1 /* Lower complex number operations to scalar operations.
2    Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
43 
44 
45 /* For each complex ssa name, a lattice value.  We're interested in finding
46    out whether a complex number is degenerate in some way, having only real
47    or only complex parts.  */
48 
49 enum
50 {
51   UNINITIALIZED = 0,
52   ONLY_REAL = 1,
53   ONLY_IMAG = 2,
54   VARYING = 3
55 };
56 
57 /* The type complex_lattice_t holds combinations of the above
58    constants.  */
59 typedef int complex_lattice_t;
60 
61 #define PAIR(a, b)  ((a) << 2 | (b))
62 
63 class complex_propagate : public ssa_propagation_engine
64 {
65   enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66   enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
67 };
68 
69 static vec<complex_lattice_t> complex_lattice_values;
70 
71 /* For each complex variable, a pair of variables for the components exists in
72    the hashtable.  */
73 static int_tree_htab_type *complex_variable_components;
74 
75 /* For each complex SSA_NAME, a pair of ssa names for the components.  */
76 static vec<tree> complex_ssa_name_components;
77 
78 /* Vector of PHI triplets (original complex PHI and corresponding real and
79    imag PHIs if real and/or imag PHIs contain temporarily
80    non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs.  */
81 static vec<gphi *> phis_to_revisit;
82 
83 /* Lookup UID in the complex_variable_components hashtable and return the
84    associated tree.  */
85 static tree
86 cvc_lookup (unsigned int uid)
87 {
88   struct int_tree_map in;
89   in.uid = uid;
90   return complex_variable_components->find_with_hash (in, uid).to;
91 }
92 
93 /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
94 
95 static void
96 cvc_insert (unsigned int uid, tree to)
97 {
98   int_tree_map h;
99   int_tree_map *loc;
100 
101   h.uid = uid;
102   loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
103   loc->uid = uid;
104   loc->to = to;
105 }
106 
107 /* Return true if T is not a zero constant.  In the case of real values,
108    we're only interested in +0.0.  */
109 
110 static int
111 some_nonzerop (tree t)
112 {
113   int zerop = false;
114 
115   /* Operations with real or imaginary part of a complex number zero
116      cannot be treated the same as operations with a real or imaginary
117      operand if we care about the signs of zeros in the result.  */
118   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
119     zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
120   else if (TREE_CODE (t) == FIXED_CST)
121     zerop = fixed_zerop (t);
122   else if (TREE_CODE (t) == INTEGER_CST)
123     zerop = integer_zerop (t);
124 
125   return !zerop;
126 }
127 
128 
129 /* Compute a lattice value from the components of a complex type REAL
130    and IMAG.  */
131 
132 static complex_lattice_t
133 find_lattice_value_parts (tree real, tree imag)
134 {
135   int r, i;
136   complex_lattice_t ret;
137 
138   r = some_nonzerop (real);
139   i = some_nonzerop (imag);
140   ret = r * ONLY_REAL + i * ONLY_IMAG;
141 
142   /* ??? On occasion we could do better than mapping 0+0i to real, but we
143      certainly don't want to leave it UNINITIALIZED, which eventually gets
144      mapped to VARYING.  */
145   if (ret == UNINITIALIZED)
146     ret = ONLY_REAL;
147 
148   return ret;
149 }
150 
151 
152 /* Compute a lattice value from gimple_val T.  */
153 
154 static complex_lattice_t
155 find_lattice_value (tree t)
156 {
157   tree real, imag;
158 
159   switch (TREE_CODE (t))
160     {
161     case SSA_NAME:
162       return complex_lattice_values[SSA_NAME_VERSION (t)];
163 
164     case COMPLEX_CST:
165       real = TREE_REALPART (t);
166       imag = TREE_IMAGPART (t);
167       break;
168 
169     default:
170       gcc_unreachable ();
171     }
172 
173   return find_lattice_value_parts (real, imag);
174 }
175 
176 /* Determine if LHS is something for which we're interested in seeing
177    simulation results.  */
178 
179 static bool
180 is_complex_reg (tree lhs)
181 {
182   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
183 }
184 
185 /* Mark the incoming parameters to the function as VARYING.  */
186 
187 static void
188 init_parameter_lattice_values (void)
189 {
190   tree parm, ssa_name;
191 
192   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
193     if (is_complex_reg (parm)
194 	&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
195       complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
196 }
197 
198 /* Initialize simulation state for each statement.  Return false if we
199    found no statements we want to simulate, and thus there's nothing
200    for the entire pass to do.  */
201 
202 static bool
203 init_dont_simulate_again (void)
204 {
205   basic_block bb;
206   bool saw_a_complex_op = false;
207 
208   FOR_EACH_BB_FN (bb, cfun)
209     {
210       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
211 	   gsi_next (&gsi))
212 	{
213 	  gphi *phi = gsi.phi ();
214 	  prop_set_simulate_again (phi,
215 				   is_complex_reg (gimple_phi_result (phi)));
216 	}
217 
218       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
219 	   gsi_next (&gsi))
220 	{
221 	  gimple *stmt;
222 	  tree op0, op1;
223 	  bool sim_again_p;
224 
225 	  stmt = gsi_stmt (gsi);
226 	  op0 = op1 = NULL_TREE;
227 
228 	  /* Most control-altering statements must be initially
229 	     simulated, else we won't cover the entire cfg.  */
230 	  sim_again_p = stmt_ends_bb_p (stmt);
231 
232 	  switch (gimple_code (stmt))
233 	    {
234 	    case GIMPLE_CALL:
235 	      if (gimple_call_lhs (stmt))
236 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
237 	      break;
238 
239 	    case GIMPLE_ASSIGN:
240 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
241 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
242 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
243 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
244 	      else
245 		op0 = gimple_assign_rhs1 (stmt);
246 	      if (gimple_num_ops (stmt) > 2)
247 		op1 = gimple_assign_rhs2 (stmt);
248 	      break;
249 
250 	    case GIMPLE_COND:
251 	      op0 = gimple_cond_lhs (stmt);
252 	      op1 = gimple_cond_rhs (stmt);
253 	      break;
254 
255 	    default:
256 	      break;
257 	    }
258 
259 	  if (op0 || op1)
260 	    switch (gimple_expr_code (stmt))
261 	      {
262 	      case EQ_EXPR:
263 	      case NE_EXPR:
264 	      case PLUS_EXPR:
265 	      case MINUS_EXPR:
266 	      case MULT_EXPR:
267 	      case TRUNC_DIV_EXPR:
268 	      case CEIL_DIV_EXPR:
269 	      case FLOOR_DIV_EXPR:
270 	      case ROUND_DIV_EXPR:
271 	      case RDIV_EXPR:
272 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
273 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
274 		  saw_a_complex_op = true;
275 		break;
276 
277 	      case NEGATE_EXPR:
278 	      case CONJ_EXPR:
279 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
280 		  saw_a_complex_op = true;
281 		break;
282 
283 	      case REALPART_EXPR:
284 	      case IMAGPART_EXPR:
285 		/* The total store transformation performed during
286 		  gimplification creates such uninitialized loads
287 		  and we need to lower the statement to be able
288 		  to fix things up.  */
289 		if (TREE_CODE (op0) == SSA_NAME
290 		    && ssa_undefined_value_p (op0))
291 		  saw_a_complex_op = true;
292 		break;
293 
294 	      default:
295 		break;
296 	      }
297 
298 	  prop_set_simulate_again (stmt, sim_again_p);
299 	}
300     }
301 
302   return saw_a_complex_op;
303 }
304 
305 
306 /* Evaluate statement STMT against the complex lattice defined above.  */
307 
308 enum ssa_prop_result
