecl (t); 9146 if (!fndecl) return false; 9147 if (flag_delete_null_pointer_checks && !flag_check_new 9148 && DECL_IS_OPERATOR_NEW (fndecl) 9149 && !TREE_NOTHROW (fndecl)) 9150 return true; 9151 if (flag_delete_null_pointer_checks 9152 && lookup_attribute ("returns_nonnull", 9153 TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))) 9154 return true; 9155 return alloca_call_p (t); 9156 } 9157 9158 default: 9159 break; 9160 } 9161 return false; 9162 } 9163 9164 /* Return true when T is an address and is known to be nonzero. 9165 Handle warnings about undefined signed overflow. */ 9166 9167 bool 9168 tree_expr_nonzero_p (tree t) 9169 { 9170 bool ret, strict_overflow_p; 9171 9172 strict_overflow_p = false; 9173 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p); 9174 if (strict_overflow_p) 9175 fold_overflow_warning (("assuming signed overflow does not occur when " 9176 "determining that expression is always " 9177 "non-zero"), 9178 WARN_STRICT_OVERFLOW_MISC); 9179 return ret; 9180 } 9181 9182 /* Return true if T is known not to be equal to an integer W. */ 9183 9184 bool 9185 expr_not_equal_to (tree t, const wide_int &w) 9186 { 9187 wide_int min, max, nz; 9188 value_range_type rtype; 9189 switch (TREE_CODE (t)) 9190 { 9191 case INTEGER_CST: 9192 return wi::to_wide (t) != w; 9193 9194 case SSA_NAME: 9195 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 9196 return false; 9197 rtype = get_range_info (t, &min, &max); 9198 if (rtype == VR_RANGE) 9199 { 9200 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t)))) 9201 return true; 9202 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t)))) 9203 return true; 9204 } 9205 else if (rtype == VR_ANTI_RANGE 9206 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t))) 9207 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t)))) 9208 return true; 9209 /* If T has some known zero bits and W has any of those bits set, 9210 then T is known not to be equal to W. */ 9211 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)), 9212 TYPE_PRECISION (TREE_TYPE (t))), 0)) 9213 return true; 9214 return false; 9215 9216 default: 9217 return false; 9218 } 9219 } 9220 9221 /* Fold a binary expression of code CODE and type TYPE with operands 9222 OP0 and OP1. LOC is the location of the resulting expression. 9223 Return the folded expression if folding is successful. Otherwise, 9224 return NULL_TREE. */ 9225 9226 tree 9227 fold_binary_loc (location_t loc, enum tree_code code, tree type, 9228 tree op0, tree op1) 9229 { 9230 enum tree_code_class kind = TREE_CODE_CLASS (code); 9231 tree arg0, arg1, tem; 9232 tree t1 = NULL_TREE; 9233 bool strict_overflow_p; 9234 unsigned int prec; 9235 9236 gcc_assert (IS_EXPR_CODE_CLASS (kind) 9237 && TREE_CODE_LENGTH (code) == 2 9238 && op0 != NULL_TREE 9239 && op1 != NULL_TREE); 9240 9241 arg0 = op0; 9242 arg1 = op1; 9243 9244 /* Strip any conversions that don't change the mode. This is 9245 safe for every expression, except for a comparison expression 9246 because its signedness is derived from its operands. So, in 9247 the latter case, only strip conversions that don't change the 9248 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments 9249 preserved. 9250 9251 Note that this is done as an internal manipulation within the 9252 constant folder, in order to find the simplest representation 9253 of the arguments so that their form can be studied. In any 9254 cases, the appropriate type conversions should be put back in 9255 the tree that will get out of the constant folder. */ 9256 9257 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR) 9258 { 9259 STRIP_SIGN_NOPS (arg0); 9260 STRIP_SIGN_NOPS (arg1); 9261 } 9262 else 9263 { 9264 STRIP_NOPS (arg0); 9265 STRIP_NOPS (arg1); 9266 } 9267 9268 /* Note that TREE_CONSTANT isn't enough: static var addresses are 9269 constant but we can't do arithmetic on them. */ 9270 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1)) 9271 { 9272 tem = const_binop (code, type, arg0, arg1); 9273 if (tem != NULL_TREE) 9274 { 9275 if (TREE_TYPE (tem) != type) 9276 tem = fold_convert_loc (loc, type, tem); 9277 return tem; 9278 } 9279 } 9280 9281 /* If this is a commutative operation, and ARG0 is a constant, move it 9282 to ARG1 to reduce the number of tests below. */ 9283 if (commutative_tree_code (code) 9284 && tree_swap_operands_p (arg0, arg1)) 9285 return fold_build2_loc (loc, code, type, op1, op0); 9286 9287 /* Likewise if this is a comparison, and ARG0 is a constant, move it 9288 to ARG1 to reduce the number of tests below. */ 9289 if (kind == tcc_comparison 9290 && tree_swap_operands_p (arg0, arg1)) 9291 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0); 9292 9293 tem = generic_simplify (loc, code, type, op0, op1); 9294 if (tem) 9295 return tem; 9296 9297 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand. 9298 9299 First check for cases where an arithmetic operation is applied to a 9300 compound, conditional, or comparison operation. Push the arithmetic 9301 operation inside the compound or conditional to see if any folding 9302 can then be done. Convert comparison to conditional for this purpose. 9303 The also optimizes non-constant cases that used to be done in 9304 expand_expr. 9305 9306 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR, 9307 one of the operands is a comparison and the other is a comparison, a 9308 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the 9309 code below would make the expression more complex. Change it to a 9310 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to 9311 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */ 9312 9313 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR 9314 || code == EQ_EXPR || code == NE_EXPR) 9315 && !VECTOR_TYPE_P (TREE_TYPE (arg0)) 9316 && ((truth_value_p (TREE_CODE (arg0)) 9317 && (truth_value_p (TREE_CODE (arg1)) 9318 || (TREE_CODE (arg1) == BIT_AND_EXPR 9319 && integer_onep (TREE_OPERAND (arg1, 1))))) 9320 || (truth_value_p (TREE_CODE (arg1)) 9321 && (truth_value_p (TREE_CODE (arg0)) 9322 || (TREE_CODE (arg0) == BIT_AND_EXPR 9323 && integer_onep (TREE_OPERAND (arg0, 1))))))) 9324 { 9325 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR 9326 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR 9327 : TRUTH_XOR_EXPR, 9328 boolean_type_node, 9329 fold_convert_loc (loc, boolean_type_node, arg0), 9330 fold_convert_loc (loc, boolean_type_node, arg1)); 9331 9332 if (code == EQ_EXPR) 9333 tem = invert_truthvalue_loc (loc, tem); 9334 9335 return fold_convert_loc (loc, type, tem); 9336 } 9337 9338 if (TREE_CODE_CLASS (code) == tcc_binary 9339 || TREE_CODE_CLASS (code) == tcc_comparison) 9340 { 9341 if (TREE_CODE (arg0) == COMPOUND_EXPR) 9342 { 9343 tem = fold_build2_loc (loc, code, type, 9344 fold_convert_loc (loc, TREE_TYPE (op0), 9345 TREE_OPERAND (arg0, 1)), op1); 9346 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 9347 tem); 9348 } 9349 if (TREE_CODE (arg1) == COMPOUND_EXPR) 9350 { 9351 tem = fold_build2_loc (loc, code, type, op0, 9352 fold_convert_loc (loc, TREE_TYPE (op1), 9353 TREE_OPERAND (arg1, 1))); 9354 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0), 9355 tem); 9356 } 9357 9358 if (TREE_CODE (arg0) == COND_EXPR 9359 || TREE_CODE (arg0) == VEC_COND_EXPR 9360 || COMPARISON_CLASS_P (arg0)) 9361 { 9362 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9363 arg0, arg1, 9364 /*cond_first_p=*/1); 9365 if (tem != NULL_TREE) 9366 return tem; 9367 } 9368 9369 if (TREE_CODE (arg1) == COND_EXPR 9370 || TREE_CODE (arg1) == VEC_COND_EXPR 9371 || COMPARISON_CLASS_P (arg1)) 9372 { 9373 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9374 arg1, arg0, 9375 /*cond_first_p=*/0); 9376 if (tem != NULL_TREE) 9377 return tem; 9378 } 9379 } 9380 9381 switch (code) 9382 { 9383 case MEM_REF: 9384 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */ 9385 if (TREE_CODE (arg0) == ADDR_EXPR 9386 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF) 9387 { 9388 tree iref = TREE_OPERAND (arg0, 0); 9389 return fold_build2 (MEM_REF, type, 9390 TREE_OPERAND (iref, 0), 9391 int_const_binop (PLUS_EXPR, arg1, 9392 TREE_OPERAND (iref, 1))); 9393 } 9394 9395 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */ 9396 if (TREE_CODE (arg0) == ADDR_EXPR 9397 && handled_component_p (TREE_OPERAND (arg0, 0))) 9398 { 9399 tree base; 9400 poly_int64 coffset; 9401 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0), 9402 &coffset); 9403 if (!base) 9404 return NULL_TREE; 9405 return fold_build2 (MEM_REF, type, 9406 build_fold_addr_expr (base), 9407 int_const_binop (PLUS_EXPR, arg1, 9408 size_int (coffset))); 9409 } 9410 9411 return NULL_TREE; 9412 9413 case POINTER_PLUS_EXPR: 9414 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */ 9415 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9416 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))) 9417 return fold_convert_loc (loc, type, 9418 fold_build2_loc (loc, PLUS_EXPR, sizetype, 9419 fold_convert_loc (loc, sizetype, 9420 arg1), 9421 fold_convert_loc (loc, sizetype, 9422 arg0))); 9423 9424 return NULL_TREE; 9425 9426 case PLUS_EXPR: 9427 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) 9428 { 9429 /* X + (X / CST) * -CST is X % CST. */ 9430 if (TREE_CODE (arg1) == MULT_EXPR 9431 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR 9432 && operand_equal_p (arg0, 9433 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)) 9434 { 9435 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1); 9436 tree cst1 = TREE_OPERAND (arg1, 1); 9437 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1), 9438 cst1, cst0); 9439 if (sum && integer_zerop (sum)) 9440 return fold_convert_loc (loc, type, 9441 fold_build2_loc (loc, TRUNC_MOD_EXPR, 9442 TREE_TYPE (arg0), arg0, 9443 cst0)); 9444 } 9445 } 9446 9447 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or 9448 one. Make sure the type is not saturating and has the signedness of 9449 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9450 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9451 if ((TREE_CODE (arg0) == MULT_EXPR 9452 || TREE_CODE (arg1) == MULT_EXPR) 9453 && !TYPE_SATURATING (type) 9454 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 9455 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 9456 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 9457 { 9458 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 9459 if (tem) 9460 return tem; 9461 } 9462 9463 if (! FLOAT_TYPE_P (type)) 9464 { 9465 /* Reassociate (plus (plus (mult) (foo)) (mult)) as 9466 (plus (plus (mult) (mult)) (foo)) so that we can 9467 take advantage of the factoring cases below. */ 9468 if (ANY_INTEGRAL_TYPE_P (type) 9469 && TYPE_OVERFLOW_WRAPS (type) 9470 && (((TREE_CODE (arg0) == PLUS_EXPR 9471 || TREE_CODE (arg0) == MINUS_EXPR) 9472 && TREE_CODE (arg1) == MULT_EXPR) 9473 || ((TREE_CODE (arg1) == PLUS_EXPR 9474 || TREE_CODE (arg1) == MINUS_EXPR) 9475 && TREE_CODE (arg0) == MULT_EXPR))) 9476 { 9477 tree parg0, parg1, parg, marg; 9478 enum tree_code pcode; 9479 9480 if (TREE_CODE (arg1) == MULT_EXPR) 9481 parg = arg0, marg = arg1; 9482 else 9483 parg = arg1, marg = arg0; 9484 pcode = TREE_CODE (parg); 9485 parg0 = TREE_OPERAND (parg, 0); 9486 parg1 = TREE_OPERAND (parg, 1); 9487 STRIP_NOPS (parg0); 9488 STRIP_NOPS (parg1); 9489 9490 if (TREE_CODE (parg0) == MULT_EXPR 9491 && TREE_CODE (parg1) != MULT_EXPR) 9492 return fold_build2_loc (loc, pcode, type, 9493 fold_build2_loc (loc, PLUS_EXPR, type, 9494 fold_convert_loc (loc, type, 9495 parg0), 9496 fold_convert_loc (loc, type, 9497 marg)), 9498 fold_convert_loc (loc, type, parg1)); 9499 if (TREE_CODE (parg0) != MULT_EXPR 9500 && TREE_CODE (parg1) == MULT_EXPR) 9501 return 9502 fold_build2_loc (loc, PLUS_EXPR, type, 9503 fold_convert_loc (loc, type, parg0), 9504 fold_build2_loc (loc, pcode, type, 9505 fold_convert_loc (loc, type, marg), 9506 fold_convert_loc (loc, type, 9507 parg1))); 9508 } 9509 } 9510 else 9511 { 9512 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y ) 9513 to __complex__ ( x, y ). This is not the same for SNaNs or 9514 if signed zeros are involved. */ 9515 if (!HONOR_SNANS (element_mode (arg0)) 9516 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9517 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9518 { 9519 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9520 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9521 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9522 bool arg0rz = false, arg0iz = false; 9523 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9524 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9525 { 9526 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9527 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9528 if (arg0rz && arg1i && real_zerop (arg1i)) 9529 { 9530 tree rp = arg1r ? arg1r 9531 : build1 (REALPART_EXPR, rtype, arg1); 9532 tree ip = arg0i ? arg0i 9533 : build1 (IMAGPART_EXPR, rtype, arg0); 9534 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9535 } 9536 else if (arg0iz && arg1r && real_zerop (arg1r)) 9537 { 9538 tree rp = arg0r ? arg0r 9539 : build1 (REALPART_EXPR, rtype, arg0); 9540 tree ip = arg1i ? arg1i 9541 : build1 (IMAGPART_EXPR, rtype, arg1); 9542 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9543 } 9544 } 9545 } 9546 9547 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. 9548 We associate floats only if the user has specified 9549 -fassociative-math. */ 9550 if (flag_associative_math 9551 && TREE_CODE (arg1) == PLUS_EXPR 9552 && TREE_CODE (arg0) != MULT_EXPR) 9553 { 9554 tree tree10 = TREE_OPERAND (arg1, 0); 9555 tree tree11 = TREE_OPERAND (arg1, 1); 9556 if (TREE_CODE (tree11) == MULT_EXPR 9557 && TREE_CODE (tree10) == MULT_EXPR) 9558 { 9559 tree tree0; 9560 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10); 9561 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11); 9562 } 9563 } 9564 /* Convert (b*c + d*e) + a into b*c + (d*e +a). 9565 We associate floats only if the user has specified 9566 -fassociative-math. */ 9567 if (flag_associative_math 9568 && TREE_CODE (arg0) == PLUS_EXPR 9569 && TREE_CODE (arg1) != MULT_EXPR) 9570 { 9571 tree tree00 = TREE_OPERAND (arg0, 0); 9572 tree tree01 = TREE_OPERAND (arg0, 1); 9573 if (TREE_CODE (tree01) == MULT_EXPR 9574 && TREE_CODE (tree00) == MULT_EXPR) 9575 { 9576 tree tree0; 9577 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1); 9578 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0); 9579 } 9580 } 9581 } 9582 9583 bit_rotate: 9584 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A 9585 is a rotate of A by C1 bits. */ 9586 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A 9587 is a rotate of A by B bits. 9588 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1, 9589 though in this case CODE must be | and not + or ^, otherwise 9590 it doesn't return A when B is 0. */ 9591 { 9592 enum tree_code code0, code1; 9593 tree rtype; 9594 code0 = TREE_CODE (arg0); 9595 code1 = TREE_CODE (arg1); 9596 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR) 9597 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR)) 9598 && operand_equal_p (TREE_OPERAND (arg0, 0), 9599 TREE_OPERAND (arg1, 0), 0) 9600 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)), 9601 TYPE_UNSIGNED (rtype)) 9602 /* Only create rotates in complete modes. Other cases are not 9603 expanded properly. */ 9604 && (element_precision (rtype) 9605 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype)))) 9606 { 9607 tree tree01, tree11; 9608 tree orig_tree01, orig_tree11; 9609 enum tree_code code01, code11; 9610 9611 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1); 9612 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1); 9613 STRIP_NOPS (tree01); 9614 STRIP_NOPS (tree11); 9615 code01 = TREE_CODE (tree01); 9616 code11 = TREE_CODE (tree11); 9617 if (code11 != MINUS_EXPR 9618 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR)) 9619 { 9620 std::swap (code0, code1); 9621 std::swap (code01, code11); 9622 std::swap (tree01, tree11); 9623 std::swap (orig_tree01, orig_tree11); 9624 } 9625 if (code01 == INTEGER_CST 9626 && code11 == INTEGER_CST 9627 && (wi::to_widest (tree01) + wi::to_widest (tree11) 9628 == element_precision (rtype))) 9629 { 9630 tem = build2_loc (loc, LROTATE_EXPR, 9631 rtype, TREE_OPERAND (arg0, 0), 9632 code0 == LSHIFT_EXPR 9633 ? orig_tree01 : orig_tree11); 9634 return fold_convert_loc (loc, type, tem); 9635 } 9636 else if (code11 == MINUS_EXPR) 9637 { 9638 tree tree110, tree111; 9639 tree110 = TREE_OPERAND (tree11, 0); 9640 tree111 = TREE_OPERAND (tree11, 1); 9641 STRIP_NOPS (tree110); 9642 STRIP_NOPS (tree111); 9643 if (TREE_CODE (tree110) == INTEGER_CST 9644 && compare_tree_int (tree110, 9645 element_precision (rtype)) == 0 9646 && operand_equal_p (tree01, tree111, 0)) 9647 { 9648 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9649 ? LROTATE_EXPR : RROTATE_EXPR), 9650 rtype, TREE_OPERAND (arg0, 0), 9651 orig_tree01); 9652 return fold_convert_loc (loc, type, tem); 9653 } 9654 } 9655 else if (code == BIT_IOR_EXPR 9656 && code11 == BIT_AND_EXPR 9657 && pow2p_hwi (element_precision (rtype))) 9658 { 9659 tree tree110, tree111; 9660 tree110 = TREE_OPERAND (tree11, 0); 9661 tree111 = TREE_OPERAND (tree11, 1); 9662 STRIP_NOPS (tree110); 9663 STRIP_NOPS (tree111); 9664 if (TREE_CODE (tree110) == NEGATE_EXPR 9665 && TREE_CODE (tree111) == INTEGER_CST 9666 && compare_tree_int (tree111, 9667 element_precision (rtype) - 1) == 0 9668 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0)) 9669 { 9670 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9671 ? LROTATE_EXPR : RROTATE_EXPR), 9672 rtype, TREE_OPERAND (arg0, 0), 9673 orig_tree01); 9674 return fold_convert_loc (loc, type, tem); 9675 } 9676 } 9677 } 9678 } 9679 9680 associate: 9681 /* In most languages, can't associate operations on floats through 9682 parentheses. Rather than remember where the parentheses were, we 9683 don't associate floats at all, unless the user has specified 9684 -fassociative-math. 9685 And, we need to make sure type is not saturating. */ 9686 9687 if ((! FLOAT_TYPE_P (type) || flag_associative_math) 9688 && !TYPE_SATURATING (type)) 9689 { 9690 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0; 9691 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1; 9692 tree atype = type; 9693 bool ok = true; 9694 9695 /* Split both trees into variables, constants, and literals. Then 9696 associate each group together, the constants with literals, 9697 then the result with variables. This increases the chances of 9698 literals being recombined later and of generating relocatable 9699 expressions for the sum of a constant and literal. */ 9700 var0 = split_tree (arg0, type, code, 9701 &minus_var0, &con0, &minus_con0, 9702 &lit0, &minus_lit0, 0); 9703 var1 = split_tree (arg1, type, code, 9704 &minus_var1, &con1, &minus_con1, 9705 &lit1, &minus_lit1, code == MINUS_EXPR); 9706 9707 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */ 9708 if (code == MINUS_EXPR) 9709 code = PLUS_EXPR; 9710 9711 /* With undefined overflow prefer doing association in a type 9712 which wraps on overflow, if that is one of the operand types. */ 9713 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 9714 && !TYPE_OVERFLOW_WRAPS (type)) 9715 { 9716 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9717 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 9718 atype = TREE_TYPE (arg0); 9719 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9720 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) 9721 atype = TREE_TYPE (arg1); 9722 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type)); 9723 } 9724 9725 /* With undefined overflow we can only associate constants with one 9726 variable, and constants whose association doesn't overflow. */ 9727 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype)) 9728 && !TYPE_OVERFLOW_WRAPS (atype)) 9729 { 9730 if ((var0 && var1) || (minus_var0 && minus_var1)) 9731 { 9732 /* ??? If split_tree would handle NEGATE_EXPR we could 9733 simply reject these cases and the allowed cases would 9734 be the var0/minus_var1 ones. */ 9735 tree tmp0 = var0 ? var0 : minus_var0; 9736 tree tmp1 = var1 ? var1 : minus_var1; 9737 bool one_neg = false; 9738 9739 if (TREE_CODE (tmp0) == NEGATE_EXPR) 9740 { 9741 tmp0 = TREE_OPERAND (tmp0, 0); 9742 one_neg = !one_neg; 9743 } 9744 if (CONVERT_EXPR_P (tmp0) 9745 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9746 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9747 <= TYPE_PRECISION (atype))) 9748 tmp0 = TREE_OPERAND (tmp0, 0); 9749 if (TREE_CODE (tmp1) == NEGATE_EXPR) 9750 { 9751 tmp1 = TREE_OPERAND (tmp1, 0); 9752 one_neg = !one_neg; 9753 } 9754 if (CONVERT_EXPR_P (tmp1) 9755 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9756 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9757 <= TYPE_PRECISION (atype))) 9758 tmp1 = TREE_OPERAND (tmp1, 0); 9759 /* The only case we can still associate with two variables 9760 is if they cancel out. */ 9761 if (!one_neg 9762 || !operand_equal_p (tmp0, tmp1, 0)) 9763 ok = false; 9764 } 9765 else if ((var0 && minus_var1 9766 && ! operand_equal_p (var0, minus_var1, 0)) 9767 || (minus_var0 && var1 9768 && ! operand_equal_p (minus_var0, var1, 0))) 9769 ok = false; 9770 } 9771 9772 /* Only do something if we found more than two objects. Otherwise, 9773 nothing has changed and we risk infinite recursion. */ 9774 if (ok 9775 && ((var0 != 0) + (var1 != 0) 9776 + (minus_var0 != 0) + (minus_var1 != 0) 9777 + (con0 != 0) + (con1 != 0) 9778 + (minus_con0 != 0) + (minus_con1 != 0) 9779 + (lit0 != 0) + (lit1 != 0) 9780 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2) 9781 { 9782 var0 = associate_trees (loc, var0, var1, code, atype); 9783 minus_var0 = associate_trees (loc, minus_var0, minus_var1, 9784 code, atype); 9785 con0 = associate_trees (loc, con0, con1, code, atype); 9786 minus_con0 = associate_trees (loc, minus_con0, minus_con1, 9787 code, atype); 9788 lit0 = associate_trees (loc, lit0, lit1, code, atype); 9789 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, 9790 code, atype); 9791 9792 if (minus_var0 && var0) 9793 { 9794 var0 = associate_trees (loc, var0, minus_var0, 9795 MINUS_EXPR, atype); 9796 minus_var0 = 0; 9797 } 9798 if (minus_con0 && con0) 9799 { 9800 con0 = associate_trees (loc, con0, minus_con0, 9801 MINUS_EXPR, atype); 9802 minus_con0 = 0; 9803 } 9804 9805 /* Preserve the MINUS_EXPR if the negative part of the literal is 9806 greater than the positive part. Otherwise, the multiplicative 9807 folding code (i.e extract_muldiv) may be fooled in case 9808 unsigned constants are subtracted, like in the following 9809 example: ((X*2 + 4) - 8U)/2. */ 9810 if (minus_lit0 && lit0) 9811 { 9812 if (TREE_CODE (lit0) == INTEGER_CST 9813 && TREE_CODE (minus_lit0) == INTEGER_CST 9814 && tree_int_cst_lt (lit0, minus_lit0) 9815 /* But avoid ending up with only negated parts. */ 9816 && (var0 || con0)) 9817 { 9818 minus_lit0 = associate_trees (loc, minus_lit0, lit0, 9819 MINUS_EXPR, atype); 9820 lit0 = 0; 9821 } 9822 else 9823 { 9824 lit0 = associate_trees (loc, lit0, minus_lit0, 9825 MINUS_EXPR, atype); 9826 minus_lit0 = 0; 9827 } 9828 } 9829 9830 /* Don't introduce overflows through reassociation. */ 9831 if ((lit0 && TREE_OVERFLOW_P (lit0)) 9832 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))) 9833 return NULL_TREE; 9834 9835 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */ 9836 con0 = associate_trees (loc, con0, lit0, code, atype); 9837 lit0 = 0; 9838 minus_con0 = associate_trees (loc, minus_con0, minus_lit0, 9839 code, atype); 9840 minus_lit0 = 0; 9841 9842 /* Eliminate minus_con0. */ 9843 if (minus_con0) 9844 { 9845 if (con0) 9846 con0 = associate_trees (loc, con0, minus_con0, 9847 MINUS_EXPR, atype); 9848 else if (var0) 9849 var0 = associate_trees (loc, var0, minus_con0, 9850 MINUS_EXPR, atype); 9851 else 9852 gcc_unreachable (); 9853 minus_con0 = 0; 9854 } 9855 9856 /* Eliminate minus_var0. */ 9857 if (minus_var0) 9858 { 9859 if (con0) 9860 con0 = associate_trees (loc, con0, minus_var0, 9861 MINUS_EXPR, atype); 9862 else 9863 gcc_unreachable (); 9864 minus_var0 = 0; 9865 } 9866 9867 return 9868 fold_convert_loc (loc, type, associate_trees (loc, var0, con0, 9869 code, atype)); 9870 } 9871 } 9872 9873 return NULL_TREE; 9874 9875 case POINTER_DIFF_EXPR: 9876 case MINUS_EXPR: 9877 /* Fold &a[i] - &a[j] to i-j. */ 9878 if (TREE_CODE (arg0) == ADDR_EXPR 9879 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF 9880 && TREE_CODE (arg1) == ADDR_EXPR 9881 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF) 9882 { 9883 tree tem = fold_addr_of_array_ref_difference (loc, type, 9884 TREE_OPERAND (arg0, 0), 9885 TREE_OPERAND (arg1, 0), 9886 code 9887 == POINTER_DIFF_EXPR); 9888 if (tem) 9889 return tem; 9890 } 9891 9892 /* Further transformations are not for pointers. */ 9893 if (code == POINTER_DIFF_EXPR) 9894 return NULL_TREE; 9895 9896 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */ 9897 if (TREE_CODE (arg0) == NEGATE_EXPR 9898 && negate_expr_p (op1) 9899 /* If arg0 is e.g. unsigned int and type is int, then this could 9900 introduce UB, because if A is INT_MIN at runtime, the original 9901 expression can be well defined while the latter is not. 9902 See PR83269. */ 9903 && !