1 /* Calculate branch probabilities, and basic block execution counts. 2 Copyright (C) 1990-2018 Free Software Foundation, Inc. 3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support; 4 based on some ideas from Dain Samples of UC Berkeley. 5 Further mangling by Bob Manson, Cygnus Support. 6 7 This file is part of GCC. 8 9 GCC is free software; you can redistribute it and/or modify it under 10 the terms of the GNU General Public License as published by the Free 11 Software Foundation; either version 3, or (at your option) any later 12 version. 13 14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 15 WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with GCC; see the file COPYING3. If not see 21 <http://www.gnu.org/licenses/>. */ 22 23 /* Generate basic block profile instrumentation and auxiliary files. 24 Profile generation is optimized, so that not all arcs in the basic 25 block graph need instrumenting. First, the BB graph is closed with 26 one entry (function start), and one exit (function exit). Any 27 ABNORMAL_EDGE cannot be instrumented (because there is no control 28 path to place the code). We close the graph by inserting fake 29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal 30 edges that do not go to the exit_block. We ignore such abnormal 31 edges. Naturally these fake edges are never directly traversed, 32 and so *cannot* be directly instrumented. Some other graph 33 massaging is done. To optimize the instrumentation we generate the 34 BB minimal span tree, only edges that are not on the span tree 35 (plus the entry point) need instrumenting. From that information 36 all other edge counts can be deduced. By construction all fake 37 edges must be on the spanning tree. We also attempt to place 38 EDGE_CRITICAL edges on the spanning tree. 39 40 The auxiliary files generated are <dumpbase>.gcno (at compile time) 41 and <dumpbase>.gcda (at run time). The format is 42 described in full in gcov-io.h. */ 43 44 /* ??? Register allocation should use basic block execution counts to 45 give preference to the most commonly executed blocks. */ 46 47 /* ??? Should calculate branch probabilities before instrumenting code, since 48 then we can use arc counts to help decide which arcs to instrument. */ 49 50 #include "config.h" 51 #include "system.h" 52 #include "coretypes.h" 53 #include "backend.h" 54 #include "rtl.h" 55 #include "tree.h" 56 #include "gimple.h" 57 #include "cfghooks.h" 58 #include "cgraph.h" 59 #include "coverage.h" 60 #include "diagnostic-core.h" 61 #include "cfganal.h" 62 #include "value-prof.h" 63 #include "gimple-iterator.h" 64 #include "tree-cfg.h" 65 #include "dumpfile.h" 66 #include "cfgloop.h" 67 68 #include "profile.h" 69 70 /* Map from BBs/edges to gcov counters. */ 71 vec<gcov_type> bb_gcov_counts; 72 hash_map<edge,gcov_type> *edge_gcov_counts; 73 74 struct bb_profile_info { 75 unsigned int count_valid : 1; 76 77 /* Number of successor and predecessor edges. */ 78 gcov_type succ_count; 79 gcov_type pred_count; 80 }; 81 82 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux) 83 84 85 /* Counter summary from the last set of coverage counts read. */ 86 87 const struct gcov_ctr_summary *profile_info; 88 89 /* Counter working set information computed from the current counter 90 summary. Not initialized unless profile_info summary is non-NULL. */ 91 static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS]; 92 93 /* Collect statistics on the performance of this pass for the entire source 94 file. */ 95 96 static int total_num_blocks; 97 static int total_num_edges; 98 static int total_num_edges_ignored; 99 static int total_num_edges_instrumented; 100 static int total_num_blocks_created; 101 static int total_num_passes; 102 static int total_num_times_called; 103 static int total_hist_br_prob[20]; 104 static int total_num_branches; 105 106 /* Helper function to update gcov_working_sets. */ 107 108 void add_working_set (gcov_working_set_t *set) { 109 int i = 0; 110 for (; i < NUM_GCOV_WORKING_SETS; i++) 111 gcov_working_sets[i] = set[i]; 112 } 113 114 /* Forward declarations. */ 115 static void find_spanning_tree (struct edge_list *); 116 117 /* Add edge instrumentation code to the entire insn chain. 118 119 F is the first insn of the chain. 120 NUM_BLOCKS is the number of basic blocks found in F. */ 121 122 static unsigned 123 instrument_edges (struct edge_list *el) 124 { 125 unsigned num_instr_edges = 0; 126 int num_edges = NUM_EDGES (el); 127 basic_block bb; 128 129 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 130 { 131 edge e; 132 edge_iterator ei; 133 134 FOR_EACH_EDGE (e, ei, bb->succs) 135 { 136 struct edge_profile_info *inf = EDGE_INFO (e); 137 138 if (!inf->ignore && !inf->on_tree) 139 { 140 gcc_assert (!(e->flags & EDGE_ABNORMAL)); 141 if (dump_file) 142 fprintf (dump_file, "Edge %d to %d instrumented%s\n", 143 e->src->index, e->dest->index, 144 EDGE_CRITICAL_P (e) ? " (and split)" : ""); 145 gimple_gen_edge_profiler (num_instr_edges++, e); 146 } 147 } 148 } 149 150 total_num_blocks_created += num_edges; 151 if (dump_file) 152 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges); 153 return num_instr_edges; 154 } 155 156 /* Add code to measure histograms for values in list VALUES. */ 157 static void 158 instrument_values (histogram_values values) 159 { 160 unsigned i; 161 162 /* Emit code to generate the histograms before the insns. */ 163 164 for (i = 0; i < values.length (); i++) 165 { 166 histogram_value hist = values[i]; 167 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type); 168 169 if (!coverage_counter_alloc (t, hist->n_counters)) 170 continue; 171 172 switch (hist->type) 173 { 174 case HIST_TYPE_INTERVAL: 175 gimple_gen_interval_profiler (hist, t, 0); 176 break; 177 178 case HIST_TYPE_POW2: 179 gimple_gen_pow2_profiler (hist, t, 0); 180 break; 181 182 case HIST_TYPE_SINGLE_VALUE: 183 gimple_gen_one_value_profiler (hist, t, 0); 184 break; 185 186 case HIST_TYPE_INDIR_CALL: 187 case HIST_TYPE_INDIR_CALL_TOPN: 188 gimple_gen_ic_profiler (hist, t, 0); 189 break; 190 191 case HIST_TYPE_AVERAGE: 192 gimple_gen_average_profiler (hist, t, 0); 193 break; 194 195 case HIST_TYPE_IOR: 196 gimple_gen_ior_profiler (hist, t, 0); 197 break; 198 199 case HIST_TYPE_TIME_PROFILE: 200 gimple_gen_time_profiler (t, 0); 201 break; 202 203 default: 204 gcc_unreachable (); 205 } 206 } 207 } 208 209 210 /* Fill the working set information into the profile_info structure. */ 211 212 void 213 get_working_sets (void) 214 { 215 unsigned ws_ix, pctinc, pct; 216 gcov_working_set_t *ws_info; 217 218 if (!profile_info) 219 return; 220 221 compute_working_sets (profile_info, gcov_working_sets); 222 223 if (dump_file) 224 { 225 fprintf (dump_file, "Counter working sets:\n"); 226 /* Multiply the percentage by 100 to avoid float. */ 227 pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS; 228 for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS; 229 ws_ix++, pct += pctinc) 230 { 231 if (ws_ix == NUM_GCOV_WORKING_SETS - 1) 232 pct = 9990; 233 ws_info = &gcov_working_sets[ws_ix]; 234 /* Print out the percentage using int arithmatic to avoid float. */ 235 fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter=" 236 "%" PRId64 "\n", 237 pct / 100, pct - (pct / 100 * 100), 238 ws_info->num_counters, 239 (int64_t)ws_info->min_counter); 240 } 241 } 242 } 243 244 /* Given a the desired percentage of the full profile (sum_all from the 245 summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns 246 the corresponding working set information. If an exact match for 247 the percentage isn't found, the closest value is used. */ 248 249 gcov_working_set_t * 250 find_working_set (unsigned pct_times_10) 251 { 252 unsigned i; 253 if (!profile_info) 254 return NULL; 255 gcc_assert (pct_times_10 <= 1000); 256 if (pct_times_10 >= 999) 257 return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1]; 258 i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000; 259 if (!i) 260 return &gcov_working_sets[0]; 261 return &gcov_working_sets[i - 1]; 262 } 263 264 /* Computes hybrid profile for all matching entries in da_file. 265 266 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 267 268 static gcov_type * 269 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum) 270 { 271 unsigned num_edges = 0; 272 basic_block bb; 273 gcov_type *counts; 274 275 /* Count the edges to be (possibly) instrumented. */ 276 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 277 { 278 edge e; 279 edge_iterator ei; 280 281 FOR_EACH_EDGE (e, ei, bb->succs) 282 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 283 num_edges++; 284 } 285 286 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum, 287 lineno_checksum, &profile_info); 288 if (!counts) 289 return NULL; 290 291 get_working_sets (); 292 293 if (dump_file && profile_info) 294 fprintf (dump_file, "Merged %u profiles with maximal count %u.\n", 295 profile_info->runs, (unsigned) profile_info->sum_max); 296 297 return counts; 298 } 299 300 301 static bool 302 is_edge_inconsistent (vec<edge, va_gc> *edges) 303 { 304 edge e; 305 edge_iterator ei; 306 FOR_EACH_EDGE (e, ei, edges) 307 { 308 if (!EDGE_INFO (e)->ignore) 309 { 310 if (edge_gcov_count (e) < 0 311 && (!(e->flags & EDGE_FAKE) 312 || !block_ends_with_call_p (e->src))) 313 { 314 if (dump_file) 315 { 316 fprintf (dump_file, 317 "Edge %i->%i is inconsistent, count%" PRId64, 318 e->src->index, e->dest->index, edge_gcov_count (e)); 319 dump_bb (dump_file, e->src, 0, TDF_DETAILS); 320 dump_bb (dump_file, e->dest, 0, TDF_DETAILS); 321 } 322 return true; 323 } 324 } 325 } 326 return false; 327 } 328 329 static void 330 correct_negative_edge_counts (void) 331 { 332 basic_block bb; 333 edge e; 334 edge_iterator ei; 335 336 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 337 { 338 FOR_EACH_EDGE (e, ei, bb->succs) 339 { 340 if (edge_gcov_count (e) < 0) 341 edge_gcov_count (e) = 0; 342 } 343 } 344 } 345 346 /* Check consistency. 347 Return true if inconsistency is found. */ 348 static bool 349 is_inconsistent (void) 350 { 351 basic_block bb; 352 bool inconsistent = false; 353 FOR_EACH_BB_FN (bb, cfun) 354 { 355 inconsistent |= is_edge_inconsistent (bb->preds); 356 if (!dump_file && inconsistent) 357 return true; 358 inconsistent |= is_edge_inconsistent (bb->succs); 359 if (!dump_file && inconsistent) 360 return true; 361 if (bb_gcov_count (bb) < 0) 362 { 363 if (dump_file) 364 { 365 fprintf (dump_file, "BB %i count is negative " 366 "%" PRId64, 367 bb->index, 368 bb_gcov_count (bb)); 369 dump_bb (dump_file, bb, 0, TDF_DETAILS); 370 } 371 inconsistent = true; 372 } 373 if (bb_gcov_count (bb) != sum_edge_counts (bb->preds)) 374 { 375 if (dump_file) 376 { 377 fprintf (dump_file, "BB %i count does not match sum of incoming edges " 378 "%" PRId64" should be %" PRId64, 379 bb->index, 380 bb_gcov_count (bb), 381 sum_edge_counts (bb->preds)); 382 dump_bb (dump_file, bb, 0, TDF_DETAILS); 383 } 384 inconsistent = true; 385 } 386 if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) && 387 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL 388 && block_ends_with_call_p (bb))) 389 { 390 if (dump_file) 391 { 392 fprintf (dump_file, "BB %i count does not