xref: /dragonfly/contrib/gcc-8.0/gcc/ggc-common.c (revision 8bf5b238)
1 /* Simple garbage collection for the GNU compiler.
2    Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* Generic garbage collection (GC) functions and data, not specific to
21    any particular GC implementation.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "timevar.h"
27 #include "diagnostic-core.h"
28 #include "ggc-internal.h"
29 #include "params.h"
30 #include "hosthooks.h"
31 #include "plugin.h"
32 
33 /* When set, ggc_collect will do collection.  */
34 bool ggc_force_collect;
35 
36 /* When true, protect the contents of the identifier hash table.  */
37 bool ggc_protect_identifiers = true;
38 
39 /* Statistics about the allocation.  */
40 static ggc_statistics *ggc_stats;
41 
42 struct traversal_state;
43 
44 static int compare_ptr_data (const void *, const void *);
45 static void relocate_ptrs (void *, void *);
46 static void write_pch_globals (const struct ggc_root_tab * const *tab,
47 			       struct traversal_state *state);
48 
49 /* Maintain global roots that are preserved during GC.  */
50 
51 /* This extra vector of dynamically registered root_tab-s is used by
52    ggc_mark_roots and gives the ability to dynamically add new GGC root
53    tables, for instance from some plugins; this vector is on the heap
54    since it is used by GGC internally.  */
55 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
56 static vec<const_ggc_root_tab_t> extra_root_vec;
57 
58 /* Dynamically register a new GGC root table RT. This is useful for
59    plugins. */
60 
61 void
62 ggc_register_root_tab (const struct ggc_root_tab* rt)
63 {
64   if (rt)
65     extra_root_vec.safe_push (rt);
66 }
67 
68 /* Mark all the roots in the table RT.  */
69 
70 static void
71 ggc_mark_root_tab (const_ggc_root_tab_t rt)
72 {
73   size_t i;
74 
75   for ( ; rt->base != NULL; rt++)
76     for (i = 0; i < rt->nelt; i++)
77       (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
78 }
79 
80 /* Iterate through all registered roots and mark each element.  */
81 
82 void
83 ggc_mark_roots (void)
84 {
85   const struct ggc_root_tab *const *rt;
86   const_ggc_root_tab_t rtp, rti;
87   size_t i;
88 
89   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
90     for (rti = *rt; rti->base != NULL; rti++)
91       memset (rti->base, 0, rti->stride);
92 
93   for (rt = gt_ggc_rtab; *rt; rt++)
94     ggc_mark_root_tab (*rt);
95 
96   FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
97     ggc_mark_root_tab (rtp);
98 
99   if (ggc_protect_identifiers)
100     ggc_mark_stringpool ();
101 
102   gt_clear_caches ();
103 
104   if (! ggc_protect_identifiers)
105     ggc_purge_stringpool ();
106 
107   /* Some plugins may call ggc_set_mark from here.  */
108   invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
109 }
110 
111 /* Allocate a block of memory, then clear it.  */
112 void *
113 ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n
114 			    MEM_STAT_DECL)
115 {
116   void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT);
117   memset (buf, 0, size);
118   return buf;
119 }
120 
121 /* Resize a block of memory, possibly re-allocating it.  */
122 void *
123 ggc_realloc (void *x, size_t size MEM_STAT_DECL)
124 {
125   void *r;
126   size_t old_size;
127 
128   if (x == NULL)
129     return ggc_internal_alloc (size PASS_MEM_STAT);
130 
131   old_size = ggc_get_size (x);
132 
133   if (size <= old_size)
134     {
135       /* Mark the unwanted memory as unaccessible.  We also need to make
136 	 the "new" size accessible, since ggc_get_size returns the size of
137 	 the pool, not the size of the individually allocated object, the
138 	 size which was previously made accessible.  Unfortunately, we
139 	 don't know that previously allocated size.  Without that
140 	 knowledge we have to lose some initialization-tracking for the
141 	 old parts of the object.  An alternative is to mark the whole
142 	 old_size as reachable, but that would lose tracking of writes
143 	 after the end of the object (by small offsets).  Discard the
144 	 handle to avoid handle leak.  */
145       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