309 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
310 			       tree *result_p)
311 {
312   complex_lattice_t new_l, old_l, op1_l, op2_l;
313   unsigned int ver;
314   tree lhs;
315 
316   lhs = gimple_get_lhs (stmt);
317   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
318   if (!lhs)
319     return SSA_PROP_VARYING;
320 
321   /* These conditions should be satisfied due to the initial filter
322      set up in init_dont_simulate_again.  */
323   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
324   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
325 
326   *result_p = lhs;
327   ver = SSA_NAME_VERSION (lhs);
328   old_l = complex_lattice_values[ver];
329 
330   switch (gimple_expr_code (stmt))
331     {
332     case SSA_NAME:
333     case COMPLEX_CST:
334       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335       break;
336 
337     case COMPLEX_EXPR:
338       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
339 				        gimple_assign_rhs2 (stmt));
340       break;
341 
342     case PLUS_EXPR:
343     case MINUS_EXPR:
344       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
346 
347       /* We've set up the lattice values such that IOR neatly
348 	 models addition.  */
349       new_l = op1_l | op2_l;
350       break;
351 
352     case MULT_EXPR:
353     case RDIV_EXPR:
354     case TRUNC_DIV_EXPR:
355     case CEIL_DIV_EXPR:
356     case FLOOR_DIV_EXPR:
357     case ROUND_DIV_EXPR:
358       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
359       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
360 
361       /* Obviously, if either varies, so does the result.  */
362       if (op1_l == VARYING || op2_l == VARYING)
363 	new_l = VARYING;
364       /* Don't prematurely promote variables if we've not yet seen
365 	 their inputs.  */
366       else if (op1_l == UNINITIALIZED)
367 	new_l = op2_l;
368       else if (op2_l == UNINITIALIZED)
369 	new_l = op1_l;
370       else
371 	{
372 	  /* At this point both numbers have only one component. If the
373 	     numbers are of opposite kind, the result is imaginary,
374 	     otherwise the result is real. The add/subtract translates
375 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
376 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
377 
378 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
379 	  new_l |= old_l;
380 	}
381       break;
382 
383     case NEGATE_EXPR:
384     case CONJ_EXPR:
385       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
386       break;
387 
388     default:
389       new_l = VARYING;
390       break;
391     }
392 
393   /* If nothing changed this round, let the propagator know.  */
394   if (new_l == old_l)
395     return SSA_PROP_NOT_INTERESTING;
396 
397   complex_lattice_values[ver] = new_l;
398   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
399 }
400 
401 /* Evaluate a PHI node against the complex lattice defined above.  */
402 
403 enum ssa_prop_result
404 complex_propagate::visit_phi (gphi *phi)
405 {
406   complex_lattice_t new_l, old_l;
407   unsigned int ver;
408   tree lhs;
409   int i;
410 
411   lhs = gimple_phi_result (phi);
412 
413   /* This condition should be satisfied due to the initial filter
414      set up in init_dont_simulate_again.  */
415   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
416 
417   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
418   new_l = UNINITIALIZED;
419   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
420     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
421 
422   ver = SSA_NAME_VERSION (lhs);
423   old_l = complex_lattice_values[ver];
424 
425   if (new_l == old_l)
426     return SSA_PROP_NOT_INTERESTING;
427 
428   complex_lattice_values[ver] = new_l;
429   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
430 }
431 
432 /* Create one backing variable for a complex component of ORIG.  */
433 
434 static tree
435 create_one_component_var (tree type, tree orig, const char *prefix,
436 			  const char *suffix, enum tree_code code)
437 {
438   tree r = create_tmp_var (type, prefix);
439 
440   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
441   DECL_ARTIFICIAL (r) = 1;
442 
443   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
444     {
445       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
446       name = ACONCAT ((name, suffix, NULL));
447       DECL_NAME (r) = get_identifier (name);
448 
449       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
450       DECL_HAS_DEBUG_EXPR_P (r) = 1;
451       DECL_IGNORED_P (r) = 0;
452       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
453     }
454   else
455     {
456       DECL_IGNORED_P (r) = 1;
457       TREE_NO_WARNING (r) = 1;
458     }
459 
460   return r;
461 }
462 
463 /* Retrieve a value for a complex component of VAR.  */
464 
465 static tree
466 get_component_var (tree var, bool imag_p)
467 {
468   size_t decl_index = DECL_UID (var) * 2 + imag_p;
469   tree ret = cvc_lookup (decl_index);
470 
471   if (ret == NULL)
472     {
473       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
474 				      imag_p ? "CI" : "CR",
475 				      imag_p ? "$imag" : "$real",
476 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
477       cvc_insert (decl_index, ret);
478     }
479 
480   return ret;
481 }
482 
483 /* Retrieve a value for a complex component of SSA_NAME.  */
484 
485 static tree
486 get_component_ssa_name (tree ssa_name, bool imag_p)
487 {
488   complex_lattice_t lattice = find_lattice_value (ssa_name);
489   size_t ssa_name_index;
490   tree ret;
491 
492   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
493     {
494       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
495       if (SCALAR_FLOAT_TYPE_P (inner_type))
496 	return build_real (inner_type, dconst0);
497       else
498 	return build_int_cst (inner_type, 0);
499     }
500 
501   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
502   ret = complex_ssa_name_components[ssa_name_index];
503   if (ret == NULL)
504     {
505       if (SSA_NAME_VAR (ssa_name))
506 	ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
507       else
508 	ret = TREE_TYPE (TREE_TYPE (ssa_name));
509       ret = make_ssa_name (ret);
510 
511       /* Copy some properties from the original.  In particular, whether it
512 	 is used in an abnormal phi, and whether it's uninitialized.  */
513       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
514 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
515       if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
516 	  && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
517 	{
518 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
519 	  set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
520 	}
521 
522       complex_ssa_name_components[ssa_name_index] = ret;
523     }
524 
525   return ret;
526 }
527 
528 /* Set a value for a complex component of SSA_NAME, return a
529    gimple_seq of stuff that needs doing.  */
530 
531 static gimple_seq
532 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
533 {
534   complex_lattice_t lattice = find_lattice_value (ssa_name);
535   size_t ssa_name_index;
536   tree comp;
537   gimple *last;
538   gimple_seq list;
539 
540   /* We know the value must be zero, else there's a bug in our lattice
541      analysis.  But the value may well be a variable known to contain
542      zero.  We should be safe ignoring it.  */
543   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
544     return NULL;
545 
546   /* If we've already assigned an SSA_NAME to this component, then this
547      means that our walk of the basic blocks found a use before the set.
