1 /* Machine mode definitions for GCC; included by rtl.h and tree.h. 2 Copyright (C) 1991-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #ifndef HAVE_MACHINE_MODES 21 #define HAVE_MACHINE_MODES 22 23 typedef opt_mode<machine_mode> opt_machine_mode; 24 25 extern CONST_MODE_SIZE poly_uint16_pod mode_size[NUM_MACHINE_MODES]; 26 extern CONST_MODE_PRECISION poly_uint16_pod mode_precision[NUM_MACHINE_MODES]; 27 extern const unsigned char mode_inner[NUM_MACHINE_MODES]; 28 extern CONST_MODE_NUNITS poly_uint16_pod mode_nunits[NUM_MACHINE_MODES]; 29 extern CONST_MODE_UNIT_SIZE unsigned char mode_unit_size[NUM_MACHINE_MODES]; 30 extern const unsigned short mode_unit_precision[NUM_MACHINE_MODES]; 31 extern const unsigned char mode_wider[NUM_MACHINE_MODES]; 32 extern const unsigned char mode_2xwider[NUM_MACHINE_MODES]; 33 34 template<typename T> 35 struct mode_traits 36 { 37 /* For use by the machmode support code only. 38 39 There are cases in which the machmode support code needs to forcibly 40 convert a machine_mode to a specific mode class T, and in which the 41 context guarantees that this is valid without the need for an assert. 42 This can be done using: 43 44 return typename mode_traits<T>::from_int (mode); 45 46 when returning a T and: 47 48 res = T (typename mode_traits<T>::from_int (mode)); 49 50 when assigning to a value RES that must be assignment-compatible 51 with (but possibly not the same as) T. */ 52 #ifdef USE_ENUM_MODES 53 /* Allow direct conversion of enums to specific mode classes only 54 when USE_ENUM_MODES is defined. This is only intended for use 55 by gencondmd, so that it can tell more easily when .md conditions 56 are always false. */ 57 typedef machine_mode from_int; 58 #else 59 /* Here we use an enum type distinct from machine_mode but with the 60 same range as machine_mode. T should have a constructor that 61 accepts this enum type; it should not have a constructor that 62 accepts machine_mode. 63 64 We use this somewhat indirect approach to avoid too many constructor 65 calls when the compiler is built with -O0. For example, even in 66 unoptimized code, the return statement above would construct the 67 returned T directly from the numerical value of MODE. */ 68 enum from_int { dummy = MAX_MACHINE_MODE }; 69 #endif 70 }; 71 72 template<> 73 struct mode_traits<machine_mode> 74 { 75 /* machine_mode itself needs no conversion. */ 76 typedef machine_mode from_int; 77 }; 78 79 /* Always treat machine modes as fixed-size while compiling code specific 80 to targets that have no variable-size modes. */ 81 #if defined (IN_TARGET_CODE) && NUM_POLY_INT_COEFFS == 1 82 #define ONLY_FIXED_SIZE_MODES 1 83 #else 84 #define ONLY_FIXED_SIZE_MODES 0 85 #endif 86 87 /* Get the name of mode MODE as a string. */ 88 89 extern const char * const mode_name[NUM_MACHINE_MODES]; 90 #define GET_MODE_NAME(MODE) mode_name[MODE] 91 92 /* Mode classes. */ 93 94 #include "mode-classes.def" 95 #define DEF_MODE_CLASS(M) M 96 enum mode_class { MODE_CLASSES, MAX_MODE_CLASS }; 97 #undef DEF_MODE_CLASS 98 #undef MODE_CLASSES 99 100 /* Get the general kind of object that mode MODE represents 101 (integer, floating, complex, etc.) */ 102 103 extern const unsigned char mode_class[NUM_MACHINE_MODES]; 104 #define GET_MODE_CLASS(MODE) ((enum mode_class) mode_class[MODE]) 105 106 /* Nonzero if MODE is an integral mode. */ 107 #define INTEGRAL_MODE_P(MODE) \ 108 (GET_MODE_CLASS (MODE) == MODE_INT \ 109 || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT \ 110 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \ 111 || GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \ 112 || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT) 113 114 /* Nonzero if MODE is a floating-point mode. */ 115 #define FLOAT_MODE_P(MODE) \ 116 (GET_MODE_CLASS (MODE) == MODE_FLOAT \ 117 || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT \ 118 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \ 119 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT) 120 121 /* Nonzero if MODE is a complex mode. */ 122 #define COMPLEX_MODE_P(MODE) \ 123 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \ 124 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) 125 126 /* Nonzero if MODE is a vector mode. */ 127 #define VECTOR_MODE_P(MODE) \ 128 (GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \ 129 || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \ 130 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT \ 131 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT \ 132 