(ANY_INTEGRAL_TYPE_P (type) 9904 && TYPE_OVERFLOW_UNDEFINED (type) 9905 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9906 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 9907 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1), 9908 fold_convert_loc (loc, type, 9909 TREE_OPERAND (arg0, 0))); 9910 9911 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to 9912 __complex__ ( x, -y ). This is not the same for SNaNs or if 9913 signed zeros are involved. */ 9914 if (!HONOR_SNANS (element_mode (arg0)) 9915 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9916 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9917 { 9918 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9919 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9920 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9921 bool arg0rz = false, arg0iz = false; 9922 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9923 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9924 { 9925 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9926 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9927 if (arg0rz && arg1i && real_zerop (arg1i)) 9928 { 9929 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9930 arg1r ? arg1r 9931 : build1 (REALPART_EXPR, rtype, arg1)); 9932 tree ip = arg0i ? arg0i 9933 : build1 (IMAGPART_EXPR, rtype, arg0); 9934 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9935 } 9936 else if (arg0iz && arg1r && real_zerop (arg1r)) 9937 { 9938 tree rp = arg0r ? arg0r 9939 : build1 (REALPART_EXPR, rtype, arg0); 9940 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9941 arg1i ? arg1i 9942 : build1 (IMAGPART_EXPR, rtype, arg1)); 9943 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9944 } 9945 } 9946 } 9947 9948 /* A - B -> A + (-B) if B is easily negatable. */ 9949 if (negate_expr_p (op1) 9950 && ! TYPE_OVERFLOW_SANITIZED (type) 9951 && ((FLOAT_TYPE_P (type) 9952 /* Avoid this transformation if B is a positive REAL_CST. */ 9953 && (TREE_CODE (op1) != REAL_CST 9954 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1)))) 9955 || INTEGRAL_TYPE_P (type))) 9956 return fold_build2_loc (loc, PLUS_EXPR, type, 9957 fold_convert_loc (loc, type, arg0), 9958 negate_expr (op1)); 9959 9960 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or 9961 one. Make sure the type is not saturating and has the signedness of 9962 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9963 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9964 if ((TREE_CODE (arg0) == MULT_EXPR 9965 || TREE_CODE (arg1) == MULT_EXPR) 9966 && !TYPE_SATURATING (type) 9967 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 9968 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 9969 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 9970 { 9971 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 9972 if (tem) 9973 return tem; 9974 } 9975 9976 goto associate; 9977 9978 case MULT_EXPR: 9979 if (! FLOAT_TYPE_P (type)) 9980 { 9981 /* Transform x * -C into -x * C if x is easily negatable. */ 9982 if (TREE_CODE (op1) == INTEGER_CST 9983 && tree_int_cst_sgn (op1) == -1 9984 && negate_expr_p (op0) 9985 && negate_expr_p (op1) 9986 && (tem = negate_expr (op1)) != op1 9987 && ! TREE_OVERFLOW (tem)) 9988 return fold_build2_loc (loc, MULT_EXPR, type, 9989 fold_convert_loc (loc, type, 9990 negate_expr (op0)), tem); 9991 9992 strict_overflow_p = false; 9993 if (TREE_CODE (arg1) == INTEGER_CST 9994 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 9995 &strict_overflow_p)) != 0) 9996 { 9997 if (strict_overflow_p) 9998 fold_overflow_warning (("assuming signed overflow does not " 9999 "occur when simplifying " 10000 "multiplication"), 10001 WARN_STRICT_OVERFLOW_MISC); 10002 return fold_convert_loc (loc, type, tem); 10003 } 10004 10005 /* Optimize z * conj(z) for integer complex numbers. */ 10006 if (TREE_CODE (arg0) == CONJ_EXPR 10007 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10008 return fold_mult_zconjz (loc, type, arg1); 10009 if (TREE_CODE (arg1) == CONJ_EXPR 10010 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10011 return fold_mult_zconjz (loc, type, arg0); 10012 } 10013 else 10014 { 10015 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z). 10016 This is not the same for NaNs or if signed zeros are 10017 involved. */ 10018 if (!HONOR_NANS (arg0) 10019 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 10020 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)) 10021 && TREE_CODE (arg1) == COMPLEX_CST 10022 && real_zerop (TREE_REALPART (arg1))) 10023 { 10024 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 10025 if (real_onep (TREE_IMAGPART (arg1))) 10026 return 10027 fold_build2_loc (loc, COMPLEX_EXPR, type, 10028 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR, 10029 rtype, arg0)), 10030 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0)); 10031 else if (real_minus_onep (TREE_IMAGPART (arg1))) 10032 return 10033 fold_build2_loc (loc, COMPLEX_EXPR, type, 10034 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0), 10035 negate_expr (fold_build1_loc (loc, REALPART_EXPR, 10036 rtype, arg0))); 10037 } 10038 10039 /* Optimize z * conj(z) for floating point complex numbers. 10040 Guarded by flag_unsafe_math_optimizations as non-finite 10041 imaginary components don't produce scalar results. */ 10042 if (flag_unsafe_math_optimizations 10043 && TREE_CODE (arg0) == CONJ_EXPR 10044 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10045 return fold_mult_zconjz (loc, type, arg1); 10046 if (flag_unsafe_math_optimizations 10047 && TREE_CODE (arg1) == CONJ_EXPR 10048 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10049 return fold_mult_zconjz (loc, type, arg0); 10050 } 10051 goto associate; 10052 10053 case BIT_IOR_EXPR: 10054 /* Canonicalize (X & C1) | C2. */ 10055 if (TREE_CODE (arg0) == BIT_AND_EXPR 10056 && TREE_CODE (arg1) == INTEGER_CST 10057 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10058 { 10059 int width = TYPE_PRECISION (type), w; 10060 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1)); 10061 wide_int c2 = wi::to_wide (arg1); 10062 10063 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */ 10064 if ((c1 & c2) == c1) 10065 return omit_one_operand_loc (loc, type, arg1, 10066 TREE_OPERAND (arg0, 0)); 10067 10068 wide_int msk = wi::mask (width, false, 10069 TYPE_PRECISION (TREE_TYPE (arg1))); 10070 10071 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */ 10072 if (wi::bit_and_not (msk, c1 | c2) == 0) 10073 { 10074 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10075 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10076 } 10077 10078 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2, 10079 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some 10080 mode which allows further optimizations. */ 10081 c1 &= msk; 10082 c2 &= msk; 10083 wide_int c3 = wi::bit_and_not (c1, c2); 10084 for (w = BITS_PER_UNIT; w <= width; w <<= 1) 10085 { 10086 wide_int mask = wi::mask (w, false, 10087 TYPE_PRECISION (type)); 10088 if (((c1 | c2) & mask) == mask 10089 && wi::bit_and_not (c1, mask) == 0) 10090 { 10091 c3 = mask; 10092 break; 10093 } 10094 } 10095 10096 if (c3 != c1) 10097 { 10098 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10099 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem, 10100 wide_int_to_tree (type, c3)); 10101 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10102 } 10103 } 10104 10105 /* See if this can be simplified into a rotate first. If that 10106 is unsuccessful continue in the association code. */ 10107 goto bit_rotate; 10108 10109 case BIT_XOR_EXPR: 10110 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */ 10111 if (TREE_CODE (arg0) == BIT_AND_EXPR 10112 && INTEGRAL_TYPE_P (type) 10113 && integer_onep (TREE_OPERAND (arg0, 1)) 10114 && integer_onep (arg1)) 10115 return fold_build2_loc (loc, EQ_EXPR, type, arg0, 10116 build_zero_cst (TREE_TYPE (arg0))); 10117 10118 /* See if this can be simplified into a rotate first. If that 10119 is unsuccessful continue in the association code. */ 10120 goto bit_rotate; 10121 10122 case BIT_AND_EXPR: 10123 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */ 10124 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10125 && INTEGRAL_TYPE_P (type) 10126 && integer_onep (TREE_OPERAND (arg0, 1)) 10127 && integer_onep (arg1)) 10128 { 10129 tree tem2; 10130 tem = TREE_OPERAND (arg0, 0); 10131 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10132 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10133 tem, tem2); 10134 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10135 build_zero_cst (TREE_TYPE (tem))); 10136 } 10137 /* Fold ~X & 1 as (X & 1) == 0. */ 10138 if (TREE_CODE (arg0) == BIT_NOT_EXPR 10139 && INTEGRAL_TYPE_P (type) 10140 && integer_onep (arg1)) 10141 { 10142 tree tem2; 10143 tem = TREE_OPERAND (arg0, 0); 10144 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10145 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10146 tem, tem2); 10147 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10148 build_zero_cst (TREE_TYPE (tem))); 10149 } 10150 /* Fold !X & 1 as X == 0. */ 10151 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10152 && integer_onep (arg1)) 10153 { 10154 tem = TREE_OPERAND (arg0, 0); 10155 return fold_build2_loc (loc, EQ_EXPR, type, tem, 10156 build_zero_cst (TREE_TYPE (tem))); 10157 } 10158 10159 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant 10160 multiple of 1 << CST. */ 10161 if (TREE_CODE (arg1) == INTEGER_CST) 10162 { 10163 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10164 wide_int ncst1 = -cst1; 10165 if ((cst1 & ncst1) == ncst1 10166 && multiple_of_p (type, arg0, 10167 wide_int_to_tree (TREE_TYPE (arg1), ncst1))) 10168 return fold_convert_loc (loc, type, arg0); 10169 } 10170 10171 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero 10172 bits from CST2. */ 10173 if (TREE_CODE (arg1) == INTEGER_CST 10174 && TREE_CODE (arg0) == MULT_EXPR 10175 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10176 { 10177 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1); 10178 wide_int masked 10179 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1))); 10180 10181 if (masked == 0) 10182 return omit_two_operands_loc (loc, type, build_zero_cst (type), 10183 arg0, arg1); 10184 else if (masked != warg1) 10185 { 10186 /* Avoid the transform if arg1 is a mask of some 10187 mode which allows further optimizations. */ 10188 int pop = wi::popcount (warg1); 10189 if (!(pop >= BITS_PER_UNIT 10190 && pow2p_hwi (pop) 10191 && wi::mask (pop, false, warg1.get_precision ()) == warg1)) 10192 return fold_build2_loc (loc, code, type, op0, 10193 wide_int_to_tree (type, masked)); 10194 } 10195 } 10196 10197 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, 10198 ((A & N) + B) & M -> (A + B) & M 10199 Similarly if (N & M) == 0, 10200 ((A | N) + B) & M -> (A + B) & M 10201 and for - instead of + (or unary - instead of +) 10202 and/or ^ instead of |. 10203 If B is constant and (B & M) == 0, fold into A & M. */ 10204 if (TREE_CODE (arg1) == INTEGER_CST) 10205 { 10206 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10207 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0 10208 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 10209 && (TREE_CODE (arg0) == PLUS_EXPR 10210 || TREE_CODE (arg0) == MINUS_EXPR 10211 || TREE_CODE (arg0) == NEGATE_EXPR) 10212 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) 10213 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE)) 10214 { 10215 tree pmop[2]; 10216 int which = 0; 10217 wide_int cst0; 10218 10219 /* Now we know that arg0 is (C + D) or (C - D) or 10220 -C and arg1 (M) is == (1LL << cst) - 1. 10221 Store C into PMOP[0] and D into PMOP[1]. */ 10222 pmop[0] = TREE_OPERAND (arg0, 0); 10223 pmop[1] = NULL; 10224 if (TREE_CODE (arg0) != NEGATE_EXPR) 10225 { 10226 pmop[1] = TREE_OPERAND (arg0, 1); 10227 which = 1; 10228 } 10229 10230 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1) 10231 which = -1; 10232 10233 for (; which >= 0; which--) 10234 switch (TREE_CODE (pmop[which])) 10235 { 10236 case BIT_AND_EXPR: 10237 case BIT_IOR_EXPR: 10238 case BIT_XOR_EXPR: 10239 if (TREE_CODE (TREE_OPERAND (pmop[which], 1)) 10240 != INTEGER_CST) 10241 break; 10242 cst0 = wi::to_wide (TREE_OPERAND (pmop[which], 1)) & cst1; 10243 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR) 10244 { 10245 if (cst0 != cst1) 10246 break; 10247 } 10248 else if (cst0 != 0) 10249 break; 10250 /* If C or D is of the form (A & N) where 10251 (N & M) == M, or of the form (A | N) or 10252 (A ^ N) where (N & M) == 0, replace it with A. */ 10253 pmop[which] = TREE_OPERAND (pmop[which], 0); 10254 break; 10255 case INTEGER_CST: 10256 /* If C or D is a N where (N & M) == 0, it can be 10257 omitted (assumed 0). */ 10258 if ((TREE_CODE (arg0) == PLUS_EXPR 10259 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0)) 10260 && (cst1 & wi::to_wide (pmop[which])) == 0) 10261 pmop[which] = NULL; 10262 break; 10263 default: 10264 break; 10265 } 10266 10267 /* Only build anything new if we optimized one or both arguments 10268 above. */ 10269 if (pmop[0] != TREE_OPERAND (arg0, 0) 10270 || (TREE_CODE (arg0) != NEGATE_EXPR 10271 && pmop[1] != TREE_OPERAND (arg0, 1))) 10272 { 10273 tree utype = TREE_TYPE (arg0); 10274 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 10275 { 10276 /* Perform the operations in a type that has defined 10277 overflow behavior. */ 10278 utype = unsigned_type_for (TREE_TYPE (arg0)); 10279 if (pmop[0] != NULL) 10280 pmop[0] = fold_convert_loc (loc, utype, pmop[0]); 10281 if (pmop[1] != NULL) 10282 pmop[1] = fold_convert_loc (loc, utype, pmop[1]); 10283 } 10284 10285 if (TREE_CODE (arg0) == NEGATE_EXPR) 10286 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]); 10287 else if (TREE_CODE (arg0) == PLUS_EXPR) 10288 { 10289 if (pmop[0] != NULL && pmop[1] != NULL) 10290 tem = fold_build2_loc (loc, PLUS_EXPR, utype, 10291 pmop[0], pmop[1]); 10292 else if (pmop[0] != NULL) 10293 tem = pmop[0]; 10294 else if (pmop[1] != NULL) 10295 tem = pmop[1]; 10296 else 10297 return build_int_cst (type, 0); 10298 } 10299 else if (pmop[0] == NULL) 10300 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]); 10301 else 10302 tem = fold_build2_loc (loc, MINUS_EXPR, utype, 10303 pmop[0], pmop[1]); 10304 /* TEM is now the new binary +, - or unary - replacement. */ 10305 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem, 10306 fold_convert_loc (loc, utype, arg1)); 10307 return fold_convert_loc (loc, type, tem); 10308 } 10309 } 10310 } 10311 10312 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */ 10313 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR 10314 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0)))) 10315 { 10316 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0))); 10317 10318 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED); 10319 if (mask == -1) 10320 return 10321 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10322 } 10323 10324 goto associate; 10325 10326 case RDIV_EXPR: 10327 /* Don't touch a floating-point divide by zero unless the mode 10328 of the constant can represent infinity. */ 10329 if (TREE_CODE (arg1) == REAL_CST 10330 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))) 10331 && real_zerop (arg1)) 10332 return NULL_TREE; 10333 10334 /* (-A) / (-B) -> A / B */ 10335 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1)) 10336 return fold_build2_loc (loc, RDIV_EXPR, type, 10337 TREE_OPERAND (arg0, 0), 10338 negate_expr (arg1)); 10339 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0)) 10340 return fold_build2_loc (loc, RDIV_EXPR, type, 10341 negate_expr (arg0), 10342 TREE_OPERAND (arg1, 0)); 10343 return NULL_TREE; 10344 10345 case TRUNC_DIV_EXPR: 10346 /* Fall through */ 10347 10348 case FLOOR_DIV_EXPR: 10349 /* Simplify A / (B << N) where A and B are positive and B is 10350 a power of 2, to A >> (N + log2(B)). */ 10351 strict_overflow_p = false; 10352 if (TREE_CODE (arg1) == LSHIFT_EXPR 10353 && (TYPE_UNSIGNED (type) 10354 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p))) 10355 { 10356 tree sval = TREE_OPERAND (arg1, 0); 10357 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0) 10358 { 10359 tree sh_cnt = TREE_OPERAND (arg1, 1); 10360 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt), 10361 wi::exact_log2 (wi::to_wide (sval))); 10362 10363 if (strict_overflow_p) 10364 fold_overflow_warning (("assuming signed overflow does not " 10365 "occur when simplifying A / (B << N)"), 10366 WARN_STRICT_OVERFLOW_MISC); 10367 10368 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt), 10369 sh_cnt, pow2); 10370 return fold_build2_loc (loc, RSHIFT_EXPR, type, 10371 fold_convert_loc (loc, type, arg0), sh_cnt); 10372 } 10373 } 10374 10375 /* Fall through */ 10376 10377 case ROUND_DIV_EXPR: 10378 case CEIL_DIV_EXPR: 10379 case EXACT_DIV_EXPR: 10380 if (integer_zerop (arg1)) 10381 return NULL_TREE; 10382 10383 /* Convert -A / -B to A / B when the type is signed and overflow is 10384 undefined. */ 10385 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10386 && TREE_CODE (op0) == NEGATE_EXPR 10387 && negate_expr_p (op1)) 10388 { 10389 if (INTEGRAL_TYPE_P (type)) 10390 fold_overflow_warning (("assuming signed overflow does not occur " 10391 "when distributing negation across " 10392 "division"), 10393 WARN_STRICT_OVERFLOW_MISC); 10394 return fold_build2_loc (loc, code, type, 10395 fold_convert_loc (loc, type, 10396 TREE_OPERAND (arg0, 0)), 10397 negate_expr (op1)); 10398 } 10399 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10400 && TREE_CODE (arg1) == NEGATE_EXPR 10401 && negate_expr_p (op0)) 10402 { 10403 if (INTEGRAL_TYPE_P (type)) 10404 fold_overflow_warning (("assuming signed overflow does not occur " 10405 "when distributing negation across " 10406 "division"), 10407 WARN_STRICT_OVERFLOW_MISC); 10408 return fold_build2_loc (loc, code, type, 10409 negate_expr (op0), 10410 fold_convert_loc (loc, type, 10411 TREE_OPERAND (arg1, 0))); 10412 } 10413 10414 /* If arg0 is a multiple of arg1, then rewrite to the fastest div 10415 operation, EXACT_DIV_EXPR. 10416 10417 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now. 10418 At one time others generated faster code, it's not clear if they do 10419 after the last round to changes to the DIV code in expmed.c. */ 10420 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR) 10421 && multiple_of_p (type, arg0, arg1)) 10422 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, 10423 fold_convert (type, arg0), 10424 fold_convert (type, arg1)); 10425 10426 strict_overflow_p = false; 10427 if (TREE_CODE (arg1) == INTEGER_CST 10428 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10429 &strict_overflow_p)) != 0) 10430 { 10431 if (strict_overflow_p) 10432 fold_overflow_warning (("assuming signed overflow does not occur " 10433 "when simplifying division"), 10434 WARN_STRICT_OVERFLOW_MISC); 10435 return fold_convert_loc (loc, type, tem); 10436 } 10437 10438 return NULL_TREE; 10439 10440 case CEIL_MOD_EXPR: 10441 case FLOOR_MOD_EXPR: 10442 case ROUND_MOD_EXPR: 10443 case TRUNC_MOD_EXPR: 10444 strict_overflow_p = false; 10445 if (TREE_CODE (arg1) == INTEGER_CST 10446 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10447 &strict_overflow_p)) != 0) 10448 { 10449 if (strict_overflow_p) 10450 fold_overflow_warning (("assuming signed overflow does not occur " 10451 "when simplifying modulus"), 10452 WARN_STRICT_OVERFLOW_MISC); 10453 return fold_convert_loc (loc, type, tem); 10454 } 10455 10456 return NULL_TREE; 10457 10458 case LROTATE_EXPR: 10459 case RROTATE_EXPR: 10460 case RSHIFT_EXPR: 10461 case LSHIFT_EXPR: 10462 /* Since negative shift count is not well-defined, 10463 don't try to compute it in the compiler. */ 10464 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0) 10465 return NULL_TREE; 10466 10467 prec = element_precision (type); 10468 10469 /* If we have a rotate of a bit operation with the rotate count and 10470 the second operand of the bit operation both constant, 10471 permute the two operations. */ 10472 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10473 && (TREE_CODE (arg0) == BIT_AND_EXPR 10474 || TREE_CODE (arg0) == BIT_IOR_EXPR 10475 || TREE_CODE (arg0) == BIT_XOR_EXPR) 10476 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10477 { 10478 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10479 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10480 return fold_build2_loc (loc, TREE_CODE (arg0), type, 10481 fold_build2_loc (loc, code, type, 10482 arg00, arg1), 10483 fold_build2_loc (loc, code, type, 10484 arg01, arg1)); 10485 } 10486 10487 /* Two consecutive rotates adding up to the some integer 10488 multiple of the precision of the type can be ignored. */ 10489 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10490 && TREE_CODE (arg0) == RROTATE_EXPR 10491 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 10492 && wi::umod_trunc (wi::to_wide (arg1) 10493 + wi::to_wide (TREE_OPERAND (arg0, 1)), 10494 prec) == 0) 10495 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10496 10497 return NULL_TREE; 10498 10499 case MIN_EXPR: 10500 case MAX_EXPR: 10501 goto associate; 10502 10503 case TRUTH_ANDIF_EXPR: 10504 /* Note that the operands of this must be ints 10505 and their values must be 0 or 1. 