548      This is fine.  Now we should create an initialization for the value
549      we created earlier.  */
550   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
551   comp = complex_ssa_name_components[ssa_name_index];
552   if (comp)
553     ;
554 
555   /* If we've nothing assigned, and the value we're given is already stable,
556      then install that as the value for this SSA_NAME.  This preemptively
557      copy-propagates the value, which avoids unnecessary memory allocation.  */
558   else if (is_gimple_min_invariant (value)
559 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
560     {
561       complex_ssa_name_components[ssa_name_index] = value;
562       return NULL;
563     }
564   else if (TREE_CODE (value) == SSA_NAME
565 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
566     {
567       /* Replace an anonymous base value with the variable from cvc_lookup.
568 	 This should result in better debug info.  */
569       if (SSA_NAME_VAR (ssa_name)
570 	  && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
571 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
572 	{
573 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
574 	  replace_ssa_name_symbol (value, comp);
575 	}
576 
577       complex_ssa_name_components[ssa_name_index] = value;
578       return NULL;
579     }
580 
581   /* Finally, we need to stabilize the result by installing the value into
582      a new ssa name.  */
583   else
584     comp = get_component_ssa_name (ssa_name, imag_p);
585 
586   /* Do all the work to assign VALUE to COMP.  */
587   list = NULL;
588   value = force_gimple_operand (value, &list, false, NULL);
589   last =  gimple_build_assign (comp, value);
590   gimple_seq_add_stmt (&list, last);
591   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
592 
593   return list;
594 }
595 
596 /* Extract the real or imaginary part of a complex variable or constant.
597    Make sure that it's a proper gimple_val and gimplify it if not.
598    Emit any new code before gsi.  */
599 
600 static tree
601 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
602 		   bool gimple_p, bool phiarg_p = false)
603 {
604   switch (TREE_CODE (t))
605     {
606     case COMPLEX_CST:
607       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
608 
609     case COMPLEX_EXPR:
610       gcc_unreachable ();
611 
612     case BIT_FIELD_REF:
613       {
614 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
615 	t = unshare_expr (t);
616 	TREE_TYPE (t) = inner_type;
617 	TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
618 	if (imagpart_p)
619 	  TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
620 					    TYPE_SIZE (inner_type));
621 	if (gimple_p)
622 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
623 					GSI_SAME_STMT);
624 	return t;
625       }
626 
627     case VAR_DECL:
628     case RESULT_DECL:
629     case PARM_DECL:
630     case COMPONENT_REF:
631     case ARRAY_REF:
632     case VIEW_CONVERT_EXPR:
633     case MEM_REF:
634       {
635 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
636 
637 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
638 		    inner_type, unshare_expr (t));
639 
640 	if (gimple_p)
641 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
642                                         GSI_SAME_STMT);
643 
644 	return t;
645       }
646 
647     case SSA_NAME:
648       t = get_component_ssa_name (t, imagpart_p);
649       if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
650 	gcc_assert (phiarg_p);
651       return t;
652 
653     default:
654       gcc_unreachable ();
655     }
656 }
657 
658 /* Update the complex components of the ssa name on the lhs of STMT.  */
659 
660 static void
661 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
662 			   tree i)
663 {
664   tree lhs;
665   gimple_seq list;
666 
667   lhs = gimple_get_lhs (stmt);
668 
669   list = set_component_ssa_name (lhs, false, r);
670   if (list)
671     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
672 
673   list = set_component_ssa_name (lhs, true, i);
674   if (list)
675     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
676 }
677 
678 static void
679 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
680 {
681   gimple_seq list;
682 
683   list = set_component_ssa_name (lhs, false, r);
684   if (list)
685     gsi_insert_seq_on_edge (e, list);
686 
687   list = set_component_ssa_name (lhs, true, i);
688   if (list)
689     gsi_insert_seq_on_edge (e, list);
690 }
691 
692 
693 /* Update an assignment to a complex variable in place.  */
694 
695 static void
696 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
697 {
698   gimple *stmt;
699 
700   gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
701   stmt = gsi_stmt (*gsi);
702   update_stmt (stmt);
703   if (maybe_clean_eh_stmt (stmt))
704     gimple_purge_dead_eh_edges (gimple_bb (stmt));
705 
706   if (gimple_in_ssa_p (cfun))
707     update_complex_components (gsi, gsi_stmt (*gsi), r, i);
708 }
709 
710 
711 /* Generate code at the entry point of the function to initialize the
712    component variables for a complex parameter.  */
713 
714 static void
715 update_parameter_components (void)
716 {
717   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
718   tree parm;
719 
720   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
721     {
722       tree type = TREE_TYPE (parm);
723       tree ssa_name, r, i;
724 
725       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
726 	continue;
727 
728       type = TREE_TYPE (type);
729       ssa_name = ssa_default_def (cfun, parm);
730       if (!ssa_name)
731 	continue;
732 
733       r = build1 (REALPART_EXPR, type, ssa_name);
734       i = build1 (IMAGPART_EXPR, type, ssa_name);
735       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
736     }
737 }
738 
739 /* Generate code to set the component variables of a complex variable
740    to match the PHI statements in block BB.  */
741 
742 static void
743 update_phi_components (basic_block bb)
744 {
745   gphi_iterator gsi;
746 