146 						    old_size - size));
147       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
148       return x;
149     }
150 
151   r = ggc_internal_alloc (size PASS_MEM_STAT);
152 
153   /* Since ggc_get_size returns the size of the pool, not the size of the
154      individually allocated object, we'd access parts of the old object
155      that were marked invalid with the memcpy below.  We lose a bit of the
156      initialization-tracking since some of it may be uninitialized.  */
157   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
158 
159   memcpy (r, x, old_size);
160 
161   /* The old object is not supposed to be used anymore.  */
162   ggc_free (x);
163 
164   return r;
165 }
166 
167 void *
168 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
169 				    size_t n ATTRIBUTE_UNUSED)
170 {
171   gcc_assert (c * n == sizeof (struct htab));
172   return ggc_cleared_alloc<htab> ();
173 }
174 
175 /* TODO: once we actually use type information in GGC, create a new tag
176    gt_gcc_ptr_array and use it for pointer arrays.  */
177 void *
178 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
179 {
180   gcc_assert (sizeof (PTR *) == n);
181   return ggc_cleared_vec_alloc<PTR *> (c);
182 }
183 
184 /* These are for splay_tree_new_ggc.  */
185 void *
186 ggc_splay_alloc (int sz, void *nl)
187 {
188   gcc_assert (!nl);
189   return ggc_internal_alloc (sz);
190 }
191 
192 void
193 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
194 {
195   gcc_assert (!nl);
196 }
197 
198 /* Print statistics that are independent of the collector in use.  */
199 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
200 		  ? (x) \
201 		  : ((x) < 1024*1024*10 \
202 		     ? (x) / 1024 \
203 		     : (x) / (1024*1024))))
204 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
205 
206 void
207 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
208 			     ggc_statistics *stats)
209 {
210   /* Set the pointer so that during collection we will actually gather
211      the statistics.  */
212   ggc_stats = stats;
213 
214   /* Then do one collection to fill in the statistics.  */
215   ggc_collect ();
216 
217   /* At present, we don't really gather any interesting statistics.  */
218 
219   /* Don't gather statistics any more.  */
220   ggc_stats = NULL;
221 }
222 
223 /* Functions for saving and restoring GCable memory to disk.  */
224 
225 struct ptr_data
226 {
227   void *obj;
228   void *note_ptr_cookie;
229   gt_note_pointers note_ptr_fn;
230   gt_handle_reorder reorder_fn;
231   size_t size;
232   void *new_addr;
233 };
234 
235 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
236 
237 /* Helper for hashing saving_htab.  */
238 
239 struct saving_hasher : free_ptr_hash <ptr_data>
240 {
241   typedef void *compare_type;
242   static inline hashval_t hash (const ptr_data *);
243   static inline bool equal (const ptr_data *, const void *);
244 };
245 
246 inline hashval_t
247 saving_hasher::hash (const ptr_data *p)
248 {
249   return POINTER_HASH (p->obj);
250 }
251 
252 inline bool
253 saving_hasher::equal (const ptr_data *p1, const void *p2)
254 {
255   return p1->obj == p2;
256 }
257 
258 static hash_table<saving_hasher> *saving_htab;
259 
260 /* Register an object in the hash table.  */
261 
262 int
263 gt_pch_note_object (void *obj, void *note_ptr_cookie,
264 		    gt_note_pointers note_ptr_fn)
265 {
266   struct ptr_data **slot;
267 
268   if (obj == NULL || obj == (void *) 1)
269     return 0;
270 
271   slot = (struct ptr_data **)
272     saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
273   if (*slot != NULL)
274     {
275       gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
276 		  && (*slot)->note_ptr_cookie == note_ptr_cookie);
277       return 0;
278     }
279 
280   *slot = XCNEW (struct ptr_data);
281   (*slot)->obj = obj;
282   (*slot)->note_ptr_fn = note_ptr_fn;
283   (*slot)->note_ptr_cookie = note_ptr_cookie;
284   if (note_ptr_fn == gt_pch_p_S)
285     (*slot)->size = strlen ((const char *)obj) + 1;
286   else
287     (*slot)->size = ggc_get_size (obj);
288   return 1;
289 }
290 
291 /* Register an object in the hash table.  */
292 
293 void