10506 ("true" is a fixed value perhaps depending on the language.) */ 10507 /* If first arg is constant zero, return it. */ 10508 if (integer_zerop (arg0)) 10509 return fold_convert_loc (loc, type, arg0); 10510 /* FALLTHRU */ 10511 case TRUTH_AND_EXPR: 10512 /* If either arg is constant true, drop it. */ 10513 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10514 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10515 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1) 10516 /* Preserve sequence points. */ 10517 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10518 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10519 /* If second arg is constant zero, result is zero, but first arg 10520 must be evaluated. */ 10521 if (integer_zerop (arg1)) 10522 return omit_one_operand_loc (loc, type, arg1, arg0); 10523 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR 10524 case will be handled here. */ 10525 if (integer_zerop (arg0)) 10526 return omit_one_operand_loc (loc, type, arg0, arg1); 10527 10528 /* !X && X is always false. */ 10529 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10530 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10531 return omit_one_operand_loc (loc, type, integer_zero_node, arg1); 10532 /* X && !X is always false. */ 10533 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10534 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10535 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10536 10537 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y 10538 means A >= Y && A != MAX, but in this case we know that 10539 A < X <= MAX. */ 10540 10541 if (!TREE_SIDE_EFFECTS (arg0) 10542 && !TREE_SIDE_EFFECTS (arg1)) 10543 { 10544 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1); 10545 if (tem && !operand_equal_p (tem, arg0, 0)) 10546 return fold_build2_loc (loc, code, type, tem, arg1); 10547 10548 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0); 10549 if (tem && !operand_equal_p (tem, arg1, 0)) 10550 return fold_build2_loc (loc, code, type, arg0, tem); 10551 } 10552 10553 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10554 != NULL_TREE) 10555 return tem; 10556 10557 return NULL_TREE; 10558 10559 case TRUTH_ORIF_EXPR: 10560 /* Note that the operands of this must be ints 10561 and their values must be 0 or true. 10562 ("true" is a fixed value perhaps depending on the language.) */ 10563 /* If first arg is constant true, return it. */ 10564 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10565 return fold_convert_loc (loc, type, arg0); 10566 /* FALLTHRU */ 10567 case TRUTH_OR_EXPR: 10568 /* If either arg is constant zero, drop it. */ 10569 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0)) 10570 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10571 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1) 10572 /* Preserve sequence points. */ 10573 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10574 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10575 /* If second arg is constant true, result is true, but we must 10576 evaluate first arg. */ 10577 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)) 10578 return omit_one_operand_loc (loc, type, arg1, arg0); 10579 /* Likewise for first arg, but note this only occurs here for 10580 TRUTH_OR_EXPR. */ 10581 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10582 return omit_one_operand_loc (loc, type, arg0, arg1); 10583 10584 /* !X || X is always true. */ 10585 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10586 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10587 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10588 /* X || !X is always true. */ 10589 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10590 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10591 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10592 10593 /* (X && !Y) || (!X && Y) is X ^ Y */ 10594 if (TREE_CODE (arg0) == TRUTH_AND_EXPR 10595 && TREE_CODE (arg1) == TRUTH_AND_EXPR) 10596 { 10597 tree a0, a1, l0, l1, n0, n1; 10598 10599 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0)); 10600 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1)); 10601 10602 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10603 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10604 10605 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0); 10606 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1); 10607 10608 if ((operand_equal_p (n0, a0, 0) 10609 && operand_equal_p (n1, a1, 0)) 10610 || (operand_equal_p (n0, a1, 0) 10611 && operand_equal_p (n1, a0, 0))) 10612 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1); 10613 } 10614 10615 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10616 != NULL_TREE) 10617 return tem; 10618 10619 return NULL_TREE; 10620 10621 case TRUTH_XOR_EXPR: 10622 /* If the second arg is constant zero, drop it. */ 10623 if (integer_zerop (arg1)) 10624 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10625 /* If the second arg is constant true, this is a logical inversion. */ 10626 if (integer_onep (arg1)) 10627 { 10628 tem = invert_truthvalue_loc (loc, arg0); 10629 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem)); 10630 } 10631 /* Identical arguments cancel to zero. */ 10632 if (operand_equal_p (arg0, arg1, 0)) 10633 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10634 10635 /* !X ^ X is always true. */ 10636 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10637 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10638 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10639 10640 /* X ^ !X is always true. */ 10641 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10642 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10643 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10644 10645 return NULL_TREE; 10646 10647 case EQ_EXPR: 10648 case NE_EXPR: 10649 STRIP_NOPS (arg0); 10650 STRIP_NOPS (arg1); 10651 10652 tem = fold_comparison (loc, code, type, op0, op1); 10653 if (tem != NULL_TREE) 10654 return tem; 10655 10656 /* bool_var != 1 becomes !bool_var. */ 10657 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1) 10658 && code == NE_EXPR) 10659 return fold_convert_loc (loc, type, 10660 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10661 TREE_TYPE (arg0), arg0)); 10662 10663 /* bool_var == 0 becomes !bool_var. */ 10664 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1) 10665 && code == EQ_EXPR) 10666 return fold_convert_loc (loc, type, 10667 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10668 TREE_TYPE (arg0), arg0)); 10669 10670 /* !exp != 0 becomes !exp */ 10671 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1) 10672 && code == NE_EXPR) 10673 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10674 10675 /* If this is an EQ or NE comparison with zero and ARG0 is 10676 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require 10677 two operations, but the latter can be done in one less insn 10678 on machines that have only two-operand insns or on which a 10679 constant cannot be the first operand. */ 10680 if (TREE_CODE (arg0) == BIT_AND_EXPR 10681 && integer_zerop (arg1)) 10682 { 10683 tree arg00 = TREE_OPERAND (arg0, 0); 10684 tree arg01 = TREE_OPERAND (arg0, 1); 10685 if (TREE_CODE (arg00) == LSHIFT_EXPR 10686 && integer_onep (TREE_OPERAND (arg00, 0))) 10687 { 10688 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00), 10689 arg01, TREE_OPERAND (arg00, 1)); 10690 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10691 build_int_cst (TREE_TYPE (arg0), 1)); 10692 return fold_build2_loc (loc, code, type, 10693 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10694 arg1); 10695 } 10696 else if (TREE_CODE (arg01) == LSHIFT_EXPR 10697 && integer_onep (TREE_OPERAND (arg01, 0))) 10698 { 10699 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01), 10700 arg00, TREE_OPERAND (arg01, 1)); 10701 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10702 build_int_cst (TREE_TYPE (arg0), 1)); 10703 return fold_build2_loc (loc, code, type, 10704 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10705 arg1); 10706 } 10707 } 10708 10709 /* If this is an NE or EQ comparison of zero against the result of a 10710 signed MOD operation whose second operand is a power of 2, make 10711 the MOD operation unsigned since it is simpler and equivalent. */ 10712 if (integer_zerop (arg1) 10713 && !TYPE_UNSIGNED (TREE_TYPE (arg0)) 10714 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR 10715 || TREE_CODE (arg0) == CEIL_MOD_EXPR 10716 || TREE_CODE (arg0) == FLOOR_MOD_EXPR 10717 || TREE_CODE (arg0) == ROUND_MOD_EXPR) 10718 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10719 { 10720 tree newtype = unsigned_type_for (TREE_TYPE (arg0)); 10721 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype, 10722 fold_convert_loc (loc, newtype, 10723 TREE_OPERAND (arg0, 0)), 10724 fold_convert_loc (loc, newtype, 10725 TREE_OPERAND (arg0, 1))); 10726 10727 return fold_build2_loc (loc, code, type, newmod, 10728 fold_convert_loc (loc, newtype, arg1)); 10729 } 10730 10731 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where 10732 C1 is a valid shift constant, and C2 is a power of two, i.e. 10733 a single bit. */ 10734 if (TREE_CODE (arg0) == BIT_AND_EXPR 10735 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR 10736 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)) 10737 == INTEGER_CST 10738 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10739 && integer_zerop (arg1)) 10740 { 10741 tree itype = TREE_TYPE (arg0); 10742 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1); 10743 prec = TYPE_PRECISION (itype); 10744 10745 /* Check for a valid shift count. */ 10746 if (wi::ltu_p (wi::to_wide (arg001), prec)) 10747 { 10748 tree arg01 = TREE_OPERAND (arg0, 1); 10749 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10750 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01); 10751 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0 10752 can be rewritten as (X & (C2 << C1)) != 0. */ 10753 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec) 10754 { 10755 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001); 10756 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem); 10757 return fold_build2_loc (loc, code, type, tem, 10758 fold_convert_loc (loc, itype, arg1)); 10759 } 10760 /* Otherwise, for signed (arithmetic) shifts, 10761 ((X >> C1) & C2) != 0 is rewritten as X < 0, and 10762 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */ 10763 else if (!TYPE_UNSIGNED (itype)) 10764 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type, 10765 arg000, build_int_cst (itype, 0)); 10766 /* Otherwise, of unsigned (logical) shifts, 10767 ((X >> C1) & C2) != 0 is rewritten as (X,false), and 10768 ((X >> C1) & C2) == 0 is rewritten as (X,true). */ 10769 else 10770 return omit_one_operand_loc (loc, type, 10771 code == EQ_EXPR ? integer_one_node 10772 : integer_zero_node, 10773 arg000); 10774 } 10775 } 10776 10777 /* If this is a comparison of a field, we may be able to simplify it. */ 10778 if ((TREE_CODE (arg0) == COMPONENT_REF 10779 || TREE_CODE (arg0) == BIT_FIELD_REF) 10780 /* Handle the constant case even without -O 10781 to make sure the warnings are given. */ 10782 && (optimize || TREE_CODE (arg1) == INTEGER_CST)) 10783 { 10784 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1); 10785 if (t1) 10786 return t1; 10787 } 10788 10789 /* Optimize comparisons of strlen vs zero to a compare of the 10790 first character of the string vs zero. To wit, 10791 strlen(ptr) == 0 => *ptr == 0 10792 strlen(ptr) != 0 => *ptr != 0 10793 Other cases should reduce to one of these two (or a constant) 10794 due to the return value of strlen being unsigned. */ 10795 if (TREE_CODE (arg0) == CALL_EXPR 10796 && integer_zerop (arg1)) 10797 { 10798 tree fndecl = get_callee_fndecl (arg0); 10799 10800 if (fndecl 10801 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 10802 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN 10803 && call_expr_nargs (arg0) == 1 10804 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE) 10805 { 10806 tree iref = build_fold_indirect_ref_loc (loc, 10807 CALL_EXPR_ARG (arg0, 0)); 10808 return fold_build2_loc (loc, code, type, iref, 10809 build_int_cst (TREE_TYPE (iref), 0)); 10810 } 10811 } 10812 10813 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width 10814 of X. Similarly fold (X >> C) == 0 into X >= 0. */ 10815 if (TREE_CODE (arg0) == RSHIFT_EXPR 10816 && integer_zerop (arg1) 10817 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10818 { 10819 tree arg00 = TREE_OPERAND (arg0, 0); 10820 tree arg01 = TREE_OPERAND (arg0, 1); 10821 tree itype = TREE_TYPE (arg00); 10822 if (wi::to_wide (arg01) == element_precision (itype) - 1) 10823 { 10824 if (TYPE_UNSIGNED (itype)) 10825 { 10826 itype = signed_type_for (itype); 10827 arg00 = fold_convert_loc (loc, itype, arg00); 10828 } 10829 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 10830 type, arg00, build_zero_cst (itype)); 10831 } 10832 } 10833 10834 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into 10835 (X & C) == 0 when C is a single bit. */ 10836 if (TREE_CODE (arg0) == BIT_AND_EXPR 10837 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR 10838 && integer_zerop (arg1) 10839 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10840 { 10841 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), 10842 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0), 10843 TREE_OPERAND (arg0, 1)); 10844 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, 10845 type, tem, 10846 fold_convert_loc (loc, TREE_TYPE (arg0), 10847 arg1)); 10848 } 10849 10850 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the 10851 constant C is a power of two, i.e. a single bit. */ 10852 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10853 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 10854 && integer_zerop (arg1) 10855 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10856 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10857 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10858 { 10859 tree arg00 = TREE_OPERAND (arg0, 0); 10860 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10861 arg00, build_int_cst (TREE_TYPE (arg00), 0)); 10862 } 10863 10864 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0, 10865 when is C is a power of two, i.e. a single bit. */ 10866 if (TREE_CODE (arg0) == BIT_AND_EXPR 10867 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR 10868 && integer_zerop (arg1) 10869 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10870 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10871 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10872 { 10873 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10874 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000), 10875 arg000, TREE_OPERAND (arg0, 1)); 10876 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10877 tem, build_int_cst (TREE_TYPE (tem), 0)); 10878 } 10879 10880 if (integer_zerop (arg1) 10881 && tree_expr_nonzero_p (arg0)) 10882 { 10883 tree res = constant_boolean_node (code==NE_EXPR, type); 10884 return omit_one_operand_loc (loc, type, res, arg0); 10885 } 10886 10887 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */ 10888 if (TREE_CODE (arg0) == BIT_AND_EXPR 10889 && TREE_CODE (arg1) == BIT_AND_EXPR) 10890 { 10891 tree arg00 = TREE_OPERAND (arg0, 0); 10892 tree arg01 = TREE_OPERAND (arg0, 1); 10893 tree arg10 = TREE_OPERAND (arg1, 0); 10894 tree arg11 = TREE_OPERAND (arg1, 1); 10895 tree itype = TREE_TYPE (arg0); 10896 10897 if (operand_equal_p (arg01, arg11, 0)) 10898 { 10899 tem = fold_convert_loc (loc, itype, arg10); 10900 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10901 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10902 return fold_build2_loc (loc, code, type, tem, 10903 build_zero_cst (itype)); 10904 } 10905 if (operand_equal_p (arg01, arg10, 0)) 10906 { 10907 tem = fold_convert_loc (loc, itype, arg11); 10908 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10909 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10910 return fold_build2_loc (loc, code, type, tem, 10911 build_zero_cst (itype)); 10912 } 10913 if (operand_equal_p (arg00, arg11, 0)) 10914 { 10915 tem = fold_convert_loc (loc, itype, arg10); 10916 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10917 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10918 return fold_build2_loc (loc, code, type, tem, 10919 build_zero_cst (itype)); 10920 } 10921 if (operand_equal_p (arg00, arg10, 0)) 10922 { 10923 tem = fold_convert_loc (loc, itype, arg11); 10924 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10925 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10926 return fold_build2_loc (loc, code, type, tem, 10927 build_zero_cst (itype)); 10928 } 10929 } 10930 10931 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10932 && TREE_CODE (arg1) == BIT_XOR_EXPR) 10933 { 10934 tree arg00 = TREE_OPERAND (arg0, 0); 10935 tree arg01 = TREE_OPERAND (arg0, 1); 10936 tree arg10 = TREE_OPERAND (arg1, 0); 10937 tree arg11 = TREE_OPERAND (arg1, 1); 10938 tree itype = TREE_TYPE (arg0); 10939 10940 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries. 10941 operand_equal_p guarantees no side-effects so we don't need 10942 to use omit_one_operand on Z. */ 10943 if (operand_equal_p (arg01, arg11, 0)) 10944 return fold_build2_loc (loc, code, type, arg00, 10945 fold_convert_loc (loc, TREE_TYPE (arg00), 10946 arg10)); 10947 if (operand_equal_p (arg01, arg10, 0)) 10948 return fold_build2_loc (loc, code, type, arg00, 10949 fold_convert_loc (loc, TREE_TYPE (arg00), 10950 arg11)); 10951 if (operand_equal_p (arg00, arg11, 0)) 10952 return fold_build2_loc (loc, code, type, arg01, 10953 fold_convert_loc (loc, TREE_TYPE (arg01), 10954 arg10)); 10955 if (operand_equal_p (arg00, arg10, 0)) 10956 return fold_build2_loc (loc, code, type, arg01, 10957 fold_convert_loc (loc, TREE_TYPE (arg01), 10958 arg11)); 10959 10960 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */ 10961 if (TREE_CODE (arg01) == INTEGER_CST 10962 && TREE_CODE (arg11) == INTEGER_CST) 10963 { 10964 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, 10965 fold_convert_loc (loc, itype, arg11)); 10966 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10967 return fold_build2_loc (loc, code, type, tem, 10968 fold_convert_loc (loc, itype, arg10)); 10969 } 10970 } 10971 10972 /* Attempt to simplify equality/inequality comparisons of complex 10973 values. Only lower the comparison if the result is known or 10974 can be simplified to a single scalar comparison. */ 10975 if ((TREE_CODE (arg0) == COMPLEX_EXPR 10976 || TREE_CODE (arg0) == COMPLEX_CST) 10977 && (TREE_CODE (arg1) == COMPLEX_EXPR 10978 || TREE_CODE (arg1) == COMPLEX_CST)) 10979 { 10980 tree real0, imag0, real1, imag1; 10981 tree rcond, icond; 10982 10983 if (TREE_CODE (arg0) == COMPLEX_EXPR) 10984 { 10985 real0 = TREE_OPERAND (arg0, 0); 10986 imag0 = TREE_OPERAND (arg0, 1); 10987 } 10988 else 10989 { 10990 real0 = TREE_REALPART (arg0); 10991 imag0 = TREE_IMAGPART (arg0); 10992 } 10993 10994 if (TREE_CODE (arg1) == COMPLEX_EXPR) 10995 { 10996 real1 = TREE_OPERAND (arg1, 0); 10997 imag1 = TREE_OPERAND (arg1, 1); 10998 } 10999 else 11000 { 11001 real1 = TREE_REALPART (arg1); 11002 imag1 = TREE_IMAGPART (arg1); 11003 } 11004 11005 rcond = fold_binary_loc (loc, code, type, real0, real1); 11006 if (rcond && TREE_CODE (rcond) == INTEGER_CST) 11007 { 11008 if (integer_zerop (rcond)) 11009 { 11010 if (code == EQ_EXPR) 11011 return omit_two_operands_loc (loc, type, boolean_false_node, 11012 imag0, imag1); 11013 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1); 11014 } 11015 else 11016 { 11017 if (code == NE_EXPR) 11018 return omit_two_operands_loc (loc, type, boolean_true_node, 11019 imag0, imag1); 11020 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1); 11021 } 11022 } 11023 11024 icond = fold_binary_loc (loc, code, type, imag0, imag1); 11025 if (icond && TREE_CODE (icond) == INTEGER_CST) 11026 { 11027 if (integer_zerop (icond)) 11028 { 11029 if (code == EQ_EXPR) 11030 return omit_two_operands_loc (loc, type, boolean_false_node, 11031 real0, real1); 11032 return fold_build2_loc (loc, NE_EXPR, type, real0, real1); 11033 } 11034 else 11035 { 11036 if (code == NE_EXPR) 11037 return omit_two_operands_loc (loc, type, boolean_true_node, 11038 real0, real1); 11039 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1); 11040 } 11041 } 11042 } 11043 11044 return NULL_TREE; 11045 11046 case LT_EXPR: 11047 case GT_EXPR: 11048 case LE_EXPR: 11049 case GE_EXPR: 11050 tem = fold_comparison (loc, code, type, op0, op1); 11051 if (tem != NULL_TREE) 11052 return tem; 11053 11054 /* Transform comparisons of the form X +- C CMP X. */ 11055 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 11056 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0) 11057 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST 11058 && !HONOR_SNANS (arg0)) 11059 { 11060 tree arg01 = TREE_OPERAND (arg0, 1); 11061 enum tree_code code0 = TREE_CODE (arg0); 11062 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1; 11063 11064 /* (X - c) > X becomes false. */ 11065 if (code == GT_EXPR 11066 && ((code0 == MINUS_EXPR && is_positive >= 0) 11067 || (code0 == PLUS_EXPR && is_positive <= 0))) 11068 return constant_boolean_node (0, type); 11069 11070 /* Likewise (X + c) < X becomes false. */ 11071 if (code == LT_EXPR 11072 && ((code0 == PLUS_EXPR && is_positive >= 0) 11073 || (code0 == MINUS_EXPR && is_positive <= 0))) 11074 return constant_boolean_node (0, type); 11075 11076 /* Convert (X - c) <= X to true. */ 11077 if (!HONOR_NANS (arg1) 11078 && code == LE_EXPR 11079 && ((code0 == MINUS_EXPR && is_positive >= 0) 11080 || (code0 == PLUS_EXPR && is_positive <= 0))) 11081 return constant_boolean_node (1, type); 11082 11083 /* Convert (X + c) >= X to true. */ 11084 if (!HONOR_NANS (arg1) 11085 && code == GE_EXPR 11086 && ((code0 == PLUS_EXPR && is_positive >= 0) 11087 || (code0 == MINUS_EXPR && is_positive <= 0))) 11088 return constant_boolean_node (1, type); 11089 } 11090 11091 /* If we are comparing an ABS_EXPR with a constant, we can 11092 convert all the cases into explicit comparisons, but they may 11093 well not be faster than doing the ABS and one comparison. 