747   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
748     {
749       gphi *phi = gsi.phi ();
750 
751       if (is_complex_reg (gimple_phi_result (phi)))
752 	{
753 	  gphi *p[2] = { NULL, NULL };
754 	  unsigned int i, j, n;
755 	  bool revisit_phi = false;
756 
757 	  for (j = 0; j < 2; j++)
758 	    {
759 	      tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
760 	      if (TREE_CODE (l) == SSA_NAME)
761 		p[j] = create_phi_node (l, bb);
762 	    }
763 
764 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
765 	    {
766 	      tree comp, arg = gimple_phi_arg_def (phi, i);
767 	      for (j = 0; j < 2; j++)
768 		if (p[j])
769 		  {
770 		    comp = extract_component (NULL, arg, j > 0, false, true);
771 		    if (TREE_CODE (comp) == SSA_NAME
772 			&& SSA_NAME_DEF_STMT (comp) == NULL)
773 		      {
774 			/* For the benefit of any gimple simplification during
775 			   this pass that might walk SSA_NAME def stmts,
776 			   don't add SSA_NAMEs without definitions into the
777 			   PHI arguments, but put a decl in there instead
778 			   temporarily, and revisit this PHI later on.  */
779 			if (SSA_NAME_VAR (comp))
780 			  comp = SSA_NAME_VAR (comp);
781 			else
782 			  comp = create_tmp_reg (TREE_TYPE (comp),
783 						 get_name (comp));
784 			revisit_phi = true;
785 		      }
786 		    SET_PHI_ARG_DEF (p[j], i, comp);
787 		  }
788 	    }
789 
790 	  if (revisit_phi)
791 	    {
792 	      phis_to_revisit.safe_push (phi);
793 	      phis_to_revisit.safe_push (p[0]);
794 	      phis_to_revisit.safe_push (p[1]);
795 	    }
796 	}
797     }
798 }
799 
800 /* Expand a complex move to scalars.  */
801 
802 static void
803 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
804 {
805   tree inner_type = TREE_TYPE (type);
806   tree r, i, lhs, rhs;
807   gimple *stmt = gsi_stmt (*gsi);
808 
809   if (is_gimple_assign (stmt))
810     {
811       lhs = gimple_assign_lhs (stmt);
812       if (gimple_num_ops (stmt) == 2)
813 	rhs = gimple_assign_rhs1 (stmt);
814       else
815 	rhs = NULL_TREE;
816     }
817   else if (is_gimple_call (stmt))
818     {
819       lhs = gimple_call_lhs (stmt);
820       rhs = NULL_TREE;
821     }
822   else
823     gcc_unreachable ();
824 
825   if (TREE_CODE (lhs) == SSA_NAME)
826     {
827       if (is_ctrl_altering_stmt (stmt))
828 	{
829 	  edge e;
830 
831 	  /* The value is not assigned on the exception edges, so we need not
832 	     concern ourselves there.  We do need to update on the fallthru
833 	     edge.  Find it.  */
834 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
835 	  if (!e)
836 	    gcc_unreachable ();
837 
838 	  r = build1 (REALPART_EXPR, inner_type, lhs);
839 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
840 	  update_complex_components_on_edge (e, lhs, r, i);
841 	}
842       else if (is_gimple_call (stmt)
843 	       || gimple_has_side_effects (stmt)
844 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
845 	{
846 	  r = build1 (REALPART_EXPR, inner_type, lhs);
847 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
848 	  update_complex_components (gsi, stmt, r, i);
849 	}
850       else
851 	{
852 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
853 	    {
854 	      r = extract_component (gsi, rhs, 0, true);
855 	      i = extract_component (gsi, rhs, 1, true);
856 	    }
857 	  else
858 	    {
859 	      r = gimple_assign_rhs1 (stmt);
860 	      i = gimple_assign_rhs2 (stmt);
861 	    }
862 	  update_complex_assignment (gsi, r, i);
863 	}
864     }
865   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
866     {
867       tree x;
868       gimple *t;
869       location_t loc;
870 
871       loc = gimple_location (stmt);
872       r = extract_component (gsi, rhs, 0, false);
873       i = extract_component (gsi, rhs, 1, false);
874 
875       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
876       t = gimple_build_assign (x, r);
877       gimple_set_location (t, loc);
878       gsi_insert_before (gsi, t, GSI_SAME_STMT);
879 
880       if (stmt == gsi_stmt (*gsi))
881 	{
882 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
883 	  gimple_assign_set_lhs (stmt, x);
884 	  gimple_assign_set_rhs1 (stmt, i);
885 	}
886       else
887 	{
888 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
889 	  t = gimple_build_assign (x, i);
890 	  gimple_set_location (t, loc);
891 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
892 
893 	  stmt = gsi_stmt (*gsi);
894 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
895 	  gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
896 	}
897 
898       update_stmt (stmt);
899     }
900 }
901 
902 /* Expand complex addition to scalars:
903 	a + b = (ar + br) + i(ai + bi)
904 	a - b = (ar - br) + i(ai + bi)
905 */
906 
907 static void
908 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
909 			 tree ar, tree ai, tree br, tree bi,
910 			 enum tree_code code,
911 			 complex_lattice_t al, complex_lattice_t bl)
912 {
913   tree rr, ri;
914 
915   switch (PAIR (al, bl))
916     {
917     case PAIR (ONLY_REAL, ONLY_REAL):
918       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
919       ri = ai;
920       break;
921 
922     case PAIR (ONLY_REAL, ONLY_IMAG):
923       rr = ar;
924       if (code == MINUS_EXPR)
925 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
926       else
927 	ri = bi;
928       break;
929 
930     case PAIR (ONLY_IMAG, ONLY_REAL):
931       if (code == MINUS_EXPR)
932 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
933       else
934 	rr = br;
935       ri = ai;
936       break;
937 
938     case PAIR (ONLY_IMAG, ONLY_IMAG):
939       rr = ar;
940       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
941       break;
942 
943     case PAIR (VARYING, ONLY_REAL):
944       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
945       ri = ai;
946       break;
947 
948     case PAIR (VARYING, ONLY_IMAG):
949       rr = ar;
950       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
951       break;
952 
953     case PAIR (ONLY_REAL, VARYING):
954       if (code == MINUS_EXPR)