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT \ 133 || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM \ 134 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM) 135 136 /* Nonzero if MODE is a scalar integral mode. */ 137 #define SCALAR_INT_MODE_P(MODE) \ 138 (GET_MODE_CLASS (MODE) == MODE_INT \ 139 || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT) 140 141 /* Nonzero if MODE is a scalar floating point mode. */ 142 #define SCALAR_FLOAT_MODE_P(MODE) \ 143 (GET_MODE_CLASS (MODE) == MODE_FLOAT \ 144 || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT) 145 146 /* Nonzero if MODE is a decimal floating point mode. */ 147 #define DECIMAL_FLOAT_MODE_P(MODE) \ 148 (GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT) 149 150 /* Nonzero if MODE is a scalar fract mode. */ 151 #define SCALAR_FRACT_MODE_P(MODE) \ 152 (GET_MODE_CLASS (MODE) == MODE_FRACT) 153 154 /* Nonzero if MODE is a scalar ufract mode. */ 155 #define SCALAR_UFRACT_MODE_P(MODE) \ 156 (GET_MODE_CLASS (MODE) == MODE_UFRACT) 157 158 /* Nonzero if MODE is a scalar fract or ufract mode. */ 159 #define ALL_SCALAR_FRACT_MODE_P(MODE) \ 160 (SCALAR_FRACT_MODE_P (MODE) || SCALAR_UFRACT_MODE_P (MODE)) 161 162 /* Nonzero if MODE is a scalar accum mode. */ 163 #define SCALAR_ACCUM_MODE_P(MODE) \ 164 (GET_MODE_CLASS (MODE) == MODE_ACCUM) 165 166 /* Nonzero if MODE is a scalar uaccum mode. */ 167 #define SCALAR_UACCUM_MODE_P(MODE) \ 168 (GET_MODE_CLASS (MODE) == MODE_UACCUM) 169 170 /* Nonzero if MODE is a scalar accum or uaccum mode. */ 171 #define ALL_SCALAR_ACCUM_MODE_P(MODE) \ 172 (SCALAR_ACCUM_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE)) 173 174 /* Nonzero if MODE is a scalar fract or accum mode. */ 175 #define SIGNED_SCALAR_FIXED_POINT_MODE_P(MODE) \ 176 (SCALAR_FRACT_MODE_P (MODE) || SCALAR_ACCUM_MODE_P (MODE)) 177 178 /* Nonzero if MODE is a scalar ufract or uaccum mode. */ 179 #define UNSIGNED_SCALAR_FIXED_POINT_MODE_P(MODE) \ 180 (SCALAR_UFRACT_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE)) 181 182 /* Nonzero if MODE is a scalar fract, ufract, accum or uaccum mode. */ 183 #define ALL_SCALAR_FIXED_POINT_MODE_P(MODE) \ 184 (SIGNED_SCALAR_FIXED_POINT_MODE_P (MODE) \ 185 || UNSIGNED_SCALAR_FIXED_POINT_MODE_P (MODE)) 186 187 /* Nonzero if MODE is a scalar/vector fract mode. */ 188 #define FRACT_MODE_P(MODE) \ 189 (GET_MODE_CLASS (MODE) == MODE_FRACT \ 190 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT) 191 192 /* Nonzero if MODE is a scalar/vector ufract mode. */ 193 #define UFRACT_MODE_P(MODE) \ 194 (GET_MODE_CLASS (MODE) == MODE_UFRACT \ 195 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT) 196 197 /* Nonzero if MODE is a scalar/vector fract or ufract mode. */ 198 #define ALL_FRACT_MODE_P(MODE) \ 199 (FRACT_MODE_P (MODE) || UFRACT_MODE_P (MODE)) 200 201 /* Nonzero if MODE is a scalar/vector accum mode. */ 202 #define ACCUM_MODE_P(MODE) \ 203 (GET_MODE_CLASS (MODE) == MODE_ACCUM \ 204 || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM) 205 206 /* Nonzero if MODE is a scalar/vector uaccum mode. */ 207 #define UACCUM_MODE_P(MODE) \ 208 (GET_MODE_CLASS (MODE) == MODE_UACCUM \ 209 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM) 210 211 /* Nonzero if MODE is a scalar/vector accum or uaccum mode. */ 212 #define ALL_ACCUM_MODE_P(MODE) \ 213 (ACCUM_MODE_P (MODE) || UACCUM_MODE_P (MODE)) 214 215 /* Nonzero if MODE is a scalar/vector fract or accum mode. */ 216 #define SIGNED_FIXED_POINT_MODE_P(MODE) \ 217 (FRACT_MODE_P (MODE) || ACCUM_MODE_P (MODE)) 218 219 /* Nonzero if MODE is a scalar/vector ufract or uaccum mode. */ 220 #define UNSIGNED_FIXED_POINT_MODE_P(MODE) \ 221 (UFRACT_MODE_P (MODE) || UACCUM_MODE_P (MODE)) 222 223 /* Nonzero if MODE is a scalar/vector fract, ufract, accum or uaccum mode. */ 224 #define ALL_FIXED_POINT_MODE_P(MODE) \ 225 (SIGNED_FIXED_POINT_MODE_P (MODE) \ 226 || UNSIGNED_FIXED_POINT_MODE_P (MODE)) 227 228 /* Nonzero if CLASS modes can be widened. */ 229 #define CLASS_HAS_WIDER_MODES_P(CLASS) \ 230 (CLASS == MODE_INT \ 231 || CLASS == MODE_PARTIAL_INT \ 232 || CLASS == MODE_FLOAT \ 233 || CLASS == MODE_DECIMAL_FLOAT \ 234 || CLASS == MODE_COMPLEX_FLOAT \ 235 || CLASS == MODE_FRACT \ 236 || CLASS == MODE_UFRACT \ 237 || CLASS == MODE_ACCUM \ 238 || CLASS == MODE_UACCUM) 239 240 #define POINTER_BOUNDS_MODE_P(MODE) \ 241 (GET_MODE_CLASS (MODE) == MODE_POINTER_BOUNDS) 242 243 /* An optional T (i.e. a T or nothing), where T is some form of mode class. */ 244 template<typename T> 245 class opt_mode 246 { 247 public: 248 