11094 But ABS (X) <= C is a range comparison, which becomes a subtraction 11095 and a comparison, and is probably faster. */ 11096 if (code == LE_EXPR 11097 && TREE_CODE (arg1) == INTEGER_CST 11098 && TREE_CODE (arg0) == ABS_EXPR 11099 && ! TREE_SIDE_EFFECTS (arg0) 11100 && (tem = negate_expr (arg1)) != 0 11101 && TREE_CODE (tem) == INTEGER_CST 11102 && !TREE_OVERFLOW (tem)) 11103 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type, 11104 build2 (GE_EXPR, type, 11105 TREE_OPERAND (arg0, 0), tem), 11106 build2 (LE_EXPR, type, 11107 TREE_OPERAND (arg0, 0), arg1)); 11108 11109 /* Convert ABS_EXPR<x> >= 0 to true. */ 11110 strict_overflow_p = false; 11111 if (code == GE_EXPR 11112 && (integer_zerop (arg1) 11113 || (! HONOR_NANS (arg0) 11114 && real_zerop (arg1))) 11115 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11116 { 11117 if (strict_overflow_p) 11118 fold_overflow_warning (("assuming signed overflow does not occur " 11119 "when simplifying comparison of " 11120 "absolute value and zero"), 11121 WARN_STRICT_OVERFLOW_CONDITIONAL); 11122 return omit_one_operand_loc (loc, type, 11123 constant_boolean_node (true, type), 11124 arg0); 11125 } 11126 11127 /* Convert ABS_EXPR<x> < 0 to false. */ 11128 strict_overflow_p = false; 11129 if (code == LT_EXPR 11130 && (integer_zerop (arg1) || real_zerop (arg1)) 11131 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11132 { 11133 if (strict_overflow_p) 11134 fold_overflow_warning (("assuming signed overflow does not occur " 11135 "when simplifying comparison of " 11136 "absolute value and zero"), 11137 WARN_STRICT_OVERFLOW_CONDITIONAL); 11138 return omit_one_operand_loc (loc, type, 11139 constant_boolean_node (false, type), 11140 arg0); 11141 } 11142 11143 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0 11144 and similarly for >= into !=. */ 11145 if ((code == LT_EXPR || code == GE_EXPR) 11146 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11147 && TREE_CODE (arg1) == LSHIFT_EXPR 11148 && integer_onep (TREE_OPERAND (arg1, 0))) 11149 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11150 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11151 TREE_OPERAND (arg1, 1)), 11152 build_zero_cst (TREE_TYPE (arg0))); 11153 11154 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing, 11155 otherwise Y might be >= # of bits in X's type and thus e.g. 11156 (unsigned char) (1 << Y) for Y 15 might be 0. 11157 If the cast is widening, then 1 << Y should have unsigned type, 11158 otherwise if Y is number of bits in the signed shift type minus 1, 11159 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y 11160 31 might be 0xffffffff80000000. */ 11161 if ((code == LT_EXPR || code == GE_EXPR) 11162 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11163 && CONVERT_EXPR_P (arg1) 11164 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR 11165 && (element_precision (TREE_TYPE (arg1)) 11166 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))) 11167 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))) 11168 || (element_precision (TREE_TYPE (arg1)) 11169 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))) 11170 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0))) 11171 { 11172 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11173 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1)); 11174 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11175 fold_convert_loc (loc, TREE_TYPE (arg0), tem), 11176 build_zero_cst (TREE_TYPE (arg0))); 11177 } 11178 11179 return NULL_TREE; 11180 11181 case UNORDERED_EXPR: 11182 case ORDERED_EXPR: 11183 case UNLT_EXPR: 11184 case UNLE_EXPR: 11185 case UNGT_EXPR: 11186 case UNGE_EXPR: 11187 case UNEQ_EXPR: 11188 case LTGT_EXPR: 11189 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */ 11190 { 11191 tree targ0 = strip_float_extensions (arg0); 11192 tree targ1 = strip_float_extensions (arg1); 11193 tree newtype = TREE_TYPE (targ0); 11194 11195 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype)) 11196 newtype = TREE_TYPE (targ1); 11197 11198 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0))) 11199 return fold_build2_loc (loc, code, type, 11200 fold_convert_loc (loc, newtype, targ0), 11201 fold_convert_loc (loc, newtype, targ1)); 11202 } 11203 11204 return NULL_TREE; 11205 11206 case COMPOUND_EXPR: 11207 /* When pedantic, a compound expression can be neither an lvalue 11208 nor an integer constant expression. */ 11209 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1)) 11210 return NULL_TREE; 11211 /* Don't let (0, 0) be null pointer constant. */ 11212 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1) 11213 : fold_convert_loc (loc, type, arg1); 11214 return pedantic_non_lvalue_loc (loc, tem); 11215 11216 case ASSERT_EXPR: 11217 /* An ASSERT_EXPR should never be passed to fold_binary. */ 11218 gcc_unreachable (); 11219 11220 default: 11221 return NULL_TREE; 11222 } /* switch (code) */ 11223 } 11224 11225 /* Used by contains_label_[p1]. */ 11226 11227 struct contains_label_data 11228 { 11229 hash_set<tree> *pset; 11230 bool inside_switch_p; 11231 }; 11232 11233 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is 11234 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise 11235 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */ 11236 11237 static tree 11238 contains_label_1 (tree *tp, int *walk_subtrees, void *data) 11239 { 11240 contains_label_data *d = (contains_label_data *) data; 11241 switch (TREE_CODE (*tp)) 11242 { 11243 case LABEL_EXPR: 11244 return *tp; 11245 11246 case CASE_LABEL_EXPR: 11247 if (!d->inside_switch_p) 11248 return *tp; 11249 return NULL_TREE; 11250 11251 case SWITCH_EXPR: 11252 if (!d->inside_switch_p) 11253 { 11254 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset)) 11255 return *tp; 11256 d->inside_switch_p = true; 11257 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset)) 11258 return *tp; 11259 d->inside_switch_p = false; 11260 *walk_subtrees = 0; 11261 } 11262 return NULL_TREE; 11263 11264 case GOTO_EXPR: 11265 *walk_subtrees = 0; 11266 return NULL_TREE; 11267 11268 default: 11269 return NULL_TREE; 11270 } 11271 } 11272 11273 /* Return whether the sub-tree ST contains a label which is accessible from 11274 outside the sub-tree. */ 11275 11276 static bool 11277 contains_label_p (tree st) 11278 { 11279 hash_set<tree> pset; 11280 contains_label_data data = { &pset, false }; 11281 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE; 11282 } 11283 11284 /* Fold a ternary expression of code CODE and type TYPE with operands 11285 OP0, OP1, and OP2. Return the folded expression if folding is 11286 successful. Otherwise, return NULL_TREE. */ 11287 11288 tree 11289 fold_ternary_loc (location_t loc, enum tree_code code, tree type, 11290 tree op0, tree op1, tree op2) 11291 { 11292 tree tem; 11293 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE; 11294 enum tree_code_class kind = TREE_CODE_CLASS (code); 11295 11296 gcc_assert (IS_EXPR_CODE_CLASS (kind) 11297 && TREE_CODE_LENGTH (code) == 3); 11298 11299 /* If this is a commutative operation, and OP0 is a constant, move it 11300 to OP1 to reduce the number of tests below. */ 11301 if (commutative_ternary_tree_code (code) 11302 && tree_swap_operands_p (op0, op1)) 11303 return fold_build3_loc (loc, code, type, op1, op0, op2); 11304 11305 tem = generic_simplify (loc, code, type, op0, op1, op2); 11306 if (tem) 11307 return tem; 11308 11309 /* Strip any conversions that don't change the mode. This is safe 11310 for every expression, except for a comparison expression because 11311 its signedness is derived from its operands. So, in the latter 11312 case, only strip conversions that don't change the signedness. 11313 11314 Note that this is done as an internal manipulation within the 11315 constant folder, in order to find the simplest representation of 11316 the arguments so that their form can be studied. In any cases, 11317 the appropriate type conversions should be put back in the tree 11318 that will get out of the constant folder. */ 11319 if (op0) 11320 { 11321 arg0 = op0; 11322 STRIP_NOPS (arg0); 11323 } 11324 11325 if (op1) 11326 { 11327 arg1 = op1; 11328 STRIP_NOPS (arg1); 11329 } 11330 11331 if (op2) 11332 { 11333 arg2 = op2; 11334 STRIP_NOPS (arg2); 11335 } 11336 11337 switch (code) 11338 { 11339 case COMPONENT_REF: 11340 if (TREE_CODE (arg0) == CONSTRUCTOR 11341 && ! type_contains_placeholder_p (TREE_TYPE (arg0))) 11342 { 11343 unsigned HOST_WIDE_INT idx; 11344 tree field, value; 11345 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value) 11346 if (field == arg1) 11347 return value; 11348 } 11349 return NULL_TREE; 11350 11351 case COND_EXPR: 11352 case VEC_COND_EXPR: 11353 /* Pedantic ANSI C says that a conditional expression is never an lvalue, 11354 so all simple results must be passed through pedantic_non_lvalue. */ 11355 if (TREE_CODE (arg0) == INTEGER_CST) 11356 { 11357 tree unused_op = integer_zerop (arg0) ? op1 : op2; 11358 tem = integer_zerop (arg0) ? op2 : op1; 11359 /* Only optimize constant conditions when the selected branch 11360 has the same type as the COND_EXPR. This avoids optimizing 11361 away "c ? x : throw", where the throw has a void type. 11362 Avoid throwing away that operand which contains label. */ 11363 if ((!TREE_SIDE_EFFECTS (unused_op) 11364 || !contains_label_p (unused_op)) 11365 && (! VOID_TYPE_P (TREE_TYPE (tem)) 11366 || VOID_TYPE_P (type))) 11367 return pedantic_non_lvalue_loc (loc, tem); 11368 return NULL_TREE; 11369 } 11370 else if (TREE_CODE (arg0) == VECTOR_CST) 11371 { 11372 unsigned HOST_WIDE_INT nelts; 11373 if ((TREE_CODE (arg1) == VECTOR_CST 11374 || TREE_CODE (arg1) == CONSTRUCTOR) 11375 && (TREE_CODE (arg2) == VECTOR_CST 11376 || TREE_CODE (arg2) == CONSTRUCTOR) 11377 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)) 11378 { 11379 vec_perm_builder sel (nelts, nelts, 1); 11380 for (unsigned int i = 0; i < nelts; i++) 11381 { 11382 tree val = VECTOR_CST_ELT (arg0, i); 11383 if (integer_all_onesp (val)) 11384 sel.quick_push (i); 11385 else if (integer_zerop (val)) 11386 sel.quick_push (nelts + i); 11387 else /* Currently unreachable. */ 11388 return NULL_TREE; 11389 } 11390 vec_perm_indices indices (sel, 2, nelts); 11391 tree t = fold_vec_perm (type, arg1, arg2, indices); 11392 if (t != NULL_TREE) 11393 return t; 11394 } 11395 } 11396 11397 /* If we have A op B ? A : C, we may be able to convert this to a 11398 simpler expression, depending on the operation and the values 11399 of B and C. Signed zeros prevent all of these transformations, 11400 for reasons given above each one. 11401 11402 Also try swapping the arguments and inverting the conditional. */ 11403 if (COMPARISON_CLASS_P (arg0) 11404 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1) 11405 && !HONOR_SIGNED_ZEROS (element_mode (op1))) 11406 { 11407 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2); 11408 if (tem) 11409 return tem; 11410 } 11411 11412 if (COMPARISON_CLASS_P (arg0) 11413 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2) 11414 && !HONOR_SIGNED_ZEROS (element_mode (op2))) 11415 { 11416 location_t loc0 = expr_location_or (arg0, loc); 11417 tem = fold_invert_truthvalue (loc0, arg0); 11418 if (tem && COMPARISON_CLASS_P (tem)) 11419 { 11420 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1); 11421 if (tem) 11422 return tem; 11423 } 11424 } 11425 11426 /* If the second operand is simpler than the third, swap them 11427 since that produces better jump optimization results. */ 11428 if (truth_value_p (TREE_CODE (arg0)) 11429 && tree_swap_operands_p (op1, op2)) 11430 { 11431 location_t loc0 = expr_location_or (arg0, loc); 11432 /* See if this can be inverted. If it can't, possibly because 11433 it was a floating-point inequality comparison, don't do 11434 anything. */ 11435 tem = fold_invert_truthvalue (loc0, arg0); 11436 if (tem) 11437 return fold_build3_loc (loc, code, type, tem, op2, op1); 11438 } 11439 11440 /* Convert A ? 1 : 0 to simply A. */ 11441 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1) 11442 : (integer_onep (op1) 11443 && !VECTOR_TYPE_P (type))) 11444 && integer_zerop (op2) 11445 /* If we try to convert OP0 to our type, the 11446 call to fold will try to move the conversion inside 11447 a COND, which will recurse. In that case, the COND_EXPR 11448 is probably the best choice, so leave it alone. */ 11449 && type == TREE_TYPE (arg0)) 11450 return pedantic_non_lvalue_loc (loc, arg0); 11451 11452 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR 11453 over COND_EXPR in cases such as floating point comparisons. */ 11454 if (integer_zerop (op1) 11455 && code == COND_EXPR 11456 && integer_onep (op2) 11457 && !VECTOR_TYPE_P (type) 11458 && truth_value_p (TREE_CODE (arg0))) 11459 return pedantic_non_lvalue_loc (loc, 11460 fold_convert_loc (loc, type, 11461 invert_truthvalue_loc (loc, 11462 arg0))); 11463 11464 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */ 11465 if (TREE_CODE (arg0) == LT_EXPR 11466 && integer_zerop (TREE_OPERAND (arg0, 1)) 11467 && integer_zerop (op2) 11468 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) 11469 { 11470 /* sign_bit_p looks through both zero and sign extensions, 11471 but for this optimization only sign extensions are 11472 usable. */ 11473 tree tem2 = TREE_OPERAND (arg0, 0); 11474 while (tem != tem2) 11475 { 11476 if (TREE_CODE (tem2) != NOP_EXPR 11477 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0)))) 11478 { 11479 tem = NULL_TREE; 11480 break; 11481 } 11482 tem2 = TREE_OPERAND (tem2, 0); 11483 } 11484 /* sign_bit_p only checks ARG1 bits within A's precision. 11485 If <sign bit of A> has wider type than A, bits outside 11486 of A's precision in <sign bit of A> need to be checked. 11487 If they are all 0, this optimization needs to be done 11488 in unsigned A's type, if they are all 1 in signed A's type, 11489 otherwise this can't be done. */ 11490 if (tem 11491 && TYPE_PRECISION (TREE_TYPE (tem)) 11492 < TYPE_PRECISION (TREE_TYPE (arg1)) 11493 && TYPE_PRECISION (TREE_TYPE (tem)) 11494 < TYPE_PRECISION (type)) 11495 { 11496 int inner_width, outer_width; 11497 tree tem_type; 11498 11499 inner_width = TYPE_PRECISION (TREE_TYPE (tem)); 11500 outer_width = TYPE_PRECISION (TREE_TYPE (arg1)); 11501 if (outer_width > TYPE_PRECISION (type)) 11502 outer_width = TYPE_PRECISION (type); 11503 11504 wide_int mask = wi::shifted_mask 11505 (inner_width, outer_width - inner_width, false, 11506 TYPE_PRECISION (TREE_TYPE (arg1))); 11507 11508 wide_int common = mask & wi::to_wide (arg1); 11509 if (common == mask) 11510 { 11511 tem_type = signed_type_for (TREE_TYPE (tem)); 11512 tem = fold_convert_loc (loc, tem_type, tem); 11513 } 11514 else if (common == 0) 11515 { 11516 tem_type = unsigned_type_for (TREE_TYPE (tem)); 11517 tem = fold_convert_loc (loc, tem_type, tem); 11518 } 11519 else 11520 tem = NULL; 11521 } 11522 11523 if (tem) 11524 return 11525 fold_convert_loc (loc, type, 11526 fold_build2_loc (loc, BIT_AND_EXPR, 11527 TREE_TYPE (tem), tem, 11528 fold_convert_loc (loc, 11529 TREE_TYPE (tem), 11530 arg1))); 11531 } 11532 11533 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was 11534 already handled above. */ 11535 if (TREE_CODE (arg0) == BIT_AND_EXPR 11536 && integer_onep (TREE_OPERAND (arg0, 1)) 11537 && integer_zerop (op2) 11538 && integer_pow2p (arg1)) 11539 { 11540 tree tem = TREE_OPERAND (arg0, 0); 11541 STRIP_NOPS (tem); 11542 if (TREE_CODE (tem) == RSHIFT_EXPR 11543 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)) 11544 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) 11545 == tree_to_uhwi (TREE_OPERAND (tem, 1))) 11546 return fold_build2_loc (loc, BIT_AND_EXPR, type, 11547 fold_convert_loc (loc, type, 11548 TREE_OPERAND (tem, 0)), 11549 op1); 11550 } 11551 11552 /* A & N ? N : 0 is simply A & N if N is a power of two. This 11553 is probably obsolete because the first operand should be a 11554 truth value (that's why we have the two cases above), but let's 11555 leave it in until we can confirm this for all front-ends. */ 11556 if (integer_zerop (op2) 11557 && TREE_CODE (arg0) == NE_EXPR 11558 && integer_zerop (TREE_OPERAND (arg0, 1)) 11559 && integer_pow2p (arg1) 11560 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 11561 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 11562 arg1, OEP_ONLY_CONST)) 11563 return pedantic_non_lvalue_loc (loc, 11564 fold_convert_loc (loc, type, 11565 TREE_OPERAND (arg0, 0))); 11566 11567 /* Disable the transformations below for vectors, since 11568 fold_binary_op_with_conditional_arg may undo them immediately, 11569 yielding an infinite loop. */ 11570 if (code == VEC_COND_EXPR) 11571 return NULL_TREE; 11572 11573 /* Convert A ? B : 0 into A && B if A and B are truth values. */ 11574 if (integer_zerop (op2) 11575 && truth_value_p (TREE_CODE (arg0)) 11576 && truth_value_p (TREE_CODE (arg1)) 11577 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11578 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR 11579 : TRUTH_ANDIF_EXPR, 11580 type, fold_convert_loc (loc, type, arg0), op1); 11581 11582 /* Convert A ? B : 1 into !A || B if A and B are truth values. */ 11583 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2) 11584 && truth_value_p (TREE_CODE (arg0)) 11585 && truth_value_p (TREE_CODE (arg1)) 11586 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11587 { 11588 location_t loc0 = expr_location_or (arg0, loc); 11589 /* Only perform transformation if ARG0 is easily inverted. */ 11590 tem = fold_invert_truthvalue (loc0, arg0); 11591 if (tem) 11592 return fold_build2_loc (loc, code == VEC_COND_EXPR 11593 ? BIT_IOR_EXPR 11594 : TRUTH_ORIF_EXPR, 11595 type, fold_convert_loc (loc, type, tem), 11596 op1); 11597 } 11598 11599 /* Convert A ? 0 : B into !A && B if A and B are truth values. */ 11600 if (integer_zerop (arg1) 11601 && truth_value_p (TREE_CODE (arg0)) 11602 && truth_value_p (TREE_CODE (op2)) 11603 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11604 { 11605 location_t loc0 = expr_location_or (arg0, loc); 11606 /* Only perform transformation if ARG0 is easily inverted. */ 11607 tem = fold_invert_truthvalue (loc0, arg0); 11608 if (tem) 11609 return fold_build2_loc (loc, code == VEC_COND_EXPR 11610 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR, 11611 type, fold_convert_loc (loc, type, tem), 11612 op2); 11613 } 11614 11615 /* Convert A ? 