294 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
295 		     gt_handle_reorder reorder_fn)
296 {
297   struct ptr_data *data;
298 
299   if (obj == NULL || obj == (void *) 1)
300     return;
301 
302   data = (struct ptr_data *)
303     saving_htab->find_with_hash (obj, POINTER_HASH (obj));
304   gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
305 
306   data->reorder_fn = reorder_fn;
307 }
308 
309 /* Handy state for the traversal functions.  */
310 
311 struct traversal_state
312 {
313   FILE *f;
314   struct ggc_pch_data *d;
315   size_t count;
316   struct ptr_data **ptrs;
317   size_t ptrs_i;
318 };
319 
320 /* Callbacks for htab_traverse.  */
321 
322 int
323 ggc_call_count (ptr_data **slot, traversal_state *state)
324 {
325   struct ptr_data *d = *slot;
326 
327   ggc_pch_count_object (state->d, d->obj, d->size,
328 			d->note_ptr_fn == gt_pch_p_S);
329   state->count++;
330   return 1;
331 }
332 
333 int
334 ggc_call_alloc (ptr_data **slot, traversal_state *state)
335 {
336   struct ptr_data *d = *slot;
337 
338   d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
339 				      d->note_ptr_fn == gt_pch_p_S);
340   state->ptrs[state->ptrs_i++] = d;
341   return 1;
342 }
343 
344 /* Callback for qsort.  */
345 
346 static int
347 compare_ptr_data (const void *p1_p, const void *p2_p)
348 {
349   const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
350   const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
351   return (((size_t)p1->new_addr > (size_t)p2->new_addr)
352 	  - ((size_t)p1->new_addr < (size_t)p2->new_addr));
353 }
354 
355 /* Callbacks for note_ptr_fn.  */
356 
357 static void
358 relocate_ptrs (void *ptr_p, void *state_p)
359 {
360   void **ptr = (void **)ptr_p;
361   struct traversal_state *state ATTRIBUTE_UNUSED
362     = (struct traversal_state *)state_p;
363   struct ptr_data *result;
364 
365   if (*ptr == NULL || *ptr == (void *)1)
366     return;
367 
368   result = (struct ptr_data *)
369     saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr));
370   gcc_assert (result);
371   *ptr = result->new_addr;
372 }
373 
374 /* Write out, after relocation, the pointers in TAB.  */
375 static void
376 write_pch_globals (const struct ggc_root_tab * const *tab,
377 		   struct traversal_state *state)
378 {
379   const struct ggc_root_tab *const *rt;
380   const struct ggc_root_tab *rti;
381   size_t i;
382 
383   for (rt = tab; *rt; rt++)
384     for (rti = *rt; rti->base != NULL; rti++)
385       for (i = 0; i < rti->nelt; i++)
386 	{
387 	  void *ptr = *(void **)((char *)rti->base + rti->stride * i);
388 	  struct ptr_data *new_ptr;
389 	  if (ptr == NULL || ptr == (void *)1)
390 	    {
391 	      if (fwrite (&ptr, sizeof (void *), 1, state->f)
392 		  != 1)
393 		fatal_error (input_location, "can%'t write PCH file: %m");
394 	    }
395 	  else
396 	    {
397 	      new_ptr = (struct ptr_data *)
398 		saving_htab->find_with_hash (ptr, POINTER_HASH (ptr));
399 	      if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
400 		  != 1)
401 		fatal_error (input_location, "can%'t write PCH file: %m");
402 	    }
403 	}
404 }
405 
406 /* Hold the information we need to mmap the file back in.  */
407 
408 struct mmap_info
409 {
410   size_t offset;
411   size_t size;
412   void *preferred_base;
413 };
414 
415 /* Write out the state of the compiler to F.  */
416 
417 void
418 gt_pch_save (FILE *f)
419 {
420   const struct ggc_root_tab *const *rt;
421   const struct ggc_root_tab *rti;
422   size_t i;
423   struct traversal_state state;
424   char *this_object = NULL;
425   size_t this_object_size = 0;
426   struct mmap_info mmi;
427   const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();
428 
429   gt_pch_save_stringpool ();
430 
431   timevar_push (TV_PCH_PTR_REALLOC);
432   saving_htab = new hash_table<saving_hasher> (50000);
433 
434   for (rt = gt_ggc_rtab; *rt; rt++)
435     for (rti = *rt; rti->base != NULL; rti++)
436       for (i = 0; i < rti->nelt; i++)
437 	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
438 
439   /* Prepare the objects for writing, determine addresses and such.  */
440   state.f = f;
441   state.d = init_ggc_pch ();
442   state.count = 0;