955 	goto general;
956       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
957       ri = bi;
958       break;
959 
960     case PAIR (ONLY_IMAG, VARYING):
961       if (code == MINUS_EXPR)
962 	goto general;
963       rr = br;
964       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
965       break;
966 
967     case PAIR (VARYING, VARYING):
968     general:
969       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
970       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
971       break;
972 
973     default:
974       gcc_unreachable ();
975     }
976 
977   update_complex_assignment (gsi, rr, ri);
978 }
979 
980 /* Expand a complex multiplication or division to a libcall to the c99
981    compliant routines.  */
982 
983 static void
984 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
985 			tree br, tree bi, enum tree_code code)
986 {
987   machine_mode mode;
988   enum built_in_function bcode;
989   tree fn, type, lhs;
990   gimple *old_stmt;
991   gcall *stmt;
992 
993   old_stmt = gsi_stmt (*gsi);
994   lhs = gimple_assign_lhs (old_stmt);
995   type = TREE_TYPE (lhs);
996 
997   mode = TYPE_MODE (type);
998   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
999 
1000   if (code == MULT_EXPR)
1001     bcode = ((enum built_in_function)
1002 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1003   else if (code == RDIV_EXPR)
1004     bcode = ((enum built_in_function)
1005 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1006   else
1007     gcc_unreachable ();
1008   fn = builtin_decl_explicit (bcode);
1009 
1010   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1011   gimple_call_set_lhs (stmt, lhs);
1012   update_stmt (stmt);
1013   gsi_replace (gsi, stmt, false);
1014 
1015   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1016     gimple_purge_dead_eh_edges (gsi_bb (*gsi));
1017 
1018   if (gimple_in_ssa_p (cfun))
1019     {
1020       type = TREE_TYPE (type);
1021       update_complex_components (gsi, stmt,
1022 				 build1 (REALPART_EXPR, type, lhs),
1023 				 build1 (IMAGPART_EXPR, type, lhs));
1024       SSA_NAME_DEF_STMT (lhs) = stmt;
1025     }
1026 }
1027 
1028 /* Expand complex multiplication to scalars:
1029 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1030 */
1031 
1032 static void
1033 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1034 			       tree ar, tree ai, tree br, tree bi,
1035 			       complex_lattice_t al, complex_lattice_t bl)
1036 {
1037   tree rr, ri;
1038 
1039   if (al < bl)
1040     {
1041       complex_lattice_t tl;
1042       rr = ar, ar = br, br = rr;
1043       ri = ai, ai = bi, bi = ri;
1044       tl = al, al = bl, bl = tl;
1045     }
1046 
1047   switch (PAIR (al, bl))
1048     {
1049     case PAIR (ONLY_REAL, ONLY_REAL):
1050       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1051       ri = ai;
1052       break;
1053 
1054     case PAIR (ONLY_IMAG, ONLY_REAL):
1055       rr = ar;
1056       if (TREE_CODE (ai) == REAL_CST
1057 	  && real_identical (&TREE_REAL_CST (ai), &dconst1))
1058 	ri = br;
1059       else
1060 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1061       break;
1062 
1063     case PAIR (ONLY_IMAG, ONLY_IMAG):
1064       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1065       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1066       ri = ar;
1067       break;
1068 
1069     case PAIR (VARYING, ONLY_REAL):
1070       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1071       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1072       break;
1073 
1074     case PAIR (VARYING, ONLY_IMAG):
1075       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1076       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1077       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1078       break;
1079 
1080     case PAIR (VARYING, VARYING):
1081       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1082 	{
1083 	  expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1084 	  return;
1085 	}
1086       else
1087 	{
1088 	  tree t1, t2, t3, t4;
1089 
1090 	  t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1091 	  t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1092 	  t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1093 
1094 	  /* Avoid expanding redundant multiplication for the common
1095 	     case of squaring a complex number.  */
1096 	  if (ar == br && ai == bi)
1097 	    t4 = t3;
1098 	  else
1099 	    t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1100 
1101 	  rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1102 	  ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1103 	}
1104       break;
1105 
1106     default:
1107       gcc_unreachable ();
1108     }
1109 
1110   update_complex_assignment (gsi, rr, ri);
1111 }
1112 
1113 /* Keep this algorithm in sync with fold-const.c:const_binop().
1114 
1115    Expand complex division to scalars, straightforward algorithm.
1116 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1117 	    t = br*br + bi*bi
1118 */
1119 
1120 static void
1121 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1122 			     tree ar, tree ai, tree br, tree bi,
1123 			     enum tree_code code)
1124 {
1125   tree rr, ri, div, t1, t2, t3;
1126 
1127   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1128   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1129   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1130 
1131   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1132   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1133   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1134   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1135 
1136   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1137   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1138   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1139   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1140 
1141   update_complex_assignment (gsi, rr, ri);
1142 }
1143 
1144 /* Keep this algorithm in sync with fold-const.c:const_binop().