1 : B into A || B if A and B are truth values. */ 11616 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1) 11617 && truth_value_p (TREE_CODE (arg0)) 11618 && truth_value_p (TREE_CODE (op2)) 11619 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11620 return fold_build2_loc (loc, code == VEC_COND_EXPR 11621 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR, 11622 type, fold_convert_loc (loc, type, arg0), op2); 11623 11624 return NULL_TREE; 11625 11626 case CALL_EXPR: 11627 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses 11628 of fold_ternary on them. */ 11629 gcc_unreachable (); 11630 11631 case BIT_FIELD_REF: 11632 if (TREE_CODE (arg0) == VECTOR_CST 11633 && (type == TREE_TYPE (TREE_TYPE (arg0)) 11634 || (VECTOR_TYPE_P (type) 11635 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))) 11636 && tree_fits_uhwi_p (op1) 11637 && tree_fits_uhwi_p (op2)) 11638 { 11639 tree eltype = TREE_TYPE (TREE_TYPE (arg0)); 11640 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype)); 11641 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1); 11642 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2); 11643 11644 if (n != 0 11645 && (idx % width) == 0 11646 && (n % width) == 0 11647 && known_le ((idx + n) / width, 11648 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))) 11649 { 11650 idx = idx / width; 11651 n = n / width; 11652 11653 if (TREE_CODE (arg0) == VECTOR_CST) 11654 { 11655 if (n == 1) 11656 { 11657 tem = VECTOR_CST_ELT (arg0, idx); 11658 if (VECTOR_TYPE_P (type)) 11659 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem); 11660 return tem; 11661 } 11662 11663 tree_vector_builder vals (type, n, 1); 11664 for (unsigned i = 0; i < n; ++i) 11665 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i)); 11666 return vals.build (); 11667 } 11668 } 11669 } 11670 11671 /* On constants we can use native encode/interpret to constant 11672 fold (nearly) all BIT_FIELD_REFs. */ 11673 if (CONSTANT_CLASS_P (arg0) 11674 && can_native_interpret_type_p (type) 11675 && BITS_PER_UNIT == 8 11676 && tree_fits_uhwi_p (op1) 11677 && tree_fits_uhwi_p (op2)) 11678 { 11679 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11680 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1); 11681 /* Limit us to a reasonable amount of work. To relax the 11682 other limitations we need bit-shifting of the buffer 11683 and rounding up the size. */ 11684 if (bitpos % BITS_PER_UNIT == 0 11685 && bitsize % BITS_PER_UNIT == 0 11686 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE) 11687 { 11688 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; 11689 unsigned HOST_WIDE_INT len 11690 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT, 11691 bitpos / BITS_PER_UNIT); 11692 if (len > 0 11693 && len * BITS_PER_UNIT >= bitsize) 11694 { 11695 tree v = native_interpret_expr (type, b, 11696 bitsize / BITS_PER_UNIT); 11697 if (v) 11698 return v; 11699 } 11700 } 11701 } 11702 11703 return NULL_TREE; 11704 11705 case FMA_EXPR: 11706 /* For integers we can decompose the FMA if possible. */ 11707 if (TREE_CODE (arg0) == INTEGER_CST 11708 && TREE_CODE (arg1) == INTEGER_CST) 11709 return fold_build2_loc (loc, PLUS_EXPR, type, 11710 const_binop (MULT_EXPR, arg0, arg1), arg2); 11711 if (integer_zerop (arg2)) 11712 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1); 11713 11714 return fold_fma (loc, type, arg0, arg1, arg2); 11715 11716 case VEC_PERM_EXPR: 11717 if (TREE_CODE (arg2) == VECTOR_CST) 11718 { 11719 /* Build a vector of integers from the tree mask. */ 11720 vec_perm_builder builder; 11721 if (!tree_to_vec_perm_builder (&builder, arg2)) 11722 return NULL_TREE; 11723 11724 /* Create a vec_perm_indices for the integer vector. */ 11725 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); 11726 bool single_arg = (op0 == op1); 11727 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts); 11728 11729 /* Check for cases that fold to OP0 or OP1 in their original 11730 element order. */ 11731 if (sel.series_p (0, 1, 0, 1)) 11732 return op0; 11733 if (sel.series_p (0, 1, nelts, 1)) 11734 return op1; 11735 11736 if (!single_arg) 11737 { 11738 if (sel.all_from_input_p (0)) 11739 op1 = op0; 11740 else if (sel.all_from_input_p (1)) 11741 { 11742 op0 = op1; 11743 sel.rotate_inputs (1); 11744 } 11745 } 11746 11747 if ((TREE_CODE (op0) == VECTOR_CST 11748 || TREE_CODE (op0) == CONSTRUCTOR) 11749 && (TREE_CODE (op1) == VECTOR_CST 11750 || TREE_CODE (op1) == CONSTRUCTOR)) 11751 { 11752 tree t = fold_vec_perm (type, op0, op1, sel); 11753 if (t != NULL_TREE) 11754 return t; 11755 } 11756 11757 bool changed = (op0 == op1 && !single_arg); 11758 11759 /* Generate a canonical form of the selector. */ 11760 if (arg2 == op2 && sel.encoding () != builder) 11761 { 11762 /* Some targets are deficient and fail to expand a single 11763 argument permutation while still allowing an equivalent 11764 2-argument version. */ 11765 if (sel.ninputs () == 2 11766 || can_vec_perm_const_p (TYPE_MODE (type), sel, false)) 11767 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11768 else 11769 { 11770 vec_perm_indices sel2 (builder, 2, nelts); 11771 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false)) 11772 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel2); 11773 else 11774 /* Not directly supported with either encoding, 11775 so use the preferred form. */ 11776 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11777 } 11778 changed = true; 11779 } 11780 11781 if (changed) 11782 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2); 11783 } 11784 return NULL_TREE; 11785 11786 case BIT_INSERT_EXPR: 11787 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */ 11788 if (TREE_CODE (arg0) == INTEGER_CST 11789 && TREE_CODE (arg1) == INTEGER_CST) 11790 { 11791 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11792 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1)); 11793 wide_int tem = (wi::to_wide (arg0) 11794 & wi::shifted_mask (bitpos, bitsize, true, 11795 TYPE_PRECISION (type))); 11796 wide_int tem2 11797 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)), 11798 bitsize), bitpos); 11799 return wide_int_to_tree (type, wi::bit_or (tem, tem2)); 11800 } 11801 else if (TREE_CODE (arg0) == VECTOR_CST 11802 && CONSTANT_CLASS_P (arg1) 11803 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)), 11804 TREE_TYPE (arg1))) 11805 { 11806 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11807 unsigned HOST_WIDE_INT elsize 11808 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1))); 11809 if (bitpos % elsize == 0) 11810 { 11811 unsigned k = bitpos / elsize; 11812 unsigned HOST_WIDE_INT nelts; 11813 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0)) 11814 return arg0; 11815 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts)) 11816 { 11817 tree_vector_builder elts (type, nelts, 1); 11818 elts.quick_grow (nelts); 11819 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i) 11820 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i)); 11821 return elts.build (); 11822 } 11823 } 11824 } 11825 return NULL_TREE; 11826 11827 default: 11828 return NULL_TREE; 11829 } /* switch (code) */ 11830 } 11831 11832 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR 11833 of an array (or vector). */ 11834 11835 tree 11836 get_array_ctor_element_at_index (tree ctor, offset_int access_index) 11837 { 11838 tree index_type = NULL_TREE; 11839 offset_int low_bound = 0; 11840 11841 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) 11842 { 11843 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); 11844 if (domain_type && TYPE_MIN_VALUE (domain_type)) 11845 { 11846 /* Static constructors for variably sized objects makes no sense. */ 11847 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); 11848 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type)); 11849 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); 11850 } 11851 } 11852 11853 if (index_type) 11854 access_index = wi::ext (access_index, TYPE_PRECISION (index_type), 11855 TYPE_SIGN (index_type)); 11856 11857 offset_int index = low_bound - 1; 11858 if (index_type) 11859 index = wi::ext (index, TYPE_PRECISION (index_type), 11860 TYPE_SIGN (index_type)); 11861 11862 offset_int max_index; 11863 unsigned HOST_WIDE_INT cnt; 11864 tree cfield, cval; 11865 11866 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) 11867 { 11868 /* Array constructor might explicitly set index, or specify a range, 11869 or leave index NULL meaning that it is next index after previous 11870 one. */ 11871 if (cfield) 11872 { 11873 if (TREE_CODE (cfield) == INTEGER_CST) 11874 max_index = index = wi::to_offset (cfield); 11875 else 11876 { 11877 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); 11878 index = wi::to_offset (TREE_OPERAND (cfield, 0)); 11879 max_index = wi::to_offset (TREE_OPERAND (cfield, 1)); 11880 } 11881 } 11882 else 11883 { 11884 index += 1; 11885 if (index_type) 11886 index = wi::ext (index, TYPE_PRECISION (index_type), 11887 TYPE_SIGN (index_type)); 11888 max_index = index; 11889 } 11890 11891 /* Do we have match? */ 11892 if (wi::cmpu (access_index, index) >= 0 11893 && wi::cmpu (access_index, max_index) <= 0) 11894 return cval; 11895 } 11896 return NULL_TREE; 11897 } 11898 11899 /* Perform constant folding and related simplification of EXPR. 11900 The related simplifications include x*1 => x, x*0 => 0, etc., 11901 and application of the associative law. 11902 NOP_EXPR conversions may be removed freely (as long as we 11903 are careful not to change the type of the overall expression). 11904 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR, 11905 but we can constant-fold them if they have constant operands. */ 11906 11907 #ifdef ENABLE_FOLD_CHECKING 11908 # define fold(x) fold_1 (x) 11909 static tree fold_1 (tree); 11910 static 11911 #endif 11912 tree 11913 fold (tree expr) 11914 { 11915 const tree t = expr; 11916 enum tree_code code = TREE_CODE (t); 11917 enum tree_code_class kind = TREE_CODE_CLASS (code); 11918 tree tem; 11919 location_t loc = EXPR_LOCATION (expr); 11920 11921 /* Return right away if a constant. */ 11922 if (kind == tcc_constant) 11923 return t; 11924 11925 /* CALL_EXPR-like objects with variable numbers of operands are 11926 treated specially. */ 11927 if (kind == tcc_vl_exp) 11928 { 11929 if (code == CALL_EXPR) 11930 { 11931 tem = fold_call_expr (loc, expr, false); 11932 return tem ? tem : expr; 11933 } 11934 return expr; 11935 } 11936 11937 if (IS_EXPR_CODE_CLASS (kind)) 11938 { 11939 tree type = TREE_TYPE (t); 11940 tree op0, op1, op2; 11941 11942 switch (TREE_CODE_LENGTH (code)) 11943 { 11944 case 1: 11945 op0 = TREE_OPERAND (t, 0); 11946 tem = fold_unary_loc (loc, code, type, op0); 11947 return tem ? tem : expr; 11948 case 2: 11949 op0 = TREE_OPERAND (t, 0); 11950 op1 = TREE_OPERAND (t, 1); 11951 tem = fold_binary_loc (loc, code, type, op0, op1); 11952 return tem ? tem : expr; 11953 case 3: 11954 op0 = TREE_OPERAND (t, 0); 11955 op1 = TREE_OPERAND (t, 1); 11956 op2 = TREE_OPERAND (t, 2); 11957 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 11958 return tem ? tem : expr; 11959 default: 11960 break; 11961 } 11962 } 11963 11964 switch (code) 11965 { 11966 case ARRAY_REF: 11967 { 11968 tree op0 = TREE_OPERAND (t, 0); 11969 tree op1 = TREE_OPERAND (t, 1); 11970 11971 if (TREE_CODE (op1) == INTEGER_CST 11972 && TREE_CODE (op0) == CONSTRUCTOR 11973 && ! type_contains_placeholder_p (TREE_TYPE (op0))) 11974 { 11975 tree val = get_array_ctor_element_at_index (op0, 11976 wi::to_offset (op1)); 11977 if (val) 11978 return val; 11979 } 11980 11981 return t; 11982 } 11983 11984 /* Return a VECTOR_CST if possible. */ 11985 case CONSTRUCTOR: 11986 { 11987 tree type = TREE_TYPE (t); 11988 if (TREE_CODE (type) != VECTOR_TYPE) 11989 return t; 11990 11991 unsigned i; 11992 tree val; 11993 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) 11994 if (! CONSTANT_CLASS_P (val)) 11995 return t; 11996 11997 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t)); 11998 } 11999 12000 case CONST_DECL: 12001 return fold (DECL_INITIAL (t)); 12002 12003 default: 12004 return t; 12005 } /* switch (code) */ 12006 } 12007 12008 #ifdef ENABLE_FOLD_CHECKING 12009 #undef fold 12010 12011 static void fold_checksum_tree (const_tree, struct md5_ctx *, 12012 hash_table<nofree_ptr_hash<const tree_node> > *); 12013 static void fold_check_failed (const_tree, const_tree); 12014 void print_fold_checksum (const_tree); 12015 12016 /* When --enable-checking=fold, compute a digest of expr before 12017 and after actual fold call to see if fold did not accidentally 12018 change original expr. */ 12019 12020 tree 12021 fold (tree expr) 12022 { 12023 tree ret; 12024 struct md5_ctx ctx; 12025 unsigned char checksum_before[16], checksum_after[16]; 12026 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12027 12028 md5_init_ctx (&ctx); 12029 fold_checksum_tree (expr, &ctx, &ht); 12030 md5_finish_ctx (&ctx, checksum_before); 12031 ht.empty (); 12032 12033 ret = fold_1 (expr); 12034 12035 md5_init_ctx (&ctx); 12036 fold_checksum_tree (expr, &ctx, &ht); 12037 md5_finish_ctx (&ctx, checksum_after); 12038 12039 if (memcmp (checksum_before, checksum_after, 16)) 12040 fold_check_failed (expr, ret); 12041 12042 return ret; 12043 } 12044 12045 void 12046 print_fold_checksum (const_tree expr) 12047 { 12048 struct md5_ctx ctx; 12049 unsigned char checksum[16], cnt; 12050 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12051 12052 md5_init_ctx (&ctx); 12053 fold_checksum_tree (expr, &ctx, &ht); 12054 md5_finish_ctx (&ctx, checksum); 12055 for (cnt = 0; cnt < 16; ++cnt) 12056 fprintf (stderr, "%02x", checksum[cnt]); 12057 putc ('\n', stderr); 12058 } 12059 12060 static void 12061 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED) 12062 { 12063 internal_error ("fold check: original tree changed by fold"); 12064 } 12065 12066 static void 12067 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, 12068 hash_table<nofree_ptr_hash <const tree_node> > *ht) 12069 { 12070 const tree_node **slot; 12071 enum tree_code code; 12072 union tree_node buf; 12073 int i, len; 12074 12075 recursive_label: 12076 if (expr == NULL) 12077 return; 12078 slot = ht->find_slot (expr, INSERT); 12079 if (*slot != NULL) 12080 return; 12081 *slot = expr; 12082 code = TREE_CODE (expr); 12083 if (TREE_CODE_CLASS (code) == tcc_declaration 12084 && HAS_DECL_ASSEMBLER_NAME_P (expr)) 12085 { 12086 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */ 12087 memcpy ((char *) &buf, expr, tree_size (expr)); 12088 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL); 12089 buf.decl_with_vis.symtab_node = NULL; 12090 expr = (tree) &buf; 12091 } 12092 else if (TREE_CODE_CLASS (code) == tcc_type 12093 && (TYPE_POINTER_TO (expr) 12094 || TYPE_REFERENCE_TO (expr) 12095 || TYPE_CACHED_VALUES_P (expr) 12096 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) 12097 || TYPE_NEXT_VARIANT (expr) 12098 || TYPE_ALIAS_SET_KNOWN_P (expr))) 12099 { 12100 /* Allow these fields to be modified. */ 12101 tree tmp; 12102 memcpy ((char *) &buf, expr, tree_size (expr)); 12103 expr = tmp = (tree) &buf; 12104 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0; 12105 TYPE_POINTER_TO (tmp) = NULL; 12106 TYPE_REFERENCE_TO (tmp) = NULL; 12107 TYPE_NEXT_VARIANT (tmp) = NULL; 12108 TYPE_ALIAS_SET (tmp) = -1; 12109 if (TYPE_CACHED_VALUES_P (tmp)) 12110 { 12111 TYPE_CACHED_VALUES_P (tmp) = 0; 12112 TYPE_CACHED_VALUES (tmp) = NULL; 12113 } 12114 } 12115 md5_process_bytes (expr, tree_size (expr), ctx); 12116 if (CODE_CONTAINS_STRUCT (code, TS_TYPED)) 12117 fold_checksum_tree (TREE_TYPE (expr), ctx, ht); 12118 if (TREE_CODE_CLASS (code) != tcc_type 12119 && TREE_CODE_CLASS (code) != tcc_declaration 12120 && code != TREE_LIST 12121 && code != SSA_NAME 12122 && CODE_CONTAINS_STRUCT (code, TS_COMMON)) 12123 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht); 12124 switch (TREE_CODE_CLASS (code)) 12125 { 12126 case tcc_constant: 12127 switch (code) 12128 { 12129 case STRING_CST: 12130 md5_process_bytes (TREE_STRING_POINTER (expr), 12131 TREE_STRING_LENGTH (expr), ctx); 12132 break; 12133 case COMPLEX_CST: 12134 fold_checksum_tree (TREE_REALPART (expr), ctx, ht); 12135 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht); 12136 break; 12137 case VECTOR_CST: 12138 len = vector_cst_encoded_nelts (expr); 12139 for (i = 0; i < len; ++i) 12140 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht); 12141 break; 12142 default: 12143 break; 12144 } 12145 break; 12146 case tcc_exceptional: 12147 switch (code) 12148 { 12149 case TREE_LIST: 12150 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht); 12151 fold_checksum_tree (TREE_VALUE (expr), ctx, ht); 12152 expr = TREE_CHAIN (expr); 12153 goto recursive_label; 12154 break; 12155 case TREE_VEC: 12156 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i) 12157 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht); 12158 break; 12159 default: 12160 break; 12161 } 12162 break; 12163 case tcc_expression: 12164 case tcc_reference: 12165 case tcc_comparison: 12166 case tcc_unary: 12167 case tcc_binary: 12168 case tcc_statement: 12169 case tcc_vl_exp: 12170 len = TREE_OPERAND_LENGTH (expr); 12171 for (i = 0; i < len; ++i) 12172 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht); 12173 break; 12174 case tcc_declaration: 12175 fold_checksum_tree (DECL_NAME (expr), ctx, ht); 12176 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht); 12177 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON)) 12178 { 12179 fold_checksum_tree (DECL_SIZE (expr), ctx, ht); 12180 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht); 12181 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht); 12182 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht); 12183 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht); 12184 } 12185 12186 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON)) 12187 { 12188 if (TREE_CODE (expr) == FUNCTION_DECL) 12189 { 12190 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht); 12191 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht); 12192 } 12193 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht); 12194 } 12195 break; 12196 case tcc_type: 12197 if (TREE_CODE (expr) == ENUMERAL_TYPE) 12198 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht); 12199 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht); 12200 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht); 12201 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht); 12202 fold_checksum_tree (TYPE_NAME (expr), ctx, ht); 12203 if (INTEGRAL_TYPE_P (expr) 12204 || SCALAR_FLOAT_TYPE_P (expr)) 12205 { 12206 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht); 12207 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht); 12208 } 12209 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht); 12210 if (TREE_CODE (expr) == RECORD_TYPE 12211 || TREE_CODE (expr) == UNION_TYPE 12212 || TREE_CODE (expr) == QUAL_UNION_TYPE) 12213 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht); 12214 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht); 12215 break; 12216 default: 12217 break; 12218 } 12219 } 12220 12221 /* Helper function for outputting the checksum of a tree T. When 12222 debugging with gdb, you can "define mynext" to be "next" followed 12223 by "call debug_fold_checksum (op0)", then just trace down till the 12224 outputs differ. */ 12225 12226 DEBUG_FUNCTION void 12227 debug_fold_checksum (const_tree t) 12228 { 12229 int i; 12230 unsigned char checksum[16]; 12231 struct md5_ctx ctx; 12232 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12233 12234 md5_init_ctx (&ctx); 12235 fold_checksum_tree (t, &ctx, &ht); 12236 md5_finish_ctx (&ctx, checksum); 12237 ht.empty (); 12238 12239 for (i = 0; i < 16; i++) 12240 fprintf (stderr, "%d ", checksum[i]); 12241 12242 fprintf (stderr, "\n"); 12243 } 12244 12245 #endif 12246 12247 /* Fold a unary tree expression with code CODE of type TYPE with an 12248 operand OP0. LOC is the location of the resulting expression. 12249 Return a folded expression if successful. Otherwise, return a tree 12250 expression with code CODE of type TYPE with an operand OP0. */ 12251 12252 tree 12253 fold_build1_loc (location_t loc, 12254 enum tree_code code, tree type, tree op0 MEM_STAT_DECL) 12255 { 12256 tree tem; 12257 #ifdef ENABLE_FOLD_CHECKING 12258 unsigned char checksum_before[16], checksum_after[16]; 12259 struct md5_ctx ctx; 12260 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12261 12262 md5_init_ctx (&ctx); 12263 fold_checksum_tree (op0, &ctx, &ht); 12264 md5_finish_ctx (&ctx, checksum_before); 12265 ht.empty (); 12266 #endif 12267 12268 tem = fold_unary_loc (loc, code, type, op0); 12269 if (!tem) 12270 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT); 12271 12272 #ifdef ENABLE_FOLD_CHECKING 12273 md5_init_ctx (&ctx); 12274 fold_checksum_tree (op0, &ctx, &ht); 12275 md5_finish_ctx (&ctx, checksum_after); 12276 12277 if (memcmp (checksum_before, checksum_after, 16)) 12278 fold_check_failed (op0, tem); 12279 #endif 12280 return tem; 12281 } 12282 12283 /* Fold a binary tree expression with code CODE of type TYPE with 12284 operands OP0 and OP1. LOC is the location of the resulting 12285 expression. Return a folded expression if successful. Otherwise, 12286 return a tree expression with code CODE of type TYPE with operands 12287 OP0 and OP1. */ 12288 12289 tree 12290 fold_build2_loc (location_t loc, 12291 enum tree_code code, tree type, tree op0, tree op1 12292 MEM_STAT_DECL) 12293 { 12294 tree tem; 12295 #ifdef ENABLE_FOLD_CHECKING 12296 unsigned char checksum_before_op0[16], 12297 checksum_before_op1[16], 12298 checksum_after_op0[16], 12299 checksum_after_op1[16]; 12300 struct md5_ctx ctx; 12301 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12302 12303 md5_init_ctx (&ctx); 12304 fold_checksum_tree (op0, &ctx, &ht); 12305 md5_finish_ctx (&ctx, checksum_before_op0); 12306 ht.empty (); 12307 12308 md5_init_ctx (&ctx); 12309 fold_checksum_tree (op1, &ctx, &ht); 12310 md5_finish_ctx (&ctx, checksum_before_op1); 12311 ht.empty (); 12312 #endif 12313 12314 tem = fold_binary_loc (loc, code, type, op0, op1); 12315 if (!tem) 12316 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT); 12317 12318 #ifdef ENABLE_FOLD_CHECKING 12319 md5_init_ctx (&ctx); 12320 fold_checksum_tree (op0, &ctx, &ht); 12321 md5_finish_ctx (&ctx, checksum_after_op0); 12322 ht.empty (); 12323 12324 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12325 fold_check_failed (op0, tem); 12326 12327 md5_init_ctx (&ctx); 12328 fold_checksum_tree (op1, &ctx, &ht); 12329 md5_finish_ctx (&ctx, checksum_after_op1); 12330 12331 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12332 fold_check_failed (op1, tem); 12333 #endif 12334 return tem; 12335 } 12336 12337 /* Fold a ternary tree expression with code CODE of type TYPE with 12338 operands OP0, OP1, and OP2. Return a folded expression if 12339 successful. Otherwise, return a tree expression with code CODE of 12340 type TYPE with operands OP0, OP1, and OP2. */ 12341 12342 tree 12343 fold_build3_loc (location_t loc, enum tree_code code, tree type, 12344 tree op0, tree op1, tree op2 MEM_STAT_DECL) 12345 { 12346 tree tem; 12347 #ifdef ENABLE_FOLD_CHECKING 12348 unsigned char checksum_before_op0[16], 12349 checksum_before_op1[16], 12350 checksum_before_op2[16], 12351 checksum_after_op0[16], 12352 checksum_after_op1[16], 12353 checksum_after_op2[16]; 12354 struct md5_ctx ctx; 12355 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12356 12357 md5_init_ctx (&ctx); 12358 fold_checksum_tree (op0, &ctx, &ht); 12359 md5_finish_ctx (&ctx, checksum_before_op0); 12360 ht.empty (); 12361 12362 md5_init_ctx (&ctx); 12363 fold_checksum_tree (op1, &ctx, &ht); 12364 md5_finish_ctx (&ctx, checksum_before_op1); 12365 ht.empty (); 12366 12367 md5_init_ctx (&ctx); 12368 fold_checksum_tree (op2, &ctx, &ht); 12369 md5_finish_ctx (&ctx, checksum_before_op2); 12370 ht.empty (); 12371 #endif 12372 12373 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 12374 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 12375 if (!tem) 12376 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT); 12377 12378 #ifdef ENABLE_FOLD_CHECKING 12379 md5_init_ctx (&ctx); 12380 fold_checksum_tree (op0, &ctx, &ht); 12381 md5_finish_ctx (&ctx, checksum_after_op0); 12382 ht.empty (); 12383 12384 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12385 fold_check_failed (op0, tem); 12386 12387 md5_init_ctx (&ctx); 12388 fold_checksum_tree (op1, &ctx, &ht); 12389 md5_finish_ctx (&ctx, checksum_after_op1); 12390 ht.empty (); 12391 12392 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12393 fold_check_failed (op1, tem); 12394 12395 md5_init_ctx (&ctx); 12396 fold_checksum_tree (op2, &ctx, &ht); 12397 md5_finish_ctx (&ctx, checksum_after_op2); 12398 12399 if (memcmp (checksum_before_op2, checksum_after_op2, 16)) 12400 fold_check_failed (op2, tem); 12401 #endif 12402 return tem; 12403 } 12404 12405 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS 12406 arguments in ARGARRAY, and a null static chain. 