enum from_int { dummy = MAX_MACHINE_MODE }; 249 250 ALWAYS_INLINE opt_mode () : m_mode (E_VOIDmode) {} 251 ALWAYS_INLINE opt_mode (const T &m) : m_mode (m) {} 252 template<typename U> 253 ALWAYS_INLINE opt_mode (const U &m) : m_mode (T (m)) {} 254 ALWAYS_INLINE opt_mode (from_int m) : m_mode (machine_mode (m)) {} 255 256 machine_mode else_void () const; 257 machine_mode else_blk () const; 258 T require () const; 259 260 bool exists () const; 261 template<typename U> bool exists (U *) const; 262 263 private: 264 machine_mode m_mode; 265 }; 266 267 /* If the object contains a T, return its enum value, otherwise return 268 E_VOIDmode. */ 269 270 template<typename T> 271 ALWAYS_INLINE machine_mode 272 opt_mode<T>::else_void () const 273 { 274 return m_mode; 275 } 276 277 /* If the T exists, return its enum value, otherwise return E_BLKmode. */ 278 279 template<typename T> 280 inline machine_mode 281 opt_mode<T>::else_blk () const 282 { 283 return m_mode == E_VOIDmode ? E_BLKmode : m_mode; 284 } 285 286 /* Assert that the object contains a T and return it. */ 287 288 template<typename T> 289 inline T 290 opt_mode<T>::require () const 291 { 292 gcc_checking_assert (m_mode != E_VOIDmode); 293 return typename mode_traits<T>::from_int (m_mode); 294 } 295 296 /* Return true if the object contains a T rather than nothing. */ 297 298 template<typename T> 299 ALWAYS_INLINE bool 300 opt_mode<T>::exists () const 301 { 302 return m_mode != E_VOIDmode; 303 } 304 305 /* Return true if the object contains a T, storing it in *MODE if so. */ 306 307 template<typename T> 308 template<typename U> 309 inline bool 310 opt_mode<T>::exists (U *mode) const 311 { 312 if (m_mode != E_VOIDmode) 313 { 314 *mode = T (typename mode_traits<T>::from_int (m_mode)); 315 return true; 316 } 317 return false; 318 } 319 320 /* A POD version of mode class T. */ 321 322 template<typename T> 323 struct pod_mode 324 { 325 typedef typename mode_traits<T>::from_int from_int; 326 typedef typename T::measurement_type measurement_type; 327 328 machine_mode m_mode; 329 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 330 ALWAYS_INLINE operator T () const { return from_int (m_mode); } 331 ALWAYS_INLINE pod_mode &operator = (const T &m) { m_mode = m; return *this; } 332 }; 333 334 /* Return true if mode M has type T. */ 335 336 template<typename T> 337 inline bool 338 is_a (machine_mode m) 339 { 340 return T::includes_p (m); 341 } 342 343 template<typename T, typename U> 344 inline bool 345 is_a (const opt_mode<U> &m) 346 { 347 return T::includes_p (m.else_void ()); 348 } 349 350 /* Assert that mode M has type T, and return it in that form. */ 351 352 template<typename T> 353 inline T 354 as_a (machine_mode m) 355 { 356 gcc_checking_assert (T::includes_p (m)); 357 return typename mode_traits<T>::from_int (m); 358 } 359 360 template<typename T, typename U> 361 inline T 362 as_a (const opt_mode<U> &m) 363 { 364 return as_a <T> (m.else_void ()); 365 } 366 367 /* Convert M to an opt_mode<T>. */ 368 369 template<typename T> 370 inline opt_mode<T> 371 dyn_cast (machine_mode m) 372 { 373 if (T::includes_p (m)) 374 return T (typename mode_traits<T>::from_int (m)); 375 return opt_mode<T> (); 376 } 377 378 template<typename T, typename U> 379 inline opt_mode<T> 380 dyn_cast (const opt_mode<U> &m) 381 { 382 return dyn_cast <T> (m.else_void ()); 383 } 384 385 /* Return true if mode M has type T, storing it as a T in *RESULT 386 if so. */ 387 388 template<typename T, typename U> 389 inline bool 390 is_a (machine_mode m, U *result) 391 { 392 if (T::includes_p (m)) 393 { 394 *result = T (typename mode_traits<T>::from_int (m)); 395 return true; 396 } 397 return false; 398 } 399 400 /* Represents a machine mode that is known to be a SCALAR_INT_MODE_P. */ 401 class scalar_int_mode 402 { 403 public: 404 typedef mode_traits<scalar_int_mode>::from_int from_int; 405 typedef unsigned short measurement_type; 406 407 ALWAYS_INLINE scalar_int_mode () {} 408 ALWAYS_INLINE scalar_int_mode (from_int m) : m_mode (machine_mode (m)) {} 409 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 410 411 static bool includes_p (machine_mode); 412 413 protected: 414 machine_mode m_mode; 415 }; 416 417 /* Return true if M is a scalar_int_mode. */ 418 419 inline bool 420 scalar_int_mode::includes_p (machine_mode m) 421 { 422 return SCALAR_INT_MODE_P (m); 423 } 424 425 /* Represents a machine mode that is known to be a SCALAR_FLOAT_MODE_P. */ 426 class scalar_float_mode 427 { 428 public: 429 typedef mode_traits<scalar_float_mode>::from_int