443   saving_htab->traverse <traversal_state *, ggc_call_count> (&state);
444 
445   mmi.size = ggc_pch_total_size (state.d);
446 
447   /* Try to arrange things so that no relocation is necessary, but
448      don't try very hard.  On most platforms, this will always work,
449      and on the rest it's a lot of work to do better.
450      (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
451      HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
452   mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
453 
454   ggc_pch_this_base (state.d, mmi.preferred_base);
455 
456   state.ptrs = XNEWVEC (struct ptr_data *, state.count);
457   state.ptrs_i = 0;
458 
459   saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state);
460   timevar_pop (TV_PCH_PTR_REALLOC);
461 
462   timevar_push (TV_PCH_PTR_SORT);
463   qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
464   timevar_pop (TV_PCH_PTR_SORT);
465 
466   /* Write out all the scalar variables.  */
467   for (rt = gt_pch_scalar_rtab; *rt; rt++)
468     for (rti = *rt; rti->base != NULL; rti++)
469       if (fwrite (rti->base, rti->stride, 1, f) != 1)
470 	fatal_error (input_location, "can%'t write PCH file: %m");
471 
472   /* Write out all the global pointers, after translation.  */
473   write_pch_globals (gt_ggc_rtab, &state);
474 
475   /* Pad the PCH file so that the mmapped area starts on an allocation
476      granularity (usually page) boundary.  */
477   {
478     long o;
479     o = ftell (state.f) + sizeof (mmi);
480     if (o == -1)
481       fatal_error (input_location, "can%'t get position in PCH file: %m");
482     mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
483     if (mmi.offset == mmap_offset_alignment)
484       mmi.offset = 0;
485     mmi.offset += o;
486   }
487   if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
488     fatal_error (input_location, "can%'t write PCH file: %m");
489   if (mmi.offset != 0
490       && fseek (state.f, mmi.offset, SEEK_SET) != 0)
491     fatal_error (input_location, "can%'t write padding to PCH file: %m");
492 
493   ggc_pch_prepare_write (state.d, state.f);
494 
495 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
496   vec<char> vbits = vNULL;
497 #endif
498 
499   /* Actually write out the objects.  */
500   for (i = 0; i < state.count; i++)
501     {
502       if (this_object_size < state.ptrs[i]->size)
503 	{
504 	  this_object_size = state.ptrs[i]->size;
505 	  this_object = XRESIZEVAR (char, this_object, this_object_size);
506 	}
507 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
508       /* obj might contain uninitialized bytes, e.g. in the trailing
509 	 padding of the object.  Avoid warnings by making the memory
510 	 temporarily defined and then restoring previous state.  */
511       int get_vbits = 0;
512       size_t valid_size = state.ptrs[i]->size;
513       if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
514 	{
515 	  if (vbits.length () < valid_size)
516 	    vbits.safe_grow (valid_size);
517 	  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
518 					  vbits.address (), valid_size);
519 	  if (get_vbits == 3)
520 	    {
521 	      /* We assume that first part of obj is addressable, and
522 		 the rest is unaddressable.  Find out where the boundary is
523 		 using binary search.  */
524 	      size_t lo = 0, hi = valid_size;
525 	      while (hi > lo)
526 		{
527 		  size_t mid = (lo + hi) / 2;
528 		  get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
529 						  + mid, vbits.address (),
530 						  1);
531 		  if (get_vbits == 3)
532 		    hi = mid;
533 		  else if (get_vbits == 1)
534 		    lo = mid + 1;
535 		  else
536 		    break;
537 		}
538 	      if (get_vbits == 1 || get_vbits == 3)
539 		{
540 		  valid_size = lo;
541 		  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
542 						  vbits.address (),
543 						  valid_size);
544 		}
545 	    }
546 	  if (get_vbits == 1)
547 	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
548 							 state.ptrs[i]->size));
549 	}
550 #endif
551       memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
552       if (state.ptrs[i]->reorder_fn != NULL)