1145 
1146    Expand complex division to scalars, modified algorithm to minimize
1147    overflow with wide input ranges.  */
1148 
1149 static void
1150 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1151 			 tree ar, tree ai, tree br, tree bi,
1152 			 enum tree_code code)
1153 {
1154   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1155   basic_block bb_cond, bb_true, bb_false, bb_join;
1156   gimple *stmt;
1157 
1158   /* Examine |br| < |bi|, and branch.  */
1159   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1160   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1161   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1162 			     LT_EXPR, boolean_type_node, t1, t2);
1163   STRIP_NOPS (compare);
1164 
1165   bb_cond = bb_true = bb_false = bb_join = NULL;
1166   rr = ri = tr = ti = NULL;
1167   if (TREE_CODE (compare) != INTEGER_CST)
1168     {
1169       edge e;
1170       gimple *stmt;
1171       tree cond, tmp;
1172 
1173       tmp = create_tmp_var (boolean_type_node);
1174       stmt = gimple_build_assign (tmp, compare);
1175       if (gimple_in_ssa_p (cfun))
1176 	{
1177 	  tmp = make_ssa_name (tmp, stmt);
1178 	  gimple_assign_set_lhs (stmt, tmp);
1179 	}
1180 
1181       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1182 
1183       cond = fold_build2_loc (gimple_location (stmt),
1184 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1185       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1186       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1187 
1188       /* Split the original block, and create the TRUE and FALSE blocks.  */
1189       e = split_block (gsi_bb (*gsi), stmt);
1190       bb_cond = e->src;
1191       bb_join = e->dest;
1192       bb_true = create_empty_bb (bb_cond);
1193       bb_false = create_empty_bb (bb_true);
1194       bb_true->count = bb_false->count
1195 	 = bb_cond->count.apply_probability (profile_probability::even ());
1196 
1197       /* Wire the blocks together.  */
1198       e->flags = EDGE_TRUE_VALUE;
1199       /* TODO: With value profile we could add an historgram to determine real
1200 	 branch outcome.  */
1201       e->probability = profile_probability::even ();
1202       redirect_edge_succ (e, bb_true);
1203       edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1204       e2->probability = profile_probability::even ();
1205       make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1206       make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1207       add_bb_to_loop (bb_true, bb_cond->loop_father);
1208       add_bb_to_loop (bb_false, bb_cond->loop_father);
1209 
1210       /* Update dominance info.  Note that bb_join's data was
1211          updated by split_block.  */
1212       if (dom_info_available_p (CDI_DOMINATORS))
1213         {
1214           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1215           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1216         }
1217 
1218       rr = create_tmp_reg (inner_type);
1219       ri = create_tmp_reg (inner_type);
1220     }
1221 
1222   /* In the TRUE branch, we compute
1223       ratio = br/bi;
1224       div = (br * ratio) + bi;
1225       tr = (ar * ratio) + ai;
1226       ti = (ai * ratio) - ar;
1227       tr = tr / div;
1228       ti = ti / div;  */
1229   if (bb_true || integer_nonzerop (compare))
1230     {
1231       if (bb_true)
1232 	{
1233 	  *gsi = gsi_last_bb (bb_true);
1234 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1235 	}
1236 
1237       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1238 
1239       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1240       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1241 
1242       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1243       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1244 
1245       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1246       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1247 
1248       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1249       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1250 
1251      if (bb_true)
1252        {
1253 	 stmt = gimple_build_assign (rr, tr);
1254 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1255 	 stmt = gimple_build_assign (ri, ti);
1256 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1257 	 gsi_remove (gsi, true);
1258        }
1259     }
1260 
1261   /* In the FALSE branch, we compute
1262       ratio = d/c;
1263       divisor = (d * ratio) + c;
1264       tr = (b * ratio) + a;
1265       ti = b - (a * ratio);
1266       tr = tr / div;
1267       ti = ti / div;  */
1268   if (bb_false || integer_zerop (compare))
1269     {
1270       if (bb_false)
1271 	{
1272 	  *gsi = gsi_last_bb (bb_false);
1273 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1274 	}
1275 
1276       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1277 
1278       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1279       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1280 
1281       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1282       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1283 
1284       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1285       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1286 
1287       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1288       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1289 
1290      if (bb_false)
1291        {
1292 	 stmt = gimple_build_assign (rr, tr);
1293 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1294 	 stmt = gimple_build_assign (ri, ti);
1295 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1296 	 gsi_remove (gsi, true);
1297        }
1298     }
1299 
1300   if (bb_join)
1301     *gsi = gsi_start_bb (bb_join);
1302   else
1303     rr = tr, ri = ti;
1304 
1305   update_complex_assignment (gsi, rr, ri);
1306 }
1307 
1308 /* Expand complex division to scalars.  */
1309 
1310 static void
1311 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1312 			 tree ar, tree ai, tree br, tree bi,
1313 			 enum tree_code code,
1314 			 complex_lattice_t al, complex_lattice_t bl)
1315 {
1316   tree rr, ri;
1317 
1318   switch (PAIR (al, bl))
1319     {
1320     case PAIR (ONLY_REAL, ONLY_REAL):
1321       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1322       ri = ai;
1323       break;
1324 
1325     case PAIR (ONLY_REAL, ONLY_IMAG):
1326       rr = ai;
1327       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1328       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1329       break;
1330 
1331     case PAIR (ONLY_IMAG, ONLY_REAL):
1332       rr = ar;
1333       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1334       break;
1335 
1336     case PAIR (ONLY_IMAG, ONLY_IMAG):
1337       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1338       ri = ar;