from_int; 430 typedef unsigned short measurement_type; 431 432 ALWAYS_INLINE scalar_float_mode () {} 433 ALWAYS_INLINE scalar_float_mode (from_int m) : m_mode (machine_mode (m)) {} 434 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 435 436 static bool includes_p (machine_mode); 437 438 protected: 439 machine_mode m_mode; 440 }; 441 442 /* Return true if M is a scalar_float_mode. */ 443 444 inline bool 445 scalar_float_mode::includes_p (machine_mode m) 446 { 447 return SCALAR_FLOAT_MODE_P (m); 448 } 449 450 /* Represents a machine mode that is known to be scalar. */ 451 class scalar_mode 452 { 453 public: 454 typedef mode_traits<scalar_mode>::from_int from_int; 455 typedef unsigned short measurement_type; 456 457 ALWAYS_INLINE scalar_mode () {} 458 ALWAYS_INLINE scalar_mode (from_int m) : m_mode (machine_mode (m)) {} 459 ALWAYS_INLINE scalar_mode (const scalar_int_mode &m) : m_mode (m) {} 460 ALWAYS_INLINE scalar_mode (const scalar_float_mode &m) : m_mode (m) {} 461 ALWAYS_INLINE scalar_mode (const scalar_int_mode_pod &m) : m_mode (m) {} 462 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 463 464 static bool includes_p (machine_mode); 465 466 protected: 467 machine_mode m_mode; 468 }; 469 470 /* Return true if M represents some kind of scalar value. */ 471 472 inline bool 473 scalar_mode::includes_p (machine_mode m) 474 { 475 switch (GET_MODE_CLASS (m)) 476 { 477 case MODE_INT: 478 case MODE_PARTIAL_INT: 479 case MODE_FRACT: 480 case MODE_UFRACT: 481 case MODE_ACCUM: 482 case MODE_UACCUM: 483 case MODE_FLOAT: 484 case MODE_DECIMAL_FLOAT: 485 case MODE_POINTER_BOUNDS: 486 return true; 487 default: 488 return false; 489 } 490 } 491 492 /* Represents a machine mode that is known to be a COMPLEX_MODE_P. */ 493 class complex_mode 494 { 495 public: 496 typedef mode_traits<complex_mode>::from_int from_int; 497 typedef unsigned short measurement_type; 498 499 ALWAYS_INLINE complex_mode () {} 500 ALWAYS_INLINE complex_mode (from_int m) : m_mode (machine_mode (m)) {} 501 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 502 503 static bool includes_p (machine_mode); 504 505 protected: 506 machine_mode m_mode; 507 }; 508 509 /* Return true if M is a complex_mode. */ 510 511 inline bool 512 complex_mode::includes_p (machine_mode m) 513 { 514 return COMPLEX_MODE_P (m); 515 } 516 517 /* Return the base GET_MODE_SIZE value for MODE. */ 518 519 ALWAYS_INLINE poly_uint16 520 mode_to_bytes (machine_mode mode) 521 { 522 #if GCC_VERSION >= 4001 523 return (__builtin_constant_p (mode) 524 ? mode_size_inline (mode) : mode_size[mode]); 525 #else 526 return mode_size[mode]; 527 #endif 528 } 529 530 /* Return the base GET_MODE_BITSIZE value for MODE. */ 531 532 ALWAYS_INLINE poly_uint16 533 mode_to_bits (machine_mode mode) 534 { 535 return mode_to_bytes (mode) * BITS_PER_UNIT; 536 } 537 538 /* Return the base GET_MODE_PRECISION value for MODE. */ 539 540 ALWAYS_INLINE poly_uint16 541 mode_to_precision (machine_mode mode) 542 { 543 return mode_precision[mode]; 544 } 545 546 /* Return the base GET_MODE_INNER value for MODE. */ 547 548 ALWAYS_INLINE scalar_mode 549 mode_to_inner (machine_mode mode) 550 { 551 #if GCC_VERSION >= 4001 552 return scalar_mode::from_int (__builtin_constant_p (mode) 553 ? mode_inner_inline (mode) 554 : mode_inner[mode]); 555 #else 556 return scalar_mode::from_int (mode_inner[mode]); 557 #endif 558 } 559 560 /* Return the base GET_MODE_UNIT_SIZE value for MODE. */ 561 562 ALWAYS_INLINE unsigned char 563 mode_to_unit_size (machine_mode mode) 564 { 565 #if GCC_VERSION >= 4001 566 return (__builtin_constant_p (mode) 567 ? mode_unit_size_inline (mode) : mode_unit_size[mode]); 568 #else 569 return mode_unit_size[mode]; 570 #endif 571 } 572 573 /* Return the base GET_MODE_UNIT_PRECISION value for MODE. */ 574 575 ALWAYS_INLINE unsigned short 576 mode_to_unit_precision (machine_mode mode) 577 { 578 #if GCC_VERSION >= 4001 579 return (__builtin_constant_p (mode) 580 ? mode_unit_precision_inline (mode) : mode_unit_precision[mode]); 581 #else 582 return mode_unit_precision[mode]; 583 #endif 584 } 585 586 /* Return the base GET_MODE_NUNITS value for MODE. */ 587 588 ALWAYS_INLINE poly_uint16 589 mode_to_nunits (machine_mode mode) 590 { 591 #if GCC_VERSION >= 4001 592 return (__builtin_constant_p (mode) 593 ? mode_nunits_inline (mode) : mode_nunits[mode]); 594 #else 595 return mode_nunits[mode]; 596 #endif 597 } 598 599 /* Get the size in bytes of an object of mode MODE. */ 600 601 #if ONLY_FIXED_SIZE_MODES 602 #define GET_MODE_SIZE(MODE) ((unsigned