553 	state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
554 				   state.ptrs[i]->note_ptr_cookie,
555 				   relocate_ptrs, &state);
556       state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
557 				  state.ptrs[i]->note_ptr_cookie,
558 				  relocate_ptrs, &state);
559       ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
560 			    state.ptrs[i]->new_addr, state.ptrs[i]->size,
561 			    state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
562       if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
563 	memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
564 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
565       if (__builtin_expect (get_vbits == 1, 0))
566 	{
567 	  (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
568 				     valid_size);
569 	  if (valid_size != state.ptrs[i]->size)
570 	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
571 							  state.ptrs[i]->obj
572 							  + valid_size,
573 							  state.ptrs[i]->size
574 							  - valid_size));
575 	}
576 #endif
577     }
578 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
579   vbits.release ();
580 #endif
581 
582   ggc_pch_finish (state.d, state.f);
583   gt_pch_fixup_stringpool ();
584 
585   XDELETE (state.ptrs);
586   XDELETE (this_object);
587   delete saving_htab;
588   saving_htab = NULL;
589 }
590 
591 /* Read the state of the compiler back in from F.  */
592 
593 void
594 gt_pch_restore (FILE *f)
595 {
596   const struct ggc_root_tab *const *rt;
597   const struct ggc_root_tab *rti;
598   size_t i;
599   struct mmap_info mmi;
600   int result;
601 
602   /* Delete any deletable objects.  This makes ggc_pch_read much
603      faster, as it can be sure that no GCable objects remain other
604      than the ones just read in.  */
605   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
606     for (rti = *rt; rti->base != NULL; rti++)
607       memset (rti->base, 0, rti->stride);
608 
609   /* Read in all the scalar variables.  */
610   for (rt = gt_pch_scalar_rtab; *rt; rt++)
611     for (rti = *rt; rti->base != NULL; rti++)
612       if (fread (rti->base, rti->stride, 1, f) != 1)
613 	fatal_error (input_location, "can%'t read PCH file: %m");
614 
615   /* Read in all the global pointers, in 6 easy loops.  */
616   for (rt = gt_ggc_rtab; *rt; rt++)
617     for (rti = *rt; rti->base != NULL; rti++)
618       for (i = 0; i < rti->nelt; i++)
619 	if (fread ((char *)rti->base + rti->stride * i,
620 		   sizeof (void *), 1, f) != 1)
621 	  fatal_error (input_location, "can%'t read PCH file: %m");
622 
623   if (fread (&mmi, sizeof (mmi), 1, f) != 1)
624     fatal_error (input_location, "can%'t read PCH file: %m");
625 
626   result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
627 					  fileno (f), mmi.offset);
628   if (result < 0)
629     fatal_error (input_location, "had to relocate PCH");
630   if (result == 0)
631     {
632       if (fseek (f, mmi.offset, SEEK_SET) != 0
633 	  || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
634 	fatal_error (input_location, "can%'t read PCH file: %m");
635     }
636   else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
637     fatal_error (input_location, "can%'t read PCH file: %m");
638 
639   ggc_pch_read (f, mmi.preferred_base);
640 
641   gt_pch_restore_stringpool ();
642 }
643 
644 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
645    Select no address whatsoever, and let gt_pch_save choose what it will with
646    malloc, presumably.  */
647 
648 void *
649 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
650 			    int fd ATTRIBUTE_UNUSED)
651 {
652   return NULL;
653 }
654 
655 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
656    Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
657    same as base, indicating that the memory has been allocated but needs to
658    be read in from the file.  Return -1 if the address differs, to relocation
659    of the PCH file would be required.  */
660 
661 int
662 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
663 			    size_t offset ATTRIBUTE_UNUSED)
664 {
665   void *addr = xmalloc (size);
666   return (addr == base) - 1;
667 }
668 
669 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