12407 Return a folded expression if successful. Otherwise, return a CALL_EXPR 12408 of type TYPE from the given operands as constructed by build_call_array. */ 12409 12410 tree 12411 fold_build_call_array_loc (location_t loc, tree type, tree fn, 12412 int nargs, tree *argarray) 12413 { 12414 tree tem; 12415 #ifdef ENABLE_FOLD_CHECKING 12416 unsigned char checksum_before_fn[16], 12417 checksum_before_arglist[16], 12418 checksum_after_fn[16], 12419 checksum_after_arglist[16]; 12420 struct md5_ctx ctx; 12421 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12422 int i; 12423 12424 md5_init_ctx (&ctx); 12425 fold_checksum_tree (fn, &ctx, &ht); 12426 md5_finish_ctx (&ctx, checksum_before_fn); 12427 ht.empty (); 12428 12429 md5_init_ctx (&ctx); 12430 for (i = 0; i < nargs; i++) 12431 fold_checksum_tree (argarray[i], &ctx, &ht); 12432 md5_finish_ctx (&ctx, checksum_before_arglist); 12433 ht.empty (); 12434 #endif 12435 12436 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray); 12437 if (!tem) 12438 tem = build_call_array_loc (loc, type, fn, nargs, argarray); 12439 12440 #ifdef ENABLE_FOLD_CHECKING 12441 md5_init_ctx (&ctx); 12442 fold_checksum_tree (fn, &ctx, &ht); 12443 md5_finish_ctx (&ctx, checksum_after_fn); 12444 ht.empty (); 12445 12446 if (memcmp (checksum_before_fn, checksum_after_fn, 16)) 12447 fold_check_failed (fn, tem); 12448 12449 md5_init_ctx (&ctx); 12450 for (i = 0; i < nargs; i++) 12451 fold_checksum_tree (argarray[i], &ctx, &ht); 12452 md5_finish_ctx (&ctx, checksum_after_arglist); 12453 12454 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16)) 12455 fold_check_failed (NULL_TREE, tem); 12456 #endif 12457 return tem; 12458 } 12459 12460 /* Perform constant folding and related simplification of initializer 12461 expression EXPR. These behave identically to "fold_buildN" but ignore 12462 potential run-time traps and exceptions that fold must preserve. */ 12463 12464 #define START_FOLD_INIT \ 12465 int saved_signaling_nans = flag_signaling_nans;\ 12466 int saved_trapping_math = flag_trapping_math;\ 12467 int saved_rounding_math = flag_rounding_math;\ 12468 int saved_trapv = flag_trapv;\ 12469 int saved_folding_initializer = folding_initializer;\ 12470 flag_signaling_nans = 0;\ 12471 flag_trapping_math = 0;\ 12472 flag_rounding_math = 0;\ 12473 flag_trapv = 0;\ 12474 folding_initializer = 1; 12475 12476 #define END_FOLD_INIT \ 12477 flag_signaling_nans = saved_signaling_nans;\ 12478 flag_trapping_math = saved_trapping_math;\ 12479 flag_rounding_math = saved_rounding_math;\ 12480 flag_trapv = saved_trapv;\ 12481 folding_initializer = saved_folding_initializer; 12482 12483 tree 12484 fold_build1_initializer_loc (location_t loc, enum tree_code code, 12485 tree type, tree op) 12486 { 12487 tree result; 12488 START_FOLD_INIT; 12489 12490 result = fold_build1_loc (loc, code, type, op); 12491 12492 END_FOLD_INIT; 12493 return result; 12494 } 12495 12496 tree 12497 fold_build2_initializer_loc (location_t loc, enum tree_code code, 12498 tree type, tree op0, tree op1) 12499 { 12500 tree result; 12501 START_FOLD_INIT; 12502 12503 result = fold_build2_loc (loc, code, type, op0, op1); 12504 12505 END_FOLD_INIT; 12506 return result; 12507 } 12508 12509 tree 12510 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn, 12511 int nargs, tree *argarray) 12512 { 12513 tree result; 12514 START_FOLD_INIT; 12515 12516 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray); 12517 12518 END_FOLD_INIT; 12519 return result; 12520 } 12521 12522 #undef START_FOLD_INIT 12523 #undef END_FOLD_INIT 12524 12525 /* Determine if first argument is a multiple of second argument. Return 0 if 12526 it is not, or we cannot easily determined it to be. 12527 12528 An example of the sort of thing we care about (at this point; this routine 12529 could surely be made more general, and expanded to do what the *_DIV_EXPR's 12530 fold cases do now) is discovering that 12531 12532 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12533 12534 is a multiple of 12535 12536 SAVE_EXPR (J * 8) 12537 12538 when we know that the two SAVE_EXPR (J * 8) nodes are the same node. 12539 12540 This code also handles discovering that 12541 12542 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12543 12544 is a multiple of 8 so we don't have to worry about dealing with a 12545 possible remainder. 12546 12547 Note that we *look* inside a SAVE_EXPR only to determine how it was 12548 calculated; it is not safe for fold to do much of anything else with the 12549 internals of a SAVE_EXPR, since it cannot know when it will be evaluated 12550 at run time. For example, the latter example above *cannot* be implemented 12551 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at 12552 evaluation time of the original SAVE_EXPR is not necessarily the same at 12553 the time the new expression is evaluated. The only optimization of this 12554 sort that would be valid is changing 12555 12556 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8) 12557 12558 divided by 8 to 12559 12560 SAVE_EXPR (I) * SAVE_EXPR (J) 12561 12562 (where the same SAVE_EXPR (J) is used in the original and the 12563 transformed version). */ 12564 12565 int 12566 multiple_of_p (tree type, const_tree top, const_tree bottom) 12567 { 12568 gimple *stmt; 12569 tree t1, op1, op2; 12570 12571 if (operand_equal_p (top, bottom, 0)) 12572 return 1; 12573 12574 if (TREE_CODE (type) != INTEGER_TYPE) 12575 return 0; 12576 12577 switch (TREE_CODE (top)) 12578 { 12579 case BIT_AND_EXPR: 12580 /* Bitwise and provides a power of two multiple. If the mask is 12581 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */ 12582 if (!integer_pow2p (bottom)) 12583 return 0; 12584 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12585 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12586 12587 case MULT_EXPR: 12588 if (TREE_CODE (bottom) == INTEGER_CST) 12589 { 12590 op1 = TREE_OPERAND (top, 0); 12591 op2 = TREE_OPERAND (top, 1); 12592 if (TREE_CODE (op1) == INTEGER_CST) 12593 std::swap (op1, op2); 12594 if (TREE_CODE (op2) == INTEGER_CST) 12595 { 12596 if (multiple_of_p (type, op2, bottom)) 12597 return 1; 12598 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */ 12599 if (multiple_of_p (type, bottom, op2)) 12600 { 12601 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom), 12602 wi::to_widest (op2)); 12603 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom))) 12604 { 12605 op2 = wide_int_to_tree (TREE_TYPE (bottom), w); 12606 return multiple_of_p (type, op1, op2); 12607 } 12608 } 12609 return multiple_of_p (type, op1, bottom); 12610 } 12611 } 12612 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12613 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12614 12615 case MINUS_EXPR: 12616 /* It is impossible to prove if op0 - op1 is multiple of bottom 12617 precisely, so be conservative here checking if both op0 and op1 12618 are multiple of bottom. Note we check the second operand first 12619 since it's usually simpler. */ 12620 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12621 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12622 12623 case PLUS_EXPR: 12624 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd 12625 as op0 - 3 if the expression has unsigned type. For example, 12626 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */ 12627 op1 = TREE_OPERAND (top, 1); 12628 if (TYPE_UNSIGNED (type) 12629 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1)) 12630 op1 = fold_build1 (NEGATE_EXPR, type, op1); 12631 return (multiple_of_p (type, op1, bottom) 12632 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12633 12634 case LSHIFT_EXPR: 12635 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST) 12636 { 12637 op1 = TREE_OPERAND (top, 1); 12638 /* const_binop may not detect overflow correctly, 12639 so check for it explicitly here. */ 12640 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 12641 wi::to_wide (op1)) 12642 && (t1 = fold_convert (type, 12643 const_binop (LSHIFT_EXPR, size_one_node, 12644 op1))) != 0 12645 && !TREE_OVERFLOW (t1)) 12646 return multiple_of_p (type, t1, bottom); 12647 } 12648 return 0; 12649 12650 case NOP_EXPR: 12651 /* Can't handle conversions from non-integral or wider integral type. */ 12652 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE) 12653 || (TYPE_PRECISION (type) 12654 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0))))) 12655 return 0; 12656 12657 /* fall through */ 12658 12659 case SAVE_EXPR: 12660 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom); 12661 12662 case COND_EXPR: 12663 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12664 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom)); 12665 12666 case INTEGER_CST: 12667 if (TREE_CODE (bottom) != INTEGER_CST 12668 || integer_zerop (bottom) 12669 || (TYPE_UNSIGNED (type) 12670 && (tree_int_cst_sgn (top) < 0 12671 || tree_int_cst_sgn (bottom) < 0))) 12672 return 0; 12673 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom), 12674 SIGNED); 12675 12676 case SSA_NAME: 12677 if (TREE_CODE (bottom) == INTEGER_CST 12678 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL 12679 && gimple_code (stmt) == GIMPLE_ASSIGN) 12680 { 12681 enum tree_code code = gimple_assign_rhs_code (stmt); 12682 12683 /* Check for special cases to see if top is defined as multiple 12684 of bottom: 12685 12686 top = (X & ~(bottom - 1) ; bottom is power of 2 12687 12688 or 12689 12690 Y = X % bottom 12691 top = X - Y. */ 12692 if (code == BIT_AND_EXPR 12693 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12694 && TREE_CODE (op2) == INTEGER_CST 12695 && integer_pow2p (bottom) 12696 && wi::multiple_of_p (wi::to_widest (op2), 12697 wi::to_widest (bottom), UNSIGNED)) 12698 return 1; 12699 12700 op1 = gimple_assign_rhs1 (stmt); 12701 if (code == MINUS_EXPR 12702 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12703 && TREE_CODE (op2) == SSA_NAME 12704 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL 12705 && gimple_code (stmt) == GIMPLE_ASSIGN 12706 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR 12707 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0) 12708 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0)) 12709 return 1; 12710 } 12711 12712 /* fall through */ 12713 12714 default: 12715 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom)) 12716 return multiple_p (wi::to_poly_widest (top), 12717 wi::to_poly_widest (bottom)); 12718 12719 return 0; 12720 } 12721 } 12722 12723 #define tree_expr_nonnegative_warnv_p(X, Y) \ 12724 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 12725 12726 #define RECURSE(X) \ 12727 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1)) 12728 12729 /* Return true if CODE or TYPE is known to be non-negative. */ 12730 12731 static bool 12732 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type) 12733 { 12734 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type)) 12735 && truth_value_p (code)) 12736 /* Truth values evaluate to 0 or 1, which is nonnegative unless we 12737 have a signed:1 type (where the value is -1 and 0). */ 12738 return true; 12739 return false; 12740 } 12741 12742 /* Return true if (CODE OP0) is known to be non-negative. If the return 12743 value is based on the assumption that signed overflow is undefined, 12744 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12745 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12746 12747 bool 12748 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12749 bool *strict_overflow_p, int depth) 12750 { 12751 if (TYPE_UNSIGNED (type)) 12752 return true; 12753 12754 switch (code) 12755 { 12756 case ABS_EXPR: 12757 /* We can't return 1 if flag_wrapv is set because 12758 ABS_EXPR<INT_MIN> = INT_MIN. */ 12759 if (!ANY_INTEGRAL_TYPE_P (type)) 12760 return true; 12761 if (TYPE_OVERFLOW_UNDEFINED (type)) 12762 { 12763 *strict_overflow_p = true; 12764 return true; 12765 } 12766 break; 12767 12768 case NON_LVALUE_EXPR: 12769 case FLOAT_EXPR: 12770 case FIX_TRUNC_EXPR: 12771 return RECURSE (op0); 12772 12773 CASE_CONVERT: 12774 { 12775 tree inner_type = TREE_TYPE (op0); 12776 tree outer_type = type; 12777 12778 if (TREE_CODE (outer_type) == REAL_TYPE) 12779 { 12780 if (TREE_CODE (inner_type) == REAL_TYPE) 12781 return RECURSE (op0); 12782 if (INTEGRAL_TYPE_P (inner_type)) 12783 { 12784 if (TYPE_UNSIGNED (inner_type)) 12785 return true; 12786 return RECURSE (op0); 12787 } 12788 } 12789 else if (INTEGRAL_TYPE_P (outer_type)) 12790 { 12791 if (TREE_CODE (inner_type) == REAL_TYPE) 12792 return RECURSE (op0); 12793 if (INTEGRAL_TYPE_P (inner_type)) 12794 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type) 12795 && TYPE_UNSIGNED (inner_type); 12796 } 12797 } 12798 break; 12799 12800 default: 12801 return tree_simple_nonnegative_warnv_p (code, type); 12802 } 12803 12804 /* We don't know sign of `t', so be conservative and return false. */ 12805 return false; 12806 } 12807 12808 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return 12809 value is based on the assumption that signed overflow is undefined, 12810 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12811 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12812 12813 bool 12814 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12815 tree op1, bool *strict_overflow_p, 12816 int depth) 12817 { 12818 if (TYPE_UNSIGNED (type)) 12819 return true; 12820 12821 switch (code) 12822 { 12823 case POINTER_PLUS_EXPR: 12824 case PLUS_EXPR: 12825 if (FLOAT_TYPE_P (type)) 12826 return RECURSE (op0) && RECURSE (op1); 12827 12828 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are 12829 both unsigned and at least 2 bits shorter than the result. */ 12830 if (TREE_CODE (type) == INTEGER_TYPE 12831 && TREE_CODE (op0) == NOP_EXPR 12832 && TREE_CODE (op1) == NOP_EXPR) 12833 { 12834 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0)); 12835 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0)); 12836 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1) 12837 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2)) 12838 { 12839 unsigned int prec = MAX (TYPE_PRECISION (inner1), 12840 TYPE_PRECISION (inner2)) + 1; 12841 return prec < TYPE_PRECISION (type); 12842 } 12843 } 12844 break; 12845 12846 case MULT_EXPR: 12847 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 12848 { 12849 /* x * x is always non-negative for floating point x 12850 or without overflow. */ 12851 if (operand_equal_p (op0, op1, 0) 12852 || (RECURSE (op0) && RECURSE (op1))) 12853 { 12854 if (ANY_INTEGRAL_TYPE_P (type) 12855 && TYPE_OVERFLOW_UNDEFINED (type)) 12856 *strict_overflow_p = true; 12857 return true; 12858 } 12859 } 12860 12861 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are 12862 both unsigned and their total bits is shorter than the result. */ 12863 if (TREE_CODE (type) == INTEGER_TYPE 12864 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST) 12865 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST)) 12866 { 12867 tree inner0 = (TREE_CODE (op0) == NOP_EXPR) 12868 ? TREE_TYPE (TREE_OPERAND (op0, 0)) 12869 : TREE_TYPE (op0); 12870 tree inner1 = (TREE_CODE (op1) == NOP_EXPR) 12871 ? TREE_TYPE (TREE_OPERAND (op1, 0)) 12872 : TREE_TYPE (op1); 12873 12874 bool unsigned0 = TYPE_UNSIGNED (inner0); 12875 bool unsigned1 = TYPE_UNSIGNED (inner1); 12876 12877 if (TREE_CODE (op0) == INTEGER_CST) 12878 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0; 12879 12880 if (TREE_CODE (op1) == INTEGER_CST) 12881 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0; 12882 12883 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0 12884 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1) 12885 { 12886 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST) 12887 ? tree_int_cst_min_precision (op0, UNSIGNED) 12888 : TYPE_PRECISION (inner0); 12889 12890 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST) 12891 ? tree_int_cst_min_precision (op1, UNSIGNED) 12892 : TYPE_PRECISION (inner1); 12893 12894 return precision0 + precision1 < TYPE_PRECISION (type); 12895 } 12896 } 12897 return false; 12898 12899 case BIT_AND_EXPR: 12900 case MAX_EXPR: 12901 return RECURSE (op0) || RECURSE (op1); 12902 12903 case BIT_IOR_EXPR: 12904 case BIT_XOR_EXPR: 12905 case MIN_EXPR: 12906 case RDIV_EXPR: 12907 case TRUNC_DIV_EXPR: 12908 case CEIL_DIV_EXPR: 12909 case FLOOR_DIV_EXPR: 12910 case ROUND_DIV_EXPR: 12911 return RECURSE (op0) && RECURSE (op1); 12912 12913 case TRUNC_MOD_EXPR: 12914 return RECURSE (op0); 12915 12916 case FLOOR_MOD_EXPR: 12917 return RECURSE (op1); 12918 12919 case CEIL_MOD_EXPR: 12920 case ROUND_MOD_EXPR: 12921 default: 12922 return tree_simple_nonnegative_warnv_p (code, type); 12923 } 12924 12925 /* We don't know sign of `t', so be conservative and return false. */ 12926 return false; 12927 } 12928 12929 /* Return true if T is known to be non-negative. If the return 12930 value is based on the assumption that signed overflow is undefined, 12931 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12932 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12933 12934 bool 12935 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 12936 { 12937 if (TYPE_UNSIGNED (TREE_TYPE (t))) 12938 return true; 12939 12940 switch (TREE_CODE (t)) 12941 { 12942 case INTEGER_CST: 12943 return tree_int_cst_sgn (t) >= 0; 12944 12945 case REAL_CST: 12946 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 12947 12948 case FIXED_CST: 12949 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t)); 12950 12951 case COND_EXPR: 12952 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 12953 12954 case SSA_NAME: 12955 /* Limit the depth of recursion to avoid quadratic behavior. 12956 This is expected to catch almost all occurrences in practice. 12957 If this code misses important cases that unbounded recursion 12958 would not, passes that need this information could be revised 12959 to provide it through dataflow propagation. */ 12960 return (!name_registered_for_update_p (t) 12961 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 12962 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t), 12963 strict_overflow_p, depth)); 12964 12965 default: 12966 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 12967 } 12968 } 12969 12970 /* Return true if T is known to be non-negative. If the return 12971 value is based on the assumption that signed overflow is undefined, 12972 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12973 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12974 12975 bool 12976 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1, 12977 bool *strict_overflow_p, int depth) 12978 { 12979 switch (fn) 12980 { 12981 CASE_CFN_ACOS: 12982 CASE_CFN_ACOSH: 12983 CASE_CFN_CABS: 12984 CASE_CFN_COSH: 12985 CASE_CFN_ERFC: 12986 CASE_CFN_EXP: 12987 CASE_CFN_EXP10: 12988 CASE_CFN_EXP2: 12989 CASE_CFN_FABS: 12990 CASE_CFN_FDIM: 12991 CASE_CFN_HYPOT: 12992 CASE_CFN_POW10: 12993 CASE_CFN_FFS: 12994 CASE_CFN_PARITY: 12995 CASE_CFN_POPCOUNT: 12996 CASE_CFN_CLZ: 12997 CASE_CFN_CLRSB: 12998 case CFN_BUILT_IN_BSWAP32: 12999 case CFN_BUILT_IN_BSWAP64: 13000 /* Always true. */ 13001 return true; 13002 13003 CASE_CFN_SQRT: 13004 CASE_CFN_SQRT_FN: 13005 /* sqrt(-0.0) is -0.0. */ 13006 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 13007 return true; 13008 return RECURSE (arg0); 13009 13010 CASE_CFN_ASINH: 13011 CASE_CFN_ATAN: 13012 CASE_CFN_ATANH: 13013 CASE_CFN_CBRT: 13014 CASE_CFN_CEIL: 13015 CASE_CFN_CEIL_FN: 13016 CASE_CFN_ERF: 13017 CASE_CFN_EXPM1: 13018 CASE_CFN_FLOOR: 13019 CASE_CFN_FLOOR_FN: 13020 CASE_CFN_FMOD: 13021 CASE_CFN_FREXP: 13022 CASE_CFN_ICEIL: 13023 CASE_CFN_IFLOOR: 13024 CASE_CFN_IRINT: 13025 CASE_CFN_IROUND: 13026 CASE_CFN_LCEIL: 13027 CASE_CFN_LDEXP: 13028 CASE_CFN_LFLOOR: 13029 CASE_CFN_LLCEIL: 13030 CASE_CFN_LLFLOOR: 13031 CASE_CFN_LLRINT: 13032 CASE_CFN_LLROUND: 13033 CASE_CFN_LRINT: 13034 CASE_CFN_LROUND: 13035 CASE_CFN_MODF: 13036 CASE_CFN_NEARBYINT: 13037 CASE_CFN_NEARBYINT_FN: 13038 CASE_CFN_RINT: 13039 CASE_CFN_RINT_FN: 13040 CASE_CFN_ROUND: 13041 CASE_CFN_ROUND_FN: 13042 CASE_CFN_SCALB: 13043 CASE_CFN_SCALBLN: 13044 CASE_CFN_SCALBN: 13045 CASE_CFN_SIGNBIT: 13046 CASE_CFN_SIGNIFICAND: 13047 CASE_CFN_SINH: 13048 CASE_CFN_TANH: 13049 CASE_CFN_TRUNC: 13050 CASE_CFN_TRUNC_FN: 13051 /* True if the 1st argument is nonnegative. */ 13052 return RECURSE (arg0); 13053 13054 CASE_CFN_FMAX: 13055 CASE_CFN_FMAX_FN: 13056 /* True if the 1st OR 2nd arguments are nonnegative. */ 13057 return RECURSE (arg0) || RECURSE (arg1); 13058 13059 CASE_CFN_FMIN: 13060 CASE_CFN_FMIN_FN: 13061 /* True if the 1st AND 2nd arguments are nonnegative. */ 13062 return RECURSE (arg0) && RECURSE (arg1); 13063 13064 CASE_CFN_COPYSIGN: 13065 CASE_CFN_COPYSIGN_FN: 13066 /* True if the 2nd argument is nonnegative. */ 13067 return RECURSE (arg1); 13068 13069 CASE_CFN_POWI: 13070 /* True if the 1st argument is nonnegative or the second 13071 argument is an even integer. */ 13072 if (TREE_CODE (arg1) == INTEGER_CST 13073 && (TREE_INT_CST_LOW (arg1) & 1) == 0) 13074 return true; 13075 return RECURSE (arg0); 13076 13077 CASE_CFN_POW: 13078 /* True if the 1st argument is nonnegative or the second 13079 argument is an even integer valued real. */ 13080 if (TREE_CODE (arg1) == REAL_CST) 13081 { 13082 REAL_VALUE_TYPE c; 13083 HOST_WIDE_INT n; 13084 13085 c = TREE_REAL_CST (arg1); 13086 n = real_to_integer (&c); 13087 if ((n & 1) == 0) 13088 { 13089 REAL_VALUE_TYPE cint; 13090 real_from_integer (&cint, VOIDmode, n, SIGNED); 13091 if (real_identical (&c, &cint)) 13092 return true; 13093 } 13094 } 13095 return RECURSE (arg0); 13096 13097 default: 13098 break; 13099 } 13100 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type); 13101 } 13102 13103 /* Return true if T is known to be non-negative. If the return 13104 value is based on the assumption that signed overflow is undefined, 13105 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13106 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13107 13108 static bool 13109 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13110 { 13111 enum tree_code code = TREE_CODE (t); 13112 if (TYPE_UNSIGNED (TREE_TYPE (t))) 13113 return true; 13114 13115 switch (code) 13116 { 13117 case TARGET_EXPR: 13118 { 13119 tree temp = TARGET_EXPR_SLOT (t); 13120 t = TARGET_EXPR_INITIAL (t); 13121 13122 /* If the initializer is non-void, then it's a normal expression 13123 that will be assigned to the slot. */ 13124 if (!VOID_TYPE_P (t)) 13125 return RECURSE (t); 13126 13127 /* Otherwise, the initializer sets the slot in some way. One common 13128 way is an assignment statement at the end of the initializer. */ 13129 while (1) 13130 { 13131 if (TREE_CODE (t) == BIND_EXPR) 13132 t = expr_last (BIND_EXPR_BODY (t)); 13133 else if (TREE_CODE (t) == TRY_FINALLY_EXPR 13134 || TREE_CODE (t) == TRY_CATCH_EXPR) 13135 t = expr_last (TREE_OPERAND (t, 0)); 13136 else if (TREE_CODE (t) == STATEMENT_LIST) 13137 t = expr_last (t); 13138 else 13139 break; 13140 } 13141 if (TREE_CODE (t) == MODIFY_EXPR 13142 && TREE_OPERAND (t, 0) == temp) 13143 return RECURSE (TREE_OPERAND (t, 1)); 13144 13145 return false; 13146 } 13147 13148 case CALL_EXPR: 13149 { 13150 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE; 13151 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE; 13152 13153 return tree_call_nonnegative_warnv_p (TREE_TYPE (t), 13154 get_call_combined_fn (t), 13155 arg0, 13156 arg1, 13157 strict_overflow_p, depth); 13158 } 13159 case COMPOUND_EXPR: 13160 case MODIFY_EXPR: 13161 return RECURSE (TREE_OPERAND (t, 1)); 13162 13163 case BIND_EXPR: 13164 return RECURSE (expr_last (TREE_OPERAND (t, 1))); 13165 13166 case SAVE_EXPR: 13167 return RECURSE (TREE_OPERAND (t, 0)); 13168 13169 default: 13170 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 13171 } 13172 } 13173 13174 #undef RECURSE 13175 #undef tree_expr_nonnegative_warnv_p 13176 13177 /* Return true if T is known to be non-negative. If the return 13178 value is based on the assumption that signed overflow is undefined, 13179 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13180 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13181 13182 bool 13183 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13184 { 13185 enum tree_code code; 13186 if (t == error_mark_node) 13187 return false; 13188 13189 code = TREE_CODE (t); 13190 switch (TREE_CODE_CLASS (code)) 13191 { 13192 case tcc_binary: 13193 case tcc_comparison: 13194 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13195 TREE_TYPE (t), 13196 TREE_OPERAND (t, 0), 13197 TREE_OPERAND (t, 1), 13198 strict_overflow_p, depth); 13199 13200 case tcc_unary: 13201 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13202 TREE_TYPE (t), 13203 TREE_OPERAND (t, 0), 13204 strict_overflow_p, depth); 13205 13206 case tcc_constant: 13207 case tcc_declaration: 13208 case tcc_reference: 13209 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13210 13211 default: 13212 break; 13213 } 13214 13215 switch (code) 13216 { 13217 case TRUTH_AND_EXPR: 13218 case TRUTH_OR_EXPR: 13219 case TRUTH_XOR_EXPR: 13220 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13221 TREE_TYPE (t), 13222 TREE_OPERAND (t, 0), 13223 TREE_OPERAND (t, 1), 13224 strict_overflow_p, depth); 13225 case TRUTH_NOT_EXPR: 13226 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13227 TREE_TYPE (t), 13228 TREE_OPERAND (t, 0), 13229 strict_overflow_p, depth); 13230 13231 case COND_EXPR: 13232 case CONSTRUCTOR: 13233 case OBJ_TYPE_REF: 13234 case ASSERT_EXPR: 13235 case ADDR_EXPR: 13236 case WITH_SIZE_EXPR: 13237 case SSA_NAME: 13238 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13239 13240 default: 13241 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth); 13242 } 13243 } 13244 13245 /* Return true if `t' is known to be non-negative. Handle warnings 13246 about undefined signed overflow. */ 13247 13248 bool 13249 tree_expr_nonnegative_p (tree t) 13250 { 13251 bool ret, strict_overflow_p; 13252 13253 strict_overflow_p = false; 13254 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p); 13255 if (strict_overflow_p) 13256 fold_overflow_warning (("assuming signed overflow does not occur when " 13257 "determining that expression is always " 13258 "non-negative"), 13259 WARN_STRICT_OVERFLOW_MISC); 13260 return ret; 13261 } 13262 13263 13264 /* Return true when (CODE OP0) is an address and is known to be nonzero. 