match sum of outgoing edges " 393 "%" PRId64" should be %" PRId64, 394 bb->index, 395 bb_gcov_count (bb), 396 sum_edge_counts (bb->succs)); 397 dump_bb (dump_file, bb, 0, TDF_DETAILS); 398 } 399 inconsistent = true; 400 } 401 if (!dump_file && inconsistent) 402 return true; 403 } 404 405 return inconsistent; 406 } 407 408 /* Set each basic block count to the sum of its outgoing edge counts */ 409 static void 410 set_bb_counts (void) 411 { 412 basic_block bb; 413 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 414 { 415 bb_gcov_count (bb) = sum_edge_counts (bb->succs); 416 gcc_assert (bb_gcov_count (bb) >= 0); 417 } 418 } 419 420 /* Reads profile data and returns total number of edge counts read */ 421 static int 422 read_profile_edge_counts (gcov_type *exec_counts) 423 { 424 basic_block bb; 425 int num_edges = 0; 426 int exec_counts_pos = 0; 427 /* For each edge not on the spanning tree, set its execution count from 428 the .da file. */ 429 /* The first count in the .da file is the number of times that the function 430 was entered. This is the exec_count for block zero. */ 431 432 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 433 { 434 edge e; 435 edge_iterator ei; 436 437 FOR_EACH_EDGE (e, ei, bb->succs) 438 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 439 { 440 num_edges++; 441 if (exec_counts) 442 { 443 edge_gcov_count (e) = exec_counts[exec_counts_pos++]; 444 if (edge_gcov_count (e) > profile_info->sum_max) 445 { 446 if (flag_profile_correction) 447 { 448 static bool informed = 0; 449 if (dump_enabled_p () && !informed) 450 dump_printf_loc (MSG_NOTE, input_location, 451 "corrupted profile info: edge count" 452 " exceeds maximal count\n"); 453 informed = 1; 454 } 455 else 456 error ("corrupted profile info: edge from %i to %i exceeds maximal count", 457 bb->index, e->dest->index); 458 } 459 } 460 else 461 edge_gcov_count (e) = 0; 462 463 EDGE_INFO (e)->count_valid = 1; 464 BB_INFO (bb)->succ_count--; 465 BB_INFO (e->dest)->pred_count--; 466 if (dump_file) 467 { 468 fprintf (dump_file, "\nRead edge from %i to %i, count:", 469 bb->index, e->dest->index); 470 fprintf (dump_file, "%" PRId64, 471 (int64_t) edge_gcov_count (e)); 472 } 473 } 474 } 475 476 return num_edges; 477 } 478 479 480 /* Compute the branch probabilities for the various branches. 481 Annotate them accordingly. 482 483 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 484 485 static void 486 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum) 487 { 488 basic_block bb; 489 int i; 490 int num_edges = 0; 491 int changes; 492 int passes; 493 int hist_br_prob[20]; 494 int num_branches; 495 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum); 496 int inconsistent = 0; 497 498 /* Very simple sanity checks so we catch bugs in our profiling code. */ 499 if (!profile_info) 500 { 501 if (dump_file) 502 fprintf (dump_file, "Profile info is missing; giving up\n"); 503 return; 504 } 505 506 bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun)); 507 edge_gcov_counts = new hash_map<edge,gcov_type>; 508 509 if (profile_info->sum_all < profile_info->sum_max) 510 { 511 error ("corrupted profile info: sum_all is smaller than sum_max"); 512 exec_counts = NULL; 513 } 514 515 /* Attach extra info block to each bb. */ 516 alloc_aux_for_blocks (sizeof (struct bb_profile_info)); 517 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 518 { 519 edge e; 520 edge_iterator ei; 521 522 FOR_EACH_EDGE (e, ei, bb->succs) 523 if (!EDGE_INFO (e)->ignore) 524 BB_INFO (bb)->succ_count++; 525 FOR_EACH_EDGE (e, ei, bb->preds) 526 if (!EDGE_INFO (e)->ignore) 527 BB_INFO (bb)->pred_count++; 528 } 529 530 /* Avoid predicting entry on exit nodes. */ 531 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2; 532 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2; 533 534 num_edges = read_profile_edge_counts (exec_counts); 535 536 if (dump_file) 537 fprintf (dump_file, "\n%d edge counts read\n", num_edges); 538 539 /* For every block in the file, 540 - if every exit/entrance edge has a known count, then set the block count 541 - if the block count is known, and every exit/entrance edge but one has 542 a known execution count, then set the count of the remaining edge 543 544 As edge counts are set, decrement the succ/pred count, but don't delete 545 the edge, that way we can easily tell when all edges are known, or only 546 one edge is unknown. */ 547 548 /* The order that the basic blocks are iterated through is important. 549 Since the code that finds spanning trees starts with block 0, low numbered 550 edges are put on the spanning tree in preference to high numbered edges. 551 Hence, most instrumented edges are at the end. Graph solving works much 552 faster if we propagate numbers from the end to the start. 