670    alignment required for allocating virtual memory. Usually this is the
671    same as pagesize.  */
672 
673 size_t
674 default_gt_pch_alloc_granularity (void)
675 {
676   return getpagesize ();
677 }
678 
679 #if HAVE_MMAP_FILE
680 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
681    We temporarily allocate SIZE bytes, and let the kernel place the data
682    wherever it will.  If it worked, that's our spot, if not we're likely
683    to be in trouble.  */
684 
685 void *
686 mmap_gt_pch_get_address (size_t size, int fd)
687 {
688   void *ret;
689 
690   ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
691   if (ret == (void *) MAP_FAILED)
692     ret = NULL;
693   else
694     munmap ((caddr_t) ret, size);
695 
696   return ret;
697 }
698 
699 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
700    Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
701    mapping the data at BASE, -1 if we couldn't.
702 
703    This version assumes that the kernel honors the START operand of mmap
704    even without MAP_FIXED if START through START+SIZE are not currently
705    mapped with something.  */
706 
707 int
708 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
709 {
710   void *addr;
711 
712   /* We're called with size == 0 if we're not planning to load a PCH
713      file at all.  This allows the hook to free any static space that
714      we might have allocated at link time.  */
715   if (size == 0)
716     return -1;
717 
718   addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
719 	       fd, offset);
720 
721   return addr == base ? 1 : -1;
722 }
723 #endif /* HAVE_MMAP_FILE */
724 
725 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
726 
727 /* Modify the bound based on rlimits.  */
728 static double
729 ggc_rlimit_bound (double limit)
730 {
731 #if defined(HAVE_GETRLIMIT)
732   struct rlimit rlim;
733 # if defined (RLIMIT_AS)
734   /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
735      any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
736   if (getrlimit (RLIMIT_AS, &rlim) == 0
737       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
738       && rlim.rlim_cur < limit)
739     limit = rlim.rlim_cur;
740 # elif defined (RLIMIT_DATA)
741   /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
742      might be on an OS that has a broken mmap.  (Others don't bound
743      mmap at all, apparently.)  */
744   if (getrlimit (RLIMIT_DATA, &rlim) == 0
745       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
746       && rlim.rlim_cur < limit
747       /* Darwin has this horribly bogus default setting of
748 	 RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
749 	 appears to be ignored.  Ignore such silliness.  If a limit
750 	 this small was actually effective for mmap, GCC wouldn't even
751 	 start up.  */
752       && rlim.rlim_cur >= 8 * 1024 * 1024)
753     limit = rlim.rlim_cur;
754 # endif /* RLIMIT_AS or RLIMIT_DATA */
755 #endif /* HAVE_GETRLIMIT */
756 
757   return limit;
758 }
759 
760 /* Heuristic to set a default for GGC_MIN_EXPAND.  */
761 static int
762 ggc_min_expand_heuristic (void)
763 {
764   double min_expand = physmem_total ();
765 
766   /* Adjust for rlimits.  */
767   min_expand = ggc_rlimit_bound (min_expand);
768 
769   /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
770      a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
771   min_expand /= 1024*1024*1024;
772   min_expand *= 70;
773   min_expand = MIN (min_expand, 70);
774   min_expand += 30;
775 
776   return min_expand;
777 }
778 
779 /* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
780 static int
781 ggc_min_heapsize_heuristic (void)
782 {
783   double phys_kbytes = physmem_total ();
784   double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
785 
786   phys_kbytes /= 1024; /* Convert to Kbytes.  */
787   limit_kbytes /= 1024;
788 
789   /* The heuristic is RAM/8, with a lower bound of 4M and an upper
790      bound of 128M (when RAM >= 1GB).  */
791   phys_kbytes /= 8;
792 
793 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
794   /* Try not to overrun the RSS limit while doing garbage collection.