short) mode_to_bytes (MODE).coeffs[0]) 603 #else 604 ALWAYS_INLINE poly_uint16 605 GET_MODE_SIZE (machine_mode mode) 606 { 607 return mode_to_bytes (mode); 608 } 609 610 template<typename T> 611 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type 612 GET_MODE_SIZE (const T &mode) 613 { 614 return mode_to_bytes (mode); 615 } 616 617 template<typename T> 618 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type 619 GET_MODE_SIZE (const T &mode) 620 { 621 return mode_to_bytes (mode).coeffs[0]; 622 } 623 #endif 624 625 /* Get the size in bits of an object of mode MODE. */ 626 627 #if ONLY_FIXED_SIZE_MODES 628 #define GET_MODE_BITSIZE(MODE) ((unsigned short) mode_to_bits (MODE).coeffs[0]) 629 #else 630 ALWAYS_INLINE poly_uint16 631 GET_MODE_BITSIZE (machine_mode mode) 632 { 633 return mode_to_bits (mode); 634 } 635 636 template<typename T> 637 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type 638 GET_MODE_BITSIZE (const T &mode) 639 { 640 return mode_to_bits (mode); 641 } 642 643 template<typename T> 644 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type 645 GET_MODE_BITSIZE (const T &mode) 646 { 647 return mode_to_bits (mode).coeffs[0]; 648 } 649 #endif 650 651 /* Get the number of value bits of an object of mode MODE. */ 652 653 #if ONLY_FIXED_SIZE_MODES 654 #define GET_MODE_PRECISION(MODE) \ 655 ((unsigned short) mode_to_precision (MODE).coeffs[0]) 656 #else 657 ALWAYS_INLINE poly_uint16 658 GET_MODE_PRECISION (machine_mode mode) 659 { 660 return mode_to_precision (mode); 661 } 662 663 template<typename T> 664 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type 665 GET_MODE_PRECISION (const T &mode) 666 { 667 return mode_to_precision (mode); 668 } 669 670 template<typename T> 671 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type 672 GET_MODE_PRECISION (const T &mode) 673 { 674 return mode_to_precision (mode).coeffs[0]; 675 } 676 #endif 677 678 /* Get the number of integral bits of an object of mode MODE. */ 679 extern CONST_MODE_IBIT unsigned char mode_ibit[NUM_MACHINE_MODES]; 680 #define GET_MODE_IBIT(MODE) mode_ibit[MODE] 681 682 /* Get the number of fractional bits of an object of mode MODE. */ 683 extern CONST_MODE_FBIT unsigned char mode_fbit[NUM_MACHINE_MODES]; 684 #define GET_MODE_FBIT(MODE) mode_fbit[MODE] 685 686 /* Get a bitmask containing 1 for all bits in a word 687 that fit within mode MODE. */ 688 689 extern const unsigned HOST_WIDE_INT mode_mask_array[NUM_MACHINE_MODES]; 690 691 #define GET_MODE_MASK(MODE) mode_mask_array[MODE] 692 693 /* Return the mode of the basic parts of MODE. For vector modes this is the 694 mode of the vector elements. For complex modes it is the mode of the real 695 and imaginary parts. For other modes it is MODE itself. */ 696 697 #define GET_MODE_INNER(MODE) (mode_to_inner (MODE)) 698 699 /* Get the size in bytes or bits of the basic parts of an 700 object of mode MODE. */ 701 702 #define GET_MODE_UNIT_SIZE(MODE) mode_to_unit_size (MODE) 703 704 #define GET_MODE_UNIT_BITSIZE(MODE) \ 705 ((unsigned short) (GET_MODE_UNIT_SIZE (MODE) * BITS_PER_UNIT)) 706 707 #define GET_MODE_UNIT_PRECISION(MODE) (mode_to_unit_precision (MODE)) 708 709 /* Get the number of units in an object of mode MODE. This is 2 for 710 complex modes and the number of elements for vector modes. */ 711 712 #if ONLY_FIXED_SIZE_MODES 713 #define GET_MODE_NUNITS(MODE) (mode_to_nunits (MODE).coeffs[0]) 714 #else 715 ALWAYS_INLINE poly_uint16 716 GET_MODE_NUNITS (machine_mode mode) 717 { 718 return mode_to_nunits (mode); 719 } 720 721 template<typename T> 722 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type 723 GET_MODE_NUNITS (const T &mode) 724 { 725 return mode_to_nunits (mode); 726 } 727 728 template<typename T> 729 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type 730 GET_MODE_NUNITS (const T &mode) 731 { 732 return mode_to_nunits (mode).coeffs[0]; 733 } 734 #endif 735 736 /* Get the next wider natural mode (eg, QI -> HI -> SI -> DI -> TI). */ 737 738 template<typename T> 739 ALWAYS_INLINE opt_mode<T> 740 GET_MODE_WIDER_MODE (const T &m) 741 { 742 return typename opt_mode<T>::from_int (mode_wider[m]); 743 } 744 745 /* For scalars, this is a mode with twice the precision. For vectors, 746 this is a mode with the same inner mode but with twice the elements. */ 747 748 template<typename T> 749 ALWAYS_INLINE opt_mode<T> 750 GET_MODE_2XWIDER_MODE (const T &m) 751 { 752 return typename opt_mode<T>::from_int (mode_2xwider[m]); 753 } 754 755 /* Get the complex mode from the component mode. */ 756 extern const unsigned char mode_complex[NUM_MACHINE_MODES]; 757 #define GET_MODE_COMPLEX_MODE(MODE) ((machine_mode) mode_complex[MODE]) 758 759 /* Represents a machine mode that must have a fixed size. The main 760 use of this class is to represent the modes of objects that always 761 have static storage duration, such as constant pool entries. 