553 554 This takes an average of slightly more than 3 passes. */ 555 556 changes = 1; 557 passes = 0; 558 while (changes) 559 { 560 passes++; 561 changes = 0; 562 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb) 563 { 564 struct bb_profile_info *bi = BB_INFO (bb); 565 if (! bi->count_valid) 566 { 567 if (bi->succ_count == 0) 568 { 569 edge e; 570 edge_iterator ei; 571 gcov_type total = 0; 572 573 FOR_EACH_EDGE (e, ei, bb->succs) 574 total += edge_gcov_count (e); 575 bb_gcov_count (bb) = total; 576 bi->count_valid = 1; 577 changes = 1; 578 } 579 else if (bi->pred_count == 0) 580 { 581 edge e; 582 edge_iterator ei; 583 gcov_type total = 0; 584 585 FOR_EACH_EDGE (e, ei, bb->preds) 586 total += edge_gcov_count (e); 587 bb_gcov_count (bb) = total; 588 bi->count_valid = 1; 589 changes = 1; 590 } 591 } 592 if (bi->count_valid) 593 { 594 if (bi->succ_count == 1) 595 { 596 edge e; 597 edge_iterator ei; 598 gcov_type total = 0; 599 600 /* One of the counts will be invalid, but it is zero, 601 so adding it in also doesn't hurt. */ 602 FOR_EACH_EDGE (e, ei, bb->succs) 603 total += edge_gcov_count (e); 604 605 /* Search for the invalid edge, and set its count. */ 606 FOR_EACH_EDGE (e, ei, bb->succs) 607 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore) 608 break; 609 610 /* Calculate count for remaining edge by conservation. */ 611 total = bb_gcov_count (bb) - total; 612 613 gcc_assert (e); 614 EDGE_INFO (e)->count_valid = 1; 615 edge_gcov_count (e) = total; 616 bi->succ_count--; 617 618 BB_INFO (e->dest)->pred_count--; 619 changes = 1; 620 } 621 if (bi->pred_count == 1) 622 { 623 edge e; 624 edge_iterator ei; 625 gcov_type total = 0; 626 627 /* One of the counts will be invalid, but it is zero, 628 so adding it in also doesn't hurt. */ 629 FOR_EACH_EDGE (e, ei, bb->preds) 630 total += edge_gcov_count (e); 631 632 /* Search for the invalid edge, and set its count. */ 633 FOR_EACH_EDGE (e, ei, bb->preds) 634 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore) 635 break; 636 637 /* Calculate count for remaining edge by conservation. */ 638 total = bb_gcov_count (bb) - total + edge_gcov_count (e); 639 640 gcc_assert (e); 641 EDGE_INFO (e)->count_valid = 1; 642 edge_gcov_count (e) = total; 643 bi->pred_count--; 644 645 BB_INFO (e->src)->succ_count--; 646 changes = 1; 647 } 648 } 649 } 650 } 651 652 total_num_passes += passes; 653 if (dump_file) 654 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes); 655 656 /* If the graph has been correctly solved, every block will have a 657 succ and pred count of zero. */ 658 FOR_EACH_BB_FN (bb, cfun) 659 { 660 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count); 661 } 662 663 /* Check for inconsistent basic block counts */ 664 inconsistent = is_inconsistent (); 665 666 if (inconsistent) 667 { 668 if (flag_profile_correction) 669 { 670 /* Inconsistency detected. Make it flow-consistent. */ 671 static int informed = 0; 672 if (dump_enabled_p () && informed == 0) 673 { 674 informed = 1; 675 dump_printf_loc (MSG_NOTE, input_location, 676 "correcting inconsistent profile data\n"); 677 } 678 correct_negative_edge_counts (); 679 /* Set bb counts to the sum of the outgoing edge counts */ 680 set_bb_counts (); 681 if (dump_file) 682 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n"); 683 mcf_smooth_cfg (); 684 } 685 else 686 error ("corrupted profile info: profile data is not flow-consistent"); 687 } 688 689 /* For every edge, calculate its branch probability and add a reg_note 690 to the branch insn to indicate this. */ 691 692 for (i = 0; i < 20; i++) 693 hist_br_prob[i] = 0; 694 num_branches = 0; 695 696 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 697 { 698 edge e; 699 edge_iterator ei; 700 701 if (bb_gcov_count (bb) < 0) 702 { 703 error ("corrupted profile info: number of iterations for basic block %d thought to be %i", 704 bb->index, (int)bb_gcov_count (bb)); 705 bb_gcov_count (bb) = 0; 706 } 707 FOR_EACH_EDGE (e, ei, bb->succs) 708 { 709 /* Function may return twice in the cased the called function is 710 setjmp or calls fork, but we can't represent this by extra 711 edge from the entry, since extra edge from the exit is 712 already present. We get negative frequency from the entry 713 point. */ 714 if ((edge_gcov_count (e) < 0 715 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 716 || (edge_gcov_count (e) > bb_gcov_count (bb) 717 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))) 718 { 719 if (block_ends_with_call_p (bb)) 720 edge_gcov_count (e) = edge_gcov_count (e) < 0 721 ? 0 : bb_gcov_count (bb); 722 } 723 if (edge_gcov_count (e) < 0 724 || edge_gcov_count (e) > bb_gcov_count (bb)) 725 { 726 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i", 727 e->src->index, e->dest->index, 728 (int)edge_gcov_count (e)); 729 edge_gcov_count (e) = bb_gcov_count (bb) / 2; 730 } 731 } 732 if (bb_gcov_count (bb)) 733 { 734 FOR_EACH_EDGE (e, ei, bb->succs) 735 e->probability = profile_probability::probability_in_gcov_type 736 (edge_gcov_count (e), bb_gcov_count (bb)); 737 if (bb->index >= NUM_FIXED_BLOCKS 738 && block_ends_with_condjump_p (bb) 739 && EDGE_COUNT (bb->succs) >= 2) 740 { 741 int prob; 742 edge e; 743 int index; 744 745 /* Find the branch edge. It is possible that we do have fake 746 edges here. */ 747 FOR_EACH_EDGE (e, ei, bb->succs) 748 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU))) 749 break; 750 751 prob = e->probability.to_reg_br_prob_base (); 752 index = prob * 20 / REG_BR_PROB_BASE; 753 754 if (index == 20) 755 index = 19; 756 hist_br_prob[index]++; 757 758 num_branches++; 759 } 760 } 761 /* As a last resort, distribute the probabilities evenly. 762 Use simple heuristics that if there are normal edges, 763 give all abnormals frequency of 0, otherwise distribute the 764 frequency over abnormals (this is the case of noreturn 765 calls). */ 766 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT) 767 { 768 int total = 0; 769 770 FOR_EACH_EDGE (e, ei, bb->succs) 771 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 772 total ++; 773 if (total) 774 { 775 FOR_EACH_EDGE (e, ei, bb->succs) 776 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 777 e->probability 778 = profile_probability::guessed_always ().apply_scale (1, total); 779 else 780 e->probability = profile_probability::never (); 781 } 782 else 783 { 784 total += EDGE_COUNT (bb->succs); 785 FOR_EACH_EDGE (e, ei, bb->succs) 786 e->probability 787 = profile_probability::guessed_always ().apply_scale (1, total); 788 } 789 if (bb->index >= NUM_FIXED_BLOCKS 790 && block_ends_with_condjump_p (bb) 791 && EDGE_COUNT (bb->succs) >= 2) 792 num_branches++; 793 } 794 } 795 796 /* If we have real data, use them! */ 797 if (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun)) 798 || !flag_guess_branch_prob) 799 FOR_ALL_BB_FN (bb, cfun) 800 bb->count = profile_count::from_gcov_type (bb_gcov_count (bb)); 801 /* If function was not trained, preserve local estimates including statically 802 determined zero counts. */ 803 else 804 FOR_ALL_BB_FN (bb, cfun) 805 if (!