795      The RSS limit is only advisory, so no margin is subtracted.  */
796  {
797    struct rlimit rlim;
798    if (getrlimit (RLIMIT_RSS, &rlim) == 0
799        && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
800      phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
801  }
802 # endif
803 
804   /* Don't blindly run over our data limit; do GC at least when the
805      *next* GC would be within 20Mb of the limit or within a quarter of
806      the limit, whichever is larger.  If GCC does hit the data limit,
807      compilation will fail, so this tries to be conservative.  */
808   limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
809   limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
810   phys_kbytes = MIN (phys_kbytes, limit_kbytes);
811 
812   phys_kbytes = MAX (phys_kbytes, 4 * 1024);
813   phys_kbytes = MIN (phys_kbytes, 128 * 1024);
814 
815   return phys_kbytes;
816 }
817 #endif
818 
819 void
820 init_ggc_heuristics (void)
821 {
822 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
823   set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ());
824   set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ());
825 #endif
826 }
827 
828 /* GGC memory usage.  */
829 struct ggc_usage: public mem_usage
830 {
831   /* Default constructor.  */
832   ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
833   /* Constructor.  */
834   ggc_usage (size_t allocated, size_t times, size_t peak,
835 	     size_t freed, size_t collected, size_t overhead)
836     : mem_usage (allocated, times, peak),
837     m_freed (freed), m_collected (collected), m_overhead (overhead) {}
838 
839   /* Equality operator.  */
840   inline bool
841   operator== (const ggc_usage &second) const
842   {
843     return (get_balance () == second.get_balance ()
844 	    && m_peak == second.m_peak
845 	    && m_times == second.m_times);
846   }
847 
848   /* Comparison operator.  */
849   inline bool
850   operator< (const ggc_usage &second) const
851   {
852     if (*this == second)
853       return false;
854 
855     return (get_balance () == second.get_balance () ?
856 	    (m_peak == second.m_peak ? m_times < second.m_times
857 	     : m_peak < second.m_peak)
858 	      : get_balance () < second.get_balance ());
859   }
860 
861   /* Register overhead of ALLOCATED and OVERHEAD bytes.  */
862   inline void
863   register_overhead (size_t allocated, size_t overhead)
864   {
865     m_allocated += allocated;
866     m_overhead += overhead;
867     m_times++;
868   }
869 
870   /* Release overhead of SIZE bytes.  */
871   inline void
872   release_overhead (size_t size)
873   {
874     m_freed += size;
875   }
876 
877   /* Sum the usage with SECOND usage.  */
878   ggc_usage
879   operator+ (const ggc_usage &second)
880   {
881     return ggc_usage (m_allocated + second.m_allocated,
882 		      m_times + second.m_times,
883 		      m_peak + second.m_peak,
884 		      m_freed + second.m_freed,
885 		      m_collected + second.m_collected,
886 		      m_overhead + second.m_overhead);
887   }
888 
889   /* Dump usage with PREFIX, where TOTAL is sum of all rows.  */
890   inline void
891   dump (const char *prefix, ggc_usage &total) const
892   {
893     long balance = get_balance ();
894     fprintf (stderr,
895 	     "%-48s %10li:%5.1f%%%10li:%5.1f%%"
896 	     "%10li:%5.1f%%%10li:%5.1f%%%10li\n",
897 	     prefix, (long)m_collected,
898 	     get_percent (m_collected, total.m_collected),
899 	     (long)m_freed, get_percent (m_freed, total.m_freed),
900 	     (long)balance, get_percent (balance, total.get_balance ()),
901 	     (long)m_overhead, get_percent (m_overhead, total.m_overhead),
902 	     (long)m_times);
903   }
904 