13265 For floating point we further ensure that T is not denormal. 13266 Similar logic is present in nonzero_address in rtlanal.h. 13267 13268 If the return value is based on the assumption that signed overflow 13269 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13270 change *STRICT_OVERFLOW_P. */ 13271 13272 bool 13273 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0, 13274 bool *strict_overflow_p) 13275 { 13276 switch (code) 13277 { 13278 case ABS_EXPR: 13279 return tree_expr_nonzero_warnv_p (op0, 13280 strict_overflow_p); 13281 13282 case NOP_EXPR: 13283 { 13284 tree inner_type = TREE_TYPE (op0); 13285 tree outer_type = type; 13286 13287 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type) 13288 && tree_expr_nonzero_warnv_p (op0, 13289 strict_overflow_p)); 13290 } 13291 break; 13292 13293 case NON_LVALUE_EXPR: 13294 return tree_expr_nonzero_warnv_p (op0, 13295 strict_overflow_p); 13296 13297 default: 13298 break; 13299 } 13300 13301 return false; 13302 } 13303 13304 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero. 13305 For floating point we further ensure that T is not denormal. 13306 Similar logic is present in nonzero_address in rtlanal.h. 13307 13308 If the return value is based on the assumption that signed overflow 13309 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13310 change *STRICT_OVERFLOW_P. */ 13311 13312 bool 13313 tree_binary_nonzero_warnv_p (enum tree_code code, 13314 tree type, 13315 tree op0, 13316 tree op1, bool *strict_overflow_p) 13317 { 13318 bool sub_strict_overflow_p; 13319 switch (code) 13320 { 13321 case POINTER_PLUS_EXPR: 13322 case PLUS_EXPR: 13323 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type)) 13324 { 13325 /* With the presence of negative values it is hard 13326 to say something. */ 13327 sub_strict_overflow_p = false; 13328 if (!tree_expr_nonnegative_warnv_p (op0, 13329 &sub_strict_overflow_p) 13330 || !tree_expr_nonnegative_warnv_p (op1, 13331 &sub_strict_overflow_p)) 13332 return false; 13333 /* One of operands must be positive and the other non-negative. */ 13334 /* We don't set *STRICT_OVERFLOW_P here: even if this value 13335 overflows, on a twos-complement machine the sum of two 13336 nonnegative numbers can never be zero. */ 13337 return (tree_expr_nonzero_warnv_p (op0, 13338 strict_overflow_p) 13339 || tree_expr_nonzero_warnv_p (op1, 13340 strict_overflow_p)); 13341 } 13342 break; 13343 13344 case MULT_EXPR: 13345 if (TYPE_OVERFLOW_UNDEFINED (type)) 13346 { 13347 if (tree_expr_nonzero_warnv_p (op0, 13348 strict_overflow_p) 13349 && tree_expr_nonzero_warnv_p (op1, 13350 strict_overflow_p)) 13351 { 13352 *strict_overflow_p = true; 13353 return true; 13354 } 13355 } 13356 break; 13357 13358 case MIN_EXPR: 13359 sub_strict_overflow_p = false; 13360 if (tree_expr_nonzero_warnv_p (op0, 13361 &sub_strict_overflow_p) 13362 && tree_expr_nonzero_warnv_p (op1, 13363 &sub_strict_overflow_p)) 13364 { 13365 if (sub_strict_overflow_p) 13366 *strict_overflow_p = true; 13367 } 13368 break; 13369 13370 case MAX_EXPR: 13371 sub_strict_overflow_p = false; 13372 if (tree_expr_nonzero_warnv_p (op0, 13373 &sub_strict_overflow_p)) 13374 { 13375 if (sub_strict_overflow_p) 13376 *strict_overflow_p = true; 13377 13378 /* When both operands are nonzero, then MAX must be too. */ 13379 if (tree_expr_nonzero_warnv_p (op1, 13380 strict_overflow_p)) 13381 return true; 13382 13383 /* MAX where operand 0 is positive is positive. */ 13384 return tree_expr_nonnegative_warnv_p (op0, 13385 strict_overflow_p); 13386 } 13387 /* MAX where operand 1 is positive is positive. */ 13388 else if (tree_expr_nonzero_warnv_p (op1, 13389 &sub_strict_overflow_p) 13390 && tree_expr_nonnegative_warnv_p (op1, 13391 &sub_strict_overflow_p)) 13392 { 13393 if (sub_strict_overflow_p) 13394 *strict_overflow_p = true; 13395 return true; 13396 } 13397 break; 13398 13399 case BIT_IOR_EXPR: 13400 return (tree_expr_nonzero_warnv_p (op1, 13401 strict_overflow_p) 13402 || tree_expr_nonzero_warnv_p (op0, 13403 strict_overflow_p)); 13404 13405 default: 13406 break; 13407 } 13408 13409 return false; 13410 } 13411 13412 /* Return true when T is an address and is known to be nonzero. 13413 For floating point we further ensure that T is not denormal. 13414 Similar logic is present in nonzero_address in rtlanal.h. 13415 13416 If the return value is based on the assumption that signed overflow 13417 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13418 change *STRICT_OVERFLOW_P. */ 13419 13420 bool 13421 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p) 13422 { 13423 bool sub_strict_overflow_p; 13424 switch (TREE_CODE (t)) 13425 { 13426 case INTEGER_CST: 13427 return !integer_zerop (t); 13428 13429 case ADDR_EXPR: 13430 { 13431 tree base = TREE_OPERAND (t, 0); 13432 13433 if (!DECL_P (base)) 13434 base = get_base_address (base); 13435 13436 if (base && TREE_CODE (base) == TARGET_EXPR) 13437 base = TARGET_EXPR_SLOT (base); 13438 13439 if (!base) 13440 return false; 13441 13442 /* For objects in symbol table check if we know they are non-zero. 13443 Don't do anything for variables and functions before symtab is built; 13444 it is quite possible that they will be declared weak later. */ 13445 int nonzero_addr = maybe_nonzero_address (base); 13446 if (nonzero_addr >= 0) 13447 return nonzero_addr; 13448 13449 /* Constants are never weak. */ 13450 if (CONSTANT_CLASS_P (base)) 13451 return true; 13452 13453 return false; 13454 } 13455 13456 case COND_EXPR: 13457 sub_strict_overflow_p = false; 13458 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 13459 &sub_strict_overflow_p) 13460 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2), 13461 &sub_strict_overflow_p)) 13462 { 13463 if (sub_strict_overflow_p) 13464 *strict_overflow_p = true; 13465 return true; 13466 } 13467 break; 13468 13469 case SSA_NAME: 13470 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 13471 break; 13472 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t)))); 13473 13474 default: 13475 break; 13476 } 13477 return false; 13478 } 13479 13480 #define integer_valued_real_p(X) \ 13481 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 13482 13483 #define RECURSE(X) \ 13484 ((integer_valued_real_p) (X, depth + 1)) 13485 13486 /* Return true if the floating point result of (CODE OP0) has an 13487 integer value. We also allow +Inf, -Inf and NaN to be considered 13488 integer values. Return false for signaling NaN. 13489 13490 DEPTH is the current nesting depth of the query. */ 13491 13492 bool 13493 integer_valued_real_unary_p (tree_code code, tree op0, int depth) 13494 { 13495 switch (code) 13496 { 13497 case FLOAT_EXPR: 13498 return true; 13499 13500 case ABS_EXPR: 13501 return RECURSE (op0); 13502 13503 CASE_CONVERT: 13504 { 13505 tree type = TREE_TYPE (op0); 13506 if (TREE_CODE (type) == INTEGER_TYPE) 13507 return true; 13508 if (TREE_CODE (type) == REAL_TYPE) 13509 return RECURSE (op0); 13510 break; 13511 } 13512 13513 default: 13514 break; 13515 } 13516 return false; 13517 } 13518 13519 /* Return true if the floating point result of (CODE OP0 OP1) has an 13520 integer value. We also allow +Inf, -Inf and NaN to be considered 13521 integer values. Return false for signaling NaN. 13522 13523 DEPTH is the current nesting depth of the query. */ 13524 13525 bool 13526 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth) 13527 { 13528 switch (code) 13529 { 13530 case PLUS_EXPR: 13531 case MINUS_EXPR: 13532 case MULT_EXPR: 13533 case MIN_EXPR: 13534 case MAX_EXPR: 13535 return RECURSE (op0) && RECURSE (op1); 13536 13537 default: 13538 break; 13539 } 13540 return false; 13541 } 13542 13543 /* Return true if the floating point result of calling FNDECL with arguments 13544 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be 13545 considered integer values. Return false for signaling NaN. If FNDECL 13546 takes fewer than 2 arguments, the remaining ARGn are null. 13547 13548 DEPTH is the current nesting depth of the query. */ 13549 13550 bool 13551 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth) 13552 { 13553 switch (fn) 13554 { 13555 CASE_CFN_CEIL: 13556 CASE_CFN_CEIL_FN: 13557 CASE_CFN_FLOOR: 13558 CASE_CFN_FLOOR_FN: 13559 CASE_CFN_NEARBYINT: 13560 CASE_CFN_NEARBYINT_FN: 13561 CASE_CFN_RINT: 13562 CASE_CFN_RINT_FN: 13563 CASE_CFN_ROUND: 13564 CASE_CFN_ROUND_FN: 13565 CASE_CFN_TRUNC: 13566 CASE_CFN_TRUNC_FN: 13567 return true; 13568 13569 CASE_CFN_FMIN: 13570 CASE_CFN_FMIN_FN: 13571 CASE_CFN_FMAX: 13572 CASE_CFN_FMAX_FN: 13573 return RECURSE (arg0) && RECURSE (arg1); 13574 13575 default: 13576 break; 13577 } 13578 return false; 13579 } 13580 13581 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS) 13582 has an integer value. We also allow +Inf, -Inf and NaN to be 13583 considered integer values. Return false for signaling NaN. 13584 13585 DEPTH is the current nesting depth of the query. */ 13586 13587 bool 13588 integer_valued_real_single_p (tree t, int depth) 13589 { 13590 switch (TREE_CODE (t)) 13591 { 13592 case REAL_CST: 13593 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t))); 13594 13595 case COND_EXPR: 13596 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 13597 13598 case SSA_NAME: 13599 /* Limit the depth of recursion to avoid quadratic behavior. 13600 This is expected to catch almost all occurrences in practice. 13601 If this code misses important cases that unbounded recursion 13602 would not, passes that need this information could be revised 13603 to provide it through dataflow propagation. */ 13604 return (!name_registered_for_update_p (t) 13605 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 13606 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t), 13607 depth)); 13608 13609 default: 13610 break; 13611 } 13612 return false; 13613 } 13614 13615 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS) 13616 has an integer value. We also allow +Inf, -Inf and NaN to be 13617 considered integer values. Return false for signaling NaN. 13618 13619 DEPTH is the current nesting depth of the query. */ 13620 13621 static bool 13622 integer_valued_real_invalid_p (tree t, int depth) 13623 { 13624 switch (TREE_CODE (t)) 13625 { 13626 case COMPOUND_EXPR: 13627 case MODIFY_EXPR: 13628 case BIND_EXPR: 13629 return RECURSE (TREE_OPERAND (t, 1)); 13630 13631 case SAVE_EXPR: 13632 return RECURSE (TREE_OPERAND (t, 0)); 13633 13634 default: 13635 break; 13636 } 13637 return false; 13638 } 13639 13640 #undef RECURSE 13641 #undef integer_valued_real_p 13642 13643 /* Return true if the floating point expression T has an integer value. 13644 We also allow +Inf, -Inf and NaN to be considered integer values. 13645 Return false for signaling NaN. 13646 13647 DEPTH is the current nesting depth of the query. */ 13648 13649 bool 13650 integer_valued_real_p (tree t, int depth) 13651 { 13652 if (t == error_mark_node) 13653 return false; 13654 13655 tree_code code = TREE_CODE (t); 13656 switch (TREE_CODE_CLASS (code)) 13657 { 13658 case tcc_binary: 13659 case tcc_comparison: 13660 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0), 13661 TREE_OPERAND (t, 1), depth); 13662 13663 case tcc_unary: 13664 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth); 13665 13666 case tcc_constant: 13667 case tcc_declaration: 13668 case tcc_reference: 13669 return integer_valued_real_single_p (t, depth); 13670 13671 default: 13672 break; 13673 } 13674 13675 switch (code) 13676 { 13677 case COND_EXPR: 13678 case SSA_NAME: 13679 return integer_valued_real_single_p (t, depth); 13680 13681 case CALL_EXPR: 13682 { 13683 tree arg0 = (call_expr_nargs (t) > 0 13684 ? CALL_EXPR_ARG (t, 0) 13685 : NULL_TREE); 13686 tree arg1 = (call_expr_nargs (t) > 1 13687 ? CALL_EXPR_ARG (t, 1) 13688 : NULL_TREE); 13689 return integer_valued_real_call_p (get_call_combined_fn (t), 13690 arg0, arg1, depth); 13691 } 13692 13693 default: 13694 return integer_valued_real_invalid_p (t, depth); 13695 } 13696 } 13697 13698 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1, 13699 attempt to fold the expression to a constant without modifying TYPE, 13700 OP0 or OP1. 13701 13702 If the expression could be simplified to a constant, then return 13703 the constant. If the expression would not be simplified to a 13704 constant, then return NULL_TREE. */ 13705 13706 tree 13707 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1) 13708 { 13709 tree tem = fold_binary (code, type, op0, op1); 13710 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13711 } 13712 13713 /* Given the components of a unary expression CODE, TYPE and OP0, 13714 attempt to fold the expression to a constant without modifying 13715 TYPE or OP0. 13716 13717 If the expression could be simplified to a constant, then return 13718 the constant. If the expression would not be simplified to a 13719 constant, then return NULL_TREE. */ 13720 13721 tree 13722 fold_unary_to_constant (enum tree_code code, tree type, tree op0) 13723 { 13724 tree tem = fold_unary (code, type, op0); 13725 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13726 } 13727 13728 /* If EXP represents referencing an element in a constant string 13729 (either via pointer arithmetic or array indexing), return the 13730 tree representing the value accessed, otherwise return NULL. */ 13731 13732 tree 13733 fold_read_from_constant_string (tree exp) 13734 { 13735 if ((TREE_CODE (exp) == INDIRECT_REF 13736 || TREE_CODE (exp) == ARRAY_REF) 13737 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE) 13738 { 13739 tree exp1 = TREE_OPERAND (exp, 0); 13740 tree index; 13741 tree string; 13742 location_t loc = EXPR_LOCATION (exp); 13743 13744 if (TREE_CODE (exp) == INDIRECT_REF) 13745 string = string_constant (exp1, &index); 13746 else 13747 { 13748 tree low_bound = array_ref_low_bound (exp); 13749 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1)); 13750 13751 /* Optimize the special-case of a zero lower bound. 13752 13753 We convert the low_bound to sizetype to avoid some problems 13754 with constant folding. (E.g. suppose the lower bound is 1, 13755 and its mode is QI. Without the conversion,l (ARRAY 13756 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1)) 13757 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */ 13758 if (! integer_zerop (low_bound)) 13759 index = size_diffop_loc (loc, index, 13760 fold_convert_loc (loc, sizetype, low_bound)); 13761 13762 string = exp1; 13763 } 13764 13765 scalar_int_mode char_mode; 13766 if (string 13767 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string))) 13768 && TREE_CODE (string) == STRING_CST 13769 && TREE_CODE (index) == INTEGER_CST 13770 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0 13771 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))), 13772 &char_mode) 13773 && GET_MODE_SIZE (char_mode) == 1) 13774 return build_int_cst_type (TREE_TYPE (exp), 13775 (TREE_STRING_POINTER (string) 13776 [TREE_INT_CST_LOW (index)])); 13777 } 13778 return NULL; 13779 } 13780 13781 /* Return the tree for neg (ARG0) when ARG0 is known to be either 13782 an integer constant, real, or fixed-point constant. 13783 13784 TYPE is the type of the result. */ 13785 13786 static tree 13787 fold_negate_const (tree arg0, tree type) 13788 { 13789 tree t = NULL_TREE; 13790 13791 switch (TREE_CODE (arg0)) 13792 { 13793 case REAL_CST: 13794 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13795 break; 13796 13797 case FIXED_CST: 13798 { 13799 FIXED_VALUE_TYPE f; 13800 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR, 13801 &(TREE_FIXED_CST (arg0)), NULL, 13802 TYPE_SATURATING (type)); 13803 t = build_fixed (type, f); 13804 /* Propagate overflow flags. */ 13805 if (overflow_p | TREE_OVERFLOW (arg0)) 13806 TREE_OVERFLOW (t) = 1; 13807 break; 13808 } 13809 13810 default: 13811 if (poly_int_tree_p (arg0)) 13812 { 13813 bool overflow; 13814 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow); 13815 t = force_fit_type (type, res, 1, 13816 (overflow && ! TYPE_UNSIGNED (type)) 13817 || TREE_OVERFLOW (arg0)); 13818 break; 13819 } 13820 13821 gcc_unreachable (); 13822 } 13823 13824 return t; 13825 } 13826 13827 /* Return the tree for abs (ARG0) when ARG0 is known to be either 13828 an integer constant or real constant. 13829 13830 TYPE is the type of the result. */ 13831 13832 tree 13833 fold_abs_const (tree arg0, tree type) 13834 { 13835 tree t = NULL_TREE; 13836 13837 switch (TREE_CODE (arg0)) 13838 { 13839 case INTEGER_CST: 13840 { 13841 /* If the value is unsigned or non-negative, then the absolute value 13842 is the same as the ordinary value. */ 13843 if (!wi::neg_p (wi::to_wide (arg0), TYPE_SIGN (type))) 13844 t = arg0; 13845 13846 /* If the value is negative, then the absolute value is 13847 its negation. */ 13848 else 13849 { 13850 bool overflow; 13851 wide_int val = wi::neg (wi::to_wide (arg0), &overflow); 13852 t = force_fit_type (type, val, -1, 13853 overflow | TREE_OVERFLOW (arg0)); 13854 } 13855 } 13856 break; 13857 13858 case REAL_CST: 13859 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0))) 13860 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13861 else 13862 t = arg0; 13863 break; 13864 13865 default: 13866 gcc_unreachable (); 13867 } 13868 13869 return t; 13870 } 13871 13872 /* Return the tree for not (ARG0) when ARG0 is known to be an integer 13873 constant. TYPE is the type of the result. */ 13874 13875 static tree 13876 fold_not_const (const_tree arg0, tree type) 13877 { 13878 gcc_assert (TREE_CODE (arg0) == INTEGER_CST); 13879 13880 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0)); 13881 } 13882 13883 /* Given CODE, a relational operator, the target type, TYPE and two 13884 constant operands OP0 and OP1, return the result of the 13885 relational operation. If the result is not a compile time 13886 constant, then return NULL_TREE. */ 13887 13888 static tree 13889 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1) 13890 { 13891 int result, invert; 13892 13893 /* From here on, the only cases we handle are when the result is 13894 known to be a constant. */ 13895 13896 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST) 13897 { 13898 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0); 13899 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1); 13900 13901 /* Handle the cases where either operand is a NaN. */ 13902 if (real_isnan (c0) || real_isnan (c1)) 13903 { 13904 switch (code) 13905 { 13906 case EQ_EXPR: 13907 case ORDERED_EXPR: 13908 result = 0; 13909 break; 13910 13911 case NE_EXPR: 13912 case UNORDERED_EXPR: 13913 case UNLT_EXPR: 13914 case UNLE_EXPR: 13915 case UNGT_EXPR: 13916 case UNGE_EXPR: 13917 case UNEQ_EXPR: 13918 result = 1; 13919 break; 13920 13921 case LT_EXPR: 13922 case LE_EXPR: 13923 case GT_EXPR: 13924 case GE_EXPR: 13925 case LTGT_EXPR: 13926 if (flag_trapping_math) 13927 return NULL_TREE; 13928 result = 0; 13929 break; 13930 13931 default: 13932 gcc_unreachable (); 13933 } 13934 13935 return constant_boolean_node (result, type); 13936 } 13937 13938 return constant_boolean_node (real_compare (code, c0, c1), type); 13939 } 13940 13941 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST) 13942 { 13943 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0); 13944 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1); 13945 return constant_boolean_node (fixed_compare (code, c0, c1), type); 13946 } 13947 13948 /* Handle equality/inequality of complex constants. */ 13949 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST) 13950 { 13951 tree rcond = fold_relational_const (code, type, 13952 TREE_REALPART (op0), 13953 TREE_REALPART (op1)); 13954 tree icond = fold_relational_const (code, type, 13955 TREE_IMAGPART (op0), 13956 TREE_IMAGPART (op1)); 13957 if (code == EQ_EXPR) 13958 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond); 13959 else if (code == NE_EXPR) 13960 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond); 13961 else 13962 return NULL_TREE; 13963 } 13964 13965 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST) 13966 { 13967 if (!VECTOR_TYPE_P (type)) 13968 { 13969 /* Have vector comparison with scalar boolean result. */ 13970 gcc_assert ((code == EQ_EXPR || code == NE_EXPR) 13971 && known_eq (VECTOR_CST_NELTS (op0), 13972 VECTOR_CST_NELTS (op1))); 13973 unsigned HOST_WIDE_INT nunits; 13974 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits)) 13975 return NULL_TREE; 13976 for (unsigned i = 0; i < nunits; i++) 13977 { 13978 tree elem0 = VECTOR_CST_ELT (op0, i); 13979 tree elem1 = VECTOR_CST_ELT (op1, i); 13980 tree tmp = fold_relational_const (code, type, elem0, elem1); 13981 if (tmp == NULL_TREE) 13982 return NULL_TREE; 13983 if (integer_zerop (tmp)) 13984 return constant_boolean_node (false, type); 13985 } 13986 return constant_boolean_node (true, type); 13987 } 13988 tree_vector_builder elts; 13989 if (!elts.new_binary_operation (type, op0, op1, false)) 13990 return NULL_TREE; 13991 unsigned int count = elts.encoded_nelts (); 13992 for (unsigned i = 0; i < count; i++) 13993 { 13994 tree elem_type = TREE_TYPE (type); 13995 tree elem0 = VECTOR_CST_ELT (op0, i); 13996 tree elem1 = VECTOR_CST_ELT (op1, i); 13997 13998 tree tem = fold_relational_const (code, elem_type, 13999 elem0, elem1); 14000 14001 if (tem == NULL_TREE) 14002 return NULL_TREE; 14003 14004 elts.quick_push (build_int_cst (elem_type, 14005 integer_zerop (tem) ? 