(bb->count == profile_count::zero ())) 806 bb->count = bb->count.global0 (); 807 808 bb_gcov_counts.release (); 809 delete edge_gcov_counts; 810 edge_gcov_counts = NULL; 811 812 update_max_bb_count (); 813 814 if (dump_file) 815 { 816 fprintf (dump_file, "%d branches\n", num_branches); 817 if (num_branches) 818 for (i = 0; i < 10; i++) 819 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 820 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches, 821 5 * i, 5 * i + 5); 822 823 total_num_branches += num_branches; 824 for (i = 0; i < 20; i++) 825 total_hist_br_prob[i] += hist_br_prob[i]; 826 827 fputc ('\n', dump_file); 828 fputc ('\n', dump_file); 829 } 830 831 free_aux_for_blocks (); 832 } 833 834 /* Load value histograms values whose description is stored in VALUES array 835 from .gcda file. 836 837 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 838 839 static void 840 compute_value_histograms (histogram_values values, unsigned cfg_checksum, 841 unsigned lineno_checksum) 842 { 843 unsigned i, j, t, any; 844 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS]; 845 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS]; 846 gcov_type *act_count[GCOV_N_VALUE_COUNTERS]; 847 gcov_type *aact_count; 848 struct cgraph_node *node; 849 850 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 851 n_histogram_counters[t] = 0; 852 853 for (i = 0; i < values.length (); i++) 854 { 855 histogram_value hist = values[i]; 856 n_histogram_counters[(int) hist->type] += hist->n_counters; 857 } 858 859 any = 0; 860 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 861 { 862 if (!n_histogram_counters[t]) 863 { 864 histogram_counts[t] = NULL; 865 continue; 866 } 867 868 histogram_counts[t] = 869 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t), 870 n_histogram_counters[t], cfg_checksum, 871 lineno_checksum, NULL); 872 if (histogram_counts[t]) 873 any = 1; 874 act_count[t] = histogram_counts[t]; 875 } 876 if (!any) 877 return; 878 879 for (i = 0; i < values.length (); i++) 880 { 881 histogram_value hist = values[i]; 882 gimple *stmt = hist->hvalue.stmt; 883 884 t = (int) hist->type; 885 886 aact_count = act_count[t]; 887 888 if (act_count[t]) 889 act_count[t] += hist->n_counters; 890 891 gimple_add_histogram_value (cfun, stmt, hist); 892 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters); 893 for (j = 0; j < hist->n_counters; j++) 894 if (aact_count) 895 hist->hvalue.counters[j] = aact_count[j]; 896 else 897 hist->hvalue.counters[j] = 0; 898 899 /* Time profiler counter is not related to any statement, 900 so that we have to read the counter and set the value to 901 the corresponding call graph node. */ 902 if (hist->type == HIST_TYPE_TIME_PROFILE) 903 { 904 node = cgraph_node::get (hist->fun->decl); 905 node->tp_first_run = hist->hvalue.counters[0]; 906 907 if (dump_file) 908 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run); 909 } 910 } 911 912 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 913 free (histogram_counts[t]); 914 } 915 916 /* When passed NULL as file_name, initialize. 917 When passed something else, output the necessary commands to change 918 line to LINE and offset to FILE_NAME. */ 919 static void 920 output_location (char const *file_name, int line, 921 gcov_position_t *offset, basic_block bb) 922 { 923 static char const *prev_file_name; 924 static int prev_line; 925 bool name_differs, line_differs; 926 927 if (!file_name) 928 { 929 prev_file_name = NULL; 930 prev_line = -1; 931 return; 932 } 933 934 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name); 935 line_differs = prev_line != line; 936 937 if (!*offset) 938 { 939 *offset = gcov_write_tag (GCOV_TAG_LINES); 940 gcov_write_unsigned (bb->index); 941 name_differs = line_differs = true; 942 } 943 944 /* If this is a new source file, then output the 945 file's name to the .bb file. */ 946 if (name_differs) 947 { 948 prev_file_name = file_name; 949 gcov_write_unsigned (0); 950 gcov_write_filename (prev_file_name); 951 } 952 if (line_differs) 953 { 954 gcov_write_unsigned (line); 955 prev_line = line; 956 } 957 } 958 959 /* Helper for qsort so edges get sorted from highest frequency to smallest. 960 This controls the weight for minimal spanning tree algorithm */ 961 static int 962 compare_freqs (const void *p1, const void *p2) 963 { 964 const_edge e1 = *(const const_edge *)p1; 965 const_edge e2 = *(const const_edge *)p2; 966 967 /* Critical edges needs to be split which introduce extra control flow. 968 Make them more heavy. */ 969 int m1 = EDGE_CRITICAL_P (e1) ? 2 : 1; 970 int m2 = EDGE_CRITICAL_P (e2) ? 