1339       break;
1340 
1341     case PAIR (VARYING, ONLY_REAL):
1342       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1343       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1344       break;
1345 
1346     case PAIR (VARYING, ONLY_IMAG):
1347       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1348       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1349       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1350       break;
1351 
1352     case PAIR (ONLY_REAL, VARYING):
1353     case PAIR (ONLY_IMAG, VARYING):
1354     case PAIR (VARYING, VARYING):
1355       switch (flag_complex_method)
1356 	{
1357 	case 0:
1358 	  /* straightforward implementation of complex divide acceptable.  */
1359 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1360 	  break;
1361 
1362 	case 2:
1363 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
1364 	    {
1365 	      expand_complex_libcall (gsi, ar, ai, br, bi, code);
1366 	      break;
1367 	    }
1368 	  /* FALLTHRU */
1369 
1370 	case 1:
1371 	  /* wide ranges of inputs must work for complex divide.  */
1372 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1373 	  break;
1374 
1375 	default:
1376 	  gcc_unreachable ();
1377 	}
1378       return;
1379 
1380     default:
1381       gcc_unreachable ();
1382     }
1383 
1384   update_complex_assignment (gsi, rr, ri);
1385 }
1386 
1387 /* Expand complex negation to scalars:
1388 	-a = (-ar) + i(-ai)
1389 */
1390 
1391 static void
1392 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1393 			 tree ar, tree ai)
1394 {
1395   tree rr, ri;
1396 
1397   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1398   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1399 
1400   update_complex_assignment (gsi, rr, ri);
1401 }
1402 
1403 /* Expand complex conjugate to scalars:
1404 	~a = (ar) + i(-ai)
1405 */
1406 
1407 static void
1408 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1409 			  tree ar, tree ai)
1410 {
1411   tree ri;
1412 
1413   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1414 
1415   update_complex_assignment (gsi, ar, ri);
1416 }
1417 
1418 /* Expand complex comparison (EQ or NE only).  */
1419 
1420 static void
1421 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1422 			   tree br, tree bi, enum tree_code code)
1423 {
1424   tree cr, ci, cc, type;
1425   gimple *stmt;
1426 
1427   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1428   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1429   cc = gimplify_build2 (gsi,
1430 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1431 			boolean_type_node, cr, ci);
1432 
1433   stmt = gsi_stmt (*gsi);
1434 
1435   switch (gimple_code (stmt))
1436     {
1437     case GIMPLE_RETURN:
1438       {
1439 	greturn *return_stmt = as_a <greturn *> (stmt);
1440 	type = TREE_TYPE (gimple_return_retval (return_stmt));
1441 	gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1442       }
1443       break;
1444 
1445     case GIMPLE_ASSIGN:
1446       type = TREE_TYPE (gimple_assign_lhs (stmt));
1447       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1448       stmt = gsi_stmt (*gsi);
1449       break;
1450 
1451     case GIMPLE_COND:
1452       {
1453 	gcond *cond_stmt = as_a <gcond *> (stmt);
1454 	gimple_cond_set_code (cond_stmt, EQ_EXPR);
1455 	gimple_cond_set_lhs (cond_stmt, cc);
1456 	gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1457       }
1458       break;
1459 
1460     default:
1461       gcc_unreachable ();
1462     }
1463 
1464   update_stmt (stmt);
1465 }
1466 
1467 /* Expand inline asm that sets some complex SSA_NAMEs.  */
1468 
1469 static void
1470 expand_complex_asm (gimple_stmt_iterator *gsi)
1471 {
1472   gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1473   unsigned int i;
1474 
1475   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1476     {
1477       tree link = gimple_asm_output_op (stmt, i);
1478       tree op = TREE_VALUE (link);
1479       if (TREE_CODE (op) == SSA_NAME
1480 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1481 	{
1482 	  tree type = TREE_TYPE (op);
1483 	  tree inner_type = TREE_TYPE (type);
1484 	  tree r = build1 (REALPART_EXPR, inner_type, op);
1485 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
1486 	  gimple_seq list = set_component_ssa_name (op, false, r);
1487 
1488 	  if (list)
1489 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1490 
1491 	  list = set_component_ssa_name (op, true, i);
1492 	  if (list)
1493 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1494 	}
1495     }
1496 }
1497 
1498 /* Process one statement.  If we identify a complex operation, expand it.  */
1499 
1500 static void
1501 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1502 {
1503   gimple *stmt = gsi_stmt (*gsi);
1504   tree type, inner_type, lhs;
1505   tree ac, ar, ai, bc, br, bi;
1506   complex_lattice_t al, bl;
1507   enum tree_code code;
1508 
1509   if (gimple_code (stmt) == GIMPLE_ASM)
1510     {
1511       expand_complex_asm (gsi);
1512       return;
1513     }
1514 
1515   lhs = gimple_get_lhs (stmt);
1516   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1517     return;
1518 
1519   type = TREE_TYPE (gimple_op (stmt, 0));
1520   code = gimple_expr_code (stmt);
1521 
1522   /* Initial filter for operations we handle.  */
1523   switch (code)
1524     {
1525     case PLUS_EXPR:
1526     case MINUS_EXPR:
1527     case MULT_EXPR:
1528     case TRUNC_DIV_EXPR:
1529     case CEIL_DIV_EXPR:
1530     case FLOOR_DIV_EXPR:
1531     case ROUND_DIV_EXPR:
1532     case RDIV_EXPR:
1533     case NEGATE_EXPR:
1534     case CONJ_EXPR:
1535       if (TREE_CODE (type) != COMPLEX_TYPE)
1536 	return;
1537       inner_type = TREE_TYPE (type);
1538       break;
1539 
1540     case EQ_EXPR:
1541     case NE_EXPR:
1542       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1543 	 subcode, so we need to access the operands using gimple_op.  */
1544       inner_type = TREE_TYPE (gimple_op (stmt, 1));
1545       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1546 	return;
1547       break;
1548 
1549     default:
1550       {
1551 	tree rhs;
1552 
1553 	/* GIMPLE_COND may also fallthru here, but we do not need to
1554 	   do anything with it.  */
1555 	if (gimple_code (stmt) == GIMPLE_COND)
1556 	  return;
1557 
1558 	if (TREE_CODE (type) == COMPLEX_TYPE)
1559 	  expand_complex_move (gsi, type);
1560 	else if (is_gimple_assign (stmt)
1561 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1562 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1563 		 && TREE_CODE (lhs) == SSA_NAME)
1564 	  {
1565 	    rhs = gimple_assign_rhs1 (stmt);
1566 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1567 		                     gimple_assign_rhs_code (stmt)
1568 				       == IMAGPART_EXPR,
1569 				     false);
1570 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1571 	    stmt = gsi_stmt (*gsi);