905   /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
906   inline void
907   dump (mem_location *loc, ggc_usage &total) const
908   {
909     char *location_string = loc->to_string ();
910 
911     dump (location_string, total);
912 
913     free (location_string);
914   }
915 
916   /* Dump footer.  */
917   inline void
918   dump_footer ()
919   {
920     print_dash_line ();
921     dump ("Total", *this);
922     print_dash_line ();
923   }
924 
925   /* Get balance which is GGC allocation leak.  */
926   inline long
927   get_balance () const
928   {
929     return m_allocated + m_overhead - m_collected - m_freed;
930   }
931 
932   typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;
933 
934   /* Compare wrapper used by qsort method.  */
935   static int
936   compare (const void *first, const void *second)
937   {
938     const mem_pair_t f = *(const mem_pair_t *)first;
939     const mem_pair_t s = *(const mem_pair_t *)second;
940 
941     if (*f.second == *s.second)
942       return 0;
943 
944     return *f.second < *s.second ? 1 : -1;
945   }
946 
947   /* Compare rows in final GGC summary dump.  */
948   static int
949   compare_final (const void *first, const void *second)
950   {
951     typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;
952 
953     const ggc_usage *f = ((const mem_pair_t *)first)->second;
954     const ggc_usage *s = ((const mem_pair_t *)second)->second;
955 
956     size_t a = f->m_allocated + f->m_overhead - f->m_freed;
957     size_t b = s->m_allocated + s->m_overhead - s->m_freed;
958 
959     return a == b ? 0 : (a < b ? 1 : -1);
960   }
961 
962   /* Dump header with NAME.  */
963   static inline void
964   dump_header (const char *name)
965   {
966     fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Garbage", "Freed",
967 	     "Leak", "Overhead", "Times");
968     print_dash_line ();
969   }
970 
971   /* Freed memory in bytes.  */
972   size_t m_freed;
973   /* Collected memory in bytes.  */
974   size_t m_collected;
975   /* Overhead memory in bytes.  */
976   size_t m_overhead;
977 };
978 
979 /* GCC memory description.  */
980 static mem_alloc_description<ggc_usage> ggc_mem_desc;
981 
982 /* Dump per-site memory statistics.  */
983 
984 void
985 dump_ggc_loc_statistics (bool final)
986 {
987   if (! GATHER_STATISTICS)
988     return;
989 
990   ggc_force_collect = true;
991   ggc_collect ();
992 
993   ggc_mem_desc.dump (GGC_ORIGIN, final ? ggc_usage::compare_final : NULL);
994 
995   ggc_force_collect = false;
996 }
997 
998 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
999 void
1000 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL)
1001 {
1002   ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false
1003 						       FINAL_PASS_MEM_STAT);
1004 
1005   ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr);
1006   usage->register_overhead (allocated, overhead);
1007 }
1008 
1009 /* Notice that the pointer has been freed.  */
1010 void
1011 ggc_free_overhead (void *ptr)
1012 {
1013   ggc_mem_desc.release_object_overhead (ptr);
1014 }
1015 
1016 /* After live values has been marked, walk all recorded pointers and see if
1017    they are still live.  */
1018 void
1019 ggc_prune_overhead_list (void)
1020 {
1021   typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t;
1022 
1023   map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin ();
1024 
1025   for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it)
1026     if (!ggc_marked_p ((*it).first))
1027       (*it).second.first->m_collected += (*it).second.second;
1028 
1029   delete ggc_mem_desc.m_reverse_object_map;
1030   ggc_mem_desc.m_reverse_object_map = new map_t (13, false, false);
1031 }
1032