2 : 1; 971 972 if (EDGE_FREQUENCY (e1) * m1 + m1 != EDGE_FREQUENCY (e2) * m2 + m2) 973 return EDGE_FREQUENCY (e2) * m2 + m2 - EDGE_FREQUENCY (e1) * m1 - m1; 974 /* Stabilize sort. */ 975 if (e1->src->index != e2->src->index) 976 return e2->src->index - e1->src->index; 977 return e2->dest->index - e1->dest->index; 978 } 979 980 /* Instrument and/or analyze program behavior based on program the CFG. 981 982 This function creates a representation of the control flow graph (of 983 the function being compiled) that is suitable for the instrumentation 984 of edges and/or converting measured edge counts to counts on the 985 complete CFG. 986 987 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in 988 the flow graph that are needed to reconstruct the dynamic behavior of the 989 flow graph. This data is written to the gcno file for gcov. 990 991 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary 992 information from the gcda file containing edge count information from 993 previous executions of the function being compiled. In this case, the 994 control flow graph is annotated with actual execution counts by 995 compute_branch_probabilities(). 996 997 Main entry point of this file. */ 998 999 void 1000 branch_prob (void) 1001 { 1002 basic_block bb; 1003 unsigned i; 1004 unsigned num_edges, ignored_edges; 1005 unsigned num_instrumented; 1006 struct edge_list *el; 1007 histogram_values values = histogram_values (); 1008 unsigned cfg_checksum, lineno_checksum; 1009 1010 total_num_times_called++; 1011 1012 flow_call_edges_add (NULL); 1013 add_noreturn_fake_exit_edges (); 1014 1015 /* We can't handle cyclic regions constructed using abnormal edges. 1016 To avoid these we replace every source of abnormal edge by a fake 1017 edge from entry node and every destination by fake edge to exit. 1018 This keeps graph acyclic and our calculation exact for all normal 1019 edges except for exit and entrance ones. 1020 1021 We also add fake exit edges for each call and asm statement in the 1022 basic, since it may not return. */ 1023 1024 FOR_EACH_BB_FN (bb, cfun) 1025 { 1026 int need_exit_edge = 0, need_entry_edge = 0; 1027 int have_exit_edge = 0, have_entry_edge = 0; 1028 edge e; 1029 edge_iterator ei; 1030 1031 /* Functions returning multiple times are not handled by extra edges. 1032 Instead we simply allow negative counts on edges from exit to the 1033 block past call and corresponding probabilities. We can't go 1034 with the extra edges because that would result in flowgraph that 1035 needs to have fake edges outside the spanning tree. */ 1036 1037 FOR_EACH_EDGE (e, ei, bb->succs) 1038 { 1039 gimple_stmt_iterator gsi; 1040 gimple *last = NULL; 1041 1042 /* It may happen that there are compiler generated statements 1043 without a locus at all. Go through the basic block from the 1044 last to the first statement looking for a locus. */ 1045 for (gsi = gsi_last_nondebug_bb (bb); 1046 !gsi_end_p (gsi); 1047 gsi_prev_nondebug (&gsi)) 1048 { 1049 last = gsi_stmt (gsi); 1050 if (!RESERVED_LOCATION_P (gimple_location (last))) 1051 break; 1052 } 1053 1054 /* Edge with goto locus might get wrong coverage info unless 1055 it is the only edge out of BB. 1056 Don't do that when the locuses match, so 1057 if (blah) goto something; 1058 is not computed twice. */ 1059 if (last 1060 && gimple_has_location (last) 1061 && !RESERVED_LOCATION_P (e->goto_locus) 1062 && !single_succ_p (bb) 1063 && (LOCATION_FILE (e->goto_locus) 1064 != LOCATION_FILE (gimple_location (last)) 1065 || (LOCATION_LINE (e->goto_locus) 1066 != LOCATION_LINE (gimple_location (last))))) 1067 { 1068 basic_block new_bb = split_edge (e); 1069 edge ne = single_succ_edge (new_bb); 1070 ne->goto_locus = e->goto_locus; 1071 } 1072 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1073 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 1074 need_exit_edge = 1; 1075 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1076 have_exit_edge = 1; 1077 } 1078 FOR_EACH_EDGE (e, ei, bb->preds) 1079 { 1080 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1081 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1082 need_entry_edge = 1; 1083 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1084 have_entry_edge = 1; 1085 } 1086 1087 if (need_exit_edge && !have_exit_edge) 1088 { 1089 if (dump_file) 1090 fprintf (dump_file, "Adding fake exit edge to bb %i\n", 1091 bb->index); 1092 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 1093 } 1094 if (need_entry_edge && !have_entry_edge) 1095 { 1096 if (dump_file) 1097 fprintf (dump_file, "Adding fake entry edge to bb %i\n", 1098 bb->index); 1099 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE); 1100 /* Avoid bbs that have both fake entry edge and also some 1101 exit edge. One of those edges wouldn't be added to the 1102 spanning tree, but we can't instrument any of them. */ 1103 if (have_exit_edge || need_exit_edge) 1104 { 1105 gimple_stmt_iterator gsi; 1106 gimple *first; 1107 1108 gsi = gsi_start_nondebug_after_labels_bb (bb); 1109 gcc_checking_assert (!gsi_end_p (gsi)); 1110 first = gsi_stmt (gsi); 1111 /* Don't split the bbs containing __builtin_setjmp_receiver 1112 or ABNORMAL_DISPATCHER calls. These are very 1113 special and don't expect anything to be inserted before 1114 them. */ 1115 if (is_gimple_call (first) 1116 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER) 1117 || (gimple_call_flags (first) & ECF_RETURNS_TWICE) 1118 || (gimple_call_internal_p (first) 1119 && (gimple_call_internal_fn (first) 1120 == IFN_ABNORMAL_DISPATCHER)))) 1121 continue; 1122 1123 if (dump_file) 1124 fprintf (dump_file, "Splitting bb %i after labels\n", 1125 bb->index); 1126 split_block_after_labels (bb); 1127 } 1128 } 1129 } 1130 1131 el = create_edge_list (); 1132 num_edges = NUM_EDGES (el); 1133 qsort (el->index_to_edge, num_edges, sizeof (edge), compare_freqs); 1134 alloc_aux_for_edges (sizeof (struct edge_profile_info)); 1135 1136 /* The basic blocks are expected to be numbered