0 : -1)); 14006 } 14007 14008 return elts.build (); 14009 } 14010 14011 /* From here on we only handle LT, LE, GT, GE, EQ and NE. 14012 14013 To compute GT, swap the arguments and do LT. 14014 To compute GE, do LT and invert the result. 14015 To compute LE, swap the arguments, do LT and invert the result. 14016 To compute NE, do EQ and invert the result. 14017 14018 Therefore, the code below must handle only EQ and LT. */ 14019 14020 if (code == LE_EXPR || code == GT_EXPR) 14021 { 14022 std::swap (op0, op1); 14023 code = swap_tree_comparison (code); 14024 } 14025 14026 /* Note that it is safe to invert for real values here because we 14027 have already handled the one case that it matters. */ 14028 14029 invert = 0; 14030 if (code == NE_EXPR || code == GE_EXPR) 14031 { 14032 invert = 1; 14033 code = invert_tree_comparison (code, false); 14034 } 14035 14036 /* Compute a result for LT or EQ if args permit; 14037 Otherwise return T. */ 14038 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST) 14039 { 14040 if (code == EQ_EXPR) 14041 result = tree_int_cst_equal (op0, op1); 14042 else 14043 result = tree_int_cst_lt (op0, op1); 14044 } 14045 else 14046 return NULL_TREE; 14047 14048 if (invert) 14049 result ^= 1; 14050 return constant_boolean_node (result, type); 14051 } 14052 14053 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the 14054 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR 14055 itself. */ 14056 14057 tree 14058 fold_build_cleanup_point_expr (tree type, tree expr) 14059 { 14060 /* If the expression does not have side effects then we don't have to wrap 14061 it with a cleanup point expression. */ 14062 if (!TREE_SIDE_EFFECTS (expr)) 14063 return expr; 14064 14065 /* If the expression is a return, check to see if the expression inside the 14066 return has no side effects or the right hand side of the modify expression 14067 inside the return. If either don't have side effects set we don't need to 14068 wrap the expression in a cleanup point expression. Note we don't check the 14069 left hand side of the modify because it should always be a return decl. */ 14070 if (TREE_CODE (expr) == RETURN_EXPR) 14071 { 14072 tree op = TREE_OPERAND (expr, 0); 14073 if (!op || !TREE_SIDE_EFFECTS (op)) 14074 return expr; 14075 op = TREE_OPERAND (op, 1); 14076 if (!TREE_SIDE_EFFECTS (op)) 14077 return expr; 14078 } 14079 14080 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr); 14081 } 14082 14083 /* Given a pointer value OP0 and a type TYPE, return a simplified version 14084 of an indirection through OP0, or NULL_TREE if no simplification is 14085 possible. */ 14086 14087 tree 14088 fold_indirect_ref_1 (location_t loc, tree type, tree op0) 14089 { 14090 tree sub = op0; 14091 tree subtype; 14092 poly_uint64 const_op01; 14093 14094 STRIP_NOPS (sub); 14095 subtype = TREE_TYPE (sub); 14096 if (!POINTER_TYPE_P (subtype) 14097 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0))) 14098 return NULL_TREE; 14099 14100 if (TREE_CODE (sub) == ADDR_EXPR) 14101 { 14102 tree op = TREE_OPERAND (sub, 0); 14103 tree optype = TREE_TYPE (op); 14104 14105 /* *&CONST_DECL -> to the value of the const decl. */ 14106 if (TREE_CODE (op) == CONST_DECL) 14107 return DECL_INITIAL (op); 14108 /* *&p => p; make sure to handle *&"str"[cst] here. */ 14109 if (type == optype) 14110 { 14111 tree fop = fold_read_from_constant_string (op); 14112 if (fop) 14113 return fop; 14114 else 14115 return op; 14116 } 14117 /* *(foo *)&fooarray => fooarray[0] */ 14118 else if (TREE_CODE (optype) == ARRAY_TYPE 14119 && type == TREE_TYPE (optype) 14120 && (!in_gimple_form 14121 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14122 { 14123 tree type_domain = TYPE_DOMAIN (optype); 14124 tree min_val = size_zero_node; 14125 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14126 min_val = TYPE_MIN_VALUE (type_domain); 14127 if (in_gimple_form 14128 && TREE_CODE (min_val) != INTEGER_CST) 14129 return NULL_TREE; 14130 return build4_loc (loc, ARRAY_REF, type, op, min_val, 14131 NULL_TREE, NULL_TREE); 14132 } 14133 /* *(foo *)&complexfoo => __real__ complexfoo */ 14134 else if (TREE_CODE (optype) == COMPLEX_TYPE 14135 && type == TREE_TYPE (optype)) 14136 return fold_build1_loc (loc, REALPART_EXPR, type, op); 14137 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */ 14138 else if (VECTOR_TYPE_P (optype) 14139 && type == TREE_TYPE (optype)) 14140 { 14141 tree part_width = TYPE_SIZE (type); 14142 tree index = bitsize_int (0); 14143 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, 14144 index); 14145 } 14146 } 14147 14148 if (TREE_CODE (sub) == POINTER_PLUS_EXPR 14149 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01)) 14150 { 14151 tree op00 = TREE_OPERAND (sub, 0); 14152 tree op01 = TREE_OPERAND (sub, 1); 14153 14154 STRIP_NOPS (op00); 14155 if (TREE_CODE (op00) == ADDR_EXPR) 14156 { 14157 tree op00type; 14158 op00 = TREE_OPERAND (op00, 0); 14159 op00type = TREE_TYPE (op00); 14160 14161 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */ 14162 if (VECTOR_TYPE_P (op00type) 14163 && type == TREE_TYPE (op00type) 14164 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned, 14165 but we want to treat offsets with MSB set as negative. 14166 For the code below negative offsets are invalid and 14167 TYPE_SIZE of the element is something unsigned, so 14168 check whether op01 fits into poly_int64, which implies 14169 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and 14170 then just use poly_uint64 because we want to treat the 14171 value as unsigned. */ 14172 && tree_fits_poly_int64_p (op01)) 14173 { 14174 tree part_width = TYPE_SIZE (type); 14175 poly_uint64 max_offset 14176 = (tree_to_uhwi (part_width) / BITS_PER_UNIT 14177 * TYPE_VECTOR_SUBPARTS (op00type)); 14178 if (known_lt (const_op01, max_offset)) 14179 { 14180 tree index = bitsize_int (const_op01 * BITS_PER_UNIT); 14181 return fold_build3_loc (loc, 14182 BIT_FIELD_REF, type, op00, 14183 part_width, index); 14184 } 14185 } 14186 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ 14187 else if (TREE_CODE (op00type) == COMPLEX_TYPE 14188 && type == TREE_TYPE (op00type)) 14189 { 14190 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)), 14191 const_op01)) 14192 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00); 14193 } 14194 /* ((foo *)&fooarray)[1] => fooarray[1] */ 14195 else if (TREE_CODE (op00type) == ARRAY_TYPE 14196 && type == TREE_TYPE (op00type)) 14197 { 14198 tree type_domain = TYPE_DOMAIN (op00type); 14199 tree min_val = size_zero_node; 14200 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14201 min_val = TYPE_MIN_VALUE (type_domain); 14202 offset_int off = wi::to_offset (op01); 14203 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type)); 14204 offset_int remainder; 14205 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder); 14206 if (remainder == 0 && TREE_CODE (min_val) == INTEGER_CST) 14207 { 14208 off = off + wi::to_offset (min_val); 14209 op01 = wide_int_to_tree (sizetype, off); 14210 return build4_loc (loc, ARRAY_REF, type, op00, op01, 14211 NULL_TREE, NULL_TREE); 14212 } 14213 } 14214 } 14215 } 14216 14217 /* *(foo *)fooarrptr => (*fooarrptr)[0] */ 14218 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE 14219 && type == TREE_TYPE (TREE_TYPE (subtype)) 14220 && (!in_gimple_form 14221 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14222 { 14223 tree type_domain; 14224 tree min_val = size_zero_node; 14225 sub = build_fold_indirect_ref_loc (loc, sub); 14226 type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); 14227 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14228 min_val = TYPE_MIN_VALUE (type_domain); 14229 if (in_gimple_form 14230 && TREE_CODE (min_val) != INTEGER_CST) 14231 return NULL_TREE; 14232 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE, 14233 NULL_TREE); 14234 } 14235 14236 return NULL_TREE; 14237 } 14238 14239 /* Builds an expression for an indirection through T, simplifying some 14240 cases. */ 14241 14242 tree 14243 build_fold_indirect_ref_loc (location_t loc, tree t) 14244 { 14245 tree type = TREE_TYPE (TREE_TYPE (t)); 14246 tree sub = fold_indirect_ref_1 (loc, type, t); 14247 14248 if (sub) 14249 return sub; 14250 14251 return build1_loc (loc, INDIRECT_REF, type, t); 14252 } 14253 14254 /* Given an INDIRECT_REF T, return either T or a simplified version. */ 14255 14256 tree 14257 fold_indirect_ref_loc (location_t loc, tree t) 14258 { 14259 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0)); 14260 14261 if (sub) 14262 return sub; 14263 else 14264 return t; 14265 } 14266 14267 /* Strip non-trapping, non-side-effecting tree nodes from an expression 14268 whose result is ignored. The type of the returned tree need not be 14269 the same as the original expression. */ 14270 14271 tree 14272 fold_ignored_result (tree t) 14273 { 14274 if (!TREE_SIDE_EFFECTS (t)) 14275 return integer_zero_node; 14276 14277 for (;;) 14278 switch (TREE_CODE_CLASS (TREE_CODE (t))) 14279 { 14280 case tcc_unary: 14281 t = TREE_OPERAND (t, 0); 14282 break; 14283 14284 case tcc_binary: 14285 case tcc_comparison: 14286 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14287 t = TREE_OPERAND (t, 0); 14288 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))) 14289 t = TREE_OPERAND (t, 1); 14290 else 14291 return t; 14292 break; 14293 14294 case tcc_expression: 14295 switch (TREE_CODE (t)) 14296 { 14297 case COMPOUND_EXPR: 14298 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14299 return t; 14300 t = TREE_OPERAND (t, 0); 14301 break; 14302 14303 case COND_EXPR: 14304 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)) 14305 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2))) 14306 return t; 14307 t = TREE_OPERAND (t, 0); 14308 break; 14309 14310 default: 14311 return t; 14312 } 14313 break; 14314 14315 default: 14316 return t; 14317 } 14318 } 14319 14320 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */ 14321 14322 tree 14323 round_up_loc (location_t loc, tree value, unsigned int divisor) 14324 { 14325 tree div = NULL_TREE; 14326 14327 if (divisor == 1) 14328 return value; 14329 14330 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14331 have to do anything. Only do this when we are not given a const, 14332 because in that case, this check is more expensive than just 14333 doing it. */ 14334 if (TREE_CODE (value) != INTEGER_CST) 14335 { 14336 div = build_int_cst (TREE_TYPE (value), divisor); 14337 14338 if (multiple_of_p (TREE_TYPE (value), value, div)) 14339 return value; 14340 } 14341 14342 /* If divisor is a power of two, simplify this to bit manipulation. */ 14343 if (pow2_or_zerop (divisor)) 14344 { 14345 if (TREE_CODE (value) == INTEGER_CST) 14346 { 14347 wide_int val = wi::to_wide (value); 14348 bool overflow_p; 14349 14350 if ((val & (divisor - 1)) == 0) 14351 return value; 14352 14353 overflow_p = TREE_OVERFLOW (value); 14354 val += divisor - 1; 14355 val &= (int) -divisor; 14356 if (val == 0) 14357 overflow_p = true; 14358 14359 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p); 14360 } 14361 else 14362 { 14363 tree t; 14364 14365 t = build_int_cst (TREE_TYPE (value), divisor - 1); 14366 value = size_binop_loc (loc, PLUS_EXPR, value, t); 14367 t = build_int_cst (TREE_TYPE (value), - (int) divisor); 14368 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14369 } 14370 } 14371 else 14372 { 14373 if (!div) 14374 div = build_int_cst (TREE_TYPE (value), divisor); 14375 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div); 14376 value = size_binop_loc (loc, MULT_EXPR, value, div); 14377 } 14378 14379 return value; 14380 } 14381 14382 /* Likewise, but round down. */ 14383 14384 tree 14385 round_down_loc (location_t loc, tree value, int divisor) 14386 { 14387 tree div = NULL_TREE; 14388 14389 gcc_assert (divisor > 0); 14390 if (divisor == 1) 14391 return value; 14392 14393 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14394 have to do anything. Only do this when we are not given a const, 14395 because in that case, this check is more expensive than just 14396 doing it. */ 14397 if (TREE_CODE (value) != INTEGER_CST) 14398 { 14399 div = build_int_cst (TREE_TYPE (value), divisor); 14400 14401 if (multiple_of_p (TREE_TYPE (value), value, div)) 14402 return value; 14403 } 14404 14405 /* If divisor is a power of two, simplify this to bit manipulation. */ 14406 if (pow2_or_zerop (divisor)) 14407 { 14408 tree t; 14409 14410 t = build_int_cst (TREE_TYPE (value), -divisor); 14411 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14412 } 14413 else 14414 { 14415 if (!div) 14416 div = build_int_cst (TREE_TYPE (value), divisor); 14417 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div); 14418 value = size_binop_loc (loc, MULT_EXPR, value, div); 14419 } 14420 14421 return value; 14422 } 14423 14424 /* Returns the pointer to the base of the object addressed by EXP and 14425 extracts the information about the offset of the access, storing it 14426 to PBITPOS and POFFSET. */ 14427 14428 static tree 14429 split_address_to_core_and_offset (tree exp, 14430 poly_int64_pod *pbitpos, tree *poffset) 14431 { 14432 tree core; 14433 machine_mode mode; 14434 int unsignedp, reversep, volatilep; 14435 poly_int64 bitsize; 14436 location_t loc = EXPR_LOCATION (exp); 14437 14438 if (TREE_CODE (exp) == ADDR_EXPR) 14439 { 14440 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos, 14441 poffset, &mode, &unsignedp, &reversep, 14442 &volatilep); 14443 core = build_fold_addr_expr_loc (loc, core); 14444 } 14445 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR) 14446 { 14447 core = TREE_OPERAND (exp, 0); 14448 STRIP_NOPS (core); 14449 *pbitpos = 0; 14450 *poffset = TREE_OPERAND (exp, 1); 14451 if (poly_int_tree_p (*poffset)) 14452 { 14453 poly_offset_int tem 14454 = wi::sext (wi::to_poly_offset (*poffset), 14455 TYPE_PRECISION (TREE_TYPE (*poffset))); 14456 tem <<= LOG2_BITS_PER_UNIT; 14457 if (tem.to_shwi (pbitpos)) 14458 *poffset = NULL_TREE; 14459 } 14460 } 14461 else 14462 { 14463 core = exp; 14464 *pbitpos = 0; 14465 *poffset = NULL_TREE; 14466 } 14467 14468 return core; 14469 } 14470 14471 /* Returns true if addresses of E1 and E2 differ by a constant, false 14472 otherwise. If they do, E1 - E2 is stored in *DIFF. */ 14473 14474 bool 14475 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff) 14476 { 14477 tree core1, core2; 14478 poly_int64 bitpos1, bitpos2; 14479 tree toffset1, toffset2, tdiff, type; 14480 14481 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1); 14482 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2); 14483 14484 poly_int64 bytepos1, bytepos2; 14485 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1) 14486 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2) 14487 || !operand_equal_p (core1, core2, 0)) 14488 return false; 14489 14490 if (toffset1 && toffset2) 14491 { 14492 type = TREE_TYPE (toffset1); 14493 if (type != TREE_TYPE (toffset2)) 14494 toffset2 = fold_convert (type, toffset2); 14495 14496 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2); 14497 if (!cst_and_fits_in_hwi (tdiff)) 14498 return false; 14499 14500 *diff = int_cst_value (tdiff); 14501 } 14502 else if (toffset1 || toffset2) 14503 { 14504 /* If only one of the offsets is non-constant, the difference cannot 14505 be a constant. */ 14506 return false; 14507 } 14508 else 14509 *diff = 0; 14510 14511 *diff += bytepos1 - bytepos2; 14512 return true; 14513 } 14514 14515 /* Return OFF converted to a pointer offset type suitable as offset for 14516 POINTER_PLUS_EXPR. Use location LOC for this conversion. */ 14517 tree 14518 convert_to_ptrofftype_loc (location_t loc, tree off) 14519 { 14520 return fold_convert_loc (loc, sizetype, off); 14521 } 14522 14523 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14524 tree 14525 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off) 14526 { 14527 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14528 ptr, convert_to_ptrofftype_loc (loc, off)); 14529 } 14530 14531 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14532 tree 14533 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off) 14534 { 14535 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14536 ptr, size_int (off)); 14537 } 14538 14539 /* Return a char pointer for a C string if it is a string constant 14540 or sum of string constant and integer constant. We only support 14541 string constants properly terminated with '\0' character. 14542 If STRLEN is a valid pointer, length (including terminating character) 14543 of returned string is stored to the argument. */ 14544 14545 const char * 14546 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen) 14547 { 14548 tree offset_node; 14549 14550 if (strlen) 14551 *strlen = 0; 14552 14553 src = string_constant (src, &offset_node); 14554 if (src == 0) 14555 return NULL; 14556 14557 unsigned HOST_WIDE_INT offset = 0; 14558 if (offset_node != NULL_TREE) 14559 { 14560 if (!tree_fits_uhwi_p (offset_node)) 14561 return NULL; 14562 else 14563 offset = tree_to_uhwi (offset_node); 14564 } 14565 14566 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src); 14567 const char *string = TREE_STRING_POINTER (src); 14568 14569 /* Support only properly null-terminated strings. */ 14570 if (string_length == 0 14571 || string[string_length - 1] != '\0' 14572 || offset >= string_length) 14573 return NULL; 14574 14575 if (strlen) 14576 *strlen = string_length - offset; 14577 return string + offset; 14578 } 14579 14580 #if CHECKING_P 14581 14582 namespace selftest { 14583 14584 /* Helper functions for writing tests of folding trees. */ 14585 14586 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */ 14587 14588 static void 14589 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs, 14590 tree constant) 14591 { 14592 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs)); 14593 } 14594 14595 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR 14596 wrapping WRAPPED_EXPR. */ 14597 14598 static void 14599 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs, 14600 tree wrapped_expr) 14601 { 14602 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs); 14603 ASSERT_NE (wrapped_expr, result); 14604 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result)); 14605 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0)); 14606 } 14607 14608 /* Verify that various arithmetic binary operations are folded 14609 correctly. */ 14610 14611 static void 14612 test_arithmetic_folding () 14613 { 14614 tree type = integer_type_node; 14615 tree x = create_tmp_var_raw (type, "x"); 14616 tree zero = build_zero_cst (type); 14617 tree one = build_int_cst (type, 1); 14618 14619 /* Addition. */ 14620 /* 1 <-- (0 + 1) */ 14621 assert_binop_folds_to_const (zero, PLUS_EXPR, one, 14622 one); 14623 assert_binop_folds_to_const (one, PLUS_EXPR, zero, 14624 one); 14625 14626 /* (nonlvalue)x <-- (x + 0) */ 14627 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero, 14628 x); 14629 14630 /* Subtraction. */ 14631 /* 0 <-- (x - x) */ 14632 assert_binop_folds_to_const (x, MINUS_EXPR, x, 14633 zero); 14634 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero, 14635 x); 14636 14637 /* Multiplication. */ 14638 /* 0 <-- (x * 0) */ 14639 assert_binop_folds_to_const (x, MULT_EXPR, zero, 14640 zero); 14641 14642 /* (nonlvalue)x <-- (x * 1) */ 14643 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one, 14644 x); 14645 } 14646 14647 /* Verify that various binary operations on vectors are folded 14648 correctly. */ 14649 14650 static void 14651 test_vector_folding () 14652 { 14653 tree inner_type = integer_type_node; 14654 tree type = build_vector_type (inner_type, 4); 14655 tree zero = build_zero_cst (type); 14656 tree one = build_one_cst (type); 14657 14658 /* Verify equality tests that return a scalar boolean result. */ 14659 tree res_type = boolean_type_node; 14660 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one))); 14661 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero))); 14662 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one))); 14663 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one))); 14664 } 14665 14666 /* Verify folding of VEC_DUPLICATE_EXPRs. */ 14667 14668 static void 14669 test_vec_duplicate_folding () 14670 { 14671 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype); 14672 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode); 14673 /* This will be 1 if VEC_MODE isn't a vector mode. */ 14674 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode); 14675 14676 tree type = build_vector_type (ssizetype, nunits); 14677 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5)); 14678 tree dup5_cst = build_vector_from_val (type, ssize_int (5)); 14679 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0)); 14680 } 14681 14682 /* Run all of the selftests within this file. */ 14683 14684 void 14685 fold_const_c_tests () 14686 { 14687 test_arithmetic_folding (); 14688 test_vector_folding (); 14689 test_vec_duplicate_folding (); 14690 } 14691 14692 } // namespace selftest 14693 14694 #endif /* CHECKING_P */ 14695