1572 	    update_stmt (stmt);
1573 	  }
1574       }
1575       return;
1576     }
1577 
1578   /* Extract the components of the two complex values.  Make sure and
1579      handle the common case of the same value used twice specially.  */
1580   if (is_gimple_assign (stmt))
1581     {
1582       ac = gimple_assign_rhs1 (stmt);
1583       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1584     }
1585   /* GIMPLE_CALL can not get here.  */
1586   else
1587     {
1588       ac = gimple_cond_lhs (stmt);
1589       bc = gimple_cond_rhs (stmt);
1590     }
1591 
1592   ar = extract_component (gsi, ac, false, true);
1593   ai = extract_component (gsi, ac, true, true);
1594 
1595   if (ac == bc)
1596     br = ar, bi = ai;
1597   else if (bc)
1598     {
1599       br = extract_component (gsi, bc, 0, true);
1600       bi = extract_component (gsi, bc, 1, true);
1601     }
1602   else
1603     br = bi = NULL_TREE;
1604 
1605   if (gimple_in_ssa_p (cfun))
1606     {
1607       al = find_lattice_value (ac);
1608       if (al == UNINITIALIZED)
1609 	al = VARYING;
1610 
1611       if (TREE_CODE_CLASS (code) == tcc_unary)
1612 	bl = UNINITIALIZED;
1613       else if (ac == bc)
1614 	bl = al;
1615       else
1616 	{
1617 	  bl = find_lattice_value (bc);
1618 	  if (bl == UNINITIALIZED)
1619 	    bl = VARYING;
1620 	}
1621     }
1622   else
1623     al = bl = VARYING;
1624 
1625   switch (code)
1626     {
1627     case PLUS_EXPR:
1628     case MINUS_EXPR:
1629       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1630       break;
1631 
1632     case MULT_EXPR:
1633       expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1634       break;
1635 
1636     case TRUNC_DIV_EXPR:
1637     case CEIL_DIV_EXPR:
1638     case FLOOR_DIV_EXPR:
1639     case ROUND_DIV_EXPR:
1640     case RDIV_EXPR:
1641       expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1642       break;
1643 
1644     case NEGATE_EXPR:
1645       expand_complex_negation (gsi, inner_type, ar, ai);
1646       break;
1647 
1648     case CONJ_EXPR:
1649       expand_complex_conjugate (gsi, inner_type, ar, ai);
1650       break;
1651 
1652     case EQ_EXPR:
1653     case NE_EXPR:
1654       expand_complex_comparison (gsi, ar, ai, br, bi, code);
1655       break;
1656 
1657     default:
1658       gcc_unreachable ();
1659     }
1660 }
1661 
1662 
1663 /* Entry point for complex operation lowering during optimization.  */
1664 
1665 static unsigned int
1666 tree_lower_complex (void)
1667 {
1668   gimple_stmt_iterator gsi;
1669   basic_block bb;
1670   int n_bbs, i;
1671   int *rpo;
1672 
1673   if (!init_dont_simulate_again ())
1674     return 0;
1675 
1676   complex_lattice_values.create (num_ssa_names);
1677   complex_lattice_values.safe_grow_cleared (num_ssa_names);
1678 
1679   init_parameter_lattice_values ();
1680   class complex_propagate complex_propagate;
1681   complex_propagate.ssa_propagate ();
1682 
1683   complex_variable_components = new int_tree_htab_type (10);
1684 
1685   complex_ssa_name_components.create (2 * num_ssa_names);
1686   complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1687 
1688   update_parameter_components ();
1689 
1690   rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1691   n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1692   for (i = 0; i < n_bbs; i++)
1693     {
1694       bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1695       update_phi_components (bb);
1696       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1697 	expand_complex_operations_1 (&gsi);
1698     }
1699 
1700   free (rpo);
1701 
1702   if (!phis_to_revisit.is_empty ())
1703     {
1704       unsigned int n = phis_to_revisit.length ();
1705       for (unsigned int j = 0; j < n; j += 3)
1706 	for (unsigned int k = 0; k < 2; k++)
1707 	  if (gphi *phi = phis_to_revisit[j + k + 1])
1708 	    {
1709 	      unsigned int m = gimple_phi_num_args (phi);
1710 	      for (unsigned int l = 0; l < m; ++l)
1711 		{
1712 		  tree op = gimple_phi_arg_def (phi, l);
1713 		  if (TREE_CODE (op) == SSA_NAME
1714 		      || is_gimple_min_invariant (op))
1715 		    continue;
1716 		  tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1717 		  op = extract_component (NULL, arg, k > 0, false, false);
1718 		  SET_PHI_ARG_DEF (phi, l, op);
1719 		}
1720 	    }
1721       phis_to_revisit.release ();
1722     }
1723 
1724   gsi_commit_edge_inserts ();
1725 
1726   delete complex_variable_components;
1727   complex_variable_components = NULL;
1728   complex_ssa_name_components.release ();
1729   complex_lattice_values.release ();
1730   return 0;
1731 }
1732 
1733 namespace {
1734 
1735 const pass_data pass_data_lower_complex =
1736 {
1737   GIMPLE_PASS, /* type */
1738   "cplxlower", /* name */
1739   OPTGROUP_NONE, /* optinfo_flags */
1740   TV_NONE, /* tv_id */
1741   PROP_ssa, /* properties_required */
1742   PROP_gimple_lcx, /* properties_provided */
1743   0, /* properties_destroyed */
1744   0, /* todo_flags_start */
1745   TODO_update_ssa, /* todo_flags_finish */
1746 };
1747 
1748 class pass_lower_complex : public gimple_opt_pass
1749 {
1750 public:
1751   pass_lower_complex (gcc::context *ctxt)
1752     : gimple_opt_pass (pass_data_lower_complex, ctxt)
1753   {}
1754 
1755   /* opt_pass methods: */
1756   opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1757   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1758 
1759 }; // class pass_lower_complex
1760 
1761 } // anon namespace
1762 
1763 gimple_opt_pass *
1764 make_pass_lower_complex (gcc::context *ctxt)
1765 {
1766   return new pass_lower_complex (ctxt);
1767 }
1768 
1769 
1770 namespace {
1771 
1772 const pass_data pass_data_lower_complex_O0 =
1773 {
1774   GIMPLE_PASS, /* type */
1775   "cplxlower0", /* name */
1776   OPTGROUP_NONE, /* optinfo_flags */
1777   TV_NONE, /* tv_id */
1778   PROP_cfg, /* properties_required */
1779   PROP_gimple_lcx, /* properties_provided */
1780   0, /* properties_destroyed */
1781   0, /* todo_flags_start */
1782   TODO_update_ssa, /* todo_flags_finish */
1783 };
1784 
1785 class pass_lower_complex_O0 : public gimple_opt_pass
1786 {
1787 public:
1788   pass_lower_complex_O0 (gcc::context *ctxt)
1789     : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1790   {}
1791 
1792   /* opt_pass methods: */
1793   virtual bool gate (function *fun)
1794     {
1795       /* With errors, normal optimization passes are not run.  If we don't
1796 	 lower complex operations at all, rtl expansion will abort.  */
1797       return !(fun->curr_properties & PROP_gimple_lcx);
1798     }
1799 
1800   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1801 
1802 }; // class pass_lower_complex_O0
1803 
1804 } // anon namespace
1805 
1806 gimple_opt_pass *
1807 make_pass_lower_complex_O0 (gcc::context *ctxt)
1808 {
1809   return new pass_lower_complex_O0 (ctxt);
1810 }
1811