762 (No current target supports the concept of variable-size static data.) */ 763 class fixed_size_mode 764 { 765 public: 766 typedef mode_traits<fixed_size_mode>::from_int from_int; 767 typedef unsigned short measurement_type; 768 769 ALWAYS_INLINE fixed_size_mode () {} 770 ALWAYS_INLINE fixed_size_mode (from_int m) : m_mode (machine_mode (m)) {} 771 ALWAYS_INLINE fixed_size_mode (const scalar_mode &m) : m_mode (m) {} 772 ALWAYS_INLINE fixed_size_mode (const scalar_int_mode &m) : m_mode (m) {} 773 ALWAYS_INLINE fixed_size_mode (const scalar_float_mode &m) : m_mode (m) {} 774 ALWAYS_INLINE fixed_size_mode (const scalar_mode_pod &m) : m_mode (m) {} 775 ALWAYS_INLINE fixed_size_mode (const scalar_int_mode_pod &m) : m_mode (m) {} 776 ALWAYS_INLINE fixed_size_mode (const complex_mode &m) : m_mode (m) {} 777 ALWAYS_INLINE operator machine_mode () const { return m_mode; } 778 779 static bool includes_p (machine_mode); 780 781 protected: 782 machine_mode m_mode; 783 }; 784 785 /* Return true if MODE has a fixed size. */ 786 787 inline bool 788 fixed_size_mode::includes_p (machine_mode mode) 789 { 790 return mode_to_bytes (mode).is_constant (); 791 } 792 793 /* Wrapper for mode arguments to target macros, so that if a target 794 doesn't need polynomial-sized modes, its header file can continue 795 to treat everything as fixed_size_mode. This should go away once 796 macros are moved to target hooks. It shouldn't be used in other 797 contexts. */ 798 #if NUM_POLY_INT_COEFFS == 1 799 #define MACRO_MODE(MODE) (as_a <fixed_size_mode> (MODE)) 800 #else 801 #define MACRO_MODE(MODE) (MODE) 802 #endif 803 804 extern opt_machine_mode mode_for_size (poly_uint64, enum mode_class, int); 805 806 /* Return the machine mode to use for a MODE_INT of SIZE bits, if one 807 exists. If LIMIT is nonzero, modes wider than MAX_FIXED_MODE_SIZE 808 will not be used. */ 809 810 inline opt_scalar_int_mode 811 int_mode_for_size (poly_uint64 size, int limit) 812 { 813 return dyn_cast <scalar_int_mode> (mode_for_size (size, MODE_INT, limit)); 814 } 815 816 /* Return the machine mode to use for a MODE_FLOAT of SIZE bits, if one 817 exists. */ 818 819 inline opt_scalar_float_mode 820 float_mode_for_size (poly_uint64 size) 821 { 822 return dyn_cast <scalar_float_mode> (mode_for_size (size, MODE_FLOAT, 0)); 823 } 824 825 /* Likewise for MODE_DECIMAL_FLOAT. */ 826 827 inline opt_scalar_float_mode 828 decimal_float_mode_for_size (unsigned int size) 829 { 830 return dyn_cast <scalar_float_mode> 831 (mode_for_size (size, MODE_DECIMAL_FLOAT, 0)); 832 } 833 834 extern machine_mode smallest_mode_for_size (poly_uint64, enum mode_class); 835 836 /* Find the narrowest integer mode that contains at least SIZE bits. 837 Such a mode must exist. */ 838 839 inline scalar_int_mode 840 smallest_int_mode_for_size (poly_uint64 size) 841 { 842 return as_a <scalar_int_mode> (smallest_mode_for_size (size, MODE_INT)); 843 } 844 845 extern opt_scalar_int_mode int_mode_for_mode (machine_mode); 846 extern opt_machine_mode bitwise_mode_for_mode (machine_mode); 847 extern opt_machine_mode mode_for_vector (scalar_mode, poly_uint64); 848 extern opt_machine_mode mode_for_int_vector (unsigned int, poly_uint64); 849 850 /* Return the integer vector equivalent of MODE, if one exists. In other 851 words, return the mode for an integer vector that has the same number 852 of bits as MODE and the same number of elements as MODE, with the 853 latter being 1 if MODE is scalar. The returned mode can be either 854 an integer mode or a vector mode. */ 855 856 inline opt_machine_mode 857 mode_for_int_vector (machine_mode mode) 858 { 859 return mode_for_int_vector (GET_MODE_UNIT_BITSIZE (mode), 860 GET_MODE_NUNITS (mode)); 861 } 862 863 /* A class for iterating through possible bitfield modes. */ 864 class bit_field_mode_iterator 865 { 866 public: 867 bit_field_mode_iterator (HOST_WIDE_INT, HOST_WIDE_INT, 868 poly_int64, poly_int64, 869 unsigned int, bool); 870 bool next_mode (scalar_int_mode *); 871 bool prefer_smaller_modes (); 872 873 private: 874 opt_scalar_int_mode m_mode; 875 /* We use signed values here because the bit position can be negative 876 for invalid input such as gcc.dg/pr48335-8.c. */ 877 