sequentially. */ 1137 compact_blocks (); 1138 1139 ignored_edges = 0; 1140 for (i = 0 ; i < num_edges ; i++) 1141 { 1142 edge e = INDEX_EDGE (el, i); 1143 1144 /* Mark edges we've replaced by fake edges above as ignored. */ 1145 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1146 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) 1147 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 1148 { 1149 EDGE_INFO (e)->ignore = 1; 1150 ignored_edges++; 1151 } 1152 } 1153 1154 /* Create spanning tree from basic block graph, mark each edge that is 1155 on the spanning tree. We insert as many abnormal and critical edges 1156 as possible to minimize number of edge splits necessary. */ 1157 1158 find_spanning_tree (el); 1159 1160 /* Fake edges that are not on the tree will not be instrumented, so 1161 mark them ignored. */ 1162 for (num_instrumented = i = 0; i < num_edges; i++) 1163 { 1164 edge e = INDEX_EDGE (el, i); 1165 struct edge_profile_info *inf = EDGE_INFO (e); 1166 1167 if (inf->ignore || inf->on_tree) 1168 /*NOP*/; 1169 else if (e->flags & EDGE_FAKE) 1170 { 1171 inf->ignore = 1; 1172 ignored_edges++; 1173 } 1174 else 1175 num_instrumented++; 1176 } 1177 1178 total_num_blocks += n_basic_blocks_for_fn (cfun); 1179 if (dump_file) 1180 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun)); 1181 1182 total_num_edges += num_edges; 1183 if (dump_file) 1184 fprintf (dump_file, "%d edges\n", num_edges); 1185 1186 total_num_edges_ignored += ignored_edges; 1187 if (dump_file) 1188 fprintf (dump_file, "%d ignored edges\n", ignored_edges); 1189 1190 total_num_edges_instrumented += num_instrumented; 1191 if (dump_file) 1192 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented); 1193 1194 /* Compute two different checksums. Note that we want to compute 1195 the checksum in only once place, since it depends on the shape 1196 of the control flow which can change during 1197 various transformations. */ 1198 cfg_checksum = coverage_compute_cfg_checksum (cfun); 1199 lineno_checksum = coverage_compute_lineno_checksum (); 1200 1201 /* Write the data from which gcov can reconstruct the basic block 1202 graph and function line numbers (the gcno file). */ 1203 if (coverage_begin_function (lineno_checksum, cfg_checksum)) 1204 { 1205 gcov_position_t offset; 1206 1207 /* Basic block flags */ 1208 offset = gcov_write_tag (GCOV_TAG_BLOCKS); 1209 gcov_write_unsigned (n_basic_blocks_for_fn (cfun)); 1210 gcov_write_length (offset); 1211 1212 /* Arcs */ 1213 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 1214 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 1215 { 1216 edge e; 1217 edge_iterator ei; 1218 1219 offset = gcov_write_tag (GCOV_TAG_ARCS); 1220 gcov_write_unsigned (bb->index); 1221 1222 FOR_EACH_EDGE (e, ei, bb->succs) 1223 { 1224 struct edge_profile_info *i = EDGE_INFO (e); 1225 if (!i->ignore) 1226 { 1227 unsigned flag_bits = 0; 1228 1229 if (i->on_tree) 1230 flag_bits |= GCOV_ARC_ON_TREE; 1231 if (e->flags & EDGE_FAKE) 1232 flag_bits |= GCOV_ARC_FAKE; 1233 if (e->flags & EDGE_FALLTHRU) 1234 flag_bits |= GCOV_ARC_FALLTHROUGH; 1235 /* On trees we don't have fallthru flags, but we can 1236 recompute them from CFG shape. */ 1237 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE) 1238 && e->src->next_bb == e->dest) 1239 flag_bits |= GCOV_ARC_FALLTHROUGH; 1240 1241 gcov_write_unsigned (e->dest->index); 1242 gcov_write_unsigned (flag_bits); 1243 } 1244 } 1245 1246 gcov_write_length (offset); 1247 } 1248 1249 /* Line numbers. */ 1250 /* Initialize the output. */ 1251 output_location (NULL, 0, NULL, NULL); 1252 1253 FOR_EACH_BB_FN (bb, cfun) 1254 { 1255 gimple_stmt_iterator gsi; 1256 gcov_position_t offset = 0; 1257 1258 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) 1259 { 1260 expanded_location curr_location = 1261 expand_location (DECL_SOURCE_LOCATION (current_function_decl)); 1262 output_location (curr_location.file, curr_location.line, 1263 &offset, bb); 1264 } 1265 1266 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1267 { 1268 gimple *stmt = gsi_stmt (gsi); 1269 if (!RESERVED_LOCATION_P (gimple_location (stmt))) 1270 output_location (gimple_filename (stmt), gimple_lineno (stmt), 1271 &offset, bb); 1272 } 1273 1274 /* Notice GOTO expressions eliminated while constructing the CFG. */ 1275 if (single_succ_p (bb) 1276 && !RESERVED_LOCATION_P (single_succ_edge (bb)->goto_locus)) 1277 { 1278 expanded_location curr_location 1279 = expand_location (single_succ_edge (bb)->goto_locus); 1280 output_location (curr_location.file, curr_location.line, 1281 &offset, bb); 1282 } 1283 1284 if (offset) 1285 { 1286 /* A file of NULL indicates the end of run. */ 1287 gcov_write_unsigned (0); 1288 gcov_write_string (NULL); 1289 gcov_write_length (offset); 1290 } 1291 } 1292 } 1293 1294 if (flag_profile_values) 1295 gimple_find_values_to_profile (&values); 1296 1297 if (flag_branch_probabilities) 1298 { 1299 compute_branch_probabilities (cfg_checksum, lineno_checksum); 1300 if (flag_profile_values) 1301 compute_value_histograms (values, cfg_checksum, lineno_checksum); 1302 } 1303 1304 remove_fake_edges (); 1305 1306 /* For each edge not on the spanning tree, add counting code. */ 1307 if (profile_arc_flag 1308 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented)) 1309 { 1310 unsigned n_instrumented; 1311 1312 gimple_init_gcov_profiler (); 1313 1314 n_instrumented = instrument_edges (el); 1315 1316 gcc_assert (n_instrumented == num_instrumented); 1317 1318 if (flag_profile_values) 1319 instrument_values (values); 1320 1321 /* Commit changes done by instrumentation. */ 1322 gsi_commit_edge_inserts (); 1323 } 1324 1325 free_aux_for_edges (); 1326 1327 values.release (); 1328 free_edge_list (el); 1329 coverage_end_function (lineno_checksum, cfg_checksum); 1330 if (flag_branch_probabilities && profile_info) 1331 { 1332 struct loop *loop; 1333 if (dump_file && (dump_flags & TDF_DETAILS)) 1334 report_predictor_hitrates (); 1335 profile_status_for_fn (cfun) = PROFILE_READ; 1336 1337 /* At this moment we have precise loop iteration count estimates. 