HOST_WIDE_INT m_bitsize; 878 HOST_WIDE_INT m_bitpos; 879 poly_int64 m_bitregion_start; 880 poly_int64 m_bitregion_end; 881 unsigned int m_align; 882 bool m_volatilep; 883 int m_count; 884 }; 885 886 /* Find the best mode to use to access a bit field. */ 887 888 extern bool get_best_mode (int, int, poly_uint64, poly_uint64, unsigned int, 889 unsigned HOST_WIDE_INT, bool, scalar_int_mode *); 890 891 /* Determine alignment, 1<=result<=BIGGEST_ALIGNMENT. */ 892 893 extern CONST_MODE_BASE_ALIGN unsigned short mode_base_align[NUM_MACHINE_MODES]; 894 895 extern unsigned get_mode_alignment (machine_mode); 896 897 #define GET_MODE_ALIGNMENT(MODE) get_mode_alignment (MODE) 898 899 /* For each class, get the narrowest mode in that class. */ 900 901 extern const unsigned char class_narrowest_mode[MAX_MODE_CLASS]; 902 #define GET_CLASS_NARROWEST_MODE(CLASS) \ 903 ((machine_mode) class_narrowest_mode[CLASS]) 904 905 /* The narrowest full integer mode available on the target. */ 906 907 #define NARROWEST_INT_MODE \ 908 (scalar_int_mode \ 909 (scalar_int_mode::from_int (class_narrowest_mode[MODE_INT]))) 910 911 /* Return the narrowest mode in T's class. */ 912 913 template<typename T> 914 inline T 915 get_narrowest_mode (T mode) 916 { 917 return typename mode_traits<T>::from_int 918 (class_narrowest_mode[GET_MODE_CLASS (mode)]); 919 } 920 921 /* Define the integer modes whose sizes are BITS_PER_UNIT and BITS_PER_WORD 922 and the mode whose class is Pmode and whose size is POINTER_SIZE. */ 923 924 extern scalar_int_mode byte_mode; 925 extern scalar_int_mode word_mode; 926 extern scalar_int_mode ptr_mode; 927 928 /* Target-dependent machine mode initialization - in insn-modes.c. */ 929 extern void init_adjust_machine_modes (void); 930 931 #define TRULY_NOOP_TRUNCATION_MODES_P(MODE1, MODE2) \ 932 (targetm.truly_noop_truncation (GET_MODE_PRECISION (MODE1), \ 933 GET_MODE_PRECISION (MODE2))) 934 935 /* Return true if MODE is a scalar integer mode that fits in a 936 HOST_WIDE_INT. */ 937 938 inline bool 939 HWI_COMPUTABLE_MODE_P (machine_mode mode) 940 { 941 machine_mode mme = mode; 942 return (SCALAR_INT_MODE_P (mme) 943 && mode_to_precision (mme).coeffs[0] <= HOST_BITS_PER_WIDE_INT); 944 } 945 946 inline bool 947 HWI_COMPUTABLE_MODE_P (scalar_int_mode mode) 948 { 949 return GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT; 950 } 951 952 struct int_n_data_t { 953 /* These parts are initailized by genmodes output */ 954 unsigned int bitsize; 955 scalar_int_mode_pod m; 956 /* RID_* is RID_INTN_BASE + index into this array */ 957 }; 958 959 /* This is also in tree.h. genmodes.c guarantees the're sorted from 960 smallest bitsize to largest bitsize. */ 961 extern bool int_n_enabled_p[NUM_INT_N_ENTS]; 962 extern const int_n_data_t int_n_data[NUM_INT_N_ENTS]; 963 964 /* Return true if MODE has class MODE_INT, storing it as a scalar_int_mode 965 in *INT_MODE if so. */ 966 967 template<typename T> 968 inline bool 969 is_int_mode (machine_mode mode, T *int_mode) 970 { 971 if (GET_MODE_CLASS (mode) == MODE_INT) 972 { 973 *int_mode = scalar_int_mode (scalar_int_mode::from_int (mode)); 974 return true; 975 } 976 return false; 977 } 978 979 /* Return true if MODE has class MODE_FLOAT, storing it as a 980 scalar_float_mode in *FLOAT_MODE if so. */ 981 982 template<typename T> 983 inline bool 984 is_float_mode (machine_mode mode, T *float_mode) 985 { 986 if (GET_MODE_CLASS (mode) == MODE_FLOAT) 987 { 988 *float_mode = scalar_float_mode (scalar_float_mode::from_int (mode)); 989 return true; 990 } 991 return false; 992 } 993 994 /* Return true if MODE has class MODE_COMPLEX_INT, storing it as 995 a complex_mode in *CMODE if so. */ 996 997 template<typename T> 998 inline bool 999 is_complex_int_mode (machine_mode mode, T *cmode) 1000 { 1001 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) 1002 { 1003 *cmode = complex_mode (complex_mode::from_int (mode)); 1004 return true; 1005 } 1006 return false; 1007 } 1008 1009 /* Return true if MODE has class MODE_COMPLEX_FLOAT, storing it as 1010 a complex_mode in *CMODE if so. */ 1011 1012 template<typename T> 1013 inline bool 1014 is_complex_float_mode (machine_mode mode, T *cmode) 1015 { 1016 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) 1017 { 1018 *cmode = complex_mode (complex_mode::from_int (mode)); 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 /* Return true if MODE is a scalar integer mode with a precision 1025 smaller than LIMIT's precision. */ 1026 1027 inline bool 1028 is_narrower_int_mode (machine_mode mode, scalar_int_mode limit) 1029 { 1030 scalar_int_mode int_mode; 1031 return (is_a <scalar_int_mode> (mode, &int_mode) 1032 && GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (limit)); 1033 } 1034 1035 namespace mode_iterator 1036 { 1037 /* Start mode iterator *ITER at the first mode in class MCLASS, if any. */ 1038 1039 template<typename T> 1040 inline void 1041 start (opt_mode<T> *iter, enum mode_class mclass) 1042 { 1043 if (GET_CLASS_NARROWEST_MODE (mclass) == E_VOIDmode) 1044 *iter = opt_mode<T> (); 1045 else 1046 *iter = as_a<T> (GET_CLASS_NARROWEST_MODE (mclass)); 1047 } 1048 1049 inline void 1050 start (machine_mode *iter, enum mode_class mclass) 1051 { 1052 *iter = GET_CLASS_NARROWEST_MODE (mclass); 1053 } 1054 1055 /* Return true if mode iterator *ITER has not reached the end. */ 1056 1057 template<typename T> 1058 inline bool 1059 iterate_p (opt_mode<T> *iter) 1060 { 1061 return iter->exists (); 1062 } 1063 1064 inline bool 1065 iterate_p (machine_mode *iter) 1066 { 1067 return *iter != E_VOIDmode; 1068 } 1069 1070 /* Set mode iterator *ITER to the next widest mode in the same class, 1071 if any. */ 1072 1073 template<typename T> 1074 inline void 1075 get_wider (opt_mode<T> *iter) 1076 { 1077 *iter = GET_MODE_WIDER_MODE (iter->require ()); 1078 } 1079 1080 inline void 1081 get_wider (machine_mode *iter) 1082 { 1083 *iter = GET_MODE_WIDER_MODE (*iter).else_void (); 1084 } 1085 1086 /* Set mode iterator *ITER to the next widest mode in the same class. 1087 Such a mode is known to exist. */ 1088 1089 template<typename T> 1090 inline void 1091 get_known_wider (T *iter) 1092 { 1093 *iter = GET_MODE_WIDER_MODE (*iter).require (); 1094 } 1095 1096 /* Set mode iterator *ITER to the mode that is two times wider than the 1097 current one, if such a mode exists. */ 1098 1099 template<typename T> 1100 inline void 1101 get_2xwider (opt_mode<T> *iter) 1102 { 1103 *iter = GET_MODE_2XWIDER_MODE (iter->require ()); 1104 } 1105 1106 inline void 1107 get_2xwider (machine_mode *iter) 1108 { 1109 *iter = GET_MODE_2XWIDER_MODE (*iter).else_void (); 1110 } 1111 } 1112 1113 /* Make ITERATOR iterate over all the modes in mode class CLASS, 1114 from narrowest to widest. */ 1115 #define FOR_EACH_MODE_IN_CLASS(ITERATOR, CLASS) \ 1116 for (mode_iterator::start (&(ITERATOR), CLASS); \ 1117 mode_iterator::iterate_p (&(ITERATOR)); \ 1118 mode_iterator::get_wider (&(ITERATOR))) 1119 1120 /* Make ITERATOR iterate over all the modes in the range [START, END), 1121 in order of increasing width. */ 1122 #define FOR_EACH_MODE(ITERATOR, START, END) \ 1123 for ((ITERATOR) = (START); \ 1124 (ITERATOR) != (END); \ 1125 mode_iterator::get_known_wider (&(ITERATOR))) 1126 1127 /* Make ITERATOR iterate over START and all wider modes in the same 1128 class, in order of increasing width. */ 1129 #define FOR_EACH_MODE_FROM(ITERATOR, START) \ 1130 for ((ITERATOR) = (START); \ 1131 mode_iterator::iterate_p (&(ITERATOR)); \ 1132 mode_iterator::get_wider (&(ITERATOR))) 1133 1134 /* Make ITERATOR iterate over modes in the range [NARROWEST, END) 1135 in order of increasing width, where NARROWEST is the narrowest mode 1136 in END's class. */ 1137 #define FOR_EACH_MODE_UNTIL(ITERATOR, END) \ 1138 FOR_EACH_MODE (ITERATOR, get_narrowest_mode (END), END) 1139 1140 /* Make ITERATOR iterate over modes in the same class as MODE, in order 1141 of increasing width. Start at the first mode wider than START, 1142 or don't iterate at all if there is no wider mode. */ 1143 #define FOR_EACH_WIDER_MODE(ITERATOR, START) \ 1144 for ((ITERATOR) = (START), mode_iterator::get_wider (&(ITERATOR)); \ 1145 mode_iterator::iterate_p (&(ITERATOR)); \ 1146 mode_iterator::get_wider (&(ITERATOR))) 1147 1148 /* Make ITERATOR iterate over modes in the same class as MODE, in order 1149 of increasing width, and with each mode being twice the width of the 1150 previous mode. Start at the mode that is two times wider than START, 1151 or don't iterate at all if there is no such mode. */ 1152 #define FOR_EACH_2XWIDER_MODE(ITERATOR, START) \ 1153 for ((ITERATOR) = (START), mode_iterator::get_2xwider (&(ITERATOR)); \ 1154 mode_iterator::iterate_p (&(ITERATOR)); \ 1155 mode_iterator::get_2xwider (&(ITERATOR))) 1156 1157 template<typename T> 1158 void 1159 gt_ggc_mx (pod_mode<T> *) 1160 { 1161 } 1162 1163 template<typename T> 1164 void 1165 gt_pch_nx (pod_mode<T> *) 1166 { 1167 } 1168 1169 template<typename T> 1170 void 1171 gt_pch_nx (pod_mode<T> *, void (*) (void *, void *), void *) 1172 { 1173 } 1174 1175 #endif /* not HAVE_MACHINE_MODES */ 1176