1338 Record them to loop structure before the profile gets out of date. */ 1339 FOR_EACH_LOOP (loop, 0) 1340 if (loop->header->count > 0) 1341 { 1342 gcov_type nit = expected_loop_iterations_unbounded (loop); 1343 widest_int bound = gcov_type_to_wide_int (nit); 1344 loop->any_estimate = false; 1345 record_niter_bound (loop, bound, true, false); 1346 } 1347 compute_function_frequency (); 1348 } 1349 } 1350 1351 /* Union find algorithm implementation for the basic blocks using 1352 aux fields. */ 1353 1354 static basic_block 1355 find_group (basic_block bb) 1356 { 1357 basic_block group = bb, bb1; 1358 1359 while ((basic_block) group->aux != group) 1360 group = (basic_block) group->aux; 1361 1362 /* Compress path. */ 1363 while ((basic_block) bb->aux != group) 1364 { 1365 bb1 = (basic_block) bb->aux; 1366 bb->aux = (void *) group; 1367 bb = bb1; 1368 } 1369 return group; 1370 } 1371 1372 static void 1373 union_groups (basic_block bb1, basic_block bb2) 1374 { 1375 basic_block bb1g = find_group (bb1); 1376 basic_block bb2g = find_group (bb2); 1377 1378 /* ??? I don't have a place for the rank field. OK. Lets go w/o it, 1379 this code is unlikely going to be performance problem anyway. */ 1380 gcc_assert (bb1g != bb2g); 1381 1382 bb1g->aux = bb2g; 1383 } 1384 1385 /* This function searches all of the edges in the program flow graph, and puts 1386 as many bad edges as possible onto the spanning tree. Bad edges include 1387 abnormals edges, which can't be instrumented at the moment. Since it is 1388 possible for fake edges to form a cycle, we will have to develop some 1389 better way in the future. Also put critical edges to the tree, since they 1390 are more expensive to instrument. */ 1391 1392 static void 1393 find_spanning_tree (struct edge_list *el) 1394 { 1395 int i; 1396 int num_edges = NUM_EDGES (el); 1397 basic_block bb; 1398 1399 /* We use aux field for standard union-find algorithm. */ 1400 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 1401 bb->aux = bb; 1402 1403 /* Add fake edge exit to entry we can't instrument. */ 1404 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1405 1406 /* First add all abnormal edges to the tree unless they form a cycle. Also 1407 add all edges to the exit block to avoid inserting profiling code behind 1408 setting return value from function. */ 1409 for (i = 0; i < num_edges; i++) 1410 { 1411 edge e = INDEX_EDGE (el, i); 1412 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE)) 1413 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1414 && !EDGE_INFO (e)->ignore 1415 && (find_group (e->src) != find_group (e->dest))) 1416 { 1417 if (dump_file) 1418 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n", 1419 e->src->index, e->dest->index); 1420 EDGE_INFO (e)->on_tree = 1; 1421 union_groups (e->src, e->dest); 1422 } 1423 } 1424 1425 /* And now the rest. Edge list is sorted according to frequencies and 1426 thus we will produce minimal spanning tree. */ 1427 for (i = 0; i < num_edges; i++) 1428 { 1429 edge e = INDEX_EDGE (el, i); 1430 if (!EDGE_INFO (e)->ignore 1431 && find_group (e->src) != find_group (e->dest)) 1432 { 1433 if (dump_file) 1434 fprintf (dump_file, "Normal edge %d to %d put to tree\n", 1435 e->src->index, e->dest->index); 1436 EDGE_INFO (e)->on_tree = 1; 1437 union_groups (e->src, e->dest); 1438 } 1439 } 1440 1441 clear_aux_for_blocks (); 1442 } 1443 1444 /* Perform file-level initialization for branch-prob processing. */ 1445 1446 void 1447 init_branch_prob (void) 1448 { 1449 int i; 1450 1451 total_num_blocks = 0; 1452 total_num_edges = 0; 1453 total_num_edges_ignored = 0; 1454 total_num_edges_instrumented = 0; 1455 total_num_blocks_created = 0; 1456 total_num_passes = 0; 1457 total_num_times_called = 0; 1458 total_num_branches = 0; 1459 for (i = 0; i < 20; i++) 1460 total_hist_br_prob[i] = 0; 1461 } 1462 1463 /* Performs file-level cleanup after branch-prob processing 1464 is completed. */ 1465 1466 void 1467 end_branch_prob (void) 1468 { 1469 if (dump_file) 1470 { 1471 fprintf (dump_file, "\n"); 1472 fprintf (dump_file, "Total number of blocks: %d\n", 1473 total_num_blocks); 1474 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges); 1475 fprintf (dump_file, "Total number of ignored edges: %d\n", 1476 total_num_edges_ignored); 1477 fprintf (dump_file, "Total number of instrumented edges: %d\n", 1478 total_num_edges_instrumented); 1479 fprintf (dump_file, "Total number of blocks created: %d\n", 1480 total_num_blocks_created); 1481 fprintf (dump_file, "Total number of graph solution passes: %d\n", 1482 total_num_passes); 1483 if (total_num_times_called != 0) 1484 fprintf (dump_file, "Average number of graph solution passes: %d\n", 1485 (total_num_passes + (total_num_times_called >> 1)) 1486 / total_num_times_called); 1487 fprintf (dump_file, "Total number of branches: %d\n", 1488 total_num_branches); 1489 if (total_num_branches) 1490 { 1491 int i; 1492 1493 for (i = 0; i < 10; i++) 1494 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 1495 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100 1496 / total_num_branches, 5*i, 5*i